Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / sound / pci / hda / hda_controller.c
1 /*
2 *
3 * Implementation of primary alsa driver code base for Intel HD Audio.
4 *
5 * Copyright(c) 2004 Intel Corporation. All rights reserved.
6 *
7 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
8 * PeiSen Hou <pshou@realtek.com.tw>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
19 *
20 *
21 */
22
23 #include <linux/clocksource.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30
31 #ifdef CONFIG_X86
32 /* for art-tsc conversion */
33 #include <asm/tsc.h>
34 #endif
35
36 #include <sound/core.h>
37 #include <sound/initval.h>
38 #include "hda_controller.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "hda_controller_trace.h"
42
43 /* DSP lock helpers */
44 #define dsp_lock(dev) snd_hdac_dsp_lock(azx_stream(dev))
45 #define dsp_unlock(dev) snd_hdac_dsp_unlock(azx_stream(dev))
46 #define dsp_is_locked(dev) snd_hdac_stream_is_locked(azx_stream(dev))
47
48 /* assign a stream for the PCM */
49 static inline struct azx_dev *
50 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
51 {
52 struct hdac_stream *s;
53
54 s = snd_hdac_stream_assign(azx_bus(chip), substream);
55 if (!s)
56 return NULL;
57 return stream_to_azx_dev(s);
58 }
59
60 /* release the assigned stream */
61 static inline void azx_release_device(struct azx_dev *azx_dev)
62 {
63 snd_hdac_stream_release(azx_stream(azx_dev));
64 }
65
66 static inline struct hda_pcm_stream *
67 to_hda_pcm_stream(struct snd_pcm_substream *substream)
68 {
69 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
70 return &apcm->info->stream[substream->stream];
71 }
72
73 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
74 u64 nsec)
75 {
76 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
77 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
78 u64 codec_frames, codec_nsecs;
79
80 if (!hinfo->ops.get_delay)
81 return nsec;
82
83 codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
84 codec_nsecs = div_u64(codec_frames * 1000000000LL,
85 substream->runtime->rate);
86
87 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
88 return nsec + codec_nsecs;
89
90 return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
91 }
92
93 /*
94 * PCM ops
95 */
96
97 static int azx_pcm_close(struct snd_pcm_substream *substream)
98 {
99 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
100 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
101 struct azx *chip = apcm->chip;
102 struct azx_dev *azx_dev = get_azx_dev(substream);
103
104 trace_azx_pcm_close(chip, azx_dev);
105 mutex_lock(&chip->open_mutex);
106 azx_release_device(azx_dev);
107 if (hinfo->ops.close)
108 hinfo->ops.close(hinfo, apcm->codec, substream);
109 snd_hda_power_down(apcm->codec);
110 mutex_unlock(&chip->open_mutex);
111 snd_hda_codec_pcm_put(apcm->info);
112 return 0;
113 }
114
115 static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
116 struct snd_pcm_hw_params *hw_params)
117 {
118 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
119 struct azx *chip = apcm->chip;
120 struct azx_dev *azx_dev = get_azx_dev(substream);
121 int ret;
122
123 trace_azx_pcm_hw_params(chip, azx_dev);
124 dsp_lock(azx_dev);
125 if (dsp_is_locked(azx_dev)) {
126 ret = -EBUSY;
127 goto unlock;
128 }
129
130 azx_dev->core.bufsize = 0;
131 azx_dev->core.period_bytes = 0;
132 azx_dev->core.format_val = 0;
133 ret = chip->ops->substream_alloc_pages(chip, substream,
134 params_buffer_bytes(hw_params));
135 unlock:
136 dsp_unlock(azx_dev);
137 return ret;
138 }
139
140 static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
141 {
142 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
143 struct azx_dev *azx_dev = get_azx_dev(substream);
144 struct azx *chip = apcm->chip;
145 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
146 int err;
147
148 /* reset BDL address */
149 dsp_lock(azx_dev);
150 if (!dsp_is_locked(azx_dev))
151 snd_hdac_stream_cleanup(azx_stream(azx_dev));
152
153 snd_hda_codec_cleanup(apcm->codec, hinfo, substream);
154
155 err = chip->ops->substream_free_pages(chip, substream);
156 azx_stream(azx_dev)->prepared = 0;
157 dsp_unlock(azx_dev);
158 return err;
159 }
160
161 static int azx_pcm_prepare(struct snd_pcm_substream *substream)
162 {
163 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
164 struct azx *chip = apcm->chip;
165 struct azx_dev *azx_dev = get_azx_dev(substream);
166 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
167 struct snd_pcm_runtime *runtime = substream->runtime;
168 unsigned int format_val, stream_tag;
169 int err;
170 struct hda_spdif_out *spdif =
171 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
172 unsigned short ctls = spdif ? spdif->ctls : 0;
173
174 trace_azx_pcm_prepare(chip, azx_dev);
175 dsp_lock(azx_dev);
176 if (dsp_is_locked(azx_dev)) {
177 err = -EBUSY;
178 goto unlock;
179 }
180
181 snd_hdac_stream_reset(azx_stream(azx_dev));
182 format_val = snd_hdac_calc_stream_format(runtime->rate,
183 runtime->channels,
184 runtime->format,
185 hinfo->maxbps,
186 ctls);
187 if (!format_val) {
188 dev_err(chip->card->dev,
189 "invalid format_val, rate=%d, ch=%d, format=%d\n",
190 runtime->rate, runtime->channels, runtime->format);
191 err = -EINVAL;
192 goto unlock;
193 }
194
195 err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val);
196 if (err < 0)
197 goto unlock;
198
199 snd_hdac_stream_setup(azx_stream(azx_dev));
200
201 stream_tag = azx_dev->core.stream_tag;
202 /* CA-IBG chips need the playback stream starting from 1 */
203 if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
204 stream_tag > chip->capture_streams)
205 stream_tag -= chip->capture_streams;
206 err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
207 azx_dev->core.format_val, substream);
208
209 unlock:
210 if (!err)
211 azx_stream(azx_dev)->prepared = 1;
212 dsp_unlock(azx_dev);
213 return err;
214 }
215
216 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
217 {
218 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
219 struct azx *chip = apcm->chip;
220 struct hdac_bus *bus = azx_bus(chip);
221 struct azx_dev *azx_dev;
222 struct snd_pcm_substream *s;
223 struct hdac_stream *hstr;
224 bool start;
225 int sbits = 0;
226 int sync_reg;
227
228 azx_dev = get_azx_dev(substream);
229 trace_azx_pcm_trigger(chip, azx_dev, cmd);
230
231 hstr = azx_stream(azx_dev);
232 if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
233 sync_reg = AZX_REG_OLD_SSYNC;
234 else
235 sync_reg = AZX_REG_SSYNC;
236
237 if (dsp_is_locked(azx_dev) || !hstr->prepared)
238 return -EPIPE;
239
240 switch (cmd) {
241 case SNDRV_PCM_TRIGGER_START:
242 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
243 case SNDRV_PCM_TRIGGER_RESUME:
244 start = true;
245 break;
246 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
247 case SNDRV_PCM_TRIGGER_SUSPEND:
248 case SNDRV_PCM_TRIGGER_STOP:
249 start = false;
250 break;
251 default:
252 return -EINVAL;
253 }
254
255 snd_pcm_group_for_each_entry(s, substream) {
256 if (s->pcm->card != substream->pcm->card)
257 continue;
258 azx_dev = get_azx_dev(s);
259 sbits |= 1 << azx_dev->core.index;
260 snd_pcm_trigger_done(s, substream);
261 }
262
263 spin_lock(&bus->reg_lock);
264
265 /* first, set SYNC bits of corresponding streams */
266 snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg);
267
268 snd_pcm_group_for_each_entry(s, substream) {
269 if (s->pcm->card != substream->pcm->card)
270 continue;
271 azx_dev = get_azx_dev(s);
272 if (start) {
273 azx_dev->insufficient = 1;
274 snd_hdac_stream_start(azx_stream(azx_dev), true);
275 } else {
276 snd_hdac_stream_stop(azx_stream(azx_dev));
277 }
278 }
279 spin_unlock(&bus->reg_lock);
280
281 snd_hdac_stream_sync(hstr, start, sbits);
282
283 spin_lock(&bus->reg_lock);
284 /* reset SYNC bits */
285 snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg);
286 if (start)
287 snd_hdac_stream_timecounter_init(hstr, sbits);
288 spin_unlock(&bus->reg_lock);
289 return 0;
290 }
291
292 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
293 {
294 return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
295 }
296 EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
297
298 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
299 {
300 return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
301 }
302 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
303
304 unsigned int azx_get_position(struct azx *chip,
305 struct azx_dev *azx_dev)
306 {
307 struct snd_pcm_substream *substream = azx_dev->core.substream;
308 unsigned int pos;
309 int stream = substream->stream;
310 int delay = 0;
311
312 if (chip->get_position[stream])
313 pos = chip->get_position[stream](chip, azx_dev);
314 else /* use the position buffer as default */
315 pos = azx_get_pos_posbuf(chip, azx_dev);
316
317 if (pos >= azx_dev->core.bufsize)
318 pos = 0;
319
320 if (substream->runtime) {
321 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
322 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
323
324 if (chip->get_delay[stream])
325 delay += chip->get_delay[stream](chip, azx_dev, pos);
326 if (hinfo->ops.get_delay)
327 delay += hinfo->ops.get_delay(hinfo, apcm->codec,
328 substream);
329 substream->runtime->delay = delay;
330 }
331
332 trace_azx_get_position(chip, azx_dev, pos, delay);
333 return pos;
334 }
335 EXPORT_SYMBOL_GPL(azx_get_position);
336
337 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
338 {
339 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
340 struct azx *chip = apcm->chip;
341 struct azx_dev *azx_dev = get_azx_dev(substream);
342 return bytes_to_frames(substream->runtime,
343 azx_get_position(chip, azx_dev));
344 }
345
346 /*
347 * azx_scale64: Scale base by mult/div while not overflowing sanely
348 *
349 * Derived from scale64_check_overflow in kernel/time/timekeeping.c
350 *
351 * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which
352 * is about 384307 ie ~4.5 days.
353 *
354 * This scales the calculation so that overflow will happen but after 2^64 /
355 * 48000 secs, which is pretty large!
356 *
357 * In caln below:
358 * base may overflow, but since there isn’t any additional division
359 * performed on base it’s OK
360 * rem can’t overflow because both are 32-bit values
361 */
362
363 #ifdef CONFIG_X86
364 static u64 azx_scale64(u64 base, u32 num, u32 den)
365 {
366 u64 rem;
367
368 rem = do_div(base, den);
369
370 base *= num;
371 rem *= num;
372
373 do_div(rem, den);
374
375 return base + rem;
376 }
377
378 static int azx_get_sync_time(ktime_t *device,
379 struct system_counterval_t *system, void *ctx)
380 {
381 struct snd_pcm_substream *substream = ctx;
382 struct azx_dev *azx_dev = get_azx_dev(substream);
383 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
384 struct azx *chip = apcm->chip;
385 struct snd_pcm_runtime *runtime;
386 u64 ll_counter, ll_counter_l, ll_counter_h;
387 u64 tsc_counter, tsc_counter_l, tsc_counter_h;
388 u32 wallclk_ctr, wallclk_cycles;
389 bool direction;
390 u32 dma_select;
391 u32 timeout = 200;
392 u32 retry_count = 0;
393
394 runtime = substream->runtime;
395
396 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
397 direction = 1;
398 else
399 direction = 0;
400
401 /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */
402 do {
403 timeout = 100;
404 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) |
405 (azx_dev->core.stream_tag - 1);
406 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select);
407
408 /* Enable the capture */
409 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK);
410
411 while (timeout) {
412 if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) &
413 GTSCC_TSCCD_MASK)
414 break;
415
416 timeout--;
417 }
418
419 if (!timeout) {
420 dev_err(chip->card->dev, "GTSCC capture Timedout!\n");
421 return -EIO;
422 }
423
424 /* Read wall clock counter */
425 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC);
426
427 /* Read TSC counter */
428 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL);
429 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU);
430
431 /* Read Link counter */
432 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL);
433 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU);
434
435 /* Ack: registers read done */
436 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT);
437
438 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) |
439 tsc_counter_l;
440
441 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l;
442 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK;
443
444 /*
445 * An error occurs near frame "rollover". The clocks in
446 * frame value indicates whether this error may have
447 * occurred. Here we use the value of 10 i.e.,
448 * HDA_MAX_CYCLE_OFFSET
449 */
450 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET
451 && wallclk_cycles > HDA_MAX_CYCLE_OFFSET)
452 break;
453
454 /*
455 * Sleep before we read again, else we may again get
456 * value near to MAX_CYCLE. Try to sleep for different
457 * amount of time so we dont hit the same number again
458 */
459 udelay(retry_count++);
460
461 } while (retry_count != HDA_MAX_CYCLE_READ_RETRY);
462
463 if (retry_count == HDA_MAX_CYCLE_READ_RETRY) {
464 dev_err_ratelimited(chip->card->dev,
465 "Error in WALFCC cycle count\n");
466 return -EIO;
467 }
468
469 *device = ns_to_ktime(azx_scale64(ll_counter,
470 NSEC_PER_SEC, runtime->rate));
471 *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) /
472 ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate));
473
474 *system = convert_art_to_tsc(tsc_counter);
475
476 return 0;
477 }
478
479 #else
480 static int azx_get_sync_time(ktime_t *device,
481 struct system_counterval_t *system, void *ctx)
482 {
483 return -ENXIO;
484 }
485 #endif
486
487 static int azx_get_crosststamp(struct snd_pcm_substream *substream,
488 struct system_device_crosststamp *xtstamp)
489 {
490 return get_device_system_crosststamp(azx_get_sync_time,
491 substream, NULL, xtstamp);
492 }
493
494 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime,
495 struct snd_pcm_audio_tstamp_config *ts)
496 {
497 if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME)
498 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED)
499 return true;
500
501 return false;
502 }
503
504 static int azx_get_time_info(struct snd_pcm_substream *substream,
505 struct timespec *system_ts, struct timespec *audio_ts,
506 struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
507 struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
508 {
509 struct azx_dev *azx_dev = get_azx_dev(substream);
510 struct snd_pcm_runtime *runtime = substream->runtime;
511 struct system_device_crosststamp xtstamp;
512 int ret;
513 u64 nsec;
514
515 if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
516 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
517
518 snd_pcm_gettime(substream->runtime, system_ts);
519
520 nsec = timecounter_read(&azx_dev->core.tc);
521 nsec = div_u64(nsec, 3); /* can be optimized */
522 if (audio_tstamp_config->report_delay)
523 nsec = azx_adjust_codec_delay(substream, nsec);
524
525 *audio_ts = ns_to_timespec(nsec);
526
527 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
528 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
529 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */
530
531 } else if (is_link_time_supported(runtime, audio_tstamp_config)) {
532
533 ret = azx_get_crosststamp(substream, &xtstamp);
534 if (ret)
535 return ret;
536
537 switch (runtime->tstamp_type) {
538 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
539 return -EINVAL;
540
541 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
542 *system_ts = ktime_to_timespec(xtstamp.sys_monoraw);
543 break;
544
545 default:
546 *system_ts = ktime_to_timespec(xtstamp.sys_realtime);
547 break;
548
549 }
550
551 *audio_ts = ktime_to_timespec(xtstamp.device);
552
553 audio_tstamp_report->actual_type =
554 SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED;
555 audio_tstamp_report->accuracy_report = 1;
556 /* 24 MHz WallClock == 42ns resolution */
557 audio_tstamp_report->accuracy = 42;
558
559 } else {
560 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
561 }
562
563 return 0;
564 }
565
566 static struct snd_pcm_hardware azx_pcm_hw = {
567 .info = (SNDRV_PCM_INFO_MMAP |
568 SNDRV_PCM_INFO_INTERLEAVED |
569 SNDRV_PCM_INFO_BLOCK_TRANSFER |
570 SNDRV_PCM_INFO_MMAP_VALID |
571 /* No full-resume yet implemented */
572 /* SNDRV_PCM_INFO_RESUME |*/
573 SNDRV_PCM_INFO_PAUSE |
574 SNDRV_PCM_INFO_SYNC_START |
575 SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
576 SNDRV_PCM_INFO_HAS_LINK_ATIME |
577 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
578 .formats = SNDRV_PCM_FMTBIT_S16_LE,
579 .rates = SNDRV_PCM_RATE_48000,
580 .rate_min = 48000,
581 .rate_max = 48000,
582 .channels_min = 2,
583 .channels_max = 2,
584 .buffer_bytes_max = AZX_MAX_BUF_SIZE,
585 .period_bytes_min = 128,
586 .period_bytes_max = AZX_MAX_BUF_SIZE / 2,
587 .periods_min = 2,
588 .periods_max = AZX_MAX_FRAG,
589 .fifo_size = 0,
590 };
591
592 static int azx_pcm_open(struct snd_pcm_substream *substream)
593 {
594 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
595 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
596 struct azx *chip = apcm->chip;
597 struct azx_dev *azx_dev;
598 struct snd_pcm_runtime *runtime = substream->runtime;
599 int err;
600 int buff_step;
601
602 snd_hda_codec_pcm_get(apcm->info);
603 mutex_lock(&chip->open_mutex);
604 azx_dev = azx_assign_device(chip, substream);
605 trace_azx_pcm_open(chip, azx_dev);
606 if (azx_dev == NULL) {
607 err = -EBUSY;
608 goto unlock;
609 }
610 runtime->private_data = azx_dev;
611
612 if (chip->gts_present)
613 azx_pcm_hw.info = azx_pcm_hw.info |
614 SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME;
615
616 runtime->hw = azx_pcm_hw;
617 runtime->hw.channels_min = hinfo->channels_min;
618 runtime->hw.channels_max = hinfo->channels_max;
619 runtime->hw.formats = hinfo->formats;
620 runtime->hw.rates = hinfo->rates;
621 snd_pcm_limit_hw_rates(runtime);
622 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
623
624 /* avoid wrap-around with wall-clock */
625 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
626 20,
627 178000000);
628
629 if (chip->align_buffer_size)
630 /* constrain buffer sizes to be multiple of 128
631 bytes. This is more efficient in terms of memory
632 access but isn't required by the HDA spec and
633 prevents users from specifying exact period/buffer
634 sizes. For example for 44.1kHz, a period size set
635 to 20ms will be rounded to 19.59ms. */
636 buff_step = 128;
637 else
638 /* Don't enforce steps on buffer sizes, still need to
639 be multiple of 4 bytes (HDA spec). Tested on Intel
640 HDA controllers, may not work on all devices where
641 option needs to be disabled */
642 buff_step = 4;
643
644 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
645 buff_step);
646 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
647 buff_step);
648 snd_hda_power_up(apcm->codec);
649 if (hinfo->ops.open)
650 err = hinfo->ops.open(hinfo, apcm->codec, substream);
651 else
652 err = -ENODEV;
653 if (err < 0) {
654 azx_release_device(azx_dev);
655 goto powerdown;
656 }
657 snd_pcm_limit_hw_rates(runtime);
658 /* sanity check */
659 if (snd_BUG_ON(!runtime->hw.channels_min) ||
660 snd_BUG_ON(!runtime->hw.channels_max) ||
661 snd_BUG_ON(!runtime->hw.formats) ||
662 snd_BUG_ON(!runtime->hw.rates)) {
663 azx_release_device(azx_dev);
664 if (hinfo->ops.close)
665 hinfo->ops.close(hinfo, apcm->codec, substream);
666 err = -EINVAL;
667 goto powerdown;
668 }
669
670 /* disable LINK_ATIME timestamps for capture streams
671 until we figure out how to handle digital inputs */
672 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
673 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
674 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
675 }
676
677 snd_pcm_set_sync(substream);
678 mutex_unlock(&chip->open_mutex);
679 return 0;
680
681 powerdown:
682 snd_hda_power_down(apcm->codec);
683 unlock:
684 mutex_unlock(&chip->open_mutex);
685 snd_hda_codec_pcm_put(apcm->info);
686 return err;
687 }
688
689 static int azx_pcm_mmap(struct snd_pcm_substream *substream,
690 struct vm_area_struct *area)
691 {
692 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
693 struct azx *chip = apcm->chip;
694 if (chip->ops->pcm_mmap_prepare)
695 chip->ops->pcm_mmap_prepare(substream, area);
696 return snd_pcm_lib_default_mmap(substream, area);
697 }
698
699 static const struct snd_pcm_ops azx_pcm_ops = {
700 .open = azx_pcm_open,
701 .close = azx_pcm_close,
702 .ioctl = snd_pcm_lib_ioctl,
703 .hw_params = azx_pcm_hw_params,
704 .hw_free = azx_pcm_hw_free,
705 .prepare = azx_pcm_prepare,
706 .trigger = azx_pcm_trigger,
707 .pointer = azx_pcm_pointer,
708 .get_time_info = azx_get_time_info,
709 .mmap = azx_pcm_mmap,
710 .page = snd_pcm_sgbuf_ops_page,
711 };
712
713 static void azx_pcm_free(struct snd_pcm *pcm)
714 {
715 struct azx_pcm *apcm = pcm->private_data;
716 if (apcm) {
717 list_del(&apcm->list);
718 apcm->info->pcm = NULL;
719 kfree(apcm);
720 }
721 }
722
723 #define MAX_PREALLOC_SIZE (32 * 1024 * 1024)
724
725 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec,
726 struct hda_pcm *cpcm)
727 {
728 struct hdac_bus *bus = &_bus->core;
729 struct azx *chip = bus_to_azx(bus);
730 struct snd_pcm *pcm;
731 struct azx_pcm *apcm;
732 int pcm_dev = cpcm->device;
733 unsigned int size;
734 int s, err;
735
736 list_for_each_entry(apcm, &chip->pcm_list, list) {
737 if (apcm->pcm->device == pcm_dev) {
738 dev_err(chip->card->dev, "PCM %d already exists\n",
739 pcm_dev);
740 return -EBUSY;
741 }
742 }
743 err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
744 cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
745 cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
746 &pcm);
747 if (err < 0)
748 return err;
749 strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
750 apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
751 if (apcm == NULL)
752 return -ENOMEM;
753 apcm->chip = chip;
754 apcm->pcm = pcm;
755 apcm->codec = codec;
756 apcm->info = cpcm;
757 pcm->private_data = apcm;
758 pcm->private_free = azx_pcm_free;
759 if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
760 pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
761 list_add_tail(&apcm->list, &chip->pcm_list);
762 cpcm->pcm = pcm;
763 for (s = 0; s < 2; s++) {
764 if (cpcm->stream[s].substreams)
765 snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
766 }
767 /* buffer pre-allocation */
768 size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
769 if (size > MAX_PREALLOC_SIZE)
770 size = MAX_PREALLOC_SIZE;
771 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
772 chip->card->dev,
773 size, MAX_PREALLOC_SIZE);
774 return 0;
775 }
776
777 static unsigned int azx_command_addr(u32 cmd)
778 {
779 unsigned int addr = cmd >> 28;
780
781 if (addr >= AZX_MAX_CODECS) {
782 snd_BUG();
783 addr = 0;
784 }
785
786 return addr;
787 }
788
789 /* receive a response */
790 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr,
791 unsigned int *res)
792 {
793 struct azx *chip = bus_to_azx(bus);
794 struct hda_bus *hbus = &chip->bus;
795 unsigned long timeout;
796 unsigned long loopcounter;
797 int do_poll = 0;
798
799 again:
800 timeout = jiffies + msecs_to_jiffies(1000);
801
802 for (loopcounter = 0;; loopcounter++) {
803 spin_lock_irq(&bus->reg_lock);
804 if (chip->polling_mode || do_poll)
805 snd_hdac_bus_update_rirb(bus);
806 if (!bus->rirb.cmds[addr]) {
807 if (!do_poll)
808 chip->poll_count = 0;
809 if (res)
810 *res = bus->rirb.res[addr]; /* the last value */
811 spin_unlock_irq(&bus->reg_lock);
812 return 0;
813 }
814 spin_unlock_irq(&bus->reg_lock);
815 if (time_after(jiffies, timeout))
816 break;
817 if (hbus->needs_damn_long_delay || loopcounter > 3000)
818 msleep(2); /* temporary workaround */
819 else {
820 udelay(10);
821 cond_resched();
822 }
823 }
824
825 if (hbus->no_response_fallback)
826 return -EIO;
827
828 if (!chip->polling_mode && chip->poll_count < 2) {
829 dev_dbg(chip->card->dev,
830 "azx_get_response timeout, polling the codec once: last cmd=0x%08x\n",
831 bus->last_cmd[addr]);
832 do_poll = 1;
833 chip->poll_count++;
834 goto again;
835 }
836
837
838 if (!chip->polling_mode) {
839 dev_warn(chip->card->dev,
840 "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
841 bus->last_cmd[addr]);
842 chip->polling_mode = 1;
843 goto again;
844 }
845
846 if (chip->msi) {
847 dev_warn(chip->card->dev,
848 "No response from codec, disabling MSI: last cmd=0x%08x\n",
849 bus->last_cmd[addr]);
850 if (chip->ops->disable_msi_reset_irq &&
851 chip->ops->disable_msi_reset_irq(chip) < 0)
852 return -EIO;
853 goto again;
854 }
855
856 if (chip->probing) {
857 /* If this critical timeout happens during the codec probing
858 * phase, this is likely an access to a non-existing codec
859 * slot. Better to return an error and reset the system.
860 */
861 return -EIO;
862 }
863
864 /* a fatal communication error; need either to reset or to fallback
865 * to the single_cmd mode
866 */
867 if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) {
868 hbus->response_reset = 1;
869 return -EAGAIN; /* give a chance to retry */
870 }
871
872 dev_err(chip->card->dev,
873 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
874 bus->last_cmd[addr]);
875 chip->single_cmd = 1;
876 hbus->response_reset = 0;
877 snd_hdac_bus_stop_cmd_io(bus);
878 return -EIO;
879 }
880
881 /*
882 * Use the single immediate command instead of CORB/RIRB for simplicity
883 *
884 * Note: according to Intel, this is not preferred use. The command was
885 * intended for the BIOS only, and may get confused with unsolicited
886 * responses. So, we shouldn't use it for normal operation from the
887 * driver.
888 * I left the codes, however, for debugging/testing purposes.
889 */
890
891 /* receive a response */
892 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
893 {
894 int timeout = 50;
895
896 while (timeout--) {
897 /* check IRV busy bit */
898 if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
899 /* reuse rirb.res as the response return value */
900 azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR);
901 return 0;
902 }
903 udelay(1);
904 }
905 if (printk_ratelimit())
906 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
907 azx_readw(chip, IRS));
908 azx_bus(chip)->rirb.res[addr] = -1;
909 return -EIO;
910 }
911
912 /* send a command */
913 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val)
914 {
915 struct azx *chip = bus_to_azx(bus);
916 unsigned int addr = azx_command_addr(val);
917 int timeout = 50;
918
919 bus->last_cmd[azx_command_addr(val)] = val;
920 while (timeout--) {
921 /* check ICB busy bit */
922 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
923 /* Clear IRV valid bit */
924 azx_writew(chip, IRS, azx_readw(chip, IRS) |
925 AZX_IRS_VALID);
926 azx_writel(chip, IC, val);
927 azx_writew(chip, IRS, azx_readw(chip, IRS) |
928 AZX_IRS_BUSY);
929 return azx_single_wait_for_response(chip, addr);
930 }
931 udelay(1);
932 }
933 if (printk_ratelimit())
934 dev_dbg(chip->card->dev,
935 "send_cmd timeout: IRS=0x%x, val=0x%x\n",
936 azx_readw(chip, IRS), val);
937 return -EIO;
938 }
939
940 /* receive a response */
941 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr,
942 unsigned int *res)
943 {
944 if (res)
945 *res = bus->rirb.res[addr];
946 return 0;
947 }
948
949 /*
950 * The below are the main callbacks from hda_codec.
951 *
952 * They are just the skeleton to call sub-callbacks according to the
953 * current setting of chip->single_cmd.
954 */
955
956 /* send a command */
957 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val)
958 {
959 struct azx *chip = bus_to_azx(bus);
960
961 if (chip->disabled)
962 return 0;
963 if (chip->single_cmd)
964 return azx_single_send_cmd(bus, val);
965 else
966 return snd_hdac_bus_send_cmd(bus, val);
967 }
968
969 /* get a response */
970 static int azx_get_response(struct hdac_bus *bus, unsigned int addr,
971 unsigned int *res)
972 {
973 struct azx *chip = bus_to_azx(bus);
974
975 if (chip->disabled)
976 return 0;
977 if (chip->single_cmd)
978 return azx_single_get_response(bus, addr, res);
979 else
980 return azx_rirb_get_response(bus, addr, res);
981 }
982
983 static int azx_link_power(struct hdac_bus *bus, bool enable)
984 {
985 struct azx *chip = bus_to_azx(bus);
986
987 if (chip->ops->link_power)
988 return chip->ops->link_power(chip, enable);
989 else
990 return -EINVAL;
991 }
992
993 static const struct hdac_bus_ops bus_core_ops = {
994 .command = azx_send_cmd,
995 .get_response = azx_get_response,
996 .link_power = azx_link_power,
997 };
998
999 #ifdef CONFIG_SND_HDA_DSP_LOADER
1000 /*
1001 * DSP loading code (e.g. for CA0132)
1002 */
1003
1004 /* use the first stream for loading DSP */
1005 static struct azx_dev *
1006 azx_get_dsp_loader_dev(struct azx *chip)
1007 {
1008 struct hdac_bus *bus = azx_bus(chip);
1009 struct hdac_stream *s;
1010
1011 list_for_each_entry(s, &bus->stream_list, list)
1012 if (s->index == chip->playback_index_offset)
1013 return stream_to_azx_dev(s);
1014
1015 return NULL;
1016 }
1017
1018 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format,
1019 unsigned int byte_size,
1020 struct snd_dma_buffer *bufp)
1021 {
1022 struct hdac_bus *bus = &codec->bus->core;
1023 struct azx *chip = bus_to_azx(bus);
1024 struct azx_dev *azx_dev;
1025 struct hdac_stream *hstr;
1026 bool saved = false;
1027 int err;
1028
1029 azx_dev = azx_get_dsp_loader_dev(chip);
1030 hstr = azx_stream(azx_dev);
1031 spin_lock_irq(&bus->reg_lock);
1032 if (hstr->opened) {
1033 chip->saved_azx_dev = *azx_dev;
1034 saved = true;
1035 }
1036 spin_unlock_irq(&bus->reg_lock);
1037
1038 err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp);
1039 if (err < 0) {
1040 spin_lock_irq(&bus->reg_lock);
1041 if (saved)
1042 *azx_dev = chip->saved_azx_dev;
1043 spin_unlock_irq(&bus->reg_lock);
1044 return err;
1045 }
1046
1047 hstr->prepared = 0;
1048 return err;
1049 }
1050 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare);
1051
1052 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start)
1053 {
1054 struct hdac_bus *bus = &codec->bus->core;
1055 struct azx *chip = bus_to_azx(bus);
1056 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1057
1058 snd_hdac_dsp_trigger(azx_stream(azx_dev), start);
1059 }
1060 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger);
1061
1062 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec,
1063 struct snd_dma_buffer *dmab)
1064 {
1065 struct hdac_bus *bus = &codec->bus->core;
1066 struct azx *chip = bus_to_azx(bus);
1067 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1068 struct hdac_stream *hstr = azx_stream(azx_dev);
1069
1070 if (!dmab->area || !hstr->locked)
1071 return;
1072
1073 snd_hdac_dsp_cleanup(hstr, dmab);
1074 spin_lock_irq(&bus->reg_lock);
1075 if (hstr->opened)
1076 *azx_dev = chip->saved_azx_dev;
1077 hstr->locked = false;
1078 spin_unlock_irq(&bus->reg_lock);
1079 }
1080 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup);
1081 #endif /* CONFIG_SND_HDA_DSP_LOADER */
1082
1083 /*
1084 * reset and start the controller registers
1085 */
1086 void azx_init_chip(struct azx *chip, bool full_reset)
1087 {
1088 if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) {
1089 /* correct RINTCNT for CXT */
1090 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1091 azx_writew(chip, RINTCNT, 0xc0);
1092 }
1093 }
1094 EXPORT_SYMBOL_GPL(azx_init_chip);
1095
1096 void azx_stop_all_streams(struct azx *chip)
1097 {
1098 struct hdac_bus *bus = azx_bus(chip);
1099 struct hdac_stream *s;
1100
1101 list_for_each_entry(s, &bus->stream_list, list)
1102 snd_hdac_stream_stop(s);
1103 }
1104 EXPORT_SYMBOL_GPL(azx_stop_all_streams);
1105
1106 void azx_stop_chip(struct azx *chip)
1107 {
1108 snd_hdac_bus_stop_chip(azx_bus(chip));
1109 }
1110 EXPORT_SYMBOL_GPL(azx_stop_chip);
1111
1112 /*
1113 * interrupt handler
1114 */
1115 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
1116 {
1117 struct azx *chip = bus_to_azx(bus);
1118 struct azx_dev *azx_dev = stream_to_azx_dev(s);
1119
1120 /* check whether this IRQ is really acceptable */
1121 if (!chip->ops->position_check ||
1122 chip->ops->position_check(chip, azx_dev)) {
1123 spin_unlock(&bus->reg_lock);
1124 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream);
1125 spin_lock(&bus->reg_lock);
1126 }
1127 }
1128
1129 irqreturn_t azx_interrupt(int irq, void *dev_id)
1130 {
1131 struct azx *chip = dev_id;
1132 struct hdac_bus *bus = azx_bus(chip);
1133 u32 status;
1134 bool active, handled = false;
1135 int repeat = 0; /* count for avoiding endless loop */
1136
1137 #ifdef CONFIG_PM
1138 if (azx_has_pm_runtime(chip))
1139 if (!pm_runtime_active(chip->card->dev))
1140 return IRQ_NONE;
1141 #endif
1142
1143 spin_lock(&bus->reg_lock);
1144
1145 if (chip->disabled)
1146 goto unlock;
1147
1148 do {
1149 status = azx_readl(chip, INTSTS);
1150 if (status == 0 || status == 0xffffffff)
1151 break;
1152
1153 handled = true;
1154 active = false;
1155 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update))
1156 active = true;
1157
1158 /* clear rirb int */
1159 status = azx_readb(chip, RIRBSTS);
1160 if (status & RIRB_INT_MASK) {
1161 active = true;
1162 if (status & RIRB_INT_RESPONSE) {
1163 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1164 udelay(80);
1165 snd_hdac_bus_update_rirb(bus);
1166 }
1167 azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
1168 }
1169 } while (active && ++repeat < 10);
1170
1171 unlock:
1172 spin_unlock(&bus->reg_lock);
1173
1174 return IRQ_RETVAL(handled);
1175 }
1176 EXPORT_SYMBOL_GPL(azx_interrupt);
1177
1178 /*
1179 * Codec initerface
1180 */
1181
1182 /*
1183 * Probe the given codec address
1184 */
1185 static int probe_codec(struct azx *chip, int addr)
1186 {
1187 unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
1188 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1189 struct hdac_bus *bus = azx_bus(chip);
1190 int err;
1191 unsigned int res = -1;
1192
1193 mutex_lock(&bus->cmd_mutex);
1194 chip->probing = 1;
1195 azx_send_cmd(bus, cmd);
1196 err = azx_get_response(bus, addr, &res);
1197 chip->probing = 0;
1198 mutex_unlock(&bus->cmd_mutex);
1199 if (err < 0 || res == -1)
1200 return -EIO;
1201 dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
1202 return 0;
1203 }
1204
1205 void snd_hda_bus_reset(struct hda_bus *bus)
1206 {
1207 struct azx *chip = bus_to_azx(&bus->core);
1208
1209 bus->in_reset = 1;
1210 azx_stop_chip(chip);
1211 azx_init_chip(chip, true);
1212 if (bus->core.chip_init)
1213 snd_hda_bus_reset_codecs(bus);
1214 bus->in_reset = 0;
1215 }
1216
1217 static int get_jackpoll_interval(struct azx *chip)
1218 {
1219 int i;
1220 unsigned int j;
1221
1222 if (!chip->jackpoll_ms)
1223 return 0;
1224
1225 i = chip->jackpoll_ms[chip->dev_index];
1226 if (i == 0)
1227 return 0;
1228 if (i < 50 || i > 60000)
1229 j = 0;
1230 else
1231 j = msecs_to_jiffies(i);
1232 if (j == 0)
1233 dev_warn(chip->card->dev,
1234 "jackpoll_ms value out of range: %d\n", i);
1235 return j;
1236 }
1237
1238 /* HD-audio bus initialization */
1239 int azx_bus_init(struct azx *chip, const char *model,
1240 const struct hdac_io_ops *io_ops)
1241 {
1242 struct hda_bus *bus = &chip->bus;
1243 int err;
1244
1245 err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops,
1246 io_ops);
1247 if (err < 0)
1248 return err;
1249
1250 bus->card = chip->card;
1251 mutex_init(&bus->prepare_mutex);
1252 bus->pci = chip->pci;
1253 bus->modelname = model;
1254 bus->mixer_assigned = -1;
1255 bus->core.snoop = azx_snoop(chip);
1256 if (chip->get_position[0] != azx_get_pos_lpib ||
1257 chip->get_position[1] != azx_get_pos_lpib)
1258 bus->core.use_posbuf = true;
1259 bus->core.bdl_pos_adj = chip->bdl_pos_adj;
1260 if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)
1261 bus->core.corbrp_self_clear = true;
1262
1263 if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY)
1264 bus->core.align_bdle_4k = true;
1265
1266 /* AMD chipsets often cause the communication stalls upon certain
1267 * sequence like the pin-detection. It seems that forcing the synced
1268 * access works around the stall. Grrr...
1269 */
1270 if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) {
1271 dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n");
1272 bus->core.sync_write = 1;
1273 bus->allow_bus_reset = 1;
1274 }
1275
1276 return 0;
1277 }
1278 EXPORT_SYMBOL_GPL(azx_bus_init);
1279
1280 /* Probe codecs */
1281 int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
1282 {
1283 struct hdac_bus *bus = azx_bus(chip);
1284 int c, codecs, err;
1285
1286 codecs = 0;
1287 if (!max_slots)
1288 max_slots = AZX_DEFAULT_CODECS;
1289
1290 /* First try to probe all given codec slots */
1291 for (c = 0; c < max_slots; c++) {
1292 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1293 if (probe_codec(chip, c) < 0) {
1294 /* Some BIOSen give you wrong codec addresses
1295 * that don't exist
1296 */
1297 dev_warn(chip->card->dev,
1298 "Codec #%d probe error; disabling it...\n", c);
1299 bus->codec_mask &= ~(1 << c);
1300 /* More badly, accessing to a non-existing
1301 * codec often screws up the controller chip,
1302 * and disturbs the further communications.
1303 * Thus if an error occurs during probing,
1304 * better to reset the controller chip to
1305 * get back to the sanity state.
1306 */
1307 azx_stop_chip(chip);
1308 azx_init_chip(chip, true);
1309 }
1310 }
1311 }
1312
1313 /* Then create codec instances */
1314 for (c = 0; c < max_slots; c++) {
1315 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1316 struct hda_codec *codec;
1317 err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec);
1318 if (err < 0)
1319 continue;
1320 codec->jackpoll_interval = get_jackpoll_interval(chip);
1321 codec->beep_mode = chip->beep_mode;
1322 codecs++;
1323 }
1324 }
1325 if (!codecs) {
1326 dev_err(chip->card->dev, "no codecs initialized\n");
1327 return -ENXIO;
1328 }
1329 return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(azx_probe_codecs);
1332
1333 /* configure each codec instance */
1334 int azx_codec_configure(struct azx *chip)
1335 {
1336 struct hda_codec *codec;
1337 list_for_each_codec(codec, &chip->bus) {
1338 snd_hda_codec_configure(codec);
1339 }
1340 return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(azx_codec_configure);
1343
1344 static int stream_direction(struct azx *chip, unsigned char index)
1345 {
1346 if (index >= chip->capture_index_offset &&
1347 index < chip->capture_index_offset + chip->capture_streams)
1348 return SNDRV_PCM_STREAM_CAPTURE;
1349 return SNDRV_PCM_STREAM_PLAYBACK;
1350 }
1351
1352 /* initialize SD streams */
1353 int azx_init_streams(struct azx *chip)
1354 {
1355 int i;
1356 int stream_tags[2] = { 0, 0 };
1357
1358 /* initialize each stream (aka device)
1359 * assign the starting bdl address to each stream (device)
1360 * and initialize
1361 */
1362 for (i = 0; i < chip->num_streams; i++) {
1363 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
1364 int dir, tag;
1365
1366 if (!azx_dev)
1367 return -ENOMEM;
1368
1369 dir = stream_direction(chip, i);
1370 /* stream tag must be unique throughout
1371 * the stream direction group,
1372 * valid values 1...15
1373 * use separate stream tag if the flag
1374 * AZX_DCAPS_SEPARATE_STREAM_TAG is used
1375 */
1376 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1377 tag = ++stream_tags[dir];
1378 else
1379 tag = i + 1;
1380 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
1381 i, dir, tag);
1382 }
1383
1384 return 0;
1385 }
1386 EXPORT_SYMBOL_GPL(azx_init_streams);
1387
1388 void azx_free_streams(struct azx *chip)
1389 {
1390 struct hdac_bus *bus = azx_bus(chip);
1391 struct hdac_stream *s;
1392
1393 while (!list_empty(&bus->stream_list)) {
1394 s = list_first_entry(&bus->stream_list, struct hdac_stream, list);
1395 list_del(&s->list);
1396 kfree(stream_to_azx_dev(s));
1397 }
1398 }
1399 EXPORT_SYMBOL_GPL(azx_free_streams);
This page took 0.06879 seconds and 5 git commands to generate.