xprtrdma: Allocate MRs on demand
[deliverable/linux.git] / net / sunrpc / xprtrdma / transport.c
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * transport.c
42 *
43 * This file contains the top-level implementation of an RPC RDMA
44 * transport.
45 *
46 * Naming convention: functions beginning with xprt_ are part of the
47 * transport switch. All others are RPC RDMA internal.
48 */
49
50 #include <linux/module.h>
51 #include <linux/slab.h>
52 #include <linux/seq_file.h>
53 #include <linux/sunrpc/addr.h>
54
55 #include "xprt_rdma.h"
56
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60
61 /*
62 * tunables
63 */
64
65 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
66 unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
67 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
68 static unsigned int xprt_rdma_inline_write_padding;
69 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
70 int xprt_rdma_pad_optimize = 1;
71
72 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
73
74 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
75 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
76 static unsigned int min_inline_size = RPCRDMA_MIN_INLINE;
77 static unsigned int max_inline_size = RPCRDMA_MAX_INLINE;
78 static unsigned int zero;
79 static unsigned int max_padding = PAGE_SIZE;
80 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
81 static unsigned int max_memreg = RPCRDMA_LAST - 1;
82
83 static struct ctl_table_header *sunrpc_table_header;
84
85 static struct ctl_table xr_tunables_table[] = {
86 {
87 .procname = "rdma_slot_table_entries",
88 .data = &xprt_rdma_slot_table_entries,
89 .maxlen = sizeof(unsigned int),
90 .mode = 0644,
91 .proc_handler = proc_dointvec_minmax,
92 .extra1 = &min_slot_table_size,
93 .extra2 = &max_slot_table_size
94 },
95 {
96 .procname = "rdma_max_inline_read",
97 .data = &xprt_rdma_max_inline_read,
98 .maxlen = sizeof(unsigned int),
99 .mode = 0644,
100 .proc_handler = proc_dointvec,
101 .extra1 = &min_inline_size,
102 .extra2 = &max_inline_size,
103 },
104 {
105 .procname = "rdma_max_inline_write",
106 .data = &xprt_rdma_max_inline_write,
107 .maxlen = sizeof(unsigned int),
108 .mode = 0644,
109 .proc_handler = proc_dointvec,
110 .extra1 = &min_inline_size,
111 .extra2 = &max_inline_size,
112 },
113 {
114 .procname = "rdma_inline_write_padding",
115 .data = &xprt_rdma_inline_write_padding,
116 .maxlen = sizeof(unsigned int),
117 .mode = 0644,
118 .proc_handler = proc_dointvec_minmax,
119 .extra1 = &zero,
120 .extra2 = &max_padding,
121 },
122 {
123 .procname = "rdma_memreg_strategy",
124 .data = &xprt_rdma_memreg_strategy,
125 .maxlen = sizeof(unsigned int),
126 .mode = 0644,
127 .proc_handler = proc_dointvec_minmax,
128 .extra1 = &min_memreg,
129 .extra2 = &max_memreg,
130 },
131 {
132 .procname = "rdma_pad_optimize",
133 .data = &xprt_rdma_pad_optimize,
134 .maxlen = sizeof(unsigned int),
135 .mode = 0644,
136 .proc_handler = proc_dointvec,
137 },
138 { },
139 };
140
141 static struct ctl_table sunrpc_table[] = {
142 {
143 .procname = "sunrpc",
144 .mode = 0555,
145 .child = xr_tunables_table
146 },
147 { },
148 };
149
150 #endif
151
152 static struct rpc_xprt_ops xprt_rdma_procs; /*forward reference */
153
154 static void
155 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
156 {
157 struct sockaddr_in *sin = (struct sockaddr_in *)sap;
158 char buf[20];
159
160 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
161 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
162
163 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
164 }
165
166 static void
167 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
168 {
169 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
170 char buf[40];
171
172 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
173 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
174
175 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
176 }
177
178 void
179 xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
180 {
181 char buf[128];
182
183 switch (sap->sa_family) {
184 case AF_INET:
185 xprt_rdma_format_addresses4(xprt, sap);
186 break;
187 case AF_INET6:
188 xprt_rdma_format_addresses6(xprt, sap);
189 break;
190 default:
191 pr_err("rpcrdma: Unrecognized address family\n");
192 return;
193 }
194
195 (void)rpc_ntop(sap, buf, sizeof(buf));
196 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
197
198 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
199 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
200
201 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
202 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
203
204 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
205 }
206
207 void
208 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
209 {
210 unsigned int i;
211
212 for (i = 0; i < RPC_DISPLAY_MAX; i++)
213 switch (i) {
214 case RPC_DISPLAY_PROTO:
215 case RPC_DISPLAY_NETID:
216 continue;
217 default:
218 kfree(xprt->address_strings[i]);
219 }
220 }
221
222 static void
223 xprt_rdma_connect_worker(struct work_struct *work)
224 {
225 struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
226 rx_connect_worker.work);
227 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
228 int rc = 0;
229
230 xprt_clear_connected(xprt);
231
232 dprintk("RPC: %s: %sconnect\n", __func__,
233 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
234 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
235 if (rc)
236 xprt_wake_pending_tasks(xprt, rc);
237
238 dprintk("RPC: %s: exit\n", __func__);
239 xprt_clear_connecting(xprt);
240 }
241
242 static void
243 xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
244 {
245 struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt,
246 rx_xprt);
247
248 pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt);
249 rdma_disconnect(r_xprt->rx_ia.ri_id);
250 }
251
252 /*
253 * xprt_rdma_destroy
254 *
255 * Destroy the xprt.
256 * Free all memory associated with the object, including its own.
257 * NOTE: none of the *destroy methods free memory for their top-level
258 * objects, even though they may have allocated it (they do free
259 * private memory). It's up to the caller to handle it. In this
260 * case (RDMA transport), all structure memory is inlined with the
261 * struct rpcrdma_xprt.
262 */
263 static void
264 xprt_rdma_destroy(struct rpc_xprt *xprt)
265 {
266 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
267
268 dprintk("RPC: %s: called\n", __func__);
269
270 cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
271
272 xprt_clear_connected(xprt);
273
274 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
275 rpcrdma_buffer_destroy(&r_xprt->rx_buf);
276 rpcrdma_ia_close(&r_xprt->rx_ia);
277
278 xprt_rdma_free_addresses(xprt);
279
280 xprt_free(xprt);
281
282 dprintk("RPC: %s: returning\n", __func__);
283
284 module_put(THIS_MODULE);
285 }
286
287 static const struct rpc_timeout xprt_rdma_default_timeout = {
288 .to_initval = 60 * HZ,
289 .to_maxval = 60 * HZ,
290 };
291
292 /**
293 * xprt_setup_rdma - Set up transport to use RDMA
294 *
295 * @args: rpc transport arguments
296 */
297 static struct rpc_xprt *
298 xprt_setup_rdma(struct xprt_create *args)
299 {
300 struct rpcrdma_create_data_internal cdata;
301 struct rpc_xprt *xprt;
302 struct rpcrdma_xprt *new_xprt;
303 struct rpcrdma_ep *new_ep;
304 struct sockaddr *sap;
305 int rc;
306
307 if (args->addrlen > sizeof(xprt->addr)) {
308 dprintk("RPC: %s: address too large\n", __func__);
309 return ERR_PTR(-EBADF);
310 }
311
312 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
313 xprt_rdma_slot_table_entries,
314 xprt_rdma_slot_table_entries);
315 if (xprt == NULL) {
316 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
317 __func__);
318 return ERR_PTR(-ENOMEM);
319 }
320
321 /* 60 second timeout, no retries */
322 xprt->timeout = &xprt_rdma_default_timeout;
323 xprt->bind_timeout = RPCRDMA_BIND_TO;
324 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
325 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
326
327 xprt->resvport = 0; /* privileged port not needed */
328 xprt->tsh_size = 0; /* RPC-RDMA handles framing */
329 xprt->ops = &xprt_rdma_procs;
330
331 /*
332 * Set up RDMA-specific connect data.
333 */
334
335 sap = (struct sockaddr *)&cdata.addr;
336 memcpy(sap, args->dstaddr, args->addrlen);
337
338 /* Ensure xprt->addr holds valid server TCP (not RDMA)
339 * address, for any side protocols which peek at it */
340 xprt->prot = IPPROTO_TCP;
341 xprt->addrlen = args->addrlen;
342 memcpy(&xprt->addr, sap, xprt->addrlen);
343
344 if (rpc_get_port(sap))
345 xprt_set_bound(xprt);
346
347 cdata.max_requests = xprt->max_reqs;
348
349 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
350 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
351
352 cdata.inline_wsize = xprt_rdma_max_inline_write;
353 if (cdata.inline_wsize > cdata.wsize)
354 cdata.inline_wsize = cdata.wsize;
355
356 cdata.inline_rsize = xprt_rdma_max_inline_read;
357 if (cdata.inline_rsize > cdata.rsize)
358 cdata.inline_rsize = cdata.rsize;
359
360 cdata.padding = xprt_rdma_inline_write_padding;
361
362 /*
363 * Create new transport instance, which includes initialized
364 * o ia
365 * o endpoint
366 * o buffers
367 */
368
369 new_xprt = rpcx_to_rdmax(xprt);
370
371 rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy);
372 if (rc)
373 goto out1;
374
375 /*
376 * initialize and create ep
377 */
378 new_xprt->rx_data = cdata;
379 new_ep = &new_xprt->rx_ep;
380 new_ep->rep_remote_addr = cdata.addr;
381
382 rc = rpcrdma_ep_create(&new_xprt->rx_ep,
383 &new_xprt->rx_ia, &new_xprt->rx_data);
384 if (rc)
385 goto out2;
386
387 /*
388 * Allocate pre-registered send and receive buffers for headers and
389 * any inline data. Also specify any padding which will be provided
390 * from a preregistered zero buffer.
391 */
392 rc = rpcrdma_buffer_create(new_xprt);
393 if (rc)
394 goto out3;
395
396 /*
397 * Register a callback for connection events. This is necessary because
398 * connection loss notification is async. We also catch connection loss
399 * when reaping receives.
400 */
401 INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
402 xprt_rdma_connect_worker);
403
404 xprt_rdma_format_addresses(xprt, sap);
405 xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
406 if (xprt->max_payload == 0)
407 goto out4;
408 xprt->max_payload <<= PAGE_SHIFT;
409 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n",
410 __func__, xprt->max_payload);
411
412 if (!try_module_get(THIS_MODULE))
413 goto out4;
414
415 dprintk("RPC: %s: %s:%s\n", __func__,
416 xprt->address_strings[RPC_DISPLAY_ADDR],
417 xprt->address_strings[RPC_DISPLAY_PORT]);
418 return xprt;
419
420 out4:
421 xprt_rdma_free_addresses(xprt);
422 rc = -EINVAL;
423 out3:
424 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
425 out2:
426 rpcrdma_ia_close(&new_xprt->rx_ia);
427 out1:
428 xprt_free(xprt);
429 return ERR_PTR(rc);
430 }
431
432 /*
433 * Close a connection, during shutdown or timeout/reconnect
434 */
435 static void
436 xprt_rdma_close(struct rpc_xprt *xprt)
437 {
438 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
439
440 dprintk("RPC: %s: closing\n", __func__);
441 if (r_xprt->rx_ep.rep_connected > 0)
442 xprt->reestablish_timeout = 0;
443 xprt_disconnect_done(xprt);
444 rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
445 }
446
447 static void
448 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
449 {
450 struct sockaddr_in *sap;
451
452 sap = (struct sockaddr_in *)&xprt->addr;
453 sap->sin_port = htons(port);
454 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
455 sap->sin_port = htons(port);
456 dprintk("RPC: %s: %u\n", __func__, port);
457 }
458
459 static void
460 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
461 {
462 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
463
464 if (r_xprt->rx_ep.rep_connected != 0) {
465 /* Reconnect */
466 schedule_delayed_work(&r_xprt->rx_connect_worker,
467 xprt->reestablish_timeout);
468 xprt->reestablish_timeout <<= 1;
469 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
470 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
471 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
472 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
473 } else {
474 schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
475 if (!RPC_IS_ASYNC(task))
476 flush_delayed_work(&r_xprt->rx_connect_worker);
477 }
478 }
479
480 /*
481 * The RDMA allocate/free functions need the task structure as a place
482 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
483 * sequence.
484 *
485 * The RPC layer allocates both send and receive buffers in the same call
486 * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer).
487 * We may register rq_rcv_buf when using reply chunks.
488 */
489 static void *
490 xprt_rdma_allocate(struct rpc_task *task, size_t size)
491 {
492 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
493 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
494 struct rpcrdma_regbuf *rb;
495 struct rpcrdma_req *req;
496 size_t min_size;
497 gfp_t flags;
498
499 req = rpcrdma_buffer_get(&r_xprt->rx_buf);
500 if (req == NULL)
501 return NULL;
502
503 flags = RPCRDMA_DEF_GFP;
504 if (RPC_IS_SWAPPER(task))
505 flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
506
507 if (req->rl_rdmabuf == NULL)
508 goto out_rdmabuf;
509 if (req->rl_sendbuf == NULL)
510 goto out_sendbuf;
511 if (size > req->rl_sendbuf->rg_size)
512 goto out_sendbuf;
513
514 out:
515 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
516 req->rl_connect_cookie = 0; /* our reserved value */
517 req->rl_task = task;
518 return req->rl_sendbuf->rg_base;
519
520 out_rdmabuf:
521 min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
522 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags);
523 if (IS_ERR(rb))
524 goto out_fail;
525 req->rl_rdmabuf = rb;
526
527 out_sendbuf:
528 /* XDR encoding and RPC/RDMA marshaling of this request has not
529 * yet occurred. Thus a lower bound is needed to prevent buffer
530 * overrun during marshaling.
531 *
532 * RPC/RDMA marshaling may choose to send payload bearing ops
533 * inline, if the result is smaller than the inline threshold.
534 * The value of the "size" argument accounts for header
535 * requirements but not for the payload in these cases.
536 *
537 * Likewise, allocate enough space to receive a reply up to the
538 * size of the inline threshold.
539 *
540 * It's unlikely that both the send header and the received
541 * reply will be large, but slush is provided here to allow
542 * flexibility when marshaling.
543 */
544 min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp);
545 min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
546 if (size < min_size)
547 size = min_size;
548
549 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags);
550 if (IS_ERR(rb))
551 goto out_fail;
552 rb->rg_owner = req;
553
554 r_xprt->rx_stats.hardway_register_count += size;
555 rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf);
556 req->rl_sendbuf = rb;
557 goto out;
558
559 out_fail:
560 rpcrdma_buffer_put(req);
561 return NULL;
562 }
563
564 /*
565 * This function returns all RDMA resources to the pool.
566 */
567 static void
568 xprt_rdma_free(void *buffer)
569 {
570 struct rpcrdma_req *req;
571 struct rpcrdma_xprt *r_xprt;
572 struct rpcrdma_regbuf *rb;
573
574 if (buffer == NULL)
575 return;
576
577 rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]);
578 req = rb->rg_owner;
579 if (req->rl_backchannel)
580 return;
581
582 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
583
584 dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply);
585
586 r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req,
587 !RPC_IS_ASYNC(req->rl_task));
588
589 rpcrdma_buffer_put(req);
590 }
591
592 /**
593 * xprt_rdma_send_request - marshal and send an RPC request
594 * @task: RPC task with an RPC message in rq_snd_buf
595 *
596 * Return values:
597 * 0: The request has been sent
598 * ENOTCONN: Caller needs to invoke connect logic then call again
599 * ENOBUFS: Call again later to send the request
600 * EIO: A permanent error occurred. The request was not sent,
601 * and don't try it again
602 *
603 * send_request invokes the meat of RPC RDMA. It must do the following:
604 *
605 * 1. Marshal the RPC request into an RPC RDMA request, which means
606 * putting a header in front of data, and creating IOVs for RDMA
607 * from those in the request.
608 * 2. In marshaling, detect opportunities for RDMA, and use them.
609 * 3. Post a recv message to set up asynch completion, then send
610 * the request (rpcrdma_ep_post).
611 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
612 */
613 static int
614 xprt_rdma_send_request(struct rpc_task *task)
615 {
616 struct rpc_rqst *rqst = task->tk_rqstp;
617 struct rpc_xprt *xprt = rqst->rq_xprt;
618 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
619 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
620 int rc = 0;
621
622 rc = rpcrdma_marshal_req(rqst);
623 if (rc < 0)
624 goto failed_marshal;
625
626 if (req->rl_reply == NULL) /* e.g. reconnection */
627 rpcrdma_recv_buffer_get(req);
628
629 /* Must suppress retransmit to maintain credits */
630 if (req->rl_connect_cookie == xprt->connect_cookie)
631 goto drop_connection;
632 req->rl_connect_cookie = xprt->connect_cookie;
633
634 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
635 goto drop_connection;
636
637 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
638 rqst->rq_bytes_sent = 0;
639 return 0;
640
641 failed_marshal:
642 dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n",
643 __func__, rc);
644 if (rc == -EIO)
645 r_xprt->rx_stats.failed_marshal_count++;
646 if (rc != -ENOTCONN)
647 return rc;
648 drop_connection:
649 xprt_disconnect_done(xprt);
650 return -ENOTCONN; /* implies disconnect */
651 }
652
653 void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
654 {
655 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
656 long idle_time = 0;
657
658 if (xprt_connected(xprt))
659 idle_time = (long)(jiffies - xprt->last_used) / HZ;
660
661 seq_puts(seq, "\txprt:\trdma ");
662 seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
663 0, /* need a local port? */
664 xprt->stat.bind_count,
665 xprt->stat.connect_count,
666 xprt->stat.connect_time,
667 idle_time,
668 xprt->stat.sends,
669 xprt->stat.recvs,
670 xprt->stat.bad_xids,
671 xprt->stat.req_u,
672 xprt->stat.bklog_u);
673 seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu ",
674 r_xprt->rx_stats.read_chunk_count,
675 r_xprt->rx_stats.write_chunk_count,
676 r_xprt->rx_stats.reply_chunk_count,
677 r_xprt->rx_stats.total_rdma_request,
678 r_xprt->rx_stats.total_rdma_reply,
679 r_xprt->rx_stats.pullup_copy_count,
680 r_xprt->rx_stats.fixup_copy_count,
681 r_xprt->rx_stats.hardway_register_count,
682 r_xprt->rx_stats.failed_marshal_count,
683 r_xprt->rx_stats.bad_reply_count,
684 r_xprt->rx_stats.nomsg_call_count);
685 seq_printf(seq, "%lu %lu %lu\n",
686 r_xprt->rx_stats.mrs_recovered,
687 r_xprt->rx_stats.mrs_orphaned,
688 r_xprt->rx_stats.mrs_allocated);
689 }
690
691 static int
692 xprt_rdma_enable_swap(struct rpc_xprt *xprt)
693 {
694 return 0;
695 }
696
697 static void
698 xprt_rdma_disable_swap(struct rpc_xprt *xprt)
699 {
700 }
701
702 /*
703 * Plumbing for rpc transport switch and kernel module
704 */
705
706 static struct rpc_xprt_ops xprt_rdma_procs = {
707 .reserve_xprt = xprt_reserve_xprt_cong,
708 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
709 .alloc_slot = xprt_alloc_slot,
710 .release_request = xprt_release_rqst_cong, /* ditto */
711 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
712 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
713 .set_port = xprt_rdma_set_port,
714 .connect = xprt_rdma_connect,
715 .buf_alloc = xprt_rdma_allocate,
716 .buf_free = xprt_rdma_free,
717 .send_request = xprt_rdma_send_request,
718 .close = xprt_rdma_close,
719 .destroy = xprt_rdma_destroy,
720 .print_stats = xprt_rdma_print_stats,
721 .enable_swap = xprt_rdma_enable_swap,
722 .disable_swap = xprt_rdma_disable_swap,
723 .inject_disconnect = xprt_rdma_inject_disconnect,
724 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
725 .bc_setup = xprt_rdma_bc_setup,
726 .bc_up = xprt_rdma_bc_up,
727 .bc_maxpayload = xprt_rdma_bc_maxpayload,
728 .bc_free_rqst = xprt_rdma_bc_free_rqst,
729 .bc_destroy = xprt_rdma_bc_destroy,
730 #endif
731 };
732
733 static struct xprt_class xprt_rdma = {
734 .list = LIST_HEAD_INIT(xprt_rdma.list),
735 .name = "rdma",
736 .owner = THIS_MODULE,
737 .ident = XPRT_TRANSPORT_RDMA,
738 .setup = xprt_setup_rdma,
739 };
740
741 void xprt_rdma_cleanup(void)
742 {
743 int rc;
744
745 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
746 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
747 if (sunrpc_table_header) {
748 unregister_sysctl_table(sunrpc_table_header);
749 sunrpc_table_header = NULL;
750 }
751 #endif
752 rc = xprt_unregister_transport(&xprt_rdma);
753 if (rc)
754 dprintk("RPC: %s: xprt_unregister returned %i\n",
755 __func__, rc);
756
757 rpcrdma_destroy_wq();
758
759 rc = xprt_unregister_transport(&xprt_rdma_bc);
760 if (rc)
761 dprintk("RPC: %s: xprt_unregister(bc) returned %i\n",
762 __func__, rc);
763 }
764
765 int xprt_rdma_init(void)
766 {
767 int rc;
768
769 rc = rpcrdma_alloc_wq();
770 if (rc)
771 return rc;
772
773 rc = xprt_register_transport(&xprt_rdma);
774 if (rc) {
775 rpcrdma_destroy_wq();
776 return rc;
777 }
778
779 rc = xprt_register_transport(&xprt_rdma_bc);
780 if (rc) {
781 xprt_unregister_transport(&xprt_rdma);
782 rpcrdma_destroy_wq();
783 return rc;
784 }
785
786 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
787
788 dprintk("Defaults:\n");
789 dprintk("\tSlots %d\n"
790 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
791 xprt_rdma_slot_table_entries,
792 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
793 dprintk("\tPadding %d\n\tMemreg %d\n",
794 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
795
796 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
797 if (!sunrpc_table_header)
798 sunrpc_table_header = register_sysctl_table(sunrpc_table);
799 #endif
800 return 0;
801 }
This page took 0.047695 seconds and 5 git commands to generate.