gpiolib-acpi: Duplicate con_id string when adding it to the crs lookup list
[deliverable/linux.git] / virt / kvm / arm / arch_timer.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/of_irq.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24
25 #include <clocksource/arm_arch_timer.h>
26 #include <asm/arch_timer.h>
27
28 #include <kvm/arm_vgic.h>
29 #include <kvm/arm_arch_timer.h>
30
31 #include "trace.h"
32
33 static struct timecounter *timecounter;
34 static struct workqueue_struct *wqueue;
35 static unsigned int host_vtimer_irq;
36
37 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
38 {
39 vcpu->arch.timer_cpu.active_cleared_last = false;
40 }
41
42 static cycle_t kvm_phys_timer_read(void)
43 {
44 return timecounter->cc->read(timecounter->cc);
45 }
46
47 static bool timer_is_armed(struct arch_timer_cpu *timer)
48 {
49 return timer->armed;
50 }
51
52 /* timer_arm: as in "arm the timer", not as in ARM the company */
53 static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
54 {
55 timer->armed = true;
56 hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
57 HRTIMER_MODE_ABS);
58 }
59
60 static void timer_disarm(struct arch_timer_cpu *timer)
61 {
62 if (timer_is_armed(timer)) {
63 hrtimer_cancel(&timer->timer);
64 cancel_work_sync(&timer->expired);
65 timer->armed = false;
66 }
67 }
68
69 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
70 {
71 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
72
73 /*
74 * We disable the timer in the world switch and let it be
75 * handled by kvm_timer_sync_hwstate(). Getting a timer
76 * interrupt at this point is a sure sign of some major
77 * breakage.
78 */
79 pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
80 return IRQ_HANDLED;
81 }
82
83 /*
84 * Work function for handling the backup timer that we schedule when a vcpu is
85 * no longer running, but had a timer programmed to fire in the future.
86 */
87 static void kvm_timer_inject_irq_work(struct work_struct *work)
88 {
89 struct kvm_vcpu *vcpu;
90
91 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
92 vcpu->arch.timer_cpu.armed = false;
93
94 /*
95 * If the vcpu is blocked we want to wake it up so that it will see
96 * the timer has expired when entering the guest.
97 */
98 kvm_vcpu_kick(vcpu);
99 }
100
101 static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
102 {
103 struct arch_timer_cpu *timer;
104 timer = container_of(hrt, struct arch_timer_cpu, timer);
105 queue_work(wqueue, &timer->expired);
106 return HRTIMER_NORESTART;
107 }
108
109 static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
110 {
111 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
112
113 return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
114 (timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE);
115 }
116
117 bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
118 {
119 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
120 cycle_t cval, now;
121
122 if (!kvm_timer_irq_can_fire(vcpu))
123 return false;
124
125 cval = timer->cntv_cval;
126 now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
127
128 return cval <= now;
129 }
130
131 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level)
132 {
133 int ret;
134 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
135
136 BUG_ON(!vgic_initialized(vcpu->kvm));
137
138 timer->active_cleared_last = false;
139 timer->irq.level = new_level;
140 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->map->virt_irq,
141 timer->irq.level);
142 ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
143 timer->map,
144 timer->irq.level);
145 WARN_ON(ret);
146 }
147
148 /*
149 * Check if there was a change in the timer state (should we raise or lower
150 * the line level to the GIC).
151 */
152 static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
153 {
154 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
155
156 /*
157 * If userspace modified the timer registers via SET_ONE_REG before
158 * the vgic was initialized, we mustn't set the timer->irq.level value
159 * because the guest would never see the interrupt. Instead wait
160 * until we call this function from kvm_timer_flush_hwstate.
161 */
162 if (!vgic_initialized(vcpu->kvm))
163 return -ENODEV;
164
165 if (kvm_timer_should_fire(vcpu) != timer->irq.level)
166 kvm_timer_update_irq(vcpu, !timer->irq.level);
167
168 return 0;
169 }
170
171 /*
172 * Schedule the background timer before calling kvm_vcpu_block, so that this
173 * thread is removed from its waitqueue and made runnable when there's a timer
174 * interrupt to handle.
175 */
176 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
177 {
178 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
179 u64 ns;
180 cycle_t cval, now;
181
182 BUG_ON(timer_is_armed(timer));
183
184 /*
185 * No need to schedule a background timer if the guest timer has
186 * already expired, because kvm_vcpu_block will return before putting
187 * the thread to sleep.
188 */
189 if (kvm_timer_should_fire(vcpu))
190 return;
191
192 /*
193 * If the timer is not capable of raising interrupts (disabled or
194 * masked), then there's no more work for us to do.
195 */
196 if (!kvm_timer_irq_can_fire(vcpu))
197 return;
198
199 /* The timer has not yet expired, schedule a background timer */
200 cval = timer->cntv_cval;
201 now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
202
203 ns = cyclecounter_cyc2ns(timecounter->cc,
204 cval - now,
205 timecounter->mask,
206 &timecounter->frac);
207 timer_arm(timer, ns);
208 }
209
210 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
211 {
212 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
213 timer_disarm(timer);
214 }
215
216 /**
217 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
218 * @vcpu: The vcpu pointer
219 *
220 * Check if the virtual timer has expired while we were running in the host,
221 * and inject an interrupt if that was the case.
222 */
223 void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
224 {
225 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
226 bool phys_active;
227 int ret;
228
229 if (kvm_timer_update_state(vcpu))
230 return;
231
232 /*
233 * If we enter the guest with the virtual input level to the VGIC
234 * asserted, then we have already told the VGIC what we need to, and
235 * we don't need to exit from the guest until the guest deactivates
236 * the already injected interrupt, so therefore we should set the
237 * hardware active state to prevent unnecessary exits from the guest.
238 *
239 * Also, if we enter the guest with the virtual timer interrupt active,
240 * then it must be active on the physical distributor, because we set
241 * the HW bit and the guest must be able to deactivate the virtual and
242 * physical interrupt at the same time.
243 *
244 * Conversely, if the virtual input level is deasserted and the virtual
245 * interrupt is not active, then always clear the hardware active state
246 * to ensure that hardware interrupts from the timer triggers a guest
247 * exit.
248 */
249 if (timer->irq.level || kvm_vgic_map_is_active(vcpu, timer->map))
250 phys_active = true;
251 else
252 phys_active = false;
253
254 /*
255 * We want to avoid hitting the (re)distributor as much as
256 * possible, as this is a potentially expensive MMIO access
257 * (not to mention locks in the irq layer), and a solution for
258 * this is to cache the "active" state in memory.
259 *
260 * Things to consider: we cannot cache an "active set" state,
261 * because the HW can change this behind our back (it becomes
262 * "clear" in the HW). We must then restrict the caching to
263 * the "clear" state.
264 *
265 * The cache is invalidated on:
266 * - vcpu put, indicating that the HW cannot be trusted to be
267 * in a sane state on the next vcpu load,
268 * - any change in the interrupt state
269 *
270 * Usage conditions:
271 * - cached value is "active clear"
272 * - value to be programmed is "active clear"
273 */
274 if (timer->active_cleared_last && !phys_active)
275 return;
276
277 ret = irq_set_irqchip_state(timer->map->irq,
278 IRQCHIP_STATE_ACTIVE,
279 phys_active);
280 WARN_ON(ret);
281
282 timer->active_cleared_last = !phys_active;
283 }
284
285 /**
286 * kvm_timer_sync_hwstate - sync timer state from cpu
287 * @vcpu: The vcpu pointer
288 *
289 * Check if the virtual timer has expired while we were running in the guest,
290 * and inject an interrupt if that was the case.
291 */
292 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
293 {
294 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
295
296 BUG_ON(timer_is_armed(timer));
297
298 /*
299 * The guest could have modified the timer registers or the timer
300 * could have expired, update the timer state.
301 */
302 kvm_timer_update_state(vcpu);
303 }
304
305 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
306 const struct kvm_irq_level *irq)
307 {
308 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
309 struct irq_phys_map *map;
310
311 /*
312 * The vcpu timer irq number cannot be determined in
313 * kvm_timer_vcpu_init() because it is called much before
314 * kvm_vcpu_set_target(). To handle this, we determine
315 * vcpu timer irq number when the vcpu is reset.
316 */
317 timer->irq.irq = irq->irq;
318
319 /*
320 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
321 * and to 0 for ARMv7. We provide an implementation that always
322 * resets the timer to be disabled and unmasked and is compliant with
323 * the ARMv7 architecture.
324 */
325 timer->cntv_ctl = 0;
326 kvm_timer_update_state(vcpu);
327
328 /*
329 * Tell the VGIC that the virtual interrupt is tied to a
330 * physical interrupt. We do that once per VCPU.
331 */
332 map = kvm_vgic_map_phys_irq(vcpu, irq->irq, host_vtimer_irq);
333 if (WARN_ON(IS_ERR(map)))
334 return PTR_ERR(map);
335
336 timer->map = map;
337 return 0;
338 }
339
340 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
341 {
342 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
343
344 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
345 hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
346 timer->timer.function = kvm_timer_expire;
347 }
348
349 static void kvm_timer_init_interrupt(void *info)
350 {
351 enable_percpu_irq(host_vtimer_irq, 0);
352 }
353
354 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
355 {
356 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
357
358 switch (regid) {
359 case KVM_REG_ARM_TIMER_CTL:
360 timer->cntv_ctl = value;
361 break;
362 case KVM_REG_ARM_TIMER_CNT:
363 vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
364 break;
365 case KVM_REG_ARM_TIMER_CVAL:
366 timer->cntv_cval = value;
367 break;
368 default:
369 return -1;
370 }
371
372 kvm_timer_update_state(vcpu);
373 return 0;
374 }
375
376 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
377 {
378 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
379
380 switch (regid) {
381 case KVM_REG_ARM_TIMER_CTL:
382 return timer->cntv_ctl;
383 case KVM_REG_ARM_TIMER_CNT:
384 return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
385 case KVM_REG_ARM_TIMER_CVAL:
386 return timer->cntv_cval;
387 }
388 return (u64)-1;
389 }
390
391 static int kvm_timer_cpu_notify(struct notifier_block *self,
392 unsigned long action, void *cpu)
393 {
394 switch (action) {
395 case CPU_STARTING:
396 case CPU_STARTING_FROZEN:
397 kvm_timer_init_interrupt(NULL);
398 break;
399 case CPU_DYING:
400 case CPU_DYING_FROZEN:
401 disable_percpu_irq(host_vtimer_irq);
402 break;
403 }
404
405 return NOTIFY_OK;
406 }
407
408 static struct notifier_block kvm_timer_cpu_nb = {
409 .notifier_call = kvm_timer_cpu_notify,
410 };
411
412 static const struct of_device_id arch_timer_of_match[] = {
413 { .compatible = "arm,armv7-timer", },
414 { .compatible = "arm,armv8-timer", },
415 {},
416 };
417
418 int kvm_timer_hyp_init(void)
419 {
420 struct device_node *np;
421 unsigned int ppi;
422 int err;
423
424 timecounter = arch_timer_get_timecounter();
425 if (!timecounter)
426 return -ENODEV;
427
428 np = of_find_matching_node(NULL, arch_timer_of_match);
429 if (!np) {
430 kvm_err("kvm_arch_timer: can't find DT node\n");
431 return -ENODEV;
432 }
433
434 ppi = irq_of_parse_and_map(np, 2);
435 if (!ppi) {
436 kvm_err("kvm_arch_timer: no virtual timer interrupt\n");
437 err = -EINVAL;
438 goto out;
439 }
440
441 err = request_percpu_irq(ppi, kvm_arch_timer_handler,
442 "kvm guest timer", kvm_get_running_vcpus());
443 if (err) {
444 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
445 ppi, err);
446 goto out;
447 }
448
449 host_vtimer_irq = ppi;
450
451 err = __register_cpu_notifier(&kvm_timer_cpu_nb);
452 if (err) {
453 kvm_err("Cannot register timer CPU notifier\n");
454 goto out_free;
455 }
456
457 wqueue = create_singlethread_workqueue("kvm_arch_timer");
458 if (!wqueue) {
459 err = -ENOMEM;
460 goto out_free;
461 }
462
463 kvm_info("%s IRQ%d\n", np->name, ppi);
464 on_each_cpu(kvm_timer_init_interrupt, NULL, 1);
465
466 goto out;
467 out_free:
468 free_percpu_irq(ppi, kvm_get_running_vcpus());
469 out:
470 of_node_put(np);
471 return err;
472 }
473
474 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
475 {
476 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
477
478 timer_disarm(timer);
479 if (timer->map)
480 kvm_vgic_unmap_phys_irq(vcpu, timer->map);
481 }
482
483 void kvm_timer_enable(struct kvm *kvm)
484 {
485 if (kvm->arch.timer.enabled)
486 return;
487
488 /*
489 * There is a potential race here between VCPUs starting for the first
490 * time, which may be enabling the timer multiple times. That doesn't
491 * hurt though, because we're just setting a variable to the same
492 * variable that it already was. The important thing is that all
493 * VCPUs have the enabled variable set, before entering the guest, if
494 * the arch timers are enabled.
495 */
496 if (timecounter && wqueue)
497 kvm->arch.timer.enabled = 1;
498 }
499
500 void kvm_timer_init(struct kvm *kvm)
501 {
502 kvm->arch.timer.cntvoff = kvm_phys_timer_read();
503 }
This page took 0.041403 seconds and 5 git commands to generate.