tracing: Have max_latency be defined for HWLAT_TRACER as well
[deliverable/linux.git] / tools / perf / bench / numa.c
1 /*
2 * numa.c
3 *
4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5 */
6
7 /* For the CLR_() macros */
8 #include <pthread.h>
9
10 #include "../perf.h"
11 #include "../builtin.h"
12 #include "../util/util.h"
13 #include <subcmd/parse-options.h>
14 #include "../util/cloexec.h"
15
16 #include "bench.h"
17
18 #include <errno.h>
19 #include <sched.h>
20 #include <stdio.h>
21 #include <assert.h>
22 #include <malloc.h>
23 #include <signal.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 #include <sys/mman.h>
28 #include <sys/time.h>
29 #include <sys/resource.h>
30 #include <sys/wait.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
33
34 #include <numa.h>
35 #include <numaif.h>
36
37 /*
38 * Regular printout to the terminal, supressed if -q is specified:
39 */
40 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
41
42 /*
43 * Debug printf:
44 */
45 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
46
47 struct thread_data {
48 int curr_cpu;
49 cpu_set_t bind_cpumask;
50 int bind_node;
51 u8 *process_data;
52 int process_nr;
53 int thread_nr;
54 int task_nr;
55 unsigned int loops_done;
56 u64 val;
57 u64 runtime_ns;
58 u64 system_time_ns;
59 u64 user_time_ns;
60 double speed_gbs;
61 pthread_mutex_t *process_lock;
62 };
63
64 /* Parameters set by options: */
65
66 struct params {
67 /* Startup synchronization: */
68 bool serialize_startup;
69
70 /* Task hierarchy: */
71 int nr_proc;
72 int nr_threads;
73
74 /* Working set sizes: */
75 const char *mb_global_str;
76 const char *mb_proc_str;
77 const char *mb_proc_locked_str;
78 const char *mb_thread_str;
79
80 double mb_global;
81 double mb_proc;
82 double mb_proc_locked;
83 double mb_thread;
84
85 /* Access patterns to the working set: */
86 bool data_reads;
87 bool data_writes;
88 bool data_backwards;
89 bool data_zero_memset;
90 bool data_rand_walk;
91 u32 nr_loops;
92 u32 nr_secs;
93 u32 sleep_usecs;
94
95 /* Working set initialization: */
96 bool init_zero;
97 bool init_random;
98 bool init_cpu0;
99
100 /* Misc options: */
101 int show_details;
102 int run_all;
103 int thp;
104
105 long bytes_global;
106 long bytes_process;
107 long bytes_process_locked;
108 long bytes_thread;
109
110 int nr_tasks;
111 bool show_quiet;
112
113 bool show_convergence;
114 bool measure_convergence;
115
116 int perturb_secs;
117 int nr_cpus;
118 int nr_nodes;
119
120 /* Affinity options -C and -N: */
121 char *cpu_list_str;
122 char *node_list_str;
123 };
124
125
126 /* Global, read-writable area, accessible to all processes and threads: */
127
128 struct global_info {
129 u8 *data;
130
131 pthread_mutex_t startup_mutex;
132 int nr_tasks_started;
133
134 pthread_mutex_t startup_done_mutex;
135
136 pthread_mutex_t start_work_mutex;
137 int nr_tasks_working;
138
139 pthread_mutex_t stop_work_mutex;
140 u64 bytes_done;
141
142 struct thread_data *threads;
143
144 /* Convergence latency measurement: */
145 bool all_converged;
146 bool stop_work;
147
148 int print_once;
149
150 struct params p;
151 };
152
153 static struct global_info *g = NULL;
154
155 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
156 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
157
158 struct params p0;
159
160 static const struct option options[] = {
161 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
162 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
163
164 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
165 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
166 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
167 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
168
169 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
170 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
171 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
172
173 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
174 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
175 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
176 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
177 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
178
179
180 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
181 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
182 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
183 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
184
185 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
186 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
187 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
188 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
189 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
190 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
191 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
192
193 /* Special option string parsing callbacks: */
194 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
195 "bind the first N tasks to these specific cpus (the rest is unbound)",
196 parse_cpus_opt),
197 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
198 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
199 parse_nodes_opt),
200 OPT_END()
201 };
202
203 static const char * const bench_numa_usage[] = {
204 "perf bench numa <options>",
205 NULL
206 };
207
208 static const char * const numa_usage[] = {
209 "perf bench numa mem [<options>]",
210 NULL
211 };
212
213 static cpu_set_t bind_to_cpu(int target_cpu)
214 {
215 cpu_set_t orig_mask, mask;
216 int ret;
217
218 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
219 BUG_ON(ret);
220
221 CPU_ZERO(&mask);
222
223 if (target_cpu == -1) {
224 int cpu;
225
226 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
227 CPU_SET(cpu, &mask);
228 } else {
229 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
230 CPU_SET(target_cpu, &mask);
231 }
232
233 ret = sched_setaffinity(0, sizeof(mask), &mask);
234 BUG_ON(ret);
235
236 return orig_mask;
237 }
238
239 static cpu_set_t bind_to_node(int target_node)
240 {
241 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
242 cpu_set_t orig_mask, mask;
243 int cpu;
244 int ret;
245
246 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
247 BUG_ON(!cpus_per_node);
248
249 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
250 BUG_ON(ret);
251
252 CPU_ZERO(&mask);
253
254 if (target_node == -1) {
255 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
256 CPU_SET(cpu, &mask);
257 } else {
258 int cpu_start = (target_node + 0) * cpus_per_node;
259 int cpu_stop = (target_node + 1) * cpus_per_node;
260
261 BUG_ON(cpu_stop > g->p.nr_cpus);
262
263 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
264 CPU_SET(cpu, &mask);
265 }
266
267 ret = sched_setaffinity(0, sizeof(mask), &mask);
268 BUG_ON(ret);
269
270 return orig_mask;
271 }
272
273 static void bind_to_cpumask(cpu_set_t mask)
274 {
275 int ret;
276
277 ret = sched_setaffinity(0, sizeof(mask), &mask);
278 BUG_ON(ret);
279 }
280
281 static void mempol_restore(void)
282 {
283 int ret;
284
285 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
286
287 BUG_ON(ret);
288 }
289
290 static void bind_to_memnode(int node)
291 {
292 unsigned long nodemask;
293 int ret;
294
295 if (node == -1)
296 return;
297
298 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
299 nodemask = 1L << node;
300
301 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
302 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
303
304 BUG_ON(ret);
305 }
306
307 #define HPSIZE (2*1024*1024)
308
309 #define set_taskname(fmt...) \
310 do { \
311 char name[20]; \
312 \
313 snprintf(name, 20, fmt); \
314 prctl(PR_SET_NAME, name); \
315 } while (0)
316
317 static u8 *alloc_data(ssize_t bytes0, int map_flags,
318 int init_zero, int init_cpu0, int thp, int init_random)
319 {
320 cpu_set_t orig_mask;
321 ssize_t bytes;
322 u8 *buf;
323 int ret;
324
325 if (!bytes0)
326 return NULL;
327
328 /* Allocate and initialize all memory on CPU#0: */
329 if (init_cpu0) {
330 orig_mask = bind_to_node(0);
331 bind_to_memnode(0);
332 }
333
334 bytes = bytes0 + HPSIZE;
335
336 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
337 BUG_ON(buf == (void *)-1);
338
339 if (map_flags == MAP_PRIVATE) {
340 if (thp > 0) {
341 ret = madvise(buf, bytes, MADV_HUGEPAGE);
342 if (ret && !g->print_once) {
343 g->print_once = 1;
344 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
345 }
346 }
347 if (thp < 0) {
348 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
349 if (ret && !g->print_once) {
350 g->print_once = 1;
351 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
352 }
353 }
354 }
355
356 if (init_zero) {
357 bzero(buf, bytes);
358 } else {
359 /* Initialize random contents, different in each word: */
360 if (init_random) {
361 u64 *wbuf = (void *)buf;
362 long off = rand();
363 long i;
364
365 for (i = 0; i < bytes/8; i++)
366 wbuf[i] = i + off;
367 }
368 }
369
370 /* Align to 2MB boundary: */
371 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
372
373 /* Restore affinity: */
374 if (init_cpu0) {
375 bind_to_cpumask(orig_mask);
376 mempol_restore();
377 }
378
379 return buf;
380 }
381
382 static void free_data(void *data, ssize_t bytes)
383 {
384 int ret;
385
386 if (!data)
387 return;
388
389 ret = munmap(data, bytes);
390 BUG_ON(ret);
391 }
392
393 /*
394 * Create a shared memory buffer that can be shared between processes, zeroed:
395 */
396 static void * zalloc_shared_data(ssize_t bytes)
397 {
398 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
399 }
400
401 /*
402 * Create a shared memory buffer that can be shared between processes:
403 */
404 static void * setup_shared_data(ssize_t bytes)
405 {
406 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
407 }
408
409 /*
410 * Allocate process-local memory - this will either be shared between
411 * threads of this process, or only be accessed by this thread:
412 */
413 static void * setup_private_data(ssize_t bytes)
414 {
415 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
416 }
417
418 /*
419 * Return a process-shared (global) mutex:
420 */
421 static void init_global_mutex(pthread_mutex_t *mutex)
422 {
423 pthread_mutexattr_t attr;
424
425 pthread_mutexattr_init(&attr);
426 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
427 pthread_mutex_init(mutex, &attr);
428 }
429
430 static int parse_cpu_list(const char *arg)
431 {
432 p0.cpu_list_str = strdup(arg);
433
434 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
435
436 return 0;
437 }
438
439 static int parse_setup_cpu_list(void)
440 {
441 struct thread_data *td;
442 char *str0, *str;
443 int t;
444
445 if (!g->p.cpu_list_str)
446 return 0;
447
448 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
449
450 str0 = str = strdup(g->p.cpu_list_str);
451 t = 0;
452
453 BUG_ON(!str);
454
455 tprintf("# binding tasks to CPUs:\n");
456 tprintf("# ");
457
458 while (true) {
459 int bind_cpu, bind_cpu_0, bind_cpu_1;
460 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
461 int bind_len;
462 int step;
463 int mul;
464
465 tok = strsep(&str, ",");
466 if (!tok)
467 break;
468
469 tok_end = strstr(tok, "-");
470
471 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
472 if (!tok_end) {
473 /* Single CPU specified: */
474 bind_cpu_0 = bind_cpu_1 = atol(tok);
475 } else {
476 /* CPU range specified (for example: "5-11"): */
477 bind_cpu_0 = atol(tok);
478 bind_cpu_1 = atol(tok_end + 1);
479 }
480
481 step = 1;
482 tok_step = strstr(tok, "#");
483 if (tok_step) {
484 step = atol(tok_step + 1);
485 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
486 }
487
488 /*
489 * Mask length.
490 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
491 * where the _4 means the next 4 CPUs are allowed.
492 */
493 bind_len = 1;
494 tok_len = strstr(tok, "_");
495 if (tok_len) {
496 bind_len = atol(tok_len + 1);
497 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
498 }
499
500 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
501 mul = 1;
502 tok_mul = strstr(tok, "x");
503 if (tok_mul) {
504 mul = atol(tok_mul + 1);
505 BUG_ON(mul <= 0);
506 }
507
508 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
509
510 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
511 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
512 return -1;
513 }
514
515 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
516 BUG_ON(bind_cpu_0 > bind_cpu_1);
517
518 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
519 int i;
520
521 for (i = 0; i < mul; i++) {
522 int cpu;
523
524 if (t >= g->p.nr_tasks) {
525 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
526 goto out;
527 }
528 td = g->threads + t;
529
530 if (t)
531 tprintf(",");
532 if (bind_len > 1) {
533 tprintf("%2d/%d", bind_cpu, bind_len);
534 } else {
535 tprintf("%2d", bind_cpu);
536 }
537
538 CPU_ZERO(&td->bind_cpumask);
539 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
540 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
541 CPU_SET(cpu, &td->bind_cpumask);
542 }
543 t++;
544 }
545 }
546 }
547 out:
548
549 tprintf("\n");
550
551 if (t < g->p.nr_tasks)
552 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
553
554 free(str0);
555 return 0;
556 }
557
558 static int parse_cpus_opt(const struct option *opt __maybe_unused,
559 const char *arg, int unset __maybe_unused)
560 {
561 if (!arg)
562 return -1;
563
564 return parse_cpu_list(arg);
565 }
566
567 static int parse_node_list(const char *arg)
568 {
569 p0.node_list_str = strdup(arg);
570
571 dprintf("got NODE list: {%s}\n", p0.node_list_str);
572
573 return 0;
574 }
575
576 static int parse_setup_node_list(void)
577 {
578 struct thread_data *td;
579 char *str0, *str;
580 int t;
581
582 if (!g->p.node_list_str)
583 return 0;
584
585 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
586
587 str0 = str = strdup(g->p.node_list_str);
588 t = 0;
589
590 BUG_ON(!str);
591
592 tprintf("# binding tasks to NODEs:\n");
593 tprintf("# ");
594
595 while (true) {
596 int bind_node, bind_node_0, bind_node_1;
597 char *tok, *tok_end, *tok_step, *tok_mul;
598 int step;
599 int mul;
600
601 tok = strsep(&str, ",");
602 if (!tok)
603 break;
604
605 tok_end = strstr(tok, "-");
606
607 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
608 if (!tok_end) {
609 /* Single NODE specified: */
610 bind_node_0 = bind_node_1 = atol(tok);
611 } else {
612 /* NODE range specified (for example: "5-11"): */
613 bind_node_0 = atol(tok);
614 bind_node_1 = atol(tok_end + 1);
615 }
616
617 step = 1;
618 tok_step = strstr(tok, "#");
619 if (tok_step) {
620 step = atol(tok_step + 1);
621 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
622 }
623
624 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
625 mul = 1;
626 tok_mul = strstr(tok, "x");
627 if (tok_mul) {
628 mul = atol(tok_mul + 1);
629 BUG_ON(mul <= 0);
630 }
631
632 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
633
634 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
635 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
636 return -1;
637 }
638
639 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
640 BUG_ON(bind_node_0 > bind_node_1);
641
642 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
643 int i;
644
645 for (i = 0; i < mul; i++) {
646 if (t >= g->p.nr_tasks) {
647 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
648 goto out;
649 }
650 td = g->threads + t;
651
652 if (!t)
653 tprintf(" %2d", bind_node);
654 else
655 tprintf(",%2d", bind_node);
656
657 td->bind_node = bind_node;
658 t++;
659 }
660 }
661 }
662 out:
663
664 tprintf("\n");
665
666 if (t < g->p.nr_tasks)
667 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
668
669 free(str0);
670 return 0;
671 }
672
673 static int parse_nodes_opt(const struct option *opt __maybe_unused,
674 const char *arg, int unset __maybe_unused)
675 {
676 if (!arg)
677 return -1;
678
679 return parse_node_list(arg);
680
681 return 0;
682 }
683
684 #define BIT(x) (1ul << x)
685
686 static inline uint32_t lfsr_32(uint32_t lfsr)
687 {
688 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
689 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
690 }
691
692 /*
693 * Make sure there's real data dependency to RAM (when read
694 * accesses are enabled), so the compiler, the CPU and the
695 * kernel (KSM, zero page, etc.) cannot optimize away RAM
696 * accesses:
697 */
698 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
699 {
700 if (g->p.data_reads)
701 val += *data;
702 if (g->p.data_writes)
703 *data = val + 1;
704 return val;
705 }
706
707 /*
708 * The worker process does two types of work, a forwards going
709 * loop and a backwards going loop.
710 *
711 * We do this so that on multiprocessor systems we do not create
712 * a 'train' of processing, with highly synchronized processes,
713 * skewing the whole benchmark.
714 */
715 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
716 {
717 long words = bytes/sizeof(u64);
718 u64 *data = (void *)__data;
719 long chunk_0, chunk_1;
720 u64 *d0, *d, *d1;
721 long off;
722 long i;
723
724 BUG_ON(!data && words);
725 BUG_ON(data && !words);
726
727 if (!data)
728 return val;
729
730 /* Very simple memset() work variant: */
731 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
732 bzero(data, bytes);
733 return val;
734 }
735
736 /* Spread out by PID/TID nr and by loop nr: */
737 chunk_0 = words/nr_max;
738 chunk_1 = words/g->p.nr_loops;
739 off = nr*chunk_0 + loop*chunk_1;
740
741 while (off >= words)
742 off -= words;
743
744 if (g->p.data_rand_walk) {
745 u32 lfsr = nr + loop + val;
746 int j;
747
748 for (i = 0; i < words/1024; i++) {
749 long start, end;
750
751 lfsr = lfsr_32(lfsr);
752
753 start = lfsr % words;
754 end = min(start + 1024, words-1);
755
756 if (g->p.data_zero_memset) {
757 bzero(data + start, (end-start) * sizeof(u64));
758 } else {
759 for (j = start; j < end; j++)
760 val = access_data(data + j, val);
761 }
762 }
763 } else if (!g->p.data_backwards || (nr + loop) & 1) {
764
765 d0 = data + off;
766 d = data + off + 1;
767 d1 = data + words;
768
769 /* Process data forwards: */
770 for (;;) {
771 if (unlikely(d >= d1))
772 d = data;
773 if (unlikely(d == d0))
774 break;
775
776 val = access_data(d, val);
777
778 d++;
779 }
780 } else {
781 /* Process data backwards: */
782
783 d0 = data + off;
784 d = data + off - 1;
785 d1 = data + words;
786
787 /* Process data forwards: */
788 for (;;) {
789 if (unlikely(d < data))
790 d = data + words-1;
791 if (unlikely(d == d0))
792 break;
793
794 val = access_data(d, val);
795
796 d--;
797 }
798 }
799
800 return val;
801 }
802
803 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
804 {
805 unsigned int cpu;
806
807 cpu = sched_getcpu();
808
809 g->threads[task_nr].curr_cpu = cpu;
810 prctl(0, bytes_worked);
811 }
812
813 #define MAX_NR_NODES 64
814
815 /*
816 * Count the number of nodes a process's threads
817 * are spread out on.
818 *
819 * A count of 1 means that the process is compressed
820 * to a single node. A count of g->p.nr_nodes means it's
821 * spread out on the whole system.
822 */
823 static int count_process_nodes(int process_nr)
824 {
825 char node_present[MAX_NR_NODES] = { 0, };
826 int nodes;
827 int n, t;
828
829 for (t = 0; t < g->p.nr_threads; t++) {
830 struct thread_data *td;
831 int task_nr;
832 int node;
833
834 task_nr = process_nr*g->p.nr_threads + t;
835 td = g->threads + task_nr;
836
837 node = numa_node_of_cpu(td->curr_cpu);
838 if (node < 0) /* curr_cpu was likely still -1 */
839 return 0;
840
841 node_present[node] = 1;
842 }
843
844 nodes = 0;
845
846 for (n = 0; n < MAX_NR_NODES; n++)
847 nodes += node_present[n];
848
849 return nodes;
850 }
851
852 /*
853 * Count the number of distinct process-threads a node contains.
854 *
855 * A count of 1 means that the node contains only a single
856 * process. If all nodes on the system contain at most one
857 * process then we are well-converged.
858 */
859 static int count_node_processes(int node)
860 {
861 int processes = 0;
862 int t, p;
863
864 for (p = 0; p < g->p.nr_proc; p++) {
865 for (t = 0; t < g->p.nr_threads; t++) {
866 struct thread_data *td;
867 int task_nr;
868 int n;
869
870 task_nr = p*g->p.nr_threads + t;
871 td = g->threads + task_nr;
872
873 n = numa_node_of_cpu(td->curr_cpu);
874 if (n == node) {
875 processes++;
876 break;
877 }
878 }
879 }
880
881 return processes;
882 }
883
884 static void calc_convergence_compression(int *strong)
885 {
886 unsigned int nodes_min, nodes_max;
887 int p;
888
889 nodes_min = -1;
890 nodes_max = 0;
891
892 for (p = 0; p < g->p.nr_proc; p++) {
893 unsigned int nodes = count_process_nodes(p);
894
895 if (!nodes) {
896 *strong = 0;
897 return;
898 }
899
900 nodes_min = min(nodes, nodes_min);
901 nodes_max = max(nodes, nodes_max);
902 }
903
904 /* Strong convergence: all threads compress on a single node: */
905 if (nodes_min == 1 && nodes_max == 1) {
906 *strong = 1;
907 } else {
908 *strong = 0;
909 tprintf(" {%d-%d}", nodes_min, nodes_max);
910 }
911 }
912
913 static void calc_convergence(double runtime_ns_max, double *convergence)
914 {
915 unsigned int loops_done_min, loops_done_max;
916 int process_groups;
917 int nodes[MAX_NR_NODES];
918 int distance;
919 int nr_min;
920 int nr_max;
921 int strong;
922 int sum;
923 int nr;
924 int node;
925 int cpu;
926 int t;
927
928 if (!g->p.show_convergence && !g->p.measure_convergence)
929 return;
930
931 for (node = 0; node < g->p.nr_nodes; node++)
932 nodes[node] = 0;
933
934 loops_done_min = -1;
935 loops_done_max = 0;
936
937 for (t = 0; t < g->p.nr_tasks; t++) {
938 struct thread_data *td = g->threads + t;
939 unsigned int loops_done;
940
941 cpu = td->curr_cpu;
942
943 /* Not all threads have written it yet: */
944 if (cpu < 0)
945 continue;
946
947 node = numa_node_of_cpu(cpu);
948
949 nodes[node]++;
950
951 loops_done = td->loops_done;
952 loops_done_min = min(loops_done, loops_done_min);
953 loops_done_max = max(loops_done, loops_done_max);
954 }
955
956 nr_max = 0;
957 nr_min = g->p.nr_tasks;
958 sum = 0;
959
960 for (node = 0; node < g->p.nr_nodes; node++) {
961 nr = nodes[node];
962 nr_min = min(nr, nr_min);
963 nr_max = max(nr, nr_max);
964 sum += nr;
965 }
966 BUG_ON(nr_min > nr_max);
967
968 BUG_ON(sum > g->p.nr_tasks);
969
970 if (0 && (sum < g->p.nr_tasks))
971 return;
972
973 /*
974 * Count the number of distinct process groups present
975 * on nodes - when we are converged this will decrease
976 * to g->p.nr_proc:
977 */
978 process_groups = 0;
979
980 for (node = 0; node < g->p.nr_nodes; node++) {
981 int processes = count_node_processes(node);
982
983 nr = nodes[node];
984 tprintf(" %2d/%-2d", nr, processes);
985
986 process_groups += processes;
987 }
988
989 distance = nr_max - nr_min;
990
991 tprintf(" [%2d/%-2d]", distance, process_groups);
992
993 tprintf(" l:%3d-%-3d (%3d)",
994 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
995
996 if (loops_done_min && loops_done_max) {
997 double skew = 1.0 - (double)loops_done_min/loops_done_max;
998
999 tprintf(" [%4.1f%%]", skew * 100.0);
1000 }
1001
1002 calc_convergence_compression(&strong);
1003
1004 if (strong && process_groups == g->p.nr_proc) {
1005 if (!*convergence) {
1006 *convergence = runtime_ns_max;
1007 tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1008 if (g->p.measure_convergence) {
1009 g->all_converged = true;
1010 g->stop_work = true;
1011 }
1012 }
1013 } else {
1014 if (*convergence) {
1015 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1016 *convergence = 0;
1017 }
1018 tprintf("\n");
1019 }
1020 }
1021
1022 static void show_summary(double runtime_ns_max, int l, double *convergence)
1023 {
1024 tprintf("\r # %5.1f%% [%.1f mins]",
1025 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1026
1027 calc_convergence(runtime_ns_max, convergence);
1028
1029 if (g->p.show_details >= 0)
1030 fflush(stdout);
1031 }
1032
1033 static void *worker_thread(void *__tdata)
1034 {
1035 struct thread_data *td = __tdata;
1036 struct timeval start0, start, stop, diff;
1037 int process_nr = td->process_nr;
1038 int thread_nr = td->thread_nr;
1039 unsigned long last_perturbance;
1040 int task_nr = td->task_nr;
1041 int details = g->p.show_details;
1042 int first_task, last_task;
1043 double convergence = 0;
1044 u64 val = td->val;
1045 double runtime_ns_max;
1046 u8 *global_data;
1047 u8 *process_data;
1048 u8 *thread_data;
1049 u64 bytes_done;
1050 long work_done;
1051 u32 l;
1052 struct rusage rusage;
1053
1054 bind_to_cpumask(td->bind_cpumask);
1055 bind_to_memnode(td->bind_node);
1056
1057 set_taskname("thread %d/%d", process_nr, thread_nr);
1058
1059 global_data = g->data;
1060 process_data = td->process_data;
1061 thread_data = setup_private_data(g->p.bytes_thread);
1062
1063 bytes_done = 0;
1064
1065 last_task = 0;
1066 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1067 last_task = 1;
1068
1069 first_task = 0;
1070 if (process_nr == 0 && thread_nr == 0)
1071 first_task = 1;
1072
1073 if (details >= 2) {
1074 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1075 process_nr, thread_nr, global_data, process_data, thread_data);
1076 }
1077
1078 if (g->p.serialize_startup) {
1079 pthread_mutex_lock(&g->startup_mutex);
1080 g->nr_tasks_started++;
1081 pthread_mutex_unlock(&g->startup_mutex);
1082
1083 /* Here we will wait for the main process to start us all at once: */
1084 pthread_mutex_lock(&g->start_work_mutex);
1085 g->nr_tasks_working++;
1086
1087 /* Last one wake the main process: */
1088 if (g->nr_tasks_working == g->p.nr_tasks)
1089 pthread_mutex_unlock(&g->startup_done_mutex);
1090
1091 pthread_mutex_unlock(&g->start_work_mutex);
1092 }
1093
1094 gettimeofday(&start0, NULL);
1095
1096 start = stop = start0;
1097 last_perturbance = start.tv_sec;
1098
1099 for (l = 0; l < g->p.nr_loops; l++) {
1100 start = stop;
1101
1102 if (g->stop_work)
1103 break;
1104
1105 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1106 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1107 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1108
1109 if (g->p.sleep_usecs) {
1110 pthread_mutex_lock(td->process_lock);
1111 usleep(g->p.sleep_usecs);
1112 pthread_mutex_unlock(td->process_lock);
1113 }
1114 /*
1115 * Amount of work to be done under a process-global lock:
1116 */
1117 if (g->p.bytes_process_locked) {
1118 pthread_mutex_lock(td->process_lock);
1119 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1120 pthread_mutex_unlock(td->process_lock);
1121 }
1122
1123 work_done = g->p.bytes_global + g->p.bytes_process +
1124 g->p.bytes_process_locked + g->p.bytes_thread;
1125
1126 update_curr_cpu(task_nr, work_done);
1127 bytes_done += work_done;
1128
1129 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1130 continue;
1131
1132 td->loops_done = l;
1133
1134 gettimeofday(&stop, NULL);
1135
1136 /* Check whether our max runtime timed out: */
1137 if (g->p.nr_secs) {
1138 timersub(&stop, &start0, &diff);
1139 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1140 g->stop_work = true;
1141 break;
1142 }
1143 }
1144
1145 /* Update the summary at most once per second: */
1146 if (start.tv_sec == stop.tv_sec)
1147 continue;
1148
1149 /*
1150 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1151 * by migrating to CPU#0:
1152 */
1153 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1154 cpu_set_t orig_mask;
1155 int target_cpu;
1156 int this_cpu;
1157
1158 last_perturbance = stop.tv_sec;
1159
1160 /*
1161 * Depending on where we are running, move into
1162 * the other half of the system, to create some
1163 * real disturbance:
1164 */
1165 this_cpu = g->threads[task_nr].curr_cpu;
1166 if (this_cpu < g->p.nr_cpus/2)
1167 target_cpu = g->p.nr_cpus-1;
1168 else
1169 target_cpu = 0;
1170
1171 orig_mask = bind_to_cpu(target_cpu);
1172
1173 /* Here we are running on the target CPU already */
1174 if (details >= 1)
1175 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1176
1177 bind_to_cpumask(orig_mask);
1178 }
1179
1180 if (details >= 3) {
1181 timersub(&stop, &start, &diff);
1182 runtime_ns_max = diff.tv_sec * 1000000000;
1183 runtime_ns_max += diff.tv_usec * 1000;
1184
1185 if (details >= 0) {
1186 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1187 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1188 }
1189 fflush(stdout);
1190 }
1191 if (!last_task)
1192 continue;
1193
1194 timersub(&stop, &start0, &diff);
1195 runtime_ns_max = diff.tv_sec * 1000000000ULL;
1196 runtime_ns_max += diff.tv_usec * 1000ULL;
1197
1198 show_summary(runtime_ns_max, l, &convergence);
1199 }
1200
1201 gettimeofday(&stop, NULL);
1202 timersub(&stop, &start0, &diff);
1203 td->runtime_ns = diff.tv_sec * 1000000000ULL;
1204 td->runtime_ns += diff.tv_usec * 1000ULL;
1205 td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9;
1206
1207 getrusage(RUSAGE_THREAD, &rusage);
1208 td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL;
1209 td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL;
1210 td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL;
1211 td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL;
1212
1213 free_data(thread_data, g->p.bytes_thread);
1214
1215 pthread_mutex_lock(&g->stop_work_mutex);
1216 g->bytes_done += bytes_done;
1217 pthread_mutex_unlock(&g->stop_work_mutex);
1218
1219 return NULL;
1220 }
1221
1222 /*
1223 * A worker process starts a couple of threads:
1224 */
1225 static void worker_process(int process_nr)
1226 {
1227 pthread_mutex_t process_lock;
1228 struct thread_data *td;
1229 pthread_t *pthreads;
1230 u8 *process_data;
1231 int task_nr;
1232 int ret;
1233 int t;
1234
1235 pthread_mutex_init(&process_lock, NULL);
1236 set_taskname("process %d", process_nr);
1237
1238 /*
1239 * Pick up the memory policy and the CPU binding of our first thread,
1240 * so that we initialize memory accordingly:
1241 */
1242 task_nr = process_nr*g->p.nr_threads;
1243 td = g->threads + task_nr;
1244
1245 bind_to_memnode(td->bind_node);
1246 bind_to_cpumask(td->bind_cpumask);
1247
1248 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1249 process_data = setup_private_data(g->p.bytes_process);
1250
1251 if (g->p.show_details >= 3) {
1252 printf(" # process %2d global mem: %p, process mem: %p\n",
1253 process_nr, g->data, process_data);
1254 }
1255
1256 for (t = 0; t < g->p.nr_threads; t++) {
1257 task_nr = process_nr*g->p.nr_threads + t;
1258 td = g->threads + task_nr;
1259
1260 td->process_data = process_data;
1261 td->process_nr = process_nr;
1262 td->thread_nr = t;
1263 td->task_nr = task_nr;
1264 td->val = rand();
1265 td->curr_cpu = -1;
1266 td->process_lock = &process_lock;
1267
1268 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1269 BUG_ON(ret);
1270 }
1271
1272 for (t = 0; t < g->p.nr_threads; t++) {
1273 ret = pthread_join(pthreads[t], NULL);
1274 BUG_ON(ret);
1275 }
1276
1277 free_data(process_data, g->p.bytes_process);
1278 free(pthreads);
1279 }
1280
1281 static void print_summary(void)
1282 {
1283 if (g->p.show_details < 0)
1284 return;
1285
1286 printf("\n ###\n");
1287 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1288 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1289 printf(" # %5dx %5ldMB global shared mem operations\n",
1290 g->p.nr_loops, g->p.bytes_global/1024/1024);
1291 printf(" # %5dx %5ldMB process shared mem operations\n",
1292 g->p.nr_loops, g->p.bytes_process/1024/1024);
1293 printf(" # %5dx %5ldMB thread local mem operations\n",
1294 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1295
1296 printf(" ###\n");
1297
1298 printf("\n ###\n"); fflush(stdout);
1299 }
1300
1301 static void init_thread_data(void)
1302 {
1303 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1304 int t;
1305
1306 g->threads = zalloc_shared_data(size);
1307
1308 for (t = 0; t < g->p.nr_tasks; t++) {
1309 struct thread_data *td = g->threads + t;
1310 int cpu;
1311
1312 /* Allow all nodes by default: */
1313 td->bind_node = -1;
1314
1315 /* Allow all CPUs by default: */
1316 CPU_ZERO(&td->bind_cpumask);
1317 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1318 CPU_SET(cpu, &td->bind_cpumask);
1319 }
1320 }
1321
1322 static void deinit_thread_data(void)
1323 {
1324 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1325
1326 free_data(g->threads, size);
1327 }
1328
1329 static int init(void)
1330 {
1331 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1332
1333 /* Copy over options: */
1334 g->p = p0;
1335
1336 g->p.nr_cpus = numa_num_configured_cpus();
1337
1338 g->p.nr_nodes = numa_max_node() + 1;
1339
1340 /* char array in count_process_nodes(): */
1341 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1342
1343 if (g->p.show_quiet && !g->p.show_details)
1344 g->p.show_details = -1;
1345
1346 /* Some memory should be specified: */
1347 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1348 return -1;
1349
1350 if (g->p.mb_global_str) {
1351 g->p.mb_global = atof(g->p.mb_global_str);
1352 BUG_ON(g->p.mb_global < 0);
1353 }
1354
1355 if (g->p.mb_proc_str) {
1356 g->p.mb_proc = atof(g->p.mb_proc_str);
1357 BUG_ON(g->p.mb_proc < 0);
1358 }
1359
1360 if (g->p.mb_proc_locked_str) {
1361 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1362 BUG_ON(g->p.mb_proc_locked < 0);
1363 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1364 }
1365
1366 if (g->p.mb_thread_str) {
1367 g->p.mb_thread = atof(g->p.mb_thread_str);
1368 BUG_ON(g->p.mb_thread < 0);
1369 }
1370
1371 BUG_ON(g->p.nr_threads <= 0);
1372 BUG_ON(g->p.nr_proc <= 0);
1373
1374 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1375
1376 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1377 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1378 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1379 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1380
1381 g->data = setup_shared_data(g->p.bytes_global);
1382
1383 /* Startup serialization: */
1384 init_global_mutex(&g->start_work_mutex);
1385 init_global_mutex(&g->startup_mutex);
1386 init_global_mutex(&g->startup_done_mutex);
1387 init_global_mutex(&g->stop_work_mutex);
1388
1389 init_thread_data();
1390
1391 tprintf("#\n");
1392 if (parse_setup_cpu_list() || parse_setup_node_list())
1393 return -1;
1394 tprintf("#\n");
1395
1396 print_summary();
1397
1398 return 0;
1399 }
1400
1401 static void deinit(void)
1402 {
1403 free_data(g->data, g->p.bytes_global);
1404 g->data = NULL;
1405
1406 deinit_thread_data();
1407
1408 free_data(g, sizeof(*g));
1409 g = NULL;
1410 }
1411
1412 /*
1413 * Print a short or long result, depending on the verbosity setting:
1414 */
1415 static void print_res(const char *name, double val,
1416 const char *txt_unit, const char *txt_short, const char *txt_long)
1417 {
1418 if (!name)
1419 name = "main,";
1420
1421 if (!g->p.show_quiet)
1422 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1423 else
1424 printf(" %14.3f %s\n", val, txt_long);
1425 }
1426
1427 static int __bench_numa(const char *name)
1428 {
1429 struct timeval start, stop, diff;
1430 u64 runtime_ns_min, runtime_ns_sum;
1431 pid_t *pids, pid, wpid;
1432 double delta_runtime;
1433 double runtime_avg;
1434 double runtime_sec_max;
1435 double runtime_sec_min;
1436 int wait_stat;
1437 double bytes;
1438 int i, t, p;
1439
1440 if (init())
1441 return -1;
1442
1443 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1444 pid = -1;
1445
1446 /* All threads try to acquire it, this way we can wait for them to start up: */
1447 pthread_mutex_lock(&g->start_work_mutex);
1448
1449 if (g->p.serialize_startup) {
1450 tprintf(" #\n");
1451 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1452 }
1453
1454 gettimeofday(&start, NULL);
1455
1456 for (i = 0; i < g->p.nr_proc; i++) {
1457 pid = fork();
1458 dprintf(" # process %2d: PID %d\n", i, pid);
1459
1460 BUG_ON(pid < 0);
1461 if (!pid) {
1462 /* Child process: */
1463 worker_process(i);
1464
1465 exit(0);
1466 }
1467 pids[i] = pid;
1468
1469 }
1470 /* Wait for all the threads to start up: */
1471 while (g->nr_tasks_started != g->p.nr_tasks)
1472 usleep(1000);
1473
1474 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1475
1476 if (g->p.serialize_startup) {
1477 double startup_sec;
1478
1479 pthread_mutex_lock(&g->startup_done_mutex);
1480
1481 /* This will start all threads: */
1482 pthread_mutex_unlock(&g->start_work_mutex);
1483
1484 /* This mutex is locked - the last started thread will wake us: */
1485 pthread_mutex_lock(&g->startup_done_mutex);
1486
1487 gettimeofday(&stop, NULL);
1488
1489 timersub(&stop, &start, &diff);
1490
1491 startup_sec = diff.tv_sec * 1000000000.0;
1492 startup_sec += diff.tv_usec * 1000.0;
1493 startup_sec /= 1e9;
1494
1495 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1496 tprintf(" #\n");
1497
1498 start = stop;
1499 pthread_mutex_unlock(&g->startup_done_mutex);
1500 } else {
1501 gettimeofday(&start, NULL);
1502 }
1503
1504 /* Parent process: */
1505
1506
1507 for (i = 0; i < g->p.nr_proc; i++) {
1508 wpid = waitpid(pids[i], &wait_stat, 0);
1509 BUG_ON(wpid < 0);
1510 BUG_ON(!WIFEXITED(wait_stat));
1511
1512 }
1513
1514 runtime_ns_sum = 0;
1515 runtime_ns_min = -1LL;
1516
1517 for (t = 0; t < g->p.nr_tasks; t++) {
1518 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1519
1520 runtime_ns_sum += thread_runtime_ns;
1521 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1522 }
1523
1524 gettimeofday(&stop, NULL);
1525 timersub(&stop, &start, &diff);
1526
1527 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1528
1529 tprintf("\n ###\n");
1530 tprintf("\n");
1531
1532 runtime_sec_max = diff.tv_sec * 1000000000.0;
1533 runtime_sec_max += diff.tv_usec * 1000.0;
1534 runtime_sec_max /= 1e9;
1535
1536 runtime_sec_min = runtime_ns_min/1e9;
1537
1538 bytes = g->bytes_done;
1539 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1540
1541 if (g->p.measure_convergence) {
1542 print_res(name, runtime_sec_max,
1543 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1544 }
1545
1546 print_res(name, runtime_sec_max,
1547 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1548
1549 print_res(name, runtime_sec_min,
1550 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1551
1552 print_res(name, runtime_avg,
1553 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1554
1555 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1556 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1557 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1558
1559 print_res(name, bytes / g->p.nr_tasks / 1e9,
1560 "GB,", "data/thread", "GB data processed, per thread");
1561
1562 print_res(name, bytes / 1e9,
1563 "GB,", "data-total", "GB data processed, total");
1564
1565 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1566 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1567
1568 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1569 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1570
1571 print_res(name, bytes / runtime_sec_max / 1e9,
1572 "GB/sec,", "total-speed", "GB/sec total speed");
1573
1574 if (g->p.show_details >= 2) {
1575 char tname[32];
1576 struct thread_data *td;
1577 for (p = 0; p < g->p.nr_proc; p++) {
1578 for (t = 0; t < g->p.nr_threads; t++) {
1579 memset(tname, 0, 32);
1580 td = g->threads + p*g->p.nr_threads + t;
1581 snprintf(tname, 32, "process%d:thread%d", p, t);
1582 print_res(tname, td->speed_gbs,
1583 "GB/sec", "thread-speed", "GB/sec/thread speed");
1584 print_res(tname, td->system_time_ns / 1e9,
1585 "secs", "thread-system-time", "system CPU time/thread");
1586 print_res(tname, td->user_time_ns / 1e9,
1587 "secs", "thread-user-time", "user CPU time/thread");
1588 }
1589 }
1590 }
1591
1592 free(pids);
1593
1594 deinit();
1595
1596 return 0;
1597 }
1598
1599 #define MAX_ARGS 50
1600
1601 static int command_size(const char **argv)
1602 {
1603 int size = 0;
1604
1605 while (*argv) {
1606 size++;
1607 argv++;
1608 }
1609
1610 BUG_ON(size >= MAX_ARGS);
1611
1612 return size;
1613 }
1614
1615 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1616 {
1617 int i;
1618
1619 printf("\n # Running %s \"perf bench numa", name);
1620
1621 for (i = 0; i < argc; i++)
1622 printf(" %s", argv[i]);
1623
1624 printf("\"\n");
1625
1626 memset(p, 0, sizeof(*p));
1627
1628 /* Initialize nonzero defaults: */
1629
1630 p->serialize_startup = 1;
1631 p->data_reads = true;
1632 p->data_writes = true;
1633 p->data_backwards = true;
1634 p->data_rand_walk = true;
1635 p->nr_loops = -1;
1636 p->init_random = true;
1637 p->mb_global_str = "1";
1638 p->nr_proc = 1;
1639 p->nr_threads = 1;
1640 p->nr_secs = 5;
1641 p->run_all = argc == 1;
1642 }
1643
1644 static int run_bench_numa(const char *name, const char **argv)
1645 {
1646 int argc = command_size(argv);
1647
1648 init_params(&p0, name, argc, argv);
1649 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1650 if (argc)
1651 goto err;
1652
1653 if (__bench_numa(name))
1654 goto err;
1655
1656 return 0;
1657
1658 err:
1659 return -1;
1660 }
1661
1662 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1663 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1664
1665 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1666 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1667
1668 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1669 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1670
1671 /*
1672 * The built-in test-suite executed by "perf bench numa -a".
1673 *
1674 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1675 */
1676 static const char *tests[][MAX_ARGS] = {
1677 /* Basic single-stream NUMA bandwidth measurements: */
1678 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1679 "-C" , "0", "-M", "0", OPT_BW_RAM },
1680 { "RAM-bw-local-NOTHP,",
1681 "mem", "-p", "1", "-t", "1", "-P", "1024",
1682 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1683 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1684 "-C" , "0", "-M", "1", OPT_BW_RAM },
1685
1686 /* 2-stream NUMA bandwidth measurements: */
1687 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1688 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1689 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1690 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1691
1692 /* Cross-stream NUMA bandwidth measurement: */
1693 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1694 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1695
1696 /* Convergence latency measurements: */
1697 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1698 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1699 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1700 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1701 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1702 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1703 { " 4x4-convergence-NOTHP,",
1704 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1705 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1706 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1707 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1708 { " 8x4-convergence-NOTHP,",
1709 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1710 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1711 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1712 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1713 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1714 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1715
1716 /* Various NUMA process/thread layout bandwidth measurements: */
1717 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1718 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1719 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1720 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1721 { " 8x1-bw-process-NOTHP,",
1722 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1723 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1724
1725 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1726 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1727 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1728 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1729
1730 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1731 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1732 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1733 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1734 { " 4x8-bw-thread-NOTHP,",
1735 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1736 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1737 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1738
1739 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1740 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1741
1742 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1743 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1744 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1745 { "numa01-bw-thread-NOTHP,",
1746 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1747 };
1748
1749 static int bench_all(void)
1750 {
1751 int nr = ARRAY_SIZE(tests);
1752 int ret;
1753 int i;
1754
1755 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1756 BUG_ON(ret < 0);
1757
1758 for (i = 0; i < nr; i++) {
1759 run_bench_numa(tests[i][0], tests[i] + 1);
1760 }
1761
1762 printf("\n");
1763
1764 return 0;
1765 }
1766
1767 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1768 {
1769 init_params(&p0, "main,", argc, argv);
1770 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1771 if (argc)
1772 goto err;
1773
1774 if (p0.run_all)
1775 return bench_all();
1776
1777 if (__bench_numa(NULL))
1778 goto err;
1779
1780 return 0;
1781
1782 err:
1783 usage_with_options(numa_usage, options);
1784 return -1;
1785 }
This page took 0.103 seconds and 5 git commands to generate.