Automatic Copyright Year update after running gdb/copyright.py
[deliverable/binutils-gdb.git] / sim / aarch64 / cpustate.h
1 /* cpustate.h -- Prototypes for AArch64 cpu state functions.
2
3 Copyright (C) 2015-2022 Free Software Foundation, Inc.
4
5 Contributed by Red Hat.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #ifndef _CPU_STATE_H
23 #define _CPU_STATE_H
24
25 #include <sys/types.h>
26 #include <stdint.h>
27 #include <inttypes.h>
28
29 #include "sim/sim.h"
30
31 /* Symbolic names used to identify general registers which also match
32 the registers indices in machine code.
33
34 We have 32 general registers which can be read/written as 32 bit or
35 64 bit sources/sinks and are appropriately referred to as Wn or Xn
36 in the assembly code. Some instructions mix these access modes
37 (e.g. ADD X0, X1, W2) so the implementation of the instruction
38 needs to *know* which type of read or write access is required. */
39 typedef enum GReg
40 {
41 R0,
42 R1,
43 R2,
44 R3,
45 R4,
46 R5,
47 R6,
48 R7,
49 R8,
50 R9,
51 R10,
52 R11,
53 R12,
54 R13,
55 R14,
56 R15,
57 R16,
58 R17,
59 R18,
60 R19,
61 R20,
62 R21,
63 R22,
64 R23,
65 R24,
66 R25,
67 R26,
68 R27,
69 R28,
70 R29,
71 R30,
72 R31,
73 FP = R29,
74 LR = R30,
75 SP = R31,
76 ZR = R31
77 } GReg;
78
79 /* Symbolic names used to refer to floating point registers which also
80 match the registers indices in machine code.
81
82 We have 32 FP registers which can be read/written as 8, 16, 32, 64
83 and 128 bit sources/sinks and are appropriately referred to as Bn,
84 Hn, Sn, Dn and Qn in the assembly code. Some instructions mix these
85 access modes (e.g. FCVT S0, D0) so the implementation of the
86 instruction needs to *know* which type of read or write access is
87 required. */
88
89 typedef enum VReg
90 {
91 V0,
92 V1,
93 V2,
94 V3,
95 V4,
96 V5,
97 V6,
98 V7,
99 V8,
100 V9,
101 V10,
102 V11,
103 V12,
104 V13,
105 V14,
106 V15,
107 V16,
108 V17,
109 V18,
110 V19,
111 V20,
112 V21,
113 V22,
114 V23,
115 V24,
116 V25,
117 V26,
118 V27,
119 V28,
120 V29,
121 V30,
122 V31,
123 } VReg;
124
125 /* All the different integer bit patterns for the components of a
126 general register are overlaid here using a union so as to allow
127 all reading and writing of the desired bits. Note that we have
128 to take care when emulating a big-endian AArch64 as we are
129 running on a little endian host. */
130
131 typedef union GRegisterValue
132 {
133 #if !WORDS_BIGENDIAN
134 int8_t s8;
135 int16_t s16;
136 int32_t s32;
137 int64_t s64;
138 uint8_t u8;
139 uint16_t u16;
140 uint32_t u32;
141 uint64_t u64;
142 #else
143 struct { int64_t :56; int8_t s8; };
144 struct { int64_t :48; int16_t s16; };
145 struct { int64_t :32; int32_t s32; };
146 int64_t s64;
147 struct { uint64_t :56; uint8_t u8; };
148 struct { uint64_t :48; uint16_t u16; };
149 struct { uint64_t :32; uint32_t u32; };
150 uint64_t u64;
151 #endif
152 } GRegister;
153
154 /* Float registers provide for storage of a single, double or quad
155 word format float in the same register. Single floats are not
156 paired within each double register as per 32 bit arm. Instead each
157 128 bit register Vn embeds the bits for Sn, and Dn in the lower
158 quarter and half, respectively, of the bits for Qn.
159
160 The upper bits can also be accessed as single or double floats by
161 the float vector operations using indexing e.g. V1.D[1], V1.S[3]
162 etc and, for SIMD operations using a horrible index range notation.
163
164 The spec also talks about accessing float registers as half words
165 and bytes with Hn and Bn providing access to the low 16 and 8 bits
166 of Vn but it is not really clear what these bits represent. We can
167 probably ignore this for Java anyway. However, we do need to access
168 the raw bits at 32 and 64 bit resolution to load to/from integer
169 registers.
170
171 Note - we do not use the long double type. Aliasing issues between
172 integer and float values mean that it is unreliable to use them. */
173
174 typedef union FRegisterValue
175 {
176 float s;
177 double d;
178
179 uint64_t v[2];
180 uint32_t w[4];
181 uint16_t h[8];
182 uint8_t b[16];
183
184 int64_t V[2];
185 int32_t W[4];
186 int16_t H[8];
187 int8_t B[16];
188
189 float S[4];
190 double D[2];
191
192 } FRegister;
193
194 /* Condition register bit select values.
195
196 The order of bits here is important because some of
197 the flag setting conditional instructions employ a
198 bit field to populate the flags when a false condition
199 bypasses execution of the operation and we want to
200 be able to assign the flags register using the
201 supplied value. */
202
203 typedef enum FlagIdx
204 {
205 V_IDX = 0,
206 C_IDX = 1,
207 Z_IDX = 2,
208 N_IDX = 3
209 } FlagIdx;
210
211 typedef enum FlagMask
212 {
213 V = 1 << V_IDX,
214 C = 1 << C_IDX,
215 Z = 1 << Z_IDX,
216 N = 1 << N_IDX
217 } FlagMask;
218
219 #define CPSR_ALL_FLAGS (V | C | Z | N)
220
221 typedef uint32_t FlagsRegister;
222
223 /* FPSR register -- floating point status register
224
225 This register includes IDC, IXC, UFC, OFC, DZC, IOC and QC bits,
226 and the floating point N, Z, C, V bits but the latter are unused in
227 aarch64 mode. The sim ignores QC for now.
228
229 Bit positions are as per the ARMv7 FPSCR register
230
231 IDC : 7 ==> Input Denormal (cumulative exception bit)
232 IXC : 4 ==> Inexact
233 UFC : 3 ==> Underflow
234 OFC : 2 ==> Overflow
235 DZC : 1 ==> Division by Zero
236 IOC : 0 ==> Invalid Operation
237
238 The rounding mode is held in bits [23,22] defined as follows:
239
240 0b00 Round to Nearest (RN) mode
241 0b01 Round towards Plus Infinity (RP) mode
242 0b10 Round towards Minus Infinity (RM) mode
243 0b11 Round towards Zero (RZ) mode. */
244
245 /* Indices for bits in the FPSR register value. */
246 typedef enum FPSRIdx
247 {
248 IO_IDX = 0,
249 DZ_IDX = 1,
250 OF_IDX = 2,
251 UF_IDX = 3,
252 IX_IDX = 4,
253 ID_IDX = 7
254 } FPSRIdx;
255
256 /* Corresponding bits as numeric values. */
257 typedef enum FPSRMask
258 {
259 IO = (1 << IO_IDX),
260 DZ = (1 << DZ_IDX),
261 OF = (1 << OF_IDX),
262 UF = (1 << UF_IDX),
263 IX = (1 << IX_IDX),
264 ID = (1 << ID_IDX)
265 } FPSRMask;
266
267 #define FPSR_ALL_FPSRS (IO | DZ | OF | UF | IX | ID)
268
269 /* General Register access functions. */
270 extern uint64_t aarch64_get_reg_u64 (sim_cpu *, GReg, int);
271 extern int64_t aarch64_get_reg_s64 (sim_cpu *, GReg, int);
272 extern uint32_t aarch64_get_reg_u32 (sim_cpu *, GReg, int);
273 extern int32_t aarch64_get_reg_s32 (sim_cpu *, GReg, int);
274 extern uint32_t aarch64_get_reg_u16 (sim_cpu *, GReg, int);
275 extern int32_t aarch64_get_reg_s16 (sim_cpu *, GReg, int);
276 extern uint32_t aarch64_get_reg_u8 (sim_cpu *, GReg, int);
277 extern int32_t aarch64_get_reg_s8 (sim_cpu *, GReg, int);
278
279 extern void aarch64_set_reg_u64 (sim_cpu *, GReg, int, uint64_t);
280 extern void aarch64_set_reg_u32 (sim_cpu *, GReg, int, uint32_t);
281 extern void aarch64_set_reg_s64 (sim_cpu *, GReg, int, int64_t);
282 extern void aarch64_set_reg_s32 (sim_cpu *, GReg, int, int32_t);
283
284 /* FP Register access functions. */
285 extern float aarch64_get_FP_half (sim_cpu *, VReg);
286 extern float aarch64_get_FP_float (sim_cpu *, VReg);
287 extern double aarch64_get_FP_double (sim_cpu *, VReg);
288 extern void aarch64_get_FP_long_double (sim_cpu *, VReg, FRegister *);
289
290 extern void aarch64_set_FP_half (sim_cpu *, VReg, float);
291 extern void aarch64_set_FP_float (sim_cpu *, VReg, float);
292 extern void aarch64_set_FP_double (sim_cpu *, VReg, double);
293 extern void aarch64_set_FP_long_double (sim_cpu *, VReg, FRegister);
294
295 /* PC register accessors. */
296 extern uint64_t aarch64_get_PC (sim_cpu *);
297 extern uint64_t aarch64_get_next_PC (sim_cpu *);
298 extern void aarch64_set_next_PC (sim_cpu *, uint64_t);
299 extern void aarch64_set_next_PC_by_offset (sim_cpu *, int64_t);
300 extern void aarch64_update_PC (sim_cpu *);
301 extern void aarch64_save_LR (sim_cpu *);
302
303 /* Instruction accessor - implemented as a
304 macro as we do not need to annotate it. */
305 #define aarch64_get_instr(cpu) ((cpu)->instr)
306
307 /* Flag register accessors. */
308 extern uint32_t aarch64_get_CPSR (sim_cpu *);
309 extern void aarch64_set_CPSR (sim_cpu *, uint32_t);
310 extern uint32_t aarch64_get_CPSR_bits (sim_cpu *, uint32_t);
311 extern void aarch64_set_CPSR_bits (sim_cpu *, uint32_t, uint32_t);
312 extern uint32_t aarch64_test_CPSR_bit (sim_cpu *, FlagMask);
313 extern void aarch64_set_CPSR_bit (sim_cpu *, FlagMask);
314 extern void aarch64_clear_CPSR_bit (sim_cpu *, FlagMask);
315
316 extern void aarch64_set_FPSR (sim_cpu *, uint32_t);
317 extern uint32_t aarch64_get_FPSR (sim_cpu *);
318 extern void aarch64_set_FPSR_bits (sim_cpu *, uint32_t, uint32_t);
319 extern uint32_t aarch64_get_FPSR_bits (sim_cpu *, uint32_t);
320 extern int aarch64_test_FPSR_bit (sim_cpu *, FPSRMask);
321
322 /* Vector register accessors. */
323 extern uint64_t aarch64_get_vec_u64 (sim_cpu *, VReg, unsigned);
324 extern uint32_t aarch64_get_vec_u32 (sim_cpu *, VReg, unsigned);
325 extern uint16_t aarch64_get_vec_u16 (sim_cpu *, VReg, unsigned);
326 extern uint8_t aarch64_get_vec_u8 (sim_cpu *, VReg, unsigned);
327 extern void aarch64_set_vec_u64 (sim_cpu *, VReg, unsigned, uint64_t);
328 extern void aarch64_set_vec_u32 (sim_cpu *, VReg, unsigned, uint32_t);
329 extern void aarch64_set_vec_u16 (sim_cpu *, VReg, unsigned, uint16_t);
330 extern void aarch64_set_vec_u8 (sim_cpu *, VReg, unsigned, uint8_t);
331
332 extern int64_t aarch64_get_vec_s64 (sim_cpu *, VReg, unsigned);
333 extern int32_t aarch64_get_vec_s32 (sim_cpu *, VReg, unsigned);
334 extern int16_t aarch64_get_vec_s16 (sim_cpu *, VReg, unsigned);
335 extern int8_t aarch64_get_vec_s8 (sim_cpu *, VReg, unsigned);
336 extern void aarch64_set_vec_s64 (sim_cpu *, VReg, unsigned, int64_t);
337 extern void aarch64_set_vec_s32 (sim_cpu *, VReg, unsigned, int32_t);
338 extern void aarch64_set_vec_s16 (sim_cpu *, VReg, unsigned, int16_t);
339 extern void aarch64_set_vec_s8 (sim_cpu *, VReg, unsigned, int8_t);
340
341 extern float aarch64_get_vec_float (sim_cpu *, VReg, unsigned);
342 extern double aarch64_get_vec_double (sim_cpu *, VReg, unsigned);
343 extern void aarch64_set_vec_float (sim_cpu *, VReg, unsigned, float);
344 extern void aarch64_set_vec_double (sim_cpu *, VReg, unsigned, double);
345
346 /* System register accessors. */
347 extern uint64_t aarch64_get_thread_id (sim_cpu *);
348 extern uint32_t aarch64_get_FPCR (sim_cpu *);
349 extern void aarch64_set_FPCR (sim_cpu *, uint32_t);
350
351 #endif /* _CPU_STATE_H */
This page took 0.037055 seconds and 4 git commands to generate.