gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / sim / frv / traps.c
1 /* frv trap support
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Contributed by Red Hat.
4
5 This file is part of the GNU simulators.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #define WANT_CPU frvbf
21 #define WANT_CPU_FRVBF
22
23 #include "sim-main.h"
24 #include "targ-vals.h"
25 #include "cgen-engine.h"
26 #include "cgen-par.h"
27 #include "sim-fpu.h"
28
29 #include "bfd.h"
30 #include "libiberty.h"
31
32 CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot;
33
34 /* The semantic code invokes this for invalid (unrecognized) instructions. */
35
36 SEM_PC
37 sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
38 {
39 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
40 return vpc;
41 }
42
43 /* Process an address exception. */
44
45 void
46 frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
47 unsigned int map, int nr_bytes, address_word addr,
48 transfer_type transfer, sim_core_signals sig)
49 {
50 if (sig == sim_core_unaligned_signal)
51 {
52 if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400
53 || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450)
54 frv_queue_data_access_error_interrupt (current_cpu, addr);
55 else
56 frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
57 }
58
59 frv_term (sd);
60 sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
61 }
62
63 void
64 frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
65 {
66 int i;
67 if (current_cpu != NULL)
68 CPU_PC_SET (current_cpu, cia);
69
70 /* Invalidate the insn and data caches of all cpus. */
71 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
72 {
73 current_cpu = STATE_CPU (sd, i);
74 frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
75 frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
76 }
77 frv_term (sd);
78 }
79 \f
80 /* Read/write functions for system call interface. */
81
82 static int
83 syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
84 unsigned long taddr, char *buf, int bytes)
85 {
86 SIM_DESC sd = (SIM_DESC) sc->p1;
87 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
88
89 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
90 return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
91 }
92
93 static int
94 syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
95 unsigned long taddr, const char *buf, int bytes)
96 {
97 SIM_DESC sd = (SIM_DESC) sc->p1;
98 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
99
100 frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
101 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
102 return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
103 }
104
105 /* Handle TRA and TIRA insns. */
106 void
107 frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
108 {
109 SIM_DESC sd = CPU_STATE (current_cpu);
110 host_callback *cb = STATE_CALLBACK (sd);
111 USI num = ((base + offset) & 0x7f) + 0x80;
112
113 if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
114 {
115 frv_queue_software_interrupt (current_cpu, num);
116 return;
117 }
118
119 switch (num)
120 {
121 case TRAP_SYSCALL :
122 {
123 CB_SYSCALL s;
124 CB_SYSCALL_INIT (&s);
125 s.func = GET_H_GR (7);
126 s.arg1 = GET_H_GR (8);
127 s.arg2 = GET_H_GR (9);
128 s.arg3 = GET_H_GR (10);
129
130 if (s.func == TARGET_SYS_exit)
131 {
132 sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
133 }
134
135 s.p1 = (PTR) sd;
136 s.p2 = (PTR) current_cpu;
137 s.read_mem = syscall_read_mem;
138 s.write_mem = syscall_write_mem;
139 cb_syscall (cb, &s);
140 SET_H_GR (8, s.result);
141 SET_H_GR (9, s.result2);
142 SET_H_GR (10, s.errcode);
143 break;
144 }
145
146 case TRAP_BREAKPOINT:
147 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
148 break;
149
150 /* Add support for dumping registers, either at fixed traps, or all
151 unknown traps if configured with --enable-sim-trapdump. */
152 default:
153 #if !TRAPDUMP
154 frv_queue_software_interrupt (current_cpu, num);
155 return;
156 #endif
157
158 #ifdef TRAP_REGDUMP1
159 case TRAP_REGDUMP1:
160 #endif
161
162 #ifdef TRAP_REGDUMP2
163 case TRAP_REGDUMP2:
164 #endif
165
166 #if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
167 {
168 char buf[256];
169 int i, j;
170
171 buf[0] = 0;
172 if (STATE_TEXT_SECTION (sd)
173 && pc >= STATE_TEXT_START (sd)
174 && pc < STATE_TEXT_END (sd))
175 {
176 const char *pc_filename = (const char *)0;
177 const char *pc_function = (const char *)0;
178 unsigned int pc_linenum = 0;
179
180 if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
181 STATE_TEXT_SECTION (sd),
182 (struct bfd_symbol **) 0,
183 pc - STATE_TEXT_START (sd),
184 &pc_filename, &pc_function, &pc_linenum)
185 && (pc_function || pc_filename))
186 {
187 char *p = buf+2;
188 buf[0] = ' ';
189 buf[1] = '(';
190 if (pc_function)
191 {
192 strcpy (p, pc_function);
193 p += strlen (p);
194 }
195 else
196 {
197 char *q = (char *) strrchr (pc_filename, '/');
198 strcpy (p, (q) ? q+1 : pc_filename);
199 p += strlen (p);
200 }
201
202 if (pc_linenum)
203 {
204 sprintf (p, " line %d", pc_linenum);
205 p += strlen (p);
206 }
207
208 p[0] = ')';
209 p[1] = '\0';
210 if ((p+1) - buf > sizeof (buf))
211 abort ();
212 }
213 }
214
215 sim_io_printf (sd,
216 "\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n",
217 (unsigned)pc, buf, (unsigned)base, (int)offset);
218
219 for (i = 0; i < 64; i += 8)
220 {
221 long g0 = (long)GET_H_GR (i);
222 long g1 = (long)GET_H_GR (i+1);
223 long g2 = (long)GET_H_GR (i+2);
224 long g3 = (long)GET_H_GR (i+3);
225 long g4 = (long)GET_H_GR (i+4);
226 long g5 = (long)GET_H_GR (i+5);
227 long g6 = (long)GET_H_GR (i+6);
228 long g7 = (long)GET_H_GR (i+7);
229
230 if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
231 sim_io_printf (sd,
232 "\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
233 i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
234 }
235
236 for (i = 0; i < 64; i += 8)
237 {
238 long f0 = (long)GET_H_FR (i);
239 long f1 = (long)GET_H_FR (i+1);
240 long f2 = (long)GET_H_FR (i+2);
241 long f3 = (long)GET_H_FR (i+3);
242 long f4 = (long)GET_H_FR (i+4);
243 long f5 = (long)GET_H_FR (i+5);
244 long f6 = (long)GET_H_FR (i+6);
245 long f7 = (long)GET_H_FR (i+7);
246
247 if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
248 sim_io_printf (sd,
249 "\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
250 i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
251 }
252
253 sim_io_printf (sd,
254 "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
255 (long)GET_H_SPR (272),
256 (long)GET_H_SPR (273),
257 (long)GET_H_SPR (256),
258 (long)GET_H_SPR (263));
259 }
260 break;
261 #endif
262 }
263 }
264
265 /* Handle the MTRAP insn. */
266 void
267 frv_mtrap (SIM_CPU *current_cpu)
268 {
269 SIM_DESC sd = CPU_STATE (current_cpu);
270
271 /* Check the status of media exceptions in MSR0. */
272 SI msr = GET_MSR (0);
273 if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
274 frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
275 }
276
277 /* Handle the BREAK insn. */
278 void
279 frv_break (SIM_CPU *current_cpu)
280 {
281 IADDR pc;
282 SIM_DESC sd = CPU_STATE (current_cpu);
283
284 if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
285 {
286 /* Invalidate the insn cache because the debugger will presumably
287 replace the breakpoint insn with the real one. */
288 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
289 }
290
291 frv_queue_break_interrupt (current_cpu);
292 }
293
294 /* Return from trap. */
295 USI
296 frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
297 {
298 USI new_pc;
299 /* if (normal running mode and debug_field==0
300 PC=PCSR
301 PSR.ET=1
302 PSR.S=PSR.PS
303 else if (debug running mode and debug_field==1)
304 PC=(BPCSR)
305 PSR.ET=BPSR.BET
306 PSR.S=BPSR.BS
307 change to normal running mode
308 */
309 int psr_s = GET_H_PSR_S ();
310 int psr_et = GET_H_PSR_ET ();
311
312 /* Check for exceptions in the priority order listed in the FRV Architecture
313 Volume 2. */
314 if (! psr_s)
315 {
316 /* Halt if PSR.ET is not set. See chapter 6 of the LSI. */
317 if (! psr_et)
318 {
319 SIM_DESC sd = CPU_STATE (current_cpu);
320 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
321 }
322
323 /* privileged_instruction interrupt will have already been queued by
324 frv_detect_insn_access_interrupts. */
325 new_pc = pc + 4;
326 }
327 else if (psr_et)
328 {
329 /* Halt if PSR.S is set. See chapter 6 of the LSI. */
330 if (psr_s)
331 {
332 SIM_DESC sd = CPU_STATE (current_cpu);
333 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
334 }
335
336 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
337 new_pc = pc + 4;
338 }
339 else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
340 {
341 USI psr = GET_PSR ();
342 /* Return from normal running state. */
343 new_pc = GET_H_SPR (H_SPR_PCSR);
344 SET_PSR_ET (psr, 1);
345 SET_PSR_S (psr, GET_PSR_PS (psr));
346 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
347 }
348 else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
349 {
350 USI psr = GET_PSR ();
351 /* Return from debug state. */
352 new_pc = GET_H_SPR (H_SPR_BPCSR);
353 SET_PSR_ET (psr, GET_H_BPSR_BET ());
354 SET_PSR_S (psr, GET_H_BPSR_BS ());
355 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
356 CPU_DEBUG_STATE (current_cpu) = 0;
357 }
358 else
359 new_pc = pc + 4;
360
361 return new_pc;
362 }
363 \f
364 /* Functions for handling non-excepting instruction side effects. */
365 static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
366 {
367 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
368 if (control->spr[H_SPR_NECR].implemented)
369 {
370 int limit;
371 USI necr = GET_NECR ();
372
373 /* See if any NESRs are implemented. First need to check the validity of
374 the NECR. */
375 if (! GET_NECR_VALID (necr))
376 return NO_NESR;
377
378 limit = GET_NECR_NEN (necr);
379 for (++current_index; current_index < limit; ++current_index)
380 {
381 SI nesr = GET_NESR (current_index);
382 if (! GET_NESR_VALID (nesr))
383 return current_index;
384 }
385 }
386 return NO_NESR;
387 }
388
389 static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
390 {
391 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
392 if (control->spr[H_SPR_NECR].implemented)
393 {
394 int limit;
395 USI necr = GET_NECR ();
396
397 /* See if any NESRs are implemented. First need to check the validity of
398 the NECR. */
399 if (! GET_NECR_VALID (necr))
400 return NO_NESR;
401
402 limit = GET_NECR_NEN (necr);
403 for (++current_index; current_index < limit; ++current_index)
404 {
405 SI nesr = GET_NESR (current_index);
406 if (GET_NESR_VALID (nesr))
407 return current_index;
408 }
409 }
410 return NO_NESR;
411 }
412
413 BI
414 frvbf_check_non_excepting_load (
415 SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
416 SI immediate_disp, QI data_size, BI is_float
417 )
418 {
419 BI rc = 1; /* perform the load. */
420 SIM_DESC sd = CPU_STATE (current_cpu);
421 int daec = 0;
422 int rec = 0;
423 int ec = 0;
424 USI necr;
425 int do_elos;
426 SI NE_flags[2];
427 SI NE_base;
428 SI nesr;
429 SI ne_index;
430 FRV_REGISTER_CONTROL *control;
431
432 SI address = GET_H_GR (base_index);
433 if (disp_index >= 0)
434 address += GET_H_GR (disp_index);
435 else
436 address += immediate_disp;
437
438 /* Check for interrupt factors. */
439 switch (data_size)
440 {
441 case NESR_UQI_SIZE:
442 case NESR_QI_SIZE:
443 break;
444 case NESR_UHI_SIZE:
445 case NESR_HI_SIZE:
446 if (address & 1)
447 ec = 1;
448 break;
449 case NESR_SI_SIZE:
450 if (address & 3)
451 ec = 1;
452 break;
453 case NESR_DI_SIZE:
454 if (address & 7)
455 ec = 1;
456 if (target_index & 1)
457 rec = 1;
458 break;
459 case NESR_XI_SIZE:
460 if (address & 0xf)
461 ec = 1;
462 if (target_index & 3)
463 rec = 1;
464 break;
465 default:
466 {
467 IADDR pc = GET_H_PC ();
468 sim_engine_abort (sd, current_cpu, pc,
469 "check_non_excepting_load: Incorrect data_size\n");
470 break;
471 }
472 }
473
474 control = CPU_REGISTER_CONTROL (current_cpu);
475 if (control->spr[H_SPR_NECR].implemented)
476 {
477 necr = GET_NECR ();
478 do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
479 }
480 else
481 do_elos = 0;
482
483 /* NECR, NESR, NEEAR are only implemented for the full frv machine. */
484 if (do_elos)
485 {
486 ne_index = next_available_nesr (current_cpu, NO_NESR);
487 if (ne_index == NO_NESR)
488 {
489 IADDR pc = GET_H_PC ();
490 sim_engine_abort (sd, current_cpu, pc,
491 "No available NESR register\n");
492 }
493
494 /* Fill in the basic fields of the NESR. */
495 nesr = GET_NESR (ne_index);
496 SET_NESR_VALID (nesr);
497 SET_NESR_EAV (nesr);
498 SET_NESR_DRN (nesr, target_index);
499 SET_NESR_SIZE (nesr, data_size);
500 SET_NESR_NEAN (nesr, ne_index);
501 if (is_float)
502 SET_NESR_FR (nesr);
503 else
504 CLEAR_NESR_FR (nesr);
505
506 /* Set the corresponding NEEAR. */
507 SET_NEEAR (ne_index, address);
508
509 SET_NESR_DAEC (nesr, 0);
510 SET_NESR_REC (nesr, 0);
511 SET_NESR_EC (nesr, 0);
512 }
513
514 /* Set the NE flag corresponding to the target register if an interrupt
515 factor was detected.
516 daec is not checked here yet, but is declared for future reference. */
517 if (is_float)
518 NE_base = H_SPR_FNER0;
519 else
520 NE_base = H_SPR_GNER0;
521
522 GET_NE_FLAGS (NE_flags, NE_base);
523 if (rec)
524 {
525 SET_NE_FLAG (NE_flags, target_index);
526 if (do_elos)
527 SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
528 }
529
530 if (ec)
531 {
532 SET_NE_FLAG (NE_flags, target_index);
533 if (do_elos)
534 SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
535 }
536
537 if (do_elos)
538 SET_NESR (ne_index, nesr);
539
540 /* If no interrupt factor was detected then set the NE flag on the
541 target register if the NE flag on one of the input registers
542 is already set. */
543 if (! rec && ! ec && ! daec)
544 {
545 BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
546 if (disp_index >= 0)
547 ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
548 if (ne_flag)
549 {
550 SET_NE_FLAG (NE_flags, target_index);
551 rc = 0; /* Do not perform the load. */
552 }
553 else
554 CLEAR_NE_FLAG (NE_flags, target_index);
555 }
556
557 SET_NE_FLAGS (NE_base, NE_flags);
558
559 return rc; /* perform the load? */
560 }
561
562 /* Record state for media exception: media_cr_not_aligned. */
563 void
564 frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
565 {
566 SIM_DESC sd = CPU_STATE (current_cpu);
567
568 /* On some machines this generates an illegal_instruction interrupt. */
569 switch (STATE_ARCHITECTURE (sd)->mach)
570 {
571 /* Note: there is a discrepancy between V2.2 of the FR400
572 instruction manual and the various FR4xx LSI specs. The former
573 claims that unaligned registers cause an mp_exception while the
574 latter say it's an illegal_instruction. The LSI specs appear
575 to be correct since MTT is fixed at 1. */
576 case bfd_mach_fr400:
577 case bfd_mach_fr450:
578 case bfd_mach_fr550:
579 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
580 break;
581 default:
582 frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
583 break;
584 }
585 }
586
587 /* Record state for media exception: media_acc_not_aligned. */
588 void
589 frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
590 {
591 SIM_DESC sd = CPU_STATE (current_cpu);
592
593 /* On some machines this generates an illegal_instruction interrupt. */
594 switch (STATE_ARCHITECTURE (sd)->mach)
595 {
596 /* See comment in frvbf_cr_not_aligned(). */
597 case bfd_mach_fr400:
598 case bfd_mach_fr450:
599 case bfd_mach_fr550:
600 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
601 break;
602 default:
603 frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
604 break;
605 }
606 }
607
608 /* Record state for media exception: media_register_not_aligned. */
609 void
610 frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
611 {
612 SIM_DESC sd = CPU_STATE (current_cpu);
613
614 /* On some machines this generates an illegal_instruction interrupt. */
615 switch (STATE_ARCHITECTURE (sd)->mach)
616 {
617 /* See comment in frvbf_cr_not_aligned(). */
618 case bfd_mach_fr400:
619 case bfd_mach_fr450:
620 case bfd_mach_fr550:
621 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
622 break;
623 default:
624 frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
625 break;
626 }
627 }
628
629 /* Record state for media exception: media_overflow. */
630 void
631 frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
632 {
633 frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
634 }
635
636 /* Queue a division exception. */
637 enum frv_dtt
638 frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
639 int target_index, int non_excepting)
640 {
641 /* If there was an overflow and it is masked, then record it in
642 ISR.AEXC. */
643 USI isr = GET_ISR ();
644 if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
645 {
646 dtt &= ~FRV_DTT_OVERFLOW;
647 SET_ISR_AEXC (isr);
648 SET_ISR (isr);
649 }
650 if (dtt != FRV_DTT_NO_EXCEPTION)
651 {
652 if (non_excepting)
653 {
654 /* Non excepting instruction, simply set the NE flag for the target
655 register. */
656 SI NE_flags[2];
657 GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
658 SET_NE_FLAG (NE_flags, target_index);
659 SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
660 }
661 else
662 frv_queue_division_exception_interrupt (current_cpu, dtt);
663 }
664 return dtt;
665 }
666
667 void
668 frvbf_check_recovering_store (
669 SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
670 )
671 {
672 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
673 int reg_ix;
674
675 CPU_RSTR_INVALIDATE(current_cpu) = 0;
676
677 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
678 reg_ix != NO_NESR;
679 reg_ix = next_valid_nesr (current_cpu, reg_ix))
680 {
681 if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
682 {
683 SI nesr = GET_NESR (reg_ix);
684 int nesr_drn = GET_NESR_DRN (nesr);
685 BI nesr_fr = GET_NESR_FR (nesr);
686 SI remain;
687
688 /* Invalidate cache block containing this address.
689 If we need to count cycles, then the cache operation will be
690 initiated from the model profiling functions.
691 See frvbf_model_.... */
692 if (model_insn)
693 {
694 CPU_RSTR_INVALIDATE(current_cpu) = 1;
695 CPU_LOAD_ADDRESS (current_cpu) = address;
696 }
697 else
698 frv_cache_invalidate (cache, address, 1/* flush */);
699
700 /* Copy the stored value to the register indicated by NESR.DRN. */
701 for (remain = size; remain > 0; remain -= 4)
702 {
703 SI value;
704
705 if (is_float)
706 value = GET_H_FR (regno);
707 else
708 value = GET_H_GR (regno);
709
710 switch (size)
711 {
712 case 1:
713 value &= 0xff;
714 break;
715 case 2:
716 value &= 0xffff;
717 break;
718 default:
719 break;
720 }
721
722 if (nesr_fr)
723 sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
724 value);
725 else
726 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
727 value);
728
729 nesr_drn++;
730 regno++;
731 }
732 break; /* Only consider the first matching register. */
733 }
734 } /* loop over active neear registers. */
735 }
736
737 SI
738 frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
739 {
740 /* Only applicable to fr550 */
741 SIM_DESC sd = CPU_STATE (current_cpu);
742 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
743 return;
744
745 /* On the fr550, media insns in slots 0 and 2 can only access
746 accumulators acc0-acc3. Insns in slots 1 and 3 can only access
747 accumulators acc4-acc7 */
748 switch (frv_current_fm_slot)
749 {
750 case UNIT_FM0:
751 case UNIT_FM2:
752 if (regno <= 3)
753 return 1; /* all is ok */
754 break;
755 case UNIT_FM1:
756 case UNIT_FM3:
757 if (regno >= 4)
758 return 1; /* all is ok */
759 break;
760 }
761
762 /* The specified accumulator is out of range. Queue an illegal_instruction
763 interrupt. */
764 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
765 return 0;
766 }
767
768 void
769 frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
770 {
771 /* Only applicable to fr550 */
772 SIM_DESC sd = CPU_STATE (current_cpu);
773 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
774 return;
775
776 /* Adress must be aligned on a word boundary. */
777 if (address & 0x3)
778 frv_queue_data_access_exception_interrupt (current_cpu);
779 }
780
781 static void
782 clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
783 {
784 int reg_ix;
785
786 /* Only implemented for full frv. */
787 SIM_DESC sd = CPU_STATE (current_cpu);
788 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
789 return;
790
791 /* Clear the appropriate NESR and NEEAR registers. */
792 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
793 reg_ix != NO_NESR;
794 reg_ix = next_valid_nesr (current_cpu, reg_ix))
795 {
796 SI nesr;
797 /* The register is available, now check if it is active. */
798 nesr = GET_NESR (reg_ix);
799 if (GET_NESR_FR (nesr) == is_float)
800 {
801 if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
802 {
803 SET_NESR (reg_ix, 0);
804 SET_NEEAR (reg_ix, 0);
805 }
806 }
807 }
808 }
809
810 static void
811 clear_ne_flags (
812 SIM_CPU *current_cpu,
813 SI target_index,
814 int hi_available,
815 int lo_available,
816 SI NE_base
817 )
818 {
819 SI NE_flags[2];
820 int exception;
821
822 GET_NE_FLAGS (NE_flags, NE_base);
823 if (target_index >= 0)
824 CLEAR_NE_FLAG (NE_flags, target_index);
825 else
826 {
827 if (lo_available)
828 NE_flags[1] = 0;
829 if (hi_available)
830 NE_flags[0] = 0;
831 }
832 SET_NE_FLAGS (NE_base, NE_flags);
833 }
834
835 /* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1
836 means to check for any register available. */
837 static void
838 which_registers_available (
839 SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
840 )
841 {
842 if (is_float)
843 frv_fr_registers_available (current_cpu, hi_available, lo_available);
844 else
845 frv_gr_registers_available (current_cpu, hi_available, lo_available);
846 }
847
848 void
849 frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
850 {
851 int hi_available;
852 int lo_available;
853 int exception;
854 SI NE_base;
855 USI necr;
856 FRV_REGISTER_CONTROL *control;
857
858 /* Check for availability of the target register(s). */
859 which_registers_available (current_cpu, & hi_available, & lo_available,
860 is_float);
861
862 /* Check to make sure that the target register is available. */
863 if (! frv_check_register_access (current_cpu, target_index,
864 hi_available, lo_available))
865 return;
866
867 /* Determine whether we're working with GR or FR registers. */
868 if (is_float)
869 NE_base = H_SPR_FNER0;
870 else
871 NE_base = H_SPR_GNER0;
872
873 /* Always clear the appropriate NE flags. */
874 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
875 NE_base);
876
877 /* Clear the appropriate NESR and NEEAR registers. */
878 control = CPU_REGISTER_CONTROL (current_cpu);
879 if (control->spr[H_SPR_NECR].implemented)
880 {
881 necr = GET_NECR ();
882 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
883 clear_nesr_neear (current_cpu, target_index, is_float);
884 }
885 }
886
887 void
888 frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
889 {
890 SI NE_base;
891 SI NE_flags[2];
892 BI NE_flag;
893 int exception;
894 int hi_available;
895 int lo_available;
896 USI necr;
897 FRV_REGISTER_CONTROL *control;
898
899 /* Check for availability of the target register(s). */
900 which_registers_available (current_cpu, & hi_available, & lo_available,
901 is_float);
902
903 /* Check to make sure that the target register is available. */
904 if (! frv_check_register_access (current_cpu, target_index,
905 hi_available, lo_available))
906 return;
907
908 /* Determine whether we're working with GR or FR registers. */
909 if (is_float)
910 NE_base = H_SPR_FNER0;
911 else
912 NE_base = H_SPR_GNER0;
913
914 /* Determine whether a ne exception is pending. */
915 GET_NE_FLAGS (NE_flags, NE_base);
916 if (target_index >= 0)
917 NE_flag = GET_NE_FLAG (NE_flags, target_index);
918 else
919 {
920 NE_flag =
921 hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
922 }
923
924 /* Always clear the appropriate NE flags. */
925 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
926 NE_base);
927
928 control = CPU_REGISTER_CONTROL (current_cpu);
929 if (control->spr[H_SPR_NECR].implemented)
930 {
931 necr = GET_NECR ();
932 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
933 {
934 /* Clear the appropriate NESR and NEEAR registers. */
935 clear_nesr_neear (current_cpu, target_index, is_float);
936 frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
937 }
938 }
939 }
940
941 /* Generate the appropriate fp_exception(s) based on the given status code. */
942 void
943 frvbf_fpu_error (CGEN_FPU* fpu, int status)
944 {
945 struct frv_fp_exception_info fp_info = {
946 FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
947 };
948
949 if (status &
950 (sim_fpu_status_invalid_snan |
951 sim_fpu_status_invalid_qnan |
952 sim_fpu_status_invalid_isi |
953 sim_fpu_status_invalid_idi |
954 sim_fpu_status_invalid_zdz |
955 sim_fpu_status_invalid_imz |
956 sim_fpu_status_invalid_cvi |
957 sim_fpu_status_invalid_cmp |
958 sim_fpu_status_invalid_sqrt))
959 fp_info.fsr_mask |= FSR_INVALID_OPERATION;
960
961 if (status & sim_fpu_status_invalid_div0)
962 fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
963
964 if (status & sim_fpu_status_inexact)
965 fp_info.fsr_mask |= FSR_INEXACT;
966
967 if (status & sim_fpu_status_overflow)
968 fp_info.fsr_mask |= FSR_OVERFLOW;
969
970 if (status & sim_fpu_status_underflow)
971 fp_info.fsr_mask |= FSR_UNDERFLOW;
972
973 if (status & sim_fpu_status_denorm)
974 {
975 fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
976 fp_info.ftt = FTT_DENORMAL_INPUT;
977 }
978
979 if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
980 {
981 SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
982 frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
983 }
984 }
This page took 0.06109 seconds and 4 git commands to generate.