Merge remote-tracking branch 'mailbox/mailbox-for-next'
[deliverable/linux.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18
19
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 u32 basic_rates, int bitrate)
23 {
24 struct ieee80211_rate *result = &sband->bitrates[0];
25 int i;
26
27 for (i = 0; i < sband->n_bitrates; i++) {
28 if (!(basic_rates & BIT(i)))
29 continue;
30 if (sband->bitrates[i].bitrate > bitrate)
31 continue;
32 result = &sband->bitrates[i];
33 }
34
35 return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 enum nl80211_bss_scan_width scan_width)
41 {
42 struct ieee80211_rate *bitrates;
43 u32 mandatory_rates = 0;
44 enum ieee80211_rate_flags mandatory_flag;
45 int i;
46
47 if (WARN_ON(!sband))
48 return 1;
49
50 if (sband->band == NL80211_BAND_2GHZ) {
51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 else
55 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 } else {
57 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 }
59
60 bitrates = sband->bitrates;
61 for (i = 0; i < sband->n_bitrates; i++)
62 if (bitrates[i].flags & mandatory_flag)
63 mandatory_rates |= BIT(i);
64 return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67
68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
69 {
70 /* see 802.11 17.3.8.3.2 and Annex J
71 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 if (chan <= 0)
73 return 0; /* not supported */
74 switch (band) {
75 case NL80211_BAND_2GHZ:
76 if (chan == 14)
77 return 2484;
78 else if (chan < 14)
79 return 2407 + chan * 5;
80 break;
81 case NL80211_BAND_5GHZ:
82 if (chan >= 182 && chan <= 196)
83 return 4000 + chan * 5;
84 else
85 return 5000 + chan * 5;
86 break;
87 case NL80211_BAND_60GHZ:
88 if (chan < 5)
89 return 56160 + chan * 2160;
90 break;
91 default:
92 ;
93 }
94 return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97
98 int ieee80211_frequency_to_channel(int freq)
99 {
100 /* see 802.11 17.3.8.3.2 and Annex J */
101 if (freq == 2484)
102 return 14;
103 else if (freq < 2484)
104 return (freq - 2407) / 5;
105 else if (freq >= 4910 && freq <= 4980)
106 return (freq - 4000) / 5;
107 else if (freq <= 45000) /* DMG band lower limit */
108 return (freq - 5000) / 5;
109 else if (freq >= 58320 && freq <= 64800)
110 return (freq - 56160) / 2160;
111 else
112 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 int freq)
118 {
119 enum nl80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
122
123 for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 sband = wiphy->bands[band];
125
126 if (!sband)
127 continue;
128
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
132 }
133 }
134
135 return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 enum nl80211_band band)
141 {
142 int i, want;
143
144 switch (band) {
145 case NL80211_BAND_5GHZ:
146 want = 3;
147 for (i = 0; i < sband->n_bitrates; i++) {
148 if (sband->bitrates[i].bitrate == 60 ||
149 sband->bitrates[i].bitrate == 120 ||
150 sband->bitrates[i].bitrate == 240) {
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_MANDATORY_A;
153 want--;
154 }
155 }
156 WARN_ON(want);
157 break;
158 case NL80211_BAND_2GHZ:
159 want = 7;
160 for (i = 0; i < sband->n_bitrates; i++) {
161 if (sband->bitrates[i].bitrate == 10) {
162 sband->bitrates[i].flags |=
163 IEEE80211_RATE_MANDATORY_B |
164 IEEE80211_RATE_MANDATORY_G;
165 want--;
166 }
167
168 if (sband->bitrates[i].bitrate == 20 ||
169 sband->bitrates[i].bitrate == 55 ||
170 sband->bitrates[i].bitrate == 110 ||
171 sband->bitrates[i].bitrate == 60 ||
172 sband->bitrates[i].bitrate == 120 ||
173 sband->bitrates[i].bitrate == 240) {
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_MANDATORY_G;
176 want--;
177 }
178
179 if (sband->bitrates[i].bitrate != 10 &&
180 sband->bitrates[i].bitrate != 20 &&
181 sband->bitrates[i].bitrate != 55 &&
182 sband->bitrates[i].bitrate != 110)
183 sband->bitrates[i].flags |=
184 IEEE80211_RATE_ERP_G;
185 }
186 WARN_ON(want != 0 && want != 3 && want != 6);
187 break;
188 case NL80211_BAND_60GHZ:
189 /* check for mandatory HT MCS 1..4 */
190 WARN_ON(!sband->ht_cap.ht_supported);
191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 break;
193 case NUM_NL80211_BANDS:
194 WARN_ON(1);
195 break;
196 }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum nl80211_band band;
202
203 for (band = 0; band < NUM_NL80211_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
241 */
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 break;
253 default:
254 break;
255 }
256
257 switch (params->cipher) {
258 case WLAN_CIPHER_SUITE_WEP40:
259 if (params->key_len != WLAN_KEY_LEN_WEP40)
260 return -EINVAL;
261 break;
262 case WLAN_CIPHER_SUITE_TKIP:
263 if (params->key_len != WLAN_KEY_LEN_TKIP)
264 return -EINVAL;
265 break;
266 case WLAN_CIPHER_SUITE_CCMP:
267 if (params->key_len != WLAN_KEY_LEN_CCMP)
268 return -EINVAL;
269 break;
270 case WLAN_CIPHER_SUITE_CCMP_256:
271 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
272 return -EINVAL;
273 break;
274 case WLAN_CIPHER_SUITE_GCMP:
275 if (params->key_len != WLAN_KEY_LEN_GCMP)
276 return -EINVAL;
277 break;
278 case WLAN_CIPHER_SUITE_GCMP_256:
279 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
280 return -EINVAL;
281 break;
282 case WLAN_CIPHER_SUITE_WEP104:
283 if (params->key_len != WLAN_KEY_LEN_WEP104)
284 return -EINVAL;
285 break;
286 case WLAN_CIPHER_SUITE_AES_CMAC:
287 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
288 return -EINVAL;
289 break;
290 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
291 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
292 return -EINVAL;
293 break;
294 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
295 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
296 return -EINVAL;
297 break;
298 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
300 return -EINVAL;
301 break;
302 default:
303 /*
304 * We don't know anything about this algorithm,
305 * allow using it -- but the driver must check
306 * all parameters! We still check below whether
307 * or not the driver supports this algorithm,
308 * of course.
309 */
310 break;
311 }
312
313 if (params->seq) {
314 switch (params->cipher) {
315 case WLAN_CIPHER_SUITE_WEP40:
316 case WLAN_CIPHER_SUITE_WEP104:
317 /* These ciphers do not use key sequence */
318 return -EINVAL;
319 case WLAN_CIPHER_SUITE_TKIP:
320 case WLAN_CIPHER_SUITE_CCMP:
321 case WLAN_CIPHER_SUITE_CCMP_256:
322 case WLAN_CIPHER_SUITE_GCMP:
323 case WLAN_CIPHER_SUITE_GCMP_256:
324 case WLAN_CIPHER_SUITE_AES_CMAC:
325 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328 if (params->seq_len != 6)
329 return -EINVAL;
330 break;
331 }
332 }
333
334 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
335 return -EINVAL;
336
337 return 0;
338 }
339
340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
341 {
342 unsigned int hdrlen = 24;
343
344 if (ieee80211_is_data(fc)) {
345 if (ieee80211_has_a4(fc))
346 hdrlen = 30;
347 if (ieee80211_is_data_qos(fc)) {
348 hdrlen += IEEE80211_QOS_CTL_LEN;
349 if (ieee80211_has_order(fc))
350 hdrlen += IEEE80211_HT_CTL_LEN;
351 }
352 goto out;
353 }
354
355 if (ieee80211_is_mgmt(fc)) {
356 if (ieee80211_has_order(fc))
357 hdrlen += IEEE80211_HT_CTL_LEN;
358 goto out;
359 }
360
361 if (ieee80211_is_ctl(fc)) {
362 /*
363 * ACK and CTS are 10 bytes, all others 16. To see how
364 * to get this condition consider
365 * subtype mask: 0b0000000011110000 (0x00F0)
366 * ACK subtype: 0b0000000011010000 (0x00D0)
367 * CTS subtype: 0b0000000011000000 (0x00C0)
368 * bits that matter: ^^^ (0x00E0)
369 * value of those: 0b0000000011000000 (0x00C0)
370 */
371 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
372 hdrlen = 10;
373 else
374 hdrlen = 16;
375 }
376 out:
377 return hdrlen;
378 }
379 EXPORT_SYMBOL(ieee80211_hdrlen);
380
381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
382 {
383 const struct ieee80211_hdr *hdr =
384 (const struct ieee80211_hdr *)skb->data;
385 unsigned int hdrlen;
386
387 if (unlikely(skb->len < 10))
388 return 0;
389 hdrlen = ieee80211_hdrlen(hdr->frame_control);
390 if (unlikely(hdrlen > skb->len))
391 return 0;
392 return hdrlen;
393 }
394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
395
396 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
397 {
398 int ae = flags & MESH_FLAGS_AE;
399 /* 802.11-2012, 8.2.4.7.3 */
400 switch (ae) {
401 default:
402 case 0:
403 return 6;
404 case MESH_FLAGS_AE_A4:
405 return 12;
406 case MESH_FLAGS_AE_A5_A6:
407 return 18;
408 }
409 }
410
411 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
412 {
413 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
414 }
415 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
416
417 static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr,
418 const u8 *addr, enum nl80211_iftype iftype)
419 {
420 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
421 struct {
422 u8 hdr[ETH_ALEN] __aligned(2);
423 __be16 proto;
424 } payload;
425 struct ethhdr tmp;
426 u16 hdrlen;
427 u8 mesh_flags = 0;
428
429 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
430 return -1;
431
432 hdrlen = ieee80211_hdrlen(hdr->frame_control);
433 if (skb->len < hdrlen + 8)
434 return -1;
435
436 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
437 * header
438 * IEEE 802.11 address fields:
439 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
440 * 0 0 DA SA BSSID n/a
441 * 0 1 DA BSSID SA n/a
442 * 1 0 BSSID SA DA n/a
443 * 1 1 RA TA DA SA
444 */
445 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
446 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
447
448 if (iftype == NL80211_IFTYPE_MESH_POINT)
449 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
450
451 switch (hdr->frame_control &
452 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
453 case cpu_to_le16(IEEE80211_FCTL_TODS):
454 if (unlikely(iftype != NL80211_IFTYPE_AP &&
455 iftype != NL80211_IFTYPE_AP_VLAN &&
456 iftype != NL80211_IFTYPE_P2P_GO))
457 return -1;
458 break;
459 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
460 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
461 iftype != NL80211_IFTYPE_MESH_POINT &&
462 iftype != NL80211_IFTYPE_AP_VLAN &&
463 iftype != NL80211_IFTYPE_STATION))
464 return -1;
465 if (iftype == NL80211_IFTYPE_MESH_POINT) {
466 if (mesh_flags & MESH_FLAGS_AE_A4)
467 return -1;
468 if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
469 skb_copy_bits(skb, hdrlen +
470 offsetof(struct ieee80211s_hdr, eaddr1),
471 tmp.h_dest, 2 * ETH_ALEN);
472 }
473 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
474 }
475 break;
476 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
477 if ((iftype != NL80211_IFTYPE_STATION &&
478 iftype != NL80211_IFTYPE_P2P_CLIENT &&
479 iftype != NL80211_IFTYPE_MESH_POINT) ||
480 (is_multicast_ether_addr(tmp.h_dest) &&
481 ether_addr_equal(tmp.h_source, addr)))
482 return -1;
483 if (iftype == NL80211_IFTYPE_MESH_POINT) {
484 if (mesh_flags & MESH_FLAGS_AE_A5_A6)
485 return -1;
486 if (mesh_flags & MESH_FLAGS_AE_A4)
487 skb_copy_bits(skb, hdrlen +
488 offsetof(struct ieee80211s_hdr, eaddr1),
489 tmp.h_source, ETH_ALEN);
490 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
491 }
492 break;
493 case cpu_to_le16(0):
494 if (iftype != NL80211_IFTYPE_ADHOC &&
495 iftype != NL80211_IFTYPE_STATION &&
496 iftype != NL80211_IFTYPE_OCB)
497 return -1;
498 break;
499 }
500
501 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
502 tmp.h_proto = payload.proto;
503
504 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
505 tmp.h_proto != htons(ETH_P_AARP) &&
506 tmp.h_proto != htons(ETH_P_IPX)) ||
507 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
508 /* remove RFC1042 or Bridge-Tunnel encapsulation and
509 * replace EtherType */
510 hdrlen += ETH_ALEN + 2;
511 else
512 tmp.h_proto = htons(skb->len - hdrlen);
513
514 pskb_pull(skb, hdrlen);
515
516 if (!ehdr)
517 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
518 memcpy(ehdr, &tmp, sizeof(tmp));
519
520 return 0;
521 }
522
523 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
524 enum nl80211_iftype iftype)
525 {
526 return __ieee80211_data_to_8023(skb, NULL, addr, iftype);
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023);
529
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 enum nl80211_iftype iftype,
532 const u8 *bssid, bool qos)
533 {
534 struct ieee80211_hdr hdr;
535 u16 hdrlen, ethertype;
536 __le16 fc;
537 const u8 *encaps_data;
538 int encaps_len, skip_header_bytes;
539 int nh_pos, h_pos;
540 int head_need;
541
542 if (unlikely(skb->len < ETH_HLEN))
543 return -EINVAL;
544
545 nh_pos = skb_network_header(skb) - skb->data;
546 h_pos = skb_transport_header(skb) - skb->data;
547
548 /* convert Ethernet header to proper 802.11 header (based on
549 * operation mode) */
550 ethertype = (skb->data[12] << 8) | skb->data[13];
551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552
553 switch (iftype) {
554 case NL80211_IFTYPE_AP:
555 case NL80211_IFTYPE_AP_VLAN:
556 case NL80211_IFTYPE_P2P_GO:
557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 /* DA BSSID SA */
559 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 memcpy(hdr.addr2, addr, ETH_ALEN);
561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 hdrlen = 24;
563 break;
564 case NL80211_IFTYPE_STATION:
565 case NL80211_IFTYPE_P2P_CLIENT:
566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 /* BSSID SA DA */
568 memcpy(hdr.addr1, bssid, ETH_ALEN);
569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 hdrlen = 24;
572 break;
573 case NL80211_IFTYPE_OCB:
574 case NL80211_IFTYPE_ADHOC:
575 /* DA SA BSSID */
576 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 memcpy(hdr.addr3, bssid, ETH_ALEN);
579 hdrlen = 24;
580 break;
581 default:
582 return -EOPNOTSUPP;
583 }
584
585 if (qos) {
586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 hdrlen += 2;
588 }
589
590 hdr.frame_control = fc;
591 hdr.duration_id = 0;
592 hdr.seq_ctrl = 0;
593
594 skip_header_bytes = ETH_HLEN;
595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 encaps_data = bridge_tunnel_header;
597 encaps_len = sizeof(bridge_tunnel_header);
598 skip_header_bytes -= 2;
599 } else if (ethertype >= ETH_P_802_3_MIN) {
600 encaps_data = rfc1042_header;
601 encaps_len = sizeof(rfc1042_header);
602 skip_header_bytes -= 2;
603 } else {
604 encaps_data = NULL;
605 encaps_len = 0;
606 }
607
608 skb_pull(skb, skip_header_bytes);
609 nh_pos -= skip_header_bytes;
610 h_pos -= skip_header_bytes;
611
612 head_need = hdrlen + encaps_len - skb_headroom(skb);
613
614 if (head_need > 0 || skb_cloned(skb)) {
615 head_need = max(head_need, 0);
616 if (head_need)
617 skb_orphan(skb);
618
619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 return -ENOMEM;
621
622 skb->truesize += head_need;
623 }
624
625 if (encaps_data) {
626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627 nh_pos += encaps_len;
628 h_pos += encaps_len;
629 }
630
631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632
633 nh_pos += hdrlen;
634 h_pos += hdrlen;
635
636 /* Update skb pointers to various headers since this modified frame
637 * is going to go through Linux networking code that may potentially
638 * need things like pointer to IP header. */
639 skb_reset_mac_header(skb);
640 skb_set_network_header(skb, nh_pos);
641 skb_set_transport_header(skb, h_pos);
642
643 return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646
647 static void
648 __frame_add_frag(struct sk_buff *skb, struct page *page,
649 void *ptr, int len, int size)
650 {
651 struct skb_shared_info *sh = skb_shinfo(skb);
652 int page_offset;
653
654 page_ref_inc(page);
655 page_offset = ptr - page_address(page);
656 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
657 }
658
659 static void
660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
661 int offset, int len)
662 {
663 struct skb_shared_info *sh = skb_shinfo(skb);
664 const skb_frag_t *frag = &sh->frags[-1];
665 struct page *frag_page;
666 void *frag_ptr;
667 int frag_len, frag_size;
668 int head_size = skb->len - skb->data_len;
669 int cur_len;
670
671 frag_page = virt_to_head_page(skb->head);
672 frag_ptr = skb->data;
673 frag_size = head_size;
674
675 while (offset >= frag_size) {
676 offset -= frag_size;
677 frag++;
678 frag_page = skb_frag_page(frag);
679 frag_ptr = skb_frag_address(frag);
680 frag_size = skb_frag_size(frag);
681 }
682
683 frag_ptr += offset;
684 frag_len = frag_size - offset;
685
686 cur_len = min(len, frag_len);
687
688 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
689 len -= cur_len;
690
691 while (len > 0) {
692 frag++;
693 frag_len = skb_frag_size(frag);
694 cur_len = min(len, frag_len);
695 __frame_add_frag(frame, skb_frag_page(frag),
696 skb_frag_address(frag), cur_len, frag_len);
697 len -= cur_len;
698 }
699 }
700
701 static struct sk_buff *
702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
703 int offset, int len, bool reuse_frag)
704 {
705 struct sk_buff *frame;
706 int cur_len = len;
707
708 if (skb->len - offset < len)
709 return NULL;
710
711 /*
712 * When reusing framents, copy some data to the head to simplify
713 * ethernet header handling and speed up protocol header processing
714 * in the stack later.
715 */
716 if (reuse_frag)
717 cur_len = min_t(int, len, 32);
718
719 /*
720 * Allocate and reserve two bytes more for payload
721 * alignment since sizeof(struct ethhdr) is 14.
722 */
723 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
724 if (!frame)
725 return NULL;
726
727 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
728 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
729
730 len -= cur_len;
731 if (!len)
732 return frame;
733
734 offset += cur_len;
735 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
736
737 return frame;
738 }
739
740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
741 const u8 *addr, enum nl80211_iftype iftype,
742 const unsigned int extra_headroom,
743 bool has_80211_header)
744 {
745 unsigned int hlen = ALIGN(extra_headroom, 4);
746 struct sk_buff *frame = NULL;
747 u16 ethertype;
748 u8 *payload;
749 int offset = 0, remaining, err;
750 struct ethhdr eth;
751 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
752 bool reuse_skb = false;
753 bool last = false;
754
755 if (has_80211_header) {
756 err = __ieee80211_data_to_8023(skb, &eth, addr, iftype);
757 if (err)
758 goto out;
759 }
760
761 while (!last) {
762 unsigned int subframe_len;
763 int len;
764 u8 padding;
765
766 skb_copy_bits(skb, offset, &eth, sizeof(eth));
767 len = ntohs(eth.h_proto);
768 subframe_len = sizeof(struct ethhdr) + len;
769 padding = (4 - subframe_len) & 0x3;
770
771 /* the last MSDU has no padding */
772 remaining = skb->len - offset;
773 if (subframe_len > remaining)
774 goto purge;
775
776 offset += sizeof(struct ethhdr);
777 /* reuse skb for the last subframe */
778 last = remaining <= subframe_len + padding;
779 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
780 skb_pull(skb, offset);
781 frame = skb;
782 reuse_skb = true;
783 } else {
784 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
785 reuse_frag);
786 if (!frame)
787 goto purge;
788
789 offset += len + padding;
790 }
791
792 skb_reset_network_header(frame);
793 frame->dev = skb->dev;
794 frame->priority = skb->priority;
795
796 payload = frame->data;
797 ethertype = (payload[6] << 8) | payload[7];
798 if (likely((ether_addr_equal(payload, rfc1042_header) &&
799 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
800 ether_addr_equal(payload, bridge_tunnel_header))) {
801 eth.h_proto = htons(ethertype);
802 skb_pull(frame, ETH_ALEN + 2);
803 }
804
805 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
806 __skb_queue_tail(list, frame);
807 }
808
809 if (!reuse_skb)
810 dev_kfree_skb(skb);
811
812 return;
813
814 purge:
815 __skb_queue_purge(list);
816 out:
817 dev_kfree_skb(skb);
818 }
819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
820
821 /* Given a data frame determine the 802.1p/1d tag to use. */
822 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
823 struct cfg80211_qos_map *qos_map)
824 {
825 unsigned int dscp;
826 unsigned char vlan_priority;
827
828 /* skb->priority values from 256->263 are magic values to
829 * directly indicate a specific 802.1d priority. This is used
830 * to allow 802.1d priority to be passed directly in from VLAN
831 * tags, etc.
832 */
833 if (skb->priority >= 256 && skb->priority <= 263)
834 return skb->priority - 256;
835
836 if (skb_vlan_tag_present(skb)) {
837 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
838 >> VLAN_PRIO_SHIFT;
839 if (vlan_priority > 0)
840 return vlan_priority;
841 }
842
843 switch (skb->protocol) {
844 case htons(ETH_P_IP):
845 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
846 break;
847 case htons(ETH_P_IPV6):
848 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
849 break;
850 case htons(ETH_P_MPLS_UC):
851 case htons(ETH_P_MPLS_MC): {
852 struct mpls_label mpls_tmp, *mpls;
853
854 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
855 sizeof(*mpls), &mpls_tmp);
856 if (!mpls)
857 return 0;
858
859 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
860 >> MPLS_LS_TC_SHIFT;
861 }
862 case htons(ETH_P_80221):
863 /* 802.21 is always network control traffic */
864 return 7;
865 default:
866 return 0;
867 }
868
869 if (qos_map) {
870 unsigned int i, tmp_dscp = dscp >> 2;
871
872 for (i = 0; i < qos_map->num_des; i++) {
873 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
874 return qos_map->dscp_exception[i].up;
875 }
876
877 for (i = 0; i < 8; i++) {
878 if (tmp_dscp >= qos_map->up[i].low &&
879 tmp_dscp <= qos_map->up[i].high)
880 return i;
881 }
882 }
883
884 return dscp >> 5;
885 }
886 EXPORT_SYMBOL(cfg80211_classify8021d);
887
888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
889 {
890 const struct cfg80211_bss_ies *ies;
891
892 ies = rcu_dereference(bss->ies);
893 if (!ies)
894 return NULL;
895
896 return cfg80211_find_ie(ie, ies->data, ies->len);
897 }
898 EXPORT_SYMBOL(ieee80211_bss_get_ie);
899
900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
901 {
902 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
903 struct net_device *dev = wdev->netdev;
904 int i;
905
906 if (!wdev->connect_keys)
907 return;
908
909 for (i = 0; i < 6; i++) {
910 if (!wdev->connect_keys->params[i].cipher)
911 continue;
912 if (rdev_add_key(rdev, dev, i, false, NULL,
913 &wdev->connect_keys->params[i])) {
914 netdev_err(dev, "failed to set key %d\n", i);
915 continue;
916 }
917 if (wdev->connect_keys->def == i)
918 if (rdev_set_default_key(rdev, dev, i, true, true)) {
919 netdev_err(dev, "failed to set defkey %d\n", i);
920 continue;
921 }
922 if (wdev->connect_keys->defmgmt == i)
923 if (rdev_set_default_mgmt_key(rdev, dev, i))
924 netdev_err(dev, "failed to set mgtdef %d\n", i);
925 }
926
927 kzfree(wdev->connect_keys);
928 wdev->connect_keys = NULL;
929 }
930
931 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
932 {
933 struct cfg80211_event *ev;
934 unsigned long flags;
935 const u8 *bssid = NULL;
936
937 spin_lock_irqsave(&wdev->event_lock, flags);
938 while (!list_empty(&wdev->event_list)) {
939 ev = list_first_entry(&wdev->event_list,
940 struct cfg80211_event, list);
941 list_del(&ev->list);
942 spin_unlock_irqrestore(&wdev->event_lock, flags);
943
944 wdev_lock(wdev);
945 switch (ev->type) {
946 case EVENT_CONNECT_RESULT:
947 if (!is_zero_ether_addr(ev->cr.bssid))
948 bssid = ev->cr.bssid;
949 __cfg80211_connect_result(
950 wdev->netdev, bssid,
951 ev->cr.req_ie, ev->cr.req_ie_len,
952 ev->cr.resp_ie, ev->cr.resp_ie_len,
953 ev->cr.status,
954 ev->cr.status == WLAN_STATUS_SUCCESS,
955 ev->cr.bss);
956 break;
957 case EVENT_ROAMED:
958 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
959 ev->rm.req_ie_len, ev->rm.resp_ie,
960 ev->rm.resp_ie_len);
961 break;
962 case EVENT_DISCONNECTED:
963 __cfg80211_disconnected(wdev->netdev,
964 ev->dc.ie, ev->dc.ie_len,
965 ev->dc.reason,
966 !ev->dc.locally_generated);
967 break;
968 case EVENT_IBSS_JOINED:
969 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
970 ev->ij.channel);
971 break;
972 case EVENT_STOPPED:
973 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
974 break;
975 }
976 wdev_unlock(wdev);
977
978 kfree(ev);
979
980 spin_lock_irqsave(&wdev->event_lock, flags);
981 }
982 spin_unlock_irqrestore(&wdev->event_lock, flags);
983 }
984
985 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
986 {
987 struct wireless_dev *wdev;
988
989 ASSERT_RTNL();
990
991 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
992 cfg80211_process_wdev_events(wdev);
993 }
994
995 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
996 struct net_device *dev, enum nl80211_iftype ntype,
997 u32 *flags, struct vif_params *params)
998 {
999 int err;
1000 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001
1002 ASSERT_RTNL();
1003
1004 /* don't support changing VLANs, you just re-create them */
1005 if (otype == NL80211_IFTYPE_AP_VLAN)
1006 return -EOPNOTSUPP;
1007
1008 /* cannot change into P2P device type */
1009 if (ntype == NL80211_IFTYPE_P2P_DEVICE)
1010 return -EOPNOTSUPP;
1011
1012 if (!rdev->ops->change_virtual_intf ||
1013 !(rdev->wiphy.interface_modes & (1 << ntype)))
1014 return -EOPNOTSUPP;
1015
1016 /* if it's part of a bridge, reject changing type to station/ibss */
1017 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1018 (ntype == NL80211_IFTYPE_ADHOC ||
1019 ntype == NL80211_IFTYPE_STATION ||
1020 ntype == NL80211_IFTYPE_P2P_CLIENT))
1021 return -EBUSY;
1022
1023 if (ntype != otype) {
1024 dev->ieee80211_ptr->use_4addr = false;
1025 dev->ieee80211_ptr->mesh_id_up_len = 0;
1026 wdev_lock(dev->ieee80211_ptr);
1027 rdev_set_qos_map(rdev, dev, NULL);
1028 wdev_unlock(dev->ieee80211_ptr);
1029
1030 switch (otype) {
1031 case NL80211_IFTYPE_AP:
1032 cfg80211_stop_ap(rdev, dev, true);
1033 break;
1034 case NL80211_IFTYPE_ADHOC:
1035 cfg80211_leave_ibss(rdev, dev, false);
1036 break;
1037 case NL80211_IFTYPE_STATION:
1038 case NL80211_IFTYPE_P2P_CLIENT:
1039 wdev_lock(dev->ieee80211_ptr);
1040 cfg80211_disconnect(rdev, dev,
1041 WLAN_REASON_DEAUTH_LEAVING, true);
1042 wdev_unlock(dev->ieee80211_ptr);
1043 break;
1044 case NL80211_IFTYPE_MESH_POINT:
1045 /* mesh should be handled? */
1046 break;
1047 default:
1048 break;
1049 }
1050
1051 cfg80211_process_rdev_events(rdev);
1052 }
1053
1054 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1055
1056 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1057
1058 if (!err && params && params->use_4addr != -1)
1059 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1060
1061 if (!err) {
1062 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1063 switch (ntype) {
1064 case NL80211_IFTYPE_STATION:
1065 if (dev->ieee80211_ptr->use_4addr)
1066 break;
1067 /* fall through */
1068 case NL80211_IFTYPE_OCB:
1069 case NL80211_IFTYPE_P2P_CLIENT:
1070 case NL80211_IFTYPE_ADHOC:
1071 dev->priv_flags |= IFF_DONT_BRIDGE;
1072 break;
1073 case NL80211_IFTYPE_P2P_GO:
1074 case NL80211_IFTYPE_AP:
1075 case NL80211_IFTYPE_AP_VLAN:
1076 case NL80211_IFTYPE_WDS:
1077 case NL80211_IFTYPE_MESH_POINT:
1078 /* bridging OK */
1079 break;
1080 case NL80211_IFTYPE_MONITOR:
1081 /* monitor can't bridge anyway */
1082 break;
1083 case NL80211_IFTYPE_UNSPECIFIED:
1084 case NUM_NL80211_IFTYPES:
1085 /* not happening */
1086 break;
1087 case NL80211_IFTYPE_P2P_DEVICE:
1088 WARN_ON(1);
1089 break;
1090 }
1091 }
1092
1093 if (!err && ntype != otype && netif_running(dev)) {
1094 cfg80211_update_iface_num(rdev, ntype, 1);
1095 cfg80211_update_iface_num(rdev, otype, -1);
1096 }
1097
1098 return err;
1099 }
1100
1101 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1102 {
1103 static const u32 __mcs2bitrate[] = {
1104 /* control PHY */
1105 [0] = 275,
1106 /* SC PHY */
1107 [1] = 3850,
1108 [2] = 7700,
1109 [3] = 9625,
1110 [4] = 11550,
1111 [5] = 12512, /* 1251.25 mbps */
1112 [6] = 15400,
1113 [7] = 19250,
1114 [8] = 23100,
1115 [9] = 25025,
1116 [10] = 30800,
1117 [11] = 38500,
1118 [12] = 46200,
1119 /* OFDM PHY */
1120 [13] = 6930,
1121 [14] = 8662, /* 866.25 mbps */
1122 [15] = 13860,
1123 [16] = 17325,
1124 [17] = 20790,
1125 [18] = 27720,
1126 [19] = 34650,
1127 [20] = 41580,
1128 [21] = 45045,
1129 [22] = 51975,
1130 [23] = 62370,
1131 [24] = 67568, /* 6756.75 mbps */
1132 /* LP-SC PHY */
1133 [25] = 6260,
1134 [26] = 8340,
1135 [27] = 11120,
1136 [28] = 12510,
1137 [29] = 16680,
1138 [30] = 22240,
1139 [31] = 25030,
1140 };
1141
1142 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1143 return 0;
1144
1145 return __mcs2bitrate[rate->mcs];
1146 }
1147
1148 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1149 {
1150 static const u32 base[4][10] = {
1151 { 6500000,
1152 13000000,
1153 19500000,
1154 26000000,
1155 39000000,
1156 52000000,
1157 58500000,
1158 65000000,
1159 78000000,
1160 0,
1161 },
1162 { 13500000,
1163 27000000,
1164 40500000,
1165 54000000,
1166 81000000,
1167 108000000,
1168 121500000,
1169 135000000,
1170 162000000,
1171 180000000,
1172 },
1173 { 29300000,
1174 58500000,
1175 87800000,
1176 117000000,
1177 175500000,
1178 234000000,
1179 263300000,
1180 292500000,
1181 351000000,
1182 390000000,
1183 },
1184 { 58500000,
1185 117000000,
1186 175500000,
1187 234000000,
1188 351000000,
1189 468000000,
1190 526500000,
1191 585000000,
1192 702000000,
1193 780000000,
1194 },
1195 };
1196 u32 bitrate;
1197 int idx;
1198
1199 if (WARN_ON_ONCE(rate->mcs > 9))
1200 return 0;
1201
1202 switch (rate->bw) {
1203 case RATE_INFO_BW_160:
1204 idx = 3;
1205 break;
1206 case RATE_INFO_BW_80:
1207 idx = 2;
1208 break;
1209 case RATE_INFO_BW_40:
1210 idx = 1;
1211 break;
1212 case RATE_INFO_BW_5:
1213 case RATE_INFO_BW_10:
1214 default:
1215 WARN_ON(1);
1216 /* fall through */
1217 case RATE_INFO_BW_20:
1218 idx = 0;
1219 }
1220
1221 bitrate = base[idx][rate->mcs];
1222 bitrate *= rate->nss;
1223
1224 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1225 bitrate = (bitrate / 9) * 10;
1226
1227 /* do NOT round down here */
1228 return (bitrate + 50000) / 100000;
1229 }
1230
1231 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1232 {
1233 int modulation, streams, bitrate;
1234
1235 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1236 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1237 return rate->legacy;
1238 if (rate->flags & RATE_INFO_FLAGS_60G)
1239 return cfg80211_calculate_bitrate_60g(rate);
1240 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1241 return cfg80211_calculate_bitrate_vht(rate);
1242
1243 /* the formula below does only work for MCS values smaller than 32 */
1244 if (WARN_ON_ONCE(rate->mcs >= 32))
1245 return 0;
1246
1247 modulation = rate->mcs & 7;
1248 streams = (rate->mcs >> 3) + 1;
1249
1250 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1251
1252 if (modulation < 4)
1253 bitrate *= (modulation + 1);
1254 else if (modulation == 4)
1255 bitrate *= (modulation + 2);
1256 else
1257 bitrate *= (modulation + 3);
1258
1259 bitrate *= streams;
1260
1261 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1262 bitrate = (bitrate / 9) * 10;
1263
1264 /* do NOT round down here */
1265 return (bitrate + 50000) / 100000;
1266 }
1267 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1268
1269 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1270 enum ieee80211_p2p_attr_id attr,
1271 u8 *buf, unsigned int bufsize)
1272 {
1273 u8 *out = buf;
1274 u16 attr_remaining = 0;
1275 bool desired_attr = false;
1276 u16 desired_len = 0;
1277
1278 while (len > 0) {
1279 unsigned int iedatalen;
1280 unsigned int copy;
1281 const u8 *iedata;
1282
1283 if (len < 2)
1284 return -EILSEQ;
1285 iedatalen = ies[1];
1286 if (iedatalen + 2 > len)
1287 return -EILSEQ;
1288
1289 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1290 goto cont;
1291
1292 if (iedatalen < 4)
1293 goto cont;
1294
1295 iedata = ies + 2;
1296
1297 /* check WFA OUI, P2P subtype */
1298 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1299 iedata[2] != 0x9a || iedata[3] != 0x09)
1300 goto cont;
1301
1302 iedatalen -= 4;
1303 iedata += 4;
1304
1305 /* check attribute continuation into this IE */
1306 copy = min_t(unsigned int, attr_remaining, iedatalen);
1307 if (copy && desired_attr) {
1308 desired_len += copy;
1309 if (out) {
1310 memcpy(out, iedata, min(bufsize, copy));
1311 out += min(bufsize, copy);
1312 bufsize -= min(bufsize, copy);
1313 }
1314
1315
1316 if (copy == attr_remaining)
1317 return desired_len;
1318 }
1319
1320 attr_remaining -= copy;
1321 if (attr_remaining)
1322 goto cont;
1323
1324 iedatalen -= copy;
1325 iedata += copy;
1326
1327 while (iedatalen > 0) {
1328 u16 attr_len;
1329
1330 /* P2P attribute ID & size must fit */
1331 if (iedatalen < 3)
1332 return -EILSEQ;
1333 desired_attr = iedata[0] == attr;
1334 attr_len = get_unaligned_le16(iedata + 1);
1335 iedatalen -= 3;
1336 iedata += 3;
1337
1338 copy = min_t(unsigned int, attr_len, iedatalen);
1339
1340 if (desired_attr) {
1341 desired_len += copy;
1342 if (out) {
1343 memcpy(out, iedata, min(bufsize, copy));
1344 out += min(bufsize, copy);
1345 bufsize -= min(bufsize, copy);
1346 }
1347
1348 if (copy == attr_len)
1349 return desired_len;
1350 }
1351
1352 iedata += copy;
1353 iedatalen -= copy;
1354 attr_remaining = attr_len - copy;
1355 }
1356
1357 cont:
1358 len -= ies[1] + 2;
1359 ies += ies[1] + 2;
1360 }
1361
1362 if (attr_remaining && desired_attr)
1363 return -EILSEQ;
1364
1365 return -ENOENT;
1366 }
1367 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1368
1369 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1370 {
1371 int i;
1372
1373 for (i = 0; i < n_ids; i++)
1374 if (ids[i] == id)
1375 return true;
1376 return false;
1377 }
1378
1379 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1380 const u8 *ids, int n_ids,
1381 const u8 *after_ric, int n_after_ric,
1382 size_t offset)
1383 {
1384 size_t pos = offset;
1385
1386 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1387 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1388 pos += 2 + ies[pos + 1];
1389
1390 while (pos < ielen &&
1391 !ieee80211_id_in_list(after_ric, n_after_ric,
1392 ies[pos]))
1393 pos += 2 + ies[pos + 1];
1394 } else {
1395 pos += 2 + ies[pos + 1];
1396 }
1397 }
1398
1399 return pos;
1400 }
1401 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1402
1403 bool ieee80211_operating_class_to_band(u8 operating_class,
1404 enum nl80211_band *band)
1405 {
1406 switch (operating_class) {
1407 case 112:
1408 case 115 ... 127:
1409 case 128 ... 130:
1410 *band = NL80211_BAND_5GHZ;
1411 return true;
1412 case 81:
1413 case 82:
1414 case 83:
1415 case 84:
1416 *band = NL80211_BAND_2GHZ;
1417 return true;
1418 case 180:
1419 *band = NL80211_BAND_60GHZ;
1420 return true;
1421 }
1422
1423 return false;
1424 }
1425 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1426
1427 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1428 u8 *op_class)
1429 {
1430 u8 vht_opclass;
1431 u16 freq = chandef->center_freq1;
1432
1433 if (freq >= 2412 && freq <= 2472) {
1434 if (chandef->width > NL80211_CHAN_WIDTH_40)
1435 return false;
1436
1437 /* 2.407 GHz, channels 1..13 */
1438 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1439 if (freq > chandef->chan->center_freq)
1440 *op_class = 83; /* HT40+ */
1441 else
1442 *op_class = 84; /* HT40- */
1443 } else {
1444 *op_class = 81;
1445 }
1446
1447 return true;
1448 }
1449
1450 if (freq == 2484) {
1451 if (chandef->width > NL80211_CHAN_WIDTH_40)
1452 return false;
1453
1454 *op_class = 82; /* channel 14 */
1455 return true;
1456 }
1457
1458 switch (chandef->width) {
1459 case NL80211_CHAN_WIDTH_80:
1460 vht_opclass = 128;
1461 break;
1462 case NL80211_CHAN_WIDTH_160:
1463 vht_opclass = 129;
1464 break;
1465 case NL80211_CHAN_WIDTH_80P80:
1466 vht_opclass = 130;
1467 break;
1468 case NL80211_CHAN_WIDTH_10:
1469 case NL80211_CHAN_WIDTH_5:
1470 return false; /* unsupported for now */
1471 default:
1472 vht_opclass = 0;
1473 break;
1474 }
1475
1476 /* 5 GHz, channels 36..48 */
1477 if (freq >= 5180 && freq <= 5240) {
1478 if (vht_opclass) {
1479 *op_class = vht_opclass;
1480 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1481 if (freq > chandef->chan->center_freq)
1482 *op_class = 116;
1483 else
1484 *op_class = 117;
1485 } else {
1486 *op_class = 115;
1487 }
1488
1489 return true;
1490 }
1491
1492 /* 5 GHz, channels 52..64 */
1493 if (freq >= 5260 && freq <= 5320) {
1494 if (vht_opclass) {
1495 *op_class = vht_opclass;
1496 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1497 if (freq > chandef->chan->center_freq)
1498 *op_class = 119;
1499 else
1500 *op_class = 120;
1501 } else {
1502 *op_class = 118;
1503 }
1504
1505 return true;
1506 }
1507
1508 /* 5 GHz, channels 100..144 */
1509 if (freq >= 5500 && freq <= 5720) {
1510 if (vht_opclass) {
1511 *op_class = vht_opclass;
1512 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1513 if (freq > chandef->chan->center_freq)
1514 *op_class = 122;
1515 else
1516 *op_class = 123;
1517 } else {
1518 *op_class = 121;
1519 }
1520
1521 return true;
1522 }
1523
1524 /* 5 GHz, channels 149..169 */
1525 if (freq >= 5745 && freq <= 5845) {
1526 if (vht_opclass) {
1527 *op_class = vht_opclass;
1528 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1529 if (freq > chandef->chan->center_freq)
1530 *op_class = 126;
1531 else
1532 *op_class = 127;
1533 } else if (freq <= 5805) {
1534 *op_class = 124;
1535 } else {
1536 *op_class = 125;
1537 }
1538
1539 return true;
1540 }
1541
1542 /* 56.16 GHz, channel 1..4 */
1543 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1544 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1545 return false;
1546
1547 *op_class = 180;
1548 return true;
1549 }
1550
1551 /* not supported yet */
1552 return false;
1553 }
1554 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1555
1556 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1557 u32 beacon_int)
1558 {
1559 struct wireless_dev *wdev;
1560 int res = 0;
1561
1562 if (beacon_int < 10 || beacon_int > 10000)
1563 return -EINVAL;
1564
1565 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1566 if (!wdev->beacon_interval)
1567 continue;
1568 if (wdev->beacon_interval != beacon_int) {
1569 res = -EINVAL;
1570 break;
1571 }
1572 }
1573
1574 return res;
1575 }
1576
1577 int cfg80211_iter_combinations(struct wiphy *wiphy,
1578 const int num_different_channels,
1579 const u8 radar_detect,
1580 const int iftype_num[NUM_NL80211_IFTYPES],
1581 void (*iter)(const struct ieee80211_iface_combination *c,
1582 void *data),
1583 void *data)
1584 {
1585 const struct ieee80211_regdomain *regdom;
1586 enum nl80211_dfs_regions region = 0;
1587 int i, j, iftype;
1588 int num_interfaces = 0;
1589 u32 used_iftypes = 0;
1590
1591 if (radar_detect) {
1592 rcu_read_lock();
1593 regdom = rcu_dereference(cfg80211_regdomain);
1594 if (regdom)
1595 region = regdom->dfs_region;
1596 rcu_read_unlock();
1597 }
1598
1599 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1600 num_interfaces += iftype_num[iftype];
1601 if (iftype_num[iftype] > 0 &&
1602 !(wiphy->software_iftypes & BIT(iftype)))
1603 used_iftypes |= BIT(iftype);
1604 }
1605
1606 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1607 const struct ieee80211_iface_combination *c;
1608 struct ieee80211_iface_limit *limits;
1609 u32 all_iftypes = 0;
1610
1611 c = &wiphy->iface_combinations[i];
1612
1613 if (num_interfaces > c->max_interfaces)
1614 continue;
1615 if (num_different_channels > c->num_different_channels)
1616 continue;
1617
1618 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1619 GFP_KERNEL);
1620 if (!limits)
1621 return -ENOMEM;
1622
1623 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1624 if (wiphy->software_iftypes & BIT(iftype))
1625 continue;
1626 for (j = 0; j < c->n_limits; j++) {
1627 all_iftypes |= limits[j].types;
1628 if (!(limits[j].types & BIT(iftype)))
1629 continue;
1630 if (limits[j].max < iftype_num[iftype])
1631 goto cont;
1632 limits[j].max -= iftype_num[iftype];
1633 }
1634 }
1635
1636 if (radar_detect != (c->radar_detect_widths & radar_detect))
1637 goto cont;
1638
1639 if (radar_detect && c->radar_detect_regions &&
1640 !(c->radar_detect_regions & BIT(region)))
1641 goto cont;
1642
1643 /* Finally check that all iftypes that we're currently
1644 * using are actually part of this combination. If they
1645 * aren't then we can't use this combination and have
1646 * to continue to the next.
1647 */
1648 if ((all_iftypes & used_iftypes) != used_iftypes)
1649 goto cont;
1650
1651 /* This combination covered all interface types and
1652 * supported the requested numbers, so we're good.
1653 */
1654
1655 (*iter)(c, data);
1656 cont:
1657 kfree(limits);
1658 }
1659
1660 return 0;
1661 }
1662 EXPORT_SYMBOL(cfg80211_iter_combinations);
1663
1664 static void
1665 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1666 void *data)
1667 {
1668 int *num = data;
1669 (*num)++;
1670 }
1671
1672 int cfg80211_check_combinations(struct wiphy *wiphy,
1673 const int num_different_channels,
1674 const u8 radar_detect,
1675 const int iftype_num[NUM_NL80211_IFTYPES])
1676 {
1677 int err, num = 0;
1678
1679 err = cfg80211_iter_combinations(wiphy, num_different_channels,
1680 radar_detect, iftype_num,
1681 cfg80211_iter_sum_ifcombs, &num);
1682 if (err)
1683 return err;
1684 if (num == 0)
1685 return -EBUSY;
1686
1687 return 0;
1688 }
1689 EXPORT_SYMBOL(cfg80211_check_combinations);
1690
1691 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1692 const u8 *rates, unsigned int n_rates,
1693 u32 *mask)
1694 {
1695 int i, j;
1696
1697 if (!sband)
1698 return -EINVAL;
1699
1700 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1701 return -EINVAL;
1702
1703 *mask = 0;
1704
1705 for (i = 0; i < n_rates; i++) {
1706 int rate = (rates[i] & 0x7f) * 5;
1707 bool found = false;
1708
1709 for (j = 0; j < sband->n_bitrates; j++) {
1710 if (sband->bitrates[j].bitrate == rate) {
1711 found = true;
1712 *mask |= BIT(j);
1713 break;
1714 }
1715 }
1716 if (!found)
1717 return -EINVAL;
1718 }
1719
1720 /*
1721 * mask must have at least one bit set here since we
1722 * didn't accept a 0-length rates array nor allowed
1723 * entries in the array that didn't exist
1724 */
1725
1726 return 0;
1727 }
1728
1729 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1730 {
1731 enum nl80211_band band;
1732 unsigned int n_channels = 0;
1733
1734 for (band = 0; band < NUM_NL80211_BANDS; band++)
1735 if (wiphy->bands[band])
1736 n_channels += wiphy->bands[band]->n_channels;
1737
1738 return n_channels;
1739 }
1740 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1741
1742 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1743 struct station_info *sinfo)
1744 {
1745 struct cfg80211_registered_device *rdev;
1746 struct wireless_dev *wdev;
1747
1748 wdev = dev->ieee80211_ptr;
1749 if (!wdev)
1750 return -EOPNOTSUPP;
1751
1752 rdev = wiphy_to_rdev(wdev->wiphy);
1753 if (!rdev->ops->get_station)
1754 return -EOPNOTSUPP;
1755
1756 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1757 }
1758 EXPORT_SYMBOL(cfg80211_get_station);
1759
1760 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1761 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1762 const unsigned char rfc1042_header[] __aligned(2) =
1763 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1764 EXPORT_SYMBOL(rfc1042_header);
1765
1766 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1767 const unsigned char bridge_tunnel_header[] __aligned(2) =
1768 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1769 EXPORT_SYMBOL(bridge_tunnel_header);
This page took 0.077385 seconds and 5 git commands to generate.