tracing: Have max_latency be defined for HWLAT_TRACER as well
[deliverable/linux.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21 INIT_LIST_HEAD(&dsos->head);
22 dsos->root = RB_ROOT;
23 pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 memset(machine, 0, sizeof(*machine));
29 map_groups__init(&machine->kmaps, machine);
30 RB_CLEAR_NODE(&machine->rb_node);
31 dsos__init(&machine->dsos);
32
33 machine->threads = RB_ROOT;
34 pthread_rwlock_init(&machine->threads_lock, NULL);
35 machine->nr_threads = 0;
36 INIT_LIST_HEAD(&machine->dead_threads);
37 machine->last_match = NULL;
38
39 machine->vdso_info = NULL;
40 machine->env = NULL;
41
42 machine->pid = pid;
43
44 machine->symbol_filter = NULL;
45 machine->id_hdr_size = 0;
46 machine->kptr_restrict_warned = false;
47 machine->comm_exec = false;
48 machine->kernel_start = 0;
49
50 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
51
52 machine->root_dir = strdup(root_dir);
53 if (machine->root_dir == NULL)
54 return -ENOMEM;
55
56 if (pid != HOST_KERNEL_ID) {
57 struct thread *thread = machine__findnew_thread(machine, -1,
58 pid);
59 char comm[64];
60
61 if (thread == NULL)
62 return -ENOMEM;
63
64 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
65 thread__set_comm(thread, comm, 0);
66 thread__put(thread);
67 }
68
69 machine->current_tid = NULL;
70
71 return 0;
72 }
73
74 struct machine *machine__new_host(void)
75 {
76 struct machine *machine = malloc(sizeof(*machine));
77
78 if (machine != NULL) {
79 machine__init(machine, "", HOST_KERNEL_ID);
80
81 if (machine__create_kernel_maps(machine) < 0)
82 goto out_delete;
83 }
84
85 return machine;
86 out_delete:
87 free(machine);
88 return NULL;
89 }
90
91 static void dsos__purge(struct dsos *dsos)
92 {
93 struct dso *pos, *n;
94
95 pthread_rwlock_wrlock(&dsos->lock);
96
97 list_for_each_entry_safe(pos, n, &dsos->head, node) {
98 RB_CLEAR_NODE(&pos->rb_node);
99 pos->root = NULL;
100 list_del_init(&pos->node);
101 dso__put(pos);
102 }
103
104 pthread_rwlock_unlock(&dsos->lock);
105 }
106
107 static void dsos__exit(struct dsos *dsos)
108 {
109 dsos__purge(dsos);
110 pthread_rwlock_destroy(&dsos->lock);
111 }
112
113 void machine__delete_threads(struct machine *machine)
114 {
115 struct rb_node *nd;
116
117 pthread_rwlock_wrlock(&machine->threads_lock);
118 nd = rb_first(&machine->threads);
119 while (nd) {
120 struct thread *t = rb_entry(nd, struct thread, rb_node);
121
122 nd = rb_next(nd);
123 __machine__remove_thread(machine, t, false);
124 }
125 pthread_rwlock_unlock(&machine->threads_lock);
126 }
127
128 void machine__exit(struct machine *machine)
129 {
130 machine__destroy_kernel_maps(machine);
131 map_groups__exit(&machine->kmaps);
132 dsos__exit(&machine->dsos);
133 machine__exit_vdso(machine);
134 zfree(&machine->root_dir);
135 zfree(&machine->current_tid);
136 pthread_rwlock_destroy(&machine->threads_lock);
137 }
138
139 void machine__delete(struct machine *machine)
140 {
141 if (machine) {
142 machine__exit(machine);
143 free(machine);
144 }
145 }
146
147 void machines__init(struct machines *machines)
148 {
149 machine__init(&machines->host, "", HOST_KERNEL_ID);
150 machines->guests = RB_ROOT;
151 machines->symbol_filter = NULL;
152 }
153
154 void machines__exit(struct machines *machines)
155 {
156 machine__exit(&machines->host);
157 /* XXX exit guest */
158 }
159
160 struct machine *machines__add(struct machines *machines, pid_t pid,
161 const char *root_dir)
162 {
163 struct rb_node **p = &machines->guests.rb_node;
164 struct rb_node *parent = NULL;
165 struct machine *pos, *machine = malloc(sizeof(*machine));
166
167 if (machine == NULL)
168 return NULL;
169
170 if (machine__init(machine, root_dir, pid) != 0) {
171 free(machine);
172 return NULL;
173 }
174
175 machine->symbol_filter = machines->symbol_filter;
176
177 while (*p != NULL) {
178 parent = *p;
179 pos = rb_entry(parent, struct machine, rb_node);
180 if (pid < pos->pid)
181 p = &(*p)->rb_left;
182 else
183 p = &(*p)->rb_right;
184 }
185
186 rb_link_node(&machine->rb_node, parent, p);
187 rb_insert_color(&machine->rb_node, &machines->guests);
188
189 return machine;
190 }
191
192 void machines__set_symbol_filter(struct machines *machines,
193 symbol_filter_t symbol_filter)
194 {
195 struct rb_node *nd;
196
197 machines->symbol_filter = symbol_filter;
198 machines->host.symbol_filter = symbol_filter;
199
200 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
201 struct machine *machine = rb_entry(nd, struct machine, rb_node);
202
203 machine->symbol_filter = symbol_filter;
204 }
205 }
206
207 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
208 {
209 struct rb_node *nd;
210
211 machines->host.comm_exec = comm_exec;
212
213 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
214 struct machine *machine = rb_entry(nd, struct machine, rb_node);
215
216 machine->comm_exec = comm_exec;
217 }
218 }
219
220 struct machine *machines__find(struct machines *machines, pid_t pid)
221 {
222 struct rb_node **p = &machines->guests.rb_node;
223 struct rb_node *parent = NULL;
224 struct machine *machine;
225 struct machine *default_machine = NULL;
226
227 if (pid == HOST_KERNEL_ID)
228 return &machines->host;
229
230 while (*p != NULL) {
231 parent = *p;
232 machine = rb_entry(parent, struct machine, rb_node);
233 if (pid < machine->pid)
234 p = &(*p)->rb_left;
235 else if (pid > machine->pid)
236 p = &(*p)->rb_right;
237 else
238 return machine;
239 if (!machine->pid)
240 default_machine = machine;
241 }
242
243 return default_machine;
244 }
245
246 struct machine *machines__findnew(struct machines *machines, pid_t pid)
247 {
248 char path[PATH_MAX];
249 const char *root_dir = "";
250 struct machine *machine = machines__find(machines, pid);
251
252 if (machine && (machine->pid == pid))
253 goto out;
254
255 if ((pid != HOST_KERNEL_ID) &&
256 (pid != DEFAULT_GUEST_KERNEL_ID) &&
257 (symbol_conf.guestmount)) {
258 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
259 if (access(path, R_OK)) {
260 static struct strlist *seen;
261
262 if (!seen)
263 seen = strlist__new(NULL, NULL);
264
265 if (!strlist__has_entry(seen, path)) {
266 pr_err("Can't access file %s\n", path);
267 strlist__add(seen, path);
268 }
269 machine = NULL;
270 goto out;
271 }
272 root_dir = path;
273 }
274
275 machine = machines__add(machines, pid, root_dir);
276 out:
277 return machine;
278 }
279
280 void machines__process_guests(struct machines *machines,
281 machine__process_t process, void *data)
282 {
283 struct rb_node *nd;
284
285 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
286 struct machine *pos = rb_entry(nd, struct machine, rb_node);
287 process(pos, data);
288 }
289 }
290
291 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
292 {
293 if (machine__is_host(machine))
294 snprintf(bf, size, "[%s]", "kernel.kallsyms");
295 else if (machine__is_default_guest(machine))
296 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
297 else {
298 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
299 machine->pid);
300 }
301
302 return bf;
303 }
304
305 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
306 {
307 struct rb_node *node;
308 struct machine *machine;
309
310 machines->host.id_hdr_size = id_hdr_size;
311
312 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
313 machine = rb_entry(node, struct machine, rb_node);
314 machine->id_hdr_size = id_hdr_size;
315 }
316
317 return;
318 }
319
320 static void machine__update_thread_pid(struct machine *machine,
321 struct thread *th, pid_t pid)
322 {
323 struct thread *leader;
324
325 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
326 return;
327
328 th->pid_ = pid;
329
330 if (th->pid_ == th->tid)
331 return;
332
333 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
334 if (!leader)
335 goto out_err;
336
337 if (!leader->mg)
338 leader->mg = map_groups__new(machine);
339
340 if (!leader->mg)
341 goto out_err;
342
343 if (th->mg == leader->mg)
344 return;
345
346 if (th->mg) {
347 /*
348 * Maps are created from MMAP events which provide the pid and
349 * tid. Consequently there never should be any maps on a thread
350 * with an unknown pid. Just print an error if there are.
351 */
352 if (!map_groups__empty(th->mg))
353 pr_err("Discarding thread maps for %d:%d\n",
354 th->pid_, th->tid);
355 map_groups__put(th->mg);
356 }
357
358 th->mg = map_groups__get(leader->mg);
359 out_put:
360 thread__put(leader);
361 return;
362 out_err:
363 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
364 goto out_put;
365 }
366
367 /*
368 * Caller must eventually drop thread->refcnt returned with a successful
369 * lookup/new thread inserted.
370 */
371 static struct thread *____machine__findnew_thread(struct machine *machine,
372 pid_t pid, pid_t tid,
373 bool create)
374 {
375 struct rb_node **p = &machine->threads.rb_node;
376 struct rb_node *parent = NULL;
377 struct thread *th;
378
379 /*
380 * Front-end cache - TID lookups come in blocks,
381 * so most of the time we dont have to look up
382 * the full rbtree:
383 */
384 th = machine->last_match;
385 if (th != NULL) {
386 if (th->tid == tid) {
387 machine__update_thread_pid(machine, th, pid);
388 return thread__get(th);
389 }
390
391 machine->last_match = NULL;
392 }
393
394 while (*p != NULL) {
395 parent = *p;
396 th = rb_entry(parent, struct thread, rb_node);
397
398 if (th->tid == tid) {
399 machine->last_match = th;
400 machine__update_thread_pid(machine, th, pid);
401 return thread__get(th);
402 }
403
404 if (tid < th->tid)
405 p = &(*p)->rb_left;
406 else
407 p = &(*p)->rb_right;
408 }
409
410 if (!create)
411 return NULL;
412
413 th = thread__new(pid, tid);
414 if (th != NULL) {
415 rb_link_node(&th->rb_node, parent, p);
416 rb_insert_color(&th->rb_node, &machine->threads);
417
418 /*
419 * We have to initialize map_groups separately
420 * after rb tree is updated.
421 *
422 * The reason is that we call machine__findnew_thread
423 * within thread__init_map_groups to find the thread
424 * leader and that would screwed the rb tree.
425 */
426 if (thread__init_map_groups(th, machine)) {
427 rb_erase_init(&th->rb_node, &machine->threads);
428 RB_CLEAR_NODE(&th->rb_node);
429 thread__put(th);
430 return NULL;
431 }
432 /*
433 * It is now in the rbtree, get a ref
434 */
435 thread__get(th);
436 machine->last_match = th;
437 ++machine->nr_threads;
438 }
439
440 return th;
441 }
442
443 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
444 {
445 return ____machine__findnew_thread(machine, pid, tid, true);
446 }
447
448 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
449 pid_t tid)
450 {
451 struct thread *th;
452
453 pthread_rwlock_wrlock(&machine->threads_lock);
454 th = __machine__findnew_thread(machine, pid, tid);
455 pthread_rwlock_unlock(&machine->threads_lock);
456 return th;
457 }
458
459 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
460 pid_t tid)
461 {
462 struct thread *th;
463 pthread_rwlock_rdlock(&machine->threads_lock);
464 th = ____machine__findnew_thread(machine, pid, tid, false);
465 pthread_rwlock_unlock(&machine->threads_lock);
466 return th;
467 }
468
469 struct comm *machine__thread_exec_comm(struct machine *machine,
470 struct thread *thread)
471 {
472 if (machine->comm_exec)
473 return thread__exec_comm(thread);
474 else
475 return thread__comm(thread);
476 }
477
478 int machine__process_comm_event(struct machine *machine, union perf_event *event,
479 struct perf_sample *sample)
480 {
481 struct thread *thread = machine__findnew_thread(machine,
482 event->comm.pid,
483 event->comm.tid);
484 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
485 int err = 0;
486
487 if (exec)
488 machine->comm_exec = true;
489
490 if (dump_trace)
491 perf_event__fprintf_comm(event, stdout);
492
493 if (thread == NULL ||
494 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
495 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
496 err = -1;
497 }
498
499 thread__put(thread);
500
501 return err;
502 }
503
504 int machine__process_lost_event(struct machine *machine __maybe_unused,
505 union perf_event *event, struct perf_sample *sample __maybe_unused)
506 {
507 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
508 event->lost.id, event->lost.lost);
509 return 0;
510 }
511
512 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
513 union perf_event *event, struct perf_sample *sample)
514 {
515 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
516 sample->id, event->lost_samples.lost);
517 return 0;
518 }
519
520 static struct dso *machine__findnew_module_dso(struct machine *machine,
521 struct kmod_path *m,
522 const char *filename)
523 {
524 struct dso *dso;
525
526 pthread_rwlock_wrlock(&machine->dsos.lock);
527
528 dso = __dsos__find(&machine->dsos, m->name, true);
529 if (!dso) {
530 dso = __dsos__addnew(&machine->dsos, m->name);
531 if (dso == NULL)
532 goto out_unlock;
533
534 if (machine__is_host(machine))
535 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
536 else
537 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
538
539 /* _KMODULE_COMP should be next to _KMODULE */
540 if (m->kmod && m->comp)
541 dso->symtab_type++;
542
543 dso__set_short_name(dso, strdup(m->name), true);
544 dso__set_long_name(dso, strdup(filename), true);
545 }
546
547 dso__get(dso);
548 out_unlock:
549 pthread_rwlock_unlock(&machine->dsos.lock);
550 return dso;
551 }
552
553 int machine__process_aux_event(struct machine *machine __maybe_unused,
554 union perf_event *event)
555 {
556 if (dump_trace)
557 perf_event__fprintf_aux(event, stdout);
558 return 0;
559 }
560
561 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
562 union perf_event *event)
563 {
564 if (dump_trace)
565 perf_event__fprintf_itrace_start(event, stdout);
566 return 0;
567 }
568
569 int machine__process_switch_event(struct machine *machine __maybe_unused,
570 union perf_event *event)
571 {
572 if (dump_trace)
573 perf_event__fprintf_switch(event, stdout);
574 return 0;
575 }
576
577 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
578 {
579 const char *dup_filename;
580
581 if (!filename || !dso || !dso->long_name)
582 return;
583 if (dso->long_name[0] != '[')
584 return;
585 if (!strchr(filename, '/'))
586 return;
587
588 dup_filename = strdup(filename);
589 if (!dup_filename)
590 return;
591
592 dso__set_long_name(dso, dup_filename, true);
593 }
594
595 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
596 const char *filename)
597 {
598 struct map *map = NULL;
599 struct dso *dso = NULL;
600 struct kmod_path m;
601
602 if (kmod_path__parse_name(&m, filename))
603 return NULL;
604
605 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
606 m.name);
607 if (map) {
608 /*
609 * If the map's dso is an offline module, give dso__load()
610 * a chance to find the file path of that module by fixing
611 * long_name.
612 */
613 dso__adjust_kmod_long_name(map->dso, filename);
614 goto out;
615 }
616
617 dso = machine__findnew_module_dso(machine, &m, filename);
618 if (dso == NULL)
619 goto out;
620
621 map = map__new2(start, dso, MAP__FUNCTION);
622 if (map == NULL)
623 goto out;
624
625 map_groups__insert(&machine->kmaps, map);
626
627 /* Put the map here because map_groups__insert alread got it */
628 map__put(map);
629 out:
630 /* put the dso here, corresponding to machine__findnew_module_dso */
631 dso__put(dso);
632 free(m.name);
633 return map;
634 }
635
636 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
637 {
638 struct rb_node *nd;
639 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
640
641 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
642 struct machine *pos = rb_entry(nd, struct machine, rb_node);
643 ret += __dsos__fprintf(&pos->dsos.head, fp);
644 }
645
646 return ret;
647 }
648
649 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
650 bool (skip)(struct dso *dso, int parm), int parm)
651 {
652 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
653 }
654
655 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
656 bool (skip)(struct dso *dso, int parm), int parm)
657 {
658 struct rb_node *nd;
659 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
660
661 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
662 struct machine *pos = rb_entry(nd, struct machine, rb_node);
663 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
664 }
665 return ret;
666 }
667
668 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
669 {
670 int i;
671 size_t printed = 0;
672 struct dso *kdso = machine__kernel_map(machine)->dso;
673
674 if (kdso->has_build_id) {
675 char filename[PATH_MAX];
676 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
677 printed += fprintf(fp, "[0] %s\n", filename);
678 }
679
680 for (i = 0; i < vmlinux_path__nr_entries; ++i)
681 printed += fprintf(fp, "[%d] %s\n",
682 i + kdso->has_build_id, vmlinux_path[i]);
683
684 return printed;
685 }
686
687 size_t machine__fprintf(struct machine *machine, FILE *fp)
688 {
689 size_t ret;
690 struct rb_node *nd;
691
692 pthread_rwlock_rdlock(&machine->threads_lock);
693
694 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
695
696 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
697 struct thread *pos = rb_entry(nd, struct thread, rb_node);
698
699 ret += thread__fprintf(pos, fp);
700 }
701
702 pthread_rwlock_unlock(&machine->threads_lock);
703
704 return ret;
705 }
706
707 static struct dso *machine__get_kernel(struct machine *machine)
708 {
709 const char *vmlinux_name = NULL;
710 struct dso *kernel;
711
712 if (machine__is_host(machine)) {
713 vmlinux_name = symbol_conf.vmlinux_name;
714 if (!vmlinux_name)
715 vmlinux_name = DSO__NAME_KALLSYMS;
716
717 kernel = machine__findnew_kernel(machine, vmlinux_name,
718 "[kernel]", DSO_TYPE_KERNEL);
719 } else {
720 char bf[PATH_MAX];
721
722 if (machine__is_default_guest(machine))
723 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
724 if (!vmlinux_name)
725 vmlinux_name = machine__mmap_name(machine, bf,
726 sizeof(bf));
727
728 kernel = machine__findnew_kernel(machine, vmlinux_name,
729 "[guest.kernel]",
730 DSO_TYPE_GUEST_KERNEL);
731 }
732
733 if (kernel != NULL && (!kernel->has_build_id))
734 dso__read_running_kernel_build_id(kernel, machine);
735
736 return kernel;
737 }
738
739 struct process_args {
740 u64 start;
741 };
742
743 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
744 size_t bufsz)
745 {
746 if (machine__is_default_guest(machine))
747 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
748 else
749 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
750 }
751
752 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
753
754 /* Figure out the start address of kernel map from /proc/kallsyms.
755 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
756 * symbol_name if it's not that important.
757 */
758 static u64 machine__get_running_kernel_start(struct machine *machine,
759 const char **symbol_name)
760 {
761 char filename[PATH_MAX];
762 int i;
763 const char *name;
764 u64 addr = 0;
765
766 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
767
768 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
769 return 0;
770
771 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
772 addr = kallsyms__get_function_start(filename, name);
773 if (addr)
774 break;
775 }
776
777 if (symbol_name)
778 *symbol_name = name;
779
780 return addr;
781 }
782
783 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
784 {
785 enum map_type type;
786 u64 start = machine__get_running_kernel_start(machine, NULL);
787
788 /* In case of renewal the kernel map, destroy previous one */
789 machine__destroy_kernel_maps(machine);
790
791 for (type = 0; type < MAP__NR_TYPES; ++type) {
792 struct kmap *kmap;
793 struct map *map;
794
795 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
796 if (machine->vmlinux_maps[type] == NULL)
797 return -1;
798
799 machine->vmlinux_maps[type]->map_ip =
800 machine->vmlinux_maps[type]->unmap_ip =
801 identity__map_ip;
802 map = __machine__kernel_map(machine, type);
803 kmap = map__kmap(map);
804 if (!kmap)
805 return -1;
806
807 kmap->kmaps = &machine->kmaps;
808 map_groups__insert(&machine->kmaps, map);
809 }
810
811 return 0;
812 }
813
814 void machine__destroy_kernel_maps(struct machine *machine)
815 {
816 enum map_type type;
817
818 for (type = 0; type < MAP__NR_TYPES; ++type) {
819 struct kmap *kmap;
820 struct map *map = __machine__kernel_map(machine, type);
821
822 if (map == NULL)
823 continue;
824
825 kmap = map__kmap(map);
826 map_groups__remove(&machine->kmaps, map);
827 if (kmap && kmap->ref_reloc_sym) {
828 /*
829 * ref_reloc_sym is shared among all maps, so free just
830 * on one of them.
831 */
832 if (type == MAP__FUNCTION) {
833 zfree((char **)&kmap->ref_reloc_sym->name);
834 zfree(&kmap->ref_reloc_sym);
835 } else
836 kmap->ref_reloc_sym = NULL;
837 }
838
839 map__put(machine->vmlinux_maps[type]);
840 machine->vmlinux_maps[type] = NULL;
841 }
842 }
843
844 int machines__create_guest_kernel_maps(struct machines *machines)
845 {
846 int ret = 0;
847 struct dirent **namelist = NULL;
848 int i, items = 0;
849 char path[PATH_MAX];
850 pid_t pid;
851 char *endp;
852
853 if (symbol_conf.default_guest_vmlinux_name ||
854 symbol_conf.default_guest_modules ||
855 symbol_conf.default_guest_kallsyms) {
856 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
857 }
858
859 if (symbol_conf.guestmount) {
860 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
861 if (items <= 0)
862 return -ENOENT;
863 for (i = 0; i < items; i++) {
864 if (!isdigit(namelist[i]->d_name[0])) {
865 /* Filter out . and .. */
866 continue;
867 }
868 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
869 if ((*endp != '\0') ||
870 (endp == namelist[i]->d_name) ||
871 (errno == ERANGE)) {
872 pr_debug("invalid directory (%s). Skipping.\n",
873 namelist[i]->d_name);
874 continue;
875 }
876 sprintf(path, "%s/%s/proc/kallsyms",
877 symbol_conf.guestmount,
878 namelist[i]->d_name);
879 ret = access(path, R_OK);
880 if (ret) {
881 pr_debug("Can't access file %s\n", path);
882 goto failure;
883 }
884 machines__create_kernel_maps(machines, pid);
885 }
886 failure:
887 free(namelist);
888 }
889
890 return ret;
891 }
892
893 void machines__destroy_kernel_maps(struct machines *machines)
894 {
895 struct rb_node *next = rb_first(&machines->guests);
896
897 machine__destroy_kernel_maps(&machines->host);
898
899 while (next) {
900 struct machine *pos = rb_entry(next, struct machine, rb_node);
901
902 next = rb_next(&pos->rb_node);
903 rb_erase(&pos->rb_node, &machines->guests);
904 machine__delete(pos);
905 }
906 }
907
908 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
909 {
910 struct machine *machine = machines__findnew(machines, pid);
911
912 if (machine == NULL)
913 return -1;
914
915 return machine__create_kernel_maps(machine);
916 }
917
918 int __machine__load_kallsyms(struct machine *machine, const char *filename,
919 enum map_type type, bool no_kcore, symbol_filter_t filter)
920 {
921 struct map *map = machine__kernel_map(machine);
922 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
923
924 if (ret > 0) {
925 dso__set_loaded(map->dso, type);
926 /*
927 * Since /proc/kallsyms will have multiple sessions for the
928 * kernel, with modules between them, fixup the end of all
929 * sections.
930 */
931 __map_groups__fixup_end(&machine->kmaps, type);
932 }
933
934 return ret;
935 }
936
937 int machine__load_kallsyms(struct machine *machine, const char *filename,
938 enum map_type type, symbol_filter_t filter)
939 {
940 return __machine__load_kallsyms(machine, filename, type, false, filter);
941 }
942
943 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
944 symbol_filter_t filter)
945 {
946 struct map *map = machine__kernel_map(machine);
947 int ret = dso__load_vmlinux_path(map->dso, map, filter);
948
949 if (ret > 0)
950 dso__set_loaded(map->dso, type);
951
952 return ret;
953 }
954
955 static void map_groups__fixup_end(struct map_groups *mg)
956 {
957 int i;
958 for (i = 0; i < MAP__NR_TYPES; ++i)
959 __map_groups__fixup_end(mg, i);
960 }
961
962 static char *get_kernel_version(const char *root_dir)
963 {
964 char version[PATH_MAX];
965 FILE *file;
966 char *name, *tmp;
967 const char *prefix = "Linux version ";
968
969 sprintf(version, "%s/proc/version", root_dir);
970 file = fopen(version, "r");
971 if (!file)
972 return NULL;
973
974 version[0] = '\0';
975 tmp = fgets(version, sizeof(version), file);
976 fclose(file);
977
978 name = strstr(version, prefix);
979 if (!name)
980 return NULL;
981 name += strlen(prefix);
982 tmp = strchr(name, ' ');
983 if (tmp)
984 *tmp = '\0';
985
986 return strdup(name);
987 }
988
989 static bool is_kmod_dso(struct dso *dso)
990 {
991 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
992 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
993 }
994
995 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
996 struct kmod_path *m)
997 {
998 struct map *map;
999 char *long_name;
1000
1001 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1002 if (map == NULL)
1003 return 0;
1004
1005 long_name = strdup(path);
1006 if (long_name == NULL)
1007 return -ENOMEM;
1008
1009 dso__set_long_name(map->dso, long_name, true);
1010 dso__kernel_module_get_build_id(map->dso, "");
1011
1012 /*
1013 * Full name could reveal us kmod compression, so
1014 * we need to update the symtab_type if needed.
1015 */
1016 if (m->comp && is_kmod_dso(map->dso))
1017 map->dso->symtab_type++;
1018
1019 return 0;
1020 }
1021
1022 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1023 const char *dir_name, int depth)
1024 {
1025 struct dirent *dent;
1026 DIR *dir = opendir(dir_name);
1027 int ret = 0;
1028
1029 if (!dir) {
1030 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1031 return -1;
1032 }
1033
1034 while ((dent = readdir(dir)) != NULL) {
1035 char path[PATH_MAX];
1036 struct stat st;
1037
1038 /*sshfs might return bad dent->d_type, so we have to stat*/
1039 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1040 if (stat(path, &st))
1041 continue;
1042
1043 if (S_ISDIR(st.st_mode)) {
1044 if (!strcmp(dent->d_name, ".") ||
1045 !strcmp(dent->d_name, ".."))
1046 continue;
1047
1048 /* Do not follow top-level source and build symlinks */
1049 if (depth == 0) {
1050 if (!strcmp(dent->d_name, "source") ||
1051 !strcmp(dent->d_name, "build"))
1052 continue;
1053 }
1054
1055 ret = map_groups__set_modules_path_dir(mg, path,
1056 depth + 1);
1057 if (ret < 0)
1058 goto out;
1059 } else {
1060 struct kmod_path m;
1061
1062 ret = kmod_path__parse_name(&m, dent->d_name);
1063 if (ret)
1064 goto out;
1065
1066 if (m.kmod)
1067 ret = map_groups__set_module_path(mg, path, &m);
1068
1069 free(m.name);
1070
1071 if (ret)
1072 goto out;
1073 }
1074 }
1075
1076 out:
1077 closedir(dir);
1078 return ret;
1079 }
1080
1081 static int machine__set_modules_path(struct machine *machine)
1082 {
1083 char *version;
1084 char modules_path[PATH_MAX];
1085
1086 version = get_kernel_version(machine->root_dir);
1087 if (!version)
1088 return -1;
1089
1090 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1091 machine->root_dir, version);
1092 free(version);
1093
1094 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1095 }
1096 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1097 const char *name __maybe_unused)
1098 {
1099 return 0;
1100 }
1101
1102 static int machine__create_module(void *arg, const char *name, u64 start)
1103 {
1104 struct machine *machine = arg;
1105 struct map *map;
1106
1107 if (arch__fix_module_text_start(&start, name) < 0)
1108 return -1;
1109
1110 map = machine__findnew_module_map(machine, start, name);
1111 if (map == NULL)
1112 return -1;
1113
1114 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1115
1116 return 0;
1117 }
1118
1119 static int machine__create_modules(struct machine *machine)
1120 {
1121 const char *modules;
1122 char path[PATH_MAX];
1123
1124 if (machine__is_default_guest(machine)) {
1125 modules = symbol_conf.default_guest_modules;
1126 } else {
1127 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1128 modules = path;
1129 }
1130
1131 if (symbol__restricted_filename(modules, "/proc/modules"))
1132 return -1;
1133
1134 if (modules__parse(modules, machine, machine__create_module))
1135 return -1;
1136
1137 if (!machine__set_modules_path(machine))
1138 return 0;
1139
1140 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1141
1142 return 0;
1143 }
1144
1145 int machine__create_kernel_maps(struct machine *machine)
1146 {
1147 struct dso *kernel = machine__get_kernel(machine);
1148 const char *name;
1149 u64 addr;
1150 int ret;
1151
1152 if (kernel == NULL)
1153 return -1;
1154
1155 ret = __machine__create_kernel_maps(machine, kernel);
1156 dso__put(kernel);
1157 if (ret < 0)
1158 return -1;
1159
1160 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1161 if (machine__is_host(machine))
1162 pr_debug("Problems creating module maps, "
1163 "continuing anyway...\n");
1164 else
1165 pr_debug("Problems creating module maps for guest %d, "
1166 "continuing anyway...\n", machine->pid);
1167 }
1168
1169 /*
1170 * Now that we have all the maps created, just set the ->end of them:
1171 */
1172 map_groups__fixup_end(&machine->kmaps);
1173
1174 addr = machine__get_running_kernel_start(machine, &name);
1175 if (!addr) {
1176 } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1177 machine__destroy_kernel_maps(machine);
1178 return -1;
1179 }
1180
1181 return 0;
1182 }
1183
1184 static void machine__set_kernel_mmap_len(struct machine *machine,
1185 union perf_event *event)
1186 {
1187 int i;
1188
1189 for (i = 0; i < MAP__NR_TYPES; i++) {
1190 machine->vmlinux_maps[i]->start = event->mmap.start;
1191 machine->vmlinux_maps[i]->end = (event->mmap.start +
1192 event->mmap.len);
1193 /*
1194 * Be a bit paranoid here, some perf.data file came with
1195 * a zero sized synthesized MMAP event for the kernel.
1196 */
1197 if (machine->vmlinux_maps[i]->end == 0)
1198 machine->vmlinux_maps[i]->end = ~0ULL;
1199 }
1200 }
1201
1202 static bool machine__uses_kcore(struct machine *machine)
1203 {
1204 struct dso *dso;
1205
1206 list_for_each_entry(dso, &machine->dsos.head, node) {
1207 if (dso__is_kcore(dso))
1208 return true;
1209 }
1210
1211 return false;
1212 }
1213
1214 static int machine__process_kernel_mmap_event(struct machine *machine,
1215 union perf_event *event)
1216 {
1217 struct map *map;
1218 char kmmap_prefix[PATH_MAX];
1219 enum dso_kernel_type kernel_type;
1220 bool is_kernel_mmap;
1221
1222 /* If we have maps from kcore then we do not need or want any others */
1223 if (machine__uses_kcore(machine))
1224 return 0;
1225
1226 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1227 if (machine__is_host(machine))
1228 kernel_type = DSO_TYPE_KERNEL;
1229 else
1230 kernel_type = DSO_TYPE_GUEST_KERNEL;
1231
1232 is_kernel_mmap = memcmp(event->mmap.filename,
1233 kmmap_prefix,
1234 strlen(kmmap_prefix) - 1) == 0;
1235 if (event->mmap.filename[0] == '/' ||
1236 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1237 map = machine__findnew_module_map(machine, event->mmap.start,
1238 event->mmap.filename);
1239 if (map == NULL)
1240 goto out_problem;
1241
1242 map->end = map->start + event->mmap.len;
1243 } else if (is_kernel_mmap) {
1244 const char *symbol_name = (event->mmap.filename +
1245 strlen(kmmap_prefix));
1246 /*
1247 * Should be there already, from the build-id table in
1248 * the header.
1249 */
1250 struct dso *kernel = NULL;
1251 struct dso *dso;
1252
1253 pthread_rwlock_rdlock(&machine->dsos.lock);
1254
1255 list_for_each_entry(dso, &machine->dsos.head, node) {
1256
1257 /*
1258 * The cpumode passed to is_kernel_module is not the
1259 * cpumode of *this* event. If we insist on passing
1260 * correct cpumode to is_kernel_module, we should
1261 * record the cpumode when we adding this dso to the
1262 * linked list.
1263 *
1264 * However we don't really need passing correct
1265 * cpumode. We know the correct cpumode must be kernel
1266 * mode (if not, we should not link it onto kernel_dsos
1267 * list).
1268 *
1269 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1270 * is_kernel_module() treats it as a kernel cpumode.
1271 */
1272
1273 if (!dso->kernel ||
1274 is_kernel_module(dso->long_name,
1275 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1276 continue;
1277
1278
1279 kernel = dso;
1280 break;
1281 }
1282
1283 pthread_rwlock_unlock(&machine->dsos.lock);
1284
1285 if (kernel == NULL)
1286 kernel = machine__findnew_dso(machine, kmmap_prefix);
1287 if (kernel == NULL)
1288 goto out_problem;
1289
1290 kernel->kernel = kernel_type;
1291 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1292 dso__put(kernel);
1293 goto out_problem;
1294 }
1295
1296 if (strstr(kernel->long_name, "vmlinux"))
1297 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1298
1299 machine__set_kernel_mmap_len(machine, event);
1300
1301 /*
1302 * Avoid using a zero address (kptr_restrict) for the ref reloc
1303 * symbol. Effectively having zero here means that at record
1304 * time /proc/sys/kernel/kptr_restrict was non zero.
1305 */
1306 if (event->mmap.pgoff != 0) {
1307 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1308 symbol_name,
1309 event->mmap.pgoff);
1310 }
1311
1312 if (machine__is_default_guest(machine)) {
1313 /*
1314 * preload dso of guest kernel and modules
1315 */
1316 dso__load(kernel, machine__kernel_map(machine), NULL);
1317 }
1318 }
1319 return 0;
1320 out_problem:
1321 return -1;
1322 }
1323
1324 int machine__process_mmap2_event(struct machine *machine,
1325 union perf_event *event,
1326 struct perf_sample *sample)
1327 {
1328 struct thread *thread;
1329 struct map *map;
1330 enum map_type type;
1331 int ret = 0;
1332
1333 if (dump_trace)
1334 perf_event__fprintf_mmap2(event, stdout);
1335
1336 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1337 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1338 ret = machine__process_kernel_mmap_event(machine, event);
1339 if (ret < 0)
1340 goto out_problem;
1341 return 0;
1342 }
1343
1344 thread = machine__findnew_thread(machine, event->mmap2.pid,
1345 event->mmap2.tid);
1346 if (thread == NULL)
1347 goto out_problem;
1348
1349 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1350 type = MAP__VARIABLE;
1351 else
1352 type = MAP__FUNCTION;
1353
1354 map = map__new(machine, event->mmap2.start,
1355 event->mmap2.len, event->mmap2.pgoff,
1356 event->mmap2.pid, event->mmap2.maj,
1357 event->mmap2.min, event->mmap2.ino,
1358 event->mmap2.ino_generation,
1359 event->mmap2.prot,
1360 event->mmap2.flags,
1361 event->mmap2.filename, type, thread);
1362
1363 if (map == NULL)
1364 goto out_problem_map;
1365
1366 ret = thread__insert_map(thread, map);
1367 if (ret)
1368 goto out_problem_insert;
1369
1370 thread__put(thread);
1371 map__put(map);
1372 return 0;
1373
1374 out_problem_insert:
1375 map__put(map);
1376 out_problem_map:
1377 thread__put(thread);
1378 out_problem:
1379 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1380 return 0;
1381 }
1382
1383 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1384 struct perf_sample *sample)
1385 {
1386 struct thread *thread;
1387 struct map *map;
1388 enum map_type type;
1389 int ret = 0;
1390
1391 if (dump_trace)
1392 perf_event__fprintf_mmap(event, stdout);
1393
1394 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1395 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1396 ret = machine__process_kernel_mmap_event(machine, event);
1397 if (ret < 0)
1398 goto out_problem;
1399 return 0;
1400 }
1401
1402 thread = machine__findnew_thread(machine, event->mmap.pid,
1403 event->mmap.tid);
1404 if (thread == NULL)
1405 goto out_problem;
1406
1407 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1408 type = MAP__VARIABLE;
1409 else
1410 type = MAP__FUNCTION;
1411
1412 map = map__new(machine, event->mmap.start,
1413 event->mmap.len, event->mmap.pgoff,
1414 event->mmap.pid, 0, 0, 0, 0, 0, 0,
1415 event->mmap.filename,
1416 type, thread);
1417
1418 if (map == NULL)
1419 goto out_problem_map;
1420
1421 ret = thread__insert_map(thread, map);
1422 if (ret)
1423 goto out_problem_insert;
1424
1425 thread__put(thread);
1426 map__put(map);
1427 return 0;
1428
1429 out_problem_insert:
1430 map__put(map);
1431 out_problem_map:
1432 thread__put(thread);
1433 out_problem:
1434 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1435 return 0;
1436 }
1437
1438 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1439 {
1440 if (machine->last_match == th)
1441 machine->last_match = NULL;
1442
1443 BUG_ON(atomic_read(&th->refcnt) == 0);
1444 if (lock)
1445 pthread_rwlock_wrlock(&machine->threads_lock);
1446 rb_erase_init(&th->rb_node, &machine->threads);
1447 RB_CLEAR_NODE(&th->rb_node);
1448 --machine->nr_threads;
1449 /*
1450 * Move it first to the dead_threads list, then drop the reference,
1451 * if this is the last reference, then the thread__delete destructor
1452 * will be called and we will remove it from the dead_threads list.
1453 */
1454 list_add_tail(&th->node, &machine->dead_threads);
1455 if (lock)
1456 pthread_rwlock_unlock(&machine->threads_lock);
1457 thread__put(th);
1458 }
1459
1460 void machine__remove_thread(struct machine *machine, struct thread *th)
1461 {
1462 return __machine__remove_thread(machine, th, true);
1463 }
1464
1465 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1466 struct perf_sample *sample)
1467 {
1468 struct thread *thread = machine__find_thread(machine,
1469 event->fork.pid,
1470 event->fork.tid);
1471 struct thread *parent = machine__findnew_thread(machine,
1472 event->fork.ppid,
1473 event->fork.ptid);
1474 int err = 0;
1475
1476 if (dump_trace)
1477 perf_event__fprintf_task(event, stdout);
1478
1479 /*
1480 * There may be an existing thread that is not actually the parent,
1481 * either because we are processing events out of order, or because the
1482 * (fork) event that would have removed the thread was lost. Assume the
1483 * latter case and continue on as best we can.
1484 */
1485 if (parent->pid_ != (pid_t)event->fork.ppid) {
1486 dump_printf("removing erroneous parent thread %d/%d\n",
1487 parent->pid_, parent->tid);
1488 machine__remove_thread(machine, parent);
1489 thread__put(parent);
1490 parent = machine__findnew_thread(machine, event->fork.ppid,
1491 event->fork.ptid);
1492 }
1493
1494 /* if a thread currently exists for the thread id remove it */
1495 if (thread != NULL) {
1496 machine__remove_thread(machine, thread);
1497 thread__put(thread);
1498 }
1499
1500 thread = machine__findnew_thread(machine, event->fork.pid,
1501 event->fork.tid);
1502
1503 if (thread == NULL || parent == NULL ||
1504 thread__fork(thread, parent, sample->time) < 0) {
1505 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1506 err = -1;
1507 }
1508 thread__put(thread);
1509 thread__put(parent);
1510
1511 return err;
1512 }
1513
1514 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1515 struct perf_sample *sample __maybe_unused)
1516 {
1517 struct thread *thread = machine__find_thread(machine,
1518 event->fork.pid,
1519 event->fork.tid);
1520
1521 if (dump_trace)
1522 perf_event__fprintf_task(event, stdout);
1523
1524 if (thread != NULL) {
1525 thread__exited(thread);
1526 thread__put(thread);
1527 }
1528
1529 return 0;
1530 }
1531
1532 int machine__process_event(struct machine *machine, union perf_event *event,
1533 struct perf_sample *sample)
1534 {
1535 int ret;
1536
1537 switch (event->header.type) {
1538 case PERF_RECORD_COMM:
1539 ret = machine__process_comm_event(machine, event, sample); break;
1540 case PERF_RECORD_MMAP:
1541 ret = machine__process_mmap_event(machine, event, sample); break;
1542 case PERF_RECORD_MMAP2:
1543 ret = machine__process_mmap2_event(machine, event, sample); break;
1544 case PERF_RECORD_FORK:
1545 ret = machine__process_fork_event(machine, event, sample); break;
1546 case PERF_RECORD_EXIT:
1547 ret = machine__process_exit_event(machine, event, sample); break;
1548 case PERF_RECORD_LOST:
1549 ret = machine__process_lost_event(machine, event, sample); break;
1550 case PERF_RECORD_AUX:
1551 ret = machine__process_aux_event(machine, event); break;
1552 case PERF_RECORD_ITRACE_START:
1553 ret = machine__process_itrace_start_event(machine, event); break;
1554 case PERF_RECORD_LOST_SAMPLES:
1555 ret = machine__process_lost_samples_event(machine, event, sample); break;
1556 case PERF_RECORD_SWITCH:
1557 case PERF_RECORD_SWITCH_CPU_WIDE:
1558 ret = machine__process_switch_event(machine, event); break;
1559 default:
1560 ret = -1;
1561 break;
1562 }
1563
1564 return ret;
1565 }
1566
1567 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1568 {
1569 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1570 return 1;
1571 return 0;
1572 }
1573
1574 static void ip__resolve_ams(struct thread *thread,
1575 struct addr_map_symbol *ams,
1576 u64 ip)
1577 {
1578 struct addr_location al;
1579
1580 memset(&al, 0, sizeof(al));
1581 /*
1582 * We cannot use the header.misc hint to determine whether a
1583 * branch stack address is user, kernel, guest, hypervisor.
1584 * Branches may straddle the kernel/user/hypervisor boundaries.
1585 * Thus, we have to try consecutively until we find a match
1586 * or else, the symbol is unknown
1587 */
1588 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1589
1590 ams->addr = ip;
1591 ams->al_addr = al.addr;
1592 ams->sym = al.sym;
1593 ams->map = al.map;
1594 }
1595
1596 static void ip__resolve_data(struct thread *thread,
1597 u8 m, struct addr_map_symbol *ams, u64 addr)
1598 {
1599 struct addr_location al;
1600
1601 memset(&al, 0, sizeof(al));
1602
1603 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1604 if (al.map == NULL) {
1605 /*
1606 * some shared data regions have execute bit set which puts
1607 * their mapping in the MAP__FUNCTION type array.
1608 * Check there as a fallback option before dropping the sample.
1609 */
1610 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1611 }
1612
1613 ams->addr = addr;
1614 ams->al_addr = al.addr;
1615 ams->sym = al.sym;
1616 ams->map = al.map;
1617 }
1618
1619 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1620 struct addr_location *al)
1621 {
1622 struct mem_info *mi = zalloc(sizeof(*mi));
1623
1624 if (!mi)
1625 return NULL;
1626
1627 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1628 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1629 mi->data_src.val = sample->data_src;
1630
1631 return mi;
1632 }
1633
1634 static int add_callchain_ip(struct thread *thread,
1635 struct callchain_cursor *cursor,
1636 struct symbol **parent,
1637 struct addr_location *root_al,
1638 u8 *cpumode,
1639 u64 ip)
1640 {
1641 struct addr_location al;
1642
1643 al.filtered = 0;
1644 al.sym = NULL;
1645 if (!cpumode) {
1646 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1647 ip, &al);
1648 } else {
1649 if (ip >= PERF_CONTEXT_MAX) {
1650 switch (ip) {
1651 case PERF_CONTEXT_HV:
1652 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1653 break;
1654 case PERF_CONTEXT_KERNEL:
1655 *cpumode = PERF_RECORD_MISC_KERNEL;
1656 break;
1657 case PERF_CONTEXT_USER:
1658 *cpumode = PERF_RECORD_MISC_USER;
1659 break;
1660 default:
1661 pr_debug("invalid callchain context: "
1662 "%"PRId64"\n", (s64) ip);
1663 /*
1664 * It seems the callchain is corrupted.
1665 * Discard all.
1666 */
1667 callchain_cursor_reset(cursor);
1668 return 1;
1669 }
1670 return 0;
1671 }
1672 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1673 ip, &al);
1674 }
1675
1676 if (al.sym != NULL) {
1677 if (perf_hpp_list.parent && !*parent &&
1678 symbol__match_regex(al.sym, &parent_regex))
1679 *parent = al.sym;
1680 else if (have_ignore_callees && root_al &&
1681 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1682 /* Treat this symbol as the root,
1683 forgetting its callees. */
1684 *root_al = al;
1685 callchain_cursor_reset(cursor);
1686 }
1687 }
1688
1689 if (symbol_conf.hide_unresolved && al.sym == NULL)
1690 return 0;
1691 return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1692 }
1693
1694 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1695 struct addr_location *al)
1696 {
1697 unsigned int i;
1698 const struct branch_stack *bs = sample->branch_stack;
1699 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1700
1701 if (!bi)
1702 return NULL;
1703
1704 for (i = 0; i < bs->nr; i++) {
1705 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1706 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1707 bi[i].flags = bs->entries[i].flags;
1708 }
1709 return bi;
1710 }
1711
1712 #define CHASHSZ 127
1713 #define CHASHBITS 7
1714 #define NO_ENTRY 0xff
1715
1716 #define PERF_MAX_BRANCH_DEPTH 127
1717
1718 /* Remove loops. */
1719 static int remove_loops(struct branch_entry *l, int nr)
1720 {
1721 int i, j, off;
1722 unsigned char chash[CHASHSZ];
1723
1724 memset(chash, NO_ENTRY, sizeof(chash));
1725
1726 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1727
1728 for (i = 0; i < nr; i++) {
1729 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1730
1731 /* no collision handling for now */
1732 if (chash[h] == NO_ENTRY) {
1733 chash[h] = i;
1734 } else if (l[chash[h]].from == l[i].from) {
1735 bool is_loop = true;
1736 /* check if it is a real loop */
1737 off = 0;
1738 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1739 if (l[j].from != l[i + off].from) {
1740 is_loop = false;
1741 break;
1742 }
1743 if (is_loop) {
1744 memmove(l + i, l + i + off,
1745 (nr - (i + off)) * sizeof(*l));
1746 nr -= off;
1747 }
1748 }
1749 }
1750 return nr;
1751 }
1752
1753 /*
1754 * Recolve LBR callstack chain sample
1755 * Return:
1756 * 1 on success get LBR callchain information
1757 * 0 no available LBR callchain information, should try fp
1758 * negative error code on other errors.
1759 */
1760 static int resolve_lbr_callchain_sample(struct thread *thread,
1761 struct callchain_cursor *cursor,
1762 struct perf_sample *sample,
1763 struct symbol **parent,
1764 struct addr_location *root_al,
1765 int max_stack)
1766 {
1767 struct ip_callchain *chain = sample->callchain;
1768 int chain_nr = min(max_stack, (int)chain->nr);
1769 u8 cpumode = PERF_RECORD_MISC_USER;
1770 int i, j, err;
1771 u64 ip;
1772
1773 for (i = 0; i < chain_nr; i++) {
1774 if (chain->ips[i] == PERF_CONTEXT_USER)
1775 break;
1776 }
1777
1778 /* LBR only affects the user callchain */
1779 if (i != chain_nr) {
1780 struct branch_stack *lbr_stack = sample->branch_stack;
1781 int lbr_nr = lbr_stack->nr;
1782 /*
1783 * LBR callstack can only get user call chain.
1784 * The mix_chain_nr is kernel call chain
1785 * number plus LBR user call chain number.
1786 * i is kernel call chain number,
1787 * 1 is PERF_CONTEXT_USER,
1788 * lbr_nr + 1 is the user call chain number.
1789 * For details, please refer to the comments
1790 * in callchain__printf
1791 */
1792 int mix_chain_nr = i + 1 + lbr_nr + 1;
1793
1794 for (j = 0; j < mix_chain_nr; j++) {
1795 if (callchain_param.order == ORDER_CALLEE) {
1796 if (j < i + 1)
1797 ip = chain->ips[j];
1798 else if (j > i + 1)
1799 ip = lbr_stack->entries[j - i - 2].from;
1800 else
1801 ip = lbr_stack->entries[0].to;
1802 } else {
1803 if (j < lbr_nr)
1804 ip = lbr_stack->entries[lbr_nr - j - 1].from;
1805 else if (j > lbr_nr)
1806 ip = chain->ips[i + 1 - (j - lbr_nr)];
1807 else
1808 ip = lbr_stack->entries[0].to;
1809 }
1810
1811 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1812 if (err)
1813 return (err < 0) ? err : 0;
1814 }
1815 return 1;
1816 }
1817
1818 return 0;
1819 }
1820
1821 static int thread__resolve_callchain_sample(struct thread *thread,
1822 struct callchain_cursor *cursor,
1823 struct perf_evsel *evsel,
1824 struct perf_sample *sample,
1825 struct symbol **parent,
1826 struct addr_location *root_al,
1827 int max_stack)
1828 {
1829 struct branch_stack *branch = sample->branch_stack;
1830 struct ip_callchain *chain = sample->callchain;
1831 int chain_nr = chain->nr;
1832 u8 cpumode = PERF_RECORD_MISC_USER;
1833 int i, j, err, nr_entries;
1834 int skip_idx = -1;
1835 int first_call = 0;
1836
1837 if (perf_evsel__has_branch_callstack(evsel)) {
1838 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1839 root_al, max_stack);
1840 if (err)
1841 return (err < 0) ? err : 0;
1842 }
1843
1844 /*
1845 * Based on DWARF debug information, some architectures skip
1846 * a callchain entry saved by the kernel.
1847 */
1848 skip_idx = arch_skip_callchain_idx(thread, chain);
1849
1850 /*
1851 * Add branches to call stack for easier browsing. This gives
1852 * more context for a sample than just the callers.
1853 *
1854 * This uses individual histograms of paths compared to the
1855 * aggregated histograms the normal LBR mode uses.
1856 *
1857 * Limitations for now:
1858 * - No extra filters
1859 * - No annotations (should annotate somehow)
1860 */
1861
1862 if (branch && callchain_param.branch_callstack) {
1863 int nr = min(max_stack, (int)branch->nr);
1864 struct branch_entry be[nr];
1865
1866 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1867 pr_warning("corrupted branch chain. skipping...\n");
1868 goto check_calls;
1869 }
1870
1871 for (i = 0; i < nr; i++) {
1872 if (callchain_param.order == ORDER_CALLEE) {
1873 be[i] = branch->entries[i];
1874 /*
1875 * Check for overlap into the callchain.
1876 * The return address is one off compared to
1877 * the branch entry. To adjust for this
1878 * assume the calling instruction is not longer
1879 * than 8 bytes.
1880 */
1881 if (i == skip_idx ||
1882 chain->ips[first_call] >= PERF_CONTEXT_MAX)
1883 first_call++;
1884 else if (be[i].from < chain->ips[first_call] &&
1885 be[i].from >= chain->ips[first_call] - 8)
1886 first_call++;
1887 } else
1888 be[i] = branch->entries[branch->nr - i - 1];
1889 }
1890
1891 nr = remove_loops(be, nr);
1892
1893 for (i = 0; i < nr; i++) {
1894 err = add_callchain_ip(thread, cursor, parent, root_al,
1895 NULL, be[i].to);
1896 if (!err)
1897 err = add_callchain_ip(thread, cursor, parent, root_al,
1898 NULL, be[i].from);
1899 if (err == -EINVAL)
1900 break;
1901 if (err)
1902 return err;
1903 }
1904 chain_nr -= nr;
1905 }
1906
1907 check_calls:
1908 for (i = first_call, nr_entries = 0;
1909 i < chain_nr && nr_entries < max_stack; i++) {
1910 u64 ip;
1911
1912 if (callchain_param.order == ORDER_CALLEE)
1913 j = i;
1914 else
1915 j = chain->nr - i - 1;
1916
1917 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1918 if (j == skip_idx)
1919 continue;
1920 #endif
1921 ip = chain->ips[j];
1922
1923 if (ip < PERF_CONTEXT_MAX)
1924 ++nr_entries;
1925
1926 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1927
1928 if (err)
1929 return (err < 0) ? err : 0;
1930 }
1931
1932 return 0;
1933 }
1934
1935 static int unwind_entry(struct unwind_entry *entry, void *arg)
1936 {
1937 struct callchain_cursor *cursor = arg;
1938
1939 if (symbol_conf.hide_unresolved && entry->sym == NULL)
1940 return 0;
1941 return callchain_cursor_append(cursor, entry->ip,
1942 entry->map, entry->sym);
1943 }
1944
1945 static int thread__resolve_callchain_unwind(struct thread *thread,
1946 struct callchain_cursor *cursor,
1947 struct perf_evsel *evsel,
1948 struct perf_sample *sample,
1949 int max_stack)
1950 {
1951 /* Can we do dwarf post unwind? */
1952 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1953 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1954 return 0;
1955
1956 /* Bail out if nothing was captured. */
1957 if ((!sample->user_regs.regs) ||
1958 (!sample->user_stack.size))
1959 return 0;
1960
1961 return unwind__get_entries(unwind_entry, cursor,
1962 thread, sample, max_stack);
1963 }
1964
1965 int thread__resolve_callchain(struct thread *thread,
1966 struct callchain_cursor *cursor,
1967 struct perf_evsel *evsel,
1968 struct perf_sample *sample,
1969 struct symbol **parent,
1970 struct addr_location *root_al,
1971 int max_stack)
1972 {
1973 int ret = 0;
1974
1975 callchain_cursor_reset(&callchain_cursor);
1976
1977 if (callchain_param.order == ORDER_CALLEE) {
1978 ret = thread__resolve_callchain_sample(thread, cursor,
1979 evsel, sample,
1980 parent, root_al,
1981 max_stack);
1982 if (ret)
1983 return ret;
1984 ret = thread__resolve_callchain_unwind(thread, cursor,
1985 evsel, sample,
1986 max_stack);
1987 } else {
1988 ret = thread__resolve_callchain_unwind(thread, cursor,
1989 evsel, sample,
1990 max_stack);
1991 if (ret)
1992 return ret;
1993 ret = thread__resolve_callchain_sample(thread, cursor,
1994 evsel, sample,
1995 parent, root_al,
1996 max_stack);
1997 }
1998
1999 return ret;
2000 }
2001
2002 int machine__for_each_thread(struct machine *machine,
2003 int (*fn)(struct thread *thread, void *p),
2004 void *priv)
2005 {
2006 struct rb_node *nd;
2007 struct thread *thread;
2008 int rc = 0;
2009
2010 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2011 thread = rb_entry(nd, struct thread, rb_node);
2012 rc = fn(thread, priv);
2013 if (rc != 0)
2014 return rc;
2015 }
2016
2017 list_for_each_entry(thread, &machine->dead_threads, node) {
2018 rc = fn(thread, priv);
2019 if (rc != 0)
2020 return rc;
2021 }
2022 return rc;
2023 }
2024
2025 int machines__for_each_thread(struct machines *machines,
2026 int (*fn)(struct thread *thread, void *p),
2027 void *priv)
2028 {
2029 struct rb_node *nd;
2030 int rc = 0;
2031
2032 rc = machine__for_each_thread(&machines->host, fn, priv);
2033 if (rc != 0)
2034 return rc;
2035
2036 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2037 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2038
2039 rc = machine__for_each_thread(machine, fn, priv);
2040 if (rc != 0)
2041 return rc;
2042 }
2043 return rc;
2044 }
2045
2046 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2047 struct target *target, struct thread_map *threads,
2048 perf_event__handler_t process, bool data_mmap,
2049 unsigned int proc_map_timeout)
2050 {
2051 if (target__has_task(target))
2052 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2053 else if (target__has_cpu(target))
2054 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2055 /* command specified */
2056 return 0;
2057 }
2058
2059 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2060 {
2061 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2062 return -1;
2063
2064 return machine->current_tid[cpu];
2065 }
2066
2067 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2068 pid_t tid)
2069 {
2070 struct thread *thread;
2071
2072 if (cpu < 0)
2073 return -EINVAL;
2074
2075 if (!machine->current_tid) {
2076 int i;
2077
2078 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2079 if (!machine->current_tid)
2080 return -ENOMEM;
2081 for (i = 0; i < MAX_NR_CPUS; i++)
2082 machine->current_tid[i] = -1;
2083 }
2084
2085 if (cpu >= MAX_NR_CPUS) {
2086 pr_err("Requested CPU %d too large. ", cpu);
2087 pr_err("Consider raising MAX_NR_CPUS\n");
2088 return -EINVAL;
2089 }
2090
2091 machine->current_tid[cpu] = tid;
2092
2093 thread = machine__findnew_thread(machine, pid, tid);
2094 if (!thread)
2095 return -ENOMEM;
2096
2097 thread->cpu = cpu;
2098 thread__put(thread);
2099
2100 return 0;
2101 }
2102
2103 int machine__get_kernel_start(struct machine *machine)
2104 {
2105 struct map *map = machine__kernel_map(machine);
2106 int err = 0;
2107
2108 /*
2109 * The only addresses above 2^63 are kernel addresses of a 64-bit
2110 * kernel. Note that addresses are unsigned so that on a 32-bit system
2111 * all addresses including kernel addresses are less than 2^32. In
2112 * that case (32-bit system), if the kernel mapping is unknown, all
2113 * addresses will be assumed to be in user space - see
2114 * machine__kernel_ip().
2115 */
2116 machine->kernel_start = 1ULL << 63;
2117 if (map) {
2118 err = map__load(map, machine->symbol_filter);
2119 if (map->start)
2120 machine->kernel_start = map->start;
2121 }
2122 return err;
2123 }
2124
2125 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2126 {
2127 return dsos__findnew(&machine->dsos, filename);
2128 }
2129
2130 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2131 {
2132 struct machine *machine = vmachine;
2133 struct map *map;
2134 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL);
2135
2136 if (sym == NULL)
2137 return NULL;
2138
2139 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2140 *addrp = map->unmap_ip(map, sym->start);
2141 return sym->name;
2142 }
This page took 0.07918 seconds and 5 git commands to generate.