ALSA: pcm: Avoid "BUG:" string for warnings again
[deliverable/linux.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43
44 /*
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
50 *
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52 */
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55 struct snd_pcm_runtime *runtime = substream->runtime;
56 snd_pcm_uframes_t frames, ofs, transfer;
57
58 if (runtime->silence_size < runtime->boundary) {
59 snd_pcm_sframes_t noise_dist, n;
60 if (runtime->silence_start != runtime->control->appl_ptr) {
61 n = runtime->control->appl_ptr - runtime->silence_start;
62 if (n < 0)
63 n += runtime->boundary;
64 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 runtime->silence_filled -= n;
66 else
67 runtime->silence_filled = 0;
68 runtime->silence_start = runtime->control->appl_ptr;
69 }
70 if (runtime->silence_filled >= runtime->buffer_size)
71 return;
72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 return;
75 frames = runtime->silence_threshold - noise_dist;
76 if (frames > runtime->silence_size)
77 frames = runtime->silence_size;
78 } else {
79 if (new_hw_ptr == ULONG_MAX) { /* initialization */
80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 if (avail > runtime->buffer_size)
82 avail = runtime->buffer_size;
83 runtime->silence_filled = avail > 0 ? avail : 0;
84 runtime->silence_start = (runtime->status->hw_ptr +
85 runtime->silence_filled) %
86 runtime->boundary;
87 } else {
88 ofs = runtime->status->hw_ptr;
89 frames = new_hw_ptr - ofs;
90 if ((snd_pcm_sframes_t)frames < 0)
91 frames += runtime->boundary;
92 runtime->silence_filled -= frames;
93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 runtime->silence_filled = 0;
95 runtime->silence_start = new_hw_ptr;
96 } else {
97 runtime->silence_start = ofs;
98 }
99 }
100 frames = runtime->buffer_size - runtime->silence_filled;
101 }
102 if (snd_BUG_ON(frames > runtime->buffer_size))
103 return;
104 if (frames == 0)
105 return;
106 ofs = runtime->silence_start % runtime->buffer_size;
107 while (frames > 0) {
108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 if (substream->ops->silence) {
112 int err;
113 err = substream->ops->silence(substream, -1, ofs, transfer);
114 snd_BUG_ON(err < 0);
115 } else {
116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118 }
119 } else {
120 unsigned int c;
121 unsigned int channels = runtime->channels;
122 if (substream->ops->silence) {
123 for (c = 0; c < channels; ++c) {
124 int err;
125 err = substream->ops->silence(substream, c, ofs, transfer);
126 snd_BUG_ON(err < 0);
127 }
128 } else {
129 size_t dma_csize = runtime->dma_bytes / channels;
130 for (c = 0; c < channels; ++c) {
131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133 }
134 }
135 }
136 runtime->silence_filled += transfer;
137 frames -= transfer;
138 ofs = 0;
139 }
140 }
141
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 char *name, size_t len)
145 {
146 snprintf(name, len, "pcmC%dD%d%c:%d",
147 substream->pcm->card->number,
148 substream->pcm->device,
149 substream->stream ? 'c' : 'p',
150 substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154
155 #define XRUN_DEBUG_BASIC (1<<0)
156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
158
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161 #define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask) 0
165 #endif
166
167 #define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
169 dump_stack(); \
170 } while (0)
171
172 static void xrun(struct snd_pcm_substream *substream)
173 {
174 struct snd_pcm_runtime *runtime = substream->runtime;
175
176 trace_xrun(substream);
177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 char name[16];
182 snd_pcm_debug_name(substream, name, sizeof(name));
183 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 dump_stack_on_xrun(substream);
185 }
186 }
187
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
190 do { \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
196 } \
197 } while (0)
198
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203 #endif
204
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 struct snd_pcm_runtime *runtime)
207 {
208 snd_pcm_uframes_t avail;
209
210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 avail = snd_pcm_playback_avail(runtime);
212 else
213 avail = snd_pcm_capture_avail(runtime);
214 if (avail > runtime->avail_max)
215 runtime->avail_max = avail;
216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 if (avail >= runtime->buffer_size) {
218 snd_pcm_drain_done(substream);
219 return -EPIPE;
220 }
221 } else {
222 if (avail >= runtime->stop_threshold) {
223 xrun(substream);
224 return -EPIPE;
225 }
226 }
227 if (runtime->twake) {
228 if (avail >= runtime->twake)
229 wake_up(&runtime->tsleep);
230 } else if (avail >= runtime->control->avail_min)
231 wake_up(&runtime->sleep);
232 return 0;
233 }
234
235 static void update_audio_tstamp(struct snd_pcm_substream *substream,
236 struct timespec *curr_tstamp,
237 struct timespec *audio_tstamp)
238 {
239 struct snd_pcm_runtime *runtime = substream->runtime;
240 u64 audio_frames, audio_nsecs;
241 struct timespec driver_tstamp;
242
243 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
244 return;
245
246 if (!(substream->ops->get_time_info) ||
247 (runtime->audio_tstamp_report.actual_type ==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
249
250 /*
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
253 */
254
255 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
256
257 if (runtime->audio_tstamp_config.report_delay) {
258 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
259 audio_frames -= runtime->delay;
260 else
261 audio_frames += runtime->delay;
262 }
263 audio_nsecs = div_u64(audio_frames * 1000000000LL,
264 runtime->rate);
265 *audio_tstamp = ns_to_timespec(audio_nsecs);
266 }
267 runtime->status->audio_tstamp = *audio_tstamp;
268 runtime->status->tstamp = *curr_tstamp;
269
270 /*
271 * re-take a driver timestamp to let apps detect if the reference tstamp
272 * read by low-level hardware was provided with a delay
273 */
274 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
275 runtime->driver_tstamp = driver_tstamp;
276 }
277
278 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
279 unsigned int in_interrupt)
280 {
281 struct snd_pcm_runtime *runtime = substream->runtime;
282 snd_pcm_uframes_t pos;
283 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
284 snd_pcm_sframes_t hdelta, delta;
285 unsigned long jdelta;
286 unsigned long curr_jiffies;
287 struct timespec curr_tstamp;
288 struct timespec audio_tstamp;
289 int crossed_boundary = 0;
290
291 old_hw_ptr = runtime->status->hw_ptr;
292
293 /*
294 * group pointer, time and jiffies reads to allow for more
295 * accurate correlations/corrections.
296 * The values are stored at the end of this routine after
297 * corrections for hw_ptr position
298 */
299 pos = substream->ops->pointer(substream);
300 curr_jiffies = jiffies;
301 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
302 if ((substream->ops->get_time_info) &&
303 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
304 substream->ops->get_time_info(substream, &curr_tstamp,
305 &audio_tstamp,
306 &runtime->audio_tstamp_config,
307 &runtime->audio_tstamp_report);
308
309 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
310 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
311 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
312 } else
313 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
314 }
315
316 if (pos == SNDRV_PCM_POS_XRUN) {
317 xrun(substream);
318 return -EPIPE;
319 }
320 if (pos >= runtime->buffer_size) {
321 if (printk_ratelimit()) {
322 char name[16];
323 snd_pcm_debug_name(substream, name, sizeof(name));
324 pcm_err(substream->pcm,
325 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
326 name, pos, runtime->buffer_size,
327 runtime->period_size);
328 }
329 pos = 0;
330 }
331 pos -= pos % runtime->min_align;
332 trace_hwptr(substream, pos, in_interrupt);
333 hw_base = runtime->hw_ptr_base;
334 new_hw_ptr = hw_base + pos;
335 if (in_interrupt) {
336 /* we know that one period was processed */
337 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
338 delta = runtime->hw_ptr_interrupt + runtime->period_size;
339 if (delta > new_hw_ptr) {
340 /* check for double acknowledged interrupts */
341 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
342 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
343 hw_base += runtime->buffer_size;
344 if (hw_base >= runtime->boundary) {
345 hw_base = 0;
346 crossed_boundary++;
347 }
348 new_hw_ptr = hw_base + pos;
349 goto __delta;
350 }
351 }
352 }
353 /* new_hw_ptr might be lower than old_hw_ptr in case when */
354 /* pointer crosses the end of the ring buffer */
355 if (new_hw_ptr < old_hw_ptr) {
356 hw_base += runtime->buffer_size;
357 if (hw_base >= runtime->boundary) {
358 hw_base = 0;
359 crossed_boundary++;
360 }
361 new_hw_ptr = hw_base + pos;
362 }
363 __delta:
364 delta = new_hw_ptr - old_hw_ptr;
365 if (delta < 0)
366 delta += runtime->boundary;
367
368 if (runtime->no_period_wakeup) {
369 snd_pcm_sframes_t xrun_threshold;
370 /*
371 * Without regular period interrupts, we have to check
372 * the elapsed time to detect xruns.
373 */
374 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
375 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
376 goto no_delta_check;
377 hdelta = jdelta - delta * HZ / runtime->rate;
378 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
379 while (hdelta > xrun_threshold) {
380 delta += runtime->buffer_size;
381 hw_base += runtime->buffer_size;
382 if (hw_base >= runtime->boundary) {
383 hw_base = 0;
384 crossed_boundary++;
385 }
386 new_hw_ptr = hw_base + pos;
387 hdelta -= runtime->hw_ptr_buffer_jiffies;
388 }
389 goto no_delta_check;
390 }
391
392 /* something must be really wrong */
393 if (delta >= runtime->buffer_size + runtime->period_size) {
394 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
395 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
396 substream->stream, (long)pos,
397 (long)new_hw_ptr, (long)old_hw_ptr);
398 return 0;
399 }
400
401 /* Do jiffies check only in xrun_debug mode */
402 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
403 goto no_jiffies_check;
404
405 /* Skip the jiffies check for hardwares with BATCH flag.
406 * Such hardware usually just increases the position at each IRQ,
407 * thus it can't give any strange position.
408 */
409 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
410 goto no_jiffies_check;
411 hdelta = delta;
412 if (hdelta < runtime->delay)
413 goto no_jiffies_check;
414 hdelta -= runtime->delay;
415 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
416 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
417 delta = jdelta /
418 (((runtime->period_size * HZ) / runtime->rate)
419 + HZ/100);
420 /* move new_hw_ptr according jiffies not pos variable */
421 new_hw_ptr = old_hw_ptr;
422 hw_base = delta;
423 /* use loop to avoid checks for delta overflows */
424 /* the delta value is small or zero in most cases */
425 while (delta > 0) {
426 new_hw_ptr += runtime->period_size;
427 if (new_hw_ptr >= runtime->boundary) {
428 new_hw_ptr -= runtime->boundary;
429 crossed_boundary--;
430 }
431 delta--;
432 }
433 /* align hw_base to buffer_size */
434 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
435 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
436 (long)pos, (long)hdelta,
437 (long)runtime->period_size, jdelta,
438 ((hdelta * HZ) / runtime->rate), hw_base,
439 (unsigned long)old_hw_ptr,
440 (unsigned long)new_hw_ptr);
441 /* reset values to proper state */
442 delta = 0;
443 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
444 }
445 no_jiffies_check:
446 if (delta > runtime->period_size + runtime->period_size / 2) {
447 hw_ptr_error(substream, in_interrupt,
448 "Lost interrupts?",
449 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
450 substream->stream, (long)delta,
451 (long)new_hw_ptr,
452 (long)old_hw_ptr);
453 }
454
455 no_delta_check:
456 if (runtime->status->hw_ptr == new_hw_ptr) {
457 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
458 return 0;
459 }
460
461 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
462 runtime->silence_size > 0)
463 snd_pcm_playback_silence(substream, new_hw_ptr);
464
465 if (in_interrupt) {
466 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
467 if (delta < 0)
468 delta += runtime->boundary;
469 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
470 runtime->hw_ptr_interrupt += delta;
471 if (runtime->hw_ptr_interrupt >= runtime->boundary)
472 runtime->hw_ptr_interrupt -= runtime->boundary;
473 }
474 runtime->hw_ptr_base = hw_base;
475 runtime->status->hw_ptr = new_hw_ptr;
476 runtime->hw_ptr_jiffies = curr_jiffies;
477 if (crossed_boundary) {
478 snd_BUG_ON(crossed_boundary != 1);
479 runtime->hw_ptr_wrap += runtime->boundary;
480 }
481
482 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
483
484 return snd_pcm_update_state(substream, runtime);
485 }
486
487 /* CAUTION: call it with irq disabled */
488 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
489 {
490 return snd_pcm_update_hw_ptr0(substream, 0);
491 }
492
493 /**
494 * snd_pcm_set_ops - set the PCM operators
495 * @pcm: the pcm instance
496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
497 * @ops: the operator table
498 *
499 * Sets the given PCM operators to the pcm instance.
500 */
501 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
502 const struct snd_pcm_ops *ops)
503 {
504 struct snd_pcm_str *stream = &pcm->streams[direction];
505 struct snd_pcm_substream *substream;
506
507 for (substream = stream->substream; substream != NULL; substream = substream->next)
508 substream->ops = ops;
509 }
510
511 EXPORT_SYMBOL(snd_pcm_set_ops);
512
513 /**
514 * snd_pcm_sync - set the PCM sync id
515 * @substream: the pcm substream
516 *
517 * Sets the PCM sync identifier for the card.
518 */
519 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
520 {
521 struct snd_pcm_runtime *runtime = substream->runtime;
522
523 runtime->sync.id32[0] = substream->pcm->card->number;
524 runtime->sync.id32[1] = -1;
525 runtime->sync.id32[2] = -1;
526 runtime->sync.id32[3] = -1;
527 }
528
529 EXPORT_SYMBOL(snd_pcm_set_sync);
530
531 /*
532 * Standard ioctl routine
533 */
534
535 static inline unsigned int div32(unsigned int a, unsigned int b,
536 unsigned int *r)
537 {
538 if (b == 0) {
539 *r = 0;
540 return UINT_MAX;
541 }
542 *r = a % b;
543 return a / b;
544 }
545
546 static inline unsigned int div_down(unsigned int a, unsigned int b)
547 {
548 if (b == 0)
549 return UINT_MAX;
550 return a / b;
551 }
552
553 static inline unsigned int div_up(unsigned int a, unsigned int b)
554 {
555 unsigned int r;
556 unsigned int q;
557 if (b == 0)
558 return UINT_MAX;
559 q = div32(a, b, &r);
560 if (r)
561 ++q;
562 return q;
563 }
564
565 static inline unsigned int mul(unsigned int a, unsigned int b)
566 {
567 if (a == 0)
568 return 0;
569 if (div_down(UINT_MAX, a) < b)
570 return UINT_MAX;
571 return a * b;
572 }
573
574 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
575 unsigned int c, unsigned int *r)
576 {
577 u_int64_t n = (u_int64_t) a * b;
578 if (c == 0) {
579 snd_BUG_ON(!n);
580 *r = 0;
581 return UINT_MAX;
582 }
583 n = div_u64_rem(n, c, r);
584 if (n >= UINT_MAX) {
585 *r = 0;
586 return UINT_MAX;
587 }
588 return n;
589 }
590
591 /**
592 * snd_interval_refine - refine the interval value of configurator
593 * @i: the interval value to refine
594 * @v: the interval value to refer to
595 *
596 * Refines the interval value with the reference value.
597 * The interval is changed to the range satisfying both intervals.
598 * The interval status (min, max, integer, etc.) are evaluated.
599 *
600 * Return: Positive if the value is changed, zero if it's not changed, or a
601 * negative error code.
602 */
603 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
604 {
605 int changed = 0;
606 if (snd_BUG_ON(snd_interval_empty(i)))
607 return -EINVAL;
608 if (i->min < v->min) {
609 i->min = v->min;
610 i->openmin = v->openmin;
611 changed = 1;
612 } else if (i->min == v->min && !i->openmin && v->openmin) {
613 i->openmin = 1;
614 changed = 1;
615 }
616 if (i->max > v->max) {
617 i->max = v->max;
618 i->openmax = v->openmax;
619 changed = 1;
620 } else if (i->max == v->max && !i->openmax && v->openmax) {
621 i->openmax = 1;
622 changed = 1;
623 }
624 if (!i->integer && v->integer) {
625 i->integer = 1;
626 changed = 1;
627 }
628 if (i->integer) {
629 if (i->openmin) {
630 i->min++;
631 i->openmin = 0;
632 }
633 if (i->openmax) {
634 i->max--;
635 i->openmax = 0;
636 }
637 } else if (!i->openmin && !i->openmax && i->min == i->max)
638 i->integer = 1;
639 if (snd_interval_checkempty(i)) {
640 snd_interval_none(i);
641 return -EINVAL;
642 }
643 return changed;
644 }
645
646 EXPORT_SYMBOL(snd_interval_refine);
647
648 static int snd_interval_refine_first(struct snd_interval *i)
649 {
650 if (snd_BUG_ON(snd_interval_empty(i)))
651 return -EINVAL;
652 if (snd_interval_single(i))
653 return 0;
654 i->max = i->min;
655 i->openmax = i->openmin;
656 if (i->openmax)
657 i->max++;
658 return 1;
659 }
660
661 static int snd_interval_refine_last(struct snd_interval *i)
662 {
663 if (snd_BUG_ON(snd_interval_empty(i)))
664 return -EINVAL;
665 if (snd_interval_single(i))
666 return 0;
667 i->min = i->max;
668 i->openmin = i->openmax;
669 if (i->openmin)
670 i->min--;
671 return 1;
672 }
673
674 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
675 {
676 if (a->empty || b->empty) {
677 snd_interval_none(c);
678 return;
679 }
680 c->empty = 0;
681 c->min = mul(a->min, b->min);
682 c->openmin = (a->openmin || b->openmin);
683 c->max = mul(a->max, b->max);
684 c->openmax = (a->openmax || b->openmax);
685 c->integer = (a->integer && b->integer);
686 }
687
688 /**
689 * snd_interval_div - refine the interval value with division
690 * @a: dividend
691 * @b: divisor
692 * @c: quotient
693 *
694 * c = a / b
695 *
696 * Returns non-zero if the value is changed, zero if not changed.
697 */
698 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
699 {
700 unsigned int r;
701 if (a->empty || b->empty) {
702 snd_interval_none(c);
703 return;
704 }
705 c->empty = 0;
706 c->min = div32(a->min, b->max, &r);
707 c->openmin = (r || a->openmin || b->openmax);
708 if (b->min > 0) {
709 c->max = div32(a->max, b->min, &r);
710 if (r) {
711 c->max++;
712 c->openmax = 1;
713 } else
714 c->openmax = (a->openmax || b->openmin);
715 } else {
716 c->max = UINT_MAX;
717 c->openmax = 0;
718 }
719 c->integer = 0;
720 }
721
722 /**
723 * snd_interval_muldivk - refine the interval value
724 * @a: dividend 1
725 * @b: dividend 2
726 * @k: divisor (as integer)
727 * @c: result
728 *
729 * c = a * b / k
730 *
731 * Returns non-zero if the value is changed, zero if not changed.
732 */
733 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
734 unsigned int k, struct snd_interval *c)
735 {
736 unsigned int r;
737 if (a->empty || b->empty) {
738 snd_interval_none(c);
739 return;
740 }
741 c->empty = 0;
742 c->min = muldiv32(a->min, b->min, k, &r);
743 c->openmin = (r || a->openmin || b->openmin);
744 c->max = muldiv32(a->max, b->max, k, &r);
745 if (r) {
746 c->max++;
747 c->openmax = 1;
748 } else
749 c->openmax = (a->openmax || b->openmax);
750 c->integer = 0;
751 }
752
753 /**
754 * snd_interval_mulkdiv - refine the interval value
755 * @a: dividend 1
756 * @k: dividend 2 (as integer)
757 * @b: divisor
758 * @c: result
759 *
760 * c = a * k / b
761 *
762 * Returns non-zero if the value is changed, zero if not changed.
763 */
764 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
765 const struct snd_interval *b, struct snd_interval *c)
766 {
767 unsigned int r;
768 if (a->empty || b->empty) {
769 snd_interval_none(c);
770 return;
771 }
772 c->empty = 0;
773 c->min = muldiv32(a->min, k, b->max, &r);
774 c->openmin = (r || a->openmin || b->openmax);
775 if (b->min > 0) {
776 c->max = muldiv32(a->max, k, b->min, &r);
777 if (r) {
778 c->max++;
779 c->openmax = 1;
780 } else
781 c->openmax = (a->openmax || b->openmin);
782 } else {
783 c->max = UINT_MAX;
784 c->openmax = 0;
785 }
786 c->integer = 0;
787 }
788
789 /* ---- */
790
791
792 /**
793 * snd_interval_ratnum - refine the interval value
794 * @i: interval to refine
795 * @rats_count: number of ratnum_t
796 * @rats: ratnum_t array
797 * @nump: pointer to store the resultant numerator
798 * @denp: pointer to store the resultant denominator
799 *
800 * Return: Positive if the value is changed, zero if it's not changed, or a
801 * negative error code.
802 */
803 int snd_interval_ratnum(struct snd_interval *i,
804 unsigned int rats_count, const struct snd_ratnum *rats,
805 unsigned int *nump, unsigned int *denp)
806 {
807 unsigned int best_num, best_den;
808 int best_diff;
809 unsigned int k;
810 struct snd_interval t;
811 int err;
812 unsigned int result_num, result_den;
813 int result_diff;
814
815 best_num = best_den = best_diff = 0;
816 for (k = 0; k < rats_count; ++k) {
817 unsigned int num = rats[k].num;
818 unsigned int den;
819 unsigned int q = i->min;
820 int diff;
821 if (q == 0)
822 q = 1;
823 den = div_up(num, q);
824 if (den < rats[k].den_min)
825 continue;
826 if (den > rats[k].den_max)
827 den = rats[k].den_max;
828 else {
829 unsigned int r;
830 r = (den - rats[k].den_min) % rats[k].den_step;
831 if (r != 0)
832 den -= r;
833 }
834 diff = num - q * den;
835 if (diff < 0)
836 diff = -diff;
837 if (best_num == 0 ||
838 diff * best_den < best_diff * den) {
839 best_diff = diff;
840 best_den = den;
841 best_num = num;
842 }
843 }
844 if (best_den == 0) {
845 i->empty = 1;
846 return -EINVAL;
847 }
848 t.min = div_down(best_num, best_den);
849 t.openmin = !!(best_num % best_den);
850
851 result_num = best_num;
852 result_diff = best_diff;
853 result_den = best_den;
854 best_num = best_den = best_diff = 0;
855 for (k = 0; k < rats_count; ++k) {
856 unsigned int num = rats[k].num;
857 unsigned int den;
858 unsigned int q = i->max;
859 int diff;
860 if (q == 0) {
861 i->empty = 1;
862 return -EINVAL;
863 }
864 den = div_down(num, q);
865 if (den > rats[k].den_max)
866 continue;
867 if (den < rats[k].den_min)
868 den = rats[k].den_min;
869 else {
870 unsigned int r;
871 r = (den - rats[k].den_min) % rats[k].den_step;
872 if (r != 0)
873 den += rats[k].den_step - r;
874 }
875 diff = q * den - num;
876 if (diff < 0)
877 diff = -diff;
878 if (best_num == 0 ||
879 diff * best_den < best_diff * den) {
880 best_diff = diff;
881 best_den = den;
882 best_num = num;
883 }
884 }
885 if (best_den == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 t.max = div_up(best_num, best_den);
890 t.openmax = !!(best_num % best_den);
891 t.integer = 0;
892 err = snd_interval_refine(i, &t);
893 if (err < 0)
894 return err;
895
896 if (snd_interval_single(i)) {
897 if (best_diff * result_den < result_diff * best_den) {
898 result_num = best_num;
899 result_den = best_den;
900 }
901 if (nump)
902 *nump = result_num;
903 if (denp)
904 *denp = result_den;
905 }
906 return err;
907 }
908
909 EXPORT_SYMBOL(snd_interval_ratnum);
910
911 /**
912 * snd_interval_ratden - refine the interval value
913 * @i: interval to refine
914 * @rats_count: number of struct ratden
915 * @rats: struct ratden array
916 * @nump: pointer to store the resultant numerator
917 * @denp: pointer to store the resultant denominator
918 *
919 * Return: Positive if the value is changed, zero if it's not changed, or a
920 * negative error code.
921 */
922 static int snd_interval_ratden(struct snd_interval *i,
923 unsigned int rats_count,
924 const struct snd_ratden *rats,
925 unsigned int *nump, unsigned int *denp)
926 {
927 unsigned int best_num, best_diff, best_den;
928 unsigned int k;
929 struct snd_interval t;
930 int err;
931
932 best_num = best_den = best_diff = 0;
933 for (k = 0; k < rats_count; ++k) {
934 unsigned int num;
935 unsigned int den = rats[k].den;
936 unsigned int q = i->min;
937 int diff;
938 num = mul(q, den);
939 if (num > rats[k].num_max)
940 continue;
941 if (num < rats[k].num_min)
942 num = rats[k].num_max;
943 else {
944 unsigned int r;
945 r = (num - rats[k].num_min) % rats[k].num_step;
946 if (r != 0)
947 num += rats[k].num_step - r;
948 }
949 diff = num - q * den;
950 if (best_num == 0 ||
951 diff * best_den < best_diff * den) {
952 best_diff = diff;
953 best_den = den;
954 best_num = num;
955 }
956 }
957 if (best_den == 0) {
958 i->empty = 1;
959 return -EINVAL;
960 }
961 t.min = div_down(best_num, best_den);
962 t.openmin = !!(best_num % best_den);
963
964 best_num = best_den = best_diff = 0;
965 for (k = 0; k < rats_count; ++k) {
966 unsigned int num;
967 unsigned int den = rats[k].den;
968 unsigned int q = i->max;
969 int diff;
970 num = mul(q, den);
971 if (num < rats[k].num_min)
972 continue;
973 if (num > rats[k].num_max)
974 num = rats[k].num_max;
975 else {
976 unsigned int r;
977 r = (num - rats[k].num_min) % rats[k].num_step;
978 if (r != 0)
979 num -= r;
980 }
981 diff = q * den - num;
982 if (best_num == 0 ||
983 diff * best_den < best_diff * den) {
984 best_diff = diff;
985 best_den = den;
986 best_num = num;
987 }
988 }
989 if (best_den == 0) {
990 i->empty = 1;
991 return -EINVAL;
992 }
993 t.max = div_up(best_num, best_den);
994 t.openmax = !!(best_num % best_den);
995 t.integer = 0;
996 err = snd_interval_refine(i, &t);
997 if (err < 0)
998 return err;
999
1000 if (snd_interval_single(i)) {
1001 if (nump)
1002 *nump = best_num;
1003 if (denp)
1004 *denp = best_den;
1005 }
1006 return err;
1007 }
1008
1009 /**
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1015 *
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1018 * evaluated.
1019 *
1020 * Return: Positive if the value is changed, zero if it's not changed, or a
1021 * negative error code.
1022 */
1023 int snd_interval_list(struct snd_interval *i, unsigned int count,
1024 const unsigned int *list, unsigned int mask)
1025 {
1026 unsigned int k;
1027 struct snd_interval list_range;
1028
1029 if (!count) {
1030 i->empty = 1;
1031 return -EINVAL;
1032 }
1033 snd_interval_any(&list_range);
1034 list_range.min = UINT_MAX;
1035 list_range.max = 0;
1036 for (k = 0; k < count; k++) {
1037 if (mask && !(mask & (1 << k)))
1038 continue;
1039 if (!snd_interval_test(i, list[k]))
1040 continue;
1041 list_range.min = min(list_range.min, list[k]);
1042 list_range.max = max(list_range.max, list[k]);
1043 }
1044 return snd_interval_refine(i, &list_range);
1045 }
1046
1047 EXPORT_SYMBOL(snd_interval_list);
1048
1049 /**
1050 * snd_interval_ranges - refine the interval value from the list of ranges
1051 * @i: the interval value to refine
1052 * @count: the number of elements in the list of ranges
1053 * @ranges: the ranges list
1054 * @mask: the bit-mask to evaluate
1055 *
1056 * Refines the interval value from the list of ranges.
1057 * When mask is non-zero, only the elements corresponding to bit 1 are
1058 * evaluated.
1059 *
1060 * Return: Positive if the value is changed, zero if it's not changed, or a
1061 * negative error code.
1062 */
1063 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1064 const struct snd_interval *ranges, unsigned int mask)
1065 {
1066 unsigned int k;
1067 struct snd_interval range_union;
1068 struct snd_interval range;
1069
1070 if (!count) {
1071 snd_interval_none(i);
1072 return -EINVAL;
1073 }
1074 snd_interval_any(&range_union);
1075 range_union.min = UINT_MAX;
1076 range_union.max = 0;
1077 for (k = 0; k < count; k++) {
1078 if (mask && !(mask & (1 << k)))
1079 continue;
1080 snd_interval_copy(&range, &ranges[k]);
1081 if (snd_interval_refine(&range, i) < 0)
1082 continue;
1083 if (snd_interval_empty(&range))
1084 continue;
1085
1086 if (range.min < range_union.min) {
1087 range_union.min = range.min;
1088 range_union.openmin = 1;
1089 }
1090 if (range.min == range_union.min && !range.openmin)
1091 range_union.openmin = 0;
1092 if (range.max > range_union.max) {
1093 range_union.max = range.max;
1094 range_union.openmax = 1;
1095 }
1096 if (range.max == range_union.max && !range.openmax)
1097 range_union.openmax = 0;
1098 }
1099 return snd_interval_refine(i, &range_union);
1100 }
1101 EXPORT_SYMBOL(snd_interval_ranges);
1102
1103 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1104 {
1105 unsigned int n;
1106 int changed = 0;
1107 n = i->min % step;
1108 if (n != 0 || i->openmin) {
1109 i->min += step - n;
1110 i->openmin = 0;
1111 changed = 1;
1112 }
1113 n = i->max % step;
1114 if (n != 0 || i->openmax) {
1115 i->max -= n;
1116 i->openmax = 0;
1117 changed = 1;
1118 }
1119 if (snd_interval_checkempty(i)) {
1120 i->empty = 1;
1121 return -EINVAL;
1122 }
1123 return changed;
1124 }
1125
1126 /* Info constraints helpers */
1127
1128 /**
1129 * snd_pcm_hw_rule_add - add the hw-constraint rule
1130 * @runtime: the pcm runtime instance
1131 * @cond: condition bits
1132 * @var: the variable to evaluate
1133 * @func: the evaluation function
1134 * @private: the private data pointer passed to function
1135 * @dep: the dependent variables
1136 *
1137 * Return: Zero if successful, or a negative error code on failure.
1138 */
1139 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1140 int var,
1141 snd_pcm_hw_rule_func_t func, void *private,
1142 int dep, ...)
1143 {
1144 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1145 struct snd_pcm_hw_rule *c;
1146 unsigned int k;
1147 va_list args;
1148 va_start(args, dep);
1149 if (constrs->rules_num >= constrs->rules_all) {
1150 struct snd_pcm_hw_rule *new;
1151 unsigned int new_rules = constrs->rules_all + 16;
1152 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1153 if (!new) {
1154 va_end(args);
1155 return -ENOMEM;
1156 }
1157 if (constrs->rules) {
1158 memcpy(new, constrs->rules,
1159 constrs->rules_num * sizeof(*c));
1160 kfree(constrs->rules);
1161 }
1162 constrs->rules = new;
1163 constrs->rules_all = new_rules;
1164 }
1165 c = &constrs->rules[constrs->rules_num];
1166 c->cond = cond;
1167 c->func = func;
1168 c->var = var;
1169 c->private = private;
1170 k = 0;
1171 while (1) {
1172 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1173 va_end(args);
1174 return -EINVAL;
1175 }
1176 c->deps[k++] = dep;
1177 if (dep < 0)
1178 break;
1179 dep = va_arg(args, int);
1180 }
1181 constrs->rules_num++;
1182 va_end(args);
1183 return 0;
1184 }
1185
1186 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1187
1188 /**
1189 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the bitmap mask
1193 *
1194 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1195 *
1196 * Return: Zero if successful, or a negative error code on failure.
1197 */
1198 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199 u_int32_t mask)
1200 {
1201 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202 struct snd_mask *maskp = constrs_mask(constrs, var);
1203 *maskp->bits &= mask;
1204 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1205 if (*maskp->bits == 0)
1206 return -EINVAL;
1207 return 0;
1208 }
1209
1210 /**
1211 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the mask
1214 * @mask: the 64bit bitmap mask
1215 *
1216 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1217 *
1218 * Return: Zero if successful, or a negative error code on failure.
1219 */
1220 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1221 u_int64_t mask)
1222 {
1223 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1224 struct snd_mask *maskp = constrs_mask(constrs, var);
1225 maskp->bits[0] &= (u_int32_t)mask;
1226 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1227 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1228 if (! maskp->bits[0] && ! maskp->bits[1])
1229 return -EINVAL;
1230 return 0;
1231 }
1232 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1233
1234 /**
1235 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1236 * @runtime: PCM runtime instance
1237 * @var: hw_params variable to apply the integer constraint
1238 *
1239 * Apply the constraint of integer to an interval parameter.
1240 *
1241 * Return: Positive if the value is changed, zero if it's not changed, or a
1242 * negative error code.
1243 */
1244 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1245 {
1246 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247 return snd_interval_setinteger(constrs_interval(constrs, var));
1248 }
1249
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252 /**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 *
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265 unsigned int min, unsigned int max)
1266 {
1267 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268 struct snd_interval t;
1269 t.min = min;
1270 t.max = max;
1271 t.openmin = t.openmax = 0;
1272 t.integer = 0;
1273 return snd_interval_refine(constrs_interval(constrs, var), &t);
1274 }
1275
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1277
1278 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1279 struct snd_pcm_hw_rule *rule)
1280 {
1281 struct snd_pcm_hw_constraint_list *list = rule->private;
1282 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1283 }
1284
1285
1286 /**
1287 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the list constraint
1291 * @l: list
1292 *
1293 * Apply the list of constraints to an interval parameter.
1294 *
1295 * Return: Zero if successful, or a negative error code on failure.
1296 */
1297 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1298 unsigned int cond,
1299 snd_pcm_hw_param_t var,
1300 const struct snd_pcm_hw_constraint_list *l)
1301 {
1302 return snd_pcm_hw_rule_add(runtime, cond, var,
1303 snd_pcm_hw_rule_list, (void *)l,
1304 var, -1);
1305 }
1306
1307 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1308
1309 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1310 struct snd_pcm_hw_rule *rule)
1311 {
1312 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1313 return snd_interval_ranges(hw_param_interval(params, rule->var),
1314 r->count, r->ranges, r->mask);
1315 }
1316
1317
1318 /**
1319 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1320 * @runtime: PCM runtime instance
1321 * @cond: condition bits
1322 * @var: hw_params variable to apply the list of range constraints
1323 * @r: ranges
1324 *
1325 * Apply the list of range constraints to an interval parameter.
1326 *
1327 * Return: Zero if successful, or a negative error code on failure.
1328 */
1329 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1330 unsigned int cond,
1331 snd_pcm_hw_param_t var,
1332 const struct snd_pcm_hw_constraint_ranges *r)
1333 {
1334 return snd_pcm_hw_rule_add(runtime, cond, var,
1335 snd_pcm_hw_rule_ranges, (void *)r,
1336 var, -1);
1337 }
1338 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1339
1340 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1341 struct snd_pcm_hw_rule *rule)
1342 {
1343 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1344 unsigned int num = 0, den = 0;
1345 int err;
1346 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1347 r->nrats, r->rats, &num, &den);
1348 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1349 params->rate_num = num;
1350 params->rate_den = den;
1351 }
1352 return err;
1353 }
1354
1355 /**
1356 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the ratnums constraint
1360 * @r: struct snd_ratnums constriants
1361 *
1362 * Return: Zero if successful, or a negative error code on failure.
1363 */
1364 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1365 unsigned int cond,
1366 snd_pcm_hw_param_t var,
1367 const struct snd_pcm_hw_constraint_ratnums *r)
1368 {
1369 return snd_pcm_hw_rule_add(runtime, cond, var,
1370 snd_pcm_hw_rule_ratnums, (void *)r,
1371 var, -1);
1372 }
1373
1374 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1375
1376 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1377 struct snd_pcm_hw_rule *rule)
1378 {
1379 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1380 unsigned int num = 0, den = 0;
1381 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1382 r->nrats, r->rats, &num, &den);
1383 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1384 params->rate_num = num;
1385 params->rate_den = den;
1386 }
1387 return err;
1388 }
1389
1390 /**
1391 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1392 * @runtime: PCM runtime instance
1393 * @cond: condition bits
1394 * @var: hw_params variable to apply the ratdens constraint
1395 * @r: struct snd_ratdens constriants
1396 *
1397 * Return: Zero if successful, or a negative error code on failure.
1398 */
1399 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1400 unsigned int cond,
1401 snd_pcm_hw_param_t var,
1402 const struct snd_pcm_hw_constraint_ratdens *r)
1403 {
1404 return snd_pcm_hw_rule_add(runtime, cond, var,
1405 snd_pcm_hw_rule_ratdens, (void *)r,
1406 var, -1);
1407 }
1408
1409 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1410
1411 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1412 struct snd_pcm_hw_rule *rule)
1413 {
1414 unsigned int l = (unsigned long) rule->private;
1415 int width = l & 0xffff;
1416 unsigned int msbits = l >> 16;
1417 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1418
1419 if (!snd_interval_single(i))
1420 return 0;
1421
1422 if ((snd_interval_value(i) == width) ||
1423 (width == 0 && snd_interval_value(i) > msbits))
1424 params->msbits = min_not_zero(params->msbits, msbits);
1425
1426 return 0;
1427 }
1428
1429 /**
1430 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1431 * @runtime: PCM runtime instance
1432 * @cond: condition bits
1433 * @width: sample bits width
1434 * @msbits: msbits width
1435 *
1436 * This constraint will set the number of most significant bits (msbits) if a
1437 * sample format with the specified width has been select. If width is set to 0
1438 * the msbits will be set for any sample format with a width larger than the
1439 * specified msbits.
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1444 unsigned int cond,
1445 unsigned int width,
1446 unsigned int msbits)
1447 {
1448 unsigned long l = (msbits << 16) | width;
1449 return snd_pcm_hw_rule_add(runtime, cond, -1,
1450 snd_pcm_hw_rule_msbits,
1451 (void*) l,
1452 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1453 }
1454
1455 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1456
1457 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1458 struct snd_pcm_hw_rule *rule)
1459 {
1460 unsigned long step = (unsigned long) rule->private;
1461 return snd_interval_step(hw_param_interval(params, rule->var), step);
1462 }
1463
1464 /**
1465 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1466 * @runtime: PCM runtime instance
1467 * @cond: condition bits
1468 * @var: hw_params variable to apply the step constraint
1469 * @step: step size
1470 *
1471 * Return: Zero if successful, or a negative error code on failure.
1472 */
1473 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1474 unsigned int cond,
1475 snd_pcm_hw_param_t var,
1476 unsigned long step)
1477 {
1478 return snd_pcm_hw_rule_add(runtime, cond, var,
1479 snd_pcm_hw_rule_step, (void *) step,
1480 var, -1);
1481 }
1482
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1484
1485 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1486 {
1487 static unsigned int pow2_sizes[] = {
1488 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1489 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1490 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1491 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1492 };
1493 return snd_interval_list(hw_param_interval(params, rule->var),
1494 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1495 }
1496
1497 /**
1498 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1499 * @runtime: PCM runtime instance
1500 * @cond: condition bits
1501 * @var: hw_params variable to apply the power-of-2 constraint
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1506 unsigned int cond,
1507 snd_pcm_hw_param_t var)
1508 {
1509 return snd_pcm_hw_rule_add(runtime, cond, var,
1510 snd_pcm_hw_rule_pow2, NULL,
1511 var, -1);
1512 }
1513
1514 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1515
1516 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1517 struct snd_pcm_hw_rule *rule)
1518 {
1519 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1520 struct snd_interval *rate;
1521
1522 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1523 return snd_interval_list(rate, 1, &base_rate, 0);
1524 }
1525
1526 /**
1527 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1528 * @runtime: PCM runtime instance
1529 * @base_rate: the rate at which the hardware does not resample
1530 *
1531 * Return: Zero if successful, or a negative error code on failure.
1532 */
1533 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1534 unsigned int base_rate)
1535 {
1536 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1537 SNDRV_PCM_HW_PARAM_RATE,
1538 snd_pcm_hw_rule_noresample_func,
1539 (void *)(uintptr_t)base_rate,
1540 SNDRV_PCM_HW_PARAM_RATE, -1);
1541 }
1542 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1543
1544 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1545 snd_pcm_hw_param_t var)
1546 {
1547 if (hw_is_mask(var)) {
1548 snd_mask_any(hw_param_mask(params, var));
1549 params->cmask |= 1 << var;
1550 params->rmask |= 1 << var;
1551 return;
1552 }
1553 if (hw_is_interval(var)) {
1554 snd_interval_any(hw_param_interval(params, var));
1555 params->cmask |= 1 << var;
1556 params->rmask |= 1 << var;
1557 return;
1558 }
1559 snd_BUG();
1560 }
1561
1562 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1563 {
1564 unsigned int k;
1565 memset(params, 0, sizeof(*params));
1566 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1567 _snd_pcm_hw_param_any(params, k);
1568 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1569 _snd_pcm_hw_param_any(params, k);
1570 params->info = ~0U;
1571 }
1572
1573 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1574
1575 /**
1576 * snd_pcm_hw_param_value - return @params field @var value
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 *
1581 * Return: The value for field @var if it's fixed in configuration space
1582 * defined by @params. -%EINVAL otherwise.
1583 */
1584 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1585 snd_pcm_hw_param_t var, int *dir)
1586 {
1587 if (hw_is_mask(var)) {
1588 const struct snd_mask *mask = hw_param_mask_c(params, var);
1589 if (!snd_mask_single(mask))
1590 return -EINVAL;
1591 if (dir)
1592 *dir = 0;
1593 return snd_mask_value(mask);
1594 }
1595 if (hw_is_interval(var)) {
1596 const struct snd_interval *i = hw_param_interval_c(params, var);
1597 if (!snd_interval_single(i))
1598 return -EINVAL;
1599 if (dir)
1600 *dir = i->openmin;
1601 return snd_interval_value(i);
1602 }
1603 return -EINVAL;
1604 }
1605
1606 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1607
1608 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1609 snd_pcm_hw_param_t var)
1610 {
1611 if (hw_is_mask(var)) {
1612 snd_mask_none(hw_param_mask(params, var));
1613 params->cmask |= 1 << var;
1614 params->rmask |= 1 << var;
1615 } else if (hw_is_interval(var)) {
1616 snd_interval_none(hw_param_interval(params, var));
1617 params->cmask |= 1 << var;
1618 params->rmask |= 1 << var;
1619 } else {
1620 snd_BUG();
1621 }
1622 }
1623
1624 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1625
1626 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628 {
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_first(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_first(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641 }
1642
1643
1644 /**
1645 * snd_pcm_hw_param_first - refine config space and return minimum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values > minimum. Reduce configuration space accordingly.
1653 *
1654 * Return: The minimum, or a negative error code on failure.
1655 */
1656 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659 {
1660 int changed = _snd_pcm_hw_param_first(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (snd_BUG_ON(err < 0))
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669 }
1670
1671 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1672
1673 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1674 snd_pcm_hw_param_t var)
1675 {
1676 int changed;
1677 if (hw_is_mask(var))
1678 changed = snd_mask_refine_last(hw_param_mask(params, var));
1679 else if (hw_is_interval(var))
1680 changed = snd_interval_refine_last(hw_param_interval(params, var));
1681 else
1682 return -EINVAL;
1683 if (changed) {
1684 params->cmask |= 1 << var;
1685 params->rmask |= 1 << var;
1686 }
1687 return changed;
1688 }
1689
1690
1691 /**
1692 * snd_pcm_hw_param_last - refine config space and return maximum value
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1695 * @var: parameter to retrieve
1696 * @dir: pointer to the direction (-1,0,1) or %NULL
1697 *
1698 * Inside configuration space defined by @params remove from @var all
1699 * values < maximum. Reduce configuration space accordingly.
1700 *
1701 * Return: The maximum, or a negative error code on failure.
1702 */
1703 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1704 struct snd_pcm_hw_params *params,
1705 snd_pcm_hw_param_t var, int *dir)
1706 {
1707 int changed = _snd_pcm_hw_param_last(params, var);
1708 if (changed < 0)
1709 return changed;
1710 if (params->rmask) {
1711 int err = snd_pcm_hw_refine(pcm, params);
1712 if (snd_BUG_ON(err < 0))
1713 return err;
1714 }
1715 return snd_pcm_hw_param_value(params, var, dir);
1716 }
1717
1718 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1719
1720 /**
1721 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1722 * @pcm: PCM instance
1723 * @params: the hw_params instance
1724 *
1725 * Choose one configuration from configuration space defined by @params.
1726 * The configuration chosen is that obtained fixing in this order:
1727 * first access, first format, first subformat, min channels,
1728 * min rate, min period time, max buffer size, min tick time
1729 *
1730 * Return: Zero if successful, or a negative error code on failure.
1731 */
1732 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1733 struct snd_pcm_hw_params *params)
1734 {
1735 static int vars[] = {
1736 SNDRV_PCM_HW_PARAM_ACCESS,
1737 SNDRV_PCM_HW_PARAM_FORMAT,
1738 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1739 SNDRV_PCM_HW_PARAM_CHANNELS,
1740 SNDRV_PCM_HW_PARAM_RATE,
1741 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1742 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1743 SNDRV_PCM_HW_PARAM_TICK_TIME,
1744 -1
1745 };
1746 int err, *v;
1747
1748 for (v = vars; *v != -1; v++) {
1749 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1750 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1751 else
1752 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1753 if (snd_BUG_ON(err < 0))
1754 return err;
1755 }
1756 return 0;
1757 }
1758
1759 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1760 void *arg)
1761 {
1762 struct snd_pcm_runtime *runtime = substream->runtime;
1763 unsigned long flags;
1764 snd_pcm_stream_lock_irqsave(substream, flags);
1765 if (snd_pcm_running(substream) &&
1766 snd_pcm_update_hw_ptr(substream) >= 0)
1767 runtime->status->hw_ptr %= runtime->buffer_size;
1768 else {
1769 runtime->status->hw_ptr = 0;
1770 runtime->hw_ptr_wrap = 0;
1771 }
1772 snd_pcm_stream_unlock_irqrestore(substream, flags);
1773 return 0;
1774 }
1775
1776 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1777 void *arg)
1778 {
1779 struct snd_pcm_channel_info *info = arg;
1780 struct snd_pcm_runtime *runtime = substream->runtime;
1781 int width;
1782 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1783 info->offset = -1;
1784 return 0;
1785 }
1786 width = snd_pcm_format_physical_width(runtime->format);
1787 if (width < 0)
1788 return width;
1789 info->offset = 0;
1790 switch (runtime->access) {
1791 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1792 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1793 info->first = info->channel * width;
1794 info->step = runtime->channels * width;
1795 break;
1796 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1797 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1798 {
1799 size_t size = runtime->dma_bytes / runtime->channels;
1800 info->first = info->channel * size * 8;
1801 info->step = width;
1802 break;
1803 }
1804 default:
1805 snd_BUG();
1806 break;
1807 }
1808 return 0;
1809 }
1810
1811 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1812 void *arg)
1813 {
1814 struct snd_pcm_hw_params *params = arg;
1815 snd_pcm_format_t format;
1816 int channels;
1817 ssize_t frame_size;
1818
1819 params->fifo_size = substream->runtime->hw.fifo_size;
1820 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1821 format = params_format(params);
1822 channels = params_channels(params);
1823 frame_size = snd_pcm_format_size(format, channels);
1824 if (frame_size > 0)
1825 params->fifo_size /= (unsigned)frame_size;
1826 }
1827 return 0;
1828 }
1829
1830 /**
1831 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832 * @substream: the pcm substream instance
1833 * @cmd: ioctl command
1834 * @arg: ioctl argument
1835 *
1836 * Processes the generic ioctl commands for PCM.
1837 * Can be passed as the ioctl callback for PCM ops.
1838 *
1839 * Return: Zero if successful, or a negative error code on failure.
1840 */
1841 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1842 unsigned int cmd, void *arg)
1843 {
1844 switch (cmd) {
1845 case SNDRV_PCM_IOCTL1_INFO:
1846 return 0;
1847 case SNDRV_PCM_IOCTL1_RESET:
1848 return snd_pcm_lib_ioctl_reset(substream, arg);
1849 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1852 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1853 }
1854 return -ENXIO;
1855 }
1856
1857 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1858
1859 /**
1860 * snd_pcm_period_elapsed - update the pcm status for the next period
1861 * @substream: the pcm substream instance
1862 *
1863 * This function is called from the interrupt handler when the
1864 * PCM has processed the period size. It will update the current
1865 * pointer, wake up sleepers, etc.
1866 *
1867 * Even if more than one periods have elapsed since the last call, you
1868 * have to call this only once.
1869 */
1870 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1871 {
1872 struct snd_pcm_runtime *runtime;
1873 unsigned long flags;
1874
1875 if (PCM_RUNTIME_CHECK(substream))
1876 return;
1877 runtime = substream->runtime;
1878
1879 snd_pcm_stream_lock_irqsave(substream, flags);
1880 if (!snd_pcm_running(substream) ||
1881 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1882 goto _end;
1883
1884 #ifdef CONFIG_SND_PCM_TIMER
1885 if (substream->timer_running)
1886 snd_timer_interrupt(substream->timer, 1);
1887 #endif
1888 _end:
1889 snd_pcm_stream_unlock_irqrestore(substream, flags);
1890 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1891 }
1892
1893 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1894
1895 /*
1896 * Wait until avail_min data becomes available
1897 * Returns a negative error code if any error occurs during operation.
1898 * The available space is stored on availp. When err = 0 and avail = 0
1899 * on the capture stream, it indicates the stream is in DRAINING state.
1900 */
1901 static int wait_for_avail(struct snd_pcm_substream *substream,
1902 snd_pcm_uframes_t *availp)
1903 {
1904 struct snd_pcm_runtime *runtime = substream->runtime;
1905 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1906 wait_queue_t wait;
1907 int err = 0;
1908 snd_pcm_uframes_t avail = 0;
1909 long wait_time, tout;
1910
1911 init_waitqueue_entry(&wait, current);
1912 set_current_state(TASK_INTERRUPTIBLE);
1913 add_wait_queue(&runtime->tsleep, &wait);
1914
1915 if (runtime->no_period_wakeup)
1916 wait_time = MAX_SCHEDULE_TIMEOUT;
1917 else {
1918 wait_time = 10;
1919 if (runtime->rate) {
1920 long t = runtime->period_size * 2 / runtime->rate;
1921 wait_time = max(t, wait_time);
1922 }
1923 wait_time = msecs_to_jiffies(wait_time * 1000);
1924 }
1925
1926 for (;;) {
1927 if (signal_pending(current)) {
1928 err = -ERESTARTSYS;
1929 break;
1930 }
1931
1932 /*
1933 * We need to check if space became available already
1934 * (and thus the wakeup happened already) first to close
1935 * the race of space already having become available.
1936 * This check must happen after been added to the waitqueue
1937 * and having current state be INTERRUPTIBLE.
1938 */
1939 if (is_playback)
1940 avail = snd_pcm_playback_avail(runtime);
1941 else
1942 avail = snd_pcm_capture_avail(runtime);
1943 if (avail >= runtime->twake)
1944 break;
1945 snd_pcm_stream_unlock_irq(substream);
1946
1947 tout = schedule_timeout(wait_time);
1948
1949 snd_pcm_stream_lock_irq(substream);
1950 set_current_state(TASK_INTERRUPTIBLE);
1951 switch (runtime->status->state) {
1952 case SNDRV_PCM_STATE_SUSPENDED:
1953 err = -ESTRPIPE;
1954 goto _endloop;
1955 case SNDRV_PCM_STATE_XRUN:
1956 err = -EPIPE;
1957 goto _endloop;
1958 case SNDRV_PCM_STATE_DRAINING:
1959 if (is_playback)
1960 err = -EPIPE;
1961 else
1962 avail = 0; /* indicate draining */
1963 goto _endloop;
1964 case SNDRV_PCM_STATE_OPEN:
1965 case SNDRV_PCM_STATE_SETUP:
1966 case SNDRV_PCM_STATE_DISCONNECTED:
1967 err = -EBADFD;
1968 goto _endloop;
1969 case SNDRV_PCM_STATE_PAUSED:
1970 continue;
1971 }
1972 if (!tout) {
1973 pcm_dbg(substream->pcm,
1974 "%s write error (DMA or IRQ trouble?)\n",
1975 is_playback ? "playback" : "capture");
1976 err = -EIO;
1977 break;
1978 }
1979 }
1980 _endloop:
1981 set_current_state(TASK_RUNNING);
1982 remove_wait_queue(&runtime->tsleep, &wait);
1983 *availp = avail;
1984 return err;
1985 }
1986
1987 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1988 unsigned int hwoff,
1989 unsigned long data, unsigned int off,
1990 snd_pcm_uframes_t frames)
1991 {
1992 struct snd_pcm_runtime *runtime = substream->runtime;
1993 int err;
1994 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1995 if (substream->ops->copy) {
1996 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1997 return err;
1998 } else {
1999 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2000 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2001 return -EFAULT;
2002 }
2003 return 0;
2004 }
2005
2006 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2007 unsigned long data, unsigned int off,
2008 snd_pcm_uframes_t size);
2009
2010 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2011 unsigned long data,
2012 snd_pcm_uframes_t size,
2013 int nonblock,
2014 transfer_f transfer)
2015 {
2016 struct snd_pcm_runtime *runtime = substream->runtime;
2017 snd_pcm_uframes_t xfer = 0;
2018 snd_pcm_uframes_t offset = 0;
2019 snd_pcm_uframes_t avail;
2020 int err = 0;
2021
2022 if (size == 0)
2023 return 0;
2024
2025 snd_pcm_stream_lock_irq(substream);
2026 switch (runtime->status->state) {
2027 case SNDRV_PCM_STATE_PREPARED:
2028 case SNDRV_PCM_STATE_RUNNING:
2029 case SNDRV_PCM_STATE_PAUSED:
2030 break;
2031 case SNDRV_PCM_STATE_XRUN:
2032 err = -EPIPE;
2033 goto _end_unlock;
2034 case SNDRV_PCM_STATE_SUSPENDED:
2035 err = -ESTRPIPE;
2036 goto _end_unlock;
2037 default:
2038 err = -EBADFD;
2039 goto _end_unlock;
2040 }
2041
2042 runtime->twake = runtime->control->avail_min ? : 1;
2043 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2044 snd_pcm_update_hw_ptr(substream);
2045 avail = snd_pcm_playback_avail(runtime);
2046 while (size > 0) {
2047 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048 snd_pcm_uframes_t cont;
2049 if (!avail) {
2050 if (nonblock) {
2051 err = -EAGAIN;
2052 goto _end_unlock;
2053 }
2054 runtime->twake = min_t(snd_pcm_uframes_t, size,
2055 runtime->control->avail_min ? : 1);
2056 err = wait_for_avail(substream, &avail);
2057 if (err < 0)
2058 goto _end_unlock;
2059 }
2060 frames = size > avail ? avail : size;
2061 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2062 if (frames > cont)
2063 frames = cont;
2064 if (snd_BUG_ON(!frames)) {
2065 runtime->twake = 0;
2066 snd_pcm_stream_unlock_irq(substream);
2067 return -EINVAL;
2068 }
2069 appl_ptr = runtime->control->appl_ptr;
2070 appl_ofs = appl_ptr % runtime->buffer_size;
2071 snd_pcm_stream_unlock_irq(substream);
2072 err = transfer(substream, appl_ofs, data, offset, frames);
2073 snd_pcm_stream_lock_irq(substream);
2074 if (err < 0)
2075 goto _end_unlock;
2076 switch (runtime->status->state) {
2077 case SNDRV_PCM_STATE_XRUN:
2078 err = -EPIPE;
2079 goto _end_unlock;
2080 case SNDRV_PCM_STATE_SUSPENDED:
2081 err = -ESTRPIPE;
2082 goto _end_unlock;
2083 default:
2084 break;
2085 }
2086 appl_ptr += frames;
2087 if (appl_ptr >= runtime->boundary)
2088 appl_ptr -= runtime->boundary;
2089 runtime->control->appl_ptr = appl_ptr;
2090 if (substream->ops->ack)
2091 substream->ops->ack(substream);
2092
2093 offset += frames;
2094 size -= frames;
2095 xfer += frames;
2096 avail -= frames;
2097 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2098 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2099 err = snd_pcm_start(substream);
2100 if (err < 0)
2101 goto _end_unlock;
2102 }
2103 }
2104 _end_unlock:
2105 runtime->twake = 0;
2106 if (xfer > 0 && err >= 0)
2107 snd_pcm_update_state(substream, runtime);
2108 snd_pcm_stream_unlock_irq(substream);
2109 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2110 }
2111
2112 /* sanity-check for read/write methods */
2113 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2114 {
2115 struct snd_pcm_runtime *runtime;
2116 if (PCM_RUNTIME_CHECK(substream))
2117 return -ENXIO;
2118 runtime = substream->runtime;
2119 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2120 return -EINVAL;
2121 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2122 return -EBADFD;
2123 return 0;
2124 }
2125
2126 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2127 {
2128 struct snd_pcm_runtime *runtime;
2129 int nonblock;
2130 int err;
2131
2132 err = pcm_sanity_check(substream);
2133 if (err < 0)
2134 return err;
2135 runtime = substream->runtime;
2136 nonblock = !!(substream->f_flags & O_NONBLOCK);
2137
2138 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2139 runtime->channels > 1)
2140 return -EINVAL;
2141 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2142 snd_pcm_lib_write_transfer);
2143 }
2144
2145 EXPORT_SYMBOL(snd_pcm_lib_write);
2146
2147 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2148 unsigned int hwoff,
2149 unsigned long data, unsigned int off,
2150 snd_pcm_uframes_t frames)
2151 {
2152 struct snd_pcm_runtime *runtime = substream->runtime;
2153 int err;
2154 void __user **bufs = (void __user **)data;
2155 int channels = runtime->channels;
2156 int c;
2157 if (substream->ops->copy) {
2158 if (snd_BUG_ON(!substream->ops->silence))
2159 return -EINVAL;
2160 for (c = 0; c < channels; ++c, ++bufs) {
2161 if (*bufs == NULL) {
2162 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2163 return err;
2164 } else {
2165 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2166 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2167 return err;
2168 }
2169 }
2170 } else {
2171 /* default transfer behaviour */
2172 size_t dma_csize = runtime->dma_bytes / channels;
2173 for (c = 0; c < channels; ++c, ++bufs) {
2174 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2175 if (*bufs == NULL) {
2176 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2177 } else {
2178 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2179 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2180 return -EFAULT;
2181 }
2182 }
2183 }
2184 return 0;
2185 }
2186
2187 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2188 void __user **bufs,
2189 snd_pcm_uframes_t frames)
2190 {
2191 struct snd_pcm_runtime *runtime;
2192 int nonblock;
2193 int err;
2194
2195 err = pcm_sanity_check(substream);
2196 if (err < 0)
2197 return err;
2198 runtime = substream->runtime;
2199 nonblock = !!(substream->f_flags & O_NONBLOCK);
2200
2201 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2202 return -EINVAL;
2203 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2204 nonblock, snd_pcm_lib_writev_transfer);
2205 }
2206
2207 EXPORT_SYMBOL(snd_pcm_lib_writev);
2208
2209 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2210 unsigned int hwoff,
2211 unsigned long data, unsigned int off,
2212 snd_pcm_uframes_t frames)
2213 {
2214 struct snd_pcm_runtime *runtime = substream->runtime;
2215 int err;
2216 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2217 if (substream->ops->copy) {
2218 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2219 return err;
2220 } else {
2221 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2222 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2223 return -EFAULT;
2224 }
2225 return 0;
2226 }
2227
2228 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2229 unsigned long data,
2230 snd_pcm_uframes_t size,
2231 int nonblock,
2232 transfer_f transfer)
2233 {
2234 struct snd_pcm_runtime *runtime = substream->runtime;
2235 snd_pcm_uframes_t xfer = 0;
2236 snd_pcm_uframes_t offset = 0;
2237 snd_pcm_uframes_t avail;
2238 int err = 0;
2239
2240 if (size == 0)
2241 return 0;
2242
2243 snd_pcm_stream_lock_irq(substream);
2244 switch (runtime->status->state) {
2245 case SNDRV_PCM_STATE_PREPARED:
2246 if (size >= runtime->start_threshold) {
2247 err = snd_pcm_start(substream);
2248 if (err < 0)
2249 goto _end_unlock;
2250 }
2251 break;
2252 case SNDRV_PCM_STATE_DRAINING:
2253 case SNDRV_PCM_STATE_RUNNING:
2254 case SNDRV_PCM_STATE_PAUSED:
2255 break;
2256 case SNDRV_PCM_STATE_XRUN:
2257 err = -EPIPE;
2258 goto _end_unlock;
2259 case SNDRV_PCM_STATE_SUSPENDED:
2260 err = -ESTRPIPE;
2261 goto _end_unlock;
2262 default:
2263 err = -EBADFD;
2264 goto _end_unlock;
2265 }
2266
2267 runtime->twake = runtime->control->avail_min ? : 1;
2268 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2269 snd_pcm_update_hw_ptr(substream);
2270 avail = snd_pcm_capture_avail(runtime);
2271 while (size > 0) {
2272 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2273 snd_pcm_uframes_t cont;
2274 if (!avail) {
2275 if (runtime->status->state ==
2276 SNDRV_PCM_STATE_DRAINING) {
2277 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2278 goto _end_unlock;
2279 }
2280 if (nonblock) {
2281 err = -EAGAIN;
2282 goto _end_unlock;
2283 }
2284 runtime->twake = min_t(snd_pcm_uframes_t, size,
2285 runtime->control->avail_min ? : 1);
2286 err = wait_for_avail(substream, &avail);
2287 if (err < 0)
2288 goto _end_unlock;
2289 if (!avail)
2290 continue; /* draining */
2291 }
2292 frames = size > avail ? avail : size;
2293 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2294 if (frames > cont)
2295 frames = cont;
2296 if (snd_BUG_ON(!frames)) {
2297 runtime->twake = 0;
2298 snd_pcm_stream_unlock_irq(substream);
2299 return -EINVAL;
2300 }
2301 appl_ptr = runtime->control->appl_ptr;
2302 appl_ofs = appl_ptr % runtime->buffer_size;
2303 snd_pcm_stream_unlock_irq(substream);
2304 err = transfer(substream, appl_ofs, data, offset, frames);
2305 snd_pcm_stream_lock_irq(substream);
2306 if (err < 0)
2307 goto _end_unlock;
2308 switch (runtime->status->state) {
2309 case SNDRV_PCM_STATE_XRUN:
2310 err = -EPIPE;
2311 goto _end_unlock;
2312 case SNDRV_PCM_STATE_SUSPENDED:
2313 err = -ESTRPIPE;
2314 goto _end_unlock;
2315 default:
2316 break;
2317 }
2318 appl_ptr += frames;
2319 if (appl_ptr >= runtime->boundary)
2320 appl_ptr -= runtime->boundary;
2321 runtime->control->appl_ptr = appl_ptr;
2322 if (substream->ops->ack)
2323 substream->ops->ack(substream);
2324
2325 offset += frames;
2326 size -= frames;
2327 xfer += frames;
2328 avail -= frames;
2329 }
2330 _end_unlock:
2331 runtime->twake = 0;
2332 if (xfer > 0 && err >= 0)
2333 snd_pcm_update_state(substream, runtime);
2334 snd_pcm_stream_unlock_irq(substream);
2335 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2336 }
2337
2338 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2339 {
2340 struct snd_pcm_runtime *runtime;
2341 int nonblock;
2342 int err;
2343
2344 err = pcm_sanity_check(substream);
2345 if (err < 0)
2346 return err;
2347 runtime = substream->runtime;
2348 nonblock = !!(substream->f_flags & O_NONBLOCK);
2349 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2350 return -EINVAL;
2351 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2352 }
2353
2354 EXPORT_SYMBOL(snd_pcm_lib_read);
2355
2356 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2357 unsigned int hwoff,
2358 unsigned long data, unsigned int off,
2359 snd_pcm_uframes_t frames)
2360 {
2361 struct snd_pcm_runtime *runtime = substream->runtime;
2362 int err;
2363 void __user **bufs = (void __user **)data;
2364 int channels = runtime->channels;
2365 int c;
2366 if (substream->ops->copy) {
2367 for (c = 0; c < channels; ++c, ++bufs) {
2368 char __user *buf;
2369 if (*bufs == NULL)
2370 continue;
2371 buf = *bufs + samples_to_bytes(runtime, off);
2372 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2373 return err;
2374 }
2375 } else {
2376 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2377 for (c = 0; c < channels; ++c, ++bufs) {
2378 char *hwbuf;
2379 char __user *buf;
2380 if (*bufs == NULL)
2381 continue;
2382
2383 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2384 buf = *bufs + samples_to_bytes(runtime, off);
2385 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2386 return -EFAULT;
2387 }
2388 }
2389 return 0;
2390 }
2391
2392 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2393 void __user **bufs,
2394 snd_pcm_uframes_t frames)
2395 {
2396 struct snd_pcm_runtime *runtime;
2397 int nonblock;
2398 int err;
2399
2400 err = pcm_sanity_check(substream);
2401 if (err < 0)
2402 return err;
2403 runtime = substream->runtime;
2404 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2405 return -EBADFD;
2406
2407 nonblock = !!(substream->f_flags & O_NONBLOCK);
2408 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2409 return -EINVAL;
2410 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2411 }
2412
2413 EXPORT_SYMBOL(snd_pcm_lib_readv);
2414
2415 /*
2416 * standard channel mapping helpers
2417 */
2418
2419 /* default channel maps for multi-channel playbacks, up to 8 channels */
2420 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2421 { .channels = 1,
2422 .map = { SNDRV_CHMAP_MONO } },
2423 { .channels = 2,
2424 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2425 { .channels = 4,
2426 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2427 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428 { .channels = 6,
2429 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2432 { .channels = 8,
2433 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2436 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2437 { }
2438 };
2439 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2440
2441 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2442 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2443 { .channels = 1,
2444 .map = { SNDRV_CHMAP_MONO } },
2445 { .channels = 2,
2446 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2447 { .channels = 4,
2448 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2449 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2450 { .channels = 6,
2451 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2452 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2453 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454 { .channels = 8,
2455 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2458 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2459 { }
2460 };
2461 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2462
2463 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2464 {
2465 if (ch > info->max_channels)
2466 return false;
2467 return !info->channel_mask || (info->channel_mask & (1U << ch));
2468 }
2469
2470 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2471 struct snd_ctl_elem_info *uinfo)
2472 {
2473 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2474
2475 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2476 uinfo->count = 0;
2477 uinfo->count = info->max_channels;
2478 uinfo->value.integer.min = 0;
2479 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2480 return 0;
2481 }
2482
2483 /* get callback for channel map ctl element
2484 * stores the channel position firstly matching with the current channels
2485 */
2486 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2487 struct snd_ctl_elem_value *ucontrol)
2488 {
2489 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2491 struct snd_pcm_substream *substream;
2492 const struct snd_pcm_chmap_elem *map;
2493
2494 if (snd_BUG_ON(!info->chmap))
2495 return -EINVAL;
2496 substream = snd_pcm_chmap_substream(info, idx);
2497 if (!substream)
2498 return -ENODEV;
2499 memset(ucontrol->value.integer.value, 0,
2500 sizeof(ucontrol->value.integer.value));
2501 if (!substream->runtime)
2502 return 0; /* no channels set */
2503 for (map = info->chmap; map->channels; map++) {
2504 int i;
2505 if (map->channels == substream->runtime->channels &&
2506 valid_chmap_channels(info, map->channels)) {
2507 for (i = 0; i < map->channels; i++)
2508 ucontrol->value.integer.value[i] = map->map[i];
2509 return 0;
2510 }
2511 }
2512 return -EINVAL;
2513 }
2514
2515 /* tlv callback for channel map ctl element
2516 * expands the pre-defined channel maps in a form of TLV
2517 */
2518 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2519 unsigned int size, unsigned int __user *tlv)
2520 {
2521 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2522 const struct snd_pcm_chmap_elem *map;
2523 unsigned int __user *dst;
2524 int c, count = 0;
2525
2526 if (snd_BUG_ON(!info->chmap))
2527 return -EINVAL;
2528 if (size < 8)
2529 return -ENOMEM;
2530 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2531 return -EFAULT;
2532 size -= 8;
2533 dst = tlv + 2;
2534 for (map = info->chmap; map->channels; map++) {
2535 int chs_bytes = map->channels * 4;
2536 if (!valid_chmap_channels(info, map->channels))
2537 continue;
2538 if (size < 8)
2539 return -ENOMEM;
2540 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2541 put_user(chs_bytes, dst + 1))
2542 return -EFAULT;
2543 dst += 2;
2544 size -= 8;
2545 count += 8;
2546 if (size < chs_bytes)
2547 return -ENOMEM;
2548 size -= chs_bytes;
2549 count += chs_bytes;
2550 for (c = 0; c < map->channels; c++) {
2551 if (put_user(map->map[c], dst))
2552 return -EFAULT;
2553 dst++;
2554 }
2555 }
2556 if (put_user(count, tlv + 1))
2557 return -EFAULT;
2558 return 0;
2559 }
2560
2561 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2562 {
2563 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2564 info->pcm->streams[info->stream].chmap_kctl = NULL;
2565 kfree(info);
2566 }
2567
2568 /**
2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570 * @pcm: the assigned PCM instance
2571 * @stream: stream direction
2572 * @chmap: channel map elements (for query)
2573 * @max_channels: the max number of channels for the stream
2574 * @private_value: the value passed to each kcontrol's private_value field
2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2576 *
2577 * Create channel-mapping control elements assigned to the given PCM stream(s).
2578 * Return: Zero if successful, or a negative error value.
2579 */
2580 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2581 const struct snd_pcm_chmap_elem *chmap,
2582 int max_channels,
2583 unsigned long private_value,
2584 struct snd_pcm_chmap **info_ret)
2585 {
2586 struct snd_pcm_chmap *info;
2587 struct snd_kcontrol_new knew = {
2588 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2589 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2590 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2591 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2592 .info = pcm_chmap_ctl_info,
2593 .get = pcm_chmap_ctl_get,
2594 .tlv.c = pcm_chmap_ctl_tlv,
2595 };
2596 int err;
2597
2598 info = kzalloc(sizeof(*info), GFP_KERNEL);
2599 if (!info)
2600 return -ENOMEM;
2601 info->pcm = pcm;
2602 info->stream = stream;
2603 info->chmap = chmap;
2604 info->max_channels = max_channels;
2605 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2606 knew.name = "Playback Channel Map";
2607 else
2608 knew.name = "Capture Channel Map";
2609 knew.device = pcm->device;
2610 knew.count = pcm->streams[stream].substream_count;
2611 knew.private_value = private_value;
2612 info->kctl = snd_ctl_new1(&knew, info);
2613 if (!info->kctl) {
2614 kfree(info);
2615 return -ENOMEM;
2616 }
2617 info->kctl->private_free = pcm_chmap_ctl_private_free;
2618 err = snd_ctl_add(pcm->card, info->kctl);
2619 if (err < 0)
2620 return err;
2621 pcm->streams[stream].chmap_kctl = info->kctl;
2622 if (info_ret)
2623 *info_ret = info;
2624 return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
This page took 0.086275 seconds and 5 git commands to generate.