selinux: fix overflow and 0 length allocations
[deliverable/linux.git] / virt / kvm / arm / arch_timer.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24
25 #include <clocksource/arm_arch_timer.h>
26 #include <asm/arch_timer.h>
27
28 #include <kvm/arm_vgic.h>
29 #include <kvm/arm_arch_timer.h>
30
31 #include "trace.h"
32
33 static struct timecounter *timecounter;
34 static struct workqueue_struct *wqueue;
35 static unsigned int host_vtimer_irq;
36
37 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
38 {
39 vcpu->arch.timer_cpu.active_cleared_last = false;
40 }
41
42 static cycle_t kvm_phys_timer_read(void)
43 {
44 return timecounter->cc->read(timecounter->cc);
45 }
46
47 static bool timer_is_armed(struct arch_timer_cpu *timer)
48 {
49 return timer->armed;
50 }
51
52 /* timer_arm: as in "arm the timer", not as in ARM the company */
53 static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
54 {
55 timer->armed = true;
56 hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
57 HRTIMER_MODE_ABS);
58 }
59
60 static void timer_disarm(struct arch_timer_cpu *timer)
61 {
62 if (timer_is_armed(timer)) {
63 hrtimer_cancel(&timer->timer);
64 cancel_work_sync(&timer->expired);
65 timer->armed = false;
66 }
67 }
68
69 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
70 {
71 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
72
73 /*
74 * We disable the timer in the world switch and let it be
75 * handled by kvm_timer_sync_hwstate(). Getting a timer
76 * interrupt at this point is a sure sign of some major
77 * breakage.
78 */
79 pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
80 return IRQ_HANDLED;
81 }
82
83 /*
84 * Work function for handling the backup timer that we schedule when a vcpu is
85 * no longer running, but had a timer programmed to fire in the future.
86 */
87 static void kvm_timer_inject_irq_work(struct work_struct *work)
88 {
89 struct kvm_vcpu *vcpu;
90
91 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
92 vcpu->arch.timer_cpu.armed = false;
93
94 WARN_ON(!kvm_timer_should_fire(vcpu));
95
96 /*
97 * If the vcpu is blocked we want to wake it up so that it will see
98 * the timer has expired when entering the guest.
99 */
100 kvm_vcpu_kick(vcpu);
101 }
102
103 static u64 kvm_timer_compute_delta(struct kvm_vcpu *vcpu)
104 {
105 cycle_t cval, now;
106
107 cval = vcpu->arch.timer_cpu.cntv_cval;
108 now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
109
110 if (now < cval) {
111 u64 ns;
112
113 ns = cyclecounter_cyc2ns(timecounter->cc,
114 cval - now,
115 timecounter->mask,
116 &timecounter->frac);
117 return ns;
118 }
119
120 return 0;
121 }
122
123 static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
124 {
125 struct arch_timer_cpu *timer;
126 struct kvm_vcpu *vcpu;
127 u64 ns;
128
129 timer = container_of(hrt, struct arch_timer_cpu, timer);
130 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
131
132 /*
133 * Check that the timer has really expired from the guest's
134 * PoV (NTP on the host may have forced it to expire
135 * early). If we should have slept longer, restart it.
136 */
137 ns = kvm_timer_compute_delta(vcpu);
138 if (unlikely(ns)) {
139 hrtimer_forward_now(hrt, ns_to_ktime(ns));
140 return HRTIMER_RESTART;
141 }
142
143 queue_work(wqueue, &timer->expired);
144 return HRTIMER_NORESTART;
145 }
146
147 static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
148 {
149 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
150
151 return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
152 (timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE);
153 }
154
155 bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
156 {
157 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
158 cycle_t cval, now;
159
160 if (!kvm_timer_irq_can_fire(vcpu))
161 return false;
162
163 cval = timer->cntv_cval;
164 now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
165
166 return cval <= now;
167 }
168
169 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level)
170 {
171 int ret;
172 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
173
174 BUG_ON(!vgic_initialized(vcpu->kvm));
175
176 timer->active_cleared_last = false;
177 timer->irq.level = new_level;
178 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->irq.irq,
179 timer->irq.level);
180 ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
181 timer->irq.irq,
182 timer->irq.level);
183 WARN_ON(ret);
184 }
185
186 /*
187 * Check if there was a change in the timer state (should we raise or lower
188 * the line level to the GIC).
189 */
190 static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
191 {
192 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
193
194 /*
195 * If userspace modified the timer registers via SET_ONE_REG before
196 * the vgic was initialized, we mustn't set the timer->irq.level value
197 * because the guest would never see the interrupt. Instead wait
198 * until we call this function from kvm_timer_flush_hwstate.
199 */
200 if (!vgic_initialized(vcpu->kvm) || !timer->enabled)
201 return -ENODEV;
202
203 if (kvm_timer_should_fire(vcpu) != timer->irq.level)
204 kvm_timer_update_irq(vcpu, !timer->irq.level);
205
206 return 0;
207 }
208
209 /*
210 * Schedule the background timer before calling kvm_vcpu_block, so that this
211 * thread is removed from its waitqueue and made runnable when there's a timer
212 * interrupt to handle.
213 */
214 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
215 {
216 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
217
218 BUG_ON(timer_is_armed(timer));
219
220 /*
221 * No need to schedule a background timer if the guest timer has
222 * already expired, because kvm_vcpu_block will return before putting
223 * the thread to sleep.
224 */
225 if (kvm_timer_should_fire(vcpu))
226 return;
227
228 /*
229 * If the timer is not capable of raising interrupts (disabled or
230 * masked), then there's no more work for us to do.
231 */
232 if (!kvm_timer_irq_can_fire(vcpu))
233 return;
234
235 /* The timer has not yet expired, schedule a background timer */
236 timer_arm(timer, kvm_timer_compute_delta(vcpu));
237 }
238
239 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
240 {
241 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
242 timer_disarm(timer);
243 }
244
245 /**
246 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
247 * @vcpu: The vcpu pointer
248 *
249 * Check if the virtual timer has expired while we were running in the host,
250 * and inject an interrupt if that was the case.
251 */
252 void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
253 {
254 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
255 bool phys_active;
256 int ret;
257
258 if (kvm_timer_update_state(vcpu))
259 return;
260
261 /*
262 * If we enter the guest with the virtual input level to the VGIC
263 * asserted, then we have already told the VGIC what we need to, and
264 * we don't need to exit from the guest until the guest deactivates
265 * the already injected interrupt, so therefore we should set the
266 * hardware active state to prevent unnecessary exits from the guest.
267 *
268 * Also, if we enter the guest with the virtual timer interrupt active,
269 * then it must be active on the physical distributor, because we set
270 * the HW bit and the guest must be able to deactivate the virtual and
271 * physical interrupt at the same time.
272 *
273 * Conversely, if the virtual input level is deasserted and the virtual
274 * interrupt is not active, then always clear the hardware active state
275 * to ensure that hardware interrupts from the timer triggers a guest
276 * exit.
277 */
278 phys_active = timer->irq.level ||
279 kvm_vgic_map_is_active(vcpu, timer->irq.irq);
280
281 /*
282 * We want to avoid hitting the (re)distributor as much as
283 * possible, as this is a potentially expensive MMIO access
284 * (not to mention locks in the irq layer), and a solution for
285 * this is to cache the "active" state in memory.
286 *
287 * Things to consider: we cannot cache an "active set" state,
288 * because the HW can change this behind our back (it becomes
289 * "clear" in the HW). We must then restrict the caching to
290 * the "clear" state.
291 *
292 * The cache is invalidated on:
293 * - vcpu put, indicating that the HW cannot be trusted to be
294 * in a sane state on the next vcpu load,
295 * - any change in the interrupt state
296 *
297 * Usage conditions:
298 * - cached value is "active clear"
299 * - value to be programmed is "active clear"
300 */
301 if (timer->active_cleared_last && !phys_active)
302 return;
303
304 ret = irq_set_irqchip_state(host_vtimer_irq,
305 IRQCHIP_STATE_ACTIVE,
306 phys_active);
307 WARN_ON(ret);
308
309 timer->active_cleared_last = !phys_active;
310 }
311
312 /**
313 * kvm_timer_sync_hwstate - sync timer state from cpu
314 * @vcpu: The vcpu pointer
315 *
316 * Check if the virtual timer has expired while we were running in the guest,
317 * and inject an interrupt if that was the case.
318 */
319 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
320 {
321 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
322
323 BUG_ON(timer_is_armed(timer));
324
325 /*
326 * The guest could have modified the timer registers or the timer
327 * could have expired, update the timer state.
328 */
329 kvm_timer_update_state(vcpu);
330 }
331
332 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
333 const struct kvm_irq_level *irq)
334 {
335 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
336
337 /*
338 * The vcpu timer irq number cannot be determined in
339 * kvm_timer_vcpu_init() because it is called much before
340 * kvm_vcpu_set_target(). To handle this, we determine
341 * vcpu timer irq number when the vcpu is reset.
342 */
343 timer->irq.irq = irq->irq;
344
345 /*
346 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
347 * and to 0 for ARMv7. We provide an implementation that always
348 * resets the timer to be disabled and unmasked and is compliant with
349 * the ARMv7 architecture.
350 */
351 timer->cntv_ctl = 0;
352 kvm_timer_update_state(vcpu);
353
354 return 0;
355 }
356
357 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
358 {
359 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
360
361 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
362 hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
363 timer->timer.function = kvm_timer_expire;
364 }
365
366 static void kvm_timer_init_interrupt(void *info)
367 {
368 enable_percpu_irq(host_vtimer_irq, 0);
369 }
370
371 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
372 {
373 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
374
375 switch (regid) {
376 case KVM_REG_ARM_TIMER_CTL:
377 timer->cntv_ctl = value;
378 break;
379 case KVM_REG_ARM_TIMER_CNT:
380 vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
381 break;
382 case KVM_REG_ARM_TIMER_CVAL:
383 timer->cntv_cval = value;
384 break;
385 default:
386 return -1;
387 }
388
389 kvm_timer_update_state(vcpu);
390 return 0;
391 }
392
393 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
394 {
395 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
396
397 switch (regid) {
398 case KVM_REG_ARM_TIMER_CTL:
399 return timer->cntv_ctl;
400 case KVM_REG_ARM_TIMER_CNT:
401 return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
402 case KVM_REG_ARM_TIMER_CVAL:
403 return timer->cntv_cval;
404 }
405 return (u64)-1;
406 }
407
408 static int kvm_timer_starting_cpu(unsigned int cpu)
409 {
410 kvm_timer_init_interrupt(NULL);
411 return 0;
412 }
413
414 static int kvm_timer_dying_cpu(unsigned int cpu)
415 {
416 disable_percpu_irq(host_vtimer_irq);
417 return 0;
418 }
419
420 int kvm_timer_hyp_init(void)
421 {
422 struct arch_timer_kvm_info *info;
423 int err;
424
425 info = arch_timer_get_kvm_info();
426 timecounter = &info->timecounter;
427
428 if (info->virtual_irq <= 0) {
429 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
430 info->virtual_irq);
431 return -ENODEV;
432 }
433 host_vtimer_irq = info->virtual_irq;
434
435 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
436 "kvm guest timer", kvm_get_running_vcpus());
437 if (err) {
438 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
439 host_vtimer_irq, err);
440 goto out;
441 }
442
443 wqueue = create_singlethread_workqueue("kvm_arch_timer");
444 if (!wqueue) {
445 err = -ENOMEM;
446 goto out_free;
447 }
448
449 kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
450
451 cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
452 "AP_KVM_ARM_TIMER_STARTING", kvm_timer_starting_cpu,
453 kvm_timer_dying_cpu);
454 goto out;
455 out_free:
456 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
457 out:
458 return err;
459 }
460
461 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
462 {
463 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
464
465 timer_disarm(timer);
466 kvm_vgic_unmap_phys_irq(vcpu, timer->irq.irq);
467 }
468
469 int kvm_timer_enable(struct kvm_vcpu *vcpu)
470 {
471 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
472 struct irq_desc *desc;
473 struct irq_data *data;
474 int phys_irq;
475 int ret;
476
477 if (timer->enabled)
478 return 0;
479
480 /*
481 * Find the physical IRQ number corresponding to the host_vtimer_irq
482 */
483 desc = irq_to_desc(host_vtimer_irq);
484 if (!desc) {
485 kvm_err("%s: no interrupt descriptor\n", __func__);
486 return -EINVAL;
487 }
488
489 data = irq_desc_get_irq_data(desc);
490 while (data->parent_data)
491 data = data->parent_data;
492
493 phys_irq = data->hwirq;
494
495 /*
496 * Tell the VGIC that the virtual interrupt is tied to a
497 * physical interrupt. We do that once per VCPU.
498 */
499 ret = kvm_vgic_map_phys_irq(vcpu, timer->irq.irq, phys_irq);
500 if (ret)
501 return ret;
502
503
504 /*
505 * There is a potential race here between VCPUs starting for the first
506 * time, which may be enabling the timer multiple times. That doesn't
507 * hurt though, because we're just setting a variable to the same
508 * variable that it already was. The important thing is that all
509 * VCPUs have the enabled variable set, before entering the guest, if
510 * the arch timers are enabled.
511 */
512 if (timecounter && wqueue)
513 timer->enabled = 1;
514
515 return 0;
516 }
517
518 void kvm_timer_init(struct kvm *kvm)
519 {
520 kvm->arch.timer.cntvoff = kvm_phys_timer_read();
521 }
This page took 0.042143 seconds and 5 git commands to generate.