vti: Simplify error handling in module init and exit
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114
115 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 unsigned long nr_segs, loff_t pos);
118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 unsigned long nr_segs, loff_t pos);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static unsigned int sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132 int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136
137 /*
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
140 */
141
142 static const struct file_operations socket_file_ops = {
143 .owner = THIS_MODULE,
144 .llseek = no_llseek,
145 .aio_read = sock_aio_read,
146 .aio_write = sock_aio_write,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151 #endif
152 .mmap = sock_mmap,
153 .open = sock_no_open, /* special open code to disallow open via /proc */
154 .release = sock_close,
155 .fasync = sock_fasync,
156 .sendpage = sock_sendpage,
157 .splice_write = generic_splice_sendpage,
158 .splice_read = sock_splice_read,
159 };
160
161 /*
162 * The protocol list. Each protocol is registered in here.
163 */
164
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167
168 /*
169 * Statistics counters of the socket lists
170 */
171
172 static DEFINE_PER_CPU(int, sockets_in_use);
173
174 /*
175 * Support routines.
176 * Move socket addresses back and forth across the kernel/user
177 * divide and look after the messy bits.
178 */
179
180 /**
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
185 *
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 */
190
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 {
193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 return -EINVAL;
195 if (ulen == 0)
196 return 0;
197 if (copy_from_user(kaddr, uaddr, ulen))
198 return -EFAULT;
199 return audit_sockaddr(ulen, kaddr);
200 }
201
202 /**
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
208 *
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
213 * accessible.
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
217 */
218
219 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
220 void __user *uaddr, int __user *ulen)
221 {
222 int err;
223 int len;
224
225 BUG_ON(klen > sizeof(struct sockaddr_storage));
226 err = get_user(len, ulen);
227 if (err)
228 return err;
229 if (len > klen)
230 len = klen;
231 if (len < 0)
232 return -EINVAL;
233 if (len) {
234 if (audit_sockaddr(klen, kaddr))
235 return -ENOMEM;
236 if (copy_to_user(uaddr, kaddr, len))
237 return -EFAULT;
238 }
239 /*
240 * "fromlen shall refer to the value before truncation.."
241 * 1003.1g
242 */
243 return __put_user(klen, ulen);
244 }
245
246 static struct kmem_cache *sock_inode_cachep __read_mostly;
247
248 static struct inode *sock_alloc_inode(struct super_block *sb)
249 {
250 struct socket_alloc *ei;
251 struct socket_wq *wq;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
257 if (!wq) {
258 kmem_cache_free(sock_inode_cachep, ei);
259 return NULL;
260 }
261 init_waitqueue_head(&wq->wait);
262 wq->fasync_list = NULL;
263 RCU_INIT_POINTER(ei->socket.wq, wq);
264
265 ei->socket.state = SS_UNCONNECTED;
266 ei->socket.flags = 0;
267 ei->socket.ops = NULL;
268 ei->socket.sk = NULL;
269 ei->socket.file = NULL;
270
271 return &ei->vfs_inode;
272 }
273
274 static void sock_destroy_inode(struct inode *inode)
275 {
276 struct socket_alloc *ei;
277 struct socket_wq *wq;
278
279 ei = container_of(inode, struct socket_alloc, vfs_inode);
280 wq = rcu_dereference_protected(ei->socket.wq, 1);
281 kfree_rcu(wq, rcu);
282 kmem_cache_free(sock_inode_cachep, ei);
283 }
284
285 static void init_once(void *foo)
286 {
287 struct socket_alloc *ei = (struct socket_alloc *)foo;
288
289 inode_init_once(&ei->vfs_inode);
290 }
291
292 static int init_inodecache(void)
293 {
294 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
295 sizeof(struct socket_alloc),
296 0,
297 (SLAB_HWCACHE_ALIGN |
298 SLAB_RECLAIM_ACCOUNT |
299 SLAB_MEM_SPREAD),
300 init_once);
301 if (sock_inode_cachep == NULL)
302 return -ENOMEM;
303 return 0;
304 }
305
306 static const struct super_operations sockfs_ops = {
307 .alloc_inode = sock_alloc_inode,
308 .destroy_inode = sock_destroy_inode,
309 .statfs = simple_statfs,
310 };
311
312 /*
313 * sockfs_dname() is called from d_path().
314 */
315 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 {
317 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
318 dentry->d_inode->i_ino);
319 }
320
321 static const struct dentry_operations sockfs_dentry_operations = {
322 .d_dname = sockfs_dname,
323 };
324
325 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
326 int flags, const char *dev_name, void *data)
327 {
328 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
329 &sockfs_dentry_operations, SOCKFS_MAGIC);
330 }
331
332 static struct vfsmount *sock_mnt __read_mostly;
333
334 static struct file_system_type sock_fs_type = {
335 .name = "sockfs",
336 .mount = sockfs_mount,
337 .kill_sb = kill_anon_super,
338 };
339
340 /*
341 * Obtains the first available file descriptor and sets it up for use.
342 *
343 * These functions create file structures and maps them to fd space
344 * of the current process. On success it returns file descriptor
345 * and file struct implicitly stored in sock->file.
346 * Note that another thread may close file descriptor before we return
347 * from this function. We use the fact that now we do not refer
348 * to socket after mapping. If one day we will need it, this
349 * function will increment ref. count on file by 1.
350 *
351 * In any case returned fd MAY BE not valid!
352 * This race condition is unavoidable
353 * with shared fd spaces, we cannot solve it inside kernel,
354 * but we take care of internal coherence yet.
355 */
356
357 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358 {
359 struct qstr name = { .name = "" };
360 struct path path;
361 struct file *file;
362
363 if (dname) {
364 name.name = dname;
365 name.len = strlen(name.name);
366 } else if (sock->sk) {
367 name.name = sock->sk->sk_prot_creator->name;
368 name.len = strlen(name.name);
369 }
370 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
371 if (unlikely(!path.dentry))
372 return ERR_PTR(-ENOMEM);
373 path.mnt = mntget(sock_mnt);
374
375 d_instantiate(path.dentry, SOCK_INODE(sock));
376 SOCK_INODE(sock)->i_fop = &socket_file_ops;
377
378 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
379 &socket_file_ops);
380 if (unlikely(IS_ERR(file))) {
381 /* drop dentry, keep inode */
382 ihold(path.dentry->d_inode);
383 path_put(&path);
384 return file;
385 }
386
387 sock->file = file;
388 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
389 file->private_data = sock;
390 return file;
391 }
392 EXPORT_SYMBOL(sock_alloc_file);
393
394 static int sock_map_fd(struct socket *sock, int flags)
395 {
396 struct file *newfile;
397 int fd = get_unused_fd_flags(flags);
398 if (unlikely(fd < 0))
399 return fd;
400
401 newfile = sock_alloc_file(sock, flags, NULL);
402 if (likely(!IS_ERR(newfile))) {
403 fd_install(fd, newfile);
404 return fd;
405 }
406
407 put_unused_fd(fd);
408 return PTR_ERR(newfile);
409 }
410
411 struct socket *sock_from_file(struct file *file, int *err)
412 {
413 if (file->f_op == &socket_file_ops)
414 return file->private_data; /* set in sock_map_fd */
415
416 *err = -ENOTSOCK;
417 return NULL;
418 }
419 EXPORT_SYMBOL(sock_from_file);
420
421 /**
422 * sockfd_lookup - Go from a file number to its socket slot
423 * @fd: file handle
424 * @err: pointer to an error code return
425 *
426 * The file handle passed in is locked and the socket it is bound
427 * too is returned. If an error occurs the err pointer is overwritten
428 * with a negative errno code and NULL is returned. The function checks
429 * for both invalid handles and passing a handle which is not a socket.
430 *
431 * On a success the socket object pointer is returned.
432 */
433
434 struct socket *sockfd_lookup(int fd, int *err)
435 {
436 struct file *file;
437 struct socket *sock;
438
439 file = fget(fd);
440 if (!file) {
441 *err = -EBADF;
442 return NULL;
443 }
444
445 sock = sock_from_file(file, err);
446 if (!sock)
447 fput(file);
448 return sock;
449 }
450 EXPORT_SYMBOL(sockfd_lookup);
451
452 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453 {
454 struct fd f = fdget(fd);
455 struct socket *sock;
456
457 *err = -EBADF;
458 if (f.file) {
459 sock = sock_from_file(f.file, err);
460 if (likely(sock)) {
461 *fput_needed = f.flags;
462 return sock;
463 }
464 fdput(f);
465 }
466 return NULL;
467 }
468
469 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
470 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
471 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
472 static ssize_t sockfs_getxattr(struct dentry *dentry,
473 const char *name, void *value, size_t size)
474 {
475 const char *proto_name;
476 size_t proto_size;
477 int error;
478
479 error = -ENODATA;
480 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
481 proto_name = dentry->d_name.name;
482 proto_size = strlen(proto_name);
483
484 if (value) {
485 error = -ERANGE;
486 if (proto_size + 1 > size)
487 goto out;
488
489 strncpy(value, proto_name, proto_size + 1);
490 }
491 error = proto_size + 1;
492 }
493
494 out:
495 return error;
496 }
497
498 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
499 size_t size)
500 {
501 ssize_t len;
502 ssize_t used = 0;
503
504 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
505 if (len < 0)
506 return len;
507 used += len;
508 if (buffer) {
509 if (size < used)
510 return -ERANGE;
511 buffer += len;
512 }
513
514 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
520 buffer += len;
521 }
522
523 return used;
524 }
525
526 static const struct inode_operations sockfs_inode_ops = {
527 .getxattr = sockfs_getxattr,
528 .listxattr = sockfs_listxattr,
529 };
530
531 /**
532 * sock_alloc - allocate a socket
533 *
534 * Allocate a new inode and socket object. The two are bound together
535 * and initialised. The socket is then returned. If we are out of inodes
536 * NULL is returned.
537 */
538
539 static struct socket *sock_alloc(void)
540 {
541 struct inode *inode;
542 struct socket *sock;
543
544 inode = new_inode_pseudo(sock_mnt->mnt_sb);
545 if (!inode)
546 return NULL;
547
548 sock = SOCKET_I(inode);
549
550 kmemcheck_annotate_bitfield(sock, type);
551 inode->i_ino = get_next_ino();
552 inode->i_mode = S_IFSOCK | S_IRWXUGO;
553 inode->i_uid = current_fsuid();
554 inode->i_gid = current_fsgid();
555 inode->i_op = &sockfs_inode_ops;
556
557 this_cpu_add(sockets_in_use, 1);
558 return sock;
559 }
560
561 /*
562 * In theory you can't get an open on this inode, but /proc provides
563 * a back door. Remember to keep it shut otherwise you'll let the
564 * creepy crawlies in.
565 */
566
567 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
568 {
569 return -ENXIO;
570 }
571
572 const struct file_operations bad_sock_fops = {
573 .owner = THIS_MODULE,
574 .open = sock_no_open,
575 .llseek = noop_llseek,
576 };
577
578 /**
579 * sock_release - close a socket
580 * @sock: socket to close
581 *
582 * The socket is released from the protocol stack if it has a release
583 * callback, and the inode is then released if the socket is bound to
584 * an inode not a file.
585 */
586
587 void sock_release(struct socket *sock)
588 {
589 if (sock->ops) {
590 struct module *owner = sock->ops->owner;
591
592 sock->ops->release(sock);
593 sock->ops = NULL;
594 module_put(owner);
595 }
596
597 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
598 pr_err("%s: fasync list not empty!\n", __func__);
599
600 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
601 return;
602
603 this_cpu_sub(sockets_in_use, 1);
604 if (!sock->file) {
605 iput(SOCK_INODE(sock));
606 return;
607 }
608 sock->file = NULL;
609 }
610 EXPORT_SYMBOL(sock_release);
611
612 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
613 {
614 *tx_flags = 0;
615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
616 *tx_flags |= SKBTX_HW_TSTAMP;
617 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
618 *tx_flags |= SKBTX_SW_TSTAMP;
619 if (sock_flag(sk, SOCK_WIFI_STATUS))
620 *tx_flags |= SKBTX_WIFI_STATUS;
621 }
622 EXPORT_SYMBOL(sock_tx_timestamp);
623
624 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
625 struct msghdr *msg, size_t size)
626 {
627 struct sock_iocb *si = kiocb_to_siocb(iocb);
628
629 si->sock = sock;
630 si->scm = NULL;
631 si->msg = msg;
632 si->size = size;
633
634 return sock->ops->sendmsg(iocb, sock, msg, size);
635 }
636
637 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
638 struct msghdr *msg, size_t size)
639 {
640 int err = security_socket_sendmsg(sock, msg, size);
641
642 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
643 }
644
645 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
646 {
647 struct kiocb iocb;
648 struct sock_iocb siocb;
649 int ret;
650
651 init_sync_kiocb(&iocb, NULL);
652 iocb.private = &siocb;
653 ret = __sock_sendmsg(&iocb, sock, msg, size);
654 if (-EIOCBQUEUED == ret)
655 ret = wait_on_sync_kiocb(&iocb);
656 return ret;
657 }
658 EXPORT_SYMBOL(sock_sendmsg);
659
660 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
661 {
662 struct kiocb iocb;
663 struct sock_iocb siocb;
664 int ret;
665
666 init_sync_kiocb(&iocb, NULL);
667 iocb.private = &siocb;
668 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
669 if (-EIOCBQUEUED == ret)
670 ret = wait_on_sync_kiocb(&iocb);
671 return ret;
672 }
673
674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675 struct kvec *vec, size_t num, size_t size)
676 {
677 mm_segment_t oldfs = get_fs();
678 int result;
679
680 set_fs(KERNEL_DS);
681 /*
682 * the following is safe, since for compiler definitions of kvec and
683 * iovec are identical, yielding the same in-core layout and alignment
684 */
685 msg->msg_iov = (struct iovec *)vec;
686 msg->msg_iovlen = num;
687 result = sock_sendmsg(sock, msg, size);
688 set_fs(oldfs);
689 return result;
690 }
691 EXPORT_SYMBOL(kernel_sendmsg);
692
693 /*
694 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
695 */
696 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
697 struct sk_buff *skb)
698 {
699 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
700 struct timespec ts[3];
701 int empty = 1;
702 struct skb_shared_hwtstamps *shhwtstamps =
703 skb_hwtstamps(skb);
704
705 /* Race occurred between timestamp enabling and packet
706 receiving. Fill in the current time for now. */
707 if (need_software_tstamp && skb->tstamp.tv64 == 0)
708 __net_timestamp(skb);
709
710 if (need_software_tstamp) {
711 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
712 struct timeval tv;
713 skb_get_timestamp(skb, &tv);
714 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
715 sizeof(tv), &tv);
716 } else {
717 skb_get_timestampns(skb, &ts[0]);
718 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
719 sizeof(ts[0]), &ts[0]);
720 }
721 }
722
723
724 memset(ts, 0, sizeof(ts));
725 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
726 ktime_to_timespec_cond(skb->tstamp, ts + 0))
727 empty = 0;
728 if (shhwtstamps) {
729 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
730 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
731 empty = 0;
732 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
733 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
734 empty = 0;
735 }
736 if (!empty)
737 put_cmsg(msg, SOL_SOCKET,
738 SCM_TIMESTAMPING, sizeof(ts), &ts);
739 }
740 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
741
742 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
743 struct sk_buff *skb)
744 {
745 int ack;
746
747 if (!sock_flag(sk, SOCK_WIFI_STATUS))
748 return;
749 if (!skb->wifi_acked_valid)
750 return;
751
752 ack = skb->wifi_acked;
753
754 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
755 }
756 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
757
758 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
759 struct sk_buff *skb)
760 {
761 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
762 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
763 sizeof(__u32), &skb->dropcount);
764 }
765
766 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
767 struct sk_buff *skb)
768 {
769 sock_recv_timestamp(msg, sk, skb);
770 sock_recv_drops(msg, sk, skb);
771 }
772 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
773
774 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
775 struct msghdr *msg, size_t size, int flags)
776 {
777 struct sock_iocb *si = kiocb_to_siocb(iocb);
778
779 si->sock = sock;
780 si->scm = NULL;
781 si->msg = msg;
782 si->size = size;
783 si->flags = flags;
784
785 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
786 }
787
788 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
789 struct msghdr *msg, size_t size, int flags)
790 {
791 int err = security_socket_recvmsg(sock, msg, size, flags);
792
793 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
794 }
795
796 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
797 size_t size, int flags)
798 {
799 struct kiocb iocb;
800 struct sock_iocb siocb;
801 int ret;
802
803 init_sync_kiocb(&iocb, NULL);
804 iocb.private = &siocb;
805 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
806 if (-EIOCBQUEUED == ret)
807 ret = wait_on_sync_kiocb(&iocb);
808 return ret;
809 }
810 EXPORT_SYMBOL(sock_recvmsg);
811
812 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
813 size_t size, int flags)
814 {
815 struct kiocb iocb;
816 struct sock_iocb siocb;
817 int ret;
818
819 init_sync_kiocb(&iocb, NULL);
820 iocb.private = &siocb;
821 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
822 if (-EIOCBQUEUED == ret)
823 ret = wait_on_sync_kiocb(&iocb);
824 return ret;
825 }
826
827 /**
828 * kernel_recvmsg - Receive a message from a socket (kernel space)
829 * @sock: The socket to receive the message from
830 * @msg: Received message
831 * @vec: Input s/g array for message data
832 * @num: Size of input s/g array
833 * @size: Number of bytes to read
834 * @flags: Message flags (MSG_DONTWAIT, etc...)
835 *
836 * On return the msg structure contains the scatter/gather array passed in the
837 * vec argument. The array is modified so that it consists of the unfilled
838 * portion of the original array.
839 *
840 * The returned value is the total number of bytes received, or an error.
841 */
842 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
843 struct kvec *vec, size_t num, size_t size, int flags)
844 {
845 mm_segment_t oldfs = get_fs();
846 int result;
847
848 set_fs(KERNEL_DS);
849 /*
850 * the following is safe, since for compiler definitions of kvec and
851 * iovec are identical, yielding the same in-core layout and alignment
852 */
853 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
854 result = sock_recvmsg(sock, msg, size, flags);
855 set_fs(oldfs);
856 return result;
857 }
858 EXPORT_SYMBOL(kernel_recvmsg);
859
860 static ssize_t sock_sendpage(struct file *file, struct page *page,
861 int offset, size_t size, loff_t *ppos, int more)
862 {
863 struct socket *sock;
864 int flags;
865
866 sock = file->private_data;
867
868 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
869 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
870 flags |= more;
871
872 return kernel_sendpage(sock, page, offset, size, flags);
873 }
874
875 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
876 struct pipe_inode_info *pipe, size_t len,
877 unsigned int flags)
878 {
879 struct socket *sock = file->private_data;
880
881 if (unlikely(!sock->ops->splice_read))
882 return -EINVAL;
883
884 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
885 }
886
887 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
888 struct sock_iocb *siocb)
889 {
890 if (!is_sync_kiocb(iocb))
891 BUG();
892
893 siocb->kiocb = iocb;
894 iocb->private = siocb;
895 return siocb;
896 }
897
898 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899 struct file *file, const struct iovec *iov,
900 unsigned long nr_segs)
901 {
902 struct socket *sock = file->private_data;
903 size_t size = 0;
904 int i;
905
906 for (i = 0; i < nr_segs; i++)
907 size += iov[i].iov_len;
908
909 msg->msg_name = NULL;
910 msg->msg_namelen = 0;
911 msg->msg_control = NULL;
912 msg->msg_controllen = 0;
913 msg->msg_iov = (struct iovec *)iov;
914 msg->msg_iovlen = nr_segs;
915 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
916
917 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918 }
919
920 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921 unsigned long nr_segs, loff_t pos)
922 {
923 struct sock_iocb siocb, *x;
924
925 if (pos != 0)
926 return -ESPIPE;
927
928 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
929 return 0;
930
931
932 x = alloc_sock_iocb(iocb, &siocb);
933 if (!x)
934 return -ENOMEM;
935 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936 }
937
938 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939 struct file *file, const struct iovec *iov,
940 unsigned long nr_segs)
941 {
942 struct socket *sock = file->private_data;
943 size_t size = 0;
944 int i;
945
946 for (i = 0; i < nr_segs; i++)
947 size += iov[i].iov_len;
948
949 msg->msg_name = NULL;
950 msg->msg_namelen = 0;
951 msg->msg_control = NULL;
952 msg->msg_controllen = 0;
953 msg->msg_iov = (struct iovec *)iov;
954 msg->msg_iovlen = nr_segs;
955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 if (sock->type == SOCK_SEQPACKET)
957 msg->msg_flags |= MSG_EOR;
958
959 return __sock_sendmsg(iocb, sock, msg, size);
960 }
961
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 unsigned long nr_segs, loff_t pos)
964 {
965 struct sock_iocb siocb, *x;
966
967 if (pos != 0)
968 return -ESPIPE;
969
970 x = alloc_sock_iocb(iocb, &siocb);
971 if (!x)
972 return -ENOMEM;
973
974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975 }
976
977 /*
978 * Atomic setting of ioctl hooks to avoid race
979 * with module unload.
980 */
981
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986 {
987 mutex_lock(&br_ioctl_mutex);
988 br_ioctl_hook = hook;
989 mutex_unlock(&br_ioctl_mutex);
990 }
991 EXPORT_SYMBOL(brioctl_set);
992
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997 {
998 mutex_lock(&vlan_ioctl_mutex);
999 vlan_ioctl_hook = hook;
1000 mutex_unlock(&vlan_ioctl_mutex);
1001 }
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008 {
1009 mutex_lock(&dlci_ioctl_mutex);
1010 dlci_ioctl_hook = hook;
1011 mutex_unlock(&dlci_ioctl_mutex);
1012 }
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 unsigned int cmd, unsigned long arg)
1017 {
1018 int err;
1019 void __user *argp = (void __user *)arg;
1020
1021 err = sock->ops->ioctl(sock, cmd, arg);
1022
1023 /*
1024 * If this ioctl is unknown try to hand it down
1025 * to the NIC driver.
1026 */
1027 if (err == -ENOIOCTLCMD)
1028 err = dev_ioctl(net, cmd, argp);
1029
1030 return err;
1031 }
1032
1033 /*
1034 * With an ioctl, arg may well be a user mode pointer, but we don't know
1035 * what to do with it - that's up to the protocol still.
1036 */
1037
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039 {
1040 struct socket *sock;
1041 struct sock *sk;
1042 void __user *argp = (void __user *)arg;
1043 int pid, err;
1044 struct net *net;
1045
1046 sock = file->private_data;
1047 sk = sock->sk;
1048 net = sock_net(sk);
1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 err = dev_ioctl(net, cmd, argp);
1051 } else
1052 #ifdef CONFIG_WEXT_CORE
1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 err = dev_ioctl(net, cmd, argp);
1055 } else
1056 #endif
1057 switch (cmd) {
1058 case FIOSETOWN:
1059 case SIOCSPGRP:
1060 err = -EFAULT;
1061 if (get_user(pid, (int __user *)argp))
1062 break;
1063 err = f_setown(sock->file, pid, 1);
1064 break;
1065 case FIOGETOWN:
1066 case SIOCGPGRP:
1067 err = put_user(f_getown(sock->file),
1068 (int __user *)argp);
1069 break;
1070 case SIOCGIFBR:
1071 case SIOCSIFBR:
1072 case SIOCBRADDBR:
1073 case SIOCBRDELBR:
1074 err = -ENOPKG;
1075 if (!br_ioctl_hook)
1076 request_module("bridge");
1077
1078 mutex_lock(&br_ioctl_mutex);
1079 if (br_ioctl_hook)
1080 err = br_ioctl_hook(net, cmd, argp);
1081 mutex_unlock(&br_ioctl_mutex);
1082 break;
1083 case SIOCGIFVLAN:
1084 case SIOCSIFVLAN:
1085 err = -ENOPKG;
1086 if (!vlan_ioctl_hook)
1087 request_module("8021q");
1088
1089 mutex_lock(&vlan_ioctl_mutex);
1090 if (vlan_ioctl_hook)
1091 err = vlan_ioctl_hook(net, argp);
1092 mutex_unlock(&vlan_ioctl_mutex);
1093 break;
1094 case SIOCADDDLCI:
1095 case SIOCDELDLCI:
1096 err = -ENOPKG;
1097 if (!dlci_ioctl_hook)
1098 request_module("dlci");
1099
1100 mutex_lock(&dlci_ioctl_mutex);
1101 if (dlci_ioctl_hook)
1102 err = dlci_ioctl_hook(cmd, argp);
1103 mutex_unlock(&dlci_ioctl_mutex);
1104 break;
1105 default:
1106 err = sock_do_ioctl(net, sock, cmd, arg);
1107 break;
1108 }
1109 return err;
1110 }
1111
1112 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113 {
1114 int err;
1115 struct socket *sock = NULL;
1116
1117 err = security_socket_create(family, type, protocol, 1);
1118 if (err)
1119 goto out;
1120
1121 sock = sock_alloc();
1122 if (!sock) {
1123 err = -ENOMEM;
1124 goto out;
1125 }
1126
1127 sock->type = type;
1128 err = security_socket_post_create(sock, family, type, protocol, 1);
1129 if (err)
1130 goto out_release;
1131
1132 out:
1133 *res = sock;
1134 return err;
1135 out_release:
1136 sock_release(sock);
1137 sock = NULL;
1138 goto out;
1139 }
1140 EXPORT_SYMBOL(sock_create_lite);
1141
1142 /* No kernel lock held - perfect */
1143 static unsigned int sock_poll(struct file *file, poll_table *wait)
1144 {
1145 unsigned int busy_flag = 0;
1146 struct socket *sock;
1147
1148 /*
1149 * We can't return errors to poll, so it's either yes or no.
1150 */
1151 sock = file->private_data;
1152
1153 if (sk_can_busy_loop(sock->sk)) {
1154 /* this socket can poll_ll so tell the system call */
1155 busy_flag = POLL_BUSY_LOOP;
1156
1157 /* once, only if requested by syscall */
1158 if (wait && (wait->_key & POLL_BUSY_LOOP))
1159 sk_busy_loop(sock->sk, 1);
1160 }
1161
1162 return busy_flag | sock->ops->poll(file, sock, wait);
1163 }
1164
1165 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166 {
1167 struct socket *sock = file->private_data;
1168
1169 return sock->ops->mmap(file, sock, vma);
1170 }
1171
1172 static int sock_close(struct inode *inode, struct file *filp)
1173 {
1174 sock_release(SOCKET_I(inode));
1175 return 0;
1176 }
1177
1178 /*
1179 * Update the socket async list
1180 *
1181 * Fasync_list locking strategy.
1182 *
1183 * 1. fasync_list is modified only under process context socket lock
1184 * i.e. under semaphore.
1185 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186 * or under socket lock
1187 */
1188
1189 static int sock_fasync(int fd, struct file *filp, int on)
1190 {
1191 struct socket *sock = filp->private_data;
1192 struct sock *sk = sock->sk;
1193 struct socket_wq *wq;
1194
1195 if (sk == NULL)
1196 return -EINVAL;
1197
1198 lock_sock(sk);
1199 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1200 fasync_helper(fd, filp, on, &wq->fasync_list);
1201
1202 if (!wq->fasync_list)
1203 sock_reset_flag(sk, SOCK_FASYNC);
1204 else
1205 sock_set_flag(sk, SOCK_FASYNC);
1206
1207 release_sock(sk);
1208 return 0;
1209 }
1210
1211 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1212
1213 int sock_wake_async(struct socket *sock, int how, int band)
1214 {
1215 struct socket_wq *wq;
1216
1217 if (!sock)
1218 return -1;
1219 rcu_read_lock();
1220 wq = rcu_dereference(sock->wq);
1221 if (!wq || !wq->fasync_list) {
1222 rcu_read_unlock();
1223 return -1;
1224 }
1225 switch (how) {
1226 case SOCK_WAKE_WAITD:
1227 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1228 break;
1229 goto call_kill;
1230 case SOCK_WAKE_SPACE:
1231 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1232 break;
1233 /* fall through */
1234 case SOCK_WAKE_IO:
1235 call_kill:
1236 kill_fasync(&wq->fasync_list, SIGIO, band);
1237 break;
1238 case SOCK_WAKE_URG:
1239 kill_fasync(&wq->fasync_list, SIGURG, band);
1240 }
1241 rcu_read_unlock();
1242 return 0;
1243 }
1244 EXPORT_SYMBOL(sock_wake_async);
1245
1246 int __sock_create(struct net *net, int family, int type, int protocol,
1247 struct socket **res, int kern)
1248 {
1249 int err;
1250 struct socket *sock;
1251 const struct net_proto_family *pf;
1252
1253 /*
1254 * Check protocol is in range
1255 */
1256 if (family < 0 || family >= NPROTO)
1257 return -EAFNOSUPPORT;
1258 if (type < 0 || type >= SOCK_MAX)
1259 return -EINVAL;
1260
1261 /* Compatibility.
1262
1263 This uglymoron is moved from INET layer to here to avoid
1264 deadlock in module load.
1265 */
1266 if (family == PF_INET && type == SOCK_PACKET) {
1267 static int warned;
1268 if (!warned) {
1269 warned = 1;
1270 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1271 current->comm);
1272 }
1273 family = PF_PACKET;
1274 }
1275
1276 err = security_socket_create(family, type, protocol, kern);
1277 if (err)
1278 return err;
1279
1280 /*
1281 * Allocate the socket and allow the family to set things up. if
1282 * the protocol is 0, the family is instructed to select an appropriate
1283 * default.
1284 */
1285 sock = sock_alloc();
1286 if (!sock) {
1287 net_warn_ratelimited("socket: no more sockets\n");
1288 return -ENFILE; /* Not exactly a match, but its the
1289 closest posix thing */
1290 }
1291
1292 sock->type = type;
1293
1294 #ifdef CONFIG_MODULES
1295 /* Attempt to load a protocol module if the find failed.
1296 *
1297 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298 * requested real, full-featured networking support upon configuration.
1299 * Otherwise module support will break!
1300 */
1301 if (rcu_access_pointer(net_families[family]) == NULL)
1302 request_module("net-pf-%d", family);
1303 #endif
1304
1305 rcu_read_lock();
1306 pf = rcu_dereference(net_families[family]);
1307 err = -EAFNOSUPPORT;
1308 if (!pf)
1309 goto out_release;
1310
1311 /*
1312 * We will call the ->create function, that possibly is in a loadable
1313 * module, so we have to bump that loadable module refcnt first.
1314 */
1315 if (!try_module_get(pf->owner))
1316 goto out_release;
1317
1318 /* Now protected by module ref count */
1319 rcu_read_unlock();
1320
1321 err = pf->create(net, sock, protocol, kern);
1322 if (err < 0)
1323 goto out_module_put;
1324
1325 /*
1326 * Now to bump the refcnt of the [loadable] module that owns this
1327 * socket at sock_release time we decrement its refcnt.
1328 */
1329 if (!try_module_get(sock->ops->owner))
1330 goto out_module_busy;
1331
1332 /*
1333 * Now that we're done with the ->create function, the [loadable]
1334 * module can have its refcnt decremented
1335 */
1336 module_put(pf->owner);
1337 err = security_socket_post_create(sock, family, type, protocol, kern);
1338 if (err)
1339 goto out_sock_release;
1340 *res = sock;
1341
1342 return 0;
1343
1344 out_module_busy:
1345 err = -EAFNOSUPPORT;
1346 out_module_put:
1347 sock->ops = NULL;
1348 module_put(pf->owner);
1349 out_sock_release:
1350 sock_release(sock);
1351 return err;
1352
1353 out_release:
1354 rcu_read_unlock();
1355 goto out_sock_release;
1356 }
1357 EXPORT_SYMBOL(__sock_create);
1358
1359 int sock_create(int family, int type, int protocol, struct socket **res)
1360 {
1361 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362 }
1363 EXPORT_SYMBOL(sock_create);
1364
1365 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1366 {
1367 return __sock_create(&init_net, family, type, protocol, res, 1);
1368 }
1369 EXPORT_SYMBOL(sock_create_kern);
1370
1371 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372 {
1373 int retval;
1374 struct socket *sock;
1375 int flags;
1376
1377 /* Check the SOCK_* constants for consistency. */
1378 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382
1383 flags = type & ~SOCK_TYPE_MASK;
1384 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385 return -EINVAL;
1386 type &= SOCK_TYPE_MASK;
1387
1388 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390
1391 retval = sock_create(family, type, protocol, &sock);
1392 if (retval < 0)
1393 goto out;
1394
1395 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396 if (retval < 0)
1397 goto out_release;
1398
1399 out:
1400 /* It may be already another descriptor 8) Not kernel problem. */
1401 return retval;
1402
1403 out_release:
1404 sock_release(sock);
1405 return retval;
1406 }
1407
1408 /*
1409 * Create a pair of connected sockets.
1410 */
1411
1412 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1413 int __user *, usockvec)
1414 {
1415 struct socket *sock1, *sock2;
1416 int fd1, fd2, err;
1417 struct file *newfile1, *newfile2;
1418 int flags;
1419
1420 flags = type & ~SOCK_TYPE_MASK;
1421 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1422 return -EINVAL;
1423 type &= SOCK_TYPE_MASK;
1424
1425 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1426 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427
1428 /*
1429 * Obtain the first socket and check if the underlying protocol
1430 * supports the socketpair call.
1431 */
1432
1433 err = sock_create(family, type, protocol, &sock1);
1434 if (err < 0)
1435 goto out;
1436
1437 err = sock_create(family, type, protocol, &sock2);
1438 if (err < 0)
1439 goto out_release_1;
1440
1441 err = sock1->ops->socketpair(sock1, sock2);
1442 if (err < 0)
1443 goto out_release_both;
1444
1445 fd1 = get_unused_fd_flags(flags);
1446 if (unlikely(fd1 < 0)) {
1447 err = fd1;
1448 goto out_release_both;
1449 }
1450
1451 fd2 = get_unused_fd_flags(flags);
1452 if (unlikely(fd2 < 0)) {
1453 err = fd2;
1454 goto out_put_unused_1;
1455 }
1456
1457 newfile1 = sock_alloc_file(sock1, flags, NULL);
1458 if (unlikely(IS_ERR(newfile1))) {
1459 err = PTR_ERR(newfile1);
1460 goto out_put_unused_both;
1461 }
1462
1463 newfile2 = sock_alloc_file(sock2, flags, NULL);
1464 if (IS_ERR(newfile2)) {
1465 err = PTR_ERR(newfile2);
1466 goto out_fput_1;
1467 }
1468
1469 err = put_user(fd1, &usockvec[0]);
1470 if (err)
1471 goto out_fput_both;
1472
1473 err = put_user(fd2, &usockvec[1]);
1474 if (err)
1475 goto out_fput_both;
1476
1477 audit_fd_pair(fd1, fd2);
1478
1479 fd_install(fd1, newfile1);
1480 fd_install(fd2, newfile2);
1481 /* fd1 and fd2 may be already another descriptors.
1482 * Not kernel problem.
1483 */
1484
1485 return 0;
1486
1487 out_fput_both:
1488 fput(newfile2);
1489 fput(newfile1);
1490 put_unused_fd(fd2);
1491 put_unused_fd(fd1);
1492 goto out;
1493
1494 out_fput_1:
1495 fput(newfile1);
1496 put_unused_fd(fd2);
1497 put_unused_fd(fd1);
1498 sock_release(sock2);
1499 goto out;
1500
1501 out_put_unused_both:
1502 put_unused_fd(fd2);
1503 out_put_unused_1:
1504 put_unused_fd(fd1);
1505 out_release_both:
1506 sock_release(sock2);
1507 out_release_1:
1508 sock_release(sock1);
1509 out:
1510 return err;
1511 }
1512
1513 /*
1514 * Bind a name to a socket. Nothing much to do here since it's
1515 * the protocol's responsibility to handle the local address.
1516 *
1517 * We move the socket address to kernel space before we call
1518 * the protocol layer (having also checked the address is ok).
1519 */
1520
1521 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522 {
1523 struct socket *sock;
1524 struct sockaddr_storage address;
1525 int err, fput_needed;
1526
1527 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528 if (sock) {
1529 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530 if (err >= 0) {
1531 err = security_socket_bind(sock,
1532 (struct sockaddr *)&address,
1533 addrlen);
1534 if (!err)
1535 err = sock->ops->bind(sock,
1536 (struct sockaddr *)
1537 &address, addrlen);
1538 }
1539 fput_light(sock->file, fput_needed);
1540 }
1541 return err;
1542 }
1543
1544 /*
1545 * Perform a listen. Basically, we allow the protocol to do anything
1546 * necessary for a listen, and if that works, we mark the socket as
1547 * ready for listening.
1548 */
1549
1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551 {
1552 struct socket *sock;
1553 int err, fput_needed;
1554 int somaxconn;
1555
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (sock) {
1558 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559 if ((unsigned int)backlog > somaxconn)
1560 backlog = somaxconn;
1561
1562 err = security_socket_listen(sock, backlog);
1563 if (!err)
1564 err = sock->ops->listen(sock, backlog);
1565
1566 fput_light(sock->file, fput_needed);
1567 }
1568 return err;
1569 }
1570
1571 /*
1572 * For accept, we attempt to create a new socket, set up the link
1573 * with the client, wake up the client, then return the new
1574 * connected fd. We collect the address of the connector in kernel
1575 * space and move it to user at the very end. This is unclean because
1576 * we open the socket then return an error.
1577 *
1578 * 1003.1g adds the ability to recvmsg() to query connection pending
1579 * status to recvmsg. We need to add that support in a way thats
1580 * clean when we restucture accept also.
1581 */
1582
1583 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584 int __user *, upeer_addrlen, int, flags)
1585 {
1586 struct socket *sock, *newsock;
1587 struct file *newfile;
1588 int err, len, newfd, fput_needed;
1589 struct sockaddr_storage address;
1590
1591 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592 return -EINVAL;
1593
1594 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596
1597 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 if (!sock)
1599 goto out;
1600
1601 err = -ENFILE;
1602 newsock = sock_alloc();
1603 if (!newsock)
1604 goto out_put;
1605
1606 newsock->type = sock->type;
1607 newsock->ops = sock->ops;
1608
1609 /*
1610 * We don't need try_module_get here, as the listening socket (sock)
1611 * has the protocol module (sock->ops->owner) held.
1612 */
1613 __module_get(newsock->ops->owner);
1614
1615 newfd = get_unused_fd_flags(flags);
1616 if (unlikely(newfd < 0)) {
1617 err = newfd;
1618 sock_release(newsock);
1619 goto out_put;
1620 }
1621 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622 if (unlikely(IS_ERR(newfile))) {
1623 err = PTR_ERR(newfile);
1624 put_unused_fd(newfd);
1625 sock_release(newsock);
1626 goto out_put;
1627 }
1628
1629 err = security_socket_accept(sock, newsock);
1630 if (err)
1631 goto out_fd;
1632
1633 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634 if (err < 0)
1635 goto out_fd;
1636
1637 if (upeer_sockaddr) {
1638 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639 &len, 2) < 0) {
1640 err = -ECONNABORTED;
1641 goto out_fd;
1642 }
1643 err = move_addr_to_user(&address,
1644 len, upeer_sockaddr, upeer_addrlen);
1645 if (err < 0)
1646 goto out_fd;
1647 }
1648
1649 /* File flags are not inherited via accept() unlike another OSes. */
1650
1651 fd_install(newfd, newfile);
1652 err = newfd;
1653
1654 out_put:
1655 fput_light(sock->file, fput_needed);
1656 out:
1657 return err;
1658 out_fd:
1659 fput(newfile);
1660 put_unused_fd(newfd);
1661 goto out_put;
1662 }
1663
1664 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665 int __user *, upeer_addrlen)
1666 {
1667 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668 }
1669
1670 /*
1671 * Attempt to connect to a socket with the server address. The address
1672 * is in user space so we verify it is OK and move it to kernel space.
1673 *
1674 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675 * break bindings
1676 *
1677 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678 * other SEQPACKET protocols that take time to connect() as it doesn't
1679 * include the -EINPROGRESS status for such sockets.
1680 */
1681
1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683 int, addrlen)
1684 {
1685 struct socket *sock;
1686 struct sockaddr_storage address;
1687 int err, fput_needed;
1688
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (!sock)
1691 goto out;
1692 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693 if (err < 0)
1694 goto out_put;
1695
1696 err =
1697 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698 if (err)
1699 goto out_put;
1700
1701 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702 sock->file->f_flags);
1703 out_put:
1704 fput_light(sock->file, fput_needed);
1705 out:
1706 return err;
1707 }
1708
1709 /*
1710 * Get the local address ('name') of a socket object. Move the obtained
1711 * name to user space.
1712 */
1713
1714 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715 int __user *, usockaddr_len)
1716 {
1717 struct socket *sock;
1718 struct sockaddr_storage address;
1719 int len, err, fput_needed;
1720
1721 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722 if (!sock)
1723 goto out;
1724
1725 err = security_socket_getsockname(sock);
1726 if (err)
1727 goto out_put;
1728
1729 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730 if (err)
1731 goto out_put;
1732 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733
1734 out_put:
1735 fput_light(sock->file, fput_needed);
1736 out:
1737 return err;
1738 }
1739
1740 /*
1741 * Get the remote address ('name') of a socket object. Move the obtained
1742 * name to user space.
1743 */
1744
1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746 int __user *, usockaddr_len)
1747 {
1748 struct socket *sock;
1749 struct sockaddr_storage address;
1750 int len, err, fput_needed;
1751
1752 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753 if (sock != NULL) {
1754 err = security_socket_getpeername(sock);
1755 if (err) {
1756 fput_light(sock->file, fput_needed);
1757 return err;
1758 }
1759
1760 err =
1761 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762 1);
1763 if (!err)
1764 err = move_addr_to_user(&address, len, usockaddr,
1765 usockaddr_len);
1766 fput_light(sock->file, fput_needed);
1767 }
1768 return err;
1769 }
1770
1771 /*
1772 * Send a datagram to a given address. We move the address into kernel
1773 * space and check the user space data area is readable before invoking
1774 * the protocol.
1775 */
1776
1777 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778 unsigned int, flags, struct sockaddr __user *, addr,
1779 int, addr_len)
1780 {
1781 struct socket *sock;
1782 struct sockaddr_storage address;
1783 int err;
1784 struct msghdr msg;
1785 struct iovec iov;
1786 int fput_needed;
1787
1788 if (len > INT_MAX)
1789 len = INT_MAX;
1790 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791 if (!sock)
1792 goto out;
1793
1794 iov.iov_base = buff;
1795 iov.iov_len = len;
1796 msg.msg_name = NULL;
1797 msg.msg_iov = &iov;
1798 msg.msg_iovlen = 1;
1799 msg.msg_control = NULL;
1800 msg.msg_controllen = 0;
1801 msg.msg_namelen = 0;
1802 if (addr) {
1803 err = move_addr_to_kernel(addr, addr_len, &address);
1804 if (err < 0)
1805 goto out_put;
1806 msg.msg_name = (struct sockaddr *)&address;
1807 msg.msg_namelen = addr_len;
1808 }
1809 if (sock->file->f_flags & O_NONBLOCK)
1810 flags |= MSG_DONTWAIT;
1811 msg.msg_flags = flags;
1812 err = sock_sendmsg(sock, &msg, len);
1813
1814 out_put:
1815 fput_light(sock->file, fput_needed);
1816 out:
1817 return err;
1818 }
1819
1820 /*
1821 * Send a datagram down a socket.
1822 */
1823
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 unsigned int, flags)
1826 {
1827 return sys_sendto(fd, buff, len, flags, NULL, 0);
1828 }
1829
1830 /*
1831 * Receive a frame from the socket and optionally record the address of the
1832 * sender. We verify the buffers are writable and if needed move the
1833 * sender address from kernel to user space.
1834 */
1835
1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 unsigned int, flags, struct sockaddr __user *, addr,
1838 int __user *, addr_len)
1839 {
1840 struct socket *sock;
1841 struct iovec iov;
1842 struct msghdr msg;
1843 struct sockaddr_storage address;
1844 int err, err2;
1845 int fput_needed;
1846
1847 if (size > INT_MAX)
1848 size = INT_MAX;
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (!sock)
1851 goto out;
1852
1853 msg.msg_control = NULL;
1854 msg.msg_controllen = 0;
1855 msg.msg_iovlen = 1;
1856 msg.msg_iov = &iov;
1857 iov.iov_len = size;
1858 iov.iov_base = ubuf;
1859 /* Save some cycles and don't copy the address if not needed */
1860 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1861 /* We assume all kernel code knows the size of sockaddr_storage */
1862 msg.msg_namelen = 0;
1863 if (sock->file->f_flags & O_NONBLOCK)
1864 flags |= MSG_DONTWAIT;
1865 err = sock_recvmsg(sock, &msg, size, flags);
1866
1867 if (err >= 0 && addr != NULL) {
1868 err2 = move_addr_to_user(&address,
1869 msg.msg_namelen, addr, addr_len);
1870 if (err2 < 0)
1871 err = err2;
1872 }
1873
1874 fput_light(sock->file, fput_needed);
1875 out:
1876 return err;
1877 }
1878
1879 /*
1880 * Receive a datagram from a socket.
1881 */
1882
1883 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1884 unsigned int, flags)
1885 {
1886 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887 }
1888
1889 /*
1890 * Set a socket option. Because we don't know the option lengths we have
1891 * to pass the user mode parameter for the protocols to sort out.
1892 */
1893
1894 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1895 char __user *, optval, int, optlen)
1896 {
1897 int err, fput_needed;
1898 struct socket *sock;
1899
1900 if (optlen < 0)
1901 return -EINVAL;
1902
1903 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904 if (sock != NULL) {
1905 err = security_socket_setsockopt(sock, level, optname);
1906 if (err)
1907 goto out_put;
1908
1909 if (level == SOL_SOCKET)
1910 err =
1911 sock_setsockopt(sock, level, optname, optval,
1912 optlen);
1913 else
1914 err =
1915 sock->ops->setsockopt(sock, level, optname, optval,
1916 optlen);
1917 out_put:
1918 fput_light(sock->file, fput_needed);
1919 }
1920 return err;
1921 }
1922
1923 /*
1924 * Get a socket option. Because we don't know the option lengths we have
1925 * to pass a user mode parameter for the protocols to sort out.
1926 */
1927
1928 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1929 char __user *, optval, int __user *, optlen)
1930 {
1931 int err, fput_needed;
1932 struct socket *sock;
1933
1934 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 if (sock != NULL) {
1936 err = security_socket_getsockopt(sock, level, optname);
1937 if (err)
1938 goto out_put;
1939
1940 if (level == SOL_SOCKET)
1941 err =
1942 sock_getsockopt(sock, level, optname, optval,
1943 optlen);
1944 else
1945 err =
1946 sock->ops->getsockopt(sock, level, optname, optval,
1947 optlen);
1948 out_put:
1949 fput_light(sock->file, fput_needed);
1950 }
1951 return err;
1952 }
1953
1954 /*
1955 * Shutdown a socket.
1956 */
1957
1958 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1959 {
1960 int err, fput_needed;
1961 struct socket *sock;
1962
1963 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 if (sock != NULL) {
1965 err = security_socket_shutdown(sock, how);
1966 if (!err)
1967 err = sock->ops->shutdown(sock, how);
1968 fput_light(sock->file, fput_needed);
1969 }
1970 return err;
1971 }
1972
1973 /* A couple of helpful macros for getting the address of the 32/64 bit
1974 * fields which are the same type (int / unsigned) on our platforms.
1975 */
1976 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1977 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1978 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1979
1980 struct used_address {
1981 struct sockaddr_storage name;
1982 unsigned int name_len;
1983 };
1984
1985 static int copy_msghdr_from_user(struct msghdr *kmsg,
1986 struct msghdr __user *umsg)
1987 {
1988 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1989 return -EFAULT;
1990
1991 if (kmsg->msg_namelen < 0)
1992 return -EINVAL;
1993
1994 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1995 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1996 return 0;
1997 }
1998
1999 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2000 struct msghdr *msg_sys, unsigned int flags,
2001 struct used_address *used_address)
2002 {
2003 struct compat_msghdr __user *msg_compat =
2004 (struct compat_msghdr __user *)msg;
2005 struct sockaddr_storage address;
2006 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2007 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2008 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2009 /* 20 is size of ipv6_pktinfo */
2010 unsigned char *ctl_buf = ctl;
2011 int err, ctl_len, total_len;
2012
2013 err = -EFAULT;
2014 if (MSG_CMSG_COMPAT & flags) {
2015 if (get_compat_msghdr(msg_sys, msg_compat))
2016 return -EFAULT;
2017 } else {
2018 err = copy_msghdr_from_user(msg_sys, msg);
2019 if (err)
2020 return err;
2021 }
2022
2023 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2024 err = -EMSGSIZE;
2025 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2026 goto out;
2027 err = -ENOMEM;
2028 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2029 GFP_KERNEL);
2030 if (!iov)
2031 goto out;
2032 }
2033
2034 /* This will also move the address data into kernel space */
2035 if (MSG_CMSG_COMPAT & flags) {
2036 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2037 } else
2038 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2039 if (err < 0)
2040 goto out_freeiov;
2041 total_len = err;
2042
2043 err = -ENOBUFS;
2044
2045 if (msg_sys->msg_controllen > INT_MAX)
2046 goto out_freeiov;
2047 ctl_len = msg_sys->msg_controllen;
2048 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2049 err =
2050 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2051 sizeof(ctl));
2052 if (err)
2053 goto out_freeiov;
2054 ctl_buf = msg_sys->msg_control;
2055 ctl_len = msg_sys->msg_controllen;
2056 } else if (ctl_len) {
2057 if (ctl_len > sizeof(ctl)) {
2058 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2059 if (ctl_buf == NULL)
2060 goto out_freeiov;
2061 }
2062 err = -EFAULT;
2063 /*
2064 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2065 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2066 * checking falls down on this.
2067 */
2068 if (copy_from_user(ctl_buf,
2069 (void __user __force *)msg_sys->msg_control,
2070 ctl_len))
2071 goto out_freectl;
2072 msg_sys->msg_control = ctl_buf;
2073 }
2074 msg_sys->msg_flags = flags;
2075
2076 if (sock->file->f_flags & O_NONBLOCK)
2077 msg_sys->msg_flags |= MSG_DONTWAIT;
2078 /*
2079 * If this is sendmmsg() and current destination address is same as
2080 * previously succeeded address, omit asking LSM's decision.
2081 * used_address->name_len is initialized to UINT_MAX so that the first
2082 * destination address never matches.
2083 */
2084 if (used_address && msg_sys->msg_name &&
2085 used_address->name_len == msg_sys->msg_namelen &&
2086 !memcmp(&used_address->name, msg_sys->msg_name,
2087 used_address->name_len)) {
2088 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2089 goto out_freectl;
2090 }
2091 err = sock_sendmsg(sock, msg_sys, total_len);
2092 /*
2093 * If this is sendmmsg() and sending to current destination address was
2094 * successful, remember it.
2095 */
2096 if (used_address && err >= 0) {
2097 used_address->name_len = msg_sys->msg_namelen;
2098 if (msg_sys->msg_name)
2099 memcpy(&used_address->name, msg_sys->msg_name,
2100 used_address->name_len);
2101 }
2102
2103 out_freectl:
2104 if (ctl_buf != ctl)
2105 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2106 out_freeiov:
2107 if (iov != iovstack)
2108 kfree(iov);
2109 out:
2110 return err;
2111 }
2112
2113 /*
2114 * BSD sendmsg interface
2115 */
2116
2117 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2118 {
2119 int fput_needed, err;
2120 struct msghdr msg_sys;
2121 struct socket *sock;
2122
2123 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124 if (!sock)
2125 goto out;
2126
2127 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2128
2129 fput_light(sock->file, fput_needed);
2130 out:
2131 return err;
2132 }
2133
2134 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2135 {
2136 if (flags & MSG_CMSG_COMPAT)
2137 return -EINVAL;
2138 return __sys_sendmsg(fd, msg, flags);
2139 }
2140
2141 /*
2142 * Linux sendmmsg interface
2143 */
2144
2145 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2146 unsigned int flags)
2147 {
2148 int fput_needed, err, datagrams;
2149 struct socket *sock;
2150 struct mmsghdr __user *entry;
2151 struct compat_mmsghdr __user *compat_entry;
2152 struct msghdr msg_sys;
2153 struct used_address used_address;
2154
2155 if (vlen > UIO_MAXIOV)
2156 vlen = UIO_MAXIOV;
2157
2158 datagrams = 0;
2159
2160 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161 if (!sock)
2162 return err;
2163
2164 used_address.name_len = UINT_MAX;
2165 entry = mmsg;
2166 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2167 err = 0;
2168
2169 while (datagrams < vlen) {
2170 if (MSG_CMSG_COMPAT & flags) {
2171 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2172 &msg_sys, flags, &used_address);
2173 if (err < 0)
2174 break;
2175 err = __put_user(err, &compat_entry->msg_len);
2176 ++compat_entry;
2177 } else {
2178 err = ___sys_sendmsg(sock,
2179 (struct msghdr __user *)entry,
2180 &msg_sys, flags, &used_address);
2181 if (err < 0)
2182 break;
2183 err = put_user(err, &entry->msg_len);
2184 ++entry;
2185 }
2186
2187 if (err)
2188 break;
2189 ++datagrams;
2190 }
2191
2192 fput_light(sock->file, fput_needed);
2193
2194 /* We only return an error if no datagrams were able to be sent */
2195 if (datagrams != 0)
2196 return datagrams;
2197
2198 return err;
2199 }
2200
2201 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2202 unsigned int, vlen, unsigned int, flags)
2203 {
2204 if (flags & MSG_CMSG_COMPAT)
2205 return -EINVAL;
2206 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2207 }
2208
2209 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2210 struct msghdr *msg_sys, unsigned int flags, int nosec)
2211 {
2212 struct compat_msghdr __user *msg_compat =
2213 (struct compat_msghdr __user *)msg;
2214 struct iovec iovstack[UIO_FASTIOV];
2215 struct iovec *iov = iovstack;
2216 unsigned long cmsg_ptr;
2217 int err, total_len, len;
2218
2219 /* kernel mode address */
2220 struct sockaddr_storage addr;
2221
2222 /* user mode address pointers */
2223 struct sockaddr __user *uaddr;
2224 int __user *uaddr_len;
2225
2226 if (MSG_CMSG_COMPAT & flags) {
2227 if (get_compat_msghdr(msg_sys, msg_compat))
2228 return -EFAULT;
2229 } else {
2230 err = copy_msghdr_from_user(msg_sys, msg);
2231 if (err)
2232 return err;
2233 }
2234
2235 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2236 err = -EMSGSIZE;
2237 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2238 goto out;
2239 err = -ENOMEM;
2240 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2241 GFP_KERNEL);
2242 if (!iov)
2243 goto out;
2244 }
2245
2246 /* Save the user-mode address (verify_iovec will change the
2247 * kernel msghdr to use the kernel address space)
2248 */
2249 uaddr = (__force void __user *)msg_sys->msg_name;
2250 uaddr_len = COMPAT_NAMELEN(msg);
2251 if (MSG_CMSG_COMPAT & flags)
2252 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253 else
2254 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2255 if (err < 0)
2256 goto out_freeiov;
2257 total_len = err;
2258
2259 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2260 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261
2262 /* We assume all kernel code knows the size of sockaddr_storage */
2263 msg_sys->msg_namelen = 0;
2264
2265 if (sock->file->f_flags & O_NONBLOCK)
2266 flags |= MSG_DONTWAIT;
2267 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2268 total_len, flags);
2269 if (err < 0)
2270 goto out_freeiov;
2271 len = err;
2272
2273 if (uaddr != NULL) {
2274 err = move_addr_to_user(&addr,
2275 msg_sys->msg_namelen, uaddr,
2276 uaddr_len);
2277 if (err < 0)
2278 goto out_freeiov;
2279 }
2280 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2281 COMPAT_FLAGS(msg));
2282 if (err)
2283 goto out_freeiov;
2284 if (MSG_CMSG_COMPAT & flags)
2285 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2286 &msg_compat->msg_controllen);
2287 else
2288 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289 &msg->msg_controllen);
2290 if (err)
2291 goto out_freeiov;
2292 err = len;
2293
2294 out_freeiov:
2295 if (iov != iovstack)
2296 kfree(iov);
2297 out:
2298 return err;
2299 }
2300
2301 /*
2302 * BSD recvmsg interface
2303 */
2304
2305 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2306 {
2307 int fput_needed, err;
2308 struct msghdr msg_sys;
2309 struct socket *sock;
2310
2311 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2312 if (!sock)
2313 goto out;
2314
2315 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2316
2317 fput_light(sock->file, fput_needed);
2318 out:
2319 return err;
2320 }
2321
2322 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2323 unsigned int, flags)
2324 {
2325 if (flags & MSG_CMSG_COMPAT)
2326 return -EINVAL;
2327 return __sys_recvmsg(fd, msg, flags);
2328 }
2329
2330 /*
2331 * Linux recvmmsg interface
2332 */
2333
2334 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335 unsigned int flags, struct timespec *timeout)
2336 {
2337 int fput_needed, err, datagrams;
2338 struct socket *sock;
2339 struct mmsghdr __user *entry;
2340 struct compat_mmsghdr __user *compat_entry;
2341 struct msghdr msg_sys;
2342 struct timespec end_time;
2343
2344 if (timeout &&
2345 poll_select_set_timeout(&end_time, timeout->tv_sec,
2346 timeout->tv_nsec))
2347 return -EINVAL;
2348
2349 datagrams = 0;
2350
2351 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352 if (!sock)
2353 return err;
2354
2355 err = sock_error(sock->sk);
2356 if (err)
2357 goto out_put;
2358
2359 entry = mmsg;
2360 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2361
2362 while (datagrams < vlen) {
2363 /*
2364 * No need to ask LSM for more than the first datagram.
2365 */
2366 if (MSG_CMSG_COMPAT & flags) {
2367 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2368 &msg_sys, flags & ~MSG_WAITFORONE,
2369 datagrams);
2370 if (err < 0)
2371 break;
2372 err = __put_user(err, &compat_entry->msg_len);
2373 ++compat_entry;
2374 } else {
2375 err = ___sys_recvmsg(sock,
2376 (struct msghdr __user *)entry,
2377 &msg_sys, flags & ~MSG_WAITFORONE,
2378 datagrams);
2379 if (err < 0)
2380 break;
2381 err = put_user(err, &entry->msg_len);
2382 ++entry;
2383 }
2384
2385 if (err)
2386 break;
2387 ++datagrams;
2388
2389 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2390 if (flags & MSG_WAITFORONE)
2391 flags |= MSG_DONTWAIT;
2392
2393 if (timeout) {
2394 ktime_get_ts(timeout);
2395 *timeout = timespec_sub(end_time, *timeout);
2396 if (timeout->tv_sec < 0) {
2397 timeout->tv_sec = timeout->tv_nsec = 0;
2398 break;
2399 }
2400
2401 /* Timeout, return less than vlen datagrams */
2402 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2403 break;
2404 }
2405
2406 /* Out of band data, return right away */
2407 if (msg_sys.msg_flags & MSG_OOB)
2408 break;
2409 }
2410
2411 out_put:
2412 fput_light(sock->file, fput_needed);
2413
2414 if (err == 0)
2415 return datagrams;
2416
2417 if (datagrams != 0) {
2418 /*
2419 * We may return less entries than requested (vlen) if the
2420 * sock is non block and there aren't enough datagrams...
2421 */
2422 if (err != -EAGAIN) {
2423 /*
2424 * ... or if recvmsg returns an error after we
2425 * received some datagrams, where we record the
2426 * error to return on the next call or if the
2427 * app asks about it using getsockopt(SO_ERROR).
2428 */
2429 sock->sk->sk_err = -err;
2430 }
2431
2432 return datagrams;
2433 }
2434
2435 return err;
2436 }
2437
2438 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2439 unsigned int, vlen, unsigned int, flags,
2440 struct timespec __user *, timeout)
2441 {
2442 int datagrams;
2443 struct timespec timeout_sys;
2444
2445 if (flags & MSG_CMSG_COMPAT)
2446 return -EINVAL;
2447
2448 if (!timeout)
2449 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2450
2451 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452 return -EFAULT;
2453
2454 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2455
2456 if (datagrams > 0 &&
2457 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2458 datagrams = -EFAULT;
2459
2460 return datagrams;
2461 }
2462
2463 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2464 /* Argument list sizes for sys_socketcall */
2465 #define AL(x) ((x) * sizeof(unsigned long))
2466 static const unsigned char nargs[21] = {
2467 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2468 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2469 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2470 AL(4), AL(5), AL(4)
2471 };
2472
2473 #undef AL
2474
2475 /*
2476 * System call vectors.
2477 *
2478 * Argument checking cleaned up. Saved 20% in size.
2479 * This function doesn't need to set the kernel lock because
2480 * it is set by the callees.
2481 */
2482
2483 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2484 {
2485 unsigned long a[AUDITSC_ARGS];
2486 unsigned long a0, a1;
2487 int err;
2488 unsigned int len;
2489
2490 if (call < 1 || call > SYS_SENDMMSG)
2491 return -EINVAL;
2492
2493 len = nargs[call];
2494 if (len > sizeof(a))
2495 return -EINVAL;
2496
2497 /* copy_from_user should be SMP safe. */
2498 if (copy_from_user(a, args, len))
2499 return -EFAULT;
2500
2501 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2502 if (err)
2503 return err;
2504
2505 a0 = a[0];
2506 a1 = a[1];
2507
2508 switch (call) {
2509 case SYS_SOCKET:
2510 err = sys_socket(a0, a1, a[2]);
2511 break;
2512 case SYS_BIND:
2513 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514 break;
2515 case SYS_CONNECT:
2516 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517 break;
2518 case SYS_LISTEN:
2519 err = sys_listen(a0, a1);
2520 break;
2521 case SYS_ACCEPT:
2522 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523 (int __user *)a[2], 0);
2524 break;
2525 case SYS_GETSOCKNAME:
2526 err =
2527 sys_getsockname(a0, (struct sockaddr __user *)a1,
2528 (int __user *)a[2]);
2529 break;
2530 case SYS_GETPEERNAME:
2531 err =
2532 sys_getpeername(a0, (struct sockaddr __user *)a1,
2533 (int __user *)a[2]);
2534 break;
2535 case SYS_SOCKETPAIR:
2536 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537 break;
2538 case SYS_SEND:
2539 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2540 break;
2541 case SYS_SENDTO:
2542 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2543 (struct sockaddr __user *)a[4], a[5]);
2544 break;
2545 case SYS_RECV:
2546 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2547 break;
2548 case SYS_RECVFROM:
2549 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2550 (struct sockaddr __user *)a[4],
2551 (int __user *)a[5]);
2552 break;
2553 case SYS_SHUTDOWN:
2554 err = sys_shutdown(a0, a1);
2555 break;
2556 case SYS_SETSOCKOPT:
2557 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2558 break;
2559 case SYS_GETSOCKOPT:
2560 err =
2561 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2562 (int __user *)a[4]);
2563 break;
2564 case SYS_SENDMSG:
2565 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2566 break;
2567 case SYS_SENDMMSG:
2568 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2569 break;
2570 case SYS_RECVMSG:
2571 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2572 break;
2573 case SYS_RECVMMSG:
2574 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2575 (struct timespec __user *)a[4]);
2576 break;
2577 case SYS_ACCEPT4:
2578 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2579 (int __user *)a[2], a[3]);
2580 break;
2581 default:
2582 err = -EINVAL;
2583 break;
2584 }
2585 return err;
2586 }
2587
2588 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2589
2590 /**
2591 * sock_register - add a socket protocol handler
2592 * @ops: description of protocol
2593 *
2594 * This function is called by a protocol handler that wants to
2595 * advertise its address family, and have it linked into the
2596 * socket interface. The value ops->family coresponds to the
2597 * socket system call protocol family.
2598 */
2599 int sock_register(const struct net_proto_family *ops)
2600 {
2601 int err;
2602
2603 if (ops->family >= NPROTO) {
2604 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2605 return -ENOBUFS;
2606 }
2607
2608 spin_lock(&net_family_lock);
2609 if (rcu_dereference_protected(net_families[ops->family],
2610 lockdep_is_held(&net_family_lock)))
2611 err = -EEXIST;
2612 else {
2613 rcu_assign_pointer(net_families[ops->family], ops);
2614 err = 0;
2615 }
2616 spin_unlock(&net_family_lock);
2617
2618 pr_info("NET: Registered protocol family %d\n", ops->family);
2619 return err;
2620 }
2621 EXPORT_SYMBOL(sock_register);
2622
2623 /**
2624 * sock_unregister - remove a protocol handler
2625 * @family: protocol family to remove
2626 *
2627 * This function is called by a protocol handler that wants to
2628 * remove its address family, and have it unlinked from the
2629 * new socket creation.
2630 *
2631 * If protocol handler is a module, then it can use module reference
2632 * counts to protect against new references. If protocol handler is not
2633 * a module then it needs to provide its own protection in
2634 * the ops->create routine.
2635 */
2636 void sock_unregister(int family)
2637 {
2638 BUG_ON(family < 0 || family >= NPROTO);
2639
2640 spin_lock(&net_family_lock);
2641 RCU_INIT_POINTER(net_families[family], NULL);
2642 spin_unlock(&net_family_lock);
2643
2644 synchronize_rcu();
2645
2646 pr_info("NET: Unregistered protocol family %d\n", family);
2647 }
2648 EXPORT_SYMBOL(sock_unregister);
2649
2650 static int __init sock_init(void)
2651 {
2652 int err;
2653 /*
2654 * Initialize the network sysctl infrastructure.
2655 */
2656 err = net_sysctl_init();
2657 if (err)
2658 goto out;
2659
2660 /*
2661 * Initialize skbuff SLAB cache
2662 */
2663 skb_init();
2664
2665 /*
2666 * Initialize the protocols module.
2667 */
2668
2669 init_inodecache();
2670
2671 err = register_filesystem(&sock_fs_type);
2672 if (err)
2673 goto out_fs;
2674 sock_mnt = kern_mount(&sock_fs_type);
2675 if (IS_ERR(sock_mnt)) {
2676 err = PTR_ERR(sock_mnt);
2677 goto out_mount;
2678 }
2679
2680 /* The real protocol initialization is performed in later initcalls.
2681 */
2682
2683 #ifdef CONFIG_NETFILTER
2684 err = netfilter_init();
2685 if (err)
2686 goto out;
2687 #endif
2688
2689 ptp_classifier_init();
2690
2691 out:
2692 return err;
2693
2694 out_mount:
2695 unregister_filesystem(&sock_fs_type);
2696 out_fs:
2697 goto out;
2698 }
2699
2700 core_initcall(sock_init); /* early initcall */
2701
2702 #ifdef CONFIG_PROC_FS
2703 void socket_seq_show(struct seq_file *seq)
2704 {
2705 int cpu;
2706 int counter = 0;
2707
2708 for_each_possible_cpu(cpu)
2709 counter += per_cpu(sockets_in_use, cpu);
2710
2711 /* It can be negative, by the way. 8) */
2712 if (counter < 0)
2713 counter = 0;
2714
2715 seq_printf(seq, "sockets: used %d\n", counter);
2716 }
2717 #endif /* CONFIG_PROC_FS */
2718
2719 #ifdef CONFIG_COMPAT
2720 static int do_siocgstamp(struct net *net, struct socket *sock,
2721 unsigned int cmd, void __user *up)
2722 {
2723 mm_segment_t old_fs = get_fs();
2724 struct timeval ktv;
2725 int err;
2726
2727 set_fs(KERNEL_DS);
2728 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729 set_fs(old_fs);
2730 if (!err)
2731 err = compat_put_timeval(&ktv, up);
2732
2733 return err;
2734 }
2735
2736 static int do_siocgstampns(struct net *net, struct socket *sock,
2737 unsigned int cmd, void __user *up)
2738 {
2739 mm_segment_t old_fs = get_fs();
2740 struct timespec kts;
2741 int err;
2742
2743 set_fs(KERNEL_DS);
2744 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745 set_fs(old_fs);
2746 if (!err)
2747 err = compat_put_timespec(&kts, up);
2748
2749 return err;
2750 }
2751
2752 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2753 {
2754 struct ifreq __user *uifr;
2755 int err;
2756
2757 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2758 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759 return -EFAULT;
2760
2761 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2762 if (err)
2763 return err;
2764
2765 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2766 return -EFAULT;
2767
2768 return 0;
2769 }
2770
2771 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2772 {
2773 struct compat_ifconf ifc32;
2774 struct ifconf ifc;
2775 struct ifconf __user *uifc;
2776 struct compat_ifreq __user *ifr32;
2777 struct ifreq __user *ifr;
2778 unsigned int i, j;
2779 int err;
2780
2781 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782 return -EFAULT;
2783
2784 memset(&ifc, 0, sizeof(ifc));
2785 if (ifc32.ifcbuf == 0) {
2786 ifc32.ifc_len = 0;
2787 ifc.ifc_len = 0;
2788 ifc.ifc_req = NULL;
2789 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2790 } else {
2791 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2792 sizeof(struct ifreq);
2793 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2794 ifc.ifc_len = len;
2795 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2796 ifr32 = compat_ptr(ifc32.ifcbuf);
2797 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2798 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2799 return -EFAULT;
2800 ifr++;
2801 ifr32++;
2802 }
2803 }
2804 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805 return -EFAULT;
2806
2807 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2808 if (err)
2809 return err;
2810
2811 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2812 return -EFAULT;
2813
2814 ifr = ifc.ifc_req;
2815 ifr32 = compat_ptr(ifc32.ifcbuf);
2816 for (i = 0, j = 0;
2817 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2818 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2819 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2820 return -EFAULT;
2821 ifr32++;
2822 ifr++;
2823 }
2824
2825 if (ifc32.ifcbuf == 0) {
2826 /* Translate from 64-bit structure multiple to
2827 * a 32-bit one.
2828 */
2829 i = ifc.ifc_len;
2830 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2831 ifc32.ifc_len = i;
2832 } else {
2833 ifc32.ifc_len = i;
2834 }
2835 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2836 return -EFAULT;
2837
2838 return 0;
2839 }
2840
2841 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2842 {
2843 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2844 bool convert_in = false, convert_out = false;
2845 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2846 struct ethtool_rxnfc __user *rxnfc;
2847 struct ifreq __user *ifr;
2848 u32 rule_cnt = 0, actual_rule_cnt;
2849 u32 ethcmd;
2850 u32 data;
2851 int ret;
2852
2853 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854 return -EFAULT;
2855
2856 compat_rxnfc = compat_ptr(data);
2857
2858 if (get_user(ethcmd, &compat_rxnfc->cmd))
2859 return -EFAULT;
2860
2861 /* Most ethtool structures are defined without padding.
2862 * Unfortunately struct ethtool_rxnfc is an exception.
2863 */
2864 switch (ethcmd) {
2865 default:
2866 break;
2867 case ETHTOOL_GRXCLSRLALL:
2868 /* Buffer size is variable */
2869 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2870 return -EFAULT;
2871 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2872 return -ENOMEM;
2873 buf_size += rule_cnt * sizeof(u32);
2874 /* fall through */
2875 case ETHTOOL_GRXRINGS:
2876 case ETHTOOL_GRXCLSRLCNT:
2877 case ETHTOOL_GRXCLSRULE:
2878 case ETHTOOL_SRXCLSRLINS:
2879 convert_out = true;
2880 /* fall through */
2881 case ETHTOOL_SRXCLSRLDEL:
2882 buf_size += sizeof(struct ethtool_rxnfc);
2883 convert_in = true;
2884 break;
2885 }
2886
2887 ifr = compat_alloc_user_space(buf_size);
2888 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2889
2890 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891 return -EFAULT;
2892
2893 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2894 &ifr->ifr_ifru.ifru_data))
2895 return -EFAULT;
2896
2897 if (convert_in) {
2898 /* We expect there to be holes between fs.m_ext and
2899 * fs.ring_cookie and at the end of fs, but nowhere else.
2900 */
2901 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2902 sizeof(compat_rxnfc->fs.m_ext) !=
2903 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2904 sizeof(rxnfc->fs.m_ext));
2905 BUILD_BUG_ON(
2906 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2907 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2908 offsetof(struct ethtool_rxnfc, fs.location) -
2909 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2910
2911 if (copy_in_user(rxnfc, compat_rxnfc,
2912 (void __user *)(&rxnfc->fs.m_ext + 1) -
2913 (void __user *)rxnfc) ||
2914 copy_in_user(&rxnfc->fs.ring_cookie,
2915 &compat_rxnfc->fs.ring_cookie,
2916 (void __user *)(&rxnfc->fs.location + 1) -
2917 (void __user *)&rxnfc->fs.ring_cookie) ||
2918 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2919 sizeof(rxnfc->rule_cnt)))
2920 return -EFAULT;
2921 }
2922
2923 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2924 if (ret)
2925 return ret;
2926
2927 if (convert_out) {
2928 if (copy_in_user(compat_rxnfc, rxnfc,
2929 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2930 (const void __user *)rxnfc) ||
2931 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2932 &rxnfc->fs.ring_cookie,
2933 (const void __user *)(&rxnfc->fs.location + 1) -
2934 (const void __user *)&rxnfc->fs.ring_cookie) ||
2935 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2936 sizeof(rxnfc->rule_cnt)))
2937 return -EFAULT;
2938
2939 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2940 /* As an optimisation, we only copy the actual
2941 * number of rules that the underlying
2942 * function returned. Since Mallory might
2943 * change the rule count in user memory, we
2944 * check that it is less than the rule count
2945 * originally given (as the user buffer size),
2946 * which has been range-checked.
2947 */
2948 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2949 return -EFAULT;
2950 if (actual_rule_cnt < rule_cnt)
2951 rule_cnt = actual_rule_cnt;
2952 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2953 &rxnfc->rule_locs[0],
2954 rule_cnt * sizeof(u32)))
2955 return -EFAULT;
2956 }
2957 }
2958
2959 return 0;
2960 }
2961
2962 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963 {
2964 void __user *uptr;
2965 compat_uptr_t uptr32;
2966 struct ifreq __user *uifr;
2967
2968 uifr = compat_alloc_user_space(sizeof(*uifr));
2969 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970 return -EFAULT;
2971
2972 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973 return -EFAULT;
2974
2975 uptr = compat_ptr(uptr32);
2976
2977 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978 return -EFAULT;
2979
2980 return dev_ioctl(net, SIOCWANDEV, uifr);
2981 }
2982
2983 static int bond_ioctl(struct net *net, unsigned int cmd,
2984 struct compat_ifreq __user *ifr32)
2985 {
2986 struct ifreq kifr;
2987 mm_segment_t old_fs;
2988 int err;
2989
2990 switch (cmd) {
2991 case SIOCBONDENSLAVE:
2992 case SIOCBONDRELEASE:
2993 case SIOCBONDSETHWADDR:
2994 case SIOCBONDCHANGEACTIVE:
2995 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2996 return -EFAULT;
2997
2998 old_fs = get_fs();
2999 set_fs(KERNEL_DS);
3000 err = dev_ioctl(net, cmd,
3001 (struct ifreq __user __force *) &kifr);
3002 set_fs(old_fs);
3003
3004 return err;
3005 default:
3006 return -ENOIOCTLCMD;
3007 }
3008 }
3009
3010 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3011 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3012 struct compat_ifreq __user *u_ifreq32)
3013 {
3014 struct ifreq __user *u_ifreq64;
3015 char tmp_buf[IFNAMSIZ];
3016 void __user *data64;
3017 u32 data32;
3018
3019 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020 IFNAMSIZ))
3021 return -EFAULT;
3022 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023 return -EFAULT;
3024 data64 = compat_ptr(data32);
3025
3026 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3027
3028 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029 IFNAMSIZ))
3030 return -EFAULT;
3031 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032 return -EFAULT;
3033
3034 return dev_ioctl(net, cmd, u_ifreq64);
3035 }
3036
3037 static int dev_ifsioc(struct net *net, struct socket *sock,
3038 unsigned int cmd, struct compat_ifreq __user *uifr32)
3039 {
3040 struct ifreq __user *uifr;
3041 int err;
3042
3043 uifr = compat_alloc_user_space(sizeof(*uifr));
3044 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045 return -EFAULT;
3046
3047 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3048
3049 if (!err) {
3050 switch (cmd) {
3051 case SIOCGIFFLAGS:
3052 case SIOCGIFMETRIC:
3053 case SIOCGIFMTU:
3054 case SIOCGIFMEM:
3055 case SIOCGIFHWADDR:
3056 case SIOCGIFINDEX:
3057 case SIOCGIFADDR:
3058 case SIOCGIFBRDADDR:
3059 case SIOCGIFDSTADDR:
3060 case SIOCGIFNETMASK:
3061 case SIOCGIFPFLAGS:
3062 case SIOCGIFTXQLEN:
3063 case SIOCGMIIPHY:
3064 case SIOCGMIIREG:
3065 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066 err = -EFAULT;
3067 break;
3068 }
3069 }
3070 return err;
3071 }
3072
3073 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074 struct compat_ifreq __user *uifr32)
3075 {
3076 struct ifreq ifr;
3077 struct compat_ifmap __user *uifmap32;
3078 mm_segment_t old_fs;
3079 int err;
3080
3081 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089 if (err)
3090 return -EFAULT;
3091
3092 old_fs = get_fs();
3093 set_fs(KERNEL_DS);
3094 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3095 set_fs(old_fs);
3096
3097 if (cmd == SIOCGIFMAP && !err) {
3098 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105 if (err)
3106 err = -EFAULT;
3107 }
3108 return err;
3109 }
3110
3111 struct rtentry32 {
3112 u32 rt_pad1;
3113 struct sockaddr rt_dst; /* target address */
3114 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3115 struct sockaddr rt_genmask; /* target network mask (IP) */
3116 unsigned short rt_flags;
3117 short rt_pad2;
3118 u32 rt_pad3;
3119 unsigned char rt_tos;
3120 unsigned char rt_class;
3121 short rt_pad4;
3122 short rt_metric; /* +1 for binary compatibility! */
3123 /* char * */ u32 rt_dev; /* forcing the device at add */
3124 u32 rt_mtu; /* per route MTU/Window */
3125 u32 rt_window; /* Window clamping */
3126 unsigned short rt_irtt; /* Initial RTT */
3127 };
3128
3129 struct in6_rtmsg32 {
3130 struct in6_addr rtmsg_dst;
3131 struct in6_addr rtmsg_src;
3132 struct in6_addr rtmsg_gateway;
3133 u32 rtmsg_type;
3134 u16 rtmsg_dst_len;
3135 u16 rtmsg_src_len;
3136 u32 rtmsg_metric;
3137 u32 rtmsg_info;
3138 u32 rtmsg_flags;
3139 s32 rtmsg_ifindex;
3140 };
3141
3142 static int routing_ioctl(struct net *net, struct socket *sock,
3143 unsigned int cmd, void __user *argp)
3144 {
3145 int ret;
3146 void *r = NULL;
3147 struct in6_rtmsg r6;
3148 struct rtentry r4;
3149 char devname[16];
3150 u32 rtdev;
3151 mm_segment_t old_fs = get_fs();
3152
3153 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3154 struct in6_rtmsg32 __user *ur6 = argp;
3155 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3156 3 * sizeof(struct in6_addr));
3157 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3158 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3159 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3160 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3161 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3162 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3163 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3164
3165 r = (void *) &r6;
3166 } else { /* ipv4 */
3167 struct rtentry32 __user *ur4 = argp;
3168 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3169 3 * sizeof(struct sockaddr));
3170 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3171 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3172 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3173 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3174 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3175 ret |= get_user(rtdev, &(ur4->rt_dev));
3176 if (rtdev) {
3177 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3178 r4.rt_dev = (char __user __force *)devname;
3179 devname[15] = 0;
3180 } else
3181 r4.rt_dev = NULL;
3182
3183 r = (void *) &r4;
3184 }
3185
3186 if (ret) {
3187 ret = -EFAULT;
3188 goto out;
3189 }
3190
3191 set_fs(KERNEL_DS);
3192 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3193 set_fs(old_fs);
3194
3195 out:
3196 return ret;
3197 }
3198
3199 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3200 * for some operations; this forces use of the newer bridge-utils that
3201 * use compatible ioctls
3202 */
3203 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3204 {
3205 compat_ulong_t tmp;
3206
3207 if (get_user(tmp, argp))
3208 return -EFAULT;
3209 if (tmp == BRCTL_GET_VERSION)
3210 return BRCTL_VERSION + 1;
3211 return -EINVAL;
3212 }
3213
3214 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3215 unsigned int cmd, unsigned long arg)
3216 {
3217 void __user *argp = compat_ptr(arg);
3218 struct sock *sk = sock->sk;
3219 struct net *net = sock_net(sk);
3220
3221 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3222 return compat_ifr_data_ioctl(net, cmd, argp);
3223
3224 switch (cmd) {
3225 case SIOCSIFBR:
3226 case SIOCGIFBR:
3227 return old_bridge_ioctl(argp);
3228 case SIOCGIFNAME:
3229 return dev_ifname32(net, argp);
3230 case SIOCGIFCONF:
3231 return dev_ifconf(net, argp);
3232 case SIOCETHTOOL:
3233 return ethtool_ioctl(net, argp);
3234 case SIOCWANDEV:
3235 return compat_siocwandev(net, argp);
3236 case SIOCGIFMAP:
3237 case SIOCSIFMAP:
3238 return compat_sioc_ifmap(net, cmd, argp);
3239 case SIOCBONDENSLAVE:
3240 case SIOCBONDRELEASE:
3241 case SIOCBONDSETHWADDR:
3242 case SIOCBONDCHANGEACTIVE:
3243 return bond_ioctl(net, cmd, argp);
3244 case SIOCADDRT:
3245 case SIOCDELRT:
3246 return routing_ioctl(net, sock, cmd, argp);
3247 case SIOCGSTAMP:
3248 return do_siocgstamp(net, sock, cmd, argp);
3249 case SIOCGSTAMPNS:
3250 return do_siocgstampns(net, sock, cmd, argp);
3251 case SIOCBONDSLAVEINFOQUERY:
3252 case SIOCBONDINFOQUERY:
3253 case SIOCSHWTSTAMP:
3254 case SIOCGHWTSTAMP:
3255 return compat_ifr_data_ioctl(net, cmd, argp);
3256
3257 case FIOSETOWN:
3258 case SIOCSPGRP:
3259 case FIOGETOWN:
3260 case SIOCGPGRP:
3261 case SIOCBRADDBR:
3262 case SIOCBRDELBR:
3263 case SIOCGIFVLAN:
3264 case SIOCSIFVLAN:
3265 case SIOCADDDLCI:
3266 case SIOCDELDLCI:
3267 return sock_ioctl(file, cmd, arg);
3268
3269 case SIOCGIFFLAGS:
3270 case SIOCSIFFLAGS:
3271 case SIOCGIFMETRIC:
3272 case SIOCSIFMETRIC:
3273 case SIOCGIFMTU:
3274 case SIOCSIFMTU:
3275 case SIOCGIFMEM:
3276 case SIOCSIFMEM:
3277 case SIOCGIFHWADDR:
3278 case SIOCSIFHWADDR:
3279 case SIOCADDMULTI:
3280 case SIOCDELMULTI:
3281 case SIOCGIFINDEX:
3282 case SIOCGIFADDR:
3283 case SIOCSIFADDR:
3284 case SIOCSIFHWBROADCAST:
3285 case SIOCDIFADDR:
3286 case SIOCGIFBRDADDR:
3287 case SIOCSIFBRDADDR:
3288 case SIOCGIFDSTADDR:
3289 case SIOCSIFDSTADDR:
3290 case SIOCGIFNETMASK:
3291 case SIOCSIFNETMASK:
3292 case SIOCSIFPFLAGS:
3293 case SIOCGIFPFLAGS:
3294 case SIOCGIFTXQLEN:
3295 case SIOCSIFTXQLEN:
3296 case SIOCBRADDIF:
3297 case SIOCBRDELIF:
3298 case SIOCSIFNAME:
3299 case SIOCGMIIPHY:
3300 case SIOCGMIIREG:
3301 case SIOCSMIIREG:
3302 return dev_ifsioc(net, sock, cmd, argp);
3303
3304 case SIOCSARP:
3305 case SIOCGARP:
3306 case SIOCDARP:
3307 case SIOCATMARK:
3308 return sock_do_ioctl(net, sock, cmd, arg);
3309 }
3310
3311 return -ENOIOCTLCMD;
3312 }
3313
3314 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315 unsigned long arg)
3316 {
3317 struct socket *sock = file->private_data;
3318 int ret = -ENOIOCTLCMD;
3319 struct sock *sk;
3320 struct net *net;
3321
3322 sk = sock->sk;
3323 net = sock_net(sk);
3324
3325 if (sock->ops->compat_ioctl)
3326 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327
3328 if (ret == -ENOIOCTLCMD &&
3329 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330 ret = compat_wext_handle_ioctl(net, cmd, arg);
3331
3332 if (ret == -ENOIOCTLCMD)
3333 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334
3335 return ret;
3336 }
3337 #endif
3338
3339 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340 {
3341 return sock->ops->bind(sock, addr, addrlen);
3342 }
3343 EXPORT_SYMBOL(kernel_bind);
3344
3345 int kernel_listen(struct socket *sock, int backlog)
3346 {
3347 return sock->ops->listen(sock, backlog);
3348 }
3349 EXPORT_SYMBOL(kernel_listen);
3350
3351 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352 {
3353 struct sock *sk = sock->sk;
3354 int err;
3355
3356 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357 newsock);
3358 if (err < 0)
3359 goto done;
3360
3361 err = sock->ops->accept(sock, *newsock, flags);
3362 if (err < 0) {
3363 sock_release(*newsock);
3364 *newsock = NULL;
3365 goto done;
3366 }
3367
3368 (*newsock)->ops = sock->ops;
3369 __module_get((*newsock)->ops->owner);
3370
3371 done:
3372 return err;
3373 }
3374 EXPORT_SYMBOL(kernel_accept);
3375
3376 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377 int flags)
3378 {
3379 return sock->ops->connect(sock, addr, addrlen, flags);
3380 }
3381 EXPORT_SYMBOL(kernel_connect);
3382
3383 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384 int *addrlen)
3385 {
3386 return sock->ops->getname(sock, addr, addrlen, 0);
3387 }
3388 EXPORT_SYMBOL(kernel_getsockname);
3389
3390 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391 int *addrlen)
3392 {
3393 return sock->ops->getname(sock, addr, addrlen, 1);
3394 }
3395 EXPORT_SYMBOL(kernel_getpeername);
3396
3397 int kernel_getsockopt(struct socket *sock, int level, int optname,
3398 char *optval, int *optlen)
3399 {
3400 mm_segment_t oldfs = get_fs();
3401 char __user *uoptval;
3402 int __user *uoptlen;
3403 int err;
3404
3405 uoptval = (char __user __force *) optval;
3406 uoptlen = (int __user __force *) optlen;
3407
3408 set_fs(KERNEL_DS);
3409 if (level == SOL_SOCKET)
3410 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411 else
3412 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413 uoptlen);
3414 set_fs(oldfs);
3415 return err;
3416 }
3417 EXPORT_SYMBOL(kernel_getsockopt);
3418
3419 int kernel_setsockopt(struct socket *sock, int level, int optname,
3420 char *optval, unsigned int optlen)
3421 {
3422 mm_segment_t oldfs = get_fs();
3423 char __user *uoptval;
3424 int err;
3425
3426 uoptval = (char __user __force *) optval;
3427
3428 set_fs(KERNEL_DS);
3429 if (level == SOL_SOCKET)
3430 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431 else
3432 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433 optlen);
3434 set_fs(oldfs);
3435 return err;
3436 }
3437 EXPORT_SYMBOL(kernel_setsockopt);
3438
3439 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440 size_t size, int flags)
3441 {
3442 if (sock->ops->sendpage)
3443 return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445 return sock_no_sendpage(sock, page, offset, size, flags);
3446 }
3447 EXPORT_SYMBOL(kernel_sendpage);
3448
3449 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450 {
3451 mm_segment_t oldfs = get_fs();
3452 int err;
3453
3454 set_fs(KERNEL_DS);
3455 err = sock->ops->ioctl(sock, cmd, arg);
3456 set_fs(oldfs);
3457
3458 return err;
3459 }
3460 EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463 {
3464 return sock->ops->shutdown(sock, how);
3465 }
3466 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.103945 seconds and 5 git commands to generate.