effa5f86f38cfa67247fdbd17a214c34f42c5703
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer-timer.h>
47
48 #include "consumer.h"
49 #include "consumer-stream.h"
50 #include "consumer-testpoint.h"
51 #include "align.h"
52
53 struct lttng_consumer_global_data consumer_data = {
54 .stream_count = 0,
55 .need_update = 1,
56 .type = LTTNG_CONSUMER_UNKNOWN,
57 };
58
59 enum consumer_channel_action {
60 CONSUMER_CHANNEL_ADD,
61 CONSUMER_CHANNEL_DEL,
62 CONSUMER_CHANNEL_QUIT,
63 };
64
65 struct consumer_channel_msg {
66 enum consumer_channel_action action;
67 struct lttng_consumer_channel *chan; /* add */
68 uint64_t key; /* del */
69 };
70
71 /*
72 * Flag to inform the polling thread to quit when all fd hung up. Updated by
73 * the consumer_thread_receive_fds when it notices that all fds has hung up.
74 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 * polling threads.
76 */
77 volatile int consumer_quit;
78
79 /*
80 * Global hash table containing respectively metadata and data streams. The
81 * stream element in this ht should only be updated by the metadata poll thread
82 * for the metadata and the data poll thread for the data.
83 */
84 static struct lttng_ht *metadata_ht;
85 static struct lttng_ht *data_ht;
86
87 /*
88 * Notify a thread lttng pipe to poll back again. This usually means that some
89 * global state has changed so we just send back the thread in a poll wait
90 * call.
91 */
92 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
93 {
94 struct lttng_consumer_stream *null_stream = NULL;
95
96 assert(pipe);
97
98 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
99 }
100
101 static void notify_health_quit_pipe(int *pipe)
102 {
103 ssize_t ret;
104
105 ret = lttng_write(pipe[1], "4", 1);
106 if (ret < 1) {
107 PERROR("write consumer health quit");
108 }
109 }
110
111 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
112 struct lttng_consumer_channel *chan,
113 uint64_t key,
114 enum consumer_channel_action action)
115 {
116 struct consumer_channel_msg msg;
117 ssize_t ret;
118
119 memset(&msg, 0, sizeof(msg));
120
121 msg.action = action;
122 msg.chan = chan;
123 msg.key = key;
124 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
125 if (ret < sizeof(msg)) {
126 PERROR("notify_channel_pipe write error");
127 }
128 }
129
130 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
131 uint64_t key)
132 {
133 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
134 }
135
136 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
137 struct lttng_consumer_channel **chan,
138 uint64_t *key,
139 enum consumer_channel_action *action)
140 {
141 struct consumer_channel_msg msg;
142 ssize_t ret;
143
144 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
145 if (ret < sizeof(msg)) {
146 ret = -1;
147 goto error;
148 }
149 *action = msg.action;
150 *chan = msg.chan;
151 *key = msg.key;
152 error:
153 return (int) ret;
154 }
155
156 /*
157 * Cleanup the stream list of a channel. Those streams are not yet globally
158 * visible
159 */
160 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
161 {
162 struct lttng_consumer_stream *stream, *stmp;
163
164 assert(channel);
165
166 /* Delete streams that might have been left in the stream list. */
167 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
168 send_node) {
169 cds_list_del(&stream->send_node);
170 /*
171 * Once a stream is added to this list, the buffers were created so we
172 * have a guarantee that this call will succeed. Setting the monitor
173 * mode to 0 so we don't lock nor try to delete the stream from the
174 * global hash table.
175 */
176 stream->monitor = 0;
177 consumer_stream_destroy(stream, NULL);
178 }
179 }
180
181 /*
182 * Find a stream. The consumer_data.lock must be locked during this
183 * call.
184 */
185 static struct lttng_consumer_stream *find_stream(uint64_t key,
186 struct lttng_ht *ht)
187 {
188 struct lttng_ht_iter iter;
189 struct lttng_ht_node_u64 *node;
190 struct lttng_consumer_stream *stream = NULL;
191
192 assert(ht);
193
194 /* -1ULL keys are lookup failures */
195 if (key == (uint64_t) -1ULL) {
196 return NULL;
197 }
198
199 rcu_read_lock();
200
201 lttng_ht_lookup(ht, &key, &iter);
202 node = lttng_ht_iter_get_node_u64(&iter);
203 if (node != NULL) {
204 stream = caa_container_of(node, struct lttng_consumer_stream, node);
205 }
206
207 rcu_read_unlock();
208
209 return stream;
210 }
211
212 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
213 {
214 struct lttng_consumer_stream *stream;
215
216 rcu_read_lock();
217 stream = find_stream(key, ht);
218 if (stream) {
219 stream->key = (uint64_t) -1ULL;
220 /*
221 * We don't want the lookup to match, but we still need
222 * to iterate on this stream when iterating over the hash table. Just
223 * change the node key.
224 */
225 stream->node.key = (uint64_t) -1ULL;
226 }
227 rcu_read_unlock();
228 }
229
230 /*
231 * Return a channel object for the given key.
232 *
233 * RCU read side lock MUST be acquired before calling this function and
234 * protects the channel ptr.
235 */
236 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
237 {
238 struct lttng_ht_iter iter;
239 struct lttng_ht_node_u64 *node;
240 struct lttng_consumer_channel *channel = NULL;
241
242 /* -1ULL keys are lookup failures */
243 if (key == (uint64_t) -1ULL) {
244 return NULL;
245 }
246
247 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
248 node = lttng_ht_iter_get_node_u64(&iter);
249 if (node != NULL) {
250 channel = caa_container_of(node, struct lttng_consumer_channel, node);
251 }
252
253 return channel;
254 }
255
256 /*
257 * There is a possibility that the consumer does not have enough time between
258 * the close of the channel on the session daemon and the cleanup in here thus
259 * once we have a channel add with an existing key, we know for sure that this
260 * channel will eventually get cleaned up by all streams being closed.
261 *
262 * This function just nullifies the already existing channel key.
263 */
264 static void steal_channel_key(uint64_t key)
265 {
266 struct lttng_consumer_channel *channel;
267
268 rcu_read_lock();
269 channel = consumer_find_channel(key);
270 if (channel) {
271 channel->key = (uint64_t) -1ULL;
272 /*
273 * We don't want the lookup to match, but we still need to iterate on
274 * this channel when iterating over the hash table. Just change the
275 * node key.
276 */
277 channel->node.key = (uint64_t) -1ULL;
278 }
279 rcu_read_unlock();
280 }
281
282 static void free_channel_rcu(struct rcu_head *head)
283 {
284 struct lttng_ht_node_u64 *node =
285 caa_container_of(head, struct lttng_ht_node_u64, head);
286 struct lttng_consumer_channel *channel =
287 caa_container_of(node, struct lttng_consumer_channel, node);
288
289 free(channel);
290 }
291
292 /*
293 * RCU protected relayd socket pair free.
294 */
295 static void free_relayd_rcu(struct rcu_head *head)
296 {
297 struct lttng_ht_node_u64 *node =
298 caa_container_of(head, struct lttng_ht_node_u64, head);
299 struct consumer_relayd_sock_pair *relayd =
300 caa_container_of(node, struct consumer_relayd_sock_pair, node);
301
302 /*
303 * Close all sockets. This is done in the call RCU since we don't want the
304 * socket fds to be reassigned thus potentially creating bad state of the
305 * relayd object.
306 *
307 * We do not have to lock the control socket mutex here since at this stage
308 * there is no one referencing to this relayd object.
309 */
310 (void) relayd_close(&relayd->control_sock);
311 (void) relayd_close(&relayd->data_sock);
312
313 free(relayd);
314 }
315
316 /*
317 * Destroy and free relayd socket pair object.
318 */
319 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
320 {
321 int ret;
322 struct lttng_ht_iter iter;
323
324 if (relayd == NULL) {
325 return;
326 }
327
328 DBG("Consumer destroy and close relayd socket pair");
329
330 iter.iter.node = &relayd->node.node;
331 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
332 if (ret != 0) {
333 /* We assume the relayd is being or is destroyed */
334 return;
335 }
336
337 /* RCU free() call */
338 call_rcu(&relayd->node.head, free_relayd_rcu);
339 }
340
341 /*
342 * Remove a channel from the global list protected by a mutex. This function is
343 * also responsible for freeing its data structures.
344 */
345 void consumer_del_channel(struct lttng_consumer_channel *channel)
346 {
347 int ret;
348 struct lttng_ht_iter iter;
349
350 DBG("Consumer delete channel key %" PRIu64, channel->key);
351
352 pthread_mutex_lock(&consumer_data.lock);
353 pthread_mutex_lock(&channel->lock);
354
355 /* Destroy streams that might have been left in the stream list. */
356 clean_channel_stream_list(channel);
357
358 if (channel->live_timer_enabled == 1) {
359 consumer_timer_live_stop(channel);
360 }
361
362 switch (consumer_data.type) {
363 case LTTNG_CONSUMER_KERNEL:
364 break;
365 case LTTNG_CONSUMER32_UST:
366 case LTTNG_CONSUMER64_UST:
367 lttng_ustconsumer_del_channel(channel);
368 break;
369 default:
370 ERR("Unknown consumer_data type");
371 assert(0);
372 goto end;
373 }
374
375 rcu_read_lock();
376 iter.iter.node = &channel->node.node;
377 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
378 assert(!ret);
379 rcu_read_unlock();
380
381 call_rcu(&channel->node.head, free_channel_rcu);
382 end:
383 pthread_mutex_unlock(&channel->lock);
384 pthread_mutex_unlock(&consumer_data.lock);
385 }
386
387 /*
388 * Iterate over the relayd hash table and destroy each element. Finally,
389 * destroy the whole hash table.
390 */
391 static void cleanup_relayd_ht(void)
392 {
393 struct lttng_ht_iter iter;
394 struct consumer_relayd_sock_pair *relayd;
395
396 rcu_read_lock();
397
398 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
399 node.node) {
400 consumer_destroy_relayd(relayd);
401 }
402
403 rcu_read_unlock();
404
405 lttng_ht_destroy(consumer_data.relayd_ht);
406 }
407
408 /*
409 * Update the end point status of all streams having the given network sequence
410 * index (relayd index).
411 *
412 * It's atomically set without having the stream mutex locked which is fine
413 * because we handle the write/read race with a pipe wakeup for each thread.
414 */
415 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
416 enum consumer_endpoint_status status)
417 {
418 struct lttng_ht_iter iter;
419 struct lttng_consumer_stream *stream;
420
421 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
422
423 rcu_read_lock();
424
425 /* Let's begin with metadata */
426 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
427 if (stream->net_seq_idx == net_seq_idx) {
428 uatomic_set(&stream->endpoint_status, status);
429 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
430 }
431 }
432
433 /* Follow up by the data streams */
434 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
435 if (stream->net_seq_idx == net_seq_idx) {
436 uatomic_set(&stream->endpoint_status, status);
437 DBG("Delete flag set to data stream %d", stream->wait_fd);
438 }
439 }
440 rcu_read_unlock();
441 }
442
443 /*
444 * Cleanup a relayd object by flagging every associated streams for deletion,
445 * destroying the object meaning removing it from the relayd hash table,
446 * closing the sockets and freeing the memory in a RCU call.
447 *
448 * If a local data context is available, notify the threads that the streams'
449 * state have changed.
450 */
451 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
452 struct lttng_consumer_local_data *ctx)
453 {
454 uint64_t netidx;
455
456 assert(relayd);
457
458 DBG("Cleaning up relayd sockets");
459
460 /* Save the net sequence index before destroying the object */
461 netidx = relayd->net_seq_idx;
462
463 /*
464 * Delete the relayd from the relayd hash table, close the sockets and free
465 * the object in a RCU call.
466 */
467 consumer_destroy_relayd(relayd);
468
469 /* Set inactive endpoint to all streams */
470 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
471
472 /*
473 * With a local data context, notify the threads that the streams' state
474 * have changed. The write() action on the pipe acts as an "implicit"
475 * memory barrier ordering the updates of the end point status from the
476 * read of this status which happens AFTER receiving this notify.
477 */
478 if (ctx) {
479 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
480 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
481 }
482 }
483
484 /*
485 * Flag a relayd socket pair for destruction. Destroy it if the refcount
486 * reaches zero.
487 *
488 * RCU read side lock MUST be aquired before calling this function.
489 */
490 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
491 {
492 assert(relayd);
493
494 /* Set destroy flag for this object */
495 uatomic_set(&relayd->destroy_flag, 1);
496
497 /* Destroy the relayd if refcount is 0 */
498 if (uatomic_read(&relayd->refcount) == 0) {
499 consumer_destroy_relayd(relayd);
500 }
501 }
502
503 /*
504 * Completly destroy stream from every visiable data structure and the given
505 * hash table if one.
506 *
507 * One this call returns, the stream object is not longer usable nor visible.
508 */
509 void consumer_del_stream(struct lttng_consumer_stream *stream,
510 struct lttng_ht *ht)
511 {
512 consumer_stream_destroy(stream, ht);
513 }
514
515 /*
516 * XXX naming of del vs destroy is all mixed up.
517 */
518 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
519 {
520 consumer_stream_destroy(stream, data_ht);
521 }
522
523 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
524 {
525 consumer_stream_destroy(stream, metadata_ht);
526 }
527
528 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
529 uint64_t stream_key,
530 enum lttng_consumer_stream_state state,
531 const char *channel_name,
532 uid_t uid,
533 gid_t gid,
534 uint64_t relayd_id,
535 uint64_t session_id,
536 int cpu,
537 int *alloc_ret,
538 enum consumer_channel_type type,
539 unsigned int monitor)
540 {
541 int ret;
542 struct lttng_consumer_stream *stream;
543
544 stream = zmalloc(sizeof(*stream));
545 if (stream == NULL) {
546 PERROR("malloc struct lttng_consumer_stream");
547 ret = -ENOMEM;
548 goto end;
549 }
550
551 rcu_read_lock();
552
553 stream->key = stream_key;
554 stream->out_fd = -1;
555 stream->out_fd_offset = 0;
556 stream->output_written = 0;
557 stream->state = state;
558 stream->uid = uid;
559 stream->gid = gid;
560 stream->net_seq_idx = relayd_id;
561 stream->session_id = session_id;
562 stream->monitor = monitor;
563 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
564 stream->index_fd = -1;
565 pthread_mutex_init(&stream->lock, NULL);
566
567 /* If channel is the metadata, flag this stream as metadata. */
568 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
569 stream->metadata_flag = 1;
570 /* Metadata is flat out. */
571 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
572 /* Live rendez-vous point. */
573 pthread_cond_init(&stream->metadata_rdv, NULL);
574 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
575 } else {
576 /* Format stream name to <channel_name>_<cpu_number> */
577 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
578 channel_name, cpu);
579 if (ret < 0) {
580 PERROR("snprintf stream name");
581 goto error;
582 }
583 }
584
585 /* Key is always the wait_fd for streams. */
586 lttng_ht_node_init_u64(&stream->node, stream->key);
587
588 /* Init node per channel id key */
589 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
590
591 /* Init session id node with the stream session id */
592 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
593
594 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
595 " relayd_id %" PRIu64 ", session_id %" PRIu64,
596 stream->name, stream->key, channel_key,
597 stream->net_seq_idx, stream->session_id);
598
599 rcu_read_unlock();
600 return stream;
601
602 error:
603 rcu_read_unlock();
604 free(stream);
605 end:
606 if (alloc_ret) {
607 *alloc_ret = ret;
608 }
609 return NULL;
610 }
611
612 /*
613 * Add a stream to the global list protected by a mutex.
614 */
615 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
616 {
617 struct lttng_ht *ht = data_ht;
618 int ret = 0;
619
620 assert(stream);
621 assert(ht);
622
623 DBG3("Adding consumer stream %" PRIu64, stream->key);
624
625 pthread_mutex_lock(&consumer_data.lock);
626 pthread_mutex_lock(&stream->chan->lock);
627 pthread_mutex_lock(&stream->chan->timer_lock);
628 pthread_mutex_lock(&stream->lock);
629 rcu_read_lock();
630
631 /* Steal stream identifier to avoid having streams with the same key */
632 steal_stream_key(stream->key, ht);
633
634 lttng_ht_add_unique_u64(ht, &stream->node);
635
636 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
637 &stream->node_channel_id);
638
639 /*
640 * Add stream to the stream_list_ht of the consumer data. No need to steal
641 * the key since the HT does not use it and we allow to add redundant keys
642 * into this table.
643 */
644 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
645
646 /*
647 * When nb_init_stream_left reaches 0, we don't need to trigger any action
648 * in terms of destroying the associated channel, because the action that
649 * causes the count to become 0 also causes a stream to be added. The
650 * channel deletion will thus be triggered by the following removal of this
651 * stream.
652 */
653 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
654 /* Increment refcount before decrementing nb_init_stream_left */
655 cmm_smp_wmb();
656 uatomic_dec(&stream->chan->nb_init_stream_left);
657 }
658
659 /* Update consumer data once the node is inserted. */
660 consumer_data.stream_count++;
661 consumer_data.need_update = 1;
662
663 rcu_read_unlock();
664 pthread_mutex_unlock(&stream->lock);
665 pthread_mutex_unlock(&stream->chan->timer_lock);
666 pthread_mutex_unlock(&stream->chan->lock);
667 pthread_mutex_unlock(&consumer_data.lock);
668
669 return ret;
670 }
671
672 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
673 {
674 consumer_del_stream(stream, data_ht);
675 }
676
677 /*
678 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
679 * be acquired before calling this.
680 */
681 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
682 {
683 int ret = 0;
684 struct lttng_ht_node_u64 *node;
685 struct lttng_ht_iter iter;
686
687 assert(relayd);
688
689 lttng_ht_lookup(consumer_data.relayd_ht,
690 &relayd->net_seq_idx, &iter);
691 node = lttng_ht_iter_get_node_u64(&iter);
692 if (node != NULL) {
693 goto end;
694 }
695 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
696
697 end:
698 return ret;
699 }
700
701 /*
702 * Allocate and return a consumer relayd socket.
703 */
704 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
705 uint64_t net_seq_idx)
706 {
707 struct consumer_relayd_sock_pair *obj = NULL;
708
709 /* net sequence index of -1 is a failure */
710 if (net_seq_idx == (uint64_t) -1ULL) {
711 goto error;
712 }
713
714 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
715 if (obj == NULL) {
716 PERROR("zmalloc relayd sock");
717 goto error;
718 }
719
720 obj->net_seq_idx = net_seq_idx;
721 obj->refcount = 0;
722 obj->destroy_flag = 0;
723 obj->control_sock.sock.fd = -1;
724 obj->data_sock.sock.fd = -1;
725 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
726 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
727
728 error:
729 return obj;
730 }
731
732 /*
733 * Find a relayd socket pair in the global consumer data.
734 *
735 * Return the object if found else NULL.
736 * RCU read-side lock must be held across this call and while using the
737 * returned object.
738 */
739 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
740 {
741 struct lttng_ht_iter iter;
742 struct lttng_ht_node_u64 *node;
743 struct consumer_relayd_sock_pair *relayd = NULL;
744
745 /* Negative keys are lookup failures */
746 if (key == (uint64_t) -1ULL) {
747 goto error;
748 }
749
750 lttng_ht_lookup(consumer_data.relayd_ht, &key,
751 &iter);
752 node = lttng_ht_iter_get_node_u64(&iter);
753 if (node != NULL) {
754 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
755 }
756
757 error:
758 return relayd;
759 }
760
761 /*
762 * Find a relayd and send the stream
763 *
764 * Returns 0 on success, < 0 on error
765 */
766 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
767 char *path)
768 {
769 int ret = 0;
770 struct consumer_relayd_sock_pair *relayd;
771
772 assert(stream);
773 assert(stream->net_seq_idx != -1ULL);
774 assert(path);
775
776 /* The stream is not metadata. Get relayd reference if exists. */
777 rcu_read_lock();
778 relayd = consumer_find_relayd(stream->net_seq_idx);
779 if (relayd != NULL) {
780 /* Add stream on the relayd */
781 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
782 ret = relayd_add_stream(&relayd->control_sock, stream->name,
783 path, &stream->relayd_stream_id,
784 stream->chan->tracefile_size, stream->chan->tracefile_count);
785 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
786 if (ret < 0) {
787 goto end;
788 }
789
790 uatomic_inc(&relayd->refcount);
791 stream->sent_to_relayd = 1;
792 } else {
793 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
794 stream->key, stream->net_seq_idx);
795 ret = -1;
796 goto end;
797 }
798
799 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
800 stream->name, stream->key, stream->net_seq_idx);
801
802 end:
803 rcu_read_unlock();
804 return ret;
805 }
806
807 /*
808 * Find a relayd and send the streams sent message
809 *
810 * Returns 0 on success, < 0 on error
811 */
812 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
813 {
814 int ret = 0;
815 struct consumer_relayd_sock_pair *relayd;
816
817 assert(net_seq_idx != -1ULL);
818
819 /* The stream is not metadata. Get relayd reference if exists. */
820 rcu_read_lock();
821 relayd = consumer_find_relayd(net_seq_idx);
822 if (relayd != NULL) {
823 /* Add stream on the relayd */
824 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
825 ret = relayd_streams_sent(&relayd->control_sock);
826 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
827 if (ret < 0) {
828 goto end;
829 }
830 } else {
831 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
832 net_seq_idx);
833 ret = -1;
834 goto end;
835 }
836
837 ret = 0;
838 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
839
840 end:
841 rcu_read_unlock();
842 return ret;
843 }
844
845 /*
846 * Find a relayd and close the stream
847 */
848 void close_relayd_stream(struct lttng_consumer_stream *stream)
849 {
850 struct consumer_relayd_sock_pair *relayd;
851
852 /* The stream is not metadata. Get relayd reference if exists. */
853 rcu_read_lock();
854 relayd = consumer_find_relayd(stream->net_seq_idx);
855 if (relayd) {
856 consumer_stream_relayd_close(stream, relayd);
857 }
858 rcu_read_unlock();
859 }
860
861 /*
862 * Handle stream for relayd transmission if the stream applies for network
863 * streaming where the net sequence index is set.
864 *
865 * Return destination file descriptor or negative value on error.
866 */
867 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
868 size_t data_size, unsigned long padding,
869 struct consumer_relayd_sock_pair *relayd)
870 {
871 int outfd = -1, ret;
872 struct lttcomm_relayd_data_hdr data_hdr;
873
874 /* Safety net */
875 assert(stream);
876 assert(relayd);
877
878 /* Reset data header */
879 memset(&data_hdr, 0, sizeof(data_hdr));
880
881 if (stream->metadata_flag) {
882 /* Caller MUST acquire the relayd control socket lock */
883 ret = relayd_send_metadata(&relayd->control_sock, data_size);
884 if (ret < 0) {
885 goto error;
886 }
887
888 /* Metadata are always sent on the control socket. */
889 outfd = relayd->control_sock.sock.fd;
890 } else {
891 /* Set header with stream information */
892 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
893 data_hdr.data_size = htobe32(data_size);
894 data_hdr.padding_size = htobe32(padding);
895 /*
896 * Note that net_seq_num below is assigned with the *current* value of
897 * next_net_seq_num and only after that the next_net_seq_num will be
898 * increment. This is why when issuing a command on the relayd using
899 * this next value, 1 should always be substracted in order to compare
900 * the last seen sequence number on the relayd side to the last sent.
901 */
902 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
903 /* Other fields are zeroed previously */
904
905 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
906 sizeof(data_hdr));
907 if (ret < 0) {
908 goto error;
909 }
910
911 ++stream->next_net_seq_num;
912
913 /* Set to go on data socket */
914 outfd = relayd->data_sock.sock.fd;
915 }
916
917 error:
918 return outfd;
919 }
920
921 /*
922 * Allocate and return a new lttng_consumer_channel object using the given key
923 * to initialize the hash table node.
924 *
925 * On error, return NULL.
926 */
927 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
928 uint64_t session_id,
929 const char *pathname,
930 const char *name,
931 uid_t uid,
932 gid_t gid,
933 uint64_t relayd_id,
934 enum lttng_event_output output,
935 uint64_t tracefile_size,
936 uint64_t tracefile_count,
937 uint64_t session_id_per_pid,
938 unsigned int monitor,
939 unsigned int live_timer_interval,
940 const char *root_shm_path,
941 const char *shm_path)
942 {
943 struct lttng_consumer_channel *channel;
944
945 channel = zmalloc(sizeof(*channel));
946 if (channel == NULL) {
947 PERROR("malloc struct lttng_consumer_channel");
948 goto end;
949 }
950
951 channel->key = key;
952 channel->refcount = 0;
953 channel->session_id = session_id;
954 channel->session_id_per_pid = session_id_per_pid;
955 channel->uid = uid;
956 channel->gid = gid;
957 channel->relayd_id = relayd_id;
958 channel->tracefile_size = tracefile_size;
959 channel->tracefile_count = tracefile_count;
960 channel->monitor = monitor;
961 channel->live_timer_interval = live_timer_interval;
962 pthread_mutex_init(&channel->lock, NULL);
963 pthread_mutex_init(&channel->timer_lock, NULL);
964
965 switch (output) {
966 case LTTNG_EVENT_SPLICE:
967 channel->output = CONSUMER_CHANNEL_SPLICE;
968 break;
969 case LTTNG_EVENT_MMAP:
970 channel->output = CONSUMER_CHANNEL_MMAP;
971 break;
972 default:
973 assert(0);
974 free(channel);
975 channel = NULL;
976 goto end;
977 }
978
979 /*
980 * In monitor mode, the streams associated with the channel will be put in
981 * a special list ONLY owned by this channel. So, the refcount is set to 1
982 * here meaning that the channel itself has streams that are referenced.
983 *
984 * On a channel deletion, once the channel is no longer visible, the
985 * refcount is decremented and checked for a zero value to delete it. With
986 * streams in no monitor mode, it will now be safe to destroy the channel.
987 */
988 if (!channel->monitor) {
989 channel->refcount = 1;
990 }
991
992 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
993 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
994
995 strncpy(channel->name, name, sizeof(channel->name));
996 channel->name[sizeof(channel->name) - 1] = '\0';
997
998 if (root_shm_path) {
999 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1000 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1001 }
1002 if (shm_path) {
1003 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1004 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1005 }
1006
1007 lttng_ht_node_init_u64(&channel->node, channel->key);
1008
1009 channel->wait_fd = -1;
1010
1011 CDS_INIT_LIST_HEAD(&channel->streams.head);
1012
1013 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1014
1015 end:
1016 return channel;
1017 }
1018
1019 /*
1020 * Add a channel to the global list protected by a mutex.
1021 *
1022 * Always return 0 indicating success.
1023 */
1024 int consumer_add_channel(struct lttng_consumer_channel *channel,
1025 struct lttng_consumer_local_data *ctx)
1026 {
1027 pthread_mutex_lock(&consumer_data.lock);
1028 pthread_mutex_lock(&channel->lock);
1029 pthread_mutex_lock(&channel->timer_lock);
1030
1031 /*
1032 * This gives us a guarantee that the channel we are about to add to the
1033 * channel hash table will be unique. See this function comment on the why
1034 * we need to steel the channel key at this stage.
1035 */
1036 steal_channel_key(channel->key);
1037
1038 rcu_read_lock();
1039 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1040 rcu_read_unlock();
1041
1042 pthread_mutex_unlock(&channel->timer_lock);
1043 pthread_mutex_unlock(&channel->lock);
1044 pthread_mutex_unlock(&consumer_data.lock);
1045
1046 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1047 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1048 }
1049
1050 return 0;
1051 }
1052
1053 /*
1054 * Allocate the pollfd structure and the local view of the out fds to avoid
1055 * doing a lookup in the linked list and concurrency issues when writing is
1056 * needed. Called with consumer_data.lock held.
1057 *
1058 * Returns the number of fds in the structures.
1059 */
1060 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1061 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1062 struct lttng_ht *ht)
1063 {
1064 int i = 0;
1065 struct lttng_ht_iter iter;
1066 struct lttng_consumer_stream *stream;
1067
1068 assert(ctx);
1069 assert(ht);
1070 assert(pollfd);
1071 assert(local_stream);
1072
1073 DBG("Updating poll fd array");
1074 rcu_read_lock();
1075 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1076 /*
1077 * Only active streams with an active end point can be added to the
1078 * poll set and local stream storage of the thread.
1079 *
1080 * There is a potential race here for endpoint_status to be updated
1081 * just after the check. However, this is OK since the stream(s) will
1082 * be deleted once the thread is notified that the end point state has
1083 * changed where this function will be called back again.
1084 */
1085 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1086 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1087 continue;
1088 }
1089 /*
1090 * This clobbers way too much the debug output. Uncomment that if you
1091 * need it for debugging purposes.
1092 *
1093 * DBG("Active FD %d", stream->wait_fd);
1094 */
1095 (*pollfd)[i].fd = stream->wait_fd;
1096 (*pollfd)[i].events = POLLIN | POLLPRI;
1097 local_stream[i] = stream;
1098 i++;
1099 }
1100 rcu_read_unlock();
1101
1102 /*
1103 * Insert the consumer_data_pipe at the end of the array and don't
1104 * increment i so nb_fd is the number of real FD.
1105 */
1106 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1107 (*pollfd)[i].events = POLLIN | POLLPRI;
1108
1109 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1110 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1111 return i;
1112 }
1113
1114 /*
1115 * Poll on the should_quit pipe and the command socket return -1 on
1116 * error, 1 if should exit, 0 if data is available on the command socket
1117 */
1118 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1119 {
1120 int num_rdy;
1121
1122 restart:
1123 num_rdy = poll(consumer_sockpoll, 2, -1);
1124 if (num_rdy == -1) {
1125 /*
1126 * Restart interrupted system call.
1127 */
1128 if (errno == EINTR) {
1129 goto restart;
1130 }
1131 PERROR("Poll error");
1132 return -1;
1133 }
1134 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1135 DBG("consumer_should_quit wake up");
1136 return 1;
1137 }
1138 return 0;
1139 }
1140
1141 /*
1142 * Set the error socket.
1143 */
1144 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1145 int sock)
1146 {
1147 ctx->consumer_error_socket = sock;
1148 }
1149
1150 /*
1151 * Set the command socket path.
1152 */
1153 void lttng_consumer_set_command_sock_path(
1154 struct lttng_consumer_local_data *ctx, char *sock)
1155 {
1156 ctx->consumer_command_sock_path = sock;
1157 }
1158
1159 /*
1160 * Send return code to the session daemon.
1161 * If the socket is not defined, we return 0, it is not a fatal error
1162 */
1163 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1164 {
1165 if (ctx->consumer_error_socket > 0) {
1166 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1167 sizeof(enum lttcomm_sessiond_command));
1168 }
1169
1170 return 0;
1171 }
1172
1173 /*
1174 * Close all the tracefiles and stream fds and MUST be called when all
1175 * instances are destroyed i.e. when all threads were joined and are ended.
1176 */
1177 void lttng_consumer_cleanup(void)
1178 {
1179 struct lttng_ht_iter iter;
1180 struct lttng_consumer_channel *channel;
1181
1182 rcu_read_lock();
1183
1184 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1185 node.node) {
1186 consumer_del_channel(channel);
1187 }
1188
1189 rcu_read_unlock();
1190
1191 lttng_ht_destroy(consumer_data.channel_ht);
1192
1193 cleanup_relayd_ht();
1194
1195 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1196
1197 /*
1198 * This HT contains streams that are freed by either the metadata thread or
1199 * the data thread so we do *nothing* on the hash table and simply destroy
1200 * it.
1201 */
1202 lttng_ht_destroy(consumer_data.stream_list_ht);
1203 }
1204
1205 /*
1206 * Called from signal handler.
1207 */
1208 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1209 {
1210 ssize_t ret;
1211
1212 consumer_quit = 1;
1213 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1214 if (ret < 1) {
1215 PERROR("write consumer quit");
1216 }
1217
1218 DBG("Consumer flag that it should quit");
1219 }
1220
1221 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1222 off_t orig_offset)
1223 {
1224 int outfd = stream->out_fd;
1225
1226 /*
1227 * This does a blocking write-and-wait on any page that belongs to the
1228 * subbuffer prior to the one we just wrote.
1229 * Don't care about error values, as these are just hints and ways to
1230 * limit the amount of page cache used.
1231 */
1232 if (orig_offset < stream->max_sb_size) {
1233 return;
1234 }
1235 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1236 stream->max_sb_size,
1237 SYNC_FILE_RANGE_WAIT_BEFORE
1238 | SYNC_FILE_RANGE_WRITE
1239 | SYNC_FILE_RANGE_WAIT_AFTER);
1240 /*
1241 * Give hints to the kernel about how we access the file:
1242 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1243 * we write it.
1244 *
1245 * We need to call fadvise again after the file grows because the
1246 * kernel does not seem to apply fadvise to non-existing parts of the
1247 * file.
1248 *
1249 * Call fadvise _after_ having waited for the page writeback to
1250 * complete because the dirty page writeback semantic is not well
1251 * defined. So it can be expected to lead to lower throughput in
1252 * streaming.
1253 */
1254 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1255 stream->max_sb_size, POSIX_FADV_DONTNEED);
1256 }
1257
1258 /*
1259 * Initialise the necessary environnement :
1260 * - create a new context
1261 * - create the poll_pipe
1262 * - create the should_quit pipe (for signal handler)
1263 * - create the thread pipe (for splice)
1264 *
1265 * Takes a function pointer as argument, this function is called when data is
1266 * available on a buffer. This function is responsible to do the
1267 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1268 * buffer configuration and then kernctl_put_next_subbuf at the end.
1269 *
1270 * Returns a pointer to the new context or NULL on error.
1271 */
1272 struct lttng_consumer_local_data *lttng_consumer_create(
1273 enum lttng_consumer_type type,
1274 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1275 struct lttng_consumer_local_data *ctx),
1276 int (*recv_channel)(struct lttng_consumer_channel *channel),
1277 int (*recv_stream)(struct lttng_consumer_stream *stream),
1278 int (*update_stream)(uint64_t stream_key, uint32_t state))
1279 {
1280 int ret;
1281 struct lttng_consumer_local_data *ctx;
1282
1283 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1284 consumer_data.type == type);
1285 consumer_data.type = type;
1286
1287 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1288 if (ctx == NULL) {
1289 PERROR("allocating context");
1290 goto error;
1291 }
1292
1293 ctx->consumer_error_socket = -1;
1294 ctx->consumer_metadata_socket = -1;
1295 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1296 /* assign the callbacks */
1297 ctx->on_buffer_ready = buffer_ready;
1298 ctx->on_recv_channel = recv_channel;
1299 ctx->on_recv_stream = recv_stream;
1300 ctx->on_update_stream = update_stream;
1301
1302 ctx->consumer_data_pipe = lttng_pipe_open(0);
1303 if (!ctx->consumer_data_pipe) {
1304 goto error_poll_pipe;
1305 }
1306
1307 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1308 if (!ctx->consumer_wakeup_pipe) {
1309 goto error_wakeup_pipe;
1310 }
1311
1312 ret = pipe(ctx->consumer_should_quit);
1313 if (ret < 0) {
1314 PERROR("Error creating recv pipe");
1315 goto error_quit_pipe;
1316 }
1317
1318 ret = pipe(ctx->consumer_channel_pipe);
1319 if (ret < 0) {
1320 PERROR("Error creating channel pipe");
1321 goto error_channel_pipe;
1322 }
1323
1324 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1325 if (!ctx->consumer_metadata_pipe) {
1326 goto error_metadata_pipe;
1327 }
1328
1329 return ctx;
1330
1331 error_metadata_pipe:
1332 utils_close_pipe(ctx->consumer_channel_pipe);
1333 error_channel_pipe:
1334 utils_close_pipe(ctx->consumer_should_quit);
1335 error_quit_pipe:
1336 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1337 error_wakeup_pipe:
1338 lttng_pipe_destroy(ctx->consumer_data_pipe);
1339 error_poll_pipe:
1340 free(ctx);
1341 error:
1342 return NULL;
1343 }
1344
1345 /*
1346 * Iterate over all streams of the hashtable and free them properly.
1347 */
1348 static void destroy_data_stream_ht(struct lttng_ht *ht)
1349 {
1350 struct lttng_ht_iter iter;
1351 struct lttng_consumer_stream *stream;
1352
1353 if (ht == NULL) {
1354 return;
1355 }
1356
1357 rcu_read_lock();
1358 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1359 /*
1360 * Ignore return value since we are currently cleaning up so any error
1361 * can't be handled.
1362 */
1363 (void) consumer_del_stream(stream, ht);
1364 }
1365 rcu_read_unlock();
1366
1367 lttng_ht_destroy(ht);
1368 }
1369
1370 /*
1371 * Iterate over all streams of the metadata hashtable and free them
1372 * properly.
1373 */
1374 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1375 {
1376 struct lttng_ht_iter iter;
1377 struct lttng_consumer_stream *stream;
1378
1379 if (ht == NULL) {
1380 return;
1381 }
1382
1383 rcu_read_lock();
1384 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1385 /*
1386 * Ignore return value since we are currently cleaning up so any error
1387 * can't be handled.
1388 */
1389 (void) consumer_del_metadata_stream(stream, ht);
1390 }
1391 rcu_read_unlock();
1392
1393 lttng_ht_destroy(ht);
1394 }
1395
1396 /*
1397 * Close all fds associated with the instance and free the context.
1398 */
1399 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1400 {
1401 int ret;
1402
1403 DBG("Consumer destroying it. Closing everything.");
1404
1405 if (!ctx) {
1406 return;
1407 }
1408
1409 destroy_data_stream_ht(data_ht);
1410 destroy_metadata_stream_ht(metadata_ht);
1411
1412 ret = close(ctx->consumer_error_socket);
1413 if (ret) {
1414 PERROR("close");
1415 }
1416 ret = close(ctx->consumer_metadata_socket);
1417 if (ret) {
1418 PERROR("close");
1419 }
1420 utils_close_pipe(ctx->consumer_channel_pipe);
1421 lttng_pipe_destroy(ctx->consumer_data_pipe);
1422 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1423 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1424 utils_close_pipe(ctx->consumer_should_quit);
1425
1426 unlink(ctx->consumer_command_sock_path);
1427 free(ctx);
1428 }
1429
1430 /*
1431 * Write the metadata stream id on the specified file descriptor.
1432 */
1433 static int write_relayd_metadata_id(int fd,
1434 struct lttng_consumer_stream *stream,
1435 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1436 {
1437 ssize_t ret;
1438 struct lttcomm_relayd_metadata_payload hdr;
1439
1440 hdr.stream_id = htobe64(stream->relayd_stream_id);
1441 hdr.padding_size = htobe32(padding);
1442 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1443 if (ret < sizeof(hdr)) {
1444 /*
1445 * This error means that the fd's end is closed so ignore the PERROR
1446 * not to clubber the error output since this can happen in a normal
1447 * code path.
1448 */
1449 if (errno != EPIPE) {
1450 PERROR("write metadata stream id");
1451 }
1452 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1453 /*
1454 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1455 * handle writting the missing part so report that as an error and
1456 * don't lie to the caller.
1457 */
1458 ret = -1;
1459 goto end;
1460 }
1461 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1462 stream->relayd_stream_id, padding);
1463
1464 end:
1465 return (int) ret;
1466 }
1467
1468 /*
1469 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1470 * core function for writing trace buffers to either the local filesystem or
1471 * the network.
1472 *
1473 * It must be called with the stream lock held.
1474 *
1475 * Careful review MUST be put if any changes occur!
1476 *
1477 * Returns the number of bytes written
1478 */
1479 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1480 struct lttng_consumer_local_data *ctx,
1481 struct lttng_consumer_stream *stream, unsigned long len,
1482 unsigned long padding,
1483 struct ctf_packet_index *index)
1484 {
1485 unsigned long mmap_offset;
1486 void *mmap_base;
1487 ssize_t ret = 0;
1488 off_t orig_offset = stream->out_fd_offset;
1489 /* Default is on the disk */
1490 int outfd = stream->out_fd;
1491 struct consumer_relayd_sock_pair *relayd = NULL;
1492 unsigned int relayd_hang_up = 0;
1493
1494 /* RCU lock for the relayd pointer */
1495 rcu_read_lock();
1496
1497 /* Flag that the current stream if set for network streaming. */
1498 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1499 relayd = consumer_find_relayd(stream->net_seq_idx);
1500 if (relayd == NULL) {
1501 ret = -EPIPE;
1502 goto end;
1503 }
1504 }
1505
1506 /* get the offset inside the fd to mmap */
1507 switch (consumer_data.type) {
1508 case LTTNG_CONSUMER_KERNEL:
1509 mmap_base = stream->mmap_base;
1510 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1511 if (ret < 0) {
1512 ret = -errno;
1513 PERROR("tracer ctl get_mmap_read_offset");
1514 goto end;
1515 }
1516 break;
1517 case LTTNG_CONSUMER32_UST:
1518 case LTTNG_CONSUMER64_UST:
1519 mmap_base = lttng_ustctl_get_mmap_base(stream);
1520 if (!mmap_base) {
1521 ERR("read mmap get mmap base for stream %s", stream->name);
1522 ret = -EPERM;
1523 goto end;
1524 }
1525 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1526 if (ret != 0) {
1527 PERROR("tracer ctl get_mmap_read_offset");
1528 ret = -EINVAL;
1529 goto end;
1530 }
1531 break;
1532 default:
1533 ERR("Unknown consumer_data type");
1534 assert(0);
1535 }
1536
1537 /* Handle stream on the relayd if the output is on the network */
1538 if (relayd) {
1539 unsigned long netlen = len;
1540
1541 /*
1542 * Lock the control socket for the complete duration of the function
1543 * since from this point on we will use the socket.
1544 */
1545 if (stream->metadata_flag) {
1546 /* Metadata requires the control socket. */
1547 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1548 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1549 }
1550
1551 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1552 if (ret < 0) {
1553 relayd_hang_up = 1;
1554 goto write_error;
1555 }
1556 /* Use the returned socket. */
1557 outfd = ret;
1558
1559 /* Write metadata stream id before payload */
1560 if (stream->metadata_flag) {
1561 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1562 if (ret < 0) {
1563 relayd_hang_up = 1;
1564 goto write_error;
1565 }
1566 }
1567 } else {
1568 /* No streaming, we have to set the len with the full padding */
1569 len += padding;
1570
1571 /*
1572 * Check if we need to change the tracefile before writing the packet.
1573 */
1574 if (stream->chan->tracefile_size > 0 &&
1575 (stream->tracefile_size_current + len) >
1576 stream->chan->tracefile_size) {
1577 ret = utils_rotate_stream_file(stream->chan->pathname,
1578 stream->name, stream->chan->tracefile_size,
1579 stream->chan->tracefile_count, stream->uid, stream->gid,
1580 stream->out_fd, &(stream->tracefile_count_current),
1581 &stream->out_fd);
1582 if (ret < 0) {
1583 ERR("Rotating output file");
1584 goto end;
1585 }
1586 outfd = stream->out_fd;
1587
1588 if (stream->index_fd >= 0) {
1589 ret = index_create_file(stream->chan->pathname,
1590 stream->name, stream->uid, stream->gid,
1591 stream->chan->tracefile_size,
1592 stream->tracefile_count_current);
1593 if (ret < 0) {
1594 goto end;
1595 }
1596 stream->index_fd = ret;
1597 }
1598
1599 /* Reset current size because we just perform a rotation. */
1600 stream->tracefile_size_current = 0;
1601 stream->out_fd_offset = 0;
1602 orig_offset = 0;
1603 }
1604 stream->tracefile_size_current += len;
1605 if (index) {
1606 index->offset = htobe64(stream->out_fd_offset);
1607 }
1608 }
1609
1610 /*
1611 * This call guarantee that len or less is returned. It's impossible to
1612 * receive a ret value that is bigger than len.
1613 */
1614 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1615 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1616 if (ret < 0 || ((size_t) ret != len)) {
1617 /*
1618 * Report error to caller if nothing was written else at least send the
1619 * amount written.
1620 */
1621 if (ret < 0) {
1622 ret = -errno;
1623 }
1624 relayd_hang_up = 1;
1625
1626 /* Socket operation failed. We consider the relayd dead */
1627 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1628 /*
1629 * This is possible if the fd is closed on the other side
1630 * (outfd) or any write problem. It can be verbose a bit for a
1631 * normal execution if for instance the relayd is stopped
1632 * abruptly. This can happen so set this to a DBG statement.
1633 */
1634 DBG("Consumer mmap write detected relayd hang up");
1635 } else {
1636 /* Unhandled error, print it and stop function right now. */
1637 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1638 }
1639 goto write_error;
1640 }
1641 stream->output_written += ret;
1642
1643 /* This call is useless on a socket so better save a syscall. */
1644 if (!relayd) {
1645 /* This won't block, but will start writeout asynchronously */
1646 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1647 SYNC_FILE_RANGE_WRITE);
1648 stream->out_fd_offset += len;
1649 }
1650 lttng_consumer_sync_trace_file(stream, orig_offset);
1651
1652 write_error:
1653 /*
1654 * This is a special case that the relayd has closed its socket. Let's
1655 * cleanup the relayd object and all associated streams.
1656 */
1657 if (relayd && relayd_hang_up) {
1658 cleanup_relayd(relayd, ctx);
1659 }
1660
1661 end:
1662 /* Unlock only if ctrl socket used */
1663 if (relayd && stream->metadata_flag) {
1664 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1665 }
1666
1667 rcu_read_unlock();
1668 return ret;
1669 }
1670
1671 /*
1672 * Splice the data from the ring buffer to the tracefile.
1673 *
1674 * It must be called with the stream lock held.
1675 *
1676 * Returns the number of bytes spliced.
1677 */
1678 ssize_t lttng_consumer_on_read_subbuffer_splice(
1679 struct lttng_consumer_local_data *ctx,
1680 struct lttng_consumer_stream *stream, unsigned long len,
1681 unsigned long padding,
1682 struct ctf_packet_index *index)
1683 {
1684 ssize_t ret = 0, written = 0, ret_splice = 0;
1685 loff_t offset = 0;
1686 off_t orig_offset = stream->out_fd_offset;
1687 int fd = stream->wait_fd;
1688 /* Default is on the disk */
1689 int outfd = stream->out_fd;
1690 struct consumer_relayd_sock_pair *relayd = NULL;
1691 int *splice_pipe;
1692 unsigned int relayd_hang_up = 0;
1693
1694 switch (consumer_data.type) {
1695 case LTTNG_CONSUMER_KERNEL:
1696 break;
1697 case LTTNG_CONSUMER32_UST:
1698 case LTTNG_CONSUMER64_UST:
1699 /* Not supported for user space tracing */
1700 return -ENOSYS;
1701 default:
1702 ERR("Unknown consumer_data type");
1703 assert(0);
1704 }
1705
1706 /* RCU lock for the relayd pointer */
1707 rcu_read_lock();
1708
1709 /* Flag that the current stream if set for network streaming. */
1710 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1711 relayd = consumer_find_relayd(stream->net_seq_idx);
1712 if (relayd == NULL) {
1713 written = -ret;
1714 goto end;
1715 }
1716 }
1717 splice_pipe = stream->splice_pipe;
1718
1719 /* Write metadata stream id before payload */
1720 if (relayd) {
1721 unsigned long total_len = len;
1722
1723 if (stream->metadata_flag) {
1724 /*
1725 * Lock the control socket for the complete duration of the function
1726 * since from this point on we will use the socket.
1727 */
1728 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1729
1730 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1731 padding);
1732 if (ret < 0) {
1733 written = ret;
1734 relayd_hang_up = 1;
1735 goto write_error;
1736 }
1737
1738 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1739 }
1740
1741 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1742 if (ret < 0) {
1743 written = ret;
1744 relayd_hang_up = 1;
1745 goto write_error;
1746 }
1747 /* Use the returned socket. */
1748 outfd = ret;
1749 } else {
1750 /* No streaming, we have to set the len with the full padding */
1751 len += padding;
1752
1753 /*
1754 * Check if we need to change the tracefile before writing the packet.
1755 */
1756 if (stream->chan->tracefile_size > 0 &&
1757 (stream->tracefile_size_current + len) >
1758 stream->chan->tracefile_size) {
1759 ret = utils_rotate_stream_file(stream->chan->pathname,
1760 stream->name, stream->chan->tracefile_size,
1761 stream->chan->tracefile_count, stream->uid, stream->gid,
1762 stream->out_fd, &(stream->tracefile_count_current),
1763 &stream->out_fd);
1764 if (ret < 0) {
1765 written = ret;
1766 ERR("Rotating output file");
1767 goto end;
1768 }
1769 outfd = stream->out_fd;
1770
1771 if (stream->index_fd >= 0) {
1772 ret = index_create_file(stream->chan->pathname,
1773 stream->name, stream->uid, stream->gid,
1774 stream->chan->tracefile_size,
1775 stream->tracefile_count_current);
1776 if (ret < 0) {
1777 written = ret;
1778 goto end;
1779 }
1780 stream->index_fd = ret;
1781 }
1782
1783 /* Reset current size because we just perform a rotation. */
1784 stream->tracefile_size_current = 0;
1785 stream->out_fd_offset = 0;
1786 orig_offset = 0;
1787 }
1788 stream->tracefile_size_current += len;
1789 index->offset = htobe64(stream->out_fd_offset);
1790 }
1791
1792 while (len > 0) {
1793 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1794 (unsigned long)offset, len, fd, splice_pipe[1]);
1795 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1796 SPLICE_F_MOVE | SPLICE_F_MORE);
1797 DBG("splice chan to pipe, ret %zd", ret_splice);
1798 if (ret_splice < 0) {
1799 ret = errno;
1800 written = -ret;
1801 PERROR("Error in relay splice");
1802 goto splice_error;
1803 }
1804
1805 /* Handle stream on the relayd if the output is on the network */
1806 if (relayd && stream->metadata_flag) {
1807 size_t metadata_payload_size =
1808 sizeof(struct lttcomm_relayd_metadata_payload);
1809
1810 /* Update counter to fit the spliced data */
1811 ret_splice += metadata_payload_size;
1812 len += metadata_payload_size;
1813 /*
1814 * We do this so the return value can match the len passed as
1815 * argument to this function.
1816 */
1817 written -= metadata_payload_size;
1818 }
1819
1820 /* Splice data out */
1821 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1822 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1823 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1824 outfd, ret_splice);
1825 if (ret_splice < 0) {
1826 ret = errno;
1827 written = -ret;
1828 relayd_hang_up = 1;
1829 goto write_error;
1830 } else if (ret_splice > len) {
1831 /*
1832 * We don't expect this code path to be executed but you never know
1833 * so this is an extra protection agains a buggy splice().
1834 */
1835 ret = errno;
1836 written += ret_splice;
1837 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1838 len);
1839 goto splice_error;
1840 } else {
1841 /* All good, update current len and continue. */
1842 len -= ret_splice;
1843 }
1844
1845 /* This call is useless on a socket so better save a syscall. */
1846 if (!relayd) {
1847 /* This won't block, but will start writeout asynchronously */
1848 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1849 SYNC_FILE_RANGE_WRITE);
1850 stream->out_fd_offset += ret_splice;
1851 }
1852 stream->output_written += ret_splice;
1853 written += ret_splice;
1854 }
1855 lttng_consumer_sync_trace_file(stream, orig_offset);
1856 goto end;
1857
1858 write_error:
1859 /*
1860 * This is a special case that the relayd has closed its socket. Let's
1861 * cleanup the relayd object and all associated streams.
1862 */
1863 if (relayd && relayd_hang_up) {
1864 cleanup_relayd(relayd, ctx);
1865 /* Skip splice error so the consumer does not fail */
1866 goto end;
1867 }
1868
1869 splice_error:
1870 /* send the appropriate error description to sessiond */
1871 switch (ret) {
1872 case EINVAL:
1873 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1874 break;
1875 case ENOMEM:
1876 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1877 break;
1878 case ESPIPE:
1879 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1880 break;
1881 }
1882
1883 end:
1884 if (relayd && stream->metadata_flag) {
1885 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1886 }
1887
1888 rcu_read_unlock();
1889 return written;
1890 }
1891
1892 /*
1893 * Take a snapshot for a specific fd
1894 *
1895 * Returns 0 on success, < 0 on error
1896 */
1897 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1898 {
1899 switch (consumer_data.type) {
1900 case LTTNG_CONSUMER_KERNEL:
1901 return lttng_kconsumer_take_snapshot(stream);
1902 case LTTNG_CONSUMER32_UST:
1903 case LTTNG_CONSUMER64_UST:
1904 return lttng_ustconsumer_take_snapshot(stream);
1905 default:
1906 ERR("Unknown consumer_data type");
1907 assert(0);
1908 return -ENOSYS;
1909 }
1910 }
1911
1912 /*
1913 * Get the produced position
1914 *
1915 * Returns 0 on success, < 0 on error
1916 */
1917 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1918 unsigned long *pos)
1919 {
1920 switch (consumer_data.type) {
1921 case LTTNG_CONSUMER_KERNEL:
1922 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1923 case LTTNG_CONSUMER32_UST:
1924 case LTTNG_CONSUMER64_UST:
1925 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1926 default:
1927 ERR("Unknown consumer_data type");
1928 assert(0);
1929 return -ENOSYS;
1930 }
1931 }
1932
1933 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1934 int sock, struct pollfd *consumer_sockpoll)
1935 {
1936 switch (consumer_data.type) {
1937 case LTTNG_CONSUMER_KERNEL:
1938 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1939 case LTTNG_CONSUMER32_UST:
1940 case LTTNG_CONSUMER64_UST:
1941 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1942 default:
1943 ERR("Unknown consumer_data type");
1944 assert(0);
1945 return -ENOSYS;
1946 }
1947 }
1948
1949 void lttng_consumer_close_all_metadata(void)
1950 {
1951 switch (consumer_data.type) {
1952 case LTTNG_CONSUMER_KERNEL:
1953 /*
1954 * The Kernel consumer has a different metadata scheme so we don't
1955 * close anything because the stream will be closed by the session
1956 * daemon.
1957 */
1958 break;
1959 case LTTNG_CONSUMER32_UST:
1960 case LTTNG_CONSUMER64_UST:
1961 /*
1962 * Close all metadata streams. The metadata hash table is passed and
1963 * this call iterates over it by closing all wakeup fd. This is safe
1964 * because at this point we are sure that the metadata producer is
1965 * either dead or blocked.
1966 */
1967 lttng_ustconsumer_close_all_metadata(metadata_ht);
1968 break;
1969 default:
1970 ERR("Unknown consumer_data type");
1971 assert(0);
1972 }
1973 }
1974
1975 /*
1976 * Clean up a metadata stream and free its memory.
1977 */
1978 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1979 struct lttng_ht *ht)
1980 {
1981 struct lttng_consumer_channel *free_chan = NULL;
1982
1983 assert(stream);
1984 /*
1985 * This call should NEVER receive regular stream. It must always be
1986 * metadata stream and this is crucial for data structure synchronization.
1987 */
1988 assert(stream->metadata_flag);
1989
1990 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1991
1992 pthread_mutex_lock(&consumer_data.lock);
1993 pthread_mutex_lock(&stream->chan->lock);
1994 pthread_mutex_lock(&stream->lock);
1995
1996 /* Remove any reference to that stream. */
1997 consumer_stream_delete(stream, ht);
1998
1999 /* Close down everything including the relayd if one. */
2000 consumer_stream_close(stream);
2001 /* Destroy tracer buffers of the stream. */
2002 consumer_stream_destroy_buffers(stream);
2003
2004 /* Atomically decrement channel refcount since other threads can use it. */
2005 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2006 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2007 /* Go for channel deletion! */
2008 free_chan = stream->chan;
2009 }
2010
2011 /*
2012 * Nullify the stream reference so it is not used after deletion. The
2013 * channel lock MUST be acquired before being able to check for a NULL
2014 * pointer value.
2015 */
2016 stream->chan->metadata_stream = NULL;
2017
2018 pthread_mutex_unlock(&stream->lock);
2019 pthread_mutex_unlock(&stream->chan->lock);
2020 pthread_mutex_unlock(&consumer_data.lock);
2021
2022 if (free_chan) {
2023 consumer_del_channel(free_chan);
2024 }
2025
2026 consumer_stream_free(stream);
2027 }
2028
2029 /*
2030 * Action done with the metadata stream when adding it to the consumer internal
2031 * data structures to handle it.
2032 */
2033 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2034 {
2035 struct lttng_ht *ht = metadata_ht;
2036 int ret = 0;
2037 struct lttng_ht_iter iter;
2038 struct lttng_ht_node_u64 *node;
2039
2040 assert(stream);
2041 assert(ht);
2042
2043 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2044
2045 pthread_mutex_lock(&consumer_data.lock);
2046 pthread_mutex_lock(&stream->chan->lock);
2047 pthread_mutex_lock(&stream->chan->timer_lock);
2048 pthread_mutex_lock(&stream->lock);
2049
2050 /*
2051 * From here, refcounts are updated so be _careful_ when returning an error
2052 * after this point.
2053 */
2054
2055 rcu_read_lock();
2056
2057 /*
2058 * Lookup the stream just to make sure it does not exist in our internal
2059 * state. This should NEVER happen.
2060 */
2061 lttng_ht_lookup(ht, &stream->key, &iter);
2062 node = lttng_ht_iter_get_node_u64(&iter);
2063 assert(!node);
2064
2065 /*
2066 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2067 * in terms of destroying the associated channel, because the action that
2068 * causes the count to become 0 also causes a stream to be added. The
2069 * channel deletion will thus be triggered by the following removal of this
2070 * stream.
2071 */
2072 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2073 /* Increment refcount before decrementing nb_init_stream_left */
2074 cmm_smp_wmb();
2075 uatomic_dec(&stream->chan->nb_init_stream_left);
2076 }
2077
2078 lttng_ht_add_unique_u64(ht, &stream->node);
2079
2080 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2081 &stream->node_channel_id);
2082
2083 /*
2084 * Add stream to the stream_list_ht of the consumer data. No need to steal
2085 * the key since the HT does not use it and we allow to add redundant keys
2086 * into this table.
2087 */
2088 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2089
2090 rcu_read_unlock();
2091
2092 pthread_mutex_unlock(&stream->lock);
2093 pthread_mutex_unlock(&stream->chan->lock);
2094 pthread_mutex_unlock(&stream->chan->timer_lock);
2095 pthread_mutex_unlock(&consumer_data.lock);
2096 return ret;
2097 }
2098
2099 /*
2100 * Delete data stream that are flagged for deletion (endpoint_status).
2101 */
2102 static void validate_endpoint_status_data_stream(void)
2103 {
2104 struct lttng_ht_iter iter;
2105 struct lttng_consumer_stream *stream;
2106
2107 DBG("Consumer delete flagged data stream");
2108
2109 rcu_read_lock();
2110 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2111 /* Validate delete flag of the stream */
2112 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2113 continue;
2114 }
2115 /* Delete it right now */
2116 consumer_del_stream(stream, data_ht);
2117 }
2118 rcu_read_unlock();
2119 }
2120
2121 /*
2122 * Delete metadata stream that are flagged for deletion (endpoint_status).
2123 */
2124 static void validate_endpoint_status_metadata_stream(
2125 struct lttng_poll_event *pollset)
2126 {
2127 struct lttng_ht_iter iter;
2128 struct lttng_consumer_stream *stream;
2129
2130 DBG("Consumer delete flagged metadata stream");
2131
2132 assert(pollset);
2133
2134 rcu_read_lock();
2135 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2136 /* Validate delete flag of the stream */
2137 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2138 continue;
2139 }
2140 /*
2141 * Remove from pollset so the metadata thread can continue without
2142 * blocking on a deleted stream.
2143 */
2144 lttng_poll_del(pollset, stream->wait_fd);
2145
2146 /* Delete it right now */
2147 consumer_del_metadata_stream(stream, metadata_ht);
2148 }
2149 rcu_read_unlock();
2150 }
2151
2152 /*
2153 * Thread polls on metadata file descriptor and write them on disk or on the
2154 * network.
2155 */
2156 void *consumer_thread_metadata_poll(void *data)
2157 {
2158 int ret, i, pollfd, err = -1;
2159 uint32_t revents, nb_fd;
2160 struct lttng_consumer_stream *stream = NULL;
2161 struct lttng_ht_iter iter;
2162 struct lttng_ht_node_u64 *node;
2163 struct lttng_poll_event events;
2164 struct lttng_consumer_local_data *ctx = data;
2165 ssize_t len;
2166
2167 rcu_register_thread();
2168
2169 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2170
2171 if (testpoint(consumerd_thread_metadata)) {
2172 goto error_testpoint;
2173 }
2174
2175 health_code_update();
2176
2177 DBG("Thread metadata poll started");
2178
2179 /* Size is set to 1 for the consumer_metadata pipe */
2180 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2181 if (ret < 0) {
2182 ERR("Poll set creation failed");
2183 goto end_poll;
2184 }
2185
2186 ret = lttng_poll_add(&events,
2187 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2188 if (ret < 0) {
2189 goto end;
2190 }
2191
2192 /* Main loop */
2193 DBG("Metadata main loop started");
2194
2195 while (1) {
2196 restart:
2197 health_code_update();
2198 health_poll_entry();
2199 DBG("Metadata poll wait");
2200 ret = lttng_poll_wait(&events, -1);
2201 DBG("Metadata poll return from wait with %d fd(s)",
2202 LTTNG_POLL_GETNB(&events));
2203 health_poll_exit();
2204 DBG("Metadata event catched in thread");
2205 if (ret < 0) {
2206 if (errno == EINTR) {
2207 ERR("Poll EINTR catched");
2208 goto restart;
2209 }
2210 if (LTTNG_POLL_GETNB(&events) == 0) {
2211 err = 0; /* All is OK */
2212 }
2213 goto end;
2214 }
2215
2216 nb_fd = ret;
2217
2218 /* From here, the event is a metadata wait fd */
2219 for (i = 0; i < nb_fd; i++) {
2220 health_code_update();
2221
2222 revents = LTTNG_POLL_GETEV(&events, i);
2223 pollfd = LTTNG_POLL_GETFD(&events, i);
2224
2225 if (!revents) {
2226 /* No activity for this FD (poll implementation). */
2227 continue;
2228 }
2229
2230 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2231 if (revents & (LPOLLERR | LPOLLHUP )) {
2232 DBG("Metadata thread pipe hung up");
2233 /*
2234 * Remove the pipe from the poll set and continue the loop
2235 * since their might be data to consume.
2236 */
2237 lttng_poll_del(&events,
2238 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2239 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2240 continue;
2241 } else if (revents & LPOLLIN) {
2242 ssize_t pipe_len;
2243
2244 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2245 &stream, sizeof(stream));
2246 if (pipe_len < sizeof(stream)) {
2247 PERROR("read metadata stream");
2248 /*
2249 * Continue here to handle the rest of the streams.
2250 */
2251 continue;
2252 }
2253
2254 /* A NULL stream means that the state has changed. */
2255 if (stream == NULL) {
2256 /* Check for deleted streams. */
2257 validate_endpoint_status_metadata_stream(&events);
2258 goto restart;
2259 }
2260
2261 DBG("Adding metadata stream %d to poll set",
2262 stream->wait_fd);
2263
2264 /* Add metadata stream to the global poll events list */
2265 lttng_poll_add(&events, stream->wait_fd,
2266 LPOLLIN | LPOLLPRI | LPOLLHUP);
2267 }
2268
2269 /* Handle other stream */
2270 continue;
2271 }
2272
2273 rcu_read_lock();
2274 {
2275 uint64_t tmp_id = (uint64_t) pollfd;
2276
2277 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2278 }
2279 node = lttng_ht_iter_get_node_u64(&iter);
2280 assert(node);
2281
2282 stream = caa_container_of(node, struct lttng_consumer_stream,
2283 node);
2284
2285 /* Check for error event */
2286 if (revents & (LPOLLERR | LPOLLHUP)) {
2287 DBG("Metadata fd %d is hup|err.", pollfd);
2288 if (!stream->hangup_flush_done
2289 && (consumer_data.type == LTTNG_CONSUMER32_UST
2290 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2291 DBG("Attempting to flush and consume the UST buffers");
2292 lttng_ustconsumer_on_stream_hangup(stream);
2293
2294 /* We just flushed the stream now read it. */
2295 do {
2296 health_code_update();
2297
2298 len = ctx->on_buffer_ready(stream, ctx);
2299 /*
2300 * We don't check the return value here since if we get
2301 * a negative len, it means an error occured thus we
2302 * simply remove it from the poll set and free the
2303 * stream.
2304 */
2305 } while (len > 0);
2306 }
2307
2308 lttng_poll_del(&events, stream->wait_fd);
2309 /*
2310 * This call update the channel states, closes file descriptors
2311 * and securely free the stream.
2312 */
2313 consumer_del_metadata_stream(stream, metadata_ht);
2314 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2315 /* Get the data out of the metadata file descriptor */
2316 DBG("Metadata available on fd %d", pollfd);
2317 assert(stream->wait_fd == pollfd);
2318
2319 do {
2320 health_code_update();
2321
2322 len = ctx->on_buffer_ready(stream, ctx);
2323 /*
2324 * We don't check the return value here since if we get
2325 * a negative len, it means an error occured thus we
2326 * simply remove it from the poll set and free the
2327 * stream.
2328 */
2329 } while (len > 0);
2330
2331 /* It's ok to have an unavailable sub-buffer */
2332 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2333 /* Clean up stream from consumer and free it. */
2334 lttng_poll_del(&events, stream->wait_fd);
2335 consumer_del_metadata_stream(stream, metadata_ht);
2336 }
2337 }
2338
2339 /* Release RCU lock for the stream looked up */
2340 rcu_read_unlock();
2341 }
2342 }
2343
2344 /* All is OK */
2345 err = 0;
2346 end:
2347 DBG("Metadata poll thread exiting");
2348
2349 lttng_poll_clean(&events);
2350 end_poll:
2351 error_testpoint:
2352 if (err) {
2353 health_error();
2354 ERR("Health error occurred in %s", __func__);
2355 }
2356 health_unregister(health_consumerd);
2357 rcu_unregister_thread();
2358 return NULL;
2359 }
2360
2361 /*
2362 * This thread polls the fds in the set to consume the data and write
2363 * it to tracefile if necessary.
2364 */
2365 void *consumer_thread_data_poll(void *data)
2366 {
2367 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2368 struct pollfd *pollfd = NULL;
2369 /* local view of the streams */
2370 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2371 /* local view of consumer_data.fds_count */
2372 int nb_fd = 0;
2373 struct lttng_consumer_local_data *ctx = data;
2374 ssize_t len;
2375
2376 rcu_register_thread();
2377
2378 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2379
2380 if (testpoint(consumerd_thread_data)) {
2381 goto error_testpoint;
2382 }
2383
2384 health_code_update();
2385
2386 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2387 if (local_stream == NULL) {
2388 PERROR("local_stream malloc");
2389 goto end;
2390 }
2391
2392 while (1) {
2393 health_code_update();
2394
2395 high_prio = 0;
2396 num_hup = 0;
2397
2398 /*
2399 * the fds set has been updated, we need to update our
2400 * local array as well
2401 */
2402 pthread_mutex_lock(&consumer_data.lock);
2403 if (consumer_data.need_update) {
2404 free(pollfd);
2405 pollfd = NULL;
2406
2407 free(local_stream);
2408 local_stream = NULL;
2409
2410 /*
2411 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2412 * wake up pipe.
2413 */
2414 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2415 if (pollfd == NULL) {
2416 PERROR("pollfd malloc");
2417 pthread_mutex_unlock(&consumer_data.lock);
2418 goto end;
2419 }
2420
2421 local_stream = zmalloc((consumer_data.stream_count + 2) *
2422 sizeof(struct lttng_consumer_stream *));
2423 if (local_stream == NULL) {
2424 PERROR("local_stream malloc");
2425 pthread_mutex_unlock(&consumer_data.lock);
2426 goto end;
2427 }
2428 ret = update_poll_array(ctx, &pollfd, local_stream,
2429 data_ht);
2430 if (ret < 0) {
2431 ERR("Error in allocating pollfd or local_outfds");
2432 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2433 pthread_mutex_unlock(&consumer_data.lock);
2434 goto end;
2435 }
2436 nb_fd = ret;
2437 consumer_data.need_update = 0;
2438 }
2439 pthread_mutex_unlock(&consumer_data.lock);
2440
2441 /* No FDs and consumer_quit, consumer_cleanup the thread */
2442 if (nb_fd == 0 && consumer_quit == 1) {
2443 err = 0; /* All is OK */
2444 goto end;
2445 }
2446 /* poll on the array of fds */
2447 restart:
2448 DBG("polling on %d fd", nb_fd + 2);
2449 health_poll_entry();
2450 num_rdy = poll(pollfd, nb_fd + 2, -1);
2451 health_poll_exit();
2452 DBG("poll num_rdy : %d", num_rdy);
2453 if (num_rdy == -1) {
2454 /*
2455 * Restart interrupted system call.
2456 */
2457 if (errno == EINTR) {
2458 goto restart;
2459 }
2460 PERROR("Poll error");
2461 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2462 goto end;
2463 } else if (num_rdy == 0) {
2464 DBG("Polling thread timed out");
2465 goto end;
2466 }
2467
2468 /*
2469 * If the consumer_data_pipe triggered poll go directly to the
2470 * beginning of the loop to update the array. We want to prioritize
2471 * array update over low-priority reads.
2472 */
2473 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2474 ssize_t pipe_readlen;
2475
2476 DBG("consumer_data_pipe wake up");
2477 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2478 &new_stream, sizeof(new_stream));
2479 if (pipe_readlen < sizeof(new_stream)) {
2480 PERROR("Consumer data pipe");
2481 /* Continue so we can at least handle the current stream(s). */
2482 continue;
2483 }
2484
2485 /*
2486 * If the stream is NULL, just ignore it. It's also possible that
2487 * the sessiond poll thread changed the consumer_quit state and is
2488 * waking us up to test it.
2489 */
2490 if (new_stream == NULL) {
2491 validate_endpoint_status_data_stream();
2492 continue;
2493 }
2494
2495 /* Continue to update the local streams and handle prio ones */
2496 continue;
2497 }
2498
2499 /* Handle wakeup pipe. */
2500 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2501 char dummy;
2502 ssize_t pipe_readlen;
2503
2504 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2505 sizeof(dummy));
2506 if (pipe_readlen < 0) {
2507 PERROR("Consumer data wakeup pipe");
2508 }
2509 /* We've been awakened to handle stream(s). */
2510 ctx->has_wakeup = 0;
2511 }
2512
2513 /* Take care of high priority channels first. */
2514 for (i = 0; i < nb_fd; i++) {
2515 health_code_update();
2516
2517 if (local_stream[i] == NULL) {
2518 continue;
2519 }
2520 if (pollfd[i].revents & POLLPRI) {
2521 DBG("Urgent read on fd %d", pollfd[i].fd);
2522 high_prio = 1;
2523 len = ctx->on_buffer_ready(local_stream[i], ctx);
2524 /* it's ok to have an unavailable sub-buffer */
2525 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2526 /* Clean the stream and free it. */
2527 consumer_del_stream(local_stream[i], data_ht);
2528 local_stream[i] = NULL;
2529 } else if (len > 0) {
2530 local_stream[i]->data_read = 1;
2531 }
2532 }
2533 }
2534
2535 /*
2536 * If we read high prio channel in this loop, try again
2537 * for more high prio data.
2538 */
2539 if (high_prio) {
2540 continue;
2541 }
2542
2543 /* Take care of low priority channels. */
2544 for (i = 0; i < nb_fd; i++) {
2545 health_code_update();
2546
2547 if (local_stream[i] == NULL) {
2548 continue;
2549 }
2550 if ((pollfd[i].revents & POLLIN) ||
2551 local_stream[i]->hangup_flush_done ||
2552 local_stream[i]->has_data) {
2553 DBG("Normal read on fd %d", pollfd[i].fd);
2554 len = ctx->on_buffer_ready(local_stream[i], ctx);
2555 /* it's ok to have an unavailable sub-buffer */
2556 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2557 /* Clean the stream and free it. */
2558 consumer_del_stream(local_stream[i], data_ht);
2559 local_stream[i] = NULL;
2560 } else if (len > 0) {
2561 local_stream[i]->data_read = 1;
2562 }
2563 }
2564 }
2565
2566 /* Handle hangup and errors */
2567 for (i = 0; i < nb_fd; i++) {
2568 health_code_update();
2569
2570 if (local_stream[i] == NULL) {
2571 continue;
2572 }
2573 if (!local_stream[i]->hangup_flush_done
2574 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2575 && (consumer_data.type == LTTNG_CONSUMER32_UST
2576 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2577 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2578 pollfd[i].fd);
2579 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2580 /* Attempt read again, for the data we just flushed. */
2581 local_stream[i]->data_read = 1;
2582 }
2583 /*
2584 * If the poll flag is HUP/ERR/NVAL and we have
2585 * read no data in this pass, we can remove the
2586 * stream from its hash table.
2587 */
2588 if ((pollfd[i].revents & POLLHUP)) {
2589 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2590 if (!local_stream[i]->data_read) {
2591 consumer_del_stream(local_stream[i], data_ht);
2592 local_stream[i] = NULL;
2593 num_hup++;
2594 }
2595 } else if (pollfd[i].revents & POLLERR) {
2596 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2597 if (!local_stream[i]->data_read) {
2598 consumer_del_stream(local_stream[i], data_ht);
2599 local_stream[i] = NULL;
2600 num_hup++;
2601 }
2602 } else if (pollfd[i].revents & POLLNVAL) {
2603 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2604 if (!local_stream[i]->data_read) {
2605 consumer_del_stream(local_stream[i], data_ht);
2606 local_stream[i] = NULL;
2607 num_hup++;
2608 }
2609 }
2610 if (local_stream[i] != NULL) {
2611 local_stream[i]->data_read = 0;
2612 }
2613 }
2614 }
2615 /* All is OK */
2616 err = 0;
2617 end:
2618 DBG("polling thread exiting");
2619 free(pollfd);
2620 free(local_stream);
2621
2622 /*
2623 * Close the write side of the pipe so epoll_wait() in
2624 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2625 * read side of the pipe. If we close them both, epoll_wait strangely does
2626 * not return and could create a endless wait period if the pipe is the
2627 * only tracked fd in the poll set. The thread will take care of closing
2628 * the read side.
2629 */
2630 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2631
2632 error_testpoint:
2633 if (err) {
2634 health_error();
2635 ERR("Health error occurred in %s", __func__);
2636 }
2637 health_unregister(health_consumerd);
2638
2639 rcu_unregister_thread();
2640 return NULL;
2641 }
2642
2643 /*
2644 * Close wake-up end of each stream belonging to the channel. This will
2645 * allow the poll() on the stream read-side to detect when the
2646 * write-side (application) finally closes them.
2647 */
2648 static
2649 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2650 {
2651 struct lttng_ht *ht;
2652 struct lttng_consumer_stream *stream;
2653 struct lttng_ht_iter iter;
2654
2655 ht = consumer_data.stream_per_chan_id_ht;
2656
2657 rcu_read_lock();
2658 cds_lfht_for_each_entry_duplicate(ht->ht,
2659 ht->hash_fct(&channel->key, lttng_ht_seed),
2660 ht->match_fct, &channel->key,
2661 &iter.iter, stream, node_channel_id.node) {
2662 /*
2663 * Protect against teardown with mutex.
2664 */
2665 pthread_mutex_lock(&stream->lock);
2666 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2667 goto next;
2668 }
2669 switch (consumer_data.type) {
2670 case LTTNG_CONSUMER_KERNEL:
2671 break;
2672 case LTTNG_CONSUMER32_UST:
2673 case LTTNG_CONSUMER64_UST:
2674 if (stream->metadata_flag) {
2675 /* Safe and protected by the stream lock. */
2676 lttng_ustconsumer_close_metadata(stream->chan);
2677 } else {
2678 /*
2679 * Note: a mutex is taken internally within
2680 * liblttng-ust-ctl to protect timer wakeup_fd
2681 * use from concurrent close.
2682 */
2683 lttng_ustconsumer_close_stream_wakeup(stream);
2684 }
2685 break;
2686 default:
2687 ERR("Unknown consumer_data type");
2688 assert(0);
2689 }
2690 next:
2691 pthread_mutex_unlock(&stream->lock);
2692 }
2693 rcu_read_unlock();
2694 }
2695
2696 static void destroy_channel_ht(struct lttng_ht *ht)
2697 {
2698 struct lttng_ht_iter iter;
2699 struct lttng_consumer_channel *channel;
2700 int ret;
2701
2702 if (ht == NULL) {
2703 return;
2704 }
2705
2706 rcu_read_lock();
2707 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2708 ret = lttng_ht_del(ht, &iter);
2709 assert(ret != 0);
2710 }
2711 rcu_read_unlock();
2712
2713 lttng_ht_destroy(ht);
2714 }
2715
2716 /*
2717 * This thread polls the channel fds to detect when they are being
2718 * closed. It closes all related streams if the channel is detected as
2719 * closed. It is currently only used as a shim layer for UST because the
2720 * consumerd needs to keep the per-stream wakeup end of pipes open for
2721 * periodical flush.
2722 */
2723 void *consumer_thread_channel_poll(void *data)
2724 {
2725 int ret, i, pollfd, err = -1;
2726 uint32_t revents, nb_fd;
2727 struct lttng_consumer_channel *chan = NULL;
2728 struct lttng_ht_iter iter;
2729 struct lttng_ht_node_u64 *node;
2730 struct lttng_poll_event events;
2731 struct lttng_consumer_local_data *ctx = data;
2732 struct lttng_ht *channel_ht;
2733
2734 rcu_register_thread();
2735
2736 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2737
2738 if (testpoint(consumerd_thread_channel)) {
2739 goto error_testpoint;
2740 }
2741
2742 health_code_update();
2743
2744 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2745 if (!channel_ht) {
2746 /* ENOMEM at this point. Better to bail out. */
2747 goto end_ht;
2748 }
2749
2750 DBG("Thread channel poll started");
2751
2752 /* Size is set to 1 for the consumer_channel pipe */
2753 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2754 if (ret < 0) {
2755 ERR("Poll set creation failed");
2756 goto end_poll;
2757 }
2758
2759 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2760 if (ret < 0) {
2761 goto end;
2762 }
2763
2764 /* Main loop */
2765 DBG("Channel main loop started");
2766
2767 while (1) {
2768 restart:
2769 health_code_update();
2770 DBG("Channel poll wait");
2771 health_poll_entry();
2772 ret = lttng_poll_wait(&events, -1);
2773 DBG("Channel poll return from wait with %d fd(s)",
2774 LTTNG_POLL_GETNB(&events));
2775 health_poll_exit();
2776 DBG("Channel event catched in thread");
2777 if (ret < 0) {
2778 if (errno == EINTR) {
2779 ERR("Poll EINTR catched");
2780 goto restart;
2781 }
2782 if (LTTNG_POLL_GETNB(&events) == 0) {
2783 err = 0; /* All is OK */
2784 }
2785 goto end;
2786 }
2787
2788 nb_fd = ret;
2789
2790 /* From here, the event is a channel wait fd */
2791 for (i = 0; i < nb_fd; i++) {
2792 health_code_update();
2793
2794 revents = LTTNG_POLL_GETEV(&events, i);
2795 pollfd = LTTNG_POLL_GETFD(&events, i);
2796
2797 if (!revents) {
2798 /* No activity for this FD (poll implementation). */
2799 continue;
2800 }
2801
2802 if (pollfd == ctx->consumer_channel_pipe[0]) {
2803 if (revents & (LPOLLERR | LPOLLHUP)) {
2804 DBG("Channel thread pipe hung up");
2805 /*
2806 * Remove the pipe from the poll set and continue the loop
2807 * since their might be data to consume.
2808 */
2809 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2810 continue;
2811 } else if (revents & LPOLLIN) {
2812 enum consumer_channel_action action;
2813 uint64_t key;
2814
2815 ret = read_channel_pipe(ctx, &chan, &key, &action);
2816 if (ret <= 0) {
2817 ERR("Error reading channel pipe");
2818 continue;
2819 }
2820
2821 switch (action) {
2822 case CONSUMER_CHANNEL_ADD:
2823 DBG("Adding channel %d to poll set",
2824 chan->wait_fd);
2825
2826 lttng_ht_node_init_u64(&chan->wait_fd_node,
2827 chan->wait_fd);
2828 rcu_read_lock();
2829 lttng_ht_add_unique_u64(channel_ht,
2830 &chan->wait_fd_node);
2831 rcu_read_unlock();
2832 /* Add channel to the global poll events list */
2833 lttng_poll_add(&events, chan->wait_fd,
2834 LPOLLIN | LPOLLPRI);
2835 break;
2836 case CONSUMER_CHANNEL_DEL:
2837 {
2838 /*
2839 * This command should never be called if the channel
2840 * has streams monitored by either the data or metadata
2841 * thread. The consumer only notify this thread with a
2842 * channel del. command if it receives a destroy
2843 * channel command from the session daemon that send it
2844 * if a command prior to the GET_CHANNEL failed.
2845 */
2846
2847 rcu_read_lock();
2848 chan = consumer_find_channel(key);
2849 if (!chan) {
2850 rcu_read_unlock();
2851 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2852 break;
2853 }
2854 lttng_poll_del(&events, chan->wait_fd);
2855 iter.iter.node = &chan->wait_fd_node.node;
2856 ret = lttng_ht_del(channel_ht, &iter);
2857 assert(ret == 0);
2858
2859 switch (consumer_data.type) {
2860 case LTTNG_CONSUMER_KERNEL:
2861 break;
2862 case LTTNG_CONSUMER32_UST:
2863 case LTTNG_CONSUMER64_UST:
2864 health_code_update();
2865 /* Destroy streams that might have been left in the stream list. */
2866 clean_channel_stream_list(chan);
2867 break;
2868 default:
2869 ERR("Unknown consumer_data type");
2870 assert(0);
2871 }
2872
2873 /*
2874 * Release our own refcount. Force channel deletion even if
2875 * streams were not initialized.
2876 */
2877 if (!uatomic_sub_return(&chan->refcount, 1)) {
2878 consumer_del_channel(chan);
2879 }
2880 rcu_read_unlock();
2881 goto restart;
2882 }
2883 case CONSUMER_CHANNEL_QUIT:
2884 /*
2885 * Remove the pipe from the poll set and continue the loop
2886 * since their might be data to consume.
2887 */
2888 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2889 continue;
2890 default:
2891 ERR("Unknown action");
2892 break;
2893 }
2894 }
2895
2896 /* Handle other stream */
2897 continue;
2898 }
2899
2900 rcu_read_lock();
2901 {
2902 uint64_t tmp_id = (uint64_t) pollfd;
2903
2904 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2905 }
2906 node = lttng_ht_iter_get_node_u64(&iter);
2907 assert(node);
2908
2909 chan = caa_container_of(node, struct lttng_consumer_channel,
2910 wait_fd_node);
2911
2912 /* Check for error event */
2913 if (revents & (LPOLLERR | LPOLLHUP)) {
2914 DBG("Channel fd %d is hup|err.", pollfd);
2915
2916 lttng_poll_del(&events, chan->wait_fd);
2917 ret = lttng_ht_del(channel_ht, &iter);
2918 assert(ret == 0);
2919
2920 /*
2921 * This will close the wait fd for each stream associated to
2922 * this channel AND monitored by the data/metadata thread thus
2923 * will be clean by the right thread.
2924 */
2925 consumer_close_channel_streams(chan);
2926
2927 /* Release our own refcount */
2928 if (!uatomic_sub_return(&chan->refcount, 1)
2929 && !uatomic_read(&chan->nb_init_stream_left)) {
2930 consumer_del_channel(chan);
2931 }
2932 }
2933
2934 /* Release RCU lock for the channel looked up */
2935 rcu_read_unlock();
2936 }
2937 }
2938
2939 /* All is OK */
2940 err = 0;
2941 end:
2942 lttng_poll_clean(&events);
2943 end_poll:
2944 destroy_channel_ht(channel_ht);
2945 end_ht:
2946 error_testpoint:
2947 DBG("Channel poll thread exiting");
2948 if (err) {
2949 health_error();
2950 ERR("Health error occurred in %s", __func__);
2951 }
2952 health_unregister(health_consumerd);
2953 rcu_unregister_thread();
2954 return NULL;
2955 }
2956
2957 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2958 struct pollfd *sockpoll, int client_socket)
2959 {
2960 int ret;
2961
2962 assert(ctx);
2963 assert(sockpoll);
2964
2965 ret = lttng_consumer_poll_socket(sockpoll);
2966 if (ret) {
2967 goto error;
2968 }
2969 DBG("Metadata connection on client_socket");
2970
2971 /* Blocking call, waiting for transmission */
2972 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2973 if (ctx->consumer_metadata_socket < 0) {
2974 WARN("On accept metadata");
2975 ret = -1;
2976 goto error;
2977 }
2978 ret = 0;
2979
2980 error:
2981 return ret;
2982 }
2983
2984 /*
2985 * This thread listens on the consumerd socket and receives the file
2986 * descriptors from the session daemon.
2987 */
2988 void *consumer_thread_sessiond_poll(void *data)
2989 {
2990 int sock = -1, client_socket, ret, err = -1;
2991 /*
2992 * structure to poll for incoming data on communication socket avoids
2993 * making blocking sockets.
2994 */
2995 struct pollfd consumer_sockpoll[2];
2996 struct lttng_consumer_local_data *ctx = data;
2997
2998 rcu_register_thread();
2999
3000 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3001
3002 if (testpoint(consumerd_thread_sessiond)) {
3003 goto error_testpoint;
3004 }
3005
3006 health_code_update();
3007
3008 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3009 unlink(ctx->consumer_command_sock_path);
3010 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3011 if (client_socket < 0) {
3012 ERR("Cannot create command socket");
3013 goto end;
3014 }
3015
3016 ret = lttcomm_listen_unix_sock(client_socket);
3017 if (ret < 0) {
3018 goto end;
3019 }
3020
3021 DBG("Sending ready command to lttng-sessiond");
3022 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3023 /* return < 0 on error, but == 0 is not fatal */
3024 if (ret < 0) {
3025 ERR("Error sending ready command to lttng-sessiond");
3026 goto end;
3027 }
3028
3029 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3030 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3031 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3032 consumer_sockpoll[1].fd = client_socket;
3033 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3034
3035 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3036 if (ret) {
3037 if (ret > 0) {
3038 /* should exit */
3039 err = 0;
3040 }
3041 goto end;
3042 }
3043 DBG("Connection on client_socket");
3044
3045 /* Blocking call, waiting for transmission */
3046 sock = lttcomm_accept_unix_sock(client_socket);
3047 if (sock < 0) {
3048 WARN("On accept");
3049 goto end;
3050 }
3051
3052 /*
3053 * Setup metadata socket which is the second socket connection on the
3054 * command unix socket.
3055 */
3056 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3057 if (ret) {
3058 if (ret > 0) {
3059 /* should exit */
3060 err = 0;
3061 }
3062 goto end;
3063 }
3064
3065 /* This socket is not useful anymore. */
3066 ret = close(client_socket);
3067 if (ret < 0) {
3068 PERROR("close client_socket");
3069 }
3070 client_socket = -1;
3071
3072 /* update the polling structure to poll on the established socket */
3073 consumer_sockpoll[1].fd = sock;
3074 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3075
3076 while (1) {
3077 health_code_update();
3078
3079 health_poll_entry();
3080 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3081 health_poll_exit();
3082 if (ret) {
3083 if (ret > 0) {
3084 /* should exit */
3085 err = 0;
3086 }
3087 goto end;
3088 }
3089 DBG("Incoming command on sock");
3090 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3091 if (ret <= 0) {
3092 /*
3093 * This could simply be a session daemon quitting. Don't output
3094 * ERR() here.
3095 */
3096 DBG("Communication interrupted on command socket");
3097 err = 0;
3098 goto end;
3099 }
3100 if (consumer_quit) {
3101 DBG("consumer_thread_receive_fds received quit from signal");
3102 err = 0; /* All is OK */
3103 goto end;
3104 }
3105 DBG("received command on sock");
3106 }
3107 /* All is OK */
3108 err = 0;
3109
3110 end:
3111 DBG("Consumer thread sessiond poll exiting");
3112
3113 /*
3114 * Close metadata streams since the producer is the session daemon which
3115 * just died.
3116 *
3117 * NOTE: for now, this only applies to the UST tracer.
3118 */
3119 lttng_consumer_close_all_metadata();
3120
3121 /*
3122 * when all fds have hung up, the polling thread
3123 * can exit cleanly
3124 */
3125 consumer_quit = 1;
3126
3127 /*
3128 * Notify the data poll thread to poll back again and test the
3129 * consumer_quit state that we just set so to quit gracefully.
3130 */
3131 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3132
3133 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3134
3135 notify_health_quit_pipe(health_quit_pipe);
3136
3137 /* Cleaning up possibly open sockets. */
3138 if (sock >= 0) {
3139 ret = close(sock);
3140 if (ret < 0) {
3141 PERROR("close sock sessiond poll");
3142 }
3143 }
3144 if (client_socket >= 0) {
3145 ret = close(client_socket);
3146 if (ret < 0) {
3147 PERROR("close client_socket sessiond poll");
3148 }
3149 }
3150
3151 error_testpoint:
3152 if (err) {
3153 health_error();
3154 ERR("Health error occurred in %s", __func__);
3155 }
3156 health_unregister(health_consumerd);
3157
3158 rcu_unregister_thread();
3159 return NULL;
3160 }
3161
3162 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3163 struct lttng_consumer_local_data *ctx)
3164 {
3165 ssize_t ret;
3166
3167 pthread_mutex_lock(&stream->lock);
3168 if (stream->metadata_flag) {
3169 pthread_mutex_lock(&stream->metadata_rdv_lock);
3170 }
3171
3172 switch (consumer_data.type) {
3173 case LTTNG_CONSUMER_KERNEL:
3174 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3175 break;
3176 case LTTNG_CONSUMER32_UST:
3177 case LTTNG_CONSUMER64_UST:
3178 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3179 break;
3180 default:
3181 ERR("Unknown consumer_data type");
3182 assert(0);
3183 ret = -ENOSYS;
3184 break;
3185 }
3186
3187 if (stream->metadata_flag) {
3188 pthread_cond_broadcast(&stream->metadata_rdv);
3189 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3190 }
3191 pthread_mutex_unlock(&stream->lock);
3192 return ret;
3193 }
3194
3195 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3196 {
3197 switch (consumer_data.type) {
3198 case LTTNG_CONSUMER_KERNEL:
3199 return lttng_kconsumer_on_recv_stream(stream);
3200 case LTTNG_CONSUMER32_UST:
3201 case LTTNG_CONSUMER64_UST:
3202 return lttng_ustconsumer_on_recv_stream(stream);
3203 default:
3204 ERR("Unknown consumer_data type");
3205 assert(0);
3206 return -ENOSYS;
3207 }
3208 }
3209
3210 /*
3211 * Allocate and set consumer data hash tables.
3212 */
3213 int lttng_consumer_init(void)
3214 {
3215 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3216 if (!consumer_data.channel_ht) {
3217 goto error;
3218 }
3219
3220 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3221 if (!consumer_data.relayd_ht) {
3222 goto error;
3223 }
3224
3225 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3226 if (!consumer_data.stream_list_ht) {
3227 goto error;
3228 }
3229
3230 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3231 if (!consumer_data.stream_per_chan_id_ht) {
3232 goto error;
3233 }
3234
3235 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3236 if (!data_ht) {
3237 goto error;
3238 }
3239
3240 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3241 if (!metadata_ht) {
3242 goto error;
3243 }
3244
3245 return 0;
3246
3247 error:
3248 return -1;
3249 }
3250
3251 /*
3252 * Process the ADD_RELAYD command receive by a consumer.
3253 *
3254 * This will create a relayd socket pair and add it to the relayd hash table.
3255 * The caller MUST acquire a RCU read side lock before calling it.
3256 */
3257 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3258 struct lttng_consumer_local_data *ctx, int sock,
3259 struct pollfd *consumer_sockpoll,
3260 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3261 uint64_t relayd_session_id)
3262 {
3263 int fd = -1, ret = -1, relayd_created = 0;
3264 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3265 struct consumer_relayd_sock_pair *relayd = NULL;
3266
3267 assert(ctx);
3268 assert(relayd_sock);
3269
3270 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3271
3272 /* Get relayd reference if exists. */
3273 relayd = consumer_find_relayd(net_seq_idx);
3274 if (relayd == NULL) {
3275 assert(sock_type == LTTNG_STREAM_CONTROL);
3276 /* Not found. Allocate one. */
3277 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3278 if (relayd == NULL) {
3279 ret = -ENOMEM;
3280 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3281 goto error;
3282 } else {
3283 relayd->sessiond_session_id = sessiond_id;
3284 relayd_created = 1;
3285 }
3286
3287 /*
3288 * This code path MUST continue to the consumer send status message to
3289 * we can notify the session daemon and continue our work without
3290 * killing everything.
3291 */
3292 } else {
3293 /*
3294 * relayd key should never be found for control socket.
3295 */
3296 assert(sock_type != LTTNG_STREAM_CONTROL);
3297 }
3298
3299 /* First send a status message before receiving the fds. */
3300 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3301 if (ret < 0) {
3302 /* Somehow, the session daemon is not responding anymore. */
3303 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3304 goto error_nosignal;
3305 }
3306
3307 /* Poll on consumer socket. */
3308 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3309 if (ret) {
3310 /* Needing to exit in the middle of a command: error. */
3311 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3312 ret = -EINTR;
3313 goto error_nosignal;
3314 }
3315
3316 /* Get relayd socket from session daemon */
3317 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3318 if (ret != sizeof(fd)) {
3319 ret = -1;
3320 fd = -1; /* Just in case it gets set with an invalid value. */
3321
3322 /*
3323 * Failing to receive FDs might indicate a major problem such as
3324 * reaching a fd limit during the receive where the kernel returns a
3325 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3326 * don't take any chances and stop everything.
3327 *
3328 * XXX: Feature request #558 will fix that and avoid this possible
3329 * issue when reaching the fd limit.
3330 */
3331 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3332 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3333 goto error;
3334 }
3335
3336 /* Copy socket information and received FD */
3337 switch (sock_type) {
3338 case LTTNG_STREAM_CONTROL:
3339 /* Copy received lttcomm socket */
3340 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3341 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3342 /* Handle create_sock error. */
3343 if (ret < 0) {
3344 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3345 goto error;
3346 }
3347 /*
3348 * Close the socket created internally by
3349 * lttcomm_create_sock, so we can replace it by the one
3350 * received from sessiond.
3351 */
3352 if (close(relayd->control_sock.sock.fd)) {
3353 PERROR("close");
3354 }
3355
3356 /* Assign new file descriptor */
3357 relayd->control_sock.sock.fd = fd;
3358 fd = -1; /* For error path */
3359 /* Assign version values. */
3360 relayd->control_sock.major = relayd_sock->major;
3361 relayd->control_sock.minor = relayd_sock->minor;
3362
3363 relayd->relayd_session_id = relayd_session_id;
3364
3365 break;
3366 case LTTNG_STREAM_DATA:
3367 /* Copy received lttcomm socket */
3368 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3369 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3370 /* Handle create_sock error. */
3371 if (ret < 0) {
3372 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3373 goto error;
3374 }
3375 /*
3376 * Close the socket created internally by
3377 * lttcomm_create_sock, so we can replace it by the one
3378 * received from sessiond.
3379 */
3380 if (close(relayd->data_sock.sock.fd)) {
3381 PERROR("close");
3382 }
3383
3384 /* Assign new file descriptor */
3385 relayd->data_sock.sock.fd = fd;
3386 fd = -1; /* for eventual error paths */
3387 /* Assign version values. */
3388 relayd->data_sock.major = relayd_sock->major;
3389 relayd->data_sock.minor = relayd_sock->minor;
3390 break;
3391 default:
3392 ERR("Unknown relayd socket type (%d)", sock_type);
3393 ret = -1;
3394 ret_code = LTTCOMM_CONSUMERD_FATAL;
3395 goto error;
3396 }
3397
3398 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3399 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3400 relayd->net_seq_idx, fd);
3401
3402 /* We successfully added the socket. Send status back. */
3403 ret = consumer_send_status_msg(sock, ret_code);
3404 if (ret < 0) {
3405 /* Somehow, the session daemon is not responding anymore. */
3406 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3407 goto error_nosignal;
3408 }
3409
3410 /*
3411 * Add relayd socket pair to consumer data hashtable. If object already
3412 * exists or on error, the function gracefully returns.
3413 */
3414 add_relayd(relayd);
3415
3416 /* All good! */
3417 return 0;
3418
3419 error:
3420 if (consumer_send_status_msg(sock, ret_code) < 0) {
3421 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3422 }
3423
3424 error_nosignal:
3425 /* Close received socket if valid. */
3426 if (fd >= 0) {
3427 if (close(fd)) {
3428 PERROR("close received socket");
3429 }
3430 }
3431
3432 if (relayd_created) {
3433 free(relayd);
3434 }
3435
3436 return ret;
3437 }
3438
3439 /*
3440 * Try to lock the stream mutex.
3441 *
3442 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3443 */
3444 static int stream_try_lock(struct lttng_consumer_stream *stream)
3445 {
3446 int ret;
3447
3448 assert(stream);
3449
3450 /*
3451 * Try to lock the stream mutex. On failure, we know that the stream is
3452 * being used else where hence there is data still being extracted.
3453 */
3454 ret = pthread_mutex_trylock(&stream->lock);
3455 if (ret) {
3456 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3457 ret = 0;
3458 goto end;
3459 }
3460
3461 ret = 1;
3462
3463 end:
3464 return ret;
3465 }
3466
3467 /*
3468 * Search for a relayd associated to the session id and return the reference.
3469 *
3470 * A rcu read side lock MUST be acquire before calling this function and locked
3471 * until the relayd object is no longer necessary.
3472 */
3473 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3474 {
3475 struct lttng_ht_iter iter;
3476 struct consumer_relayd_sock_pair *relayd = NULL;
3477
3478 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3479 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3480 node.node) {
3481 /*
3482 * Check by sessiond id which is unique here where the relayd session
3483 * id might not be when having multiple relayd.
3484 */
3485 if (relayd->sessiond_session_id == id) {
3486 /* Found the relayd. There can be only one per id. */
3487 goto found;
3488 }
3489 }
3490
3491 return NULL;
3492
3493 found:
3494 return relayd;
3495 }
3496
3497 /*
3498 * Check if for a given session id there is still data needed to be extract
3499 * from the buffers.
3500 *
3501 * Return 1 if data is pending or else 0 meaning ready to be read.
3502 */
3503 int consumer_data_pending(uint64_t id)
3504 {
3505 int ret;
3506 struct lttng_ht_iter iter;
3507 struct lttng_ht *ht;
3508 struct lttng_consumer_stream *stream;
3509 struct consumer_relayd_sock_pair *relayd = NULL;
3510 int (*data_pending)(struct lttng_consumer_stream *);
3511
3512 DBG("Consumer data pending command on session id %" PRIu64, id);
3513
3514 rcu_read_lock();
3515 pthread_mutex_lock(&consumer_data.lock);
3516
3517 switch (consumer_data.type) {
3518 case LTTNG_CONSUMER_KERNEL:
3519 data_pending = lttng_kconsumer_data_pending;
3520 break;
3521 case LTTNG_CONSUMER32_UST:
3522 case LTTNG_CONSUMER64_UST:
3523 data_pending = lttng_ustconsumer_data_pending;
3524 break;
3525 default:
3526 ERR("Unknown consumer data type");
3527 assert(0);
3528 }
3529
3530 /* Ease our life a bit */
3531 ht = consumer_data.stream_list_ht;
3532
3533 relayd = find_relayd_by_session_id(id);
3534 if (relayd) {
3535 /* Send init command for data pending. */
3536 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3537 ret = relayd_begin_data_pending(&relayd->control_sock,
3538 relayd->relayd_session_id);
3539 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3540 if (ret < 0) {
3541 /* Communication error thus the relayd so no data pending. */
3542 goto data_not_pending;
3543 }
3544 }
3545
3546 cds_lfht_for_each_entry_duplicate(ht->ht,
3547 ht->hash_fct(&id, lttng_ht_seed),
3548 ht->match_fct, &id,
3549 &iter.iter, stream, node_session_id.node) {
3550 /* If this call fails, the stream is being used hence data pending. */
3551 ret = stream_try_lock(stream);
3552 if (!ret) {
3553 goto data_pending;
3554 }
3555
3556 /*
3557 * A removed node from the hash table indicates that the stream has
3558 * been deleted thus having a guarantee that the buffers are closed
3559 * on the consumer side. However, data can still be transmitted
3560 * over the network so don't skip the relayd check.
3561 */
3562 ret = cds_lfht_is_node_deleted(&stream->node.node);
3563 if (!ret) {
3564 /* Check the stream if there is data in the buffers. */
3565 ret = data_pending(stream);
3566 if (ret == 1) {
3567 pthread_mutex_unlock(&stream->lock);
3568 goto data_pending;
3569 }
3570 }
3571
3572 /* Relayd check */
3573 if (relayd) {
3574 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3575 if (stream->metadata_flag) {
3576 ret = relayd_quiescent_control(&relayd->control_sock,
3577 stream->relayd_stream_id);
3578 } else {
3579 ret = relayd_data_pending(&relayd->control_sock,
3580 stream->relayd_stream_id,
3581 stream->next_net_seq_num - 1);
3582 }
3583 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3584 if (ret == 1) {
3585 pthread_mutex_unlock(&stream->lock);
3586 goto data_pending;
3587 }
3588 }
3589 pthread_mutex_unlock(&stream->lock);
3590 }
3591
3592 if (relayd) {
3593 unsigned int is_data_inflight = 0;
3594
3595 /* Send init command for data pending. */
3596 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3597 ret = relayd_end_data_pending(&relayd->control_sock,
3598 relayd->relayd_session_id, &is_data_inflight);
3599 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3600 if (ret < 0) {
3601 goto data_not_pending;
3602 }
3603 if (is_data_inflight) {
3604 goto data_pending;
3605 }
3606 }
3607
3608 /*
3609 * Finding _no_ node in the hash table and no inflight data means that the
3610 * stream(s) have been removed thus data is guaranteed to be available for
3611 * analysis from the trace files.
3612 */
3613
3614 data_not_pending:
3615 /* Data is available to be read by a viewer. */
3616 pthread_mutex_unlock(&consumer_data.lock);
3617 rcu_read_unlock();
3618 return 0;
3619
3620 data_pending:
3621 /* Data is still being extracted from buffers. */
3622 pthread_mutex_unlock(&consumer_data.lock);
3623 rcu_read_unlock();
3624 return 1;
3625 }
3626
3627 /*
3628 * Send a ret code status message to the sessiond daemon.
3629 *
3630 * Return the sendmsg() return value.
3631 */
3632 int consumer_send_status_msg(int sock, int ret_code)
3633 {
3634 struct lttcomm_consumer_status_msg msg;
3635
3636 memset(&msg, 0, sizeof(msg));
3637 msg.ret_code = ret_code;
3638
3639 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3640 }
3641
3642 /*
3643 * Send a channel status message to the sessiond daemon.
3644 *
3645 * Return the sendmsg() return value.
3646 */
3647 int consumer_send_status_channel(int sock,
3648 struct lttng_consumer_channel *channel)
3649 {
3650 struct lttcomm_consumer_status_channel msg;
3651
3652 assert(sock >= 0);
3653
3654 memset(&msg, 0, sizeof(msg));
3655 if (!channel) {
3656 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3657 } else {
3658 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3659 msg.key = channel->key;
3660 msg.stream_count = channel->streams.count;
3661 }
3662
3663 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3664 }
3665
3666 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3667 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3668 uint64_t max_sb_size)
3669 {
3670 unsigned long start_pos;
3671
3672 if (!nb_packets_per_stream) {
3673 return consumed_pos; /* Grab everything */
3674 }
3675 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3676 start_pos -= max_sb_size * nb_packets_per_stream;
3677 if ((long) (start_pos - consumed_pos) < 0) {
3678 return consumed_pos; /* Grab everything */
3679 }
3680 return start_pos;
3681 }
This page took 0.109728 seconds and 5 git commands to generate.