arm64: KVM: Add VGIC device control for arm64
[deliverable/linux.git] / virt / kvm / arm / vgic.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending
40 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
41 * bitmap (this bitmap is updated by both user land ioctls and guest
42 * mmio ops, and other in-kernel peripherals such as the
43 * arch. timers) and indicate the 'wire' state.
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_state & dist->irq_enable
49 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - The same is true when injecting an interrupt, except that we only
55 * consider a single interrupt at a time. The irq_spi_cpu array
56 * contains the target CPU for each SPI.
57 *
58 * The handling of level interrupts adds some extra complexity. We
59 * need to track when the interrupt has been EOIed, so we can sample
60 * the 'line' again. This is achieved as such:
61 *
62 * - When a level interrupt is moved onto a vcpu, the corresponding
63 * bit in irq_active is set. As long as this bit is set, the line
64 * will be ignored for further interrupts. The interrupt is injected
65 * into the vcpu with the GICH_LR_EOI bit set (generate a
66 * maintenance interrupt on EOI).
67 * - When the interrupt is EOIed, the maintenance interrupt fires,
68 * and clears the corresponding bit in irq_active. This allow the
69 * interrupt line to be sampled again.
70 */
71
72 #define VGIC_ADDR_UNDEF (-1)
73 #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
74
75 #define PRODUCT_ID_KVM 0x4b /* ASCII code K */
76 #define IMPLEMENTER_ARM 0x43b
77 #define GICC_ARCH_VERSION_V2 0x2
78
79 /* Physical address of vgic virtual cpu interface */
80 static phys_addr_t vgic_vcpu_base;
81
82 /* Virtual control interface base address */
83 static void __iomem *vgic_vctrl_base;
84
85 static struct device_node *vgic_node;
86
87 #define ACCESS_READ_VALUE (1 << 0)
88 #define ACCESS_READ_RAZ (0 << 0)
89 #define ACCESS_READ_MASK(x) ((x) & (1 << 0))
90 #define ACCESS_WRITE_IGNORED (0 << 1)
91 #define ACCESS_WRITE_SETBIT (1 << 1)
92 #define ACCESS_WRITE_CLEARBIT (2 << 1)
93 #define ACCESS_WRITE_VALUE (3 << 1)
94 #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
95
96 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
97 static void vgic_update_state(struct kvm *kvm);
98 static void vgic_kick_vcpus(struct kvm *kvm);
99 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
100 static u32 vgic_nr_lr;
101
102 static unsigned int vgic_maint_irq;
103
104 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
105 int cpuid, u32 offset)
106 {
107 offset >>= 2;
108 if (!offset)
109 return x->percpu[cpuid].reg;
110 else
111 return x->shared.reg + offset - 1;
112 }
113
114 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
115 int cpuid, int irq)
116 {
117 if (irq < VGIC_NR_PRIVATE_IRQS)
118 return test_bit(irq, x->percpu[cpuid].reg_ul);
119
120 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
121 }
122
123 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
124 int irq, int val)
125 {
126 unsigned long *reg;
127
128 if (irq < VGIC_NR_PRIVATE_IRQS) {
129 reg = x->percpu[cpuid].reg_ul;
130 } else {
131 reg = x->shared.reg_ul;
132 irq -= VGIC_NR_PRIVATE_IRQS;
133 }
134
135 if (val)
136 set_bit(irq, reg);
137 else
138 clear_bit(irq, reg);
139 }
140
141 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
142 {
143 if (unlikely(cpuid >= VGIC_MAX_CPUS))
144 return NULL;
145 return x->percpu[cpuid].reg_ul;
146 }
147
148 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
149 {
150 return x->shared.reg_ul;
151 }
152
153 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
154 {
155 offset >>= 2;
156 BUG_ON(offset > (VGIC_NR_IRQS / 4));
157 if (offset < 8)
158 return x->percpu[cpuid] + offset;
159 else
160 return x->shared + offset - 8;
161 }
162
163 #define VGIC_CFG_LEVEL 0
164 #define VGIC_CFG_EDGE 1
165
166 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
167 {
168 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
169 int irq_val;
170
171 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
172 return irq_val == VGIC_CFG_EDGE;
173 }
174
175 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
176 {
177 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
178
179 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
180 }
181
182 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
183 {
184 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
185
186 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
187 }
188
189 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
190 {
191 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
192
193 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
194 }
195
196 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
197 {
198 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
199
200 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
201 }
202
203 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
204 {
205 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
206
207 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
208 }
209
210 static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
211 {
212 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
213
214 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
215 }
216
217 static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
218 {
219 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
220
221 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
222 }
223
224 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
225 {
226 if (irq < VGIC_NR_PRIVATE_IRQS)
227 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
228 else
229 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
230 vcpu->arch.vgic_cpu.pending_shared);
231 }
232
233 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
234 {
235 if (irq < VGIC_NR_PRIVATE_IRQS)
236 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
237 else
238 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
239 vcpu->arch.vgic_cpu.pending_shared);
240 }
241
242 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
243 {
244 return *((u32 *)mmio->data) & mask;
245 }
246
247 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
248 {
249 *((u32 *)mmio->data) = value & mask;
250 }
251
252 /**
253 * vgic_reg_access - access vgic register
254 * @mmio: pointer to the data describing the mmio access
255 * @reg: pointer to the virtual backing of vgic distributor data
256 * @offset: least significant 2 bits used for word offset
257 * @mode: ACCESS_ mode (see defines above)
258 *
259 * Helper to make vgic register access easier using one of the access
260 * modes defined for vgic register access
261 * (read,raz,write-ignored,setbit,clearbit,write)
262 */
263 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
264 phys_addr_t offset, int mode)
265 {
266 int word_offset = (offset & 3) * 8;
267 u32 mask = (1UL << (mmio->len * 8)) - 1;
268 u32 regval;
269
270 /*
271 * Any alignment fault should have been delivered to the guest
272 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
273 */
274
275 if (reg) {
276 regval = *reg;
277 } else {
278 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
279 regval = 0;
280 }
281
282 if (mmio->is_write) {
283 u32 data = mmio_data_read(mmio, mask) << word_offset;
284 switch (ACCESS_WRITE_MASK(mode)) {
285 case ACCESS_WRITE_IGNORED:
286 return;
287
288 case ACCESS_WRITE_SETBIT:
289 regval |= data;
290 break;
291
292 case ACCESS_WRITE_CLEARBIT:
293 regval &= ~data;
294 break;
295
296 case ACCESS_WRITE_VALUE:
297 regval = (regval & ~(mask << word_offset)) | data;
298 break;
299 }
300 *reg = regval;
301 } else {
302 switch (ACCESS_READ_MASK(mode)) {
303 case ACCESS_READ_RAZ:
304 regval = 0;
305 /* fall through */
306
307 case ACCESS_READ_VALUE:
308 mmio_data_write(mmio, mask, regval >> word_offset);
309 }
310 }
311 }
312
313 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
314 struct kvm_exit_mmio *mmio, phys_addr_t offset)
315 {
316 u32 reg;
317 u32 word_offset = offset & 3;
318
319 switch (offset & ~3) {
320 case 0: /* GICD_CTLR */
321 reg = vcpu->kvm->arch.vgic.enabled;
322 vgic_reg_access(mmio, &reg, word_offset,
323 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
324 if (mmio->is_write) {
325 vcpu->kvm->arch.vgic.enabled = reg & 1;
326 vgic_update_state(vcpu->kvm);
327 return true;
328 }
329 break;
330
331 case 4: /* GICD_TYPER */
332 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
333 reg |= (VGIC_NR_IRQS >> 5) - 1;
334 vgic_reg_access(mmio, &reg, word_offset,
335 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
336 break;
337
338 case 8: /* GICD_IIDR */
339 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
340 vgic_reg_access(mmio, &reg, word_offset,
341 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
342 break;
343 }
344
345 return false;
346 }
347
348 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
349 struct kvm_exit_mmio *mmio, phys_addr_t offset)
350 {
351 vgic_reg_access(mmio, NULL, offset,
352 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
353 return false;
354 }
355
356 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
357 struct kvm_exit_mmio *mmio,
358 phys_addr_t offset)
359 {
360 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
361 vcpu->vcpu_id, offset);
362 vgic_reg_access(mmio, reg, offset,
363 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
364 if (mmio->is_write) {
365 vgic_update_state(vcpu->kvm);
366 return true;
367 }
368
369 return false;
370 }
371
372 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
373 struct kvm_exit_mmio *mmio,
374 phys_addr_t offset)
375 {
376 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
377 vcpu->vcpu_id, offset);
378 vgic_reg_access(mmio, reg, offset,
379 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
380 if (mmio->is_write) {
381 if (offset < 4) /* Force SGI enabled */
382 *reg |= 0xffff;
383 vgic_retire_disabled_irqs(vcpu);
384 vgic_update_state(vcpu->kvm);
385 return true;
386 }
387
388 return false;
389 }
390
391 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
392 struct kvm_exit_mmio *mmio,
393 phys_addr_t offset)
394 {
395 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
396 vcpu->vcpu_id, offset);
397 vgic_reg_access(mmio, reg, offset,
398 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
399 if (mmio->is_write) {
400 vgic_update_state(vcpu->kvm);
401 return true;
402 }
403
404 return false;
405 }
406
407 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
408 struct kvm_exit_mmio *mmio,
409 phys_addr_t offset)
410 {
411 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
412 vcpu->vcpu_id, offset);
413 vgic_reg_access(mmio, reg, offset,
414 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
415 if (mmio->is_write) {
416 vgic_update_state(vcpu->kvm);
417 return true;
418 }
419
420 return false;
421 }
422
423 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
424 struct kvm_exit_mmio *mmio,
425 phys_addr_t offset)
426 {
427 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
428 vcpu->vcpu_id, offset);
429 vgic_reg_access(mmio, reg, offset,
430 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
431 return false;
432 }
433
434 #define GICD_ITARGETSR_SIZE 32
435 #define GICD_CPUTARGETS_BITS 8
436 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
437 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
438 {
439 struct vgic_dist *dist = &kvm->arch.vgic;
440 int i;
441 u32 val = 0;
442
443 irq -= VGIC_NR_PRIVATE_IRQS;
444
445 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
446 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
447
448 return val;
449 }
450
451 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
452 {
453 struct vgic_dist *dist = &kvm->arch.vgic;
454 struct kvm_vcpu *vcpu;
455 int i, c;
456 unsigned long *bmap;
457 u32 target;
458
459 irq -= VGIC_NR_PRIVATE_IRQS;
460
461 /*
462 * Pick the LSB in each byte. This ensures we target exactly
463 * one vcpu per IRQ. If the byte is null, assume we target
464 * CPU0.
465 */
466 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
467 int shift = i * GICD_CPUTARGETS_BITS;
468 target = ffs((val >> shift) & 0xffU);
469 target = target ? (target - 1) : 0;
470 dist->irq_spi_cpu[irq + i] = target;
471 kvm_for_each_vcpu(c, vcpu, kvm) {
472 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
473 if (c == target)
474 set_bit(irq + i, bmap);
475 else
476 clear_bit(irq + i, bmap);
477 }
478 }
479 }
480
481 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
482 struct kvm_exit_mmio *mmio,
483 phys_addr_t offset)
484 {
485 u32 reg;
486
487 /* We treat the banked interrupts targets as read-only */
488 if (offset < 32) {
489 u32 roreg = 1 << vcpu->vcpu_id;
490 roreg |= roreg << 8;
491 roreg |= roreg << 16;
492
493 vgic_reg_access(mmio, &roreg, offset,
494 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
495 return false;
496 }
497
498 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
499 vgic_reg_access(mmio, &reg, offset,
500 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
501 if (mmio->is_write) {
502 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
503 vgic_update_state(vcpu->kvm);
504 return true;
505 }
506
507 return false;
508 }
509
510 static u32 vgic_cfg_expand(u16 val)
511 {
512 u32 res = 0;
513 int i;
514
515 /*
516 * Turn a 16bit value like abcd...mnop into a 32bit word
517 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
518 */
519 for (i = 0; i < 16; i++)
520 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
521
522 return res;
523 }
524
525 static u16 vgic_cfg_compress(u32 val)
526 {
527 u16 res = 0;
528 int i;
529
530 /*
531 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
532 * abcd...mnop which is what we really care about.
533 */
534 for (i = 0; i < 16; i++)
535 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
536
537 return res;
538 }
539
540 /*
541 * The distributor uses 2 bits per IRQ for the CFG register, but the
542 * LSB is always 0. As such, we only keep the upper bit, and use the
543 * two above functions to compress/expand the bits
544 */
545 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
546 struct kvm_exit_mmio *mmio, phys_addr_t offset)
547 {
548 u32 val;
549 u32 *reg;
550
551 offset >>= 1;
552 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
553 vcpu->vcpu_id, offset);
554
555 if (offset & 2)
556 val = *reg >> 16;
557 else
558 val = *reg & 0xffff;
559
560 val = vgic_cfg_expand(val);
561 vgic_reg_access(mmio, &val, offset,
562 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
563 if (mmio->is_write) {
564 if (offset < 4) {
565 *reg = ~0U; /* Force PPIs/SGIs to 1 */
566 return false;
567 }
568
569 val = vgic_cfg_compress(val);
570 if (offset & 2) {
571 *reg &= 0xffff;
572 *reg |= val << 16;
573 } else {
574 *reg &= 0xffff << 16;
575 *reg |= val;
576 }
577 }
578
579 return false;
580 }
581
582 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
583 struct kvm_exit_mmio *mmio, phys_addr_t offset)
584 {
585 u32 reg;
586 vgic_reg_access(mmio, &reg, offset,
587 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
588 if (mmio->is_write) {
589 vgic_dispatch_sgi(vcpu, reg);
590 vgic_update_state(vcpu->kvm);
591 return true;
592 }
593
594 return false;
595 }
596
597 #define LR_CPUID(lr) \
598 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
599 #define LR_IRQID(lr) \
600 ((lr) & GICH_LR_VIRTUALID)
601
602 static void vgic_retire_lr(int lr_nr, int irq, struct vgic_cpu *vgic_cpu)
603 {
604 clear_bit(lr_nr, vgic_cpu->lr_used);
605 vgic_cpu->vgic_lr[lr_nr] &= ~GICH_LR_STATE;
606 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
607 }
608
609 /**
610 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
611 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
612 *
613 * Move any pending IRQs that have already been assigned to LRs back to the
614 * emulated distributor state so that the complete emulated state can be read
615 * from the main emulation structures without investigating the LRs.
616 *
617 * Note that IRQs in the active state in the LRs get their pending state moved
618 * to the distributor but the active state stays in the LRs, because we don't
619 * track the active state on the distributor side.
620 */
621 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
622 {
623 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
624 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
625 int vcpu_id = vcpu->vcpu_id;
626 int i, irq, source_cpu;
627 u32 *lr;
628
629 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
630 lr = &vgic_cpu->vgic_lr[i];
631 irq = LR_IRQID(*lr);
632 source_cpu = LR_CPUID(*lr);
633
634 /*
635 * There are three options for the state bits:
636 *
637 * 01: pending
638 * 10: active
639 * 11: pending and active
640 *
641 * If the LR holds only an active interrupt (not pending) then
642 * just leave it alone.
643 */
644 if ((*lr & GICH_LR_STATE) == GICH_LR_ACTIVE_BIT)
645 continue;
646
647 /*
648 * Reestablish the pending state on the distributor and the
649 * CPU interface. It may have already been pending, but that
650 * is fine, then we are only setting a few bits that were
651 * already set.
652 */
653 vgic_dist_irq_set(vcpu, irq);
654 if (irq < VGIC_NR_SGIS)
655 dist->irq_sgi_sources[vcpu_id][irq] |= 1 << source_cpu;
656 *lr &= ~GICH_LR_PENDING_BIT;
657
658 /*
659 * If there's no state left on the LR (it could still be
660 * active), then the LR does not hold any useful info and can
661 * be marked as free for other use.
662 */
663 if (!(*lr & GICH_LR_STATE))
664 vgic_retire_lr(i, irq, vgic_cpu);
665
666 /* Finally update the VGIC state. */
667 vgic_update_state(vcpu->kvm);
668 }
669 }
670
671 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
672 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
673 struct kvm_exit_mmio *mmio,
674 phys_addr_t offset)
675 {
676 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
677 int sgi;
678 int min_sgi = (offset & ~0x3) * 4;
679 int max_sgi = min_sgi + 3;
680 int vcpu_id = vcpu->vcpu_id;
681 u32 reg = 0;
682
683 /* Copy source SGIs from distributor side */
684 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
685 int shift = 8 * (sgi - min_sgi);
686 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
687 }
688
689 mmio_data_write(mmio, ~0, reg);
690 return false;
691 }
692
693 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
694 struct kvm_exit_mmio *mmio,
695 phys_addr_t offset, bool set)
696 {
697 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
698 int sgi;
699 int min_sgi = (offset & ~0x3) * 4;
700 int max_sgi = min_sgi + 3;
701 int vcpu_id = vcpu->vcpu_id;
702 u32 reg;
703 bool updated = false;
704
705 reg = mmio_data_read(mmio, ~0);
706
707 /* Clear pending SGIs on the distributor */
708 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
709 u8 mask = reg >> (8 * (sgi - min_sgi));
710 if (set) {
711 if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
712 updated = true;
713 dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
714 } else {
715 if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
716 updated = true;
717 dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
718 }
719 }
720
721 if (updated)
722 vgic_update_state(vcpu->kvm);
723
724 return updated;
725 }
726
727 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
728 struct kvm_exit_mmio *mmio,
729 phys_addr_t offset)
730 {
731 if (!mmio->is_write)
732 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
733 else
734 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
735 }
736
737 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
738 struct kvm_exit_mmio *mmio,
739 phys_addr_t offset)
740 {
741 if (!mmio->is_write)
742 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
743 else
744 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
745 }
746
747 /*
748 * I would have liked to use the kvm_bus_io_*() API instead, but it
749 * cannot cope with banked registers (only the VM pointer is passed
750 * around, and we need the vcpu). One of these days, someone please
751 * fix it!
752 */
753 struct mmio_range {
754 phys_addr_t base;
755 unsigned long len;
756 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
757 phys_addr_t offset);
758 };
759
760 static const struct mmio_range vgic_dist_ranges[] = {
761 {
762 .base = GIC_DIST_CTRL,
763 .len = 12,
764 .handle_mmio = handle_mmio_misc,
765 },
766 {
767 .base = GIC_DIST_IGROUP,
768 .len = VGIC_NR_IRQS / 8,
769 .handle_mmio = handle_mmio_raz_wi,
770 },
771 {
772 .base = GIC_DIST_ENABLE_SET,
773 .len = VGIC_NR_IRQS / 8,
774 .handle_mmio = handle_mmio_set_enable_reg,
775 },
776 {
777 .base = GIC_DIST_ENABLE_CLEAR,
778 .len = VGIC_NR_IRQS / 8,
779 .handle_mmio = handle_mmio_clear_enable_reg,
780 },
781 {
782 .base = GIC_DIST_PENDING_SET,
783 .len = VGIC_NR_IRQS / 8,
784 .handle_mmio = handle_mmio_set_pending_reg,
785 },
786 {
787 .base = GIC_DIST_PENDING_CLEAR,
788 .len = VGIC_NR_IRQS / 8,
789 .handle_mmio = handle_mmio_clear_pending_reg,
790 },
791 {
792 .base = GIC_DIST_ACTIVE_SET,
793 .len = VGIC_NR_IRQS / 8,
794 .handle_mmio = handle_mmio_raz_wi,
795 },
796 {
797 .base = GIC_DIST_ACTIVE_CLEAR,
798 .len = VGIC_NR_IRQS / 8,
799 .handle_mmio = handle_mmio_raz_wi,
800 },
801 {
802 .base = GIC_DIST_PRI,
803 .len = VGIC_NR_IRQS,
804 .handle_mmio = handle_mmio_priority_reg,
805 },
806 {
807 .base = GIC_DIST_TARGET,
808 .len = VGIC_NR_IRQS,
809 .handle_mmio = handle_mmio_target_reg,
810 },
811 {
812 .base = GIC_DIST_CONFIG,
813 .len = VGIC_NR_IRQS / 4,
814 .handle_mmio = handle_mmio_cfg_reg,
815 },
816 {
817 .base = GIC_DIST_SOFTINT,
818 .len = 4,
819 .handle_mmio = handle_mmio_sgi_reg,
820 },
821 {
822 .base = GIC_DIST_SGI_PENDING_CLEAR,
823 .len = VGIC_NR_SGIS,
824 .handle_mmio = handle_mmio_sgi_clear,
825 },
826 {
827 .base = GIC_DIST_SGI_PENDING_SET,
828 .len = VGIC_NR_SGIS,
829 .handle_mmio = handle_mmio_sgi_set,
830 },
831 {}
832 };
833
834 static const
835 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
836 struct kvm_exit_mmio *mmio,
837 phys_addr_t offset)
838 {
839 const struct mmio_range *r = ranges;
840
841 while (r->len) {
842 if (offset >= r->base &&
843 (offset + mmio->len) <= (r->base + r->len))
844 return r;
845 r++;
846 }
847
848 return NULL;
849 }
850
851 /**
852 * vgic_handle_mmio - handle an in-kernel MMIO access
853 * @vcpu: pointer to the vcpu performing the access
854 * @run: pointer to the kvm_run structure
855 * @mmio: pointer to the data describing the access
856 *
857 * returns true if the MMIO access has been performed in kernel space,
858 * and false if it needs to be emulated in user space.
859 */
860 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
861 struct kvm_exit_mmio *mmio)
862 {
863 const struct mmio_range *range;
864 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
865 unsigned long base = dist->vgic_dist_base;
866 bool updated_state;
867 unsigned long offset;
868
869 if (!irqchip_in_kernel(vcpu->kvm) ||
870 mmio->phys_addr < base ||
871 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
872 return false;
873
874 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
875 if (mmio->len > 4) {
876 kvm_inject_dabt(vcpu, mmio->phys_addr);
877 return true;
878 }
879
880 offset = mmio->phys_addr - base;
881 range = find_matching_range(vgic_dist_ranges, mmio, offset);
882 if (unlikely(!range || !range->handle_mmio)) {
883 pr_warn("Unhandled access %d %08llx %d\n",
884 mmio->is_write, mmio->phys_addr, mmio->len);
885 return false;
886 }
887
888 spin_lock(&vcpu->kvm->arch.vgic.lock);
889 offset = mmio->phys_addr - range->base - base;
890 updated_state = range->handle_mmio(vcpu, mmio, offset);
891 spin_unlock(&vcpu->kvm->arch.vgic.lock);
892 kvm_prepare_mmio(run, mmio);
893 kvm_handle_mmio_return(vcpu, run);
894
895 if (updated_state)
896 vgic_kick_vcpus(vcpu->kvm);
897
898 return true;
899 }
900
901 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
902 {
903 struct kvm *kvm = vcpu->kvm;
904 struct vgic_dist *dist = &kvm->arch.vgic;
905 int nrcpus = atomic_read(&kvm->online_vcpus);
906 u8 target_cpus;
907 int sgi, mode, c, vcpu_id;
908
909 vcpu_id = vcpu->vcpu_id;
910
911 sgi = reg & 0xf;
912 target_cpus = (reg >> 16) & 0xff;
913 mode = (reg >> 24) & 3;
914
915 switch (mode) {
916 case 0:
917 if (!target_cpus)
918 return;
919
920 case 1:
921 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
922 break;
923
924 case 2:
925 target_cpus = 1 << vcpu_id;
926 break;
927 }
928
929 kvm_for_each_vcpu(c, vcpu, kvm) {
930 if (target_cpus & 1) {
931 /* Flag the SGI as pending */
932 vgic_dist_irq_set(vcpu, sgi);
933 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
934 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
935 }
936
937 target_cpus >>= 1;
938 }
939 }
940
941 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
942 {
943 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
944 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
945 unsigned long pending_private, pending_shared;
946 int vcpu_id;
947
948 vcpu_id = vcpu->vcpu_id;
949 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
950 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
951
952 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
953 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
954 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
955
956 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
957 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
958 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
959 bitmap_and(pend_shared, pend_shared,
960 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
961 VGIC_NR_SHARED_IRQS);
962
963 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
964 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
965 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
966 pending_shared < VGIC_NR_SHARED_IRQS);
967 }
968
969 /*
970 * Update the interrupt state and determine which CPUs have pending
971 * interrupts. Must be called with distributor lock held.
972 */
973 static void vgic_update_state(struct kvm *kvm)
974 {
975 struct vgic_dist *dist = &kvm->arch.vgic;
976 struct kvm_vcpu *vcpu;
977 int c;
978
979 if (!dist->enabled) {
980 set_bit(0, &dist->irq_pending_on_cpu);
981 return;
982 }
983
984 kvm_for_each_vcpu(c, vcpu, kvm) {
985 if (compute_pending_for_cpu(vcpu)) {
986 pr_debug("CPU%d has pending interrupts\n", c);
987 set_bit(c, &dist->irq_pending_on_cpu);
988 }
989 }
990 }
991
992 #define MK_LR_PEND(src, irq) \
993 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
994
995 /*
996 * An interrupt may have been disabled after being made pending on the
997 * CPU interface (the classic case is a timer running while we're
998 * rebooting the guest - the interrupt would kick as soon as the CPU
999 * interface gets enabled, with deadly consequences).
1000 *
1001 * The solution is to examine already active LRs, and check the
1002 * interrupt is still enabled. If not, just retire it.
1003 */
1004 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1005 {
1006 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1007 int lr;
1008
1009 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
1010 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1011
1012 if (!vgic_irq_is_enabled(vcpu, irq)) {
1013 vgic_retire_lr(lr, irq, vgic_cpu);
1014 if (vgic_irq_is_active(vcpu, irq))
1015 vgic_irq_clear_active(vcpu, irq);
1016 }
1017 }
1018 }
1019
1020 /*
1021 * Queue an interrupt to a CPU virtual interface. Return true on success,
1022 * or false if it wasn't possible to queue it.
1023 */
1024 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1025 {
1026 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1027 int lr;
1028
1029 /* Sanitize the input... */
1030 BUG_ON(sgi_source_id & ~7);
1031 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1032 BUG_ON(irq >= VGIC_NR_IRQS);
1033
1034 kvm_debug("Queue IRQ%d\n", irq);
1035
1036 lr = vgic_cpu->vgic_irq_lr_map[irq];
1037
1038 /* Do we have an active interrupt for the same CPUID? */
1039 if (lr != LR_EMPTY &&
1040 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
1041 kvm_debug("LR%d piggyback for IRQ%d %x\n",
1042 lr, irq, vgic_cpu->vgic_lr[lr]);
1043 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1044 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
1045 return true;
1046 }
1047
1048 /* Try to use another LR for this interrupt */
1049 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1050 vgic_cpu->nr_lr);
1051 if (lr >= vgic_cpu->nr_lr)
1052 return false;
1053
1054 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1055 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
1056 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1057 set_bit(lr, vgic_cpu->lr_used);
1058
1059 if (!vgic_irq_is_edge(vcpu, irq))
1060 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
1061
1062 return true;
1063 }
1064
1065 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1066 {
1067 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1068 unsigned long sources;
1069 int vcpu_id = vcpu->vcpu_id;
1070 int c;
1071
1072 sources = dist->irq_sgi_sources[vcpu_id][irq];
1073
1074 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1075 if (vgic_queue_irq(vcpu, c, irq))
1076 clear_bit(c, &sources);
1077 }
1078
1079 dist->irq_sgi_sources[vcpu_id][irq] = sources;
1080
1081 /*
1082 * If the sources bitmap has been cleared it means that we
1083 * could queue all the SGIs onto link registers (see the
1084 * clear_bit above), and therefore we are done with them in
1085 * our emulated gic and can get rid of them.
1086 */
1087 if (!sources) {
1088 vgic_dist_irq_clear(vcpu, irq);
1089 vgic_cpu_irq_clear(vcpu, irq);
1090 return true;
1091 }
1092
1093 return false;
1094 }
1095
1096 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1097 {
1098 if (vgic_irq_is_active(vcpu, irq))
1099 return true; /* level interrupt, already queued */
1100
1101 if (vgic_queue_irq(vcpu, 0, irq)) {
1102 if (vgic_irq_is_edge(vcpu, irq)) {
1103 vgic_dist_irq_clear(vcpu, irq);
1104 vgic_cpu_irq_clear(vcpu, irq);
1105 } else {
1106 vgic_irq_set_active(vcpu, irq);
1107 }
1108
1109 return true;
1110 }
1111
1112 return false;
1113 }
1114
1115 /*
1116 * Fill the list registers with pending interrupts before running the
1117 * guest.
1118 */
1119 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1120 {
1121 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1122 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1123 int i, vcpu_id;
1124 int overflow = 0;
1125
1126 vcpu_id = vcpu->vcpu_id;
1127
1128 /*
1129 * We may not have any pending interrupt, or the interrupts
1130 * may have been serviced from another vcpu. In all cases,
1131 * move along.
1132 */
1133 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1134 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1135 goto epilog;
1136 }
1137
1138 /* SGIs */
1139 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1140 if (!vgic_queue_sgi(vcpu, i))
1141 overflow = 1;
1142 }
1143
1144 /* PPIs */
1145 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1146 if (!vgic_queue_hwirq(vcpu, i))
1147 overflow = 1;
1148 }
1149
1150 /* SPIs */
1151 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1152 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1153 overflow = 1;
1154 }
1155
1156 epilog:
1157 if (overflow) {
1158 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1159 } else {
1160 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1161 /*
1162 * We're about to run this VCPU, and we've consumed
1163 * everything the distributor had in store for
1164 * us. Claim we don't have anything pending. We'll
1165 * adjust that if needed while exiting.
1166 */
1167 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1168 }
1169 }
1170
1171 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1172 {
1173 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1174 bool level_pending = false;
1175
1176 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1177
1178 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1179 /*
1180 * Some level interrupts have been EOIed. Clear their
1181 * active bit.
1182 */
1183 int lr, irq;
1184
1185 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1186 vgic_cpu->nr_lr) {
1187 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1188
1189 vgic_irq_clear_active(vcpu, irq);
1190 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1191
1192 /* Any additional pending interrupt? */
1193 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1194 vgic_cpu_irq_set(vcpu, irq);
1195 level_pending = true;
1196 } else {
1197 vgic_cpu_irq_clear(vcpu, irq);
1198 }
1199
1200 /*
1201 * Despite being EOIed, the LR may not have
1202 * been marked as empty.
1203 */
1204 set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1205 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
1206 }
1207 }
1208
1209 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1210 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1211
1212 return level_pending;
1213 }
1214
1215 /*
1216 * Sync back the VGIC state after a guest run. The distributor lock is
1217 * needed so we don't get preempted in the middle of the state processing.
1218 */
1219 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1220 {
1221 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1222 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1223 int lr, pending;
1224 bool level_pending;
1225
1226 level_pending = vgic_process_maintenance(vcpu);
1227
1228 /* Clear mappings for empty LRs */
1229 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1230 vgic_cpu->nr_lr) {
1231 int irq;
1232
1233 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1234 continue;
1235
1236 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1237
1238 BUG_ON(irq >= VGIC_NR_IRQS);
1239 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1240 }
1241
1242 /* Check if we still have something up our sleeve... */
1243 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1244 vgic_cpu->nr_lr);
1245 if (level_pending || pending < vgic_cpu->nr_lr)
1246 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1247 }
1248
1249 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1250 {
1251 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1252
1253 if (!irqchip_in_kernel(vcpu->kvm))
1254 return;
1255
1256 spin_lock(&dist->lock);
1257 __kvm_vgic_flush_hwstate(vcpu);
1258 spin_unlock(&dist->lock);
1259 }
1260
1261 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1262 {
1263 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1264
1265 if (!irqchip_in_kernel(vcpu->kvm))
1266 return;
1267
1268 spin_lock(&dist->lock);
1269 __kvm_vgic_sync_hwstate(vcpu);
1270 spin_unlock(&dist->lock);
1271 }
1272
1273 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1274 {
1275 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1276
1277 if (!irqchip_in_kernel(vcpu->kvm))
1278 return 0;
1279
1280 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1281 }
1282
1283 static void vgic_kick_vcpus(struct kvm *kvm)
1284 {
1285 struct kvm_vcpu *vcpu;
1286 int c;
1287
1288 /*
1289 * We've injected an interrupt, time to find out who deserves
1290 * a good kick...
1291 */
1292 kvm_for_each_vcpu(c, vcpu, kvm) {
1293 if (kvm_vgic_vcpu_pending_irq(vcpu))
1294 kvm_vcpu_kick(vcpu);
1295 }
1296 }
1297
1298 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1299 {
1300 int is_edge = vgic_irq_is_edge(vcpu, irq);
1301 int state = vgic_dist_irq_is_pending(vcpu, irq);
1302
1303 /*
1304 * Only inject an interrupt if:
1305 * - edge triggered and we have a rising edge
1306 * - level triggered and we change level
1307 */
1308 if (is_edge)
1309 return level > state;
1310 else
1311 return level != state;
1312 }
1313
1314 static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1315 unsigned int irq_num, bool level)
1316 {
1317 struct vgic_dist *dist = &kvm->arch.vgic;
1318 struct kvm_vcpu *vcpu;
1319 int is_edge, is_level;
1320 int enabled;
1321 bool ret = true;
1322
1323 spin_lock(&dist->lock);
1324
1325 vcpu = kvm_get_vcpu(kvm, cpuid);
1326 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1327 is_level = !is_edge;
1328
1329 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1330 ret = false;
1331 goto out;
1332 }
1333
1334 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1335 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1336 vcpu = kvm_get_vcpu(kvm, cpuid);
1337 }
1338
1339 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1340
1341 if (level)
1342 vgic_dist_irq_set(vcpu, irq_num);
1343 else
1344 vgic_dist_irq_clear(vcpu, irq_num);
1345
1346 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1347
1348 if (!enabled) {
1349 ret = false;
1350 goto out;
1351 }
1352
1353 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1354 /*
1355 * Level interrupt in progress, will be picked up
1356 * when EOId.
1357 */
1358 ret = false;
1359 goto out;
1360 }
1361
1362 if (level) {
1363 vgic_cpu_irq_set(vcpu, irq_num);
1364 set_bit(cpuid, &dist->irq_pending_on_cpu);
1365 }
1366
1367 out:
1368 spin_unlock(&dist->lock);
1369
1370 return ret;
1371 }
1372
1373 /**
1374 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1375 * @kvm: The VM structure pointer
1376 * @cpuid: The CPU for PPIs
1377 * @irq_num: The IRQ number that is assigned to the device
1378 * @level: Edge-triggered: true: to trigger the interrupt
1379 * false: to ignore the call
1380 * Level-sensitive true: activates an interrupt
1381 * false: deactivates an interrupt
1382 *
1383 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1384 * level-sensitive interrupts. You can think of the level parameter as 1
1385 * being HIGH and 0 being LOW and all devices being active-HIGH.
1386 */
1387 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1388 bool level)
1389 {
1390 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1391 vgic_kick_vcpus(kvm);
1392
1393 return 0;
1394 }
1395
1396 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1397 {
1398 /*
1399 * We cannot rely on the vgic maintenance interrupt to be
1400 * delivered synchronously. This means we can only use it to
1401 * exit the VM, and we perform the handling of EOIed
1402 * interrupts on the exit path (see vgic_process_maintenance).
1403 */
1404 return IRQ_HANDLED;
1405 }
1406
1407 /**
1408 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1409 * @vcpu: pointer to the vcpu struct
1410 *
1411 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1412 * this vcpu and enable the VGIC for this VCPU
1413 */
1414 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1415 {
1416 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1417 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1418 int i;
1419
1420 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1421 return -EBUSY;
1422
1423 for (i = 0; i < VGIC_NR_IRQS; i++) {
1424 if (i < VGIC_NR_PPIS)
1425 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1426 vcpu->vcpu_id, i, 1);
1427 if (i < VGIC_NR_PRIVATE_IRQS)
1428 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1429 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1430
1431 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1432 }
1433
1434 /*
1435 * By forcing VMCR to zero, the GIC will restore the binary
1436 * points to their reset values. Anything else resets to zero
1437 * anyway.
1438 */
1439 vgic_cpu->vgic_vmcr = 0;
1440
1441 vgic_cpu->nr_lr = vgic_nr_lr;
1442 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1443
1444 return 0;
1445 }
1446
1447 static void vgic_init_maintenance_interrupt(void *info)
1448 {
1449 enable_percpu_irq(vgic_maint_irq, 0);
1450 }
1451
1452 static int vgic_cpu_notify(struct notifier_block *self,
1453 unsigned long action, void *cpu)
1454 {
1455 switch (action) {
1456 case CPU_STARTING:
1457 case CPU_STARTING_FROZEN:
1458 vgic_init_maintenance_interrupt(NULL);
1459 break;
1460 case CPU_DYING:
1461 case CPU_DYING_FROZEN:
1462 disable_percpu_irq(vgic_maint_irq);
1463 break;
1464 }
1465
1466 return NOTIFY_OK;
1467 }
1468
1469 static struct notifier_block vgic_cpu_nb = {
1470 .notifier_call = vgic_cpu_notify,
1471 };
1472
1473 int kvm_vgic_hyp_init(void)
1474 {
1475 int ret;
1476 struct resource vctrl_res;
1477 struct resource vcpu_res;
1478
1479 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1480 if (!vgic_node) {
1481 kvm_err("error: no compatible vgic node in DT\n");
1482 return -ENODEV;
1483 }
1484
1485 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1486 if (!vgic_maint_irq) {
1487 kvm_err("error getting vgic maintenance irq from DT\n");
1488 ret = -ENXIO;
1489 goto out;
1490 }
1491
1492 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1493 "vgic", kvm_get_running_vcpus());
1494 if (ret) {
1495 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1496 goto out;
1497 }
1498
1499 ret = register_cpu_notifier(&vgic_cpu_nb);
1500 if (ret) {
1501 kvm_err("Cannot register vgic CPU notifier\n");
1502 goto out_free_irq;
1503 }
1504
1505 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1506 if (ret) {
1507 kvm_err("Cannot obtain VCTRL resource\n");
1508 goto out_free_irq;
1509 }
1510
1511 vgic_vctrl_base = of_iomap(vgic_node, 2);
1512 if (!vgic_vctrl_base) {
1513 kvm_err("Cannot ioremap VCTRL\n");
1514 ret = -ENOMEM;
1515 goto out_free_irq;
1516 }
1517
1518 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1519 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1520
1521 ret = create_hyp_io_mappings(vgic_vctrl_base,
1522 vgic_vctrl_base + resource_size(&vctrl_res),
1523 vctrl_res.start);
1524 if (ret) {
1525 kvm_err("Cannot map VCTRL into hyp\n");
1526 goto out_unmap;
1527 }
1528
1529 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1530 vctrl_res.start, vgic_maint_irq);
1531 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1532
1533 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1534 kvm_err("Cannot obtain VCPU resource\n");
1535 ret = -ENXIO;
1536 goto out_unmap;
1537 }
1538 vgic_vcpu_base = vcpu_res.start;
1539
1540 goto out;
1541
1542 out_unmap:
1543 iounmap(vgic_vctrl_base);
1544 out_free_irq:
1545 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1546 out:
1547 of_node_put(vgic_node);
1548 return ret;
1549 }
1550
1551 /**
1552 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1553 * @kvm: pointer to the kvm struct
1554 *
1555 * Map the virtual CPU interface into the VM before running any VCPUs. We
1556 * can't do this at creation time, because user space must first set the
1557 * virtual CPU interface address in the guest physical address space. Also
1558 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1559 */
1560 int kvm_vgic_init(struct kvm *kvm)
1561 {
1562 int ret = 0, i;
1563
1564 if (!irqchip_in_kernel(kvm))
1565 return 0;
1566
1567 mutex_lock(&kvm->lock);
1568
1569 if (vgic_initialized(kvm))
1570 goto out;
1571
1572 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1573 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1574 kvm_err("Need to set vgic cpu and dist addresses first\n");
1575 ret = -ENXIO;
1576 goto out;
1577 }
1578
1579 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1580 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1581 if (ret) {
1582 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1583 goto out;
1584 }
1585
1586 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1587 vgic_set_target_reg(kvm, 0, i);
1588
1589 kvm->arch.vgic.ready = true;
1590 out:
1591 mutex_unlock(&kvm->lock);
1592 return ret;
1593 }
1594
1595 int kvm_vgic_create(struct kvm *kvm)
1596 {
1597 int i, vcpu_lock_idx = -1, ret = 0;
1598 struct kvm_vcpu *vcpu;
1599
1600 mutex_lock(&kvm->lock);
1601
1602 if (kvm->arch.vgic.vctrl_base) {
1603 ret = -EEXIST;
1604 goto out;
1605 }
1606
1607 /*
1608 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1609 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1610 * that no other VCPUs are run while we create the vgic.
1611 */
1612 kvm_for_each_vcpu(i, vcpu, kvm) {
1613 if (!mutex_trylock(&vcpu->mutex))
1614 goto out_unlock;
1615 vcpu_lock_idx = i;
1616 }
1617
1618 kvm_for_each_vcpu(i, vcpu, kvm) {
1619 if (vcpu->arch.has_run_once) {
1620 ret = -EBUSY;
1621 goto out_unlock;
1622 }
1623 }
1624
1625 spin_lock_init(&kvm->arch.vgic.lock);
1626 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1627 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1628 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1629
1630 out_unlock:
1631 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1632 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1633 mutex_unlock(&vcpu->mutex);
1634 }
1635
1636 out:
1637 mutex_unlock(&kvm->lock);
1638 return ret;
1639 }
1640
1641 static bool vgic_ioaddr_overlap(struct kvm *kvm)
1642 {
1643 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1644 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1645
1646 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1647 return 0;
1648 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1649 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1650 return -EBUSY;
1651 return 0;
1652 }
1653
1654 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1655 phys_addr_t addr, phys_addr_t size)
1656 {
1657 int ret;
1658
1659 if (addr & ~KVM_PHYS_MASK)
1660 return -E2BIG;
1661
1662 if (addr & (SZ_4K - 1))
1663 return -EINVAL;
1664
1665 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1666 return -EEXIST;
1667 if (addr + size < addr)
1668 return -EINVAL;
1669
1670 ret = vgic_ioaddr_overlap(kvm);
1671 if (ret)
1672 return ret;
1673 *ioaddr = addr;
1674 return ret;
1675 }
1676
1677 /**
1678 * kvm_vgic_addr - set or get vgic VM base addresses
1679 * @kvm: pointer to the vm struct
1680 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1681 * @addr: pointer to address value
1682 * @write: if true set the address in the VM address space, if false read the
1683 * address
1684 *
1685 * Set or get the vgic base addresses for the distributor and the virtual CPU
1686 * interface in the VM physical address space. These addresses are properties
1687 * of the emulated core/SoC and therefore user space initially knows this
1688 * information.
1689 */
1690 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1691 {
1692 int r = 0;
1693 struct vgic_dist *vgic = &kvm->arch.vgic;
1694
1695 mutex_lock(&kvm->lock);
1696 switch (type) {
1697 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1698 if (write) {
1699 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1700 *addr, KVM_VGIC_V2_DIST_SIZE);
1701 } else {
1702 *addr = vgic->vgic_dist_base;
1703 }
1704 break;
1705 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1706 if (write) {
1707 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1708 *addr, KVM_VGIC_V2_CPU_SIZE);
1709 } else {
1710 *addr = vgic->vgic_cpu_base;
1711 }
1712 break;
1713 default:
1714 r = -ENODEV;
1715 }
1716
1717 mutex_unlock(&kvm->lock);
1718 return r;
1719 }
1720
1721 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1722 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1723 {
1724 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1725 u32 reg, mask = 0, shift = 0;
1726 bool updated = false;
1727
1728 switch (offset & ~0x3) {
1729 case GIC_CPU_CTRL:
1730 mask = GICH_VMCR_CTRL_MASK;
1731 shift = GICH_VMCR_CTRL_SHIFT;
1732 break;
1733 case GIC_CPU_PRIMASK:
1734 mask = GICH_VMCR_PRIMASK_MASK;
1735 shift = GICH_VMCR_PRIMASK_SHIFT;
1736 break;
1737 case GIC_CPU_BINPOINT:
1738 mask = GICH_VMCR_BINPOINT_MASK;
1739 shift = GICH_VMCR_BINPOINT_SHIFT;
1740 break;
1741 case GIC_CPU_ALIAS_BINPOINT:
1742 mask = GICH_VMCR_ALIAS_BINPOINT_MASK;
1743 shift = GICH_VMCR_ALIAS_BINPOINT_SHIFT;
1744 break;
1745 }
1746
1747 if (!mmio->is_write) {
1748 reg = (vgic_cpu->vgic_vmcr & mask) >> shift;
1749 mmio_data_write(mmio, ~0, reg);
1750 } else {
1751 reg = mmio_data_read(mmio, ~0);
1752 reg = (reg << shift) & mask;
1753 if (reg != (vgic_cpu->vgic_vmcr & mask))
1754 updated = true;
1755 vgic_cpu->vgic_vmcr &= ~mask;
1756 vgic_cpu->vgic_vmcr |= reg;
1757 }
1758 return updated;
1759 }
1760
1761 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1762 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1763 {
1764 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
1765 }
1766
1767 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1768 struct kvm_exit_mmio *mmio,
1769 phys_addr_t offset)
1770 {
1771 u32 reg;
1772
1773 if (mmio->is_write)
1774 return false;
1775
1776 /* GICC_IIDR */
1777 reg = (PRODUCT_ID_KVM << 20) |
1778 (GICC_ARCH_VERSION_V2 << 16) |
1779 (IMPLEMENTER_ARM << 0);
1780 mmio_data_write(mmio, ~0, reg);
1781 return false;
1782 }
1783
1784 /*
1785 * CPU Interface Register accesses - these are not accessed by the VM, but by
1786 * user space for saving and restoring VGIC state.
1787 */
1788 static const struct mmio_range vgic_cpu_ranges[] = {
1789 {
1790 .base = GIC_CPU_CTRL,
1791 .len = 12,
1792 .handle_mmio = handle_cpu_mmio_misc,
1793 },
1794 {
1795 .base = GIC_CPU_ALIAS_BINPOINT,
1796 .len = 4,
1797 .handle_mmio = handle_mmio_abpr,
1798 },
1799 {
1800 .base = GIC_CPU_ACTIVEPRIO,
1801 .len = 16,
1802 .handle_mmio = handle_mmio_raz_wi,
1803 },
1804 {
1805 .base = GIC_CPU_IDENT,
1806 .len = 4,
1807 .handle_mmio = handle_cpu_mmio_ident,
1808 },
1809 };
1810
1811 static int vgic_attr_regs_access(struct kvm_device *dev,
1812 struct kvm_device_attr *attr,
1813 u32 *reg, bool is_write)
1814 {
1815 const struct mmio_range *r = NULL, *ranges;
1816 phys_addr_t offset;
1817 int ret, cpuid, c;
1818 struct kvm_vcpu *vcpu, *tmp_vcpu;
1819 struct vgic_dist *vgic;
1820 struct kvm_exit_mmio mmio;
1821
1822 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1823 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1824 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1825
1826 mutex_lock(&dev->kvm->lock);
1827
1828 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1829 ret = -EINVAL;
1830 goto out;
1831 }
1832
1833 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1834 vgic = &dev->kvm->arch.vgic;
1835
1836 mmio.len = 4;
1837 mmio.is_write = is_write;
1838 if (is_write)
1839 mmio_data_write(&mmio, ~0, *reg);
1840 switch (attr->group) {
1841 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1842 mmio.phys_addr = vgic->vgic_dist_base + offset;
1843 ranges = vgic_dist_ranges;
1844 break;
1845 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1846 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1847 ranges = vgic_cpu_ranges;
1848 break;
1849 default:
1850 BUG();
1851 }
1852 r = find_matching_range(ranges, &mmio, offset);
1853
1854 if (unlikely(!r || !r->handle_mmio)) {
1855 ret = -ENXIO;
1856 goto out;
1857 }
1858
1859
1860 spin_lock(&vgic->lock);
1861
1862 /*
1863 * Ensure that no other VCPU is running by checking the vcpu->cpu
1864 * field. If no other VPCUs are running we can safely access the VGIC
1865 * state, because even if another VPU is run after this point, that
1866 * VCPU will not touch the vgic state, because it will block on
1867 * getting the vgic->lock in kvm_vgic_sync_hwstate().
1868 */
1869 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1870 if (unlikely(tmp_vcpu->cpu != -1)) {
1871 ret = -EBUSY;
1872 goto out_vgic_unlock;
1873 }
1874 }
1875
1876 /*
1877 * Move all pending IRQs from the LRs on all VCPUs so the pending
1878 * state can be properly represented in the register state accessible
1879 * through this API.
1880 */
1881 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1882 vgic_unqueue_irqs(tmp_vcpu);
1883
1884 offset -= r->base;
1885 r->handle_mmio(vcpu, &mmio, offset);
1886
1887 if (!is_write)
1888 *reg = mmio_data_read(&mmio, ~0);
1889
1890 ret = 0;
1891 out_vgic_unlock:
1892 spin_unlock(&vgic->lock);
1893 out:
1894 mutex_unlock(&dev->kvm->lock);
1895 return ret;
1896 }
1897
1898 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1899 {
1900 int r;
1901
1902 switch (attr->group) {
1903 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1904 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1905 u64 addr;
1906 unsigned long type = (unsigned long)attr->attr;
1907
1908 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1909 return -EFAULT;
1910
1911 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1912 return (r == -ENODEV) ? -ENXIO : r;
1913 }
1914
1915 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1916 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1917 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1918 u32 reg;
1919
1920 if (get_user(reg, uaddr))
1921 return -EFAULT;
1922
1923 return vgic_attr_regs_access(dev, attr, &reg, true);
1924 }
1925
1926 }
1927
1928 return -ENXIO;
1929 }
1930
1931 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1932 {
1933 int r = -ENXIO;
1934
1935 switch (attr->group) {
1936 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1937 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1938 u64 addr;
1939 unsigned long type = (unsigned long)attr->attr;
1940
1941 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1942 if (r)
1943 return (r == -ENODEV) ? -ENXIO : r;
1944
1945 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1946 return -EFAULT;
1947 break;
1948 }
1949
1950 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1951 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1952 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1953 u32 reg = 0;
1954
1955 r = vgic_attr_regs_access(dev, attr, &reg, false);
1956 if (r)
1957 return r;
1958 r = put_user(reg, uaddr);
1959 break;
1960 }
1961
1962 }
1963
1964 return r;
1965 }
1966
1967 static int vgic_has_attr_regs(const struct mmio_range *ranges,
1968 phys_addr_t offset)
1969 {
1970 struct kvm_exit_mmio dev_attr_mmio;
1971
1972 dev_attr_mmio.len = 4;
1973 if (find_matching_range(ranges, &dev_attr_mmio, offset))
1974 return 0;
1975 else
1976 return -ENXIO;
1977 }
1978
1979 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1980 {
1981 phys_addr_t offset;
1982
1983 switch (attr->group) {
1984 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1985 switch (attr->attr) {
1986 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1987 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1988 return 0;
1989 }
1990 break;
1991 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1992 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1993 return vgic_has_attr_regs(vgic_dist_ranges, offset);
1994 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1995 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1996 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
1997 }
1998 return -ENXIO;
1999 }
2000
2001 static void vgic_destroy(struct kvm_device *dev)
2002 {
2003 kfree(dev);
2004 }
2005
2006 static int vgic_create(struct kvm_device *dev, u32 type)
2007 {
2008 return kvm_vgic_create(dev->kvm);
2009 }
2010
2011 struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2012 .name = "kvm-arm-vgic",
2013 .create = vgic_create,
2014 .destroy = vgic_destroy,
2015 .set_attr = vgic_set_attr,
2016 .get_attr = vgic_get_attr,
2017 .has_attr = vgic_has_attr,
2018 };
This page took 0.10635 seconds and 5 git commands to generate.