[ARC] Update disassembler opcode selection
[deliverable/binutils-gdb.git] / opcodes / arc-dis.c
1 /* Instruction printing code for the ARC.
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3
4 Contributed by Claudiu Zissulescu (claziss@synopsys.com)
5
6 This file is part of libopcodes.
7
8 This library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 It is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include <stdio.h>
25 #include <assert.h>
26 #include "dis-asm.h"
27 #include "opcode/arc.h"
28 #include "elf/arc.h"
29 #include "arc-dis.h"
30 #include "arc-ext.h"
31 #include "elf-bfd.h"
32 #include "libiberty.h"
33 #include "opintl.h"
34
35 /* Structure used to iterate over, and extract the values for, operands of
36 an opcode. */
37
38 struct arc_operand_iterator
39 {
40 /* The complete instruction value to extract operands from. */
41 unsigned long long insn;
42
43 /* The LIMM if this is being tracked separately. This field is only
44 valid if we find the LIMM operand in the operand list. */
45 unsigned limm;
46
47 /* The opcode this iterator is operating on. */
48 const struct arc_opcode *opcode;
49
50 /* The index into the opcodes operand index list. */
51 const unsigned char *opidx;
52 };
53
54 /* A private data used by ARC decoder. */
55 struct arc_disassemble_info
56 {
57 /* The current disassembled arc opcode. */
58 const struct arc_opcode *opcode;
59
60 /* Instruction length w/o limm field. */
61 unsigned insn_len;
62
63 /* TRUE if we have limm. */
64 bfd_boolean limm_p;
65
66 /* LIMM value, if exists. */
67 unsigned limm;
68
69 /* Condition code, if exists. */
70 unsigned condition_code;
71
72 /* Writeback mode. */
73 unsigned writeback_mode;
74
75 /* Number of operands. */
76 unsigned operands_count;
77
78 struct arc_insn_operand operands[MAX_INSN_ARGS];
79 };
80
81 /* Globals variables. */
82
83 static const char * const regnames[64] =
84 {
85 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
86 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
87 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
88 "r24", "r25", "gp", "fp", "sp", "ilink", "r30", "blink",
89
90 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
91 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
92 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
93 "r56", "r57", "ACCL", "ACCH", "lp_count", "rezerved", "LIMM", "pcl"
94 };
95
96 static const char * const addrtypenames[ARC_NUM_ADDRTYPES] =
97 {
98 "bd", "jid", "lbd", "mbd", "sd", "sm", "xa", "xd",
99 "cd", "cbd", "cjid", "clbd", "cm", "csd", "cxa", "cxd"
100 };
101
102 static int addrtypenames_max = ARC_NUM_ADDRTYPES - 1;
103
104 static const char * const addrtypeunknown = "unknown";
105
106 /* This structure keeps track which instruction class(es)
107 should be ignored durring disassembling. */
108
109 typedef struct skipclass
110 {
111 insn_class_t insn_class;
112 insn_subclass_t subclass;
113 struct skipclass *nxt;
114 } skipclass_t, *linkclass;
115
116 /* Intial classes of instructions to be consider first when
117 disassembling. */
118 static linkclass decodelist = NULL;
119
120 /* ISA mask value enforced via disassembler info options. ARC_OPCODE_NONE
121 value means that no CPU is enforced. */
122
123 static unsigned enforced_isa_mask = ARC_OPCODE_NONE;
124
125 /* True if we want to print using only hex numbers. */
126 static bfd_boolean print_hex = FALSE;
127
128 /* Macros section. */
129
130 #ifdef DEBUG
131 # define pr_debug(fmt, args...) fprintf (stderr, fmt, ##args)
132 #else
133 # define pr_debug(fmt, args...)
134 #endif
135
136 #define ARRANGE_ENDIAN(info, buf) \
137 (info->endian == BFD_ENDIAN_LITTLE ? bfd_getm32 (bfd_getl32 (buf)) \
138 : bfd_getb32 (buf))
139
140 #define BITS(word,s,e) (((word) << (sizeof (word) * 8 - 1 - e)) >> \
141 (s + (sizeof (word) * 8 - 1 - e)))
142 #define OPCODE_32BIT_INSN(word) (BITS ((word), 27, 31))
143
144 /* Functions implementation. */
145
146 /* Initialize private data. */
147 static bfd_boolean
148 init_arc_disasm_info (struct disassemble_info *info)
149 {
150 struct arc_disassemble_info *arc_infop
151 = calloc (sizeof (*arc_infop), 1);
152
153 if (arc_infop == NULL)
154 return FALSE;
155
156 info->private_data = arc_infop;
157 return TRUE;
158 }
159
160 /* Add a new element to the decode list. */
161
162 static void
163 add_to_decodelist (insn_class_t insn_class,
164 insn_subclass_t subclass)
165 {
166 linkclass t = (linkclass) xmalloc (sizeof (skipclass_t));
167
168 t->insn_class = insn_class;
169 t->subclass = subclass;
170 t->nxt = decodelist;
171 decodelist = t;
172 }
173
174 /* Return TRUE if we need to skip the opcode from being
175 disassembled. */
176
177 static bfd_boolean
178 skip_this_opcode (const struct arc_opcode *opcode)
179 {
180 linkclass t = decodelist;
181
182 /* Check opcode for major 0x06, return if it is not in. */
183 if (arc_opcode_len (opcode) == 4
184 && (OPCODE_32BIT_INSN (opcode->opcode) != 0x06
185 /* Can be an APEX extensions. */
186 && OPCODE_32BIT_INSN (opcode->opcode) != 0x07))
187 return FALSE;
188
189 /* or not a known truble class. */
190 switch (opcode->insn_class)
191 {
192 case FLOAT:
193 case DSP:
194 case ARITH:
195 case MPY:
196 break;
197 default:
198 return FALSE;
199 }
200
201 while (t != NULL)
202 {
203 if ((t->insn_class == opcode->insn_class)
204 && (t->subclass == opcode->subclass))
205 return FALSE;
206 t = t->nxt;
207 }
208
209 return TRUE;
210 }
211
212 static bfd_vma
213 bfd_getm32 (unsigned int data)
214 {
215 bfd_vma value = 0;
216
217 value = ((data & 0xff00) | (data & 0xff)) << 16;
218 value |= ((data & 0xff0000) | (data & 0xff000000)) >> 16;
219 return value;
220 }
221
222 static bfd_boolean
223 special_flag_p (const char *opname,
224 const char *flgname)
225 {
226 const struct arc_flag_special *flg_spec;
227 unsigned i, j, flgidx;
228
229 for (i = 0; i < arc_num_flag_special; i++)
230 {
231 flg_spec = &arc_flag_special_cases[i];
232
233 if (strcmp (opname, flg_spec->name))
234 continue;
235
236 /* Found potential special case instruction. */
237 for (j=0;; ++j)
238 {
239 flgidx = flg_spec->flags[j];
240 if (flgidx == 0)
241 break; /* End of the array. */
242
243 if (strcmp (flgname, arc_flag_operands[flgidx].name) == 0)
244 return TRUE;
245 }
246 }
247 return FALSE;
248 }
249
250 /* Find opcode from ARC_TABLE given the instruction described by INSN and
251 INSNLEN. The ISA_MASK restricts the possible matches in ARC_TABLE. */
252
253 static const struct arc_opcode *
254 find_format_from_table (struct disassemble_info *info,
255 const struct arc_opcode *arc_table,
256 unsigned long long insn,
257 unsigned int insn_len,
258 unsigned isa_mask,
259 bfd_boolean *has_limm,
260 bfd_boolean overlaps)
261 {
262 unsigned int i = 0;
263 const struct arc_opcode *opcode = NULL;
264 const struct arc_opcode *t_op = NULL;
265 const unsigned char *opidx;
266 const unsigned char *flgidx;
267 bfd_boolean warn_p = FALSE;
268
269 do
270 {
271 bfd_boolean invalid = FALSE;
272
273 opcode = &arc_table[i++];
274
275 if (!(opcode->cpu & isa_mask))
276 continue;
277
278 if (arc_opcode_len (opcode) != (int) insn_len)
279 continue;
280
281 if ((insn & opcode->mask) != opcode->opcode)
282 continue;
283
284 *has_limm = FALSE;
285
286 /* Possible candidate, check the operands. */
287 for (opidx = opcode->operands; *opidx; opidx++)
288 {
289 int value, limmind;
290 const struct arc_operand *operand = &arc_operands[*opidx];
291
292 if (operand->flags & ARC_OPERAND_FAKE)
293 continue;
294
295 if (operand->extract)
296 value = (*operand->extract) (insn, &invalid);
297 else
298 value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
299
300 /* Check for LIMM indicator. If it is there, then make sure
301 we pick the right format. */
302 limmind = (isa_mask & ARC_OPCODE_ARCV2) ? 0x1E : 0x3E;
303 if (operand->flags & ARC_OPERAND_IR
304 && !(operand->flags & ARC_OPERAND_LIMM))
305 {
306 if ((value == 0x3E && insn_len == 4)
307 || (value == limmind && insn_len == 2))
308 {
309 invalid = TRUE;
310 break;
311 }
312 }
313
314 if (operand->flags & ARC_OPERAND_LIMM
315 && !(operand->flags & ARC_OPERAND_DUPLICATE))
316 *has_limm = TRUE;
317 }
318
319 /* Check the flags. */
320 for (flgidx = opcode->flags; *flgidx; flgidx++)
321 {
322 /* Get a valid flag class. */
323 const struct arc_flag_class *cl_flags = &arc_flag_classes[*flgidx];
324 const unsigned *flgopridx;
325 int foundA = 0, foundB = 0;
326 unsigned int value;
327
328 /* Check first the extensions. */
329 if (cl_flags->flag_class & F_CLASS_EXTEND)
330 {
331 value = (insn & 0x1F);
332 if (arcExtMap_condCodeName (value))
333 continue;
334 }
335
336 /* Check for the implicit flags. */
337 if (cl_flags->flag_class & F_CLASS_IMPLICIT)
338 continue;
339
340 for (flgopridx = cl_flags->flags; *flgopridx; ++flgopridx)
341 {
342 const struct arc_flag_operand *flg_operand =
343 &arc_flag_operands[*flgopridx];
344
345 value = (insn >> flg_operand->shift)
346 & ((1 << flg_operand->bits) - 1);
347 if (value == flg_operand->code)
348 foundA = 1;
349 if (value)
350 foundB = 1;
351 }
352
353 if (!foundA && foundB)
354 {
355 invalid = TRUE;
356 break;
357 }
358 }
359
360 if (invalid)
361 continue;
362
363 if (insn_len == 4
364 && overlaps)
365 {
366 warn_p = TRUE;
367 t_op = opcode;
368 if (skip_this_opcode (opcode))
369 continue;
370 }
371
372 /* The instruction is valid. */
373 return opcode;
374 }
375 while (opcode->mask);
376
377 if (warn_p)
378 {
379 info->fprintf_func (info->stream,
380 _("\nWarning: disassembly may be wrong due to "
381 "guessed opcode class choice.\n"
382 "Use -M<class[,class]> to select the correct "
383 "opcode class(es).\n\t\t\t\t"));
384 return t_op;
385 }
386
387 return NULL;
388 }
389
390 /* Find opcode for INSN, trying various different sources. The instruction
391 length in INSN_LEN will be updated if the instruction requires a LIMM
392 extension.
393
394 A pointer to the opcode is placed into OPCODE_RESULT, and ITER is
395 initialised, ready to iterate over the operands of the found opcode. If
396 the found opcode requires a LIMM then the LIMM value will be loaded into a
397 field of ITER.
398
399 This function returns TRUE in almost all cases, FALSE is reserved to
400 indicate an error (failing to find an opcode is not an error) a returned
401 result of FALSE would indicate that the disassembler can't continue.
402
403 If no matching opcode is found then the returned result will be TRUE, the
404 value placed into OPCODE_RESULT will be NULL, ITER will be undefined, and
405 INSN_LEN will be unchanged.
406
407 If a matching opcode is found, then the returned result will be TRUE, the
408 opcode pointer is placed into OPCODE_RESULT, INSN_LEN will be increased by
409 4 if the instruction requires a LIMM, and the LIMM value will have been
410 loaded into a field of ITER. Finally, ITER will have been initialised so
411 that calls to OPERAND_ITERATOR_NEXT will iterate over the opcode's
412 operands. */
413
414 static bfd_boolean
415 find_format (bfd_vma memaddr,
416 unsigned long long insn,
417 unsigned int * insn_len,
418 unsigned isa_mask,
419 struct disassemble_info * info,
420 const struct arc_opcode ** opcode_result,
421 struct arc_operand_iterator * iter)
422 {
423 const struct arc_opcode *opcode = NULL;
424 bfd_boolean needs_limm;
425 const extInstruction_t *einsn, *i;
426 unsigned limm = 0;
427 struct arc_disassemble_info *arc_infop = info->private_data;
428
429 /* First, try the extension instructions. */
430 if (*insn_len == 4)
431 {
432 einsn = arcExtMap_insn (OPCODE_32BIT_INSN (insn), insn);
433 for (i = einsn; (i != NULL) && (opcode == NULL); i = i->next)
434 {
435 const char *errmsg = NULL;
436
437 opcode = arcExtMap_genOpcode (i, isa_mask, &errmsg);
438 if (opcode == NULL)
439 {
440 (*info->fprintf_func) (info->stream, "\
441 An error occured while generating the extension instruction operations");
442 *opcode_result = NULL;
443 return FALSE;
444 }
445
446 opcode = find_format_from_table (info, opcode, insn, *insn_len,
447 isa_mask, &needs_limm, FALSE);
448 }
449 }
450
451 /* Then, try finding the first match in the opcode table. */
452 if (opcode == NULL)
453 opcode = find_format_from_table (info, arc_opcodes, insn, *insn_len,
454 isa_mask, &needs_limm, TRUE);
455
456 if (needs_limm && opcode != NULL)
457 {
458 bfd_byte buffer[4];
459 int status;
460
461 status = (*info->read_memory_func) (memaddr + *insn_len, buffer,
462 4, info);
463 if (status != 0)
464 {
465 opcode = NULL;
466 }
467 else
468 {
469 limm = ARRANGE_ENDIAN (info, buffer);
470 *insn_len += 4;
471 }
472 }
473
474 if (opcode != NULL)
475 {
476 iter->insn = insn;
477 iter->limm = limm;
478 iter->opcode = opcode;
479 iter->opidx = opcode->operands;
480 }
481
482 *opcode_result = opcode;
483
484 /* Update private data. */
485 arc_infop->opcode = opcode;
486 arc_infop->limm = (needs_limm) ? limm : 0;
487 arc_infop->limm_p = needs_limm;
488
489 return TRUE;
490 }
491
492 static void
493 print_flags (const struct arc_opcode *opcode,
494 unsigned long long *insn,
495 struct disassemble_info *info)
496 {
497 const unsigned char *flgidx;
498 unsigned int value;
499 struct arc_disassemble_info *arc_infop = info->private_data;
500
501 /* Now extract and print the flags. */
502 for (flgidx = opcode->flags; *flgidx; flgidx++)
503 {
504 /* Get a valid flag class. */
505 const struct arc_flag_class *cl_flags = &arc_flag_classes[*flgidx];
506 const unsigned *flgopridx;
507
508 /* Check first the extensions. */
509 if (cl_flags->flag_class & F_CLASS_EXTEND)
510 {
511 const char *name;
512 value = (insn[0] & 0x1F);
513
514 name = arcExtMap_condCodeName (value);
515 if (name)
516 {
517 (*info->fprintf_func) (info->stream, ".%s", name);
518 continue;
519 }
520 }
521
522 for (flgopridx = cl_flags->flags; *flgopridx; ++flgopridx)
523 {
524 const struct arc_flag_operand *flg_operand =
525 &arc_flag_operands[*flgopridx];
526
527 /* Implicit flags are only used for the insn decoder. */
528 if (cl_flags->flag_class & F_CLASS_IMPLICIT)
529 {
530 if (cl_flags->flag_class & F_CLASS_COND)
531 arc_infop->condition_code = flg_operand->code;
532 else if (cl_flags->flag_class & F_CLASS_WB)
533 arc_infop->writeback_mode = flg_operand->code;
534 else if (cl_flags->flag_class & F_CLASS_ZZ)
535 info->data_size = flg_operand->code;
536 continue;
537 }
538
539 if (!flg_operand->favail)
540 continue;
541
542 value = (insn[0] >> flg_operand->shift)
543 & ((1 << flg_operand->bits) - 1);
544 if (value == flg_operand->code)
545 {
546 /* FIXME!: print correctly nt/t flag. */
547 if (!special_flag_p (opcode->name, flg_operand->name))
548 (*info->fprintf_func) (info->stream, ".");
549 else if (info->insn_type == dis_dref)
550 {
551 switch (flg_operand->name[0])
552 {
553 case 'b':
554 info->data_size = 1;
555 break;
556 case 'h':
557 case 'w':
558 info->data_size = 2;
559 break;
560 default:
561 info->data_size = 4;
562 break;
563 }
564 }
565 if (flg_operand->name[0] == 'd'
566 && flg_operand->name[1] == 0)
567 info->branch_delay_insns = 1;
568
569 /* Check if it is a conditional flag. */
570 if (cl_flags->flag_class & F_CLASS_COND)
571 {
572 if (info->insn_type == dis_jsr)
573 info->insn_type = dis_condjsr;
574 else if (info->insn_type == dis_branch)
575 info->insn_type = dis_condbranch;
576 arc_infop->condition_code = flg_operand->code;
577 }
578
579 /* Check for the write back modes. */
580 if (cl_flags->flag_class & F_CLASS_WB)
581 arc_infop->writeback_mode = flg_operand->code;
582
583 (*info->fprintf_func) (info->stream, "%s", flg_operand->name);
584 }
585 }
586 }
587 }
588
589 static const char *
590 get_auxreg (const struct arc_opcode *opcode,
591 int value,
592 unsigned isa_mask)
593 {
594 const char *name;
595 unsigned int i;
596 const struct arc_aux_reg *auxr = &arc_aux_regs[0];
597
598 if (opcode->insn_class != AUXREG)
599 return NULL;
600
601 name = arcExtMap_auxRegName (value);
602 if (name)
603 return name;
604
605 for (i = 0; i < arc_num_aux_regs; i++, auxr++)
606 {
607 if (!(auxr->cpu & isa_mask))
608 continue;
609
610 if (auxr->subclass != NONE)
611 return NULL;
612
613 if (auxr->address == value)
614 return auxr->name;
615 }
616 return NULL;
617 }
618
619 /* Convert a value representing an address type to a string used to refer to
620 the address type in assembly code. */
621
622 static const char *
623 get_addrtype (int value)
624 {
625 if (value < 0 || value > addrtypenames_max)
626 return addrtypeunknown;
627
628 return addrtypenames[value];
629 }
630
631 /* Calculate the instruction length for an instruction starting with MSB
632 and LSB, the most and least significant byte. The ISA_MASK is used to
633 filter the instructions considered to only those that are part of the
634 current architecture.
635
636 The instruction lengths are calculated from the ARC_OPCODE table, and
637 cached for later use. */
638
639 static unsigned int
640 arc_insn_length (bfd_byte msb, bfd_byte lsb, struct disassemble_info *info)
641 {
642 bfd_byte major_opcode = msb >> 3;
643
644 switch (info->mach)
645 {
646 case bfd_mach_arc_arc700:
647 /* The nps400 extension set requires this special casing of the
648 instruction length calculation. Right now this is not causing any
649 problems as none of the known extensions overlap in opcode space,
650 but, if they ever do then we might need to start carrying
651 information around in the elf about which extensions are in use. */
652 if (major_opcode == 0xb)
653 {
654 bfd_byte minor_opcode = lsb & 0x1f;
655
656 if (minor_opcode < 4)
657 return 6;
658 else if (minor_opcode == 0x10 || minor_opcode == 0x11)
659 return 8;
660 }
661 if (major_opcode == 0xa)
662 {
663 return 8;
664 }
665 /* Fall through. */
666 case bfd_mach_arc_arc600:
667 return (major_opcode > 0xb) ? 2 : 4;
668 break;
669
670 case bfd_mach_arc_arcv2:
671 return (major_opcode > 0x7) ? 2 : 4;
672 break;
673
674 default:
675 abort ();
676 }
677 }
678
679 /* Extract and return the value of OPERAND from the instruction whose value
680 is held in the array INSN. */
681
682 static int
683 extract_operand_value (const struct arc_operand *operand,
684 unsigned long long insn,
685 unsigned limm)
686 {
687 int value;
688
689 /* Read the limm operand, if required. */
690 if (operand->flags & ARC_OPERAND_LIMM)
691 /* The second part of the instruction value will have been loaded as
692 part of the find_format call made earlier. */
693 value = limm;
694 else
695 {
696 if (operand->extract)
697 value = (*operand->extract) (insn, (int *) NULL);
698 else
699 {
700 if (operand->flags & ARC_OPERAND_ALIGNED32)
701 {
702 value = (insn >> operand->shift)
703 & ((1 << (operand->bits - 2)) - 1);
704 value = value << 2;
705 }
706 else
707 {
708 value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
709 }
710 if (operand->flags & ARC_OPERAND_SIGNED)
711 {
712 int signbit = 1 << (operand->bits - 1);
713 value = (value ^ signbit) - signbit;
714 }
715 }
716 }
717
718 return value;
719 }
720
721 /* Find the next operand, and the operands value from ITER. Return TRUE if
722 there is another operand, otherwise return FALSE. If there is an
723 operand returned then the operand is placed into OPERAND, and the value
724 into VALUE. If there is no operand returned then OPERAND and VALUE are
725 unchanged. */
726
727 static bfd_boolean
728 operand_iterator_next (struct arc_operand_iterator *iter,
729 const struct arc_operand **operand,
730 int *value)
731 {
732 if (*iter->opidx == 0)
733 {
734 *operand = NULL;
735 return FALSE;
736 }
737
738 *operand = &arc_operands[*iter->opidx];
739 *value = extract_operand_value (*operand, iter->insn, iter->limm);
740 iter->opidx++;
741
742 return TRUE;
743 }
744
745 /* Helper for parsing the options. */
746
747 static void
748 parse_option (const char *option)
749 {
750 if (disassembler_options_cmp (option, "dsp") == 0)
751 add_to_decodelist (DSP, NONE);
752
753 else if (disassembler_options_cmp (option, "spfp") == 0)
754 add_to_decodelist (FLOAT, SPX);
755
756 else if (disassembler_options_cmp (option, "dpfp") == 0)
757 add_to_decodelist (FLOAT, DPX);
758
759 else if (disassembler_options_cmp (option, "quarkse_em") == 0)
760 {
761 add_to_decodelist (FLOAT, DPX);
762 add_to_decodelist (FLOAT, SPX);
763 add_to_decodelist (FLOAT, QUARKSE1);
764 add_to_decodelist (FLOAT, QUARKSE2);
765 }
766
767 else if (disassembler_options_cmp (option, "fpuda") == 0)
768 add_to_decodelist (FLOAT, DPA);
769
770 else if (disassembler_options_cmp (option, "nps400") == 0)
771 {
772 add_to_decodelist (ACL, NPS400);
773 add_to_decodelist (ARITH, NPS400);
774 add_to_decodelist (BITOP, NPS400);
775 add_to_decodelist (BMU, NPS400);
776 add_to_decodelist (CONTROL, NPS400);
777 add_to_decodelist (DMA, NPS400);
778 add_to_decodelist (DPI, NPS400);
779 add_to_decodelist (MEMORY, NPS400);
780 add_to_decodelist (MISC, NPS400);
781 add_to_decodelist (NET, NPS400);
782 add_to_decodelist (PMU, NPS400);
783 add_to_decodelist (PROTOCOL_DECODE, NPS400);
784 add_to_decodelist (ULTRAIP, NPS400);
785 }
786
787 else if (disassembler_options_cmp (option, "fpus") == 0)
788 {
789 add_to_decodelist (FLOAT, SP);
790 add_to_decodelist (FLOAT, CVT);
791 }
792
793 else if (disassembler_options_cmp (option, "fpud") == 0)
794 {
795 add_to_decodelist (FLOAT, DP);
796 add_to_decodelist (FLOAT, CVT);
797 }
798 else if (CONST_STRNEQ (option, "hex"))
799 print_hex = TRUE;
800 else
801 /* xgettext:c-format */
802 opcodes_error_handler (_("unrecognised disassembler option: %s"), option);
803 }
804
805 #define ARC_CPU_TYPE_A6xx(NAME,EXTRA) \
806 { #NAME, ARC_OPCODE_ARC600, "ARC600" }
807 #define ARC_CPU_TYPE_A7xx(NAME,EXTRA) \
808 { #NAME, ARC_OPCODE_ARC700, "ARC700" }
809 #define ARC_CPU_TYPE_AV2EM(NAME,EXTRA) \
810 { #NAME, ARC_OPCODE_ARCv2EM, "ARC EM" }
811 #define ARC_CPU_TYPE_AV2HS(NAME,EXTRA) \
812 { #NAME, ARC_OPCODE_ARCv2HS, "ARC HS" }
813 #define ARC_CPU_TYPE_NONE \
814 { 0, 0, 0 }
815
816 /* A table of CPU names and opcode sets. */
817 static const struct cpu_type
818 {
819 const char *name;
820 unsigned flags;
821 const char *isa;
822 }
823 cpu_types[] =
824 {
825 #include "elf/arc-cpu.def"
826 };
827
828 /* Helper for parsing the CPU options. Accept any of the ARC architectures
829 values. OPTION should be a value passed to cpu=. */
830
831 static unsigned
832 parse_cpu_option (const char *option)
833 {
834 int i;
835
836 for (i = 0; cpu_types[i].name; ++i)
837 {
838 if (!disassembler_options_cmp (cpu_types[i].name, option))
839 {
840 return cpu_types[i].flags;
841 }
842 }
843
844 /* xgettext:c-format */
845 opcodes_error_handler (_("unrecognised disassembler CPU option: %s"), option);
846 return ARC_OPCODE_NONE;
847 }
848
849 /* Go over the options list and parse it. */
850
851 static void
852 parse_disassembler_options (const char *options)
853 {
854 const char *option;
855
856 if (options == NULL)
857 return;
858
859 /* Disassembler might be reused for difference CPU's, and cpu option set for
860 the first one shouldn't be applied to second (which might not have
861 explicit cpu in its options. Therefore it is required to reset enforced
862 CPU when new options are being parsed. */
863 enforced_isa_mask = ARC_OPCODE_NONE;
864
865 FOR_EACH_DISASSEMBLER_OPTION (option, options)
866 {
867 /* A CPU option? Cannot use STRING_COMMA_LEN because strncmp is also a
868 preprocessor macro. */
869 if (strncmp (option, "cpu=", 4) == 0)
870 /* Strip leading `cpu=`. */
871 enforced_isa_mask = parse_cpu_option (option + 4);
872 else
873 parse_option (option);
874 }
875 }
876
877 /* Return the instruction type for an instruction described by OPCODE. */
878
879 static enum dis_insn_type
880 arc_opcode_to_insn_type (const struct arc_opcode *opcode)
881 {
882 enum dis_insn_type insn_type;
883
884 switch (opcode->insn_class)
885 {
886 case BRANCH:
887 case BBIT0:
888 case BBIT1:
889 case BI:
890 case BIH:
891 case BRCC:
892 case EI:
893 case JLI:
894 case JUMP:
895 case LOOP:
896 if (!strncmp (opcode->name, "bl", 2)
897 || !strncmp (opcode->name, "jl", 2))
898 {
899 if (opcode->subclass == COND)
900 insn_type = dis_condjsr;
901 else
902 insn_type = dis_jsr;
903 }
904 else
905 {
906 if (opcode->subclass == COND)
907 insn_type = dis_condbranch;
908 else
909 insn_type = dis_branch;
910 }
911 break;
912 case LOAD:
913 case STORE:
914 case MEMORY:
915 case ENTER:
916 case PUSH:
917 case POP:
918 insn_type = dis_dref;
919 break;
920 case LEAVE:
921 insn_type = dis_branch;
922 break;
923 default:
924 insn_type = dis_nonbranch;
925 break;
926 }
927
928 return insn_type;
929 }
930
931 /* Disassemble ARC instructions. */
932
933 static int
934 print_insn_arc (bfd_vma memaddr,
935 struct disassemble_info *info)
936 {
937 bfd_byte buffer[8];
938 unsigned int highbyte, lowbyte;
939 int status;
940 unsigned int insn_len;
941 unsigned long long insn = 0;
942 unsigned isa_mask = ARC_OPCODE_NONE;
943 const struct arc_opcode *opcode;
944 bfd_boolean need_comma;
945 bfd_boolean open_braket;
946 int size;
947 const struct arc_operand *operand;
948 int value, vpcl;
949 struct arc_operand_iterator iter;
950 struct arc_disassemble_info *arc_infop;
951 bfd_boolean rpcl = FALSE, rset = FALSE;
952
953 if (info->disassembler_options)
954 {
955 parse_disassembler_options (info->disassembler_options);
956
957 /* Avoid repeated parsing of the options. */
958 info->disassembler_options = NULL;
959 }
960
961 if (info->private_data == NULL && !init_arc_disasm_info (info))
962 return -1;
963
964 memset (&iter, 0, sizeof (iter));
965 highbyte = ((info->endian == BFD_ENDIAN_LITTLE) ? 1 : 0);
966 lowbyte = ((info->endian == BFD_ENDIAN_LITTLE) ? 0 : 1);
967
968 /* Figure out CPU type, unless it was enforced via disassembler options. */
969 if (enforced_isa_mask == ARC_OPCODE_NONE)
970 {
971 Elf_Internal_Ehdr *header = NULL;
972
973 if (info->section && info->section->owner)
974 header = elf_elfheader (info->section->owner);
975
976 switch (info->mach)
977 {
978 case bfd_mach_arc_arc700:
979 isa_mask = ARC_OPCODE_ARC700;
980 break;
981
982 case bfd_mach_arc_arc600:
983 isa_mask = ARC_OPCODE_ARC600;
984 break;
985
986 case bfd_mach_arc_arcv2:
987 default:
988 isa_mask = ARC_OPCODE_ARCv2EM;
989 /* TODO: Perhaps remove definition of header since it is only used at
990 this location. */
991 if (header != NULL
992 && (header->e_flags & EF_ARC_MACH_MSK) == EF_ARC_CPU_ARCV2HS)
993 isa_mask = ARC_OPCODE_ARCv2HS;
994 break;
995 }
996 }
997 else
998 isa_mask = enforced_isa_mask;
999
1000 if (isa_mask == ARC_OPCODE_ARCv2HS)
1001 {
1002 /* FPU instructions are not extensions for HS. */
1003 add_to_decodelist (FLOAT, SP);
1004 add_to_decodelist (FLOAT, DP);
1005 add_to_decodelist (FLOAT, CVT);
1006 }
1007
1008 /* This variable may be set by the instruction decoder. It suggests
1009 the number of bytes objdump should display on a single line. If
1010 the instruction decoder sets this, it should always set it to
1011 the same value in order to get reasonable looking output. */
1012
1013 info->bytes_per_line = 8;
1014
1015 /* In the next lines, we set two info variables control the way
1016 objdump displays the raw data. For example, if bytes_per_line is
1017 8 and bytes_per_chunk is 4, the output will look like this:
1018 00: 00000000 00000000
1019 with the chunks displayed according to "display_endian". */
1020
1021 if (info->section
1022 && !(info->section->flags & SEC_CODE))
1023 {
1024 /* This is not a CODE section. */
1025 switch (info->section->size)
1026 {
1027 case 1:
1028 case 2:
1029 case 4:
1030 size = info->section->size;
1031 break;
1032 default:
1033 size = (info->section->size & 0x01) ? 1 : 4;
1034 break;
1035 }
1036 info->bytes_per_chunk = 1;
1037 info->display_endian = info->endian;
1038 }
1039 else
1040 {
1041 size = 2;
1042 info->bytes_per_chunk = 2;
1043 info->display_endian = info->endian;
1044 }
1045
1046 /* Read the insn into a host word. */
1047 status = (*info->read_memory_func) (memaddr, buffer, size, info);
1048
1049 if (status != 0)
1050 {
1051 (*info->memory_error_func) (status, memaddr, info);
1052 return -1;
1053 }
1054
1055 if (info->section
1056 && !(info->section->flags & SEC_CODE))
1057 {
1058 /* Data section. */
1059 unsigned long data;
1060
1061 data = bfd_get_bits (buffer, size * 8,
1062 info->display_endian == BFD_ENDIAN_BIG);
1063 switch (size)
1064 {
1065 case 1:
1066 (*info->fprintf_func) (info->stream, ".byte\t0x%02lx", data);
1067 break;
1068 case 2:
1069 (*info->fprintf_func) (info->stream, ".short\t0x%04lx", data);
1070 break;
1071 case 4:
1072 (*info->fprintf_func) (info->stream, ".word\t0x%08lx", data);
1073 break;
1074 default:
1075 abort ();
1076 }
1077 return size;
1078 }
1079
1080 insn_len = arc_insn_length (buffer[highbyte], buffer[lowbyte], info);
1081 pr_debug ("instruction length = %d bytes\n", insn_len);
1082 arc_infop = info->private_data;
1083 arc_infop->insn_len = insn_len;
1084
1085 switch (insn_len)
1086 {
1087 case 2:
1088 insn = (buffer[highbyte] << 8) | buffer[lowbyte];
1089 break;
1090
1091 case 4:
1092 {
1093 /* This is a long instruction: Read the remaning 2 bytes. */
1094 status = (*info->read_memory_func) (memaddr + 2, &buffer[2], 2, info);
1095 if (status != 0)
1096 {
1097 (*info->memory_error_func) (status, memaddr + 2, info);
1098 return -1;
1099 }
1100 insn = (unsigned long long) ARRANGE_ENDIAN (info, buffer);
1101 }
1102 break;
1103
1104 case 6:
1105 {
1106 status = (*info->read_memory_func) (memaddr + 2, &buffer[2], 4, info);
1107 if (status != 0)
1108 {
1109 (*info->memory_error_func) (status, memaddr + 2, info);
1110 return -1;
1111 }
1112 insn = (unsigned long long) ARRANGE_ENDIAN (info, &buffer[2]);
1113 insn |= ((unsigned long long) buffer[highbyte] << 40)
1114 | ((unsigned long long) buffer[lowbyte] << 32);
1115 }
1116 break;
1117
1118 case 8:
1119 {
1120 status = (*info->read_memory_func) (memaddr + 2, &buffer[2], 6, info);
1121 if (status != 0)
1122 {
1123 (*info->memory_error_func) (status, memaddr + 2, info);
1124 return -1;
1125 }
1126 insn =
1127 ((((unsigned long long) ARRANGE_ENDIAN (info, buffer)) << 32)
1128 | ((unsigned long long) ARRANGE_ENDIAN (info, &buffer[4])));
1129 }
1130 break;
1131
1132 default:
1133 /* There is no instruction whose length is not 2, 4, 6, or 8. */
1134 abort ();
1135 }
1136
1137 pr_debug ("instruction value = %llx\n", insn);
1138
1139 /* Set some defaults for the insn info. */
1140 info->insn_info_valid = 1;
1141 info->branch_delay_insns = 0;
1142 info->data_size = 4;
1143 info->insn_type = dis_nonbranch;
1144 info->target = 0;
1145 info->target2 = 0;
1146
1147 /* FIXME to be moved in dissasemble_init_for_target. */
1148 info->disassembler_needs_relocs = TRUE;
1149
1150 /* Find the first match in the opcode table. */
1151 if (!find_format (memaddr, insn, &insn_len, isa_mask, info, &opcode, &iter))
1152 return -1;
1153
1154 if (!opcode)
1155 {
1156 switch (insn_len)
1157 {
1158 case 2:
1159 (*info->fprintf_func) (info->stream, ".shor\t%#04llx",
1160 insn & 0xffff);
1161 break;
1162 case 4:
1163 (*info->fprintf_func) (info->stream, ".word\t%#08llx",
1164 insn & 0xffffffff);
1165 break;
1166 case 6:
1167 (*info->fprintf_func) (info->stream, ".long\t%#08llx",
1168 insn & 0xffffffff);
1169 (*info->fprintf_func) (info->stream, ".long\t%#04llx",
1170 (insn >> 32) & 0xffff);
1171 break;
1172 case 8:
1173 (*info->fprintf_func) (info->stream, ".long\t%#08llx",
1174 insn & 0xffffffff);
1175 (*info->fprintf_func) (info->stream, ".long\t%#08llx",
1176 insn >> 32);
1177 break;
1178 default:
1179 abort ();
1180 }
1181
1182 info->insn_type = dis_noninsn;
1183 return insn_len;
1184 }
1185
1186 /* Print the mnemonic. */
1187 (*info->fprintf_func) (info->stream, "%s", opcode->name);
1188
1189 /* Preselect the insn class. */
1190 info->insn_type = arc_opcode_to_insn_type (opcode);
1191
1192 pr_debug ("%s: 0x%08llx\n", opcode->name, opcode->opcode);
1193
1194 print_flags (opcode, &insn, info);
1195
1196 if (opcode->operands[0] != 0)
1197 (*info->fprintf_func) (info->stream, "\t");
1198
1199 need_comma = FALSE;
1200 open_braket = FALSE;
1201 arc_infop->operands_count = 0;
1202
1203 /* Now extract and print the operands. */
1204 operand = NULL;
1205 vpcl = 0;
1206 while (operand_iterator_next (&iter, &operand, &value))
1207 {
1208 if (open_braket && (operand->flags & ARC_OPERAND_BRAKET))
1209 {
1210 (*info->fprintf_func) (info->stream, "]");
1211 open_braket = FALSE;
1212 continue;
1213 }
1214
1215 /* Only take input from real operands. */
1216 if (ARC_OPERAND_IS_FAKE (operand))
1217 continue;
1218
1219 if ((operand->flags & ARC_OPERAND_IGNORE)
1220 && (operand->flags & ARC_OPERAND_IR)
1221 && value == -1)
1222 continue;
1223
1224 if (operand->flags & ARC_OPERAND_COLON)
1225 {
1226 (*info->fprintf_func) (info->stream, ":");
1227 continue;
1228 }
1229
1230 if (need_comma)
1231 (*info->fprintf_func) (info->stream, ",");
1232
1233 if (!open_braket && (operand->flags & ARC_OPERAND_BRAKET))
1234 {
1235 (*info->fprintf_func) (info->stream, "[");
1236 open_braket = TRUE;
1237 need_comma = FALSE;
1238 continue;
1239 }
1240
1241 need_comma = TRUE;
1242
1243 if (operand->flags & ARC_OPERAND_PCREL)
1244 {
1245 rpcl = TRUE;
1246 vpcl = value;
1247 rset = TRUE;
1248
1249 info->target = (bfd_vma) (memaddr & ~3) + value;
1250 }
1251 else if (!(operand->flags & ARC_OPERAND_IR))
1252 {
1253 vpcl = value;
1254 rset = TRUE;
1255 }
1256
1257 /* Print the operand as directed by the flags. */
1258 if (operand->flags & ARC_OPERAND_IR)
1259 {
1260 const char *rname;
1261
1262 assert (value >=0 && value < 64);
1263 rname = arcExtMap_coreRegName (value);
1264 if (!rname)
1265 rname = regnames[value];
1266 (*info->fprintf_func) (info->stream, "%s", rname);
1267 if (operand->flags & ARC_OPERAND_TRUNCATE)
1268 {
1269 rname = arcExtMap_coreRegName (value + 1);
1270 if (!rname)
1271 rname = regnames[value + 1];
1272 (*info->fprintf_func) (info->stream, "%s", rname);
1273 }
1274 if (value == 63)
1275 rpcl = TRUE;
1276 else
1277 rpcl = FALSE;
1278 }
1279 else if (operand->flags & ARC_OPERAND_LIMM)
1280 {
1281 const char *rname = get_auxreg (opcode, value, isa_mask);
1282
1283 if (rname && open_braket)
1284 (*info->fprintf_func) (info->stream, "%s", rname);
1285 else
1286 {
1287 (*info->fprintf_func) (info->stream, "%#x", value);
1288 if (info->insn_type == dis_branch
1289 || info->insn_type == dis_jsr)
1290 info->target = (bfd_vma) value;
1291 }
1292 }
1293 else if (operand->flags & ARC_OPERAND_SIGNED)
1294 {
1295 const char *rname = get_auxreg (opcode, value, isa_mask);
1296 if (rname && open_braket)
1297 (*info->fprintf_func) (info->stream, "%s", rname);
1298 else
1299 {
1300 if (print_hex)
1301 (*info->fprintf_func) (info->stream, "%#x", value);
1302 else
1303 (*info->fprintf_func) (info->stream, "%d", value);
1304 }
1305 }
1306 else if (operand->flags & ARC_OPERAND_ADDRTYPE)
1307 {
1308 const char *addrtype = get_addrtype (value);
1309 (*info->fprintf_func) (info->stream, "%s", addrtype);
1310 /* A colon follow an address type. */
1311 need_comma = FALSE;
1312 }
1313 else
1314 {
1315 if (operand->flags & ARC_OPERAND_TRUNCATE
1316 && !(operand->flags & ARC_OPERAND_ALIGNED32)
1317 && !(operand->flags & ARC_OPERAND_ALIGNED16)
1318 && value >= 0 && value <= 14)
1319 {
1320 /* Leave/Enter mnemonics. */
1321 switch (value)
1322 {
1323 case 0:
1324 need_comma = FALSE;
1325 break;
1326 case 1:
1327 (*info->fprintf_func) (info->stream, "r13");
1328 break;
1329 default:
1330 (*info->fprintf_func) (info->stream, "r13-%s",
1331 regnames[13 + value - 1]);
1332 break;
1333 }
1334 rpcl = FALSE;
1335 rset = FALSE;
1336 }
1337 else
1338 {
1339 const char *rname = get_auxreg (opcode, value, isa_mask);
1340 if (rname && open_braket)
1341 (*info->fprintf_func) (info->stream, "%s", rname);
1342 else
1343 (*info->fprintf_func) (info->stream, "%#x", value);
1344 }
1345 }
1346
1347 if (operand->flags & ARC_OPERAND_LIMM)
1348 {
1349 arc_infop->operands[arc_infop->operands_count].kind
1350 = ARC_OPERAND_KIND_LIMM;
1351 /* It is not important to have exactly the LIMM indicator
1352 here. */
1353 arc_infop->operands[arc_infop->operands_count].value = 63;
1354 }
1355 else
1356 {
1357 arc_infop->operands[arc_infop->operands_count].value = value;
1358 arc_infop->operands[arc_infop->operands_count].kind
1359 = (operand->flags & ARC_OPERAND_IR
1360 ? ARC_OPERAND_KIND_REG
1361 : ARC_OPERAND_KIND_SHIMM);
1362 }
1363 arc_infop->operands_count ++;
1364 }
1365
1366 /* Pretty print extra info for pc-relative operands. */
1367 if (rpcl && rset)
1368 {
1369 if (info->flags & INSN_HAS_RELOC)
1370 /* If the instruction has a reloc associated with it, then the
1371 offset field in the instruction will actually be the addend
1372 for the reloc. (We are using REL type relocs). In such
1373 cases, we can ignore the pc when computing addresses, since
1374 the addend is not currently pc-relative. */
1375 memaddr = 0;
1376
1377 (*info->fprintf_func) (info->stream, "\t;");
1378 (*info->print_address_func) ((memaddr & ~3) + vpcl, info);
1379 }
1380
1381 return insn_len;
1382 }
1383
1384
1385 disassembler_ftype
1386 arc_get_disassembler (bfd *abfd)
1387 {
1388 /* BFD my be absent, if opcodes is invoked from the debugger that
1389 has connected to remote target and doesn't have an ELF file. */
1390 if (abfd != NULL)
1391 {
1392 /* Read the extension insns and registers, if any. */
1393 build_ARC_extmap (abfd);
1394 #ifdef DEBUG
1395 dump_ARC_extmap ();
1396 #endif
1397 }
1398
1399 return print_insn_arc;
1400 }
1401
1402 void
1403 print_arc_disassembler_options (FILE *stream)
1404 {
1405 int i;
1406
1407 fprintf (stream, _("\n\
1408 The following ARC specific disassembler options are supported for use \n\
1409 with -M switch (multiple options should be separated by commas):\n"));
1410
1411 /* cpu=... options. */
1412 for (i = 0; cpu_types[i].name; ++i)
1413 {
1414 /* As of now all value CPU values are less than 16 characters. */
1415 fprintf (stream, " cpu=%-16s\tEnforce %s ISA.\n",
1416 cpu_types[i].name, cpu_types[i].isa);
1417 }
1418
1419 fprintf (stream, _("\
1420 dsp Recognize DSP instructions.\n"));
1421 fprintf (stream, _("\
1422 spfp Recognize FPX SP instructions.\n"));
1423 fprintf (stream, _("\
1424 dpfp Recognize FPX DP instructions.\n"));
1425 fprintf (stream, _("\
1426 quarkse_em Recognize FPU QuarkSE-EM instructions.\n"));
1427 fprintf (stream, _("\
1428 fpuda Recognize double assist FPU instructions.\n"));
1429 fprintf (stream, _("\
1430 fpus Recognize single precision FPU instructions.\n"));
1431 fprintf (stream, _("\
1432 fpud Recognize double precision FPU instructions.\n"));
1433 fprintf (stream, _("\
1434 nps400 Recognize NPS400 instructions.\n"));
1435 fprintf (stream, _("\
1436 hex Use only hexadecimal number to print immediates.\n"));
1437 }
1438
1439 void arc_insn_decode (bfd_vma addr,
1440 struct disassemble_info *info,
1441 disassembler_ftype disasm_func,
1442 struct arc_instruction *insn)
1443 {
1444 const struct arc_opcode *opcode;
1445 struct arc_disassemble_info *arc_infop;
1446
1447 /* Ensure that insn would be in the reset state. */
1448 memset (insn, 0, sizeof (struct arc_instruction));
1449
1450 /* There was an error when disassembling, for example memory read error. */
1451 if (disasm_func (addr, info) < 0)
1452 {
1453 insn->valid = FALSE;
1454 return;
1455 }
1456
1457 assert (info->private_data != NULL);
1458 arc_infop = info->private_data;
1459
1460 insn->length = arc_infop->insn_len;;
1461 insn->address = addr;
1462
1463 /* Quick exit if memory at this address is not an instruction. */
1464 if (info->insn_type == dis_noninsn)
1465 {
1466 insn->valid = FALSE;
1467 return;
1468 }
1469
1470 insn->valid = TRUE;
1471
1472 opcode = (const struct arc_opcode *) arc_infop->opcode;
1473 insn->insn_class = opcode->insn_class;
1474 insn->limm_value = arc_infop->limm;
1475 insn->limm_p = arc_infop->limm_p;
1476
1477 insn->is_control_flow = (info->insn_type == dis_branch
1478 || info->insn_type == dis_condbranch
1479 || info->insn_type == dis_jsr
1480 || info->insn_type == dis_condjsr);
1481
1482 insn->has_delay_slot = info->branch_delay_insns;
1483 insn->writeback_mode
1484 = (enum arc_ldst_writeback_mode) arc_infop->writeback_mode;
1485 insn->data_size_mode = info->data_size;
1486 insn->condition_code = arc_infop->condition_code;
1487 memcpy (insn->operands, arc_infop->operands,
1488 sizeof (struct arc_insn_operand) * MAX_INSN_ARGS);
1489 insn->operands_count = arc_infop->operands_count;
1490 }
1491
1492 /* Local variables:
1493 eval: (c-set-style "gnu")
1494 indent-tabs-mode: t
1495 End: */
This page took 0.085212 seconds and 5 git commands to generate.