ARC: smp: Introduce smp hook @init_early_smp for Master core
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 RCU_INIT_POINTER(ei->socket.wq, wq);
261
262 ei->socket.state = SS_UNCONNECTED;
263 ei->socket.flags = 0;
264 ei->socket.ops = NULL;
265 ei->socket.sk = NULL;
266 ei->socket.file = NULL;
267
268 return &ei->vfs_inode;
269 }
270
271 static void sock_destroy_inode(struct inode *inode)
272 {
273 struct socket_alloc *ei;
274 struct socket_wq *wq;
275
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 wq = rcu_dereference_protected(ei->socket.wq, 1);
278 kfree_rcu(wq, rcu);
279 kmem_cache_free(sock_inode_cachep, ei);
280 }
281
282 static void init_once(void *foo)
283 {
284 struct socket_alloc *ei = (struct socket_alloc *)foo;
285
286 inode_init_once(&ei->vfs_inode);
287 }
288
289 static int init_inodecache(void)
290 {
291 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292 sizeof(struct socket_alloc),
293 0,
294 (SLAB_HWCACHE_ALIGN |
295 SLAB_RECLAIM_ACCOUNT |
296 SLAB_MEM_SPREAD),
297 init_once);
298 if (sock_inode_cachep == NULL)
299 return -ENOMEM;
300 return 0;
301 }
302
303 static const struct super_operations sockfs_ops = {
304 .alloc_inode = sock_alloc_inode,
305 .destroy_inode = sock_destroy_inode,
306 .statfs = simple_statfs,
307 };
308
309 /*
310 * sockfs_dname() is called from d_path().
311 */
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 d_inode(dentry)->i_ino);
316 }
317
318 static const struct dentry_operations sockfs_dentry_operations = {
319 .d_dname = sockfs_dname,
320 };
321
322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323 int flags, const char *dev_name, void *data)
324 {
325 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326 &sockfs_dentry_operations, SOCKFS_MAGIC);
327 }
328
329 static struct vfsmount *sock_mnt __read_mostly;
330
331 static struct file_system_type sock_fs_type = {
332 .name = "sockfs",
333 .mount = sockfs_mount,
334 .kill_sb = kill_anon_super,
335 };
336
337 /*
338 * Obtains the first available file descriptor and sets it up for use.
339 *
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
347 *
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
352 */
353
354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
355 {
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
359
360 if (dname) {
361 name.name = dname;
362 name.len = strlen(name.name);
363 } else if (sock->sk) {
364 name.name = sock->sk->sk_prot_creator->name;
365 name.len = strlen(name.name);
366 }
367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368 if (unlikely(!path.dentry))
369 return ERR_PTR(-ENOMEM);
370 path.mnt = mntget(sock_mnt);
371
372 d_instantiate(path.dentry, SOCK_INODE(sock));
373
374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 &socket_file_ops);
376 if (unlikely(IS_ERR(file))) {
377 /* drop dentry, keep inode */
378 ihold(d_inode(path.dentry));
379 path_put(&path);
380 return file;
381 }
382
383 sock->file = file;
384 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
385 file->private_data = sock;
386 return file;
387 }
388 EXPORT_SYMBOL(sock_alloc_file);
389
390 static int sock_map_fd(struct socket *sock, int flags)
391 {
392 struct file *newfile;
393 int fd = get_unused_fd_flags(flags);
394 if (unlikely(fd < 0))
395 return fd;
396
397 newfile = sock_alloc_file(sock, flags, NULL);
398 if (likely(!IS_ERR(newfile))) {
399 fd_install(fd, newfile);
400 return fd;
401 }
402
403 put_unused_fd(fd);
404 return PTR_ERR(newfile);
405 }
406
407 struct socket *sock_from_file(struct file *file, int *err)
408 {
409 if (file->f_op == &socket_file_ops)
410 return file->private_data; /* set in sock_map_fd */
411
412 *err = -ENOTSOCK;
413 return NULL;
414 }
415 EXPORT_SYMBOL(sock_from_file);
416
417 /**
418 * sockfd_lookup - Go from a file number to its socket slot
419 * @fd: file handle
420 * @err: pointer to an error code return
421 *
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
426 *
427 * On a success the socket object pointer is returned.
428 */
429
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 struct file *file;
433 struct socket *sock;
434
435 file = fget(fd);
436 if (!file) {
437 *err = -EBADF;
438 return NULL;
439 }
440
441 sock = sock_from_file(file, err);
442 if (!sock)
443 fput(file);
444 return sock;
445 }
446 EXPORT_SYMBOL(sockfd_lookup);
447
448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
449 {
450 struct fd f = fdget(fd);
451 struct socket *sock;
452
453 *err = -EBADF;
454 if (f.file) {
455 sock = sock_from_file(f.file, err);
456 if (likely(sock)) {
457 *fput_needed = f.flags;
458 return sock;
459 }
460 fdput(f);
461 }
462 return NULL;
463 }
464
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468 static ssize_t sockfs_getxattr(struct dentry *dentry,
469 const char *name, void *value, size_t size)
470 {
471 const char *proto_name;
472 size_t proto_size;
473 int error;
474
475 error = -ENODATA;
476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477 proto_name = dentry->d_name.name;
478 proto_size = strlen(proto_name);
479
480 if (value) {
481 error = -ERANGE;
482 if (proto_size + 1 > size)
483 goto out;
484
485 strncpy(value, proto_name, proto_size + 1);
486 }
487 error = proto_size + 1;
488 }
489
490 out:
491 return error;
492 }
493
494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495 size_t size)
496 {
497 ssize_t len;
498 ssize_t used = 0;
499
500 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
501 if (len < 0)
502 return len;
503 used += len;
504 if (buffer) {
505 if (size < used)
506 return -ERANGE;
507 buffer += len;
508 }
509
510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511 used += len;
512 if (buffer) {
513 if (size < used)
514 return -ERANGE;
515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516 buffer += len;
517 }
518
519 return used;
520 }
521
522 static const struct inode_operations sockfs_inode_ops = {
523 .getxattr = sockfs_getxattr,
524 .listxattr = sockfs_listxattr,
525 };
526
527 /**
528 * sock_alloc - allocate a socket
529 *
530 * Allocate a new inode and socket object. The two are bound together
531 * and initialised. The socket is then returned. If we are out of inodes
532 * NULL is returned.
533 */
534
535 static struct socket *sock_alloc(void)
536 {
537 struct inode *inode;
538 struct socket *sock;
539
540 inode = new_inode_pseudo(sock_mnt->mnt_sb);
541 if (!inode)
542 return NULL;
543
544 sock = SOCKET_I(inode);
545
546 kmemcheck_annotate_bitfield(sock, type);
547 inode->i_ino = get_next_ino();
548 inode->i_mode = S_IFSOCK | S_IRWXUGO;
549 inode->i_uid = current_fsuid();
550 inode->i_gid = current_fsgid();
551 inode->i_op = &sockfs_inode_ops;
552
553 this_cpu_add(sockets_in_use, 1);
554 return sock;
555 }
556
557 /**
558 * sock_release - close a socket
559 * @sock: socket to close
560 *
561 * The socket is released from the protocol stack if it has a release
562 * callback, and the inode is then released if the socket is bound to
563 * an inode not a file.
564 */
565
566 void sock_release(struct socket *sock)
567 {
568 if (sock->ops) {
569 struct module *owner = sock->ops->owner;
570
571 sock->ops->release(sock);
572 sock->ops = NULL;
573 module_put(owner);
574 }
575
576 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
577 pr_err("%s: fasync list not empty!\n", __func__);
578
579 this_cpu_sub(sockets_in_use, 1);
580 if (!sock->file) {
581 iput(SOCK_INODE(sock));
582 return;
583 }
584 sock->file = NULL;
585 }
586 EXPORT_SYMBOL(sock_release);
587
588 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
589 {
590 u8 flags = *tx_flags;
591
592 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
593 flags |= SKBTX_HW_TSTAMP;
594
595 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
596 flags |= SKBTX_SW_TSTAMP;
597
598 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
599 flags |= SKBTX_SCHED_TSTAMP;
600
601 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
602 flags |= SKBTX_ACK_TSTAMP;
603
604 *tx_flags = flags;
605 }
606 EXPORT_SYMBOL(__sock_tx_timestamp);
607
608 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
609 {
610 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
611 BUG_ON(ret == -EIOCBQUEUED);
612 return ret;
613 }
614
615 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
616 {
617 int err = security_socket_sendmsg(sock, msg,
618 msg_data_left(msg));
619
620 return err ?: sock_sendmsg_nosec(sock, msg);
621 }
622 EXPORT_SYMBOL(sock_sendmsg);
623
624 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
625 struct kvec *vec, size_t num, size_t size)
626 {
627 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
628 return sock_sendmsg(sock, msg);
629 }
630 EXPORT_SYMBOL(kernel_sendmsg);
631
632 /*
633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
634 */
635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
636 struct sk_buff *skb)
637 {
638 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
639 struct scm_timestamping tss;
640 int empty = 1;
641 struct skb_shared_hwtstamps *shhwtstamps =
642 skb_hwtstamps(skb);
643
644 /* Race occurred between timestamp enabling and packet
645 receiving. Fill in the current time for now. */
646 if (need_software_tstamp && skb->tstamp.tv64 == 0)
647 __net_timestamp(skb);
648
649 if (need_software_tstamp) {
650 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
651 struct timeval tv;
652 skb_get_timestamp(skb, &tv);
653 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
654 sizeof(tv), &tv);
655 } else {
656 struct timespec ts;
657 skb_get_timestampns(skb, &ts);
658 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
659 sizeof(ts), &ts);
660 }
661 }
662
663 memset(&tss, 0, sizeof(tss));
664 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
665 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
666 empty = 0;
667 if (shhwtstamps &&
668 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
669 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
670 empty = 0;
671 if (!empty)
672 put_cmsg(msg, SOL_SOCKET,
673 SCM_TIMESTAMPING, sizeof(tss), &tss);
674 }
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
676
677 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
678 struct sk_buff *skb)
679 {
680 int ack;
681
682 if (!sock_flag(sk, SOCK_WIFI_STATUS))
683 return;
684 if (!skb->wifi_acked_valid)
685 return;
686
687 ack = skb->wifi_acked;
688
689 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
690 }
691 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
692
693 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
694 struct sk_buff *skb)
695 {
696 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
697 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
698 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
699 }
700
701 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
702 struct sk_buff *skb)
703 {
704 sock_recv_timestamp(msg, sk, skb);
705 sock_recv_drops(msg, sk, skb);
706 }
707 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
708
709 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
710 size_t size, int flags)
711 {
712 return sock->ops->recvmsg(sock, msg, size, flags);
713 }
714
715 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
716 int flags)
717 {
718 int err = security_socket_recvmsg(sock, msg, size, flags);
719
720 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
721 }
722 EXPORT_SYMBOL(sock_recvmsg);
723
724 /**
725 * kernel_recvmsg - Receive a message from a socket (kernel space)
726 * @sock: The socket to receive the message from
727 * @msg: Received message
728 * @vec: Input s/g array for message data
729 * @num: Size of input s/g array
730 * @size: Number of bytes to read
731 * @flags: Message flags (MSG_DONTWAIT, etc...)
732 *
733 * On return the msg structure contains the scatter/gather array passed in the
734 * vec argument. The array is modified so that it consists of the unfilled
735 * portion of the original array.
736 *
737 * The returned value is the total number of bytes received, or an error.
738 */
739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
740 struct kvec *vec, size_t num, size_t size, int flags)
741 {
742 mm_segment_t oldfs = get_fs();
743 int result;
744
745 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
746 set_fs(KERNEL_DS);
747 result = sock_recvmsg(sock, msg, size, flags);
748 set_fs(oldfs);
749 return result;
750 }
751 EXPORT_SYMBOL(kernel_recvmsg);
752
753 static ssize_t sock_sendpage(struct file *file, struct page *page,
754 int offset, size_t size, loff_t *ppos, int more)
755 {
756 struct socket *sock;
757 int flags;
758
759 sock = file->private_data;
760
761 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
762 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
763 flags |= more;
764
765 return kernel_sendpage(sock, page, offset, size, flags);
766 }
767
768 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
769 struct pipe_inode_info *pipe, size_t len,
770 unsigned int flags)
771 {
772 struct socket *sock = file->private_data;
773
774 if (unlikely(!sock->ops->splice_read))
775 return -EINVAL;
776
777 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
778 }
779
780 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
781 {
782 struct file *file = iocb->ki_filp;
783 struct socket *sock = file->private_data;
784 struct msghdr msg = {.msg_iter = *to,
785 .msg_iocb = iocb};
786 ssize_t res;
787
788 if (file->f_flags & O_NONBLOCK)
789 msg.msg_flags = MSG_DONTWAIT;
790
791 if (iocb->ki_pos != 0)
792 return -ESPIPE;
793
794 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
795 return 0;
796
797 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
798 *to = msg.msg_iter;
799 return res;
800 }
801
802 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
803 {
804 struct file *file = iocb->ki_filp;
805 struct socket *sock = file->private_data;
806 struct msghdr msg = {.msg_iter = *from,
807 .msg_iocb = iocb};
808 ssize_t res;
809
810 if (iocb->ki_pos != 0)
811 return -ESPIPE;
812
813 if (file->f_flags & O_NONBLOCK)
814 msg.msg_flags = MSG_DONTWAIT;
815
816 if (sock->type == SOCK_SEQPACKET)
817 msg.msg_flags |= MSG_EOR;
818
819 res = sock_sendmsg(sock, &msg);
820 *from = msg.msg_iter;
821 return res;
822 }
823
824 /*
825 * Atomic setting of ioctl hooks to avoid race
826 * with module unload.
827 */
828
829 static DEFINE_MUTEX(br_ioctl_mutex);
830 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
831
832 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
833 {
834 mutex_lock(&br_ioctl_mutex);
835 br_ioctl_hook = hook;
836 mutex_unlock(&br_ioctl_mutex);
837 }
838 EXPORT_SYMBOL(brioctl_set);
839
840 static DEFINE_MUTEX(vlan_ioctl_mutex);
841 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
842
843 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
844 {
845 mutex_lock(&vlan_ioctl_mutex);
846 vlan_ioctl_hook = hook;
847 mutex_unlock(&vlan_ioctl_mutex);
848 }
849 EXPORT_SYMBOL(vlan_ioctl_set);
850
851 static DEFINE_MUTEX(dlci_ioctl_mutex);
852 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
853
854 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
855 {
856 mutex_lock(&dlci_ioctl_mutex);
857 dlci_ioctl_hook = hook;
858 mutex_unlock(&dlci_ioctl_mutex);
859 }
860 EXPORT_SYMBOL(dlci_ioctl_set);
861
862 static long sock_do_ioctl(struct net *net, struct socket *sock,
863 unsigned int cmd, unsigned long arg)
864 {
865 int err;
866 void __user *argp = (void __user *)arg;
867
868 err = sock->ops->ioctl(sock, cmd, arg);
869
870 /*
871 * If this ioctl is unknown try to hand it down
872 * to the NIC driver.
873 */
874 if (err == -ENOIOCTLCMD)
875 err = dev_ioctl(net, cmd, argp);
876
877 return err;
878 }
879
880 /*
881 * With an ioctl, arg may well be a user mode pointer, but we don't know
882 * what to do with it - that's up to the protocol still.
883 */
884
885 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
886 {
887 struct socket *sock;
888 struct sock *sk;
889 void __user *argp = (void __user *)arg;
890 int pid, err;
891 struct net *net;
892
893 sock = file->private_data;
894 sk = sock->sk;
895 net = sock_net(sk);
896 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
897 err = dev_ioctl(net, cmd, argp);
898 } else
899 #ifdef CONFIG_WEXT_CORE
900 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
901 err = dev_ioctl(net, cmd, argp);
902 } else
903 #endif
904 switch (cmd) {
905 case FIOSETOWN:
906 case SIOCSPGRP:
907 err = -EFAULT;
908 if (get_user(pid, (int __user *)argp))
909 break;
910 f_setown(sock->file, pid, 1);
911 err = 0;
912 break;
913 case FIOGETOWN:
914 case SIOCGPGRP:
915 err = put_user(f_getown(sock->file),
916 (int __user *)argp);
917 break;
918 case SIOCGIFBR:
919 case SIOCSIFBR:
920 case SIOCBRADDBR:
921 case SIOCBRDELBR:
922 err = -ENOPKG;
923 if (!br_ioctl_hook)
924 request_module("bridge");
925
926 mutex_lock(&br_ioctl_mutex);
927 if (br_ioctl_hook)
928 err = br_ioctl_hook(net, cmd, argp);
929 mutex_unlock(&br_ioctl_mutex);
930 break;
931 case SIOCGIFVLAN:
932 case SIOCSIFVLAN:
933 err = -ENOPKG;
934 if (!vlan_ioctl_hook)
935 request_module("8021q");
936
937 mutex_lock(&vlan_ioctl_mutex);
938 if (vlan_ioctl_hook)
939 err = vlan_ioctl_hook(net, argp);
940 mutex_unlock(&vlan_ioctl_mutex);
941 break;
942 case SIOCADDDLCI:
943 case SIOCDELDLCI:
944 err = -ENOPKG;
945 if (!dlci_ioctl_hook)
946 request_module("dlci");
947
948 mutex_lock(&dlci_ioctl_mutex);
949 if (dlci_ioctl_hook)
950 err = dlci_ioctl_hook(cmd, argp);
951 mutex_unlock(&dlci_ioctl_mutex);
952 break;
953 default:
954 err = sock_do_ioctl(net, sock, cmd, arg);
955 break;
956 }
957 return err;
958 }
959
960 int sock_create_lite(int family, int type, int protocol, struct socket **res)
961 {
962 int err;
963 struct socket *sock = NULL;
964
965 err = security_socket_create(family, type, protocol, 1);
966 if (err)
967 goto out;
968
969 sock = sock_alloc();
970 if (!sock) {
971 err = -ENOMEM;
972 goto out;
973 }
974
975 sock->type = type;
976 err = security_socket_post_create(sock, family, type, protocol, 1);
977 if (err)
978 goto out_release;
979
980 out:
981 *res = sock;
982 return err;
983 out_release:
984 sock_release(sock);
985 sock = NULL;
986 goto out;
987 }
988 EXPORT_SYMBOL(sock_create_lite);
989
990 /* No kernel lock held - perfect */
991 static unsigned int sock_poll(struct file *file, poll_table *wait)
992 {
993 unsigned int busy_flag = 0;
994 struct socket *sock;
995
996 /*
997 * We can't return errors to poll, so it's either yes or no.
998 */
999 sock = file->private_data;
1000
1001 if (sk_can_busy_loop(sock->sk)) {
1002 /* this socket can poll_ll so tell the system call */
1003 busy_flag = POLL_BUSY_LOOP;
1004
1005 /* once, only if requested by syscall */
1006 if (wait && (wait->_key & POLL_BUSY_LOOP))
1007 sk_busy_loop(sock->sk, 1);
1008 }
1009
1010 return busy_flag | sock->ops->poll(file, sock, wait);
1011 }
1012
1013 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1014 {
1015 struct socket *sock = file->private_data;
1016
1017 return sock->ops->mmap(file, sock, vma);
1018 }
1019
1020 static int sock_close(struct inode *inode, struct file *filp)
1021 {
1022 sock_release(SOCKET_I(inode));
1023 return 0;
1024 }
1025
1026 /*
1027 * Update the socket async list
1028 *
1029 * Fasync_list locking strategy.
1030 *
1031 * 1. fasync_list is modified only under process context socket lock
1032 * i.e. under semaphore.
1033 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1034 * or under socket lock
1035 */
1036
1037 static int sock_fasync(int fd, struct file *filp, int on)
1038 {
1039 struct socket *sock = filp->private_data;
1040 struct sock *sk = sock->sk;
1041 struct socket_wq *wq;
1042
1043 if (sk == NULL)
1044 return -EINVAL;
1045
1046 lock_sock(sk);
1047 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1048 fasync_helper(fd, filp, on, &wq->fasync_list);
1049
1050 if (!wq->fasync_list)
1051 sock_reset_flag(sk, SOCK_FASYNC);
1052 else
1053 sock_set_flag(sk, SOCK_FASYNC);
1054
1055 release_sock(sk);
1056 return 0;
1057 }
1058
1059 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1060
1061 int sock_wake_async(struct socket *sock, int how, int band)
1062 {
1063 struct socket_wq *wq;
1064
1065 if (!sock)
1066 return -1;
1067 rcu_read_lock();
1068 wq = rcu_dereference(sock->wq);
1069 if (!wq || !wq->fasync_list) {
1070 rcu_read_unlock();
1071 return -1;
1072 }
1073 switch (how) {
1074 case SOCK_WAKE_WAITD:
1075 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1076 break;
1077 goto call_kill;
1078 case SOCK_WAKE_SPACE:
1079 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1080 break;
1081 /* fall through */
1082 case SOCK_WAKE_IO:
1083 call_kill:
1084 kill_fasync(&wq->fasync_list, SIGIO, band);
1085 break;
1086 case SOCK_WAKE_URG:
1087 kill_fasync(&wq->fasync_list, SIGURG, band);
1088 }
1089 rcu_read_unlock();
1090 return 0;
1091 }
1092 EXPORT_SYMBOL(sock_wake_async);
1093
1094 int __sock_create(struct net *net, int family, int type, int protocol,
1095 struct socket **res, int kern)
1096 {
1097 int err;
1098 struct socket *sock;
1099 const struct net_proto_family *pf;
1100
1101 /*
1102 * Check protocol is in range
1103 */
1104 if (family < 0 || family >= NPROTO)
1105 return -EAFNOSUPPORT;
1106 if (type < 0 || type >= SOCK_MAX)
1107 return -EINVAL;
1108
1109 /* Compatibility.
1110
1111 This uglymoron is moved from INET layer to here to avoid
1112 deadlock in module load.
1113 */
1114 if (family == PF_INET && type == SOCK_PACKET) {
1115 static int warned;
1116 if (!warned) {
1117 warned = 1;
1118 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 current->comm);
1120 }
1121 family = PF_PACKET;
1122 }
1123
1124 err = security_socket_create(family, type, protocol, kern);
1125 if (err)
1126 return err;
1127
1128 /*
1129 * Allocate the socket and allow the family to set things up. if
1130 * the protocol is 0, the family is instructed to select an appropriate
1131 * default.
1132 */
1133 sock = sock_alloc();
1134 if (!sock) {
1135 net_warn_ratelimited("socket: no more sockets\n");
1136 return -ENFILE; /* Not exactly a match, but its the
1137 closest posix thing */
1138 }
1139
1140 sock->type = type;
1141
1142 #ifdef CONFIG_MODULES
1143 /* Attempt to load a protocol module if the find failed.
1144 *
1145 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1146 * requested real, full-featured networking support upon configuration.
1147 * Otherwise module support will break!
1148 */
1149 if (rcu_access_pointer(net_families[family]) == NULL)
1150 request_module("net-pf-%d", family);
1151 #endif
1152
1153 rcu_read_lock();
1154 pf = rcu_dereference(net_families[family]);
1155 err = -EAFNOSUPPORT;
1156 if (!pf)
1157 goto out_release;
1158
1159 /*
1160 * We will call the ->create function, that possibly is in a loadable
1161 * module, so we have to bump that loadable module refcnt first.
1162 */
1163 if (!try_module_get(pf->owner))
1164 goto out_release;
1165
1166 /* Now protected by module ref count */
1167 rcu_read_unlock();
1168
1169 err = pf->create(net, sock, protocol, kern);
1170 if (err < 0)
1171 goto out_module_put;
1172
1173 /*
1174 * Now to bump the refcnt of the [loadable] module that owns this
1175 * socket at sock_release time we decrement its refcnt.
1176 */
1177 if (!try_module_get(sock->ops->owner))
1178 goto out_module_busy;
1179
1180 /*
1181 * Now that we're done with the ->create function, the [loadable]
1182 * module can have its refcnt decremented
1183 */
1184 module_put(pf->owner);
1185 err = security_socket_post_create(sock, family, type, protocol, kern);
1186 if (err)
1187 goto out_sock_release;
1188 *res = sock;
1189
1190 return 0;
1191
1192 out_module_busy:
1193 err = -EAFNOSUPPORT;
1194 out_module_put:
1195 sock->ops = NULL;
1196 module_put(pf->owner);
1197 out_sock_release:
1198 sock_release(sock);
1199 return err;
1200
1201 out_release:
1202 rcu_read_unlock();
1203 goto out_sock_release;
1204 }
1205 EXPORT_SYMBOL(__sock_create);
1206
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1208 {
1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 }
1211 EXPORT_SYMBOL(sock_create);
1212
1213 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1214 {
1215 return __sock_create(net, family, type, protocol, res, 1);
1216 }
1217 EXPORT_SYMBOL(sock_create_kern);
1218
1219 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1220 {
1221 int retval;
1222 struct socket *sock;
1223 int flags;
1224
1225 /* Check the SOCK_* constants for consistency. */
1226 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1227 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1228 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1229 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1230
1231 flags = type & ~SOCK_TYPE_MASK;
1232 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1233 return -EINVAL;
1234 type &= SOCK_TYPE_MASK;
1235
1236 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1237 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1238
1239 retval = sock_create(family, type, protocol, &sock);
1240 if (retval < 0)
1241 goto out;
1242
1243 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1244 if (retval < 0)
1245 goto out_release;
1246
1247 out:
1248 /* It may be already another descriptor 8) Not kernel problem. */
1249 return retval;
1250
1251 out_release:
1252 sock_release(sock);
1253 return retval;
1254 }
1255
1256 /*
1257 * Create a pair of connected sockets.
1258 */
1259
1260 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1261 int __user *, usockvec)
1262 {
1263 struct socket *sock1, *sock2;
1264 int fd1, fd2, err;
1265 struct file *newfile1, *newfile2;
1266 int flags;
1267
1268 flags = type & ~SOCK_TYPE_MASK;
1269 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1270 return -EINVAL;
1271 type &= SOCK_TYPE_MASK;
1272
1273 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1274 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1275
1276 /*
1277 * Obtain the first socket and check if the underlying protocol
1278 * supports the socketpair call.
1279 */
1280
1281 err = sock_create(family, type, protocol, &sock1);
1282 if (err < 0)
1283 goto out;
1284
1285 err = sock_create(family, type, protocol, &sock2);
1286 if (err < 0)
1287 goto out_release_1;
1288
1289 err = sock1->ops->socketpair(sock1, sock2);
1290 if (err < 0)
1291 goto out_release_both;
1292
1293 fd1 = get_unused_fd_flags(flags);
1294 if (unlikely(fd1 < 0)) {
1295 err = fd1;
1296 goto out_release_both;
1297 }
1298
1299 fd2 = get_unused_fd_flags(flags);
1300 if (unlikely(fd2 < 0)) {
1301 err = fd2;
1302 goto out_put_unused_1;
1303 }
1304
1305 newfile1 = sock_alloc_file(sock1, flags, NULL);
1306 if (unlikely(IS_ERR(newfile1))) {
1307 err = PTR_ERR(newfile1);
1308 goto out_put_unused_both;
1309 }
1310
1311 newfile2 = sock_alloc_file(sock2, flags, NULL);
1312 if (IS_ERR(newfile2)) {
1313 err = PTR_ERR(newfile2);
1314 goto out_fput_1;
1315 }
1316
1317 err = put_user(fd1, &usockvec[0]);
1318 if (err)
1319 goto out_fput_both;
1320
1321 err = put_user(fd2, &usockvec[1]);
1322 if (err)
1323 goto out_fput_both;
1324
1325 audit_fd_pair(fd1, fd2);
1326
1327 fd_install(fd1, newfile1);
1328 fd_install(fd2, newfile2);
1329 /* fd1 and fd2 may be already another descriptors.
1330 * Not kernel problem.
1331 */
1332
1333 return 0;
1334
1335 out_fput_both:
1336 fput(newfile2);
1337 fput(newfile1);
1338 put_unused_fd(fd2);
1339 put_unused_fd(fd1);
1340 goto out;
1341
1342 out_fput_1:
1343 fput(newfile1);
1344 put_unused_fd(fd2);
1345 put_unused_fd(fd1);
1346 sock_release(sock2);
1347 goto out;
1348
1349 out_put_unused_both:
1350 put_unused_fd(fd2);
1351 out_put_unused_1:
1352 put_unused_fd(fd1);
1353 out_release_both:
1354 sock_release(sock2);
1355 out_release_1:
1356 sock_release(sock1);
1357 out:
1358 return err;
1359 }
1360
1361 /*
1362 * Bind a name to a socket. Nothing much to do here since it's
1363 * the protocol's responsibility to handle the local address.
1364 *
1365 * We move the socket address to kernel space before we call
1366 * the protocol layer (having also checked the address is ok).
1367 */
1368
1369 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1370 {
1371 struct socket *sock;
1372 struct sockaddr_storage address;
1373 int err, fput_needed;
1374
1375 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1376 if (sock) {
1377 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1378 if (err >= 0) {
1379 err = security_socket_bind(sock,
1380 (struct sockaddr *)&address,
1381 addrlen);
1382 if (!err)
1383 err = sock->ops->bind(sock,
1384 (struct sockaddr *)
1385 &address, addrlen);
1386 }
1387 fput_light(sock->file, fput_needed);
1388 }
1389 return err;
1390 }
1391
1392 /*
1393 * Perform a listen. Basically, we allow the protocol to do anything
1394 * necessary for a listen, and if that works, we mark the socket as
1395 * ready for listening.
1396 */
1397
1398 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1399 {
1400 struct socket *sock;
1401 int err, fput_needed;
1402 int somaxconn;
1403
1404 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1405 if (sock) {
1406 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1407 if ((unsigned int)backlog > somaxconn)
1408 backlog = somaxconn;
1409
1410 err = security_socket_listen(sock, backlog);
1411 if (!err)
1412 err = sock->ops->listen(sock, backlog);
1413
1414 fput_light(sock->file, fput_needed);
1415 }
1416 return err;
1417 }
1418
1419 /*
1420 * For accept, we attempt to create a new socket, set up the link
1421 * with the client, wake up the client, then return the new
1422 * connected fd. We collect the address of the connector in kernel
1423 * space and move it to user at the very end. This is unclean because
1424 * we open the socket then return an error.
1425 *
1426 * 1003.1g adds the ability to recvmsg() to query connection pending
1427 * status to recvmsg. We need to add that support in a way thats
1428 * clean when we restucture accept also.
1429 */
1430
1431 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1432 int __user *, upeer_addrlen, int, flags)
1433 {
1434 struct socket *sock, *newsock;
1435 struct file *newfile;
1436 int err, len, newfd, fput_needed;
1437 struct sockaddr_storage address;
1438
1439 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1440 return -EINVAL;
1441
1442 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1443 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1444
1445 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1446 if (!sock)
1447 goto out;
1448
1449 err = -ENFILE;
1450 newsock = sock_alloc();
1451 if (!newsock)
1452 goto out_put;
1453
1454 newsock->type = sock->type;
1455 newsock->ops = sock->ops;
1456
1457 /*
1458 * We don't need try_module_get here, as the listening socket (sock)
1459 * has the protocol module (sock->ops->owner) held.
1460 */
1461 __module_get(newsock->ops->owner);
1462
1463 newfd = get_unused_fd_flags(flags);
1464 if (unlikely(newfd < 0)) {
1465 err = newfd;
1466 sock_release(newsock);
1467 goto out_put;
1468 }
1469 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1470 if (unlikely(IS_ERR(newfile))) {
1471 err = PTR_ERR(newfile);
1472 put_unused_fd(newfd);
1473 sock_release(newsock);
1474 goto out_put;
1475 }
1476
1477 err = security_socket_accept(sock, newsock);
1478 if (err)
1479 goto out_fd;
1480
1481 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1482 if (err < 0)
1483 goto out_fd;
1484
1485 if (upeer_sockaddr) {
1486 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1487 &len, 2) < 0) {
1488 err = -ECONNABORTED;
1489 goto out_fd;
1490 }
1491 err = move_addr_to_user(&address,
1492 len, upeer_sockaddr, upeer_addrlen);
1493 if (err < 0)
1494 goto out_fd;
1495 }
1496
1497 /* File flags are not inherited via accept() unlike another OSes. */
1498
1499 fd_install(newfd, newfile);
1500 err = newfd;
1501
1502 out_put:
1503 fput_light(sock->file, fput_needed);
1504 out:
1505 return err;
1506 out_fd:
1507 fput(newfile);
1508 put_unused_fd(newfd);
1509 goto out_put;
1510 }
1511
1512 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1513 int __user *, upeer_addrlen)
1514 {
1515 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1516 }
1517
1518 /*
1519 * Attempt to connect to a socket with the server address. The address
1520 * is in user space so we verify it is OK and move it to kernel space.
1521 *
1522 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1523 * break bindings
1524 *
1525 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1526 * other SEQPACKET protocols that take time to connect() as it doesn't
1527 * include the -EINPROGRESS status for such sockets.
1528 */
1529
1530 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1531 int, addrlen)
1532 {
1533 struct socket *sock;
1534 struct sockaddr_storage address;
1535 int err, fput_needed;
1536
1537 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 if (!sock)
1539 goto out;
1540 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1541 if (err < 0)
1542 goto out_put;
1543
1544 err =
1545 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1546 if (err)
1547 goto out_put;
1548
1549 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1550 sock->file->f_flags);
1551 out_put:
1552 fput_light(sock->file, fput_needed);
1553 out:
1554 return err;
1555 }
1556
1557 /*
1558 * Get the local address ('name') of a socket object. Move the obtained
1559 * name to user space.
1560 */
1561
1562 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1563 int __user *, usockaddr_len)
1564 {
1565 struct socket *sock;
1566 struct sockaddr_storage address;
1567 int len, err, fput_needed;
1568
1569 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1570 if (!sock)
1571 goto out;
1572
1573 err = security_socket_getsockname(sock);
1574 if (err)
1575 goto out_put;
1576
1577 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1578 if (err)
1579 goto out_put;
1580 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1581
1582 out_put:
1583 fput_light(sock->file, fput_needed);
1584 out:
1585 return err;
1586 }
1587
1588 /*
1589 * Get the remote address ('name') of a socket object. Move the obtained
1590 * name to user space.
1591 */
1592
1593 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1594 int __user *, usockaddr_len)
1595 {
1596 struct socket *sock;
1597 struct sockaddr_storage address;
1598 int len, err, fput_needed;
1599
1600 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 if (sock != NULL) {
1602 err = security_socket_getpeername(sock);
1603 if (err) {
1604 fput_light(sock->file, fput_needed);
1605 return err;
1606 }
1607
1608 err =
1609 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1610 1);
1611 if (!err)
1612 err = move_addr_to_user(&address, len, usockaddr,
1613 usockaddr_len);
1614 fput_light(sock->file, fput_needed);
1615 }
1616 return err;
1617 }
1618
1619 /*
1620 * Send a datagram to a given address. We move the address into kernel
1621 * space and check the user space data area is readable before invoking
1622 * the protocol.
1623 */
1624
1625 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1626 unsigned int, flags, struct sockaddr __user *, addr,
1627 int, addr_len)
1628 {
1629 struct socket *sock;
1630 struct sockaddr_storage address;
1631 int err;
1632 struct msghdr msg;
1633 struct iovec iov;
1634 int fput_needed;
1635
1636 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1637 if (unlikely(err))
1638 return err;
1639 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 if (!sock)
1641 goto out;
1642
1643 msg.msg_name = NULL;
1644 msg.msg_control = NULL;
1645 msg.msg_controllen = 0;
1646 msg.msg_namelen = 0;
1647 if (addr) {
1648 err = move_addr_to_kernel(addr, addr_len, &address);
1649 if (err < 0)
1650 goto out_put;
1651 msg.msg_name = (struct sockaddr *)&address;
1652 msg.msg_namelen = addr_len;
1653 }
1654 if (sock->file->f_flags & O_NONBLOCK)
1655 flags |= MSG_DONTWAIT;
1656 msg.msg_flags = flags;
1657 err = sock_sendmsg(sock, &msg);
1658
1659 out_put:
1660 fput_light(sock->file, fput_needed);
1661 out:
1662 return err;
1663 }
1664
1665 /*
1666 * Send a datagram down a socket.
1667 */
1668
1669 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1670 unsigned int, flags)
1671 {
1672 return sys_sendto(fd, buff, len, flags, NULL, 0);
1673 }
1674
1675 /*
1676 * Receive a frame from the socket and optionally record the address of the
1677 * sender. We verify the buffers are writable and if needed move the
1678 * sender address from kernel to user space.
1679 */
1680
1681 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1682 unsigned int, flags, struct sockaddr __user *, addr,
1683 int __user *, addr_len)
1684 {
1685 struct socket *sock;
1686 struct iovec iov;
1687 struct msghdr msg;
1688 struct sockaddr_storage address;
1689 int err, err2;
1690 int fput_needed;
1691
1692 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1693 if (unlikely(err))
1694 return err;
1695 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696 if (!sock)
1697 goto out;
1698
1699 msg.msg_control = NULL;
1700 msg.msg_controllen = 0;
1701 /* Save some cycles and don't copy the address if not needed */
1702 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1703 /* We assume all kernel code knows the size of sockaddr_storage */
1704 msg.msg_namelen = 0;
1705 if (sock->file->f_flags & O_NONBLOCK)
1706 flags |= MSG_DONTWAIT;
1707 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1708
1709 if (err >= 0 && addr != NULL) {
1710 err2 = move_addr_to_user(&address,
1711 msg.msg_namelen, addr, addr_len);
1712 if (err2 < 0)
1713 err = err2;
1714 }
1715
1716 fput_light(sock->file, fput_needed);
1717 out:
1718 return err;
1719 }
1720
1721 /*
1722 * Receive a datagram from a socket.
1723 */
1724
1725 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1726 unsigned int, flags)
1727 {
1728 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1729 }
1730
1731 /*
1732 * Set a socket option. Because we don't know the option lengths we have
1733 * to pass the user mode parameter for the protocols to sort out.
1734 */
1735
1736 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1737 char __user *, optval, int, optlen)
1738 {
1739 int err, fput_needed;
1740 struct socket *sock;
1741
1742 if (optlen < 0)
1743 return -EINVAL;
1744
1745 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 if (sock != NULL) {
1747 err = security_socket_setsockopt(sock, level, optname);
1748 if (err)
1749 goto out_put;
1750
1751 if (level == SOL_SOCKET)
1752 err =
1753 sock_setsockopt(sock, level, optname, optval,
1754 optlen);
1755 else
1756 err =
1757 sock->ops->setsockopt(sock, level, optname, optval,
1758 optlen);
1759 out_put:
1760 fput_light(sock->file, fput_needed);
1761 }
1762 return err;
1763 }
1764
1765 /*
1766 * Get a socket option. Because we don't know the option lengths we have
1767 * to pass a user mode parameter for the protocols to sort out.
1768 */
1769
1770 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1771 char __user *, optval, int __user *, optlen)
1772 {
1773 int err, fput_needed;
1774 struct socket *sock;
1775
1776 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777 if (sock != NULL) {
1778 err = security_socket_getsockopt(sock, level, optname);
1779 if (err)
1780 goto out_put;
1781
1782 if (level == SOL_SOCKET)
1783 err =
1784 sock_getsockopt(sock, level, optname, optval,
1785 optlen);
1786 else
1787 err =
1788 sock->ops->getsockopt(sock, level, optname, optval,
1789 optlen);
1790 out_put:
1791 fput_light(sock->file, fput_needed);
1792 }
1793 return err;
1794 }
1795
1796 /*
1797 * Shutdown a socket.
1798 */
1799
1800 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1801 {
1802 int err, fput_needed;
1803 struct socket *sock;
1804
1805 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 if (sock != NULL) {
1807 err = security_socket_shutdown(sock, how);
1808 if (!err)
1809 err = sock->ops->shutdown(sock, how);
1810 fput_light(sock->file, fput_needed);
1811 }
1812 return err;
1813 }
1814
1815 /* A couple of helpful macros for getting the address of the 32/64 bit
1816 * fields which are the same type (int / unsigned) on our platforms.
1817 */
1818 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1819 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1820 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1821
1822 struct used_address {
1823 struct sockaddr_storage name;
1824 unsigned int name_len;
1825 };
1826
1827 static int copy_msghdr_from_user(struct msghdr *kmsg,
1828 struct user_msghdr __user *umsg,
1829 struct sockaddr __user **save_addr,
1830 struct iovec **iov)
1831 {
1832 struct sockaddr __user *uaddr;
1833 struct iovec __user *uiov;
1834 size_t nr_segs;
1835 ssize_t err;
1836
1837 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1838 __get_user(uaddr, &umsg->msg_name) ||
1839 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1840 __get_user(uiov, &umsg->msg_iov) ||
1841 __get_user(nr_segs, &umsg->msg_iovlen) ||
1842 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1843 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1844 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1845 return -EFAULT;
1846
1847 if (!uaddr)
1848 kmsg->msg_namelen = 0;
1849
1850 if (kmsg->msg_namelen < 0)
1851 return -EINVAL;
1852
1853 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1854 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1855
1856 if (save_addr)
1857 *save_addr = uaddr;
1858
1859 if (uaddr && kmsg->msg_namelen) {
1860 if (!save_addr) {
1861 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1862 kmsg->msg_name);
1863 if (err < 0)
1864 return err;
1865 }
1866 } else {
1867 kmsg->msg_name = NULL;
1868 kmsg->msg_namelen = 0;
1869 }
1870
1871 if (nr_segs > UIO_MAXIOV)
1872 return -EMSGSIZE;
1873
1874 kmsg->msg_iocb = NULL;
1875
1876 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1877 UIO_FASTIOV, iov, &kmsg->msg_iter);
1878 }
1879
1880 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1881 struct msghdr *msg_sys, unsigned int flags,
1882 struct used_address *used_address)
1883 {
1884 struct compat_msghdr __user *msg_compat =
1885 (struct compat_msghdr __user *)msg;
1886 struct sockaddr_storage address;
1887 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1888 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1889 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1890 /* 20 is size of ipv6_pktinfo */
1891 unsigned char *ctl_buf = ctl;
1892 int ctl_len;
1893 ssize_t err;
1894
1895 msg_sys->msg_name = &address;
1896
1897 if (MSG_CMSG_COMPAT & flags)
1898 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1899 else
1900 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1901 if (err < 0)
1902 return err;
1903
1904 err = -ENOBUFS;
1905
1906 if (msg_sys->msg_controllen > INT_MAX)
1907 goto out_freeiov;
1908 ctl_len = msg_sys->msg_controllen;
1909 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1910 err =
1911 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1912 sizeof(ctl));
1913 if (err)
1914 goto out_freeiov;
1915 ctl_buf = msg_sys->msg_control;
1916 ctl_len = msg_sys->msg_controllen;
1917 } else if (ctl_len) {
1918 if (ctl_len > sizeof(ctl)) {
1919 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1920 if (ctl_buf == NULL)
1921 goto out_freeiov;
1922 }
1923 err = -EFAULT;
1924 /*
1925 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1926 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1927 * checking falls down on this.
1928 */
1929 if (copy_from_user(ctl_buf,
1930 (void __user __force *)msg_sys->msg_control,
1931 ctl_len))
1932 goto out_freectl;
1933 msg_sys->msg_control = ctl_buf;
1934 }
1935 msg_sys->msg_flags = flags;
1936
1937 if (sock->file->f_flags & O_NONBLOCK)
1938 msg_sys->msg_flags |= MSG_DONTWAIT;
1939 /*
1940 * If this is sendmmsg() and current destination address is same as
1941 * previously succeeded address, omit asking LSM's decision.
1942 * used_address->name_len is initialized to UINT_MAX so that the first
1943 * destination address never matches.
1944 */
1945 if (used_address && msg_sys->msg_name &&
1946 used_address->name_len == msg_sys->msg_namelen &&
1947 !memcmp(&used_address->name, msg_sys->msg_name,
1948 used_address->name_len)) {
1949 err = sock_sendmsg_nosec(sock, msg_sys);
1950 goto out_freectl;
1951 }
1952 err = sock_sendmsg(sock, msg_sys);
1953 /*
1954 * If this is sendmmsg() and sending to current destination address was
1955 * successful, remember it.
1956 */
1957 if (used_address && err >= 0) {
1958 used_address->name_len = msg_sys->msg_namelen;
1959 if (msg_sys->msg_name)
1960 memcpy(&used_address->name, msg_sys->msg_name,
1961 used_address->name_len);
1962 }
1963
1964 out_freectl:
1965 if (ctl_buf != ctl)
1966 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1967 out_freeiov:
1968 kfree(iov);
1969 return err;
1970 }
1971
1972 /*
1973 * BSD sendmsg interface
1974 */
1975
1976 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1977 {
1978 int fput_needed, err;
1979 struct msghdr msg_sys;
1980 struct socket *sock;
1981
1982 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1983 if (!sock)
1984 goto out;
1985
1986 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1987
1988 fput_light(sock->file, fput_needed);
1989 out:
1990 return err;
1991 }
1992
1993 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1994 {
1995 if (flags & MSG_CMSG_COMPAT)
1996 return -EINVAL;
1997 return __sys_sendmsg(fd, msg, flags);
1998 }
1999
2000 /*
2001 * Linux sendmmsg interface
2002 */
2003
2004 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2005 unsigned int flags)
2006 {
2007 int fput_needed, err, datagrams;
2008 struct socket *sock;
2009 struct mmsghdr __user *entry;
2010 struct compat_mmsghdr __user *compat_entry;
2011 struct msghdr msg_sys;
2012 struct used_address used_address;
2013
2014 if (vlen > UIO_MAXIOV)
2015 vlen = UIO_MAXIOV;
2016
2017 datagrams = 0;
2018
2019 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2020 if (!sock)
2021 return err;
2022
2023 used_address.name_len = UINT_MAX;
2024 entry = mmsg;
2025 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2026 err = 0;
2027
2028 while (datagrams < vlen) {
2029 if (MSG_CMSG_COMPAT & flags) {
2030 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2031 &msg_sys, flags, &used_address);
2032 if (err < 0)
2033 break;
2034 err = __put_user(err, &compat_entry->msg_len);
2035 ++compat_entry;
2036 } else {
2037 err = ___sys_sendmsg(sock,
2038 (struct user_msghdr __user *)entry,
2039 &msg_sys, flags, &used_address);
2040 if (err < 0)
2041 break;
2042 err = put_user(err, &entry->msg_len);
2043 ++entry;
2044 }
2045
2046 if (err)
2047 break;
2048 ++datagrams;
2049 }
2050
2051 fput_light(sock->file, fput_needed);
2052
2053 /* We only return an error if no datagrams were able to be sent */
2054 if (datagrams != 0)
2055 return datagrams;
2056
2057 return err;
2058 }
2059
2060 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2061 unsigned int, vlen, unsigned int, flags)
2062 {
2063 if (flags & MSG_CMSG_COMPAT)
2064 return -EINVAL;
2065 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066 }
2067
2068 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2069 struct msghdr *msg_sys, unsigned int flags, int nosec)
2070 {
2071 struct compat_msghdr __user *msg_compat =
2072 (struct compat_msghdr __user *)msg;
2073 struct iovec iovstack[UIO_FASTIOV];
2074 struct iovec *iov = iovstack;
2075 unsigned long cmsg_ptr;
2076 int total_len, len;
2077 ssize_t err;
2078
2079 /* kernel mode address */
2080 struct sockaddr_storage addr;
2081
2082 /* user mode address pointers */
2083 struct sockaddr __user *uaddr;
2084 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2085
2086 msg_sys->msg_name = &addr;
2087
2088 if (MSG_CMSG_COMPAT & flags)
2089 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2090 else
2091 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2092 if (err < 0)
2093 return err;
2094 total_len = iov_iter_count(&msg_sys->msg_iter);
2095
2096 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2097 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098
2099 /* We assume all kernel code knows the size of sockaddr_storage */
2100 msg_sys->msg_namelen = 0;
2101
2102 if (sock->file->f_flags & O_NONBLOCK)
2103 flags |= MSG_DONTWAIT;
2104 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2105 total_len, flags);
2106 if (err < 0)
2107 goto out_freeiov;
2108 len = err;
2109
2110 if (uaddr != NULL) {
2111 err = move_addr_to_user(&addr,
2112 msg_sys->msg_namelen, uaddr,
2113 uaddr_len);
2114 if (err < 0)
2115 goto out_freeiov;
2116 }
2117 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2118 COMPAT_FLAGS(msg));
2119 if (err)
2120 goto out_freeiov;
2121 if (MSG_CMSG_COMPAT & flags)
2122 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2123 &msg_compat->msg_controllen);
2124 else
2125 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126 &msg->msg_controllen);
2127 if (err)
2128 goto out_freeiov;
2129 err = len;
2130
2131 out_freeiov:
2132 kfree(iov);
2133 return err;
2134 }
2135
2136 /*
2137 * BSD recvmsg interface
2138 */
2139
2140 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2141 {
2142 int fput_needed, err;
2143 struct msghdr msg_sys;
2144 struct socket *sock;
2145
2146 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147 if (!sock)
2148 goto out;
2149
2150 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2151
2152 fput_light(sock->file, fput_needed);
2153 out:
2154 return err;
2155 }
2156
2157 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2158 unsigned int, flags)
2159 {
2160 if (flags & MSG_CMSG_COMPAT)
2161 return -EINVAL;
2162 return __sys_recvmsg(fd, msg, flags);
2163 }
2164
2165 /*
2166 * Linux recvmmsg interface
2167 */
2168
2169 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170 unsigned int flags, struct timespec *timeout)
2171 {
2172 int fput_needed, err, datagrams;
2173 struct socket *sock;
2174 struct mmsghdr __user *entry;
2175 struct compat_mmsghdr __user *compat_entry;
2176 struct msghdr msg_sys;
2177 struct timespec end_time;
2178
2179 if (timeout &&
2180 poll_select_set_timeout(&end_time, timeout->tv_sec,
2181 timeout->tv_nsec))
2182 return -EINVAL;
2183
2184 datagrams = 0;
2185
2186 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187 if (!sock)
2188 return err;
2189
2190 err = sock_error(sock->sk);
2191 if (err)
2192 goto out_put;
2193
2194 entry = mmsg;
2195 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196
2197 while (datagrams < vlen) {
2198 /*
2199 * No need to ask LSM for more than the first datagram.
2200 */
2201 if (MSG_CMSG_COMPAT & flags) {
2202 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203 &msg_sys, flags & ~MSG_WAITFORONE,
2204 datagrams);
2205 if (err < 0)
2206 break;
2207 err = __put_user(err, &compat_entry->msg_len);
2208 ++compat_entry;
2209 } else {
2210 err = ___sys_recvmsg(sock,
2211 (struct user_msghdr __user *)entry,
2212 &msg_sys, flags & ~MSG_WAITFORONE,
2213 datagrams);
2214 if (err < 0)
2215 break;
2216 err = put_user(err, &entry->msg_len);
2217 ++entry;
2218 }
2219
2220 if (err)
2221 break;
2222 ++datagrams;
2223
2224 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225 if (flags & MSG_WAITFORONE)
2226 flags |= MSG_DONTWAIT;
2227
2228 if (timeout) {
2229 ktime_get_ts(timeout);
2230 *timeout = timespec_sub(end_time, *timeout);
2231 if (timeout->tv_sec < 0) {
2232 timeout->tv_sec = timeout->tv_nsec = 0;
2233 break;
2234 }
2235
2236 /* Timeout, return less than vlen datagrams */
2237 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238 break;
2239 }
2240
2241 /* Out of band data, return right away */
2242 if (msg_sys.msg_flags & MSG_OOB)
2243 break;
2244 }
2245
2246 out_put:
2247 fput_light(sock->file, fput_needed);
2248
2249 if (err == 0)
2250 return datagrams;
2251
2252 if (datagrams != 0) {
2253 /*
2254 * We may return less entries than requested (vlen) if the
2255 * sock is non block and there aren't enough datagrams...
2256 */
2257 if (err != -EAGAIN) {
2258 /*
2259 * ... or if recvmsg returns an error after we
2260 * received some datagrams, where we record the
2261 * error to return on the next call or if the
2262 * app asks about it using getsockopt(SO_ERROR).
2263 */
2264 sock->sk->sk_err = -err;
2265 }
2266
2267 return datagrams;
2268 }
2269
2270 return err;
2271 }
2272
2273 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2274 unsigned int, vlen, unsigned int, flags,
2275 struct timespec __user *, timeout)
2276 {
2277 int datagrams;
2278 struct timespec timeout_sys;
2279
2280 if (flags & MSG_CMSG_COMPAT)
2281 return -EINVAL;
2282
2283 if (!timeout)
2284 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2285
2286 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2287 return -EFAULT;
2288
2289 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2290
2291 if (datagrams > 0 &&
2292 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2293 datagrams = -EFAULT;
2294
2295 return datagrams;
2296 }
2297
2298 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2299 /* Argument list sizes for sys_socketcall */
2300 #define AL(x) ((x) * sizeof(unsigned long))
2301 static const unsigned char nargs[21] = {
2302 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2303 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2304 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2305 AL(4), AL(5), AL(4)
2306 };
2307
2308 #undef AL
2309
2310 /*
2311 * System call vectors.
2312 *
2313 * Argument checking cleaned up. Saved 20% in size.
2314 * This function doesn't need to set the kernel lock because
2315 * it is set by the callees.
2316 */
2317
2318 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2319 {
2320 unsigned long a[AUDITSC_ARGS];
2321 unsigned long a0, a1;
2322 int err;
2323 unsigned int len;
2324
2325 if (call < 1 || call > SYS_SENDMMSG)
2326 return -EINVAL;
2327
2328 len = nargs[call];
2329 if (len > sizeof(a))
2330 return -EINVAL;
2331
2332 /* copy_from_user should be SMP safe. */
2333 if (copy_from_user(a, args, len))
2334 return -EFAULT;
2335
2336 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2337 if (err)
2338 return err;
2339
2340 a0 = a[0];
2341 a1 = a[1];
2342
2343 switch (call) {
2344 case SYS_SOCKET:
2345 err = sys_socket(a0, a1, a[2]);
2346 break;
2347 case SYS_BIND:
2348 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2349 break;
2350 case SYS_CONNECT:
2351 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2352 break;
2353 case SYS_LISTEN:
2354 err = sys_listen(a0, a1);
2355 break;
2356 case SYS_ACCEPT:
2357 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2358 (int __user *)a[2], 0);
2359 break;
2360 case SYS_GETSOCKNAME:
2361 err =
2362 sys_getsockname(a0, (struct sockaddr __user *)a1,
2363 (int __user *)a[2]);
2364 break;
2365 case SYS_GETPEERNAME:
2366 err =
2367 sys_getpeername(a0, (struct sockaddr __user *)a1,
2368 (int __user *)a[2]);
2369 break;
2370 case SYS_SOCKETPAIR:
2371 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2372 break;
2373 case SYS_SEND:
2374 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2375 break;
2376 case SYS_SENDTO:
2377 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2378 (struct sockaddr __user *)a[4], a[5]);
2379 break;
2380 case SYS_RECV:
2381 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2382 break;
2383 case SYS_RECVFROM:
2384 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2385 (struct sockaddr __user *)a[4],
2386 (int __user *)a[5]);
2387 break;
2388 case SYS_SHUTDOWN:
2389 err = sys_shutdown(a0, a1);
2390 break;
2391 case SYS_SETSOCKOPT:
2392 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2393 break;
2394 case SYS_GETSOCKOPT:
2395 err =
2396 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2397 (int __user *)a[4]);
2398 break;
2399 case SYS_SENDMSG:
2400 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2401 break;
2402 case SYS_SENDMMSG:
2403 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2404 break;
2405 case SYS_RECVMSG:
2406 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2407 break;
2408 case SYS_RECVMMSG:
2409 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2410 (struct timespec __user *)a[4]);
2411 break;
2412 case SYS_ACCEPT4:
2413 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2414 (int __user *)a[2], a[3]);
2415 break;
2416 default:
2417 err = -EINVAL;
2418 break;
2419 }
2420 return err;
2421 }
2422
2423 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2424
2425 /**
2426 * sock_register - add a socket protocol handler
2427 * @ops: description of protocol
2428 *
2429 * This function is called by a protocol handler that wants to
2430 * advertise its address family, and have it linked into the
2431 * socket interface. The value ops->family corresponds to the
2432 * socket system call protocol family.
2433 */
2434 int sock_register(const struct net_proto_family *ops)
2435 {
2436 int err;
2437
2438 if (ops->family >= NPROTO) {
2439 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2440 return -ENOBUFS;
2441 }
2442
2443 spin_lock(&net_family_lock);
2444 if (rcu_dereference_protected(net_families[ops->family],
2445 lockdep_is_held(&net_family_lock)))
2446 err = -EEXIST;
2447 else {
2448 rcu_assign_pointer(net_families[ops->family], ops);
2449 err = 0;
2450 }
2451 spin_unlock(&net_family_lock);
2452
2453 pr_info("NET: Registered protocol family %d\n", ops->family);
2454 return err;
2455 }
2456 EXPORT_SYMBOL(sock_register);
2457
2458 /**
2459 * sock_unregister - remove a protocol handler
2460 * @family: protocol family to remove
2461 *
2462 * This function is called by a protocol handler that wants to
2463 * remove its address family, and have it unlinked from the
2464 * new socket creation.
2465 *
2466 * If protocol handler is a module, then it can use module reference
2467 * counts to protect against new references. If protocol handler is not
2468 * a module then it needs to provide its own protection in
2469 * the ops->create routine.
2470 */
2471 void sock_unregister(int family)
2472 {
2473 BUG_ON(family < 0 || family >= NPROTO);
2474
2475 spin_lock(&net_family_lock);
2476 RCU_INIT_POINTER(net_families[family], NULL);
2477 spin_unlock(&net_family_lock);
2478
2479 synchronize_rcu();
2480
2481 pr_info("NET: Unregistered protocol family %d\n", family);
2482 }
2483 EXPORT_SYMBOL(sock_unregister);
2484
2485 static int __init sock_init(void)
2486 {
2487 int err;
2488 /*
2489 * Initialize the network sysctl infrastructure.
2490 */
2491 err = net_sysctl_init();
2492 if (err)
2493 goto out;
2494
2495 /*
2496 * Initialize skbuff SLAB cache
2497 */
2498 skb_init();
2499
2500 /*
2501 * Initialize the protocols module.
2502 */
2503
2504 init_inodecache();
2505
2506 err = register_filesystem(&sock_fs_type);
2507 if (err)
2508 goto out_fs;
2509 sock_mnt = kern_mount(&sock_fs_type);
2510 if (IS_ERR(sock_mnt)) {
2511 err = PTR_ERR(sock_mnt);
2512 goto out_mount;
2513 }
2514
2515 /* The real protocol initialization is performed in later initcalls.
2516 */
2517
2518 #ifdef CONFIG_NETFILTER
2519 err = netfilter_init();
2520 if (err)
2521 goto out;
2522 #endif
2523
2524 ptp_classifier_init();
2525
2526 out:
2527 return err;
2528
2529 out_mount:
2530 unregister_filesystem(&sock_fs_type);
2531 out_fs:
2532 goto out;
2533 }
2534
2535 core_initcall(sock_init); /* early initcall */
2536
2537 #ifdef CONFIG_PROC_FS
2538 void socket_seq_show(struct seq_file *seq)
2539 {
2540 int cpu;
2541 int counter = 0;
2542
2543 for_each_possible_cpu(cpu)
2544 counter += per_cpu(sockets_in_use, cpu);
2545
2546 /* It can be negative, by the way. 8) */
2547 if (counter < 0)
2548 counter = 0;
2549
2550 seq_printf(seq, "sockets: used %d\n", counter);
2551 }
2552 #endif /* CONFIG_PROC_FS */
2553
2554 #ifdef CONFIG_COMPAT
2555 static int do_siocgstamp(struct net *net, struct socket *sock,
2556 unsigned int cmd, void __user *up)
2557 {
2558 mm_segment_t old_fs = get_fs();
2559 struct timeval ktv;
2560 int err;
2561
2562 set_fs(KERNEL_DS);
2563 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2564 set_fs(old_fs);
2565 if (!err)
2566 err = compat_put_timeval(&ktv, up);
2567
2568 return err;
2569 }
2570
2571 static int do_siocgstampns(struct net *net, struct socket *sock,
2572 unsigned int cmd, void __user *up)
2573 {
2574 mm_segment_t old_fs = get_fs();
2575 struct timespec kts;
2576 int err;
2577
2578 set_fs(KERNEL_DS);
2579 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2580 set_fs(old_fs);
2581 if (!err)
2582 err = compat_put_timespec(&kts, up);
2583
2584 return err;
2585 }
2586
2587 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2588 {
2589 struct ifreq __user *uifr;
2590 int err;
2591
2592 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2593 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2594 return -EFAULT;
2595
2596 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2597 if (err)
2598 return err;
2599
2600 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2601 return -EFAULT;
2602
2603 return 0;
2604 }
2605
2606 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2607 {
2608 struct compat_ifconf ifc32;
2609 struct ifconf ifc;
2610 struct ifconf __user *uifc;
2611 struct compat_ifreq __user *ifr32;
2612 struct ifreq __user *ifr;
2613 unsigned int i, j;
2614 int err;
2615
2616 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2617 return -EFAULT;
2618
2619 memset(&ifc, 0, sizeof(ifc));
2620 if (ifc32.ifcbuf == 0) {
2621 ifc32.ifc_len = 0;
2622 ifc.ifc_len = 0;
2623 ifc.ifc_req = NULL;
2624 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2625 } else {
2626 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2627 sizeof(struct ifreq);
2628 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2629 ifc.ifc_len = len;
2630 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2631 ifr32 = compat_ptr(ifc32.ifcbuf);
2632 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2633 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2634 return -EFAULT;
2635 ifr++;
2636 ifr32++;
2637 }
2638 }
2639 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2640 return -EFAULT;
2641
2642 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2643 if (err)
2644 return err;
2645
2646 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2647 return -EFAULT;
2648
2649 ifr = ifc.ifc_req;
2650 ifr32 = compat_ptr(ifc32.ifcbuf);
2651 for (i = 0, j = 0;
2652 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2653 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2654 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2655 return -EFAULT;
2656 ifr32++;
2657 ifr++;
2658 }
2659
2660 if (ifc32.ifcbuf == 0) {
2661 /* Translate from 64-bit structure multiple to
2662 * a 32-bit one.
2663 */
2664 i = ifc.ifc_len;
2665 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2666 ifc32.ifc_len = i;
2667 } else {
2668 ifc32.ifc_len = i;
2669 }
2670 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2671 return -EFAULT;
2672
2673 return 0;
2674 }
2675
2676 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2677 {
2678 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2679 bool convert_in = false, convert_out = false;
2680 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2681 struct ethtool_rxnfc __user *rxnfc;
2682 struct ifreq __user *ifr;
2683 u32 rule_cnt = 0, actual_rule_cnt;
2684 u32 ethcmd;
2685 u32 data;
2686 int ret;
2687
2688 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2689 return -EFAULT;
2690
2691 compat_rxnfc = compat_ptr(data);
2692
2693 if (get_user(ethcmd, &compat_rxnfc->cmd))
2694 return -EFAULT;
2695
2696 /* Most ethtool structures are defined without padding.
2697 * Unfortunately struct ethtool_rxnfc is an exception.
2698 */
2699 switch (ethcmd) {
2700 default:
2701 break;
2702 case ETHTOOL_GRXCLSRLALL:
2703 /* Buffer size is variable */
2704 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2705 return -EFAULT;
2706 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2707 return -ENOMEM;
2708 buf_size += rule_cnt * sizeof(u32);
2709 /* fall through */
2710 case ETHTOOL_GRXRINGS:
2711 case ETHTOOL_GRXCLSRLCNT:
2712 case ETHTOOL_GRXCLSRULE:
2713 case ETHTOOL_SRXCLSRLINS:
2714 convert_out = true;
2715 /* fall through */
2716 case ETHTOOL_SRXCLSRLDEL:
2717 buf_size += sizeof(struct ethtool_rxnfc);
2718 convert_in = true;
2719 break;
2720 }
2721
2722 ifr = compat_alloc_user_space(buf_size);
2723 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2724
2725 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2726 return -EFAULT;
2727
2728 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2729 &ifr->ifr_ifru.ifru_data))
2730 return -EFAULT;
2731
2732 if (convert_in) {
2733 /* We expect there to be holes between fs.m_ext and
2734 * fs.ring_cookie and at the end of fs, but nowhere else.
2735 */
2736 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2737 sizeof(compat_rxnfc->fs.m_ext) !=
2738 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2739 sizeof(rxnfc->fs.m_ext));
2740 BUILD_BUG_ON(
2741 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2742 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2743 offsetof(struct ethtool_rxnfc, fs.location) -
2744 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2745
2746 if (copy_in_user(rxnfc, compat_rxnfc,
2747 (void __user *)(&rxnfc->fs.m_ext + 1) -
2748 (void __user *)rxnfc) ||
2749 copy_in_user(&rxnfc->fs.ring_cookie,
2750 &compat_rxnfc->fs.ring_cookie,
2751 (void __user *)(&rxnfc->fs.location + 1) -
2752 (void __user *)&rxnfc->fs.ring_cookie) ||
2753 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2754 sizeof(rxnfc->rule_cnt)))
2755 return -EFAULT;
2756 }
2757
2758 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2759 if (ret)
2760 return ret;
2761
2762 if (convert_out) {
2763 if (copy_in_user(compat_rxnfc, rxnfc,
2764 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2765 (const void __user *)rxnfc) ||
2766 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2767 &rxnfc->fs.ring_cookie,
2768 (const void __user *)(&rxnfc->fs.location + 1) -
2769 (const void __user *)&rxnfc->fs.ring_cookie) ||
2770 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2771 sizeof(rxnfc->rule_cnt)))
2772 return -EFAULT;
2773
2774 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2775 /* As an optimisation, we only copy the actual
2776 * number of rules that the underlying
2777 * function returned. Since Mallory might
2778 * change the rule count in user memory, we
2779 * check that it is less than the rule count
2780 * originally given (as the user buffer size),
2781 * which has been range-checked.
2782 */
2783 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2784 return -EFAULT;
2785 if (actual_rule_cnt < rule_cnt)
2786 rule_cnt = actual_rule_cnt;
2787 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2788 &rxnfc->rule_locs[0],
2789 rule_cnt * sizeof(u32)))
2790 return -EFAULT;
2791 }
2792 }
2793
2794 return 0;
2795 }
2796
2797 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2798 {
2799 void __user *uptr;
2800 compat_uptr_t uptr32;
2801 struct ifreq __user *uifr;
2802
2803 uifr = compat_alloc_user_space(sizeof(*uifr));
2804 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2805 return -EFAULT;
2806
2807 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2808 return -EFAULT;
2809
2810 uptr = compat_ptr(uptr32);
2811
2812 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2813 return -EFAULT;
2814
2815 return dev_ioctl(net, SIOCWANDEV, uifr);
2816 }
2817
2818 static int bond_ioctl(struct net *net, unsigned int cmd,
2819 struct compat_ifreq __user *ifr32)
2820 {
2821 struct ifreq kifr;
2822 mm_segment_t old_fs;
2823 int err;
2824
2825 switch (cmd) {
2826 case SIOCBONDENSLAVE:
2827 case SIOCBONDRELEASE:
2828 case SIOCBONDSETHWADDR:
2829 case SIOCBONDCHANGEACTIVE:
2830 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2831 return -EFAULT;
2832
2833 old_fs = get_fs();
2834 set_fs(KERNEL_DS);
2835 err = dev_ioctl(net, cmd,
2836 (struct ifreq __user __force *) &kifr);
2837 set_fs(old_fs);
2838
2839 return err;
2840 default:
2841 return -ENOIOCTLCMD;
2842 }
2843 }
2844
2845 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2846 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2847 struct compat_ifreq __user *u_ifreq32)
2848 {
2849 struct ifreq __user *u_ifreq64;
2850 char tmp_buf[IFNAMSIZ];
2851 void __user *data64;
2852 u32 data32;
2853
2854 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2855 IFNAMSIZ))
2856 return -EFAULT;
2857 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2858 return -EFAULT;
2859 data64 = compat_ptr(data32);
2860
2861 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2862
2863 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2864 IFNAMSIZ))
2865 return -EFAULT;
2866 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2867 return -EFAULT;
2868
2869 return dev_ioctl(net, cmd, u_ifreq64);
2870 }
2871
2872 static int dev_ifsioc(struct net *net, struct socket *sock,
2873 unsigned int cmd, struct compat_ifreq __user *uifr32)
2874 {
2875 struct ifreq __user *uifr;
2876 int err;
2877
2878 uifr = compat_alloc_user_space(sizeof(*uifr));
2879 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2880 return -EFAULT;
2881
2882 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2883
2884 if (!err) {
2885 switch (cmd) {
2886 case SIOCGIFFLAGS:
2887 case SIOCGIFMETRIC:
2888 case SIOCGIFMTU:
2889 case SIOCGIFMEM:
2890 case SIOCGIFHWADDR:
2891 case SIOCGIFINDEX:
2892 case SIOCGIFADDR:
2893 case SIOCGIFBRDADDR:
2894 case SIOCGIFDSTADDR:
2895 case SIOCGIFNETMASK:
2896 case SIOCGIFPFLAGS:
2897 case SIOCGIFTXQLEN:
2898 case SIOCGMIIPHY:
2899 case SIOCGMIIREG:
2900 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2901 err = -EFAULT;
2902 break;
2903 }
2904 }
2905 return err;
2906 }
2907
2908 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2909 struct compat_ifreq __user *uifr32)
2910 {
2911 struct ifreq ifr;
2912 struct compat_ifmap __user *uifmap32;
2913 mm_segment_t old_fs;
2914 int err;
2915
2916 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2917 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2918 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2919 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2920 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2921 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2922 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2923 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2924 if (err)
2925 return -EFAULT;
2926
2927 old_fs = get_fs();
2928 set_fs(KERNEL_DS);
2929 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2930 set_fs(old_fs);
2931
2932 if (cmd == SIOCGIFMAP && !err) {
2933 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2934 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2935 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2936 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2937 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2938 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2939 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2940 if (err)
2941 err = -EFAULT;
2942 }
2943 return err;
2944 }
2945
2946 struct rtentry32 {
2947 u32 rt_pad1;
2948 struct sockaddr rt_dst; /* target address */
2949 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2950 struct sockaddr rt_genmask; /* target network mask (IP) */
2951 unsigned short rt_flags;
2952 short rt_pad2;
2953 u32 rt_pad3;
2954 unsigned char rt_tos;
2955 unsigned char rt_class;
2956 short rt_pad4;
2957 short rt_metric; /* +1 for binary compatibility! */
2958 /* char * */ u32 rt_dev; /* forcing the device at add */
2959 u32 rt_mtu; /* per route MTU/Window */
2960 u32 rt_window; /* Window clamping */
2961 unsigned short rt_irtt; /* Initial RTT */
2962 };
2963
2964 struct in6_rtmsg32 {
2965 struct in6_addr rtmsg_dst;
2966 struct in6_addr rtmsg_src;
2967 struct in6_addr rtmsg_gateway;
2968 u32 rtmsg_type;
2969 u16 rtmsg_dst_len;
2970 u16 rtmsg_src_len;
2971 u32 rtmsg_metric;
2972 u32 rtmsg_info;
2973 u32 rtmsg_flags;
2974 s32 rtmsg_ifindex;
2975 };
2976
2977 static int routing_ioctl(struct net *net, struct socket *sock,
2978 unsigned int cmd, void __user *argp)
2979 {
2980 int ret;
2981 void *r = NULL;
2982 struct in6_rtmsg r6;
2983 struct rtentry r4;
2984 char devname[16];
2985 u32 rtdev;
2986 mm_segment_t old_fs = get_fs();
2987
2988 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2989 struct in6_rtmsg32 __user *ur6 = argp;
2990 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2991 3 * sizeof(struct in6_addr));
2992 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2993 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2994 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2995 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2996 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2997 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2998 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2999
3000 r = (void *) &r6;
3001 } else { /* ipv4 */
3002 struct rtentry32 __user *ur4 = argp;
3003 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3004 3 * sizeof(struct sockaddr));
3005 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3006 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3007 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3008 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3009 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3010 ret |= get_user(rtdev, &(ur4->rt_dev));
3011 if (rtdev) {
3012 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3013 r4.rt_dev = (char __user __force *)devname;
3014 devname[15] = 0;
3015 } else
3016 r4.rt_dev = NULL;
3017
3018 r = (void *) &r4;
3019 }
3020
3021 if (ret) {
3022 ret = -EFAULT;
3023 goto out;
3024 }
3025
3026 set_fs(KERNEL_DS);
3027 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3028 set_fs(old_fs);
3029
3030 out:
3031 return ret;
3032 }
3033
3034 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3035 * for some operations; this forces use of the newer bridge-utils that
3036 * use compatible ioctls
3037 */
3038 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3039 {
3040 compat_ulong_t tmp;
3041
3042 if (get_user(tmp, argp))
3043 return -EFAULT;
3044 if (tmp == BRCTL_GET_VERSION)
3045 return BRCTL_VERSION + 1;
3046 return -EINVAL;
3047 }
3048
3049 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3050 unsigned int cmd, unsigned long arg)
3051 {
3052 void __user *argp = compat_ptr(arg);
3053 struct sock *sk = sock->sk;
3054 struct net *net = sock_net(sk);
3055
3056 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3057 return compat_ifr_data_ioctl(net, cmd, argp);
3058
3059 switch (cmd) {
3060 case SIOCSIFBR:
3061 case SIOCGIFBR:
3062 return old_bridge_ioctl(argp);
3063 case SIOCGIFNAME:
3064 return dev_ifname32(net, argp);
3065 case SIOCGIFCONF:
3066 return dev_ifconf(net, argp);
3067 case SIOCETHTOOL:
3068 return ethtool_ioctl(net, argp);
3069 case SIOCWANDEV:
3070 return compat_siocwandev(net, argp);
3071 case SIOCGIFMAP:
3072 case SIOCSIFMAP:
3073 return compat_sioc_ifmap(net, cmd, argp);
3074 case SIOCBONDENSLAVE:
3075 case SIOCBONDRELEASE:
3076 case SIOCBONDSETHWADDR:
3077 case SIOCBONDCHANGEACTIVE:
3078 return bond_ioctl(net, cmd, argp);
3079 case SIOCADDRT:
3080 case SIOCDELRT:
3081 return routing_ioctl(net, sock, cmd, argp);
3082 case SIOCGSTAMP:
3083 return do_siocgstamp(net, sock, cmd, argp);
3084 case SIOCGSTAMPNS:
3085 return do_siocgstampns(net, sock, cmd, argp);
3086 case SIOCBONDSLAVEINFOQUERY:
3087 case SIOCBONDINFOQUERY:
3088 case SIOCSHWTSTAMP:
3089 case SIOCGHWTSTAMP:
3090 return compat_ifr_data_ioctl(net, cmd, argp);
3091
3092 case FIOSETOWN:
3093 case SIOCSPGRP:
3094 case FIOGETOWN:
3095 case SIOCGPGRP:
3096 case SIOCBRADDBR:
3097 case SIOCBRDELBR:
3098 case SIOCGIFVLAN:
3099 case SIOCSIFVLAN:
3100 case SIOCADDDLCI:
3101 case SIOCDELDLCI:
3102 return sock_ioctl(file, cmd, arg);
3103
3104 case SIOCGIFFLAGS:
3105 case SIOCSIFFLAGS:
3106 case SIOCGIFMETRIC:
3107 case SIOCSIFMETRIC:
3108 case SIOCGIFMTU:
3109 case SIOCSIFMTU:
3110 case SIOCGIFMEM:
3111 case SIOCSIFMEM:
3112 case SIOCGIFHWADDR:
3113 case SIOCSIFHWADDR:
3114 case SIOCADDMULTI:
3115 case SIOCDELMULTI:
3116 case SIOCGIFINDEX:
3117 case SIOCGIFADDR:
3118 case SIOCSIFADDR:
3119 case SIOCSIFHWBROADCAST:
3120 case SIOCDIFADDR:
3121 case SIOCGIFBRDADDR:
3122 case SIOCSIFBRDADDR:
3123 case SIOCGIFDSTADDR:
3124 case SIOCSIFDSTADDR:
3125 case SIOCGIFNETMASK:
3126 case SIOCSIFNETMASK:
3127 case SIOCSIFPFLAGS:
3128 case SIOCGIFPFLAGS:
3129 case SIOCGIFTXQLEN:
3130 case SIOCSIFTXQLEN:
3131 case SIOCBRADDIF:
3132 case SIOCBRDELIF:
3133 case SIOCSIFNAME:
3134 case SIOCGMIIPHY:
3135 case SIOCGMIIREG:
3136 case SIOCSMIIREG:
3137 return dev_ifsioc(net, sock, cmd, argp);
3138
3139 case SIOCSARP:
3140 case SIOCGARP:
3141 case SIOCDARP:
3142 case SIOCATMARK:
3143 return sock_do_ioctl(net, sock, cmd, arg);
3144 }
3145
3146 return -ENOIOCTLCMD;
3147 }
3148
3149 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3150 unsigned long arg)
3151 {
3152 struct socket *sock = file->private_data;
3153 int ret = -ENOIOCTLCMD;
3154 struct sock *sk;
3155 struct net *net;
3156
3157 sk = sock->sk;
3158 net = sock_net(sk);
3159
3160 if (sock->ops->compat_ioctl)
3161 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3162
3163 if (ret == -ENOIOCTLCMD &&
3164 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3165 ret = compat_wext_handle_ioctl(net, cmd, arg);
3166
3167 if (ret == -ENOIOCTLCMD)
3168 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3169
3170 return ret;
3171 }
3172 #endif
3173
3174 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3175 {
3176 return sock->ops->bind(sock, addr, addrlen);
3177 }
3178 EXPORT_SYMBOL(kernel_bind);
3179
3180 int kernel_listen(struct socket *sock, int backlog)
3181 {
3182 return sock->ops->listen(sock, backlog);
3183 }
3184 EXPORT_SYMBOL(kernel_listen);
3185
3186 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3187 {
3188 struct sock *sk = sock->sk;
3189 int err;
3190
3191 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3192 newsock);
3193 if (err < 0)
3194 goto done;
3195
3196 err = sock->ops->accept(sock, *newsock, flags);
3197 if (err < 0) {
3198 sock_release(*newsock);
3199 *newsock = NULL;
3200 goto done;
3201 }
3202
3203 (*newsock)->ops = sock->ops;
3204 __module_get((*newsock)->ops->owner);
3205
3206 done:
3207 return err;
3208 }
3209 EXPORT_SYMBOL(kernel_accept);
3210
3211 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3212 int flags)
3213 {
3214 return sock->ops->connect(sock, addr, addrlen, flags);
3215 }
3216 EXPORT_SYMBOL(kernel_connect);
3217
3218 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3219 int *addrlen)
3220 {
3221 return sock->ops->getname(sock, addr, addrlen, 0);
3222 }
3223 EXPORT_SYMBOL(kernel_getsockname);
3224
3225 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3226 int *addrlen)
3227 {
3228 return sock->ops->getname(sock, addr, addrlen, 1);
3229 }
3230 EXPORT_SYMBOL(kernel_getpeername);
3231
3232 int kernel_getsockopt(struct socket *sock, int level, int optname,
3233 char *optval, int *optlen)
3234 {
3235 mm_segment_t oldfs = get_fs();
3236 char __user *uoptval;
3237 int __user *uoptlen;
3238 int err;
3239
3240 uoptval = (char __user __force *) optval;
3241 uoptlen = (int __user __force *) optlen;
3242
3243 set_fs(KERNEL_DS);
3244 if (level == SOL_SOCKET)
3245 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3246 else
3247 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3248 uoptlen);
3249 set_fs(oldfs);
3250 return err;
3251 }
3252 EXPORT_SYMBOL(kernel_getsockopt);
3253
3254 int kernel_setsockopt(struct socket *sock, int level, int optname,
3255 char *optval, unsigned int optlen)
3256 {
3257 mm_segment_t oldfs = get_fs();
3258 char __user *uoptval;
3259 int err;
3260
3261 uoptval = (char __user __force *) optval;
3262
3263 set_fs(KERNEL_DS);
3264 if (level == SOL_SOCKET)
3265 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3266 else
3267 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3268 optlen);
3269 set_fs(oldfs);
3270 return err;
3271 }
3272 EXPORT_SYMBOL(kernel_setsockopt);
3273
3274 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3275 size_t size, int flags)
3276 {
3277 if (sock->ops->sendpage)
3278 return sock->ops->sendpage(sock, page, offset, size, flags);
3279
3280 return sock_no_sendpage(sock, page, offset, size, flags);
3281 }
3282 EXPORT_SYMBOL(kernel_sendpage);
3283
3284 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3285 {
3286 mm_segment_t oldfs = get_fs();
3287 int err;
3288
3289 set_fs(KERNEL_DS);
3290 err = sock->ops->ioctl(sock, cmd, arg);
3291 set_fs(oldfs);
3292
3293 return err;
3294 }
3295 EXPORT_SYMBOL(kernel_sock_ioctl);
3296
3297 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3298 {
3299 return sock->ops->shutdown(sock, how);
3300 }
3301 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.101425 seconds and 5 git commands to generate.