Merge remote-tracking branch 'iommu/next'
[deliverable/linux.git] / sound / usb / endpoint.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
15 *
16 */
17
18 #include <linux/gfp.h>
19 #include <linux/init.h>
20 #include <linux/ratelimit.h>
21 #include <linux/usb.h>
22 #include <linux/usb/audio.h>
23 #include <linux/slab.h>
24
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28
29 #include "usbaudio.h"
30 #include "helper.h"
31 #include "card.h"
32 #include "endpoint.h"
33 #include "pcm.h"
34 #include "quirks.h"
35
36 #define EP_FLAG_RUNNING 1
37 #define EP_FLAG_STOPPING 2
38
39 /*
40 * snd_usb_endpoint is a model that abstracts everything related to an
41 * USB endpoint and its streaming.
42 *
43 * There are functions to activate and deactivate the streaming URBs and
44 * optional callbacks to let the pcm logic handle the actual content of the
45 * packets for playback and record. Thus, the bus streaming and the audio
46 * handlers are fully decoupled.
47 *
48 * There are two different types of endpoints in audio applications.
49 *
50 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
51 * inbound and outbound traffic.
52 *
53 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
54 * expect the payload to carry Q10.14 / Q16.16 formatted sync information
55 * (3 or 4 bytes).
56 *
57 * Each endpoint has to be configured prior to being used by calling
58 * snd_usb_endpoint_set_params().
59 *
60 * The model incorporates a reference counting, so that multiple users
61 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
62 * only the first user will effectively start the URBs, and only the last
63 * one to stop it will tear the URBs down again.
64 */
65
66 /*
67 * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
68 * this will overflow at approx 524 kHz
69 */
70 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
71 {
72 return ((rate << 13) + 62) / 125;
73 }
74
75 /*
76 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
77 * this will overflow at approx 4 MHz
78 */
79 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
80 {
81 return ((rate << 10) + 62) / 125;
82 }
83
84 /*
85 * release a urb data
86 */
87 static void release_urb_ctx(struct snd_urb_ctx *u)
88 {
89 if (u->buffer_size)
90 usb_free_coherent(u->ep->chip->dev, u->buffer_size,
91 u->urb->transfer_buffer,
92 u->urb->transfer_dma);
93 usb_free_urb(u->urb);
94 u->urb = NULL;
95 }
96
97 static const char *usb_error_string(int err)
98 {
99 switch (err) {
100 case -ENODEV:
101 return "no device";
102 case -ENOENT:
103 return "endpoint not enabled";
104 case -EPIPE:
105 return "endpoint stalled";
106 case -ENOSPC:
107 return "not enough bandwidth";
108 case -ESHUTDOWN:
109 return "device disabled";
110 case -EHOSTUNREACH:
111 return "device suspended";
112 case -EINVAL:
113 case -EAGAIN:
114 case -EFBIG:
115 case -EMSGSIZE:
116 return "internal error";
117 default:
118 return "unknown error";
119 }
120 }
121
122 /**
123 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
124 *
125 * @ep: The snd_usb_endpoint
126 *
127 * Determine whether an endpoint is driven by an implicit feedback
128 * data endpoint source.
129 */
130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
131 {
132 return ep->sync_master &&
133 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
134 ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
135 usb_pipeout(ep->pipe);
136 }
137
138 /*
139 * For streaming based on information derived from sync endpoints,
140 * prepare_outbound_urb_sizes() will call next_packet_size() to
141 * determine the number of samples to be sent in the next packet.
142 *
143 * For implicit feedback, next_packet_size() is unused.
144 */
145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
146 {
147 unsigned long flags;
148 int ret;
149
150 if (ep->fill_max)
151 return ep->maxframesize;
152
153 spin_lock_irqsave(&ep->lock, flags);
154 ep->phase = (ep->phase & 0xffff)
155 + (ep->freqm << ep->datainterval);
156 ret = min(ep->phase >> 16, ep->maxframesize);
157 spin_unlock_irqrestore(&ep->lock, flags);
158
159 return ret;
160 }
161
162 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
163 struct snd_urb_ctx *urb_ctx)
164 {
165 if (ep->retire_data_urb)
166 ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
167 }
168
169 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
170 struct snd_urb_ctx *urb_ctx)
171 {
172 struct urb *urb = urb_ctx->urb;
173
174 if (unlikely(ep->skip_packets > 0)) {
175 ep->skip_packets--;
176 return;
177 }
178
179 if (ep->sync_slave)
180 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
181
182 if (ep->retire_data_urb)
183 ep->retire_data_urb(ep->data_subs, urb);
184 }
185
186 static void prepare_silent_urb(struct snd_usb_endpoint *ep,
187 struct snd_urb_ctx *ctx)
188 {
189 struct urb *urb = ctx->urb;
190 unsigned int offs = 0;
191 unsigned int extra = 0;
192 __le32 packet_length;
193 int i;
194
195 /* For tx_length_quirk, put packet length at start of packet */
196 if (ep->chip->tx_length_quirk)
197 extra = sizeof(packet_length);
198
199 for (i = 0; i < ctx->packets; ++i) {
200 unsigned int offset;
201 unsigned int length;
202 int counts;
203
204 if (ctx->packet_size[i])
205 counts = ctx->packet_size[i];
206 else
207 counts = snd_usb_endpoint_next_packet_size(ep);
208
209 length = counts * ep->stride; /* number of silent bytes */
210 offset = offs * ep->stride + extra * i;
211 urb->iso_frame_desc[i].offset = offset;
212 urb->iso_frame_desc[i].length = length + extra;
213 if (extra) {
214 packet_length = cpu_to_le32(length);
215 memcpy(urb->transfer_buffer + offset,
216 &packet_length, sizeof(packet_length));
217 }
218 memset(urb->transfer_buffer + offset + extra,
219 ep->silence_value, length);
220 offs += counts;
221 }
222
223 urb->number_of_packets = ctx->packets;
224 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra;
225 }
226
227 /*
228 * Prepare a PLAYBACK urb for submission to the bus.
229 */
230 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
231 struct snd_urb_ctx *ctx)
232 {
233 struct urb *urb = ctx->urb;
234 unsigned char *cp = urb->transfer_buffer;
235
236 urb->dev = ep->chip->dev; /* we need to set this at each time */
237
238 switch (ep->type) {
239 case SND_USB_ENDPOINT_TYPE_DATA:
240 if (ep->prepare_data_urb) {
241 ep->prepare_data_urb(ep->data_subs, urb);
242 } else {
243 /* no data provider, so send silence */
244 prepare_silent_urb(ep, ctx);
245 }
246 break;
247
248 case SND_USB_ENDPOINT_TYPE_SYNC:
249 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
250 /*
251 * fill the length and offset of each urb descriptor.
252 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
253 */
254 urb->iso_frame_desc[0].length = 4;
255 urb->iso_frame_desc[0].offset = 0;
256 cp[0] = ep->freqn;
257 cp[1] = ep->freqn >> 8;
258 cp[2] = ep->freqn >> 16;
259 cp[3] = ep->freqn >> 24;
260 } else {
261 /*
262 * fill the length and offset of each urb descriptor.
263 * the fixed 10.14 frequency is passed through the pipe.
264 */
265 urb->iso_frame_desc[0].length = 3;
266 urb->iso_frame_desc[0].offset = 0;
267 cp[0] = ep->freqn >> 2;
268 cp[1] = ep->freqn >> 10;
269 cp[2] = ep->freqn >> 18;
270 }
271
272 break;
273 }
274 }
275
276 /*
277 * Prepare a CAPTURE or SYNC urb for submission to the bus.
278 */
279 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
280 struct snd_urb_ctx *urb_ctx)
281 {
282 int i, offs;
283 struct urb *urb = urb_ctx->urb;
284
285 urb->dev = ep->chip->dev; /* we need to set this at each time */
286
287 switch (ep->type) {
288 case SND_USB_ENDPOINT_TYPE_DATA:
289 offs = 0;
290 for (i = 0; i < urb_ctx->packets; i++) {
291 urb->iso_frame_desc[i].offset = offs;
292 urb->iso_frame_desc[i].length = ep->curpacksize;
293 offs += ep->curpacksize;
294 }
295
296 urb->transfer_buffer_length = offs;
297 urb->number_of_packets = urb_ctx->packets;
298 break;
299
300 case SND_USB_ENDPOINT_TYPE_SYNC:
301 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
302 urb->iso_frame_desc[0].offset = 0;
303 break;
304 }
305 }
306
307 /*
308 * Send output urbs that have been prepared previously. URBs are dequeued
309 * from ep->ready_playback_urbs and in case there there aren't any available
310 * or there are no packets that have been prepared, this function does
311 * nothing.
312 *
313 * The reason why the functionality of sending and preparing URBs is separated
314 * is that host controllers don't guarantee the order in which they return
315 * inbound and outbound packets to their submitters.
316 *
317 * This function is only used for implicit feedback endpoints. For endpoints
318 * driven by dedicated sync endpoints, URBs are immediately re-submitted
319 * from their completion handler.
320 */
321 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
322 {
323 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
324
325 unsigned long flags;
326 struct snd_usb_packet_info *uninitialized_var(packet);
327 struct snd_urb_ctx *ctx = NULL;
328 struct urb *urb;
329 int err, i;
330
331 spin_lock_irqsave(&ep->lock, flags);
332 if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
333 packet = ep->next_packet + ep->next_packet_read_pos;
334 ep->next_packet_read_pos++;
335 ep->next_packet_read_pos %= MAX_URBS;
336
337 /* take URB out of FIFO */
338 if (!list_empty(&ep->ready_playback_urbs))
339 ctx = list_first_entry(&ep->ready_playback_urbs,
340 struct snd_urb_ctx, ready_list);
341 }
342 spin_unlock_irqrestore(&ep->lock, flags);
343
344 if (ctx == NULL)
345 return;
346
347 list_del_init(&ctx->ready_list);
348 urb = ctx->urb;
349
350 /* copy over the length information */
351 for (i = 0; i < packet->packets; i++)
352 ctx->packet_size[i] = packet->packet_size[i];
353
354 /* call the data handler to fill in playback data */
355 prepare_outbound_urb(ep, ctx);
356
357 err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
358 if (err < 0)
359 usb_audio_err(ep->chip,
360 "Unable to submit urb #%d: %d (urb %p)\n",
361 ctx->index, err, ctx->urb);
362 else
363 set_bit(ctx->index, &ep->active_mask);
364 }
365 }
366
367 /*
368 * complete callback for urbs
369 */
370 static void snd_complete_urb(struct urb *urb)
371 {
372 struct snd_urb_ctx *ctx = urb->context;
373 struct snd_usb_endpoint *ep = ctx->ep;
374 struct snd_pcm_substream *substream;
375 unsigned long flags;
376 int err;
377
378 if (unlikely(urb->status == -ENOENT || /* unlinked */
379 urb->status == -ENODEV || /* device removed */
380 urb->status == -ECONNRESET || /* unlinked */
381 urb->status == -ESHUTDOWN)) /* device disabled */
382 goto exit_clear;
383 /* device disconnected */
384 if (unlikely(atomic_read(&ep->chip->shutdown)))
385 goto exit_clear;
386
387 if (usb_pipeout(ep->pipe)) {
388 retire_outbound_urb(ep, ctx);
389 /* can be stopped during retire callback */
390 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
391 goto exit_clear;
392
393 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
394 spin_lock_irqsave(&ep->lock, flags);
395 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
396 spin_unlock_irqrestore(&ep->lock, flags);
397 queue_pending_output_urbs(ep);
398
399 goto exit_clear;
400 }
401
402 prepare_outbound_urb(ep, ctx);
403 } else {
404 retire_inbound_urb(ep, ctx);
405 /* can be stopped during retire callback */
406 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
407 goto exit_clear;
408
409 prepare_inbound_urb(ep, ctx);
410 }
411
412 err = usb_submit_urb(urb, GFP_ATOMIC);
413 if (err == 0)
414 return;
415
416 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
417 if (ep->data_subs && ep->data_subs->pcm_substream) {
418 substream = ep->data_subs->pcm_substream;
419 snd_pcm_stop_xrun(substream);
420 }
421
422 exit_clear:
423 clear_bit(ctx->index, &ep->active_mask);
424 }
425
426 /**
427 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
428 *
429 * @chip: The chip
430 * @alts: The USB host interface
431 * @ep_num: The number of the endpoint to use
432 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
433 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
434 *
435 * If the requested endpoint has not been added to the given chip before,
436 * a new instance is created. Otherwise, a pointer to the previoulsy
437 * created instance is returned. In case of any error, NULL is returned.
438 *
439 * New endpoints will be added to chip->ep_list and must be freed by
440 * calling snd_usb_endpoint_free().
441 *
442 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that
443 * bNumEndpoints > 1 beforehand.
444 */
445 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
446 struct usb_host_interface *alts,
447 int ep_num, int direction, int type)
448 {
449 struct snd_usb_endpoint *ep;
450 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
451
452 if (WARN_ON(!alts))
453 return NULL;
454
455 mutex_lock(&chip->mutex);
456
457 list_for_each_entry(ep, &chip->ep_list, list) {
458 if (ep->ep_num == ep_num &&
459 ep->iface == alts->desc.bInterfaceNumber &&
460 ep->altsetting == alts->desc.bAlternateSetting) {
461 usb_audio_dbg(ep->chip,
462 "Re-using EP %x in iface %d,%d @%p\n",
463 ep_num, ep->iface, ep->altsetting, ep);
464 goto __exit_unlock;
465 }
466 }
467
468 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
469 is_playback ? "playback" : "capture",
470 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
471 ep_num);
472
473 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
474 if (!ep)
475 goto __exit_unlock;
476
477 ep->chip = chip;
478 spin_lock_init(&ep->lock);
479 ep->type = type;
480 ep->ep_num = ep_num;
481 ep->iface = alts->desc.bInterfaceNumber;
482 ep->altsetting = alts->desc.bAlternateSetting;
483 INIT_LIST_HEAD(&ep->ready_playback_urbs);
484 ep_num &= USB_ENDPOINT_NUMBER_MASK;
485
486 if (is_playback)
487 ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
488 else
489 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
490
491 if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
492 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
493 get_endpoint(alts, 1)->bRefresh >= 1 &&
494 get_endpoint(alts, 1)->bRefresh <= 9)
495 ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
496 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
497 ep->syncinterval = 1;
498 else if (get_endpoint(alts, 1)->bInterval >= 1 &&
499 get_endpoint(alts, 1)->bInterval <= 16)
500 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
501 else
502 ep->syncinterval = 3;
503
504 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
505 }
506
507 list_add_tail(&ep->list, &chip->ep_list);
508
509 __exit_unlock:
510 mutex_unlock(&chip->mutex);
511
512 return ep;
513 }
514
515 /*
516 * wait until all urbs are processed.
517 */
518 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
519 {
520 unsigned long end_time = jiffies + msecs_to_jiffies(1000);
521 int alive;
522
523 do {
524 alive = bitmap_weight(&ep->active_mask, ep->nurbs);
525 if (!alive)
526 break;
527
528 schedule_timeout_uninterruptible(1);
529 } while (time_before(jiffies, end_time));
530
531 if (alive)
532 usb_audio_err(ep->chip,
533 "timeout: still %d active urbs on EP #%x\n",
534 alive, ep->ep_num);
535 clear_bit(EP_FLAG_STOPPING, &ep->flags);
536
537 return 0;
538 }
539
540 /* sync the pending stop operation;
541 * this function itself doesn't trigger the stop operation
542 */
543 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
544 {
545 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
546 wait_clear_urbs(ep);
547 }
548
549 /*
550 * unlink active urbs.
551 */
552 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
553 {
554 unsigned int i;
555
556 if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */
557 return -EBADFD;
558
559 clear_bit(EP_FLAG_RUNNING, &ep->flags);
560
561 INIT_LIST_HEAD(&ep->ready_playback_urbs);
562 ep->next_packet_read_pos = 0;
563 ep->next_packet_write_pos = 0;
564
565 for (i = 0; i < ep->nurbs; i++) {
566 if (test_bit(i, &ep->active_mask)) {
567 if (!test_and_set_bit(i, &ep->unlink_mask)) {
568 struct urb *u = ep->urb[i].urb;
569 usb_unlink_urb(u);
570 }
571 }
572 }
573
574 return 0;
575 }
576
577 /*
578 * release an endpoint's urbs
579 */
580 static void release_urbs(struct snd_usb_endpoint *ep, int force)
581 {
582 int i;
583
584 /* route incoming urbs to nirvana */
585 ep->retire_data_urb = NULL;
586 ep->prepare_data_urb = NULL;
587
588 /* stop urbs */
589 deactivate_urbs(ep, force);
590 wait_clear_urbs(ep);
591
592 for (i = 0; i < ep->nurbs; i++)
593 release_urb_ctx(&ep->urb[i]);
594
595 if (ep->syncbuf)
596 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
597 ep->syncbuf, ep->sync_dma);
598
599 ep->syncbuf = NULL;
600 ep->nurbs = 0;
601 }
602
603 /*
604 * configure a data endpoint
605 */
606 static int data_ep_set_params(struct snd_usb_endpoint *ep,
607 snd_pcm_format_t pcm_format,
608 unsigned int channels,
609 unsigned int period_bytes,
610 unsigned int frames_per_period,
611 unsigned int periods_per_buffer,
612 struct audioformat *fmt,
613 struct snd_usb_endpoint *sync_ep)
614 {
615 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
616 unsigned int max_packs_per_period, urbs_per_period, urb_packs;
617 unsigned int max_urbs, i;
618 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
619 int tx_length_quirk = (ep->chip->tx_length_quirk &&
620 usb_pipeout(ep->pipe));
621
622 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
623 /*
624 * When operating in DSD DOP mode, the size of a sample frame
625 * in hardware differs from the actual physical format width
626 * because we need to make room for the DOP markers.
627 */
628 frame_bits += channels << 3;
629 }
630
631 ep->datainterval = fmt->datainterval;
632 ep->stride = frame_bits >> 3;
633 ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0;
634
635 /* assume max. frequency is 25% higher than nominal */
636 ep->freqmax = ep->freqn + (ep->freqn >> 2);
637 /* Round up freqmax to nearest integer in order to calculate maximum
638 * packet size, which must represent a whole number of frames.
639 * This is accomplished by adding 0x0.ffff before converting the
640 * Q16.16 format into integer.
641 * In order to accurately calculate the maximum packet size when
642 * the data interval is more than 1 (i.e. ep->datainterval > 0),
643 * multiply by the data interval prior to rounding. For instance,
644 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
645 * frames with a data interval of 1, but 11 (10.25) frames with a
646 * data interval of 2.
647 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
648 * maximum datainterval value of 3, at USB full speed, higher for
649 * USB high speed, noting that ep->freqmax is in units of
650 * frames per packet in Q16.16 format.)
651 */
652 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
653 (frame_bits >> 3);
654 if (tx_length_quirk)
655 maxsize += sizeof(__le32); /* Space for length descriptor */
656 /* but wMaxPacketSize might reduce this */
657 if (ep->maxpacksize && ep->maxpacksize < maxsize) {
658 /* whatever fits into a max. size packet */
659 unsigned int data_maxsize = maxsize = ep->maxpacksize;
660
661 if (tx_length_quirk)
662 /* Need to remove the length descriptor to calc freq */
663 data_maxsize -= sizeof(__le32);
664 ep->freqmax = (data_maxsize / (frame_bits >> 3))
665 << (16 - ep->datainterval);
666 }
667
668 if (ep->fill_max)
669 ep->curpacksize = ep->maxpacksize;
670 else
671 ep->curpacksize = maxsize;
672
673 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
674 packs_per_ms = 8 >> ep->datainterval;
675 max_packs_per_urb = MAX_PACKS_HS;
676 } else {
677 packs_per_ms = 1;
678 max_packs_per_urb = MAX_PACKS;
679 }
680 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
681 max_packs_per_urb = min(max_packs_per_urb,
682 1U << sync_ep->syncinterval);
683 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
684
685 /*
686 * Capture endpoints need to use small URBs because there's no way
687 * to tell in advance where the next period will end, and we don't
688 * want the next URB to complete much after the period ends.
689 *
690 * Playback endpoints with implicit sync much use the same parameters
691 * as their corresponding capture endpoint.
692 */
693 if (usb_pipein(ep->pipe) ||
694 snd_usb_endpoint_implicit_feedback_sink(ep)) {
695
696 urb_packs = packs_per_ms;
697 /*
698 * Wireless devices can poll at a max rate of once per 4ms.
699 * For dataintervals less than 5, increase the packet count to
700 * allow the host controller to use bursting to fill in the
701 * gaps.
702 */
703 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
704 int interval = ep->datainterval;
705 while (interval < 5) {
706 urb_packs <<= 1;
707 ++interval;
708 }
709 }
710 /* make capture URBs <= 1 ms and smaller than a period */
711 urb_packs = min(max_packs_per_urb, urb_packs);
712 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
713 urb_packs >>= 1;
714 ep->nurbs = MAX_URBS;
715
716 /*
717 * Playback endpoints without implicit sync are adjusted so that
718 * a period fits as evenly as possible in the smallest number of
719 * URBs. The total number of URBs is adjusted to the size of the
720 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
721 */
722 } else {
723 /* determine how small a packet can be */
724 minsize = (ep->freqn >> (16 - ep->datainterval)) *
725 (frame_bits >> 3);
726 /* with sync from device, assume it can be 12% lower */
727 if (sync_ep)
728 minsize -= minsize >> 3;
729 minsize = max(minsize, 1u);
730
731 /* how many packets will contain an entire ALSA period? */
732 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
733
734 /* how many URBs will contain a period? */
735 urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
736 max_packs_per_urb);
737 /* how many packets are needed in each URB? */
738 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
739
740 /* limit the number of frames in a single URB */
741 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
742 urbs_per_period);
743
744 /* try to use enough URBs to contain an entire ALSA buffer */
745 max_urbs = min((unsigned) MAX_URBS,
746 MAX_QUEUE * packs_per_ms / urb_packs);
747 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
748 }
749
750 /* allocate and initialize data urbs */
751 for (i = 0; i < ep->nurbs; i++) {
752 struct snd_urb_ctx *u = &ep->urb[i];
753 u->index = i;
754 u->ep = ep;
755 u->packets = urb_packs;
756 u->buffer_size = maxsize * u->packets;
757
758 if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
759 u->packets++; /* for transfer delimiter */
760 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
761 if (!u->urb)
762 goto out_of_memory;
763
764 u->urb->transfer_buffer =
765 usb_alloc_coherent(ep->chip->dev, u->buffer_size,
766 GFP_KERNEL, &u->urb->transfer_dma);
767 if (!u->urb->transfer_buffer)
768 goto out_of_memory;
769 u->urb->pipe = ep->pipe;
770 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
771 u->urb->interval = 1 << ep->datainterval;
772 u->urb->context = u;
773 u->urb->complete = snd_complete_urb;
774 INIT_LIST_HEAD(&u->ready_list);
775 }
776
777 return 0;
778
779 out_of_memory:
780 release_urbs(ep, 0);
781 return -ENOMEM;
782 }
783
784 /*
785 * configure a sync endpoint
786 */
787 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
788 {
789 int i;
790
791 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
792 GFP_KERNEL, &ep->sync_dma);
793 if (!ep->syncbuf)
794 return -ENOMEM;
795
796 for (i = 0; i < SYNC_URBS; i++) {
797 struct snd_urb_ctx *u = &ep->urb[i];
798 u->index = i;
799 u->ep = ep;
800 u->packets = 1;
801 u->urb = usb_alloc_urb(1, GFP_KERNEL);
802 if (!u->urb)
803 goto out_of_memory;
804 u->urb->transfer_buffer = ep->syncbuf + i * 4;
805 u->urb->transfer_dma = ep->sync_dma + i * 4;
806 u->urb->transfer_buffer_length = 4;
807 u->urb->pipe = ep->pipe;
808 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
809 u->urb->number_of_packets = 1;
810 u->urb->interval = 1 << ep->syncinterval;
811 u->urb->context = u;
812 u->urb->complete = snd_complete_urb;
813 }
814
815 ep->nurbs = SYNC_URBS;
816
817 return 0;
818
819 out_of_memory:
820 release_urbs(ep, 0);
821 return -ENOMEM;
822 }
823
824 /**
825 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
826 *
827 * @ep: the snd_usb_endpoint to configure
828 * @pcm_format: the audio fomat.
829 * @channels: the number of audio channels.
830 * @period_bytes: the number of bytes in one alsa period.
831 * @period_frames: the number of frames in one alsa period.
832 * @buffer_periods: the number of periods in one alsa buffer.
833 * @rate: the frame rate.
834 * @fmt: the USB audio format information
835 * @sync_ep: the sync endpoint to use, if any
836 *
837 * Determine the number of URBs to be used on this endpoint.
838 * An endpoint must be configured before it can be started.
839 * An endpoint that is already running can not be reconfigured.
840 */
841 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
842 snd_pcm_format_t pcm_format,
843 unsigned int channels,
844 unsigned int period_bytes,
845 unsigned int period_frames,
846 unsigned int buffer_periods,
847 unsigned int rate,
848 struct audioformat *fmt,
849 struct snd_usb_endpoint *sync_ep)
850 {
851 int err;
852
853 if (ep->use_count != 0) {
854 usb_audio_warn(ep->chip,
855 "Unable to change format on ep #%x: already in use\n",
856 ep->ep_num);
857 return -EBUSY;
858 }
859
860 /* release old buffers, if any */
861 release_urbs(ep, 0);
862
863 ep->datainterval = fmt->datainterval;
864 ep->maxpacksize = fmt->maxpacksize;
865 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
866
867 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
868 ep->freqn = get_usb_full_speed_rate(rate);
869 else
870 ep->freqn = get_usb_high_speed_rate(rate);
871
872 /* calculate the frequency in 16.16 format */
873 ep->freqm = ep->freqn;
874 ep->freqshift = INT_MIN;
875
876 ep->phase = 0;
877
878 switch (ep->type) {
879 case SND_USB_ENDPOINT_TYPE_DATA:
880 err = data_ep_set_params(ep, pcm_format, channels,
881 period_bytes, period_frames,
882 buffer_periods, fmt, sync_ep);
883 break;
884 case SND_USB_ENDPOINT_TYPE_SYNC:
885 err = sync_ep_set_params(ep);
886 break;
887 default:
888 err = -EINVAL;
889 }
890
891 usb_audio_dbg(ep->chip,
892 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
893 ep->ep_num, ep->type, ep->nurbs, err);
894
895 return err;
896 }
897
898 /**
899 * snd_usb_endpoint_start: start an snd_usb_endpoint
900 *
901 * @ep: the endpoint to start
902 * @can_sleep: flag indicating whether the operation is executed in
903 * non-atomic context
904 *
905 * A call to this function will increment the use count of the endpoint.
906 * In case it is not already running, the URBs for this endpoint will be
907 * submitted. Otherwise, this function does nothing.
908 *
909 * Must be balanced to calls of snd_usb_endpoint_stop().
910 *
911 * Returns an error if the URB submission failed, 0 in all other cases.
912 */
913 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep)
914 {
915 int err;
916 unsigned int i;
917
918 if (atomic_read(&ep->chip->shutdown))
919 return -EBADFD;
920
921 /* already running? */
922 if (++ep->use_count != 1)
923 return 0;
924
925 /* just to be sure */
926 deactivate_urbs(ep, false);
927 if (can_sleep)
928 wait_clear_urbs(ep);
929
930 ep->active_mask = 0;
931 ep->unlink_mask = 0;
932 ep->phase = 0;
933
934 snd_usb_endpoint_start_quirk(ep);
935
936 /*
937 * If this endpoint has a data endpoint as implicit feedback source,
938 * don't start the urbs here. Instead, mark them all as available,
939 * wait for the record urbs to return and queue the playback urbs
940 * from that context.
941 */
942
943 set_bit(EP_FLAG_RUNNING, &ep->flags);
944
945 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
946 for (i = 0; i < ep->nurbs; i++) {
947 struct snd_urb_ctx *ctx = ep->urb + i;
948 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
949 }
950
951 return 0;
952 }
953
954 for (i = 0; i < ep->nurbs; i++) {
955 struct urb *urb = ep->urb[i].urb;
956
957 if (snd_BUG_ON(!urb))
958 goto __error;
959
960 if (usb_pipeout(ep->pipe)) {
961 prepare_outbound_urb(ep, urb->context);
962 } else {
963 prepare_inbound_urb(ep, urb->context);
964 }
965
966 err = usb_submit_urb(urb, GFP_ATOMIC);
967 if (err < 0) {
968 usb_audio_err(ep->chip,
969 "cannot submit urb %d, error %d: %s\n",
970 i, err, usb_error_string(err));
971 goto __error;
972 }
973 set_bit(i, &ep->active_mask);
974 }
975
976 return 0;
977
978 __error:
979 clear_bit(EP_FLAG_RUNNING, &ep->flags);
980 ep->use_count--;
981 deactivate_urbs(ep, false);
982 return -EPIPE;
983 }
984
985 /**
986 * snd_usb_endpoint_stop: stop an snd_usb_endpoint
987 *
988 * @ep: the endpoint to stop (may be NULL)
989 *
990 * A call to this function will decrement the use count of the endpoint.
991 * In case the last user has requested the endpoint stop, the URBs will
992 * actually be deactivated.
993 *
994 * Must be balanced to calls of snd_usb_endpoint_start().
995 *
996 * The caller needs to synchronize the pending stop operation via
997 * snd_usb_endpoint_sync_pending_stop().
998 */
999 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
1000 {
1001 if (!ep)
1002 return;
1003
1004 if (snd_BUG_ON(ep->use_count == 0))
1005 return;
1006
1007 if (--ep->use_count == 0) {
1008 deactivate_urbs(ep, false);
1009 ep->data_subs = NULL;
1010 ep->sync_slave = NULL;
1011 ep->retire_data_urb = NULL;
1012 ep->prepare_data_urb = NULL;
1013 set_bit(EP_FLAG_STOPPING, &ep->flags);
1014 }
1015 }
1016
1017 /**
1018 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
1019 *
1020 * @ep: the endpoint to deactivate
1021 *
1022 * If the endpoint is not currently in use, this functions will
1023 * deactivate its associated URBs.
1024 *
1025 * In case of any active users, this functions does nothing.
1026 */
1027 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
1028 {
1029 if (!ep)
1030 return;
1031
1032 if (ep->use_count != 0)
1033 return;
1034
1035 deactivate_urbs(ep, true);
1036 wait_clear_urbs(ep);
1037 }
1038
1039 /**
1040 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint
1041 *
1042 * @ep: the endpoint to release
1043 *
1044 * This function does not care for the endpoint's use count but will tear
1045 * down all the streaming URBs immediately.
1046 */
1047 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1048 {
1049 release_urbs(ep, 1);
1050 }
1051
1052 /**
1053 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
1054 *
1055 * @ep: the endpoint to free
1056 *
1057 * This free all resources of the given ep.
1058 */
1059 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep)
1060 {
1061 kfree(ep);
1062 }
1063
1064 /**
1065 * snd_usb_handle_sync_urb: parse an USB sync packet
1066 *
1067 * @ep: the endpoint to handle the packet
1068 * @sender: the sending endpoint
1069 * @urb: the received packet
1070 *
1071 * This function is called from the context of an endpoint that received
1072 * the packet and is used to let another endpoint object handle the payload.
1073 */
1074 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1075 struct snd_usb_endpoint *sender,
1076 const struct urb *urb)
1077 {
1078 int shift;
1079 unsigned int f;
1080 unsigned long flags;
1081
1082 snd_BUG_ON(ep == sender);
1083
1084 /*
1085 * In case the endpoint is operating in implicit feedback mode, prepare
1086 * a new outbound URB that has the same layout as the received packet
1087 * and add it to the list of pending urbs. queue_pending_output_urbs()
1088 * will take care of them later.
1089 */
1090 if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1091 ep->use_count != 0) {
1092
1093 /* implicit feedback case */
1094 int i, bytes = 0;
1095 struct snd_urb_ctx *in_ctx;
1096 struct snd_usb_packet_info *out_packet;
1097
1098 in_ctx = urb->context;
1099
1100 /* Count overall packet size */
1101 for (i = 0; i < in_ctx->packets; i++)
1102 if (urb->iso_frame_desc[i].status == 0)
1103 bytes += urb->iso_frame_desc[i].actual_length;
1104
1105 /*
1106 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1107 * streaming once it received a 0-byte OUT URB
1108 */
1109 if (bytes == 0)
1110 return;
1111
1112 spin_lock_irqsave(&ep->lock, flags);
1113 out_packet = ep->next_packet + ep->next_packet_write_pos;
1114
1115 /*
1116 * Iterate through the inbound packet and prepare the lengths
1117 * for the output packet. The OUT packet we are about to send
1118 * will have the same amount of payload bytes per stride as the
1119 * IN packet we just received. Since the actual size is scaled
1120 * by the stride, use the sender stride to calculate the length
1121 * in case the number of channels differ between the implicitly
1122 * fed-back endpoint and the synchronizing endpoint.
1123 */
1124
1125 out_packet->packets = in_ctx->packets;
1126 for (i = 0; i < in_ctx->packets; i++) {
1127 if (urb->iso_frame_desc[i].status == 0)
1128 out_packet->packet_size[i] =
1129 urb->iso_frame_desc[i].actual_length / sender->stride;
1130 else
1131 out_packet->packet_size[i] = 0;
1132 }
1133
1134 ep->next_packet_write_pos++;
1135 ep->next_packet_write_pos %= MAX_URBS;
1136 spin_unlock_irqrestore(&ep->lock, flags);
1137 queue_pending_output_urbs(ep);
1138
1139 return;
1140 }
1141
1142 /*
1143 * process after playback sync complete
1144 *
1145 * Full speed devices report feedback values in 10.14 format as samples
1146 * per frame, high speed devices in 16.16 format as samples per
1147 * microframe.
1148 *
1149 * Because the Audio Class 1 spec was written before USB 2.0, many high
1150 * speed devices use a wrong interpretation, some others use an
1151 * entirely different format.
1152 *
1153 * Therefore, we cannot predict what format any particular device uses
1154 * and must detect it automatically.
1155 */
1156
1157 if (urb->iso_frame_desc[0].status != 0 ||
1158 urb->iso_frame_desc[0].actual_length < 3)
1159 return;
1160
1161 f = le32_to_cpup(urb->transfer_buffer);
1162 if (urb->iso_frame_desc[0].actual_length == 3)
1163 f &= 0x00ffffff;
1164 else
1165 f &= 0x0fffffff;
1166
1167 if (f == 0)
1168 return;
1169
1170 if (unlikely(sender->tenor_fb_quirk)) {
1171 /*
1172 * Devices based on Tenor 8802 chipsets (TEAC UD-H01
1173 * and others) sometimes change the feedback value
1174 * by +/- 0x1.0000.
1175 */
1176 if (f < ep->freqn - 0x8000)
1177 f += 0xf000;
1178 else if (f > ep->freqn + 0x8000)
1179 f -= 0xf000;
1180 } else if (unlikely(ep->freqshift == INT_MIN)) {
1181 /*
1182 * The first time we see a feedback value, determine its format
1183 * by shifting it left or right until it matches the nominal
1184 * frequency value. This assumes that the feedback does not
1185 * differ from the nominal value more than +50% or -25%.
1186 */
1187 shift = 0;
1188 while (f < ep->freqn - ep->freqn / 4) {
1189 f <<= 1;
1190 shift++;
1191 }
1192 while (f > ep->freqn + ep->freqn / 2) {
1193 f >>= 1;
1194 shift--;
1195 }
1196 ep->freqshift = shift;
1197 } else if (ep->freqshift >= 0)
1198 f <<= ep->freqshift;
1199 else
1200 f >>= -ep->freqshift;
1201
1202 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1203 /*
1204 * If the frequency looks valid, set it.
1205 * This value is referred to in prepare_playback_urb().
1206 */
1207 spin_lock_irqsave(&ep->lock, flags);
1208 ep->freqm = f;
1209 spin_unlock_irqrestore(&ep->lock, flags);
1210 } else {
1211 /*
1212 * Out of range; maybe the shift value is wrong.
1213 * Reset it so that we autodetect again the next time.
1214 */
1215 ep->freqshift = INT_MIN;
1216 }
1217 }
1218
This page took 0.062109 seconds and 5 git commands to generate.