import gdb-1999-11-08 snapshot
[deliverable/binutils-gdb.git] / sim / common / cgen-par.c
1 /* Simulator parallel routines for CGEN simulators (and maybe others).
2 Copyright (C) 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Solutions.
4
5 This file is part of the GNU instruction set simulator.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "sim-main.h"
22 #include "cgen-mem.h"
23 #include "cgen-par.h"
24
25 /* Functions required by the cgen interface. These functions add various
26 kinds of writes to the write queue. */
27 void sim_queue_bi_write (SIM_CPU *cpu, BI *target, BI value)
28 {
29 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
30 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
31 element->kind = CGEN_BI_WRITE;
32 element->insn_address = CPU_PC_GET (cpu);
33 element->kinds.bi_write.target = target;
34 element->kinds.bi_write.value = value;
35 }
36
37 void sim_queue_qi_write (SIM_CPU *cpu, UQI *target, UQI value)
38 {
39 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
40 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
41 element->kind = CGEN_QI_WRITE;
42 element->insn_address = CPU_PC_GET (cpu);
43 element->kinds.qi_write.target = target;
44 element->kinds.qi_write.value = value;
45 }
46
47 void sim_queue_si_write (SIM_CPU *cpu, SI *target, SI value)
48 {
49 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
50 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
51 element->kind = CGEN_SI_WRITE;
52 element->insn_address = CPU_PC_GET (cpu);
53 element->kinds.si_write.target = target;
54 element->kinds.si_write.value = value;
55 }
56
57 void sim_queue_sf_write (SIM_CPU *cpu, SI *target, SF value)
58 {
59 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
60 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
61 element->kind = CGEN_SF_WRITE;
62 element->insn_address = CPU_PC_GET (cpu);
63 element->kinds.sf_write.target = target;
64 element->kinds.sf_write.value = value;
65 }
66
67 void sim_queue_pc_write (SIM_CPU *cpu, USI value)
68 {
69 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
70 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
71 element->kind = CGEN_PC_WRITE;
72 element->insn_address = CPU_PC_GET (cpu);
73 element->kinds.pc_write.value = value;
74 }
75
76 void sim_queue_fn_hi_write (
77 SIM_CPU *cpu,
78 void (*write_function)(SIM_CPU *cpu, UINT, UHI),
79 UINT regno,
80 UHI value
81 )
82 {
83 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
84 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
85 element->kind = CGEN_FN_HI_WRITE;
86 element->insn_address = CPU_PC_GET (cpu);
87 element->kinds.fn_hi_write.function = write_function;
88 element->kinds.fn_hi_write.regno = regno;
89 element->kinds.fn_hi_write.value = value;
90 }
91
92 void sim_queue_fn_si_write (
93 SIM_CPU *cpu,
94 void (*write_function)(SIM_CPU *cpu, UINT, USI),
95 UINT regno,
96 SI value
97 )
98 {
99 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
100 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
101 element->kind = CGEN_FN_SI_WRITE;
102 element->insn_address = CPU_PC_GET (cpu);
103 element->kinds.fn_si_write.function = write_function;
104 element->kinds.fn_si_write.regno = regno;
105 element->kinds.fn_si_write.value = value;
106 }
107
108 void sim_queue_fn_di_write (
109 SIM_CPU *cpu,
110 void (*write_function)(SIM_CPU *cpu, UINT, DI),
111 UINT regno,
112 DI value
113 )
114 {
115 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
116 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
117 element->kind = CGEN_FN_DI_WRITE;
118 element->insn_address = CPU_PC_GET (cpu);
119 element->kinds.fn_di_write.function = write_function;
120 element->kinds.fn_di_write.regno = regno;
121 element->kinds.fn_di_write.value = value;
122 }
123
124 void sim_queue_fn_xi_write (
125 SIM_CPU *cpu,
126 void (*write_function)(SIM_CPU *cpu, UINT, SI *),
127 UINT regno,
128 SI *value
129 )
130 {
131 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
132 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
133 element->kind = CGEN_FN_XI_WRITE;
134 element->insn_address = CPU_PC_GET (cpu);
135 element->kinds.fn_xi_write.function = write_function;
136 element->kinds.fn_xi_write.regno = regno;
137 element->kinds.fn_xi_write.value[0] = value[0];
138 element->kinds.fn_xi_write.value[1] = value[1];
139 element->kinds.fn_xi_write.value[2] = value[2];
140 element->kinds.fn_xi_write.value[3] = value[3];
141 }
142
143 void sim_queue_fn_df_write (
144 SIM_CPU *cpu,
145 void (*write_function)(SIM_CPU *cpu, UINT, DI),
146 UINT regno,
147 DF value
148 )
149 {
150 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
151 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
152 element->kind = CGEN_FN_DF_WRITE;
153 element->insn_address = CPU_PC_GET (cpu);
154 element->kinds.fn_df_write.function = write_function;
155 element->kinds.fn_df_write.regno = regno;
156 element->kinds.fn_df_write.value = value;
157 }
158
159 void sim_queue_fn_pc_write (
160 SIM_CPU *cpu,
161 void (*write_function)(SIM_CPU *cpu, USI),
162 USI value
163 )
164 {
165 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
166 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
167 element->kind = CGEN_FN_PC_WRITE;
168 element->insn_address = CPU_PC_GET (cpu);
169 element->kinds.fn_pc_write.function = write_function;
170 element->kinds.fn_pc_write.value = value;
171 }
172
173 void sim_queue_mem_qi_write (SIM_CPU *cpu, SI address, QI value)
174 {
175 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
176 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
177 element->kind = CGEN_MEM_QI_WRITE;
178 element->insn_address = CPU_PC_GET (cpu);
179 element->kinds.mem_qi_write.address = address;
180 element->kinds.mem_qi_write.value = value;
181 }
182
183 void sim_queue_mem_hi_write (SIM_CPU *cpu, SI address, HI value)
184 {
185 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
186 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
187 element->kind = CGEN_MEM_HI_WRITE;
188 element->insn_address = CPU_PC_GET (cpu);
189 element->kinds.mem_hi_write.address = address;
190 element->kinds.mem_hi_write.value = value;
191 }
192
193 void sim_queue_mem_si_write (SIM_CPU *cpu, SI address, SI value)
194 {
195 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
196 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
197 element->kind = CGEN_MEM_SI_WRITE;
198 element->insn_address = CPU_PC_GET (cpu);
199 element->kinds.mem_si_write.address = address;
200 element->kinds.mem_si_write.value = value;
201 }
202
203 void sim_queue_mem_di_write (SIM_CPU *cpu, SI address, DI value)
204 {
205 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
206 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
207 element->kind = CGEN_MEM_DI_WRITE;
208 element->insn_address = CPU_PC_GET (cpu);
209 element->kinds.mem_di_write.address = address;
210 element->kinds.mem_di_write.value = value;
211 }
212
213 void sim_queue_mem_df_write (SIM_CPU *cpu, SI address, DF value)
214 {
215 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
216 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
217 element->kind = CGEN_MEM_DF_WRITE;
218 element->insn_address = CPU_PC_GET (cpu);
219 element->kinds.mem_df_write.address = address;
220 element->kinds.mem_df_write.value = value;
221 }
222
223 void sim_queue_mem_xi_write (SIM_CPU *cpu, SI address, SI *value)
224 {
225 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
226 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
227 element->kind = CGEN_MEM_XI_WRITE;
228 element->insn_address = CPU_PC_GET (cpu);
229 element->kinds.mem_xi_write.address = address;
230 element->kinds.mem_xi_write.value[0] = value[0];
231 element->kinds.mem_xi_write.value[1] = value[1];
232 element->kinds.mem_xi_write.value[2] = value[2];
233 element->kinds.mem_xi_write.value[3] = value[3];
234 }
235
236 /* Execute a write stored on the write queue. */
237 void
238 cgen_write_queue_element_execute (SIM_CPU *cpu, CGEN_WRITE_QUEUE_ELEMENT *item)
239 {
240 IADDR pc;
241 switch (CGEN_WRITE_QUEUE_ELEMENT_KIND (item))
242 {
243 case CGEN_BI_WRITE:
244 *item->kinds.bi_write.target = item->kinds.bi_write.value;
245 break;
246 case CGEN_QI_WRITE:
247 *item->kinds.qi_write.target = item->kinds.qi_write.value;
248 break;
249 case CGEN_SI_WRITE:
250 *item->kinds.si_write.target = item->kinds.si_write.value;
251 break;
252 case CGEN_SF_WRITE:
253 *item->kinds.sf_write.target = item->kinds.sf_write.value;
254 break;
255 case CGEN_PC_WRITE:
256 CPU_PC_SET (cpu, item->kinds.pc_write.value);
257 break;
258 case CGEN_FN_HI_WRITE:
259 item->kinds.fn_hi_write.function (cpu,
260 item->kinds.fn_hi_write.regno,
261 item->kinds.fn_hi_write.value);
262 break;
263 case CGEN_FN_SI_WRITE:
264 item->kinds.fn_si_write.function (cpu,
265 item->kinds.fn_si_write.regno,
266 item->kinds.fn_si_write.value);
267 break;
268 case CGEN_FN_DI_WRITE:
269 item->kinds.fn_di_write.function (cpu,
270 item->kinds.fn_di_write.regno,
271 item->kinds.fn_di_write.value);
272 break;
273 case CGEN_FN_DF_WRITE:
274 item->kinds.fn_df_write.function (cpu,
275 item->kinds.fn_df_write.regno,
276 item->kinds.fn_df_write.value);
277 break;
278 case CGEN_FN_XI_WRITE:
279 item->kinds.fn_xi_write.function (cpu,
280 item->kinds.fn_xi_write.regno,
281 item->kinds.fn_xi_write.value);
282 break;
283 case CGEN_FN_PC_WRITE:
284 item->kinds.fn_pc_write.function (cpu, item->kinds.fn_pc_write.value);
285 break;
286 case CGEN_MEM_QI_WRITE:
287 pc = item->insn_address;
288 SETMEMQI (cpu, pc, item->kinds.mem_qi_write.address,
289 item->kinds.mem_qi_write.value);
290 break;
291 case CGEN_MEM_HI_WRITE:
292 pc = item->insn_address;
293 SETMEMHI (cpu, pc, item->kinds.mem_hi_write.address,
294 item->kinds.mem_hi_write.value);
295 break;
296 case CGEN_MEM_SI_WRITE:
297 pc = item->insn_address;
298 SETMEMSI (cpu, pc, item->kinds.mem_si_write.address,
299 item->kinds.mem_si_write.value);
300 break;
301 case CGEN_MEM_DI_WRITE:
302 pc = item->insn_address;
303 SETMEMDI (cpu, pc, item->kinds.mem_di_write.address,
304 item->kinds.mem_di_write.value);
305 break;
306 case CGEN_MEM_DF_WRITE:
307 pc = item->insn_address;
308 SETMEMDF (cpu, pc, item->kinds.mem_df_write.address,
309 item->kinds.mem_df_write.value);
310 break;
311 case CGEN_MEM_XI_WRITE:
312 pc = item->insn_address;
313 SETMEMSI (cpu, pc, item->kinds.mem_xi_write.address,
314 item->kinds.mem_xi_write.value[0]);
315 SETMEMSI (cpu, pc, item->kinds.mem_xi_write.address + 4,
316 item->kinds.mem_xi_write.value[1]);
317 SETMEMSI (cpu, pc, item->kinds.mem_xi_write.address + 8,
318 item->kinds.mem_xi_write.value[2]);
319 SETMEMSI (cpu, pc, item->kinds.mem_xi_write.address + 12,
320 item->kinds.mem_xi_write.value[3]);
321 break;
322 default:
323 break; /* FIXME: for now....print message later. */
324 }
325 }
326
327 /* Utilities for the write queue. */
328 CGEN_WRITE_QUEUE_ELEMENT *
329 cgen_write_queue_overflow (CGEN_WRITE_QUEUE *q)
330 {
331 abort (); /* FIXME: for now....print message later. */
332 return 0;
333 }
This page took 0.059193 seconds and 4 git commands to generate.