tracing: Have max_latency be defined for HWLAT_TRACER as well
[deliverable/linux.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16
17 #include <subcmd/parse-options.h>
18 #include "util/trace-event.h"
19
20 #include "util/debug.h"
21
22 #include <sys/prctl.h>
23 #include <sys/resource.h>
24
25 #include <semaphore.h>
26 #include <pthread.h>
27 #include <math.h>
28 #include <api/fs/fs.h>
29
30 #define PR_SET_NAME 15 /* Set process name */
31 #define MAX_CPUS 4096
32 #define COMM_LEN 20
33 #define SYM_LEN 129
34 #define MAX_PID 1024000
35
36 struct sched_atom;
37
38 struct task_desc {
39 unsigned long nr;
40 unsigned long pid;
41 char comm[COMM_LEN];
42
43 unsigned long nr_events;
44 unsigned long curr_event;
45 struct sched_atom **atoms;
46
47 pthread_t thread;
48 sem_t sleep_sem;
49
50 sem_t ready_for_work;
51 sem_t work_done_sem;
52
53 u64 cpu_usage;
54 };
55
56 enum sched_event_type {
57 SCHED_EVENT_RUN,
58 SCHED_EVENT_SLEEP,
59 SCHED_EVENT_WAKEUP,
60 SCHED_EVENT_MIGRATION,
61 };
62
63 struct sched_atom {
64 enum sched_event_type type;
65 int specific_wait;
66 u64 timestamp;
67 u64 duration;
68 unsigned long nr;
69 sem_t *wait_sem;
70 struct task_desc *wakee;
71 };
72
73 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
74
75 enum thread_state {
76 THREAD_SLEEPING = 0,
77 THREAD_WAIT_CPU,
78 THREAD_SCHED_IN,
79 THREAD_IGNORE
80 };
81
82 struct work_atom {
83 struct list_head list;
84 enum thread_state state;
85 u64 sched_out_time;
86 u64 wake_up_time;
87 u64 sched_in_time;
88 u64 runtime;
89 };
90
91 struct work_atoms {
92 struct list_head work_list;
93 struct thread *thread;
94 struct rb_node node;
95 u64 max_lat;
96 u64 max_lat_at;
97 u64 total_lat;
98 u64 nb_atoms;
99 u64 total_runtime;
100 int num_merged;
101 };
102
103 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
104
105 struct perf_sched;
106
107 struct trace_sched_handler {
108 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
109 struct perf_sample *sample, struct machine *machine);
110
111 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
112 struct perf_sample *sample, struct machine *machine);
113
114 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
115 struct perf_sample *sample, struct machine *machine);
116
117 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
118 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
119 struct machine *machine);
120
121 int (*migrate_task_event)(struct perf_sched *sched,
122 struct perf_evsel *evsel,
123 struct perf_sample *sample,
124 struct machine *machine);
125 };
126
127 #define COLOR_PIDS PERF_COLOR_BLUE
128 #define COLOR_CPUS PERF_COLOR_BG_RED
129
130 struct perf_sched_map {
131 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
132 int *comp_cpus;
133 bool comp;
134 struct thread_map *color_pids;
135 const char *color_pids_str;
136 struct cpu_map *color_cpus;
137 const char *color_cpus_str;
138 struct cpu_map *cpus;
139 const char *cpus_str;
140 };
141
142 struct perf_sched {
143 struct perf_tool tool;
144 const char *sort_order;
145 unsigned long nr_tasks;
146 struct task_desc **pid_to_task;
147 struct task_desc **tasks;
148 const struct trace_sched_handler *tp_handler;
149 pthread_mutex_t start_work_mutex;
150 pthread_mutex_t work_done_wait_mutex;
151 int profile_cpu;
152 /*
153 * Track the current task - that way we can know whether there's any
154 * weird events, such as a task being switched away that is not current.
155 */
156 int max_cpu;
157 u32 curr_pid[MAX_CPUS];
158 struct thread *curr_thread[MAX_CPUS];
159 char next_shortname1;
160 char next_shortname2;
161 unsigned int replay_repeat;
162 unsigned long nr_run_events;
163 unsigned long nr_sleep_events;
164 unsigned long nr_wakeup_events;
165 unsigned long nr_sleep_corrections;
166 unsigned long nr_run_events_optimized;
167 unsigned long targetless_wakeups;
168 unsigned long multitarget_wakeups;
169 unsigned long nr_runs;
170 unsigned long nr_timestamps;
171 unsigned long nr_unordered_timestamps;
172 unsigned long nr_context_switch_bugs;
173 unsigned long nr_events;
174 unsigned long nr_lost_chunks;
175 unsigned long nr_lost_events;
176 u64 run_measurement_overhead;
177 u64 sleep_measurement_overhead;
178 u64 start_time;
179 u64 cpu_usage;
180 u64 runavg_cpu_usage;
181 u64 parent_cpu_usage;
182 u64 runavg_parent_cpu_usage;
183 u64 sum_runtime;
184 u64 sum_fluct;
185 u64 run_avg;
186 u64 all_runtime;
187 u64 all_count;
188 u64 cpu_last_switched[MAX_CPUS];
189 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
190 struct list_head sort_list, cmp_pid;
191 bool force;
192 bool skip_merge;
193 struct perf_sched_map map;
194 };
195
196 static u64 get_nsecs(void)
197 {
198 struct timespec ts;
199
200 clock_gettime(CLOCK_MONOTONIC, &ts);
201
202 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
203 }
204
205 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
206 {
207 u64 T0 = get_nsecs(), T1;
208
209 do {
210 T1 = get_nsecs();
211 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
212 }
213
214 static void sleep_nsecs(u64 nsecs)
215 {
216 struct timespec ts;
217
218 ts.tv_nsec = nsecs % 999999999;
219 ts.tv_sec = nsecs / 999999999;
220
221 nanosleep(&ts, NULL);
222 }
223
224 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
225 {
226 u64 T0, T1, delta, min_delta = 1000000000ULL;
227 int i;
228
229 for (i = 0; i < 10; i++) {
230 T0 = get_nsecs();
231 burn_nsecs(sched, 0);
232 T1 = get_nsecs();
233 delta = T1-T0;
234 min_delta = min(min_delta, delta);
235 }
236 sched->run_measurement_overhead = min_delta;
237
238 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
239 }
240
241 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
242 {
243 u64 T0, T1, delta, min_delta = 1000000000ULL;
244 int i;
245
246 for (i = 0; i < 10; i++) {
247 T0 = get_nsecs();
248 sleep_nsecs(10000);
249 T1 = get_nsecs();
250 delta = T1-T0;
251 min_delta = min(min_delta, delta);
252 }
253 min_delta -= 10000;
254 sched->sleep_measurement_overhead = min_delta;
255
256 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
257 }
258
259 static struct sched_atom *
260 get_new_event(struct task_desc *task, u64 timestamp)
261 {
262 struct sched_atom *event = zalloc(sizeof(*event));
263 unsigned long idx = task->nr_events;
264 size_t size;
265
266 event->timestamp = timestamp;
267 event->nr = idx;
268
269 task->nr_events++;
270 size = sizeof(struct sched_atom *) * task->nr_events;
271 task->atoms = realloc(task->atoms, size);
272 BUG_ON(!task->atoms);
273
274 task->atoms[idx] = event;
275
276 return event;
277 }
278
279 static struct sched_atom *last_event(struct task_desc *task)
280 {
281 if (!task->nr_events)
282 return NULL;
283
284 return task->atoms[task->nr_events - 1];
285 }
286
287 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
288 u64 timestamp, u64 duration)
289 {
290 struct sched_atom *event, *curr_event = last_event(task);
291
292 /*
293 * optimize an existing RUN event by merging this one
294 * to it:
295 */
296 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
297 sched->nr_run_events_optimized++;
298 curr_event->duration += duration;
299 return;
300 }
301
302 event = get_new_event(task, timestamp);
303
304 event->type = SCHED_EVENT_RUN;
305 event->duration = duration;
306
307 sched->nr_run_events++;
308 }
309
310 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
311 u64 timestamp, struct task_desc *wakee)
312 {
313 struct sched_atom *event, *wakee_event;
314
315 event = get_new_event(task, timestamp);
316 event->type = SCHED_EVENT_WAKEUP;
317 event->wakee = wakee;
318
319 wakee_event = last_event(wakee);
320 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
321 sched->targetless_wakeups++;
322 return;
323 }
324 if (wakee_event->wait_sem) {
325 sched->multitarget_wakeups++;
326 return;
327 }
328
329 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
330 sem_init(wakee_event->wait_sem, 0, 0);
331 wakee_event->specific_wait = 1;
332 event->wait_sem = wakee_event->wait_sem;
333
334 sched->nr_wakeup_events++;
335 }
336
337 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
338 u64 timestamp, u64 task_state __maybe_unused)
339 {
340 struct sched_atom *event = get_new_event(task, timestamp);
341
342 event->type = SCHED_EVENT_SLEEP;
343
344 sched->nr_sleep_events++;
345 }
346
347 static struct task_desc *register_pid(struct perf_sched *sched,
348 unsigned long pid, const char *comm)
349 {
350 struct task_desc *task;
351 static int pid_max;
352
353 if (sched->pid_to_task == NULL) {
354 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
355 pid_max = MAX_PID;
356 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
357 }
358 if (pid >= (unsigned long)pid_max) {
359 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
360 sizeof(struct task_desc *))) == NULL);
361 while (pid >= (unsigned long)pid_max)
362 sched->pid_to_task[pid_max++] = NULL;
363 }
364
365 task = sched->pid_to_task[pid];
366
367 if (task)
368 return task;
369
370 task = zalloc(sizeof(*task));
371 task->pid = pid;
372 task->nr = sched->nr_tasks;
373 strcpy(task->comm, comm);
374 /*
375 * every task starts in sleeping state - this gets ignored
376 * if there's no wakeup pointing to this sleep state:
377 */
378 add_sched_event_sleep(sched, task, 0, 0);
379
380 sched->pid_to_task[pid] = task;
381 sched->nr_tasks++;
382 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
383 BUG_ON(!sched->tasks);
384 sched->tasks[task->nr] = task;
385
386 if (verbose)
387 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
388
389 return task;
390 }
391
392
393 static void print_task_traces(struct perf_sched *sched)
394 {
395 struct task_desc *task;
396 unsigned long i;
397
398 for (i = 0; i < sched->nr_tasks; i++) {
399 task = sched->tasks[i];
400 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
401 task->nr, task->comm, task->pid, task->nr_events);
402 }
403 }
404
405 static void add_cross_task_wakeups(struct perf_sched *sched)
406 {
407 struct task_desc *task1, *task2;
408 unsigned long i, j;
409
410 for (i = 0; i < sched->nr_tasks; i++) {
411 task1 = sched->tasks[i];
412 j = i + 1;
413 if (j == sched->nr_tasks)
414 j = 0;
415 task2 = sched->tasks[j];
416 add_sched_event_wakeup(sched, task1, 0, task2);
417 }
418 }
419
420 static void perf_sched__process_event(struct perf_sched *sched,
421 struct sched_atom *atom)
422 {
423 int ret = 0;
424
425 switch (atom->type) {
426 case SCHED_EVENT_RUN:
427 burn_nsecs(sched, atom->duration);
428 break;
429 case SCHED_EVENT_SLEEP:
430 if (atom->wait_sem)
431 ret = sem_wait(atom->wait_sem);
432 BUG_ON(ret);
433 break;
434 case SCHED_EVENT_WAKEUP:
435 if (atom->wait_sem)
436 ret = sem_post(atom->wait_sem);
437 BUG_ON(ret);
438 break;
439 case SCHED_EVENT_MIGRATION:
440 break;
441 default:
442 BUG_ON(1);
443 }
444 }
445
446 static u64 get_cpu_usage_nsec_parent(void)
447 {
448 struct rusage ru;
449 u64 sum;
450 int err;
451
452 err = getrusage(RUSAGE_SELF, &ru);
453 BUG_ON(err);
454
455 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
456 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
457
458 return sum;
459 }
460
461 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
462 {
463 struct perf_event_attr attr;
464 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
465 int fd;
466 struct rlimit limit;
467 bool need_privilege = false;
468
469 memset(&attr, 0, sizeof(attr));
470
471 attr.type = PERF_TYPE_SOFTWARE;
472 attr.config = PERF_COUNT_SW_TASK_CLOCK;
473
474 force_again:
475 fd = sys_perf_event_open(&attr, 0, -1, -1,
476 perf_event_open_cloexec_flag());
477
478 if (fd < 0) {
479 if (errno == EMFILE) {
480 if (sched->force) {
481 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
482 limit.rlim_cur += sched->nr_tasks - cur_task;
483 if (limit.rlim_cur > limit.rlim_max) {
484 limit.rlim_max = limit.rlim_cur;
485 need_privilege = true;
486 }
487 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
488 if (need_privilege && errno == EPERM)
489 strcpy(info, "Need privilege\n");
490 } else
491 goto force_again;
492 } else
493 strcpy(info, "Have a try with -f option\n");
494 }
495 pr_err("Error: sys_perf_event_open() syscall returned "
496 "with %d (%s)\n%s", fd,
497 str_error_r(errno, sbuf, sizeof(sbuf)), info);
498 exit(EXIT_FAILURE);
499 }
500 return fd;
501 }
502
503 static u64 get_cpu_usage_nsec_self(int fd)
504 {
505 u64 runtime;
506 int ret;
507
508 ret = read(fd, &runtime, sizeof(runtime));
509 BUG_ON(ret != sizeof(runtime));
510
511 return runtime;
512 }
513
514 struct sched_thread_parms {
515 struct task_desc *task;
516 struct perf_sched *sched;
517 int fd;
518 };
519
520 static void *thread_func(void *ctx)
521 {
522 struct sched_thread_parms *parms = ctx;
523 struct task_desc *this_task = parms->task;
524 struct perf_sched *sched = parms->sched;
525 u64 cpu_usage_0, cpu_usage_1;
526 unsigned long i, ret;
527 char comm2[22];
528 int fd = parms->fd;
529
530 zfree(&parms);
531
532 sprintf(comm2, ":%s", this_task->comm);
533 prctl(PR_SET_NAME, comm2);
534 if (fd < 0)
535 return NULL;
536 again:
537 ret = sem_post(&this_task->ready_for_work);
538 BUG_ON(ret);
539 ret = pthread_mutex_lock(&sched->start_work_mutex);
540 BUG_ON(ret);
541 ret = pthread_mutex_unlock(&sched->start_work_mutex);
542 BUG_ON(ret);
543
544 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
545
546 for (i = 0; i < this_task->nr_events; i++) {
547 this_task->curr_event = i;
548 perf_sched__process_event(sched, this_task->atoms[i]);
549 }
550
551 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
552 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
553 ret = sem_post(&this_task->work_done_sem);
554 BUG_ON(ret);
555
556 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
557 BUG_ON(ret);
558 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
559 BUG_ON(ret);
560
561 goto again;
562 }
563
564 static void create_tasks(struct perf_sched *sched)
565 {
566 struct task_desc *task;
567 pthread_attr_t attr;
568 unsigned long i;
569 int err;
570
571 err = pthread_attr_init(&attr);
572 BUG_ON(err);
573 err = pthread_attr_setstacksize(&attr,
574 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
575 BUG_ON(err);
576 err = pthread_mutex_lock(&sched->start_work_mutex);
577 BUG_ON(err);
578 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
579 BUG_ON(err);
580 for (i = 0; i < sched->nr_tasks; i++) {
581 struct sched_thread_parms *parms = malloc(sizeof(*parms));
582 BUG_ON(parms == NULL);
583 parms->task = task = sched->tasks[i];
584 parms->sched = sched;
585 parms->fd = self_open_counters(sched, i);
586 sem_init(&task->sleep_sem, 0, 0);
587 sem_init(&task->ready_for_work, 0, 0);
588 sem_init(&task->work_done_sem, 0, 0);
589 task->curr_event = 0;
590 err = pthread_create(&task->thread, &attr, thread_func, parms);
591 BUG_ON(err);
592 }
593 }
594
595 static void wait_for_tasks(struct perf_sched *sched)
596 {
597 u64 cpu_usage_0, cpu_usage_1;
598 struct task_desc *task;
599 unsigned long i, ret;
600
601 sched->start_time = get_nsecs();
602 sched->cpu_usage = 0;
603 pthread_mutex_unlock(&sched->work_done_wait_mutex);
604
605 for (i = 0; i < sched->nr_tasks; i++) {
606 task = sched->tasks[i];
607 ret = sem_wait(&task->ready_for_work);
608 BUG_ON(ret);
609 sem_init(&task->ready_for_work, 0, 0);
610 }
611 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
612 BUG_ON(ret);
613
614 cpu_usage_0 = get_cpu_usage_nsec_parent();
615
616 pthread_mutex_unlock(&sched->start_work_mutex);
617
618 for (i = 0; i < sched->nr_tasks; i++) {
619 task = sched->tasks[i];
620 ret = sem_wait(&task->work_done_sem);
621 BUG_ON(ret);
622 sem_init(&task->work_done_sem, 0, 0);
623 sched->cpu_usage += task->cpu_usage;
624 task->cpu_usage = 0;
625 }
626
627 cpu_usage_1 = get_cpu_usage_nsec_parent();
628 if (!sched->runavg_cpu_usage)
629 sched->runavg_cpu_usage = sched->cpu_usage;
630 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
631
632 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
633 if (!sched->runavg_parent_cpu_usage)
634 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
635 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
636 sched->parent_cpu_usage)/sched->replay_repeat;
637
638 ret = pthread_mutex_lock(&sched->start_work_mutex);
639 BUG_ON(ret);
640
641 for (i = 0; i < sched->nr_tasks; i++) {
642 task = sched->tasks[i];
643 sem_init(&task->sleep_sem, 0, 0);
644 task->curr_event = 0;
645 }
646 }
647
648 static void run_one_test(struct perf_sched *sched)
649 {
650 u64 T0, T1, delta, avg_delta, fluct;
651
652 T0 = get_nsecs();
653 wait_for_tasks(sched);
654 T1 = get_nsecs();
655
656 delta = T1 - T0;
657 sched->sum_runtime += delta;
658 sched->nr_runs++;
659
660 avg_delta = sched->sum_runtime / sched->nr_runs;
661 if (delta < avg_delta)
662 fluct = avg_delta - delta;
663 else
664 fluct = delta - avg_delta;
665 sched->sum_fluct += fluct;
666 if (!sched->run_avg)
667 sched->run_avg = delta;
668 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
669
670 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
671
672 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
673
674 printf("cpu: %0.2f / %0.2f",
675 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
676
677 #if 0
678 /*
679 * rusage statistics done by the parent, these are less
680 * accurate than the sched->sum_exec_runtime based statistics:
681 */
682 printf(" [%0.2f / %0.2f]",
683 (double)sched->parent_cpu_usage/1e6,
684 (double)sched->runavg_parent_cpu_usage/1e6);
685 #endif
686
687 printf("\n");
688
689 if (sched->nr_sleep_corrections)
690 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
691 sched->nr_sleep_corrections = 0;
692 }
693
694 static void test_calibrations(struct perf_sched *sched)
695 {
696 u64 T0, T1;
697
698 T0 = get_nsecs();
699 burn_nsecs(sched, 1e6);
700 T1 = get_nsecs();
701
702 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
703
704 T0 = get_nsecs();
705 sleep_nsecs(1e6);
706 T1 = get_nsecs();
707
708 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
709 }
710
711 static int
712 replay_wakeup_event(struct perf_sched *sched,
713 struct perf_evsel *evsel, struct perf_sample *sample,
714 struct machine *machine __maybe_unused)
715 {
716 const char *comm = perf_evsel__strval(evsel, sample, "comm");
717 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
718 struct task_desc *waker, *wakee;
719
720 if (verbose) {
721 printf("sched_wakeup event %p\n", evsel);
722
723 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
724 }
725
726 waker = register_pid(sched, sample->tid, "<unknown>");
727 wakee = register_pid(sched, pid, comm);
728
729 add_sched_event_wakeup(sched, waker, sample->time, wakee);
730 return 0;
731 }
732
733 static int replay_switch_event(struct perf_sched *sched,
734 struct perf_evsel *evsel,
735 struct perf_sample *sample,
736 struct machine *machine __maybe_unused)
737 {
738 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
739 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
740 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
741 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
742 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
743 struct task_desc *prev, __maybe_unused *next;
744 u64 timestamp0, timestamp = sample->time;
745 int cpu = sample->cpu;
746 s64 delta;
747
748 if (verbose)
749 printf("sched_switch event %p\n", evsel);
750
751 if (cpu >= MAX_CPUS || cpu < 0)
752 return 0;
753
754 timestamp0 = sched->cpu_last_switched[cpu];
755 if (timestamp0)
756 delta = timestamp - timestamp0;
757 else
758 delta = 0;
759
760 if (delta < 0) {
761 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
762 return -1;
763 }
764
765 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
766 prev_comm, prev_pid, next_comm, next_pid, delta);
767
768 prev = register_pid(sched, prev_pid, prev_comm);
769 next = register_pid(sched, next_pid, next_comm);
770
771 sched->cpu_last_switched[cpu] = timestamp;
772
773 add_sched_event_run(sched, prev, timestamp, delta);
774 add_sched_event_sleep(sched, prev, timestamp, prev_state);
775
776 return 0;
777 }
778
779 static int replay_fork_event(struct perf_sched *sched,
780 union perf_event *event,
781 struct machine *machine)
782 {
783 struct thread *child, *parent;
784
785 child = machine__findnew_thread(machine, event->fork.pid,
786 event->fork.tid);
787 parent = machine__findnew_thread(machine, event->fork.ppid,
788 event->fork.ptid);
789
790 if (child == NULL || parent == NULL) {
791 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
792 child, parent);
793 goto out_put;
794 }
795
796 if (verbose) {
797 printf("fork event\n");
798 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
799 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
800 }
801
802 register_pid(sched, parent->tid, thread__comm_str(parent));
803 register_pid(sched, child->tid, thread__comm_str(child));
804 out_put:
805 thread__put(child);
806 thread__put(parent);
807 return 0;
808 }
809
810 struct sort_dimension {
811 const char *name;
812 sort_fn_t cmp;
813 struct list_head list;
814 };
815
816 static int
817 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
818 {
819 struct sort_dimension *sort;
820 int ret = 0;
821
822 BUG_ON(list_empty(list));
823
824 list_for_each_entry(sort, list, list) {
825 ret = sort->cmp(l, r);
826 if (ret)
827 return ret;
828 }
829
830 return ret;
831 }
832
833 static struct work_atoms *
834 thread_atoms_search(struct rb_root *root, struct thread *thread,
835 struct list_head *sort_list)
836 {
837 struct rb_node *node = root->rb_node;
838 struct work_atoms key = { .thread = thread };
839
840 while (node) {
841 struct work_atoms *atoms;
842 int cmp;
843
844 atoms = container_of(node, struct work_atoms, node);
845
846 cmp = thread_lat_cmp(sort_list, &key, atoms);
847 if (cmp > 0)
848 node = node->rb_left;
849 else if (cmp < 0)
850 node = node->rb_right;
851 else {
852 BUG_ON(thread != atoms->thread);
853 return atoms;
854 }
855 }
856 return NULL;
857 }
858
859 static void
860 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
861 struct list_head *sort_list)
862 {
863 struct rb_node **new = &(root->rb_node), *parent = NULL;
864
865 while (*new) {
866 struct work_atoms *this;
867 int cmp;
868
869 this = container_of(*new, struct work_atoms, node);
870 parent = *new;
871
872 cmp = thread_lat_cmp(sort_list, data, this);
873
874 if (cmp > 0)
875 new = &((*new)->rb_left);
876 else
877 new = &((*new)->rb_right);
878 }
879
880 rb_link_node(&data->node, parent, new);
881 rb_insert_color(&data->node, root);
882 }
883
884 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
885 {
886 struct work_atoms *atoms = zalloc(sizeof(*atoms));
887 if (!atoms) {
888 pr_err("No memory at %s\n", __func__);
889 return -1;
890 }
891
892 atoms->thread = thread__get(thread);
893 INIT_LIST_HEAD(&atoms->work_list);
894 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
895 return 0;
896 }
897
898 static char sched_out_state(u64 prev_state)
899 {
900 const char *str = TASK_STATE_TO_CHAR_STR;
901
902 return str[prev_state];
903 }
904
905 static int
906 add_sched_out_event(struct work_atoms *atoms,
907 char run_state,
908 u64 timestamp)
909 {
910 struct work_atom *atom = zalloc(sizeof(*atom));
911 if (!atom) {
912 pr_err("Non memory at %s", __func__);
913 return -1;
914 }
915
916 atom->sched_out_time = timestamp;
917
918 if (run_state == 'R') {
919 atom->state = THREAD_WAIT_CPU;
920 atom->wake_up_time = atom->sched_out_time;
921 }
922
923 list_add_tail(&atom->list, &atoms->work_list);
924 return 0;
925 }
926
927 static void
928 add_runtime_event(struct work_atoms *atoms, u64 delta,
929 u64 timestamp __maybe_unused)
930 {
931 struct work_atom *atom;
932
933 BUG_ON(list_empty(&atoms->work_list));
934
935 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
936
937 atom->runtime += delta;
938 atoms->total_runtime += delta;
939 }
940
941 static void
942 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
943 {
944 struct work_atom *atom;
945 u64 delta;
946
947 if (list_empty(&atoms->work_list))
948 return;
949
950 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
951
952 if (atom->state != THREAD_WAIT_CPU)
953 return;
954
955 if (timestamp < atom->wake_up_time) {
956 atom->state = THREAD_IGNORE;
957 return;
958 }
959
960 atom->state = THREAD_SCHED_IN;
961 atom->sched_in_time = timestamp;
962
963 delta = atom->sched_in_time - atom->wake_up_time;
964 atoms->total_lat += delta;
965 if (delta > atoms->max_lat) {
966 atoms->max_lat = delta;
967 atoms->max_lat_at = timestamp;
968 }
969 atoms->nb_atoms++;
970 }
971
972 static int latency_switch_event(struct perf_sched *sched,
973 struct perf_evsel *evsel,
974 struct perf_sample *sample,
975 struct machine *machine)
976 {
977 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
978 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
979 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
980 struct work_atoms *out_events, *in_events;
981 struct thread *sched_out, *sched_in;
982 u64 timestamp0, timestamp = sample->time;
983 int cpu = sample->cpu, err = -1;
984 s64 delta;
985
986 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
987
988 timestamp0 = sched->cpu_last_switched[cpu];
989 sched->cpu_last_switched[cpu] = timestamp;
990 if (timestamp0)
991 delta = timestamp - timestamp0;
992 else
993 delta = 0;
994
995 if (delta < 0) {
996 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
997 return -1;
998 }
999
1000 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1001 sched_in = machine__findnew_thread(machine, -1, next_pid);
1002 if (sched_out == NULL || sched_in == NULL)
1003 goto out_put;
1004
1005 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1006 if (!out_events) {
1007 if (thread_atoms_insert(sched, sched_out))
1008 goto out_put;
1009 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1010 if (!out_events) {
1011 pr_err("out-event: Internal tree error");
1012 goto out_put;
1013 }
1014 }
1015 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1016 return -1;
1017
1018 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1019 if (!in_events) {
1020 if (thread_atoms_insert(sched, sched_in))
1021 goto out_put;
1022 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1023 if (!in_events) {
1024 pr_err("in-event: Internal tree error");
1025 goto out_put;
1026 }
1027 /*
1028 * Take came in we have not heard about yet,
1029 * add in an initial atom in runnable state:
1030 */
1031 if (add_sched_out_event(in_events, 'R', timestamp))
1032 goto out_put;
1033 }
1034 add_sched_in_event(in_events, timestamp);
1035 err = 0;
1036 out_put:
1037 thread__put(sched_out);
1038 thread__put(sched_in);
1039 return err;
1040 }
1041
1042 static int latency_runtime_event(struct perf_sched *sched,
1043 struct perf_evsel *evsel,
1044 struct perf_sample *sample,
1045 struct machine *machine)
1046 {
1047 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1048 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1049 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1050 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1051 u64 timestamp = sample->time;
1052 int cpu = sample->cpu, err = -1;
1053
1054 if (thread == NULL)
1055 return -1;
1056
1057 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1058 if (!atoms) {
1059 if (thread_atoms_insert(sched, thread))
1060 goto out_put;
1061 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1062 if (!atoms) {
1063 pr_err("in-event: Internal tree error");
1064 goto out_put;
1065 }
1066 if (add_sched_out_event(atoms, 'R', timestamp))
1067 goto out_put;
1068 }
1069
1070 add_runtime_event(atoms, runtime, timestamp);
1071 err = 0;
1072 out_put:
1073 thread__put(thread);
1074 return err;
1075 }
1076
1077 static int latency_wakeup_event(struct perf_sched *sched,
1078 struct perf_evsel *evsel,
1079 struct perf_sample *sample,
1080 struct machine *machine)
1081 {
1082 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1083 struct work_atoms *atoms;
1084 struct work_atom *atom;
1085 struct thread *wakee;
1086 u64 timestamp = sample->time;
1087 int err = -1;
1088
1089 wakee = machine__findnew_thread(machine, -1, pid);
1090 if (wakee == NULL)
1091 return -1;
1092 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1093 if (!atoms) {
1094 if (thread_atoms_insert(sched, wakee))
1095 goto out_put;
1096 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1097 if (!atoms) {
1098 pr_err("wakeup-event: Internal tree error");
1099 goto out_put;
1100 }
1101 if (add_sched_out_event(atoms, 'S', timestamp))
1102 goto out_put;
1103 }
1104
1105 BUG_ON(list_empty(&atoms->work_list));
1106
1107 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1108
1109 /*
1110 * As we do not guarantee the wakeup event happens when
1111 * task is out of run queue, also may happen when task is
1112 * on run queue and wakeup only change ->state to TASK_RUNNING,
1113 * then we should not set the ->wake_up_time when wake up a
1114 * task which is on run queue.
1115 *
1116 * You WILL be missing events if you've recorded only
1117 * one CPU, or are only looking at only one, so don't
1118 * skip in this case.
1119 */
1120 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1121 goto out_ok;
1122
1123 sched->nr_timestamps++;
1124 if (atom->sched_out_time > timestamp) {
1125 sched->nr_unordered_timestamps++;
1126 goto out_ok;
1127 }
1128
1129 atom->state = THREAD_WAIT_CPU;
1130 atom->wake_up_time = timestamp;
1131 out_ok:
1132 err = 0;
1133 out_put:
1134 thread__put(wakee);
1135 return err;
1136 }
1137
1138 static int latency_migrate_task_event(struct perf_sched *sched,
1139 struct perf_evsel *evsel,
1140 struct perf_sample *sample,
1141 struct machine *machine)
1142 {
1143 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1144 u64 timestamp = sample->time;
1145 struct work_atoms *atoms;
1146 struct work_atom *atom;
1147 struct thread *migrant;
1148 int err = -1;
1149
1150 /*
1151 * Only need to worry about migration when profiling one CPU.
1152 */
1153 if (sched->profile_cpu == -1)
1154 return 0;
1155
1156 migrant = machine__findnew_thread(machine, -1, pid);
1157 if (migrant == NULL)
1158 return -1;
1159 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1160 if (!atoms) {
1161 if (thread_atoms_insert(sched, migrant))
1162 goto out_put;
1163 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1164 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1165 if (!atoms) {
1166 pr_err("migration-event: Internal tree error");
1167 goto out_put;
1168 }
1169 if (add_sched_out_event(atoms, 'R', timestamp))
1170 goto out_put;
1171 }
1172
1173 BUG_ON(list_empty(&atoms->work_list));
1174
1175 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1176 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1177
1178 sched->nr_timestamps++;
1179
1180 if (atom->sched_out_time > timestamp)
1181 sched->nr_unordered_timestamps++;
1182 err = 0;
1183 out_put:
1184 thread__put(migrant);
1185 return err;
1186 }
1187
1188 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1189 {
1190 int i;
1191 int ret;
1192 u64 avg;
1193
1194 if (!work_list->nb_atoms)
1195 return;
1196 /*
1197 * Ignore idle threads:
1198 */
1199 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1200 return;
1201
1202 sched->all_runtime += work_list->total_runtime;
1203 sched->all_count += work_list->nb_atoms;
1204
1205 if (work_list->num_merged > 1)
1206 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1207 else
1208 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1209
1210 for (i = 0; i < 24 - ret; i++)
1211 printf(" ");
1212
1213 avg = work_list->total_lat / work_list->nb_atoms;
1214
1215 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1216 (double)work_list->total_runtime / 1e6,
1217 work_list->nb_atoms, (double)avg / 1e6,
1218 (double)work_list->max_lat / 1e6,
1219 (double)work_list->max_lat_at / 1e9);
1220 }
1221
1222 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1223 {
1224 if (l->thread == r->thread)
1225 return 0;
1226 if (l->thread->tid < r->thread->tid)
1227 return -1;
1228 if (l->thread->tid > r->thread->tid)
1229 return 1;
1230 return (int)(l->thread - r->thread);
1231 }
1232
1233 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1234 {
1235 u64 avgl, avgr;
1236
1237 if (!l->nb_atoms)
1238 return -1;
1239
1240 if (!r->nb_atoms)
1241 return 1;
1242
1243 avgl = l->total_lat / l->nb_atoms;
1244 avgr = r->total_lat / r->nb_atoms;
1245
1246 if (avgl < avgr)
1247 return -1;
1248 if (avgl > avgr)
1249 return 1;
1250
1251 return 0;
1252 }
1253
1254 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1255 {
1256 if (l->max_lat < r->max_lat)
1257 return -1;
1258 if (l->max_lat > r->max_lat)
1259 return 1;
1260
1261 return 0;
1262 }
1263
1264 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1265 {
1266 if (l->nb_atoms < r->nb_atoms)
1267 return -1;
1268 if (l->nb_atoms > r->nb_atoms)
1269 return 1;
1270
1271 return 0;
1272 }
1273
1274 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1275 {
1276 if (l->total_runtime < r->total_runtime)
1277 return -1;
1278 if (l->total_runtime > r->total_runtime)
1279 return 1;
1280
1281 return 0;
1282 }
1283
1284 static int sort_dimension__add(const char *tok, struct list_head *list)
1285 {
1286 size_t i;
1287 static struct sort_dimension avg_sort_dimension = {
1288 .name = "avg",
1289 .cmp = avg_cmp,
1290 };
1291 static struct sort_dimension max_sort_dimension = {
1292 .name = "max",
1293 .cmp = max_cmp,
1294 };
1295 static struct sort_dimension pid_sort_dimension = {
1296 .name = "pid",
1297 .cmp = pid_cmp,
1298 };
1299 static struct sort_dimension runtime_sort_dimension = {
1300 .name = "runtime",
1301 .cmp = runtime_cmp,
1302 };
1303 static struct sort_dimension switch_sort_dimension = {
1304 .name = "switch",
1305 .cmp = switch_cmp,
1306 };
1307 struct sort_dimension *available_sorts[] = {
1308 &pid_sort_dimension,
1309 &avg_sort_dimension,
1310 &max_sort_dimension,
1311 &switch_sort_dimension,
1312 &runtime_sort_dimension,
1313 };
1314
1315 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1316 if (!strcmp(available_sorts[i]->name, tok)) {
1317 list_add_tail(&available_sorts[i]->list, list);
1318
1319 return 0;
1320 }
1321 }
1322
1323 return -1;
1324 }
1325
1326 static void perf_sched__sort_lat(struct perf_sched *sched)
1327 {
1328 struct rb_node *node;
1329 struct rb_root *root = &sched->atom_root;
1330 again:
1331 for (;;) {
1332 struct work_atoms *data;
1333 node = rb_first(root);
1334 if (!node)
1335 break;
1336
1337 rb_erase(node, root);
1338 data = rb_entry(node, struct work_atoms, node);
1339 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1340 }
1341 if (root == &sched->atom_root) {
1342 root = &sched->merged_atom_root;
1343 goto again;
1344 }
1345 }
1346
1347 static int process_sched_wakeup_event(struct perf_tool *tool,
1348 struct perf_evsel *evsel,
1349 struct perf_sample *sample,
1350 struct machine *machine)
1351 {
1352 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1353
1354 if (sched->tp_handler->wakeup_event)
1355 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1356
1357 return 0;
1358 }
1359
1360 union map_priv {
1361 void *ptr;
1362 bool color;
1363 };
1364
1365 static bool thread__has_color(struct thread *thread)
1366 {
1367 union map_priv priv = {
1368 .ptr = thread__priv(thread),
1369 };
1370
1371 return priv.color;
1372 }
1373
1374 static struct thread*
1375 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1376 {
1377 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1378 union map_priv priv = {
1379 .color = false,
1380 };
1381
1382 if (!sched->map.color_pids || !thread || thread__priv(thread))
1383 return thread;
1384
1385 if (thread_map__has(sched->map.color_pids, tid))
1386 priv.color = true;
1387
1388 thread__set_priv(thread, priv.ptr);
1389 return thread;
1390 }
1391
1392 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1393 struct perf_sample *sample, struct machine *machine)
1394 {
1395 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1396 struct thread *sched_in;
1397 int new_shortname;
1398 u64 timestamp0, timestamp = sample->time;
1399 s64 delta;
1400 int i, this_cpu = sample->cpu;
1401 int cpus_nr;
1402 bool new_cpu = false;
1403 const char *color = PERF_COLOR_NORMAL;
1404
1405 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1406
1407 if (this_cpu > sched->max_cpu)
1408 sched->max_cpu = this_cpu;
1409
1410 if (sched->map.comp) {
1411 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1412 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1413 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1414 new_cpu = true;
1415 }
1416 } else
1417 cpus_nr = sched->max_cpu;
1418
1419 timestamp0 = sched->cpu_last_switched[this_cpu];
1420 sched->cpu_last_switched[this_cpu] = timestamp;
1421 if (timestamp0)
1422 delta = timestamp - timestamp0;
1423 else
1424 delta = 0;
1425
1426 if (delta < 0) {
1427 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1428 return -1;
1429 }
1430
1431 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1432 if (sched_in == NULL)
1433 return -1;
1434
1435 sched->curr_thread[this_cpu] = thread__get(sched_in);
1436
1437 printf(" ");
1438
1439 new_shortname = 0;
1440 if (!sched_in->shortname[0]) {
1441 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1442 /*
1443 * Don't allocate a letter-number for swapper:0
1444 * as a shortname. Instead, we use '.' for it.
1445 */
1446 sched_in->shortname[0] = '.';
1447 sched_in->shortname[1] = ' ';
1448 } else {
1449 sched_in->shortname[0] = sched->next_shortname1;
1450 sched_in->shortname[1] = sched->next_shortname2;
1451
1452 if (sched->next_shortname1 < 'Z') {
1453 sched->next_shortname1++;
1454 } else {
1455 sched->next_shortname1 = 'A';
1456 if (sched->next_shortname2 < '9')
1457 sched->next_shortname2++;
1458 else
1459 sched->next_shortname2 = '0';
1460 }
1461 }
1462 new_shortname = 1;
1463 }
1464
1465 for (i = 0; i < cpus_nr; i++) {
1466 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1467 struct thread *curr_thread = sched->curr_thread[cpu];
1468 const char *pid_color = color;
1469 const char *cpu_color = color;
1470
1471 if (curr_thread && thread__has_color(curr_thread))
1472 pid_color = COLOR_PIDS;
1473
1474 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1475 continue;
1476
1477 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1478 cpu_color = COLOR_CPUS;
1479
1480 if (cpu != this_cpu)
1481 color_fprintf(stdout, cpu_color, " ");
1482 else
1483 color_fprintf(stdout, cpu_color, "*");
1484
1485 if (sched->curr_thread[cpu])
1486 color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1487 else
1488 color_fprintf(stdout, color, " ");
1489 }
1490
1491 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1492 goto out;
1493
1494 color_fprintf(stdout, color, " %12.6f secs ", (double)timestamp/1e9);
1495 if (new_shortname) {
1496 const char *pid_color = color;
1497
1498 if (thread__has_color(sched_in))
1499 pid_color = COLOR_PIDS;
1500
1501 color_fprintf(stdout, pid_color, "%s => %s:%d",
1502 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1503 }
1504
1505 if (sched->map.comp && new_cpu)
1506 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1507
1508 out:
1509 color_fprintf(stdout, color, "\n");
1510
1511 thread__put(sched_in);
1512
1513 return 0;
1514 }
1515
1516 static int process_sched_switch_event(struct perf_tool *tool,
1517 struct perf_evsel *evsel,
1518 struct perf_sample *sample,
1519 struct machine *machine)
1520 {
1521 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1522 int this_cpu = sample->cpu, err = 0;
1523 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1524 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1525
1526 if (sched->curr_pid[this_cpu] != (u32)-1) {
1527 /*
1528 * Are we trying to switch away a PID that is
1529 * not current?
1530 */
1531 if (sched->curr_pid[this_cpu] != prev_pid)
1532 sched->nr_context_switch_bugs++;
1533 }
1534
1535 if (sched->tp_handler->switch_event)
1536 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1537
1538 sched->curr_pid[this_cpu] = next_pid;
1539 return err;
1540 }
1541
1542 static int process_sched_runtime_event(struct perf_tool *tool,
1543 struct perf_evsel *evsel,
1544 struct perf_sample *sample,
1545 struct machine *machine)
1546 {
1547 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1548
1549 if (sched->tp_handler->runtime_event)
1550 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1551
1552 return 0;
1553 }
1554
1555 static int perf_sched__process_fork_event(struct perf_tool *tool,
1556 union perf_event *event,
1557 struct perf_sample *sample,
1558 struct machine *machine)
1559 {
1560 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1561
1562 /* run the fork event through the perf machineruy */
1563 perf_event__process_fork(tool, event, sample, machine);
1564
1565 /* and then run additional processing needed for this command */
1566 if (sched->tp_handler->fork_event)
1567 return sched->tp_handler->fork_event(sched, event, machine);
1568
1569 return 0;
1570 }
1571
1572 static int process_sched_migrate_task_event(struct perf_tool *tool,
1573 struct perf_evsel *evsel,
1574 struct perf_sample *sample,
1575 struct machine *machine)
1576 {
1577 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1578
1579 if (sched->tp_handler->migrate_task_event)
1580 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1581
1582 return 0;
1583 }
1584
1585 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1586 struct perf_evsel *evsel,
1587 struct perf_sample *sample,
1588 struct machine *machine);
1589
1590 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1591 union perf_event *event __maybe_unused,
1592 struct perf_sample *sample,
1593 struct perf_evsel *evsel,
1594 struct machine *machine)
1595 {
1596 int err = 0;
1597
1598 if (evsel->handler != NULL) {
1599 tracepoint_handler f = evsel->handler;
1600 err = f(tool, evsel, sample, machine);
1601 }
1602
1603 return err;
1604 }
1605
1606 static int perf_sched__read_events(struct perf_sched *sched)
1607 {
1608 const struct perf_evsel_str_handler handlers[] = {
1609 { "sched:sched_switch", process_sched_switch_event, },
1610 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1611 { "sched:sched_wakeup", process_sched_wakeup_event, },
1612 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1613 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1614 };
1615 struct perf_session *session;
1616 struct perf_data_file file = {
1617 .path = input_name,
1618 .mode = PERF_DATA_MODE_READ,
1619 .force = sched->force,
1620 };
1621 int rc = -1;
1622
1623 session = perf_session__new(&file, false, &sched->tool);
1624 if (session == NULL) {
1625 pr_debug("No Memory for session\n");
1626 return -1;
1627 }
1628
1629 symbol__init(&session->header.env);
1630
1631 if (perf_session__set_tracepoints_handlers(session, handlers))
1632 goto out_delete;
1633
1634 if (perf_session__has_traces(session, "record -R")) {
1635 int err = perf_session__process_events(session);
1636 if (err) {
1637 pr_err("Failed to process events, error %d", err);
1638 goto out_delete;
1639 }
1640
1641 sched->nr_events = session->evlist->stats.nr_events[0];
1642 sched->nr_lost_events = session->evlist->stats.total_lost;
1643 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1644 }
1645
1646 rc = 0;
1647 out_delete:
1648 perf_session__delete(session);
1649 return rc;
1650 }
1651
1652 static void print_bad_events(struct perf_sched *sched)
1653 {
1654 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1655 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1656 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1657 sched->nr_unordered_timestamps, sched->nr_timestamps);
1658 }
1659 if (sched->nr_lost_events && sched->nr_events) {
1660 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1661 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1662 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1663 }
1664 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1665 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1666 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1667 sched->nr_context_switch_bugs, sched->nr_timestamps);
1668 if (sched->nr_lost_events)
1669 printf(" (due to lost events?)");
1670 printf("\n");
1671 }
1672 }
1673
1674 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1675 {
1676 struct rb_node **new = &(root->rb_node), *parent = NULL;
1677 struct work_atoms *this;
1678 const char *comm = thread__comm_str(data->thread), *this_comm;
1679
1680 while (*new) {
1681 int cmp;
1682
1683 this = container_of(*new, struct work_atoms, node);
1684 parent = *new;
1685
1686 this_comm = thread__comm_str(this->thread);
1687 cmp = strcmp(comm, this_comm);
1688 if (cmp > 0) {
1689 new = &((*new)->rb_left);
1690 } else if (cmp < 0) {
1691 new = &((*new)->rb_right);
1692 } else {
1693 this->num_merged++;
1694 this->total_runtime += data->total_runtime;
1695 this->nb_atoms += data->nb_atoms;
1696 this->total_lat += data->total_lat;
1697 list_splice(&data->work_list, &this->work_list);
1698 if (this->max_lat < data->max_lat) {
1699 this->max_lat = data->max_lat;
1700 this->max_lat_at = data->max_lat_at;
1701 }
1702 zfree(&data);
1703 return;
1704 }
1705 }
1706
1707 data->num_merged++;
1708 rb_link_node(&data->node, parent, new);
1709 rb_insert_color(&data->node, root);
1710 }
1711
1712 static void perf_sched__merge_lat(struct perf_sched *sched)
1713 {
1714 struct work_atoms *data;
1715 struct rb_node *node;
1716
1717 if (sched->skip_merge)
1718 return;
1719
1720 while ((node = rb_first(&sched->atom_root))) {
1721 rb_erase(node, &sched->atom_root);
1722 data = rb_entry(node, struct work_atoms, node);
1723 __merge_work_atoms(&sched->merged_atom_root, data);
1724 }
1725 }
1726
1727 static int perf_sched__lat(struct perf_sched *sched)
1728 {
1729 struct rb_node *next;
1730
1731 setup_pager();
1732
1733 if (perf_sched__read_events(sched))
1734 return -1;
1735
1736 perf_sched__merge_lat(sched);
1737 perf_sched__sort_lat(sched);
1738
1739 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1740 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1741 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1742
1743 next = rb_first(&sched->sorted_atom_root);
1744
1745 while (next) {
1746 struct work_atoms *work_list;
1747
1748 work_list = rb_entry(next, struct work_atoms, node);
1749 output_lat_thread(sched, work_list);
1750 next = rb_next(next);
1751 thread__zput(work_list->thread);
1752 }
1753
1754 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1755 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1756 (double)sched->all_runtime / 1e6, sched->all_count);
1757
1758 printf(" ---------------------------------------------------\n");
1759
1760 print_bad_events(sched);
1761 printf("\n");
1762
1763 return 0;
1764 }
1765
1766 static int setup_map_cpus(struct perf_sched *sched)
1767 {
1768 struct cpu_map *map;
1769
1770 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1771
1772 if (sched->map.comp) {
1773 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
1774 if (!sched->map.comp_cpus)
1775 return -1;
1776 }
1777
1778 if (!sched->map.cpus_str)
1779 return 0;
1780
1781 map = cpu_map__new(sched->map.cpus_str);
1782 if (!map) {
1783 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
1784 return -1;
1785 }
1786
1787 sched->map.cpus = map;
1788 return 0;
1789 }
1790
1791 static int setup_color_pids(struct perf_sched *sched)
1792 {
1793 struct thread_map *map;
1794
1795 if (!sched->map.color_pids_str)
1796 return 0;
1797
1798 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
1799 if (!map) {
1800 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
1801 return -1;
1802 }
1803
1804 sched->map.color_pids = map;
1805 return 0;
1806 }
1807
1808 static int setup_color_cpus(struct perf_sched *sched)
1809 {
1810 struct cpu_map *map;
1811
1812 if (!sched->map.color_cpus_str)
1813 return 0;
1814
1815 map = cpu_map__new(sched->map.color_cpus_str);
1816 if (!map) {
1817 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
1818 return -1;
1819 }
1820
1821 sched->map.color_cpus = map;
1822 return 0;
1823 }
1824
1825 static int perf_sched__map(struct perf_sched *sched)
1826 {
1827 if (setup_map_cpus(sched))
1828 return -1;
1829
1830 if (setup_color_pids(sched))
1831 return -1;
1832
1833 if (setup_color_cpus(sched))
1834 return -1;
1835
1836 setup_pager();
1837 if (perf_sched__read_events(sched))
1838 return -1;
1839 print_bad_events(sched);
1840 return 0;
1841 }
1842
1843 static int perf_sched__replay(struct perf_sched *sched)
1844 {
1845 unsigned long i;
1846
1847 calibrate_run_measurement_overhead(sched);
1848 calibrate_sleep_measurement_overhead(sched);
1849
1850 test_calibrations(sched);
1851
1852 if (perf_sched__read_events(sched))
1853 return -1;
1854
1855 printf("nr_run_events: %ld\n", sched->nr_run_events);
1856 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1857 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1858
1859 if (sched->targetless_wakeups)
1860 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1861 if (sched->multitarget_wakeups)
1862 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1863 if (sched->nr_run_events_optimized)
1864 printf("run atoms optimized: %ld\n",
1865 sched->nr_run_events_optimized);
1866
1867 print_task_traces(sched);
1868 add_cross_task_wakeups(sched);
1869
1870 create_tasks(sched);
1871 printf("------------------------------------------------------------\n");
1872 for (i = 0; i < sched->replay_repeat; i++)
1873 run_one_test(sched);
1874
1875 return 0;
1876 }
1877
1878 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1879 const char * const usage_msg[])
1880 {
1881 char *tmp, *tok, *str = strdup(sched->sort_order);
1882
1883 for (tok = strtok_r(str, ", ", &tmp);
1884 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1885 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1886 usage_with_options_msg(usage_msg, options,
1887 "Unknown --sort key: `%s'", tok);
1888 }
1889 }
1890
1891 free(str);
1892
1893 sort_dimension__add("pid", &sched->cmp_pid);
1894 }
1895
1896 static int __cmd_record(int argc, const char **argv)
1897 {
1898 unsigned int rec_argc, i, j;
1899 const char **rec_argv;
1900 const char * const record_args[] = {
1901 "record",
1902 "-a",
1903 "-R",
1904 "-m", "1024",
1905 "-c", "1",
1906 "-e", "sched:sched_switch",
1907 "-e", "sched:sched_stat_wait",
1908 "-e", "sched:sched_stat_sleep",
1909 "-e", "sched:sched_stat_iowait",
1910 "-e", "sched:sched_stat_runtime",
1911 "-e", "sched:sched_process_fork",
1912 "-e", "sched:sched_wakeup",
1913 "-e", "sched:sched_wakeup_new",
1914 "-e", "sched:sched_migrate_task",
1915 };
1916
1917 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1918 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1919
1920 if (rec_argv == NULL)
1921 return -ENOMEM;
1922
1923 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1924 rec_argv[i] = strdup(record_args[i]);
1925
1926 for (j = 1; j < (unsigned int)argc; j++, i++)
1927 rec_argv[i] = argv[j];
1928
1929 BUG_ON(i != rec_argc);
1930
1931 return cmd_record(i, rec_argv, NULL);
1932 }
1933
1934 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1935 {
1936 const char default_sort_order[] = "avg, max, switch, runtime";
1937 struct perf_sched sched = {
1938 .tool = {
1939 .sample = perf_sched__process_tracepoint_sample,
1940 .comm = perf_event__process_comm,
1941 .lost = perf_event__process_lost,
1942 .fork = perf_sched__process_fork_event,
1943 .ordered_events = true,
1944 },
1945 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1946 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1947 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1948 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1949 .sort_order = default_sort_order,
1950 .replay_repeat = 10,
1951 .profile_cpu = -1,
1952 .next_shortname1 = 'A',
1953 .next_shortname2 = '0',
1954 .skip_merge = 0,
1955 };
1956 const struct option latency_options[] = {
1957 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1958 "sort by key(s): runtime, switch, avg, max"),
1959 OPT_INCR('v', "verbose", &verbose,
1960 "be more verbose (show symbol address, etc)"),
1961 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1962 "CPU to profile on"),
1963 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1964 "dump raw trace in ASCII"),
1965 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1966 "latency stats per pid instead of per comm"),
1967 OPT_END()
1968 };
1969 const struct option replay_options[] = {
1970 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1971 "repeat the workload replay N times (-1: infinite)"),
1972 OPT_INCR('v', "verbose", &verbose,
1973 "be more verbose (show symbol address, etc)"),
1974 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1975 "dump raw trace in ASCII"),
1976 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1977 OPT_END()
1978 };
1979 const struct option sched_options[] = {
1980 OPT_STRING('i', "input", &input_name, "file",
1981 "input file name"),
1982 OPT_INCR('v', "verbose", &verbose,
1983 "be more verbose (show symbol address, etc)"),
1984 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1985 "dump raw trace in ASCII"),
1986 OPT_END()
1987 };
1988 const struct option map_options[] = {
1989 OPT_BOOLEAN(0, "compact", &sched.map.comp,
1990 "map output in compact mode"),
1991 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
1992 "highlight given pids in map"),
1993 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
1994 "highlight given CPUs in map"),
1995 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
1996 "display given CPUs in map"),
1997 OPT_END()
1998 };
1999 const char * const latency_usage[] = {
2000 "perf sched latency [<options>]",
2001 NULL
2002 };
2003 const char * const replay_usage[] = {
2004 "perf sched replay [<options>]",
2005 NULL
2006 };
2007 const char * const map_usage[] = {
2008 "perf sched map [<options>]",
2009 NULL
2010 };
2011 const char *const sched_subcommands[] = { "record", "latency", "map",
2012 "replay", "script", NULL };
2013 const char *sched_usage[] = {
2014 NULL,
2015 NULL
2016 };
2017 struct trace_sched_handler lat_ops = {
2018 .wakeup_event = latency_wakeup_event,
2019 .switch_event = latency_switch_event,
2020 .runtime_event = latency_runtime_event,
2021 .migrate_task_event = latency_migrate_task_event,
2022 };
2023 struct trace_sched_handler map_ops = {
2024 .switch_event = map_switch_event,
2025 };
2026 struct trace_sched_handler replay_ops = {
2027 .wakeup_event = replay_wakeup_event,
2028 .switch_event = replay_switch_event,
2029 .fork_event = replay_fork_event,
2030 };
2031 unsigned int i;
2032
2033 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
2034 sched.curr_pid[i] = -1;
2035
2036 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
2037 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2038 if (!argc)
2039 usage_with_options(sched_usage, sched_options);
2040
2041 /*
2042 * Aliased to 'perf script' for now:
2043 */
2044 if (!strcmp(argv[0], "script"))
2045 return cmd_script(argc, argv, prefix);
2046
2047 if (!strncmp(argv[0], "rec", 3)) {
2048 return __cmd_record(argc, argv);
2049 } else if (!strncmp(argv[0], "lat", 3)) {
2050 sched.tp_handler = &lat_ops;
2051 if (argc > 1) {
2052 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
2053 if (argc)
2054 usage_with_options(latency_usage, latency_options);
2055 }
2056 setup_sorting(&sched, latency_options, latency_usage);
2057 return perf_sched__lat(&sched);
2058 } else if (!strcmp(argv[0], "map")) {
2059 if (argc) {
2060 argc = parse_options(argc, argv, map_options, map_usage, 0);
2061 if (argc)
2062 usage_with_options(map_usage, map_options);
2063 }
2064 sched.tp_handler = &map_ops;
2065 setup_sorting(&sched, latency_options, latency_usage);
2066 return perf_sched__map(&sched);
2067 } else if (!strncmp(argv[0], "rep", 3)) {
2068 sched.tp_handler = &replay_ops;
2069 if (argc) {
2070 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
2071 if (argc)
2072 usage_with_options(replay_usage, replay_options);
2073 }
2074 return perf_sched__replay(&sched);
2075 } else {
2076 usage_with_options(sched_usage, sched_options);
2077 }
2078
2079 return 0;
2080 }
This page took 0.075319 seconds and 5 git commands to generate.