mmu-notifier: add clear_young callback
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73 * Ordering of locks:
74 *
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76 */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
107
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110
111 static bool largepages_enabled = true;
112
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 if (pfn_valid(pfn))
116 return PageReserved(pfn_to_page(pfn));
117
118 return true;
119 }
120
121 /*
122 * Switches to specified vcpu, until a matching vcpu_put()
123 */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 int cpu;
127
128 if (mutex_lock_killable(&vcpu->mutex))
129 return -EINTR;
130 cpu = get_cpu();
131 preempt_notifier_register(&vcpu->preempt_notifier);
132 kvm_arch_vcpu_load(vcpu, cpu);
133 put_cpu();
134 return 0;
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 preempt_disable();
140 kvm_arch_vcpu_put(vcpu);
141 preempt_notifier_unregister(&vcpu->preempt_notifier);
142 preempt_enable();
143 mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 int i, cpu, me;
153 cpumask_var_t cpus;
154 bool called = true;
155 struct kvm_vcpu *vcpu;
156
157 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158
159 me = get_cpu();
160 kvm_for_each_vcpu(i, vcpu, kvm) {
161 kvm_make_request(req, vcpu);
162 cpu = vcpu->cpu;
163
164 /* Set ->requests bit before we read ->mode */
165 smp_mb();
166
167 if (cpus != NULL && cpu != -1 && cpu != me &&
168 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 cpumask_set_cpu(cpu, cpus);
170 }
171 if (unlikely(cpus == NULL))
172 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 else if (!cpumask_empty(cpus))
174 smp_call_function_many(cpus, ack_flush, NULL, 1);
175 else
176 called = false;
177 put_cpu();
178 free_cpumask_var(cpus);
179 return called;
180 }
181
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 long dirty_count = kvm->tlbs_dirty;
186
187 smp_mb();
188 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 ++kvm->stat.remote_tlb_flush;
190 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 struct page *page;
213 int r;
214
215 mutex_init(&vcpu->mutex);
216 vcpu->cpu = -1;
217 vcpu->kvm = kvm;
218 vcpu->vcpu_id = id;
219 vcpu->pid = NULL;
220 init_waitqueue_head(&vcpu->wq);
221 kvm_async_pf_vcpu_init(vcpu);
222
223 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 if (!page) {
225 r = -ENOMEM;
226 goto fail;
227 }
228 vcpu->run = page_address(page);
229
230 kvm_vcpu_set_in_spin_loop(vcpu, false);
231 kvm_vcpu_set_dy_eligible(vcpu, false);
232 vcpu->preempted = false;
233
234 r = kvm_arch_vcpu_init(vcpu);
235 if (r < 0)
236 goto fail_free_run;
237 return 0;
238
239 fail_free_run:
240 free_page((unsigned long)vcpu->run);
241 fail:
242 return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 put_pid(vcpu->pid);
249 kvm_arch_vcpu_uninit(vcpu);
250 free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 return container_of(mn, struct kvm, mmu_notifier);
258 }
259
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address)
263 {
264 struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 int need_tlb_flush, idx;
266
267 /*
268 * When ->invalidate_page runs, the linux pte has been zapped
269 * already but the page is still allocated until
270 * ->invalidate_page returns. So if we increase the sequence
271 * here the kvm page fault will notice if the spte can't be
272 * established because the page is going to be freed. If
273 * instead the kvm page fault establishes the spte before
274 * ->invalidate_page runs, kvm_unmap_hva will release it
275 * before returning.
276 *
277 * The sequence increase only need to be seen at spin_unlock
278 * time, and not at spin_lock time.
279 *
280 * Increasing the sequence after the spin_unlock would be
281 * unsafe because the kvm page fault could then establish the
282 * pte after kvm_unmap_hva returned, without noticing the page
283 * is going to be freed.
284 */
285 idx = srcu_read_lock(&kvm->srcu);
286 spin_lock(&kvm->mmu_lock);
287
288 kvm->mmu_notifier_seq++;
289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 /* we've to flush the tlb before the pages can be freed */
291 if (need_tlb_flush)
292 kvm_flush_remote_tlbs(kvm);
293
294 spin_unlock(&kvm->mmu_lock);
295
296 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297
298 srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
304 pte_t pte)
305 {
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 int idx;
308
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long start,
320 unsigned long end)
321 {
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 /*
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
331 */
332 kvm->mmu_notifier_count++;
333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 need_tlb_flush |= kvm->tlbs_dirty;
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
338
339 spin_unlock(&kvm->mmu_lock);
340 srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 struct mm_struct *mm,
345 unsigned long start,
346 unsigned long end)
347 {
348 struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
354 * been freed.
355 */
356 kvm->mmu_notifier_seq++;
357 smp_wmb();
358 /*
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 */
363 kvm->mmu_notifier_count--;
364 spin_unlock(&kvm->mmu_lock);
365
366 BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 struct mm_struct *mm,
371 unsigned long start,
372 unsigned long end)
373 {
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379
380 young = kvm_age_hva(kvm, start, end);
381 if (young)
382 kvm_flush_remote_tlbs(kvm);
383
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
386
387 return young;
388 }
389
390 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long start,
393 unsigned long end)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 /*
401 * Even though we do not flush TLB, this will still adversely
402 * affect performance on pre-Haswell Intel EPT, where there is
403 * no EPT Access Bit to clear so that we have to tear down EPT
404 * tables instead. If we find this unacceptable, we can always
405 * add a parameter to kvm_age_hva so that it effectively doesn't
406 * do anything on clear_young.
407 *
408 * Also note that currently we never issue secondary TLB flushes
409 * from clear_young, leaving this job up to the regular system
410 * cadence. If we find this inaccurate, we might come up with a
411 * more sophisticated heuristic later.
412 */
413 young = kvm_age_hva(kvm, start, end);
414 spin_unlock(&kvm->mmu_lock);
415 srcu_read_unlock(&kvm->srcu, idx);
416
417 return young;
418 }
419
420 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
421 struct mm_struct *mm,
422 unsigned long address)
423 {
424 struct kvm *kvm = mmu_notifier_to_kvm(mn);
425 int young, idx;
426
427 idx = srcu_read_lock(&kvm->srcu);
428 spin_lock(&kvm->mmu_lock);
429 young = kvm_test_age_hva(kvm, address);
430 spin_unlock(&kvm->mmu_lock);
431 srcu_read_unlock(&kvm->srcu, idx);
432
433 return young;
434 }
435
436 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
437 struct mm_struct *mm)
438 {
439 struct kvm *kvm = mmu_notifier_to_kvm(mn);
440 int idx;
441
442 idx = srcu_read_lock(&kvm->srcu);
443 kvm_arch_flush_shadow_all(kvm);
444 srcu_read_unlock(&kvm->srcu, idx);
445 }
446
447 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
448 .invalidate_page = kvm_mmu_notifier_invalidate_page,
449 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
450 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
451 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
452 .clear_young = kvm_mmu_notifier_clear_young,
453 .test_young = kvm_mmu_notifier_test_young,
454 .change_pte = kvm_mmu_notifier_change_pte,
455 .release = kvm_mmu_notifier_release,
456 };
457
458 static int kvm_init_mmu_notifier(struct kvm *kvm)
459 {
460 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
461 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
462 }
463
464 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
465
466 static int kvm_init_mmu_notifier(struct kvm *kvm)
467 {
468 return 0;
469 }
470
471 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
472
473 static struct kvm_memslots *kvm_alloc_memslots(void)
474 {
475 int i;
476 struct kvm_memslots *slots;
477
478 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
479 if (!slots)
480 return NULL;
481
482 /*
483 * Init kvm generation close to the maximum to easily test the
484 * code of handling generation number wrap-around.
485 */
486 slots->generation = -150;
487 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
488 slots->id_to_index[i] = slots->memslots[i].id = i;
489
490 return slots;
491 }
492
493 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
494 {
495 if (!memslot->dirty_bitmap)
496 return;
497
498 kvfree(memslot->dirty_bitmap);
499 memslot->dirty_bitmap = NULL;
500 }
501
502 /*
503 * Free any memory in @free but not in @dont.
504 */
505 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
506 struct kvm_memory_slot *dont)
507 {
508 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
509 kvm_destroy_dirty_bitmap(free);
510
511 kvm_arch_free_memslot(kvm, free, dont);
512
513 free->npages = 0;
514 }
515
516 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
517 {
518 struct kvm_memory_slot *memslot;
519
520 if (!slots)
521 return;
522
523 kvm_for_each_memslot(memslot, slots)
524 kvm_free_memslot(kvm, memslot, NULL);
525
526 kvfree(slots);
527 }
528
529 static struct kvm *kvm_create_vm(unsigned long type)
530 {
531 int r, i;
532 struct kvm *kvm = kvm_arch_alloc_vm();
533
534 if (!kvm)
535 return ERR_PTR(-ENOMEM);
536
537 r = kvm_arch_init_vm(kvm, type);
538 if (r)
539 goto out_err_no_disable;
540
541 r = hardware_enable_all();
542 if (r)
543 goto out_err_no_disable;
544
545 #ifdef CONFIG_HAVE_KVM_IRQFD
546 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
547 #endif
548
549 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
550
551 r = -ENOMEM;
552 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
553 kvm->memslots[i] = kvm_alloc_memslots();
554 if (!kvm->memslots[i])
555 goto out_err_no_srcu;
556 }
557
558 if (init_srcu_struct(&kvm->srcu))
559 goto out_err_no_srcu;
560 if (init_srcu_struct(&kvm->irq_srcu))
561 goto out_err_no_irq_srcu;
562 for (i = 0; i < KVM_NR_BUSES; i++) {
563 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
564 GFP_KERNEL);
565 if (!kvm->buses[i])
566 goto out_err;
567 }
568
569 spin_lock_init(&kvm->mmu_lock);
570 kvm->mm = current->mm;
571 atomic_inc(&kvm->mm->mm_count);
572 kvm_eventfd_init(kvm);
573 mutex_init(&kvm->lock);
574 mutex_init(&kvm->irq_lock);
575 mutex_init(&kvm->slots_lock);
576 atomic_set(&kvm->users_count, 1);
577 INIT_LIST_HEAD(&kvm->devices);
578
579 r = kvm_init_mmu_notifier(kvm);
580 if (r)
581 goto out_err;
582
583 spin_lock(&kvm_lock);
584 list_add(&kvm->vm_list, &vm_list);
585 spin_unlock(&kvm_lock);
586
587 preempt_notifier_inc();
588
589 return kvm;
590
591 out_err:
592 cleanup_srcu_struct(&kvm->irq_srcu);
593 out_err_no_irq_srcu:
594 cleanup_srcu_struct(&kvm->srcu);
595 out_err_no_srcu:
596 hardware_disable_all();
597 out_err_no_disable:
598 for (i = 0; i < KVM_NR_BUSES; i++)
599 kfree(kvm->buses[i]);
600 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
601 kvm_free_memslots(kvm, kvm->memslots[i]);
602 kvm_arch_free_vm(kvm);
603 return ERR_PTR(r);
604 }
605
606 /*
607 * Avoid using vmalloc for a small buffer.
608 * Should not be used when the size is statically known.
609 */
610 void *kvm_kvzalloc(unsigned long size)
611 {
612 if (size > PAGE_SIZE)
613 return vzalloc(size);
614 else
615 return kzalloc(size, GFP_KERNEL);
616 }
617
618 static void kvm_destroy_devices(struct kvm *kvm)
619 {
620 struct list_head *node, *tmp;
621
622 list_for_each_safe(node, tmp, &kvm->devices) {
623 struct kvm_device *dev =
624 list_entry(node, struct kvm_device, vm_node);
625
626 list_del(node);
627 dev->ops->destroy(dev);
628 }
629 }
630
631 static void kvm_destroy_vm(struct kvm *kvm)
632 {
633 int i;
634 struct mm_struct *mm = kvm->mm;
635
636 kvm_arch_sync_events(kvm);
637 spin_lock(&kvm_lock);
638 list_del(&kvm->vm_list);
639 spin_unlock(&kvm_lock);
640 kvm_free_irq_routing(kvm);
641 for (i = 0; i < KVM_NR_BUSES; i++)
642 kvm_io_bus_destroy(kvm->buses[i]);
643 kvm_coalesced_mmio_free(kvm);
644 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
645 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
646 #else
647 kvm_arch_flush_shadow_all(kvm);
648 #endif
649 kvm_arch_destroy_vm(kvm);
650 kvm_destroy_devices(kvm);
651 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
652 kvm_free_memslots(kvm, kvm->memslots[i]);
653 cleanup_srcu_struct(&kvm->irq_srcu);
654 cleanup_srcu_struct(&kvm->srcu);
655 kvm_arch_free_vm(kvm);
656 preempt_notifier_dec();
657 hardware_disable_all();
658 mmdrop(mm);
659 }
660
661 void kvm_get_kvm(struct kvm *kvm)
662 {
663 atomic_inc(&kvm->users_count);
664 }
665 EXPORT_SYMBOL_GPL(kvm_get_kvm);
666
667 void kvm_put_kvm(struct kvm *kvm)
668 {
669 if (atomic_dec_and_test(&kvm->users_count))
670 kvm_destroy_vm(kvm);
671 }
672 EXPORT_SYMBOL_GPL(kvm_put_kvm);
673
674
675 static int kvm_vm_release(struct inode *inode, struct file *filp)
676 {
677 struct kvm *kvm = filp->private_data;
678
679 kvm_irqfd_release(kvm);
680
681 kvm_put_kvm(kvm);
682 return 0;
683 }
684
685 /*
686 * Allocation size is twice as large as the actual dirty bitmap size.
687 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
688 */
689 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
690 {
691 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
692
693 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
694 if (!memslot->dirty_bitmap)
695 return -ENOMEM;
696
697 return 0;
698 }
699
700 /*
701 * Insert memslot and re-sort memslots based on their GFN,
702 * so binary search could be used to lookup GFN.
703 * Sorting algorithm takes advantage of having initially
704 * sorted array and known changed memslot position.
705 */
706 static void update_memslots(struct kvm_memslots *slots,
707 struct kvm_memory_slot *new)
708 {
709 int id = new->id;
710 int i = slots->id_to_index[id];
711 struct kvm_memory_slot *mslots = slots->memslots;
712
713 WARN_ON(mslots[i].id != id);
714 if (!new->npages) {
715 WARN_ON(!mslots[i].npages);
716 if (mslots[i].npages)
717 slots->used_slots--;
718 } else {
719 if (!mslots[i].npages)
720 slots->used_slots++;
721 }
722
723 while (i < KVM_MEM_SLOTS_NUM - 1 &&
724 new->base_gfn <= mslots[i + 1].base_gfn) {
725 if (!mslots[i + 1].npages)
726 break;
727 mslots[i] = mslots[i + 1];
728 slots->id_to_index[mslots[i].id] = i;
729 i++;
730 }
731
732 /*
733 * The ">=" is needed when creating a slot with base_gfn == 0,
734 * so that it moves before all those with base_gfn == npages == 0.
735 *
736 * On the other hand, if new->npages is zero, the above loop has
737 * already left i pointing to the beginning of the empty part of
738 * mslots, and the ">=" would move the hole backwards in this
739 * case---which is wrong. So skip the loop when deleting a slot.
740 */
741 if (new->npages) {
742 while (i > 0 &&
743 new->base_gfn >= mslots[i - 1].base_gfn) {
744 mslots[i] = mslots[i - 1];
745 slots->id_to_index[mslots[i].id] = i;
746 i--;
747 }
748 } else
749 WARN_ON_ONCE(i != slots->used_slots);
750
751 mslots[i] = *new;
752 slots->id_to_index[mslots[i].id] = i;
753 }
754
755 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
756 {
757 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
758
759 #ifdef __KVM_HAVE_READONLY_MEM
760 valid_flags |= KVM_MEM_READONLY;
761 #endif
762
763 if (mem->flags & ~valid_flags)
764 return -EINVAL;
765
766 return 0;
767 }
768
769 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
770 int as_id, struct kvm_memslots *slots)
771 {
772 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
773
774 /*
775 * Set the low bit in the generation, which disables SPTE caching
776 * until the end of synchronize_srcu_expedited.
777 */
778 WARN_ON(old_memslots->generation & 1);
779 slots->generation = old_memslots->generation + 1;
780
781 rcu_assign_pointer(kvm->memslots[as_id], slots);
782 synchronize_srcu_expedited(&kvm->srcu);
783
784 /*
785 * Increment the new memslot generation a second time. This prevents
786 * vm exits that race with memslot updates from caching a memslot
787 * generation that will (potentially) be valid forever.
788 */
789 slots->generation++;
790
791 kvm_arch_memslots_updated(kvm, slots);
792
793 return old_memslots;
794 }
795
796 /*
797 * Allocate some memory and give it an address in the guest physical address
798 * space.
799 *
800 * Discontiguous memory is allowed, mostly for framebuffers.
801 *
802 * Must be called holding kvm->slots_lock for write.
803 */
804 int __kvm_set_memory_region(struct kvm *kvm,
805 const struct kvm_userspace_memory_region *mem)
806 {
807 int r;
808 gfn_t base_gfn;
809 unsigned long npages;
810 struct kvm_memory_slot *slot;
811 struct kvm_memory_slot old, new;
812 struct kvm_memslots *slots = NULL, *old_memslots;
813 int as_id, id;
814 enum kvm_mr_change change;
815
816 r = check_memory_region_flags(mem);
817 if (r)
818 goto out;
819
820 r = -EINVAL;
821 as_id = mem->slot >> 16;
822 id = (u16)mem->slot;
823
824 /* General sanity checks */
825 if (mem->memory_size & (PAGE_SIZE - 1))
826 goto out;
827 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
828 goto out;
829 /* We can read the guest memory with __xxx_user() later on. */
830 if ((id < KVM_USER_MEM_SLOTS) &&
831 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
832 !access_ok(VERIFY_WRITE,
833 (void __user *)(unsigned long)mem->userspace_addr,
834 mem->memory_size)))
835 goto out;
836 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
837 goto out;
838 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
839 goto out;
840
841 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
842 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
843 npages = mem->memory_size >> PAGE_SHIFT;
844
845 if (npages > KVM_MEM_MAX_NR_PAGES)
846 goto out;
847
848 new = old = *slot;
849
850 new.id = id;
851 new.base_gfn = base_gfn;
852 new.npages = npages;
853 new.flags = mem->flags;
854
855 if (npages) {
856 if (!old.npages)
857 change = KVM_MR_CREATE;
858 else { /* Modify an existing slot. */
859 if ((mem->userspace_addr != old.userspace_addr) ||
860 (npages != old.npages) ||
861 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
862 goto out;
863
864 if (base_gfn != old.base_gfn)
865 change = KVM_MR_MOVE;
866 else if (new.flags != old.flags)
867 change = KVM_MR_FLAGS_ONLY;
868 else { /* Nothing to change. */
869 r = 0;
870 goto out;
871 }
872 }
873 } else {
874 if (!old.npages)
875 goto out;
876
877 change = KVM_MR_DELETE;
878 new.base_gfn = 0;
879 new.flags = 0;
880 }
881
882 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
883 /* Check for overlaps */
884 r = -EEXIST;
885 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
886 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
887 (slot->id == id))
888 continue;
889 if (!((base_gfn + npages <= slot->base_gfn) ||
890 (base_gfn >= slot->base_gfn + slot->npages)))
891 goto out;
892 }
893 }
894
895 /* Free page dirty bitmap if unneeded */
896 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
897 new.dirty_bitmap = NULL;
898
899 r = -ENOMEM;
900 if (change == KVM_MR_CREATE) {
901 new.userspace_addr = mem->userspace_addr;
902
903 if (kvm_arch_create_memslot(kvm, &new, npages))
904 goto out_free;
905 }
906
907 /* Allocate page dirty bitmap if needed */
908 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
909 if (kvm_create_dirty_bitmap(&new) < 0)
910 goto out_free;
911 }
912
913 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
914 if (!slots)
915 goto out_free;
916 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
917
918 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
919 slot = id_to_memslot(slots, id);
920 slot->flags |= KVM_MEMSLOT_INVALID;
921
922 old_memslots = install_new_memslots(kvm, as_id, slots);
923
924 /* slot was deleted or moved, clear iommu mapping */
925 kvm_iommu_unmap_pages(kvm, &old);
926 /* From this point no new shadow pages pointing to a deleted,
927 * or moved, memslot will be created.
928 *
929 * validation of sp->gfn happens in:
930 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
931 * - kvm_is_visible_gfn (mmu_check_roots)
932 */
933 kvm_arch_flush_shadow_memslot(kvm, slot);
934
935 /*
936 * We can re-use the old_memslots from above, the only difference
937 * from the currently installed memslots is the invalid flag. This
938 * will get overwritten by update_memslots anyway.
939 */
940 slots = old_memslots;
941 }
942
943 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
944 if (r)
945 goto out_slots;
946
947 /* actual memory is freed via old in kvm_free_memslot below */
948 if (change == KVM_MR_DELETE) {
949 new.dirty_bitmap = NULL;
950 memset(&new.arch, 0, sizeof(new.arch));
951 }
952
953 update_memslots(slots, &new);
954 old_memslots = install_new_memslots(kvm, as_id, slots);
955
956 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
957
958 kvm_free_memslot(kvm, &old, &new);
959 kvfree(old_memslots);
960
961 /*
962 * IOMMU mapping: New slots need to be mapped. Old slots need to be
963 * un-mapped and re-mapped if their base changes. Since base change
964 * unmapping is handled above with slot deletion, mapping alone is
965 * needed here. Anything else the iommu might care about for existing
966 * slots (size changes, userspace addr changes and read-only flag
967 * changes) is disallowed above, so any other attribute changes getting
968 * here can be skipped.
969 */
970 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
971 r = kvm_iommu_map_pages(kvm, &new);
972 return r;
973 }
974
975 return 0;
976
977 out_slots:
978 kvfree(slots);
979 out_free:
980 kvm_free_memslot(kvm, &new, &old);
981 out:
982 return r;
983 }
984 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
985
986 int kvm_set_memory_region(struct kvm *kvm,
987 const struct kvm_userspace_memory_region *mem)
988 {
989 int r;
990
991 mutex_lock(&kvm->slots_lock);
992 r = __kvm_set_memory_region(kvm, mem);
993 mutex_unlock(&kvm->slots_lock);
994 return r;
995 }
996 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
997
998 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
999 struct kvm_userspace_memory_region *mem)
1000 {
1001 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1002 return -EINVAL;
1003
1004 return kvm_set_memory_region(kvm, mem);
1005 }
1006
1007 int kvm_get_dirty_log(struct kvm *kvm,
1008 struct kvm_dirty_log *log, int *is_dirty)
1009 {
1010 struct kvm_memslots *slots;
1011 struct kvm_memory_slot *memslot;
1012 int r, i, as_id, id;
1013 unsigned long n;
1014 unsigned long any = 0;
1015
1016 r = -EINVAL;
1017 as_id = log->slot >> 16;
1018 id = (u16)log->slot;
1019 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1020 goto out;
1021
1022 slots = __kvm_memslots(kvm, as_id);
1023 memslot = id_to_memslot(slots, id);
1024 r = -ENOENT;
1025 if (!memslot->dirty_bitmap)
1026 goto out;
1027
1028 n = kvm_dirty_bitmap_bytes(memslot);
1029
1030 for (i = 0; !any && i < n/sizeof(long); ++i)
1031 any = memslot->dirty_bitmap[i];
1032
1033 r = -EFAULT;
1034 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1035 goto out;
1036
1037 if (any)
1038 *is_dirty = 1;
1039
1040 r = 0;
1041 out:
1042 return r;
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1045
1046 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1047 /**
1048 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1049 * are dirty write protect them for next write.
1050 * @kvm: pointer to kvm instance
1051 * @log: slot id and address to which we copy the log
1052 * @is_dirty: flag set if any page is dirty
1053 *
1054 * We need to keep it in mind that VCPU threads can write to the bitmap
1055 * concurrently. So, to avoid losing track of dirty pages we keep the
1056 * following order:
1057 *
1058 * 1. Take a snapshot of the bit and clear it if needed.
1059 * 2. Write protect the corresponding page.
1060 * 3. Copy the snapshot to the userspace.
1061 * 4. Upon return caller flushes TLB's if needed.
1062 *
1063 * Between 2 and 4, the guest may write to the page using the remaining TLB
1064 * entry. This is not a problem because the page is reported dirty using
1065 * the snapshot taken before and step 4 ensures that writes done after
1066 * exiting to userspace will be logged for the next call.
1067 *
1068 */
1069 int kvm_get_dirty_log_protect(struct kvm *kvm,
1070 struct kvm_dirty_log *log, bool *is_dirty)
1071 {
1072 struct kvm_memslots *slots;
1073 struct kvm_memory_slot *memslot;
1074 int r, i, as_id, id;
1075 unsigned long n;
1076 unsigned long *dirty_bitmap;
1077 unsigned long *dirty_bitmap_buffer;
1078
1079 r = -EINVAL;
1080 as_id = log->slot >> 16;
1081 id = (u16)log->slot;
1082 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1083 goto out;
1084
1085 slots = __kvm_memslots(kvm, as_id);
1086 memslot = id_to_memslot(slots, id);
1087
1088 dirty_bitmap = memslot->dirty_bitmap;
1089 r = -ENOENT;
1090 if (!dirty_bitmap)
1091 goto out;
1092
1093 n = kvm_dirty_bitmap_bytes(memslot);
1094
1095 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1096 memset(dirty_bitmap_buffer, 0, n);
1097
1098 spin_lock(&kvm->mmu_lock);
1099 *is_dirty = false;
1100 for (i = 0; i < n / sizeof(long); i++) {
1101 unsigned long mask;
1102 gfn_t offset;
1103
1104 if (!dirty_bitmap[i])
1105 continue;
1106
1107 *is_dirty = true;
1108
1109 mask = xchg(&dirty_bitmap[i], 0);
1110 dirty_bitmap_buffer[i] = mask;
1111
1112 if (mask) {
1113 offset = i * BITS_PER_LONG;
1114 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1115 offset, mask);
1116 }
1117 }
1118
1119 spin_unlock(&kvm->mmu_lock);
1120
1121 r = -EFAULT;
1122 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1123 goto out;
1124
1125 r = 0;
1126 out:
1127 return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1130 #endif
1131
1132 bool kvm_largepages_enabled(void)
1133 {
1134 return largepages_enabled;
1135 }
1136
1137 void kvm_disable_largepages(void)
1138 {
1139 largepages_enabled = false;
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1142
1143 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1144 {
1145 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1146 }
1147 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1148
1149 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1150 {
1151 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1152 }
1153
1154 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1155 {
1156 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1157
1158 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1159 memslot->flags & KVM_MEMSLOT_INVALID)
1160 return 0;
1161
1162 return 1;
1163 }
1164 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1165
1166 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1167 {
1168 struct vm_area_struct *vma;
1169 unsigned long addr, size;
1170
1171 size = PAGE_SIZE;
1172
1173 addr = gfn_to_hva(kvm, gfn);
1174 if (kvm_is_error_hva(addr))
1175 return PAGE_SIZE;
1176
1177 down_read(&current->mm->mmap_sem);
1178 vma = find_vma(current->mm, addr);
1179 if (!vma)
1180 goto out;
1181
1182 size = vma_kernel_pagesize(vma);
1183
1184 out:
1185 up_read(&current->mm->mmap_sem);
1186
1187 return size;
1188 }
1189
1190 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1191 {
1192 return slot->flags & KVM_MEM_READONLY;
1193 }
1194
1195 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1196 gfn_t *nr_pages, bool write)
1197 {
1198 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1199 return KVM_HVA_ERR_BAD;
1200
1201 if (memslot_is_readonly(slot) && write)
1202 return KVM_HVA_ERR_RO_BAD;
1203
1204 if (nr_pages)
1205 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1206
1207 return __gfn_to_hva_memslot(slot, gfn);
1208 }
1209
1210 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1211 gfn_t *nr_pages)
1212 {
1213 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1214 }
1215
1216 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1217 gfn_t gfn)
1218 {
1219 return gfn_to_hva_many(slot, gfn, NULL);
1220 }
1221 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1222
1223 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1224 {
1225 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_hva);
1228
1229 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1232 }
1233 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1234
1235 /*
1236 * If writable is set to false, the hva returned by this function is only
1237 * allowed to be read.
1238 */
1239 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1240 gfn_t gfn, bool *writable)
1241 {
1242 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1243
1244 if (!kvm_is_error_hva(hva) && writable)
1245 *writable = !memslot_is_readonly(slot);
1246
1247 return hva;
1248 }
1249
1250 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1251 {
1252 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1253
1254 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1255 }
1256
1257 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1258 {
1259 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1260
1261 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1262 }
1263
1264 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1265 unsigned long start, int write, struct page **page)
1266 {
1267 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1268
1269 if (write)
1270 flags |= FOLL_WRITE;
1271
1272 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1273 }
1274
1275 static inline int check_user_page_hwpoison(unsigned long addr)
1276 {
1277 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1278
1279 rc = __get_user_pages(current, current->mm, addr, 1,
1280 flags, NULL, NULL, NULL);
1281 return rc == -EHWPOISON;
1282 }
1283
1284 /*
1285 * The atomic path to get the writable pfn which will be stored in @pfn,
1286 * true indicates success, otherwise false is returned.
1287 */
1288 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1289 bool write_fault, bool *writable, pfn_t *pfn)
1290 {
1291 struct page *page[1];
1292 int npages;
1293
1294 if (!(async || atomic))
1295 return false;
1296
1297 /*
1298 * Fast pin a writable pfn only if it is a write fault request
1299 * or the caller allows to map a writable pfn for a read fault
1300 * request.
1301 */
1302 if (!(write_fault || writable))
1303 return false;
1304
1305 npages = __get_user_pages_fast(addr, 1, 1, page);
1306 if (npages == 1) {
1307 *pfn = page_to_pfn(page[0]);
1308
1309 if (writable)
1310 *writable = true;
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
1317 /*
1318 * The slow path to get the pfn of the specified host virtual address,
1319 * 1 indicates success, -errno is returned if error is detected.
1320 */
1321 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1322 bool *writable, pfn_t *pfn)
1323 {
1324 struct page *page[1];
1325 int npages = 0;
1326
1327 might_sleep();
1328
1329 if (writable)
1330 *writable = write_fault;
1331
1332 if (async) {
1333 down_read(&current->mm->mmap_sem);
1334 npages = get_user_page_nowait(current, current->mm,
1335 addr, write_fault, page);
1336 up_read(&current->mm->mmap_sem);
1337 } else
1338 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1339 write_fault, 0, page,
1340 FOLL_TOUCH|FOLL_HWPOISON);
1341 if (npages != 1)
1342 return npages;
1343
1344 /* map read fault as writable if possible */
1345 if (unlikely(!write_fault) && writable) {
1346 struct page *wpage[1];
1347
1348 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1349 if (npages == 1) {
1350 *writable = true;
1351 put_page(page[0]);
1352 page[0] = wpage[0];
1353 }
1354
1355 npages = 1;
1356 }
1357 *pfn = page_to_pfn(page[0]);
1358 return npages;
1359 }
1360
1361 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1362 {
1363 if (unlikely(!(vma->vm_flags & VM_READ)))
1364 return false;
1365
1366 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1367 return false;
1368
1369 return true;
1370 }
1371
1372 /*
1373 * Pin guest page in memory and return its pfn.
1374 * @addr: host virtual address which maps memory to the guest
1375 * @atomic: whether this function can sleep
1376 * @async: whether this function need to wait IO complete if the
1377 * host page is not in the memory
1378 * @write_fault: whether we should get a writable host page
1379 * @writable: whether it allows to map a writable host page for !@write_fault
1380 *
1381 * The function will map a writable host page for these two cases:
1382 * 1): @write_fault = true
1383 * 2): @write_fault = false && @writable, @writable will tell the caller
1384 * whether the mapping is writable.
1385 */
1386 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1387 bool write_fault, bool *writable)
1388 {
1389 struct vm_area_struct *vma;
1390 pfn_t pfn = 0;
1391 int npages;
1392
1393 /* we can do it either atomically or asynchronously, not both */
1394 BUG_ON(atomic && async);
1395
1396 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1397 return pfn;
1398
1399 if (atomic)
1400 return KVM_PFN_ERR_FAULT;
1401
1402 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1403 if (npages == 1)
1404 return pfn;
1405
1406 down_read(&current->mm->mmap_sem);
1407 if (npages == -EHWPOISON ||
1408 (!async && check_user_page_hwpoison(addr))) {
1409 pfn = KVM_PFN_ERR_HWPOISON;
1410 goto exit;
1411 }
1412
1413 vma = find_vma_intersection(current->mm, addr, addr + 1);
1414
1415 if (vma == NULL)
1416 pfn = KVM_PFN_ERR_FAULT;
1417 else if ((vma->vm_flags & VM_PFNMAP)) {
1418 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1419 vma->vm_pgoff;
1420 BUG_ON(!kvm_is_reserved_pfn(pfn));
1421 } else {
1422 if (async && vma_is_valid(vma, write_fault))
1423 *async = true;
1424 pfn = KVM_PFN_ERR_FAULT;
1425 }
1426 exit:
1427 up_read(&current->mm->mmap_sem);
1428 return pfn;
1429 }
1430
1431 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1432 bool *async, bool write_fault, bool *writable)
1433 {
1434 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1435
1436 if (addr == KVM_HVA_ERR_RO_BAD)
1437 return KVM_PFN_ERR_RO_FAULT;
1438
1439 if (kvm_is_error_hva(addr))
1440 return KVM_PFN_NOSLOT;
1441
1442 /* Do not map writable pfn in the readonly memslot. */
1443 if (writable && memslot_is_readonly(slot)) {
1444 *writable = false;
1445 writable = NULL;
1446 }
1447
1448 return hva_to_pfn(addr, atomic, async, write_fault,
1449 writable);
1450 }
1451 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1452
1453 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1454 bool *writable)
1455 {
1456 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1457 write_fault, writable);
1458 }
1459 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1460
1461 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1462 {
1463 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1464 }
1465 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1466
1467 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1468 {
1469 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1470 }
1471 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1472
1473 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1474 {
1475 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1476 }
1477 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1478
1479 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1480 {
1481 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1484
1485 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1486 {
1487 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1488 }
1489 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1490
1491 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1492 {
1493 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1496
1497 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1498 struct page **pages, int nr_pages)
1499 {
1500 unsigned long addr;
1501 gfn_t entry;
1502
1503 addr = gfn_to_hva_many(slot, gfn, &entry);
1504 if (kvm_is_error_hva(addr))
1505 return -1;
1506
1507 if (entry < nr_pages)
1508 return 0;
1509
1510 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1511 }
1512 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1513
1514 static struct page *kvm_pfn_to_page(pfn_t pfn)
1515 {
1516 if (is_error_noslot_pfn(pfn))
1517 return KVM_ERR_PTR_BAD_PAGE;
1518
1519 if (kvm_is_reserved_pfn(pfn)) {
1520 WARN_ON(1);
1521 return KVM_ERR_PTR_BAD_PAGE;
1522 }
1523
1524 return pfn_to_page(pfn);
1525 }
1526
1527 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1528 {
1529 pfn_t pfn;
1530
1531 pfn = gfn_to_pfn(kvm, gfn);
1532
1533 return kvm_pfn_to_page(pfn);
1534 }
1535 EXPORT_SYMBOL_GPL(gfn_to_page);
1536
1537 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1538 {
1539 pfn_t pfn;
1540
1541 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1542
1543 return kvm_pfn_to_page(pfn);
1544 }
1545 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1546
1547 void kvm_release_page_clean(struct page *page)
1548 {
1549 WARN_ON(is_error_page(page));
1550
1551 kvm_release_pfn_clean(page_to_pfn(page));
1552 }
1553 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1554
1555 void kvm_release_pfn_clean(pfn_t pfn)
1556 {
1557 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1558 put_page(pfn_to_page(pfn));
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1561
1562 void kvm_release_page_dirty(struct page *page)
1563 {
1564 WARN_ON(is_error_page(page));
1565
1566 kvm_release_pfn_dirty(page_to_pfn(page));
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1569
1570 static void kvm_release_pfn_dirty(pfn_t pfn)
1571 {
1572 kvm_set_pfn_dirty(pfn);
1573 kvm_release_pfn_clean(pfn);
1574 }
1575
1576 void kvm_set_pfn_dirty(pfn_t pfn)
1577 {
1578 if (!kvm_is_reserved_pfn(pfn)) {
1579 struct page *page = pfn_to_page(pfn);
1580
1581 if (!PageReserved(page))
1582 SetPageDirty(page);
1583 }
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1586
1587 void kvm_set_pfn_accessed(pfn_t pfn)
1588 {
1589 if (!kvm_is_reserved_pfn(pfn))
1590 mark_page_accessed(pfn_to_page(pfn));
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1593
1594 void kvm_get_pfn(pfn_t pfn)
1595 {
1596 if (!kvm_is_reserved_pfn(pfn))
1597 get_page(pfn_to_page(pfn));
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1600
1601 static int next_segment(unsigned long len, int offset)
1602 {
1603 if (len > PAGE_SIZE - offset)
1604 return PAGE_SIZE - offset;
1605 else
1606 return len;
1607 }
1608
1609 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1610 void *data, int offset, int len)
1611 {
1612 int r;
1613 unsigned long addr;
1614
1615 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1616 if (kvm_is_error_hva(addr))
1617 return -EFAULT;
1618 r = __copy_from_user(data, (void __user *)addr + offset, len);
1619 if (r)
1620 return -EFAULT;
1621 return 0;
1622 }
1623
1624 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1625 int len)
1626 {
1627 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1628
1629 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1630 }
1631 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1632
1633 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1634 int offset, int len)
1635 {
1636 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1637
1638 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1641
1642 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1643 {
1644 gfn_t gfn = gpa >> PAGE_SHIFT;
1645 int seg;
1646 int offset = offset_in_page(gpa);
1647 int ret;
1648
1649 while ((seg = next_segment(len, offset)) != 0) {
1650 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1651 if (ret < 0)
1652 return ret;
1653 offset = 0;
1654 len -= seg;
1655 data += seg;
1656 ++gfn;
1657 }
1658 return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(kvm_read_guest);
1661
1662 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1663 {
1664 gfn_t gfn = gpa >> PAGE_SHIFT;
1665 int seg;
1666 int offset = offset_in_page(gpa);
1667 int ret;
1668
1669 while ((seg = next_segment(len, offset)) != 0) {
1670 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1671 if (ret < 0)
1672 return ret;
1673 offset = 0;
1674 len -= seg;
1675 data += seg;
1676 ++gfn;
1677 }
1678 return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1681
1682 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1683 void *data, int offset, unsigned long len)
1684 {
1685 int r;
1686 unsigned long addr;
1687
1688 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1689 if (kvm_is_error_hva(addr))
1690 return -EFAULT;
1691 pagefault_disable();
1692 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1693 pagefault_enable();
1694 if (r)
1695 return -EFAULT;
1696 return 0;
1697 }
1698
1699 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1700 unsigned long len)
1701 {
1702 gfn_t gfn = gpa >> PAGE_SHIFT;
1703 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1704 int offset = offset_in_page(gpa);
1705
1706 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1709
1710 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1711 void *data, unsigned long len)
1712 {
1713 gfn_t gfn = gpa >> PAGE_SHIFT;
1714 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1715 int offset = offset_in_page(gpa);
1716
1717 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1720
1721 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1722 const void *data, int offset, int len)
1723 {
1724 int r;
1725 unsigned long addr;
1726
1727 addr = gfn_to_hva_memslot(memslot, gfn);
1728 if (kvm_is_error_hva(addr))
1729 return -EFAULT;
1730 r = __copy_to_user((void __user *)addr + offset, data, len);
1731 if (r)
1732 return -EFAULT;
1733 mark_page_dirty_in_slot(memslot, gfn);
1734 return 0;
1735 }
1736
1737 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1738 const void *data, int offset, int len)
1739 {
1740 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1741
1742 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1745
1746 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1747 const void *data, int offset, int len)
1748 {
1749 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1750
1751 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1754
1755 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1756 unsigned long len)
1757 {
1758 gfn_t gfn = gpa >> PAGE_SHIFT;
1759 int seg;
1760 int offset = offset_in_page(gpa);
1761 int ret;
1762
1763 while ((seg = next_segment(len, offset)) != 0) {
1764 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1765 if (ret < 0)
1766 return ret;
1767 offset = 0;
1768 len -= seg;
1769 data += seg;
1770 ++gfn;
1771 }
1772 return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_write_guest);
1775
1776 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1777 unsigned long len)
1778 {
1779 gfn_t gfn = gpa >> PAGE_SHIFT;
1780 int seg;
1781 int offset = offset_in_page(gpa);
1782 int ret;
1783
1784 while ((seg = next_segment(len, offset)) != 0) {
1785 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1786 if (ret < 0)
1787 return ret;
1788 offset = 0;
1789 len -= seg;
1790 data += seg;
1791 ++gfn;
1792 }
1793 return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1796
1797 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1798 gpa_t gpa, unsigned long len)
1799 {
1800 struct kvm_memslots *slots = kvm_memslots(kvm);
1801 int offset = offset_in_page(gpa);
1802 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1803 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1804 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1805 gfn_t nr_pages_avail;
1806
1807 ghc->gpa = gpa;
1808 ghc->generation = slots->generation;
1809 ghc->len = len;
1810 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1811 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1812 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1813 ghc->hva += offset;
1814 } else {
1815 /*
1816 * If the requested region crosses two memslots, we still
1817 * verify that the entire region is valid here.
1818 */
1819 while (start_gfn <= end_gfn) {
1820 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1821 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1822 &nr_pages_avail);
1823 if (kvm_is_error_hva(ghc->hva))
1824 return -EFAULT;
1825 start_gfn += nr_pages_avail;
1826 }
1827 /* Use the slow path for cross page reads and writes. */
1828 ghc->memslot = NULL;
1829 }
1830 return 0;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1833
1834 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1835 void *data, unsigned long len)
1836 {
1837 struct kvm_memslots *slots = kvm_memslots(kvm);
1838 int r;
1839
1840 BUG_ON(len > ghc->len);
1841
1842 if (slots->generation != ghc->generation)
1843 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1844
1845 if (unlikely(!ghc->memslot))
1846 return kvm_write_guest(kvm, ghc->gpa, data, len);
1847
1848 if (kvm_is_error_hva(ghc->hva))
1849 return -EFAULT;
1850
1851 r = __copy_to_user((void __user *)ghc->hva, data, len);
1852 if (r)
1853 return -EFAULT;
1854 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1855
1856 return 0;
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1859
1860 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1861 void *data, unsigned long len)
1862 {
1863 struct kvm_memslots *slots = kvm_memslots(kvm);
1864 int r;
1865
1866 BUG_ON(len > ghc->len);
1867
1868 if (slots->generation != ghc->generation)
1869 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1870
1871 if (unlikely(!ghc->memslot))
1872 return kvm_read_guest(kvm, ghc->gpa, data, len);
1873
1874 if (kvm_is_error_hva(ghc->hva))
1875 return -EFAULT;
1876
1877 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1878 if (r)
1879 return -EFAULT;
1880
1881 return 0;
1882 }
1883 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1884
1885 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1886 {
1887 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1888
1889 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1892
1893 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1894 {
1895 gfn_t gfn = gpa >> PAGE_SHIFT;
1896 int seg;
1897 int offset = offset_in_page(gpa);
1898 int ret;
1899
1900 while ((seg = next_segment(len, offset)) != 0) {
1901 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1902 if (ret < 0)
1903 return ret;
1904 offset = 0;
1905 len -= seg;
1906 ++gfn;
1907 }
1908 return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1911
1912 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1913 gfn_t gfn)
1914 {
1915 if (memslot && memslot->dirty_bitmap) {
1916 unsigned long rel_gfn = gfn - memslot->base_gfn;
1917
1918 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1919 }
1920 }
1921
1922 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1923 {
1924 struct kvm_memory_slot *memslot;
1925
1926 memslot = gfn_to_memslot(kvm, gfn);
1927 mark_page_dirty_in_slot(memslot, gfn);
1928 }
1929 EXPORT_SYMBOL_GPL(mark_page_dirty);
1930
1931 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1932 {
1933 struct kvm_memory_slot *memslot;
1934
1935 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1936 mark_page_dirty_in_slot(memslot, gfn);
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1939
1940 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1941 {
1942 if (kvm_arch_vcpu_runnable(vcpu)) {
1943 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1944 return -EINTR;
1945 }
1946 if (kvm_cpu_has_pending_timer(vcpu))
1947 return -EINTR;
1948 if (signal_pending(current))
1949 return -EINTR;
1950
1951 return 0;
1952 }
1953
1954 /*
1955 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1956 */
1957 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1958 {
1959 ktime_t start, cur;
1960 DEFINE_WAIT(wait);
1961 bool waited = false;
1962
1963 start = cur = ktime_get();
1964 if (halt_poll_ns) {
1965 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1966
1967 do {
1968 /*
1969 * This sets KVM_REQ_UNHALT if an interrupt
1970 * arrives.
1971 */
1972 if (kvm_vcpu_check_block(vcpu) < 0) {
1973 ++vcpu->stat.halt_successful_poll;
1974 goto out;
1975 }
1976 cur = ktime_get();
1977 } while (single_task_running() && ktime_before(cur, stop));
1978 }
1979
1980 for (;;) {
1981 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1982
1983 if (kvm_vcpu_check_block(vcpu) < 0)
1984 break;
1985
1986 waited = true;
1987 schedule();
1988 }
1989
1990 finish_wait(&vcpu->wq, &wait);
1991 cur = ktime_get();
1992
1993 out:
1994 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1997
1998 #ifndef CONFIG_S390
1999 /*
2000 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2001 */
2002 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2003 {
2004 int me;
2005 int cpu = vcpu->cpu;
2006 wait_queue_head_t *wqp;
2007
2008 wqp = kvm_arch_vcpu_wq(vcpu);
2009 if (waitqueue_active(wqp)) {
2010 wake_up_interruptible(wqp);
2011 ++vcpu->stat.halt_wakeup;
2012 }
2013
2014 me = get_cpu();
2015 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2016 if (kvm_arch_vcpu_should_kick(vcpu))
2017 smp_send_reschedule(cpu);
2018 put_cpu();
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2021 #endif /* !CONFIG_S390 */
2022
2023 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2024 {
2025 struct pid *pid;
2026 struct task_struct *task = NULL;
2027 int ret = 0;
2028
2029 rcu_read_lock();
2030 pid = rcu_dereference(target->pid);
2031 if (pid)
2032 task = get_pid_task(pid, PIDTYPE_PID);
2033 rcu_read_unlock();
2034 if (!task)
2035 return ret;
2036 ret = yield_to(task, 1);
2037 put_task_struct(task);
2038
2039 return ret;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2042
2043 /*
2044 * Helper that checks whether a VCPU is eligible for directed yield.
2045 * Most eligible candidate to yield is decided by following heuristics:
2046 *
2047 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2048 * (preempted lock holder), indicated by @in_spin_loop.
2049 * Set at the beiginning and cleared at the end of interception/PLE handler.
2050 *
2051 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2052 * chance last time (mostly it has become eligible now since we have probably
2053 * yielded to lockholder in last iteration. This is done by toggling
2054 * @dy_eligible each time a VCPU checked for eligibility.)
2055 *
2056 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2057 * to preempted lock-holder could result in wrong VCPU selection and CPU
2058 * burning. Giving priority for a potential lock-holder increases lock
2059 * progress.
2060 *
2061 * Since algorithm is based on heuristics, accessing another VCPU data without
2062 * locking does not harm. It may result in trying to yield to same VCPU, fail
2063 * and continue with next VCPU and so on.
2064 */
2065 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2066 {
2067 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2068 bool eligible;
2069
2070 eligible = !vcpu->spin_loop.in_spin_loop ||
2071 vcpu->spin_loop.dy_eligible;
2072
2073 if (vcpu->spin_loop.in_spin_loop)
2074 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2075
2076 return eligible;
2077 #else
2078 return true;
2079 #endif
2080 }
2081
2082 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2083 {
2084 struct kvm *kvm = me->kvm;
2085 struct kvm_vcpu *vcpu;
2086 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2087 int yielded = 0;
2088 int try = 3;
2089 int pass;
2090 int i;
2091
2092 kvm_vcpu_set_in_spin_loop(me, true);
2093 /*
2094 * We boost the priority of a VCPU that is runnable but not
2095 * currently running, because it got preempted by something
2096 * else and called schedule in __vcpu_run. Hopefully that
2097 * VCPU is holding the lock that we need and will release it.
2098 * We approximate round-robin by starting at the last boosted VCPU.
2099 */
2100 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2101 kvm_for_each_vcpu(i, vcpu, kvm) {
2102 if (!pass && i <= last_boosted_vcpu) {
2103 i = last_boosted_vcpu;
2104 continue;
2105 } else if (pass && i > last_boosted_vcpu)
2106 break;
2107 if (!ACCESS_ONCE(vcpu->preempted))
2108 continue;
2109 if (vcpu == me)
2110 continue;
2111 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2112 continue;
2113 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2114 continue;
2115
2116 yielded = kvm_vcpu_yield_to(vcpu);
2117 if (yielded > 0) {
2118 kvm->last_boosted_vcpu = i;
2119 break;
2120 } else if (yielded < 0) {
2121 try--;
2122 if (!try)
2123 break;
2124 }
2125 }
2126 }
2127 kvm_vcpu_set_in_spin_loop(me, false);
2128
2129 /* Ensure vcpu is not eligible during next spinloop */
2130 kvm_vcpu_set_dy_eligible(me, false);
2131 }
2132 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2133
2134 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2135 {
2136 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2137 struct page *page;
2138
2139 if (vmf->pgoff == 0)
2140 page = virt_to_page(vcpu->run);
2141 #ifdef CONFIG_X86
2142 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2143 page = virt_to_page(vcpu->arch.pio_data);
2144 #endif
2145 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2146 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2147 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2148 #endif
2149 else
2150 return kvm_arch_vcpu_fault(vcpu, vmf);
2151 get_page(page);
2152 vmf->page = page;
2153 return 0;
2154 }
2155
2156 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2157 .fault = kvm_vcpu_fault,
2158 };
2159
2160 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2161 {
2162 vma->vm_ops = &kvm_vcpu_vm_ops;
2163 return 0;
2164 }
2165
2166 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2167 {
2168 struct kvm_vcpu *vcpu = filp->private_data;
2169
2170 kvm_put_kvm(vcpu->kvm);
2171 return 0;
2172 }
2173
2174 static struct file_operations kvm_vcpu_fops = {
2175 .release = kvm_vcpu_release,
2176 .unlocked_ioctl = kvm_vcpu_ioctl,
2177 #ifdef CONFIG_KVM_COMPAT
2178 .compat_ioctl = kvm_vcpu_compat_ioctl,
2179 #endif
2180 .mmap = kvm_vcpu_mmap,
2181 .llseek = noop_llseek,
2182 };
2183
2184 /*
2185 * Allocates an inode for the vcpu.
2186 */
2187 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2188 {
2189 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2190 }
2191
2192 /*
2193 * Creates some virtual cpus. Good luck creating more than one.
2194 */
2195 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2196 {
2197 int r;
2198 struct kvm_vcpu *vcpu, *v;
2199
2200 if (id >= KVM_MAX_VCPUS)
2201 return -EINVAL;
2202
2203 vcpu = kvm_arch_vcpu_create(kvm, id);
2204 if (IS_ERR(vcpu))
2205 return PTR_ERR(vcpu);
2206
2207 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2208
2209 r = kvm_arch_vcpu_setup(vcpu);
2210 if (r)
2211 goto vcpu_destroy;
2212
2213 mutex_lock(&kvm->lock);
2214 if (!kvm_vcpu_compatible(vcpu)) {
2215 r = -EINVAL;
2216 goto unlock_vcpu_destroy;
2217 }
2218 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2219 r = -EINVAL;
2220 goto unlock_vcpu_destroy;
2221 }
2222
2223 kvm_for_each_vcpu(r, v, kvm)
2224 if (v->vcpu_id == id) {
2225 r = -EEXIST;
2226 goto unlock_vcpu_destroy;
2227 }
2228
2229 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2230
2231 /* Now it's all set up, let userspace reach it */
2232 kvm_get_kvm(kvm);
2233 r = create_vcpu_fd(vcpu);
2234 if (r < 0) {
2235 kvm_put_kvm(kvm);
2236 goto unlock_vcpu_destroy;
2237 }
2238
2239 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2240
2241 /*
2242 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2243 * before kvm->online_vcpu's incremented value.
2244 */
2245 smp_wmb();
2246 atomic_inc(&kvm->online_vcpus);
2247
2248 mutex_unlock(&kvm->lock);
2249 kvm_arch_vcpu_postcreate(vcpu);
2250 return r;
2251
2252 unlock_vcpu_destroy:
2253 mutex_unlock(&kvm->lock);
2254 vcpu_destroy:
2255 kvm_arch_vcpu_destroy(vcpu);
2256 return r;
2257 }
2258
2259 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2260 {
2261 if (sigset) {
2262 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2263 vcpu->sigset_active = 1;
2264 vcpu->sigset = *sigset;
2265 } else
2266 vcpu->sigset_active = 0;
2267 return 0;
2268 }
2269
2270 static long kvm_vcpu_ioctl(struct file *filp,
2271 unsigned int ioctl, unsigned long arg)
2272 {
2273 struct kvm_vcpu *vcpu = filp->private_data;
2274 void __user *argp = (void __user *)arg;
2275 int r;
2276 struct kvm_fpu *fpu = NULL;
2277 struct kvm_sregs *kvm_sregs = NULL;
2278
2279 if (vcpu->kvm->mm != current->mm)
2280 return -EIO;
2281
2282 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2283 return -EINVAL;
2284
2285 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2286 /*
2287 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2288 * so vcpu_load() would break it.
2289 */
2290 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2291 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2292 #endif
2293
2294
2295 r = vcpu_load(vcpu);
2296 if (r)
2297 return r;
2298 switch (ioctl) {
2299 case KVM_RUN:
2300 r = -EINVAL;
2301 if (arg)
2302 goto out;
2303 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2304 /* The thread running this VCPU changed. */
2305 struct pid *oldpid = vcpu->pid;
2306 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2307
2308 rcu_assign_pointer(vcpu->pid, newpid);
2309 if (oldpid)
2310 synchronize_rcu();
2311 put_pid(oldpid);
2312 }
2313 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2314 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2315 break;
2316 case KVM_GET_REGS: {
2317 struct kvm_regs *kvm_regs;
2318
2319 r = -ENOMEM;
2320 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2321 if (!kvm_regs)
2322 goto out;
2323 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2324 if (r)
2325 goto out_free1;
2326 r = -EFAULT;
2327 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2328 goto out_free1;
2329 r = 0;
2330 out_free1:
2331 kfree(kvm_regs);
2332 break;
2333 }
2334 case KVM_SET_REGS: {
2335 struct kvm_regs *kvm_regs;
2336
2337 r = -ENOMEM;
2338 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2339 if (IS_ERR(kvm_regs)) {
2340 r = PTR_ERR(kvm_regs);
2341 goto out;
2342 }
2343 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2344 kfree(kvm_regs);
2345 break;
2346 }
2347 case KVM_GET_SREGS: {
2348 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2349 r = -ENOMEM;
2350 if (!kvm_sregs)
2351 goto out;
2352 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2353 if (r)
2354 goto out;
2355 r = -EFAULT;
2356 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2357 goto out;
2358 r = 0;
2359 break;
2360 }
2361 case KVM_SET_SREGS: {
2362 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2363 if (IS_ERR(kvm_sregs)) {
2364 r = PTR_ERR(kvm_sregs);
2365 kvm_sregs = NULL;
2366 goto out;
2367 }
2368 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2369 break;
2370 }
2371 case KVM_GET_MP_STATE: {
2372 struct kvm_mp_state mp_state;
2373
2374 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2375 if (r)
2376 goto out;
2377 r = -EFAULT;
2378 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2379 goto out;
2380 r = 0;
2381 break;
2382 }
2383 case KVM_SET_MP_STATE: {
2384 struct kvm_mp_state mp_state;
2385
2386 r = -EFAULT;
2387 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2388 goto out;
2389 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2390 break;
2391 }
2392 case KVM_TRANSLATE: {
2393 struct kvm_translation tr;
2394
2395 r = -EFAULT;
2396 if (copy_from_user(&tr, argp, sizeof(tr)))
2397 goto out;
2398 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2399 if (r)
2400 goto out;
2401 r = -EFAULT;
2402 if (copy_to_user(argp, &tr, sizeof(tr)))
2403 goto out;
2404 r = 0;
2405 break;
2406 }
2407 case KVM_SET_GUEST_DEBUG: {
2408 struct kvm_guest_debug dbg;
2409
2410 r = -EFAULT;
2411 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2412 goto out;
2413 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2414 break;
2415 }
2416 case KVM_SET_SIGNAL_MASK: {
2417 struct kvm_signal_mask __user *sigmask_arg = argp;
2418 struct kvm_signal_mask kvm_sigmask;
2419 sigset_t sigset, *p;
2420
2421 p = NULL;
2422 if (argp) {
2423 r = -EFAULT;
2424 if (copy_from_user(&kvm_sigmask, argp,
2425 sizeof(kvm_sigmask)))
2426 goto out;
2427 r = -EINVAL;
2428 if (kvm_sigmask.len != sizeof(sigset))
2429 goto out;
2430 r = -EFAULT;
2431 if (copy_from_user(&sigset, sigmask_arg->sigset,
2432 sizeof(sigset)))
2433 goto out;
2434 p = &sigset;
2435 }
2436 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2437 break;
2438 }
2439 case KVM_GET_FPU: {
2440 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2441 r = -ENOMEM;
2442 if (!fpu)
2443 goto out;
2444 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2445 if (r)
2446 goto out;
2447 r = -EFAULT;
2448 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2449 goto out;
2450 r = 0;
2451 break;
2452 }
2453 case KVM_SET_FPU: {
2454 fpu = memdup_user(argp, sizeof(*fpu));
2455 if (IS_ERR(fpu)) {
2456 r = PTR_ERR(fpu);
2457 fpu = NULL;
2458 goto out;
2459 }
2460 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2461 break;
2462 }
2463 default:
2464 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2465 }
2466 out:
2467 vcpu_put(vcpu);
2468 kfree(fpu);
2469 kfree(kvm_sregs);
2470 return r;
2471 }
2472
2473 #ifdef CONFIG_KVM_COMPAT
2474 static long kvm_vcpu_compat_ioctl(struct file *filp,
2475 unsigned int ioctl, unsigned long arg)
2476 {
2477 struct kvm_vcpu *vcpu = filp->private_data;
2478 void __user *argp = compat_ptr(arg);
2479 int r;
2480
2481 if (vcpu->kvm->mm != current->mm)
2482 return -EIO;
2483
2484 switch (ioctl) {
2485 case KVM_SET_SIGNAL_MASK: {
2486 struct kvm_signal_mask __user *sigmask_arg = argp;
2487 struct kvm_signal_mask kvm_sigmask;
2488 compat_sigset_t csigset;
2489 sigset_t sigset;
2490
2491 if (argp) {
2492 r = -EFAULT;
2493 if (copy_from_user(&kvm_sigmask, argp,
2494 sizeof(kvm_sigmask)))
2495 goto out;
2496 r = -EINVAL;
2497 if (kvm_sigmask.len != sizeof(csigset))
2498 goto out;
2499 r = -EFAULT;
2500 if (copy_from_user(&csigset, sigmask_arg->sigset,
2501 sizeof(csigset)))
2502 goto out;
2503 sigset_from_compat(&sigset, &csigset);
2504 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2505 } else
2506 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2507 break;
2508 }
2509 default:
2510 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2511 }
2512
2513 out:
2514 return r;
2515 }
2516 #endif
2517
2518 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2519 int (*accessor)(struct kvm_device *dev,
2520 struct kvm_device_attr *attr),
2521 unsigned long arg)
2522 {
2523 struct kvm_device_attr attr;
2524
2525 if (!accessor)
2526 return -EPERM;
2527
2528 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2529 return -EFAULT;
2530
2531 return accessor(dev, &attr);
2532 }
2533
2534 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2535 unsigned long arg)
2536 {
2537 struct kvm_device *dev = filp->private_data;
2538
2539 switch (ioctl) {
2540 case KVM_SET_DEVICE_ATTR:
2541 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2542 case KVM_GET_DEVICE_ATTR:
2543 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2544 case KVM_HAS_DEVICE_ATTR:
2545 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2546 default:
2547 if (dev->ops->ioctl)
2548 return dev->ops->ioctl(dev, ioctl, arg);
2549
2550 return -ENOTTY;
2551 }
2552 }
2553
2554 static int kvm_device_release(struct inode *inode, struct file *filp)
2555 {
2556 struct kvm_device *dev = filp->private_data;
2557 struct kvm *kvm = dev->kvm;
2558
2559 kvm_put_kvm(kvm);
2560 return 0;
2561 }
2562
2563 static const struct file_operations kvm_device_fops = {
2564 .unlocked_ioctl = kvm_device_ioctl,
2565 #ifdef CONFIG_KVM_COMPAT
2566 .compat_ioctl = kvm_device_ioctl,
2567 #endif
2568 .release = kvm_device_release,
2569 };
2570
2571 struct kvm_device *kvm_device_from_filp(struct file *filp)
2572 {
2573 if (filp->f_op != &kvm_device_fops)
2574 return NULL;
2575
2576 return filp->private_data;
2577 }
2578
2579 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2580 #ifdef CONFIG_KVM_MPIC
2581 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2582 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2583 #endif
2584
2585 #ifdef CONFIG_KVM_XICS
2586 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2587 #endif
2588 };
2589
2590 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2591 {
2592 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2593 return -ENOSPC;
2594
2595 if (kvm_device_ops_table[type] != NULL)
2596 return -EEXIST;
2597
2598 kvm_device_ops_table[type] = ops;
2599 return 0;
2600 }
2601
2602 void kvm_unregister_device_ops(u32 type)
2603 {
2604 if (kvm_device_ops_table[type] != NULL)
2605 kvm_device_ops_table[type] = NULL;
2606 }
2607
2608 static int kvm_ioctl_create_device(struct kvm *kvm,
2609 struct kvm_create_device *cd)
2610 {
2611 struct kvm_device_ops *ops = NULL;
2612 struct kvm_device *dev;
2613 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2614 int ret;
2615
2616 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2617 return -ENODEV;
2618
2619 ops = kvm_device_ops_table[cd->type];
2620 if (ops == NULL)
2621 return -ENODEV;
2622
2623 if (test)
2624 return 0;
2625
2626 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2627 if (!dev)
2628 return -ENOMEM;
2629
2630 dev->ops = ops;
2631 dev->kvm = kvm;
2632
2633 ret = ops->create(dev, cd->type);
2634 if (ret < 0) {
2635 kfree(dev);
2636 return ret;
2637 }
2638
2639 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2640 if (ret < 0) {
2641 ops->destroy(dev);
2642 return ret;
2643 }
2644
2645 list_add(&dev->vm_node, &kvm->devices);
2646 kvm_get_kvm(kvm);
2647 cd->fd = ret;
2648 return 0;
2649 }
2650
2651 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2652 {
2653 switch (arg) {
2654 case KVM_CAP_USER_MEMORY:
2655 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2656 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2657 case KVM_CAP_INTERNAL_ERROR_DATA:
2658 #ifdef CONFIG_HAVE_KVM_MSI
2659 case KVM_CAP_SIGNAL_MSI:
2660 #endif
2661 #ifdef CONFIG_HAVE_KVM_IRQFD
2662 case KVM_CAP_IRQFD:
2663 case KVM_CAP_IRQFD_RESAMPLE:
2664 #endif
2665 case KVM_CAP_CHECK_EXTENSION_VM:
2666 return 1;
2667 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2668 case KVM_CAP_IRQ_ROUTING:
2669 return KVM_MAX_IRQ_ROUTES;
2670 #endif
2671 #if KVM_ADDRESS_SPACE_NUM > 1
2672 case KVM_CAP_MULTI_ADDRESS_SPACE:
2673 return KVM_ADDRESS_SPACE_NUM;
2674 #endif
2675 default:
2676 break;
2677 }
2678 return kvm_vm_ioctl_check_extension(kvm, arg);
2679 }
2680
2681 static long kvm_vm_ioctl(struct file *filp,
2682 unsigned int ioctl, unsigned long arg)
2683 {
2684 struct kvm *kvm = filp->private_data;
2685 void __user *argp = (void __user *)arg;
2686 int r;
2687
2688 if (kvm->mm != current->mm)
2689 return -EIO;
2690 switch (ioctl) {
2691 case KVM_CREATE_VCPU:
2692 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2693 break;
2694 case KVM_SET_USER_MEMORY_REGION: {
2695 struct kvm_userspace_memory_region kvm_userspace_mem;
2696
2697 r = -EFAULT;
2698 if (copy_from_user(&kvm_userspace_mem, argp,
2699 sizeof(kvm_userspace_mem)))
2700 goto out;
2701
2702 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2703 break;
2704 }
2705 case KVM_GET_DIRTY_LOG: {
2706 struct kvm_dirty_log log;
2707
2708 r = -EFAULT;
2709 if (copy_from_user(&log, argp, sizeof(log)))
2710 goto out;
2711 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2712 break;
2713 }
2714 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2715 case KVM_REGISTER_COALESCED_MMIO: {
2716 struct kvm_coalesced_mmio_zone zone;
2717
2718 r = -EFAULT;
2719 if (copy_from_user(&zone, argp, sizeof(zone)))
2720 goto out;
2721 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2722 break;
2723 }
2724 case KVM_UNREGISTER_COALESCED_MMIO: {
2725 struct kvm_coalesced_mmio_zone zone;
2726
2727 r = -EFAULT;
2728 if (copy_from_user(&zone, argp, sizeof(zone)))
2729 goto out;
2730 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2731 break;
2732 }
2733 #endif
2734 case KVM_IRQFD: {
2735 struct kvm_irqfd data;
2736
2737 r = -EFAULT;
2738 if (copy_from_user(&data, argp, sizeof(data)))
2739 goto out;
2740 r = kvm_irqfd(kvm, &data);
2741 break;
2742 }
2743 case KVM_IOEVENTFD: {
2744 struct kvm_ioeventfd data;
2745
2746 r = -EFAULT;
2747 if (copy_from_user(&data, argp, sizeof(data)))
2748 goto out;
2749 r = kvm_ioeventfd(kvm, &data);
2750 break;
2751 }
2752 #ifdef CONFIG_HAVE_KVM_MSI
2753 case KVM_SIGNAL_MSI: {
2754 struct kvm_msi msi;
2755
2756 r = -EFAULT;
2757 if (copy_from_user(&msi, argp, sizeof(msi)))
2758 goto out;
2759 r = kvm_send_userspace_msi(kvm, &msi);
2760 break;
2761 }
2762 #endif
2763 #ifdef __KVM_HAVE_IRQ_LINE
2764 case KVM_IRQ_LINE_STATUS:
2765 case KVM_IRQ_LINE: {
2766 struct kvm_irq_level irq_event;
2767
2768 r = -EFAULT;
2769 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2770 goto out;
2771
2772 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2773 ioctl == KVM_IRQ_LINE_STATUS);
2774 if (r)
2775 goto out;
2776
2777 r = -EFAULT;
2778 if (ioctl == KVM_IRQ_LINE_STATUS) {
2779 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2780 goto out;
2781 }
2782
2783 r = 0;
2784 break;
2785 }
2786 #endif
2787 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2788 case KVM_SET_GSI_ROUTING: {
2789 struct kvm_irq_routing routing;
2790 struct kvm_irq_routing __user *urouting;
2791 struct kvm_irq_routing_entry *entries;
2792
2793 r = -EFAULT;
2794 if (copy_from_user(&routing, argp, sizeof(routing)))
2795 goto out;
2796 r = -EINVAL;
2797 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2798 goto out;
2799 if (routing.flags)
2800 goto out;
2801 r = -ENOMEM;
2802 entries = vmalloc(routing.nr * sizeof(*entries));
2803 if (!entries)
2804 goto out;
2805 r = -EFAULT;
2806 urouting = argp;
2807 if (copy_from_user(entries, urouting->entries,
2808 routing.nr * sizeof(*entries)))
2809 goto out_free_irq_routing;
2810 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2811 routing.flags);
2812 out_free_irq_routing:
2813 vfree(entries);
2814 break;
2815 }
2816 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2817 case KVM_CREATE_DEVICE: {
2818 struct kvm_create_device cd;
2819
2820 r = -EFAULT;
2821 if (copy_from_user(&cd, argp, sizeof(cd)))
2822 goto out;
2823
2824 r = kvm_ioctl_create_device(kvm, &cd);
2825 if (r)
2826 goto out;
2827
2828 r = -EFAULT;
2829 if (copy_to_user(argp, &cd, sizeof(cd)))
2830 goto out;
2831
2832 r = 0;
2833 break;
2834 }
2835 case KVM_CHECK_EXTENSION:
2836 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2837 break;
2838 default:
2839 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2840 }
2841 out:
2842 return r;
2843 }
2844
2845 #ifdef CONFIG_KVM_COMPAT
2846 struct compat_kvm_dirty_log {
2847 __u32 slot;
2848 __u32 padding1;
2849 union {
2850 compat_uptr_t dirty_bitmap; /* one bit per page */
2851 __u64 padding2;
2852 };
2853 };
2854
2855 static long kvm_vm_compat_ioctl(struct file *filp,
2856 unsigned int ioctl, unsigned long arg)
2857 {
2858 struct kvm *kvm = filp->private_data;
2859 int r;
2860
2861 if (kvm->mm != current->mm)
2862 return -EIO;
2863 switch (ioctl) {
2864 case KVM_GET_DIRTY_LOG: {
2865 struct compat_kvm_dirty_log compat_log;
2866 struct kvm_dirty_log log;
2867
2868 r = -EFAULT;
2869 if (copy_from_user(&compat_log, (void __user *)arg,
2870 sizeof(compat_log)))
2871 goto out;
2872 log.slot = compat_log.slot;
2873 log.padding1 = compat_log.padding1;
2874 log.padding2 = compat_log.padding2;
2875 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2876
2877 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2878 break;
2879 }
2880 default:
2881 r = kvm_vm_ioctl(filp, ioctl, arg);
2882 }
2883
2884 out:
2885 return r;
2886 }
2887 #endif
2888
2889 static struct file_operations kvm_vm_fops = {
2890 .release = kvm_vm_release,
2891 .unlocked_ioctl = kvm_vm_ioctl,
2892 #ifdef CONFIG_KVM_COMPAT
2893 .compat_ioctl = kvm_vm_compat_ioctl,
2894 #endif
2895 .llseek = noop_llseek,
2896 };
2897
2898 static int kvm_dev_ioctl_create_vm(unsigned long type)
2899 {
2900 int r;
2901 struct kvm *kvm;
2902
2903 kvm = kvm_create_vm(type);
2904 if (IS_ERR(kvm))
2905 return PTR_ERR(kvm);
2906 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2907 r = kvm_coalesced_mmio_init(kvm);
2908 if (r < 0) {
2909 kvm_put_kvm(kvm);
2910 return r;
2911 }
2912 #endif
2913 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2914 if (r < 0)
2915 kvm_put_kvm(kvm);
2916
2917 return r;
2918 }
2919
2920 static long kvm_dev_ioctl(struct file *filp,
2921 unsigned int ioctl, unsigned long arg)
2922 {
2923 long r = -EINVAL;
2924
2925 switch (ioctl) {
2926 case KVM_GET_API_VERSION:
2927 if (arg)
2928 goto out;
2929 r = KVM_API_VERSION;
2930 break;
2931 case KVM_CREATE_VM:
2932 r = kvm_dev_ioctl_create_vm(arg);
2933 break;
2934 case KVM_CHECK_EXTENSION:
2935 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2936 break;
2937 case KVM_GET_VCPU_MMAP_SIZE:
2938 if (arg)
2939 goto out;
2940 r = PAGE_SIZE; /* struct kvm_run */
2941 #ifdef CONFIG_X86
2942 r += PAGE_SIZE; /* pio data page */
2943 #endif
2944 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2945 r += PAGE_SIZE; /* coalesced mmio ring page */
2946 #endif
2947 break;
2948 case KVM_TRACE_ENABLE:
2949 case KVM_TRACE_PAUSE:
2950 case KVM_TRACE_DISABLE:
2951 r = -EOPNOTSUPP;
2952 break;
2953 default:
2954 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2955 }
2956 out:
2957 return r;
2958 }
2959
2960 static struct file_operations kvm_chardev_ops = {
2961 .unlocked_ioctl = kvm_dev_ioctl,
2962 .compat_ioctl = kvm_dev_ioctl,
2963 .llseek = noop_llseek,
2964 };
2965
2966 static struct miscdevice kvm_dev = {
2967 KVM_MINOR,
2968 "kvm",
2969 &kvm_chardev_ops,
2970 };
2971
2972 static void hardware_enable_nolock(void *junk)
2973 {
2974 int cpu = raw_smp_processor_id();
2975 int r;
2976
2977 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2978 return;
2979
2980 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2981
2982 r = kvm_arch_hardware_enable();
2983
2984 if (r) {
2985 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2986 atomic_inc(&hardware_enable_failed);
2987 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2988 }
2989 }
2990
2991 static void hardware_enable(void)
2992 {
2993 raw_spin_lock(&kvm_count_lock);
2994 if (kvm_usage_count)
2995 hardware_enable_nolock(NULL);
2996 raw_spin_unlock(&kvm_count_lock);
2997 }
2998
2999 static void hardware_disable_nolock(void *junk)
3000 {
3001 int cpu = raw_smp_processor_id();
3002
3003 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3004 return;
3005 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3006 kvm_arch_hardware_disable();
3007 }
3008
3009 static void hardware_disable(void)
3010 {
3011 raw_spin_lock(&kvm_count_lock);
3012 if (kvm_usage_count)
3013 hardware_disable_nolock(NULL);
3014 raw_spin_unlock(&kvm_count_lock);
3015 }
3016
3017 static void hardware_disable_all_nolock(void)
3018 {
3019 BUG_ON(!kvm_usage_count);
3020
3021 kvm_usage_count--;
3022 if (!kvm_usage_count)
3023 on_each_cpu(hardware_disable_nolock, NULL, 1);
3024 }
3025
3026 static void hardware_disable_all(void)
3027 {
3028 raw_spin_lock(&kvm_count_lock);
3029 hardware_disable_all_nolock();
3030 raw_spin_unlock(&kvm_count_lock);
3031 }
3032
3033 static int hardware_enable_all(void)
3034 {
3035 int r = 0;
3036
3037 raw_spin_lock(&kvm_count_lock);
3038
3039 kvm_usage_count++;
3040 if (kvm_usage_count == 1) {
3041 atomic_set(&hardware_enable_failed, 0);
3042 on_each_cpu(hardware_enable_nolock, NULL, 1);
3043
3044 if (atomic_read(&hardware_enable_failed)) {
3045 hardware_disable_all_nolock();
3046 r = -EBUSY;
3047 }
3048 }
3049
3050 raw_spin_unlock(&kvm_count_lock);
3051
3052 return r;
3053 }
3054
3055 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3056 void *v)
3057 {
3058 val &= ~CPU_TASKS_FROZEN;
3059 switch (val) {
3060 case CPU_DYING:
3061 hardware_disable();
3062 break;
3063 case CPU_STARTING:
3064 hardware_enable();
3065 break;
3066 }
3067 return NOTIFY_OK;
3068 }
3069
3070 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3071 void *v)
3072 {
3073 /*
3074 * Some (well, at least mine) BIOSes hang on reboot if
3075 * in vmx root mode.
3076 *
3077 * And Intel TXT required VMX off for all cpu when system shutdown.
3078 */
3079 pr_info("kvm: exiting hardware virtualization\n");
3080 kvm_rebooting = true;
3081 on_each_cpu(hardware_disable_nolock, NULL, 1);
3082 return NOTIFY_OK;
3083 }
3084
3085 static struct notifier_block kvm_reboot_notifier = {
3086 .notifier_call = kvm_reboot,
3087 .priority = 0,
3088 };
3089
3090 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3091 {
3092 int i;
3093
3094 for (i = 0; i < bus->dev_count; i++) {
3095 struct kvm_io_device *pos = bus->range[i].dev;
3096
3097 kvm_iodevice_destructor(pos);
3098 }
3099 kfree(bus);
3100 }
3101
3102 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3103 const struct kvm_io_range *r2)
3104 {
3105 if (r1->addr < r2->addr)
3106 return -1;
3107 if (r1->addr + r1->len > r2->addr + r2->len)
3108 return 1;
3109 return 0;
3110 }
3111
3112 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3113 {
3114 return kvm_io_bus_cmp(p1, p2);
3115 }
3116
3117 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3118 gpa_t addr, int len)
3119 {
3120 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3121 .addr = addr,
3122 .len = len,
3123 .dev = dev,
3124 };
3125
3126 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3127 kvm_io_bus_sort_cmp, NULL);
3128
3129 return 0;
3130 }
3131
3132 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3133 gpa_t addr, int len)
3134 {
3135 struct kvm_io_range *range, key;
3136 int off;
3137
3138 key = (struct kvm_io_range) {
3139 .addr = addr,
3140 .len = len,
3141 };
3142
3143 range = bsearch(&key, bus->range, bus->dev_count,
3144 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3145 if (range == NULL)
3146 return -ENOENT;
3147
3148 off = range - bus->range;
3149
3150 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3151 off--;
3152
3153 return off;
3154 }
3155
3156 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3157 struct kvm_io_range *range, const void *val)
3158 {
3159 int idx;
3160
3161 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3162 if (idx < 0)
3163 return -EOPNOTSUPP;
3164
3165 while (idx < bus->dev_count &&
3166 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3167 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3168 range->len, val))
3169 return idx;
3170 idx++;
3171 }
3172
3173 return -EOPNOTSUPP;
3174 }
3175
3176 /* kvm_io_bus_write - called under kvm->slots_lock */
3177 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3178 int len, const void *val)
3179 {
3180 struct kvm_io_bus *bus;
3181 struct kvm_io_range range;
3182 int r;
3183
3184 range = (struct kvm_io_range) {
3185 .addr = addr,
3186 .len = len,
3187 };
3188
3189 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3190 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3191 return r < 0 ? r : 0;
3192 }
3193
3194 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3195 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3196 gpa_t addr, int len, const void *val, long cookie)
3197 {
3198 struct kvm_io_bus *bus;
3199 struct kvm_io_range range;
3200
3201 range = (struct kvm_io_range) {
3202 .addr = addr,
3203 .len = len,
3204 };
3205
3206 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3207
3208 /* First try the device referenced by cookie. */
3209 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3210 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3211 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3212 val))
3213 return cookie;
3214
3215 /*
3216 * cookie contained garbage; fall back to search and return the
3217 * correct cookie value.
3218 */
3219 return __kvm_io_bus_write(vcpu, bus, &range, val);
3220 }
3221
3222 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3223 struct kvm_io_range *range, void *val)
3224 {
3225 int idx;
3226
3227 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3228 if (idx < 0)
3229 return -EOPNOTSUPP;
3230
3231 while (idx < bus->dev_count &&
3232 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3233 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3234 range->len, val))
3235 return idx;
3236 idx++;
3237 }
3238
3239 return -EOPNOTSUPP;
3240 }
3241 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3242
3243 /* kvm_io_bus_read - called under kvm->slots_lock */
3244 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3245 int len, void *val)
3246 {
3247 struct kvm_io_bus *bus;
3248 struct kvm_io_range range;
3249 int r;
3250
3251 range = (struct kvm_io_range) {
3252 .addr = addr,
3253 .len = len,
3254 };
3255
3256 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3257 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3258 return r < 0 ? r : 0;
3259 }
3260
3261
3262 /* Caller must hold slots_lock. */
3263 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3264 int len, struct kvm_io_device *dev)
3265 {
3266 struct kvm_io_bus *new_bus, *bus;
3267
3268 bus = kvm->buses[bus_idx];
3269 /* exclude ioeventfd which is limited by maximum fd */
3270 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3271 return -ENOSPC;
3272
3273 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3274 sizeof(struct kvm_io_range)), GFP_KERNEL);
3275 if (!new_bus)
3276 return -ENOMEM;
3277 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3278 sizeof(struct kvm_io_range)));
3279 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3280 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3281 synchronize_srcu_expedited(&kvm->srcu);
3282 kfree(bus);
3283
3284 return 0;
3285 }
3286
3287 /* Caller must hold slots_lock. */
3288 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3289 struct kvm_io_device *dev)
3290 {
3291 int i, r;
3292 struct kvm_io_bus *new_bus, *bus;
3293
3294 bus = kvm->buses[bus_idx];
3295 r = -ENOENT;
3296 for (i = 0; i < bus->dev_count; i++)
3297 if (bus->range[i].dev == dev) {
3298 r = 0;
3299 break;
3300 }
3301
3302 if (r)
3303 return r;
3304
3305 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3306 sizeof(struct kvm_io_range)), GFP_KERNEL);
3307 if (!new_bus)
3308 return -ENOMEM;
3309
3310 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3311 new_bus->dev_count--;
3312 memcpy(new_bus->range + i, bus->range + i + 1,
3313 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3314
3315 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3316 synchronize_srcu_expedited(&kvm->srcu);
3317 kfree(bus);
3318 return r;
3319 }
3320
3321 static struct notifier_block kvm_cpu_notifier = {
3322 .notifier_call = kvm_cpu_hotplug,
3323 };
3324
3325 static int vm_stat_get(void *_offset, u64 *val)
3326 {
3327 unsigned offset = (long)_offset;
3328 struct kvm *kvm;
3329
3330 *val = 0;
3331 spin_lock(&kvm_lock);
3332 list_for_each_entry(kvm, &vm_list, vm_list)
3333 *val += *(u32 *)((void *)kvm + offset);
3334 spin_unlock(&kvm_lock);
3335 return 0;
3336 }
3337
3338 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3339
3340 static int vcpu_stat_get(void *_offset, u64 *val)
3341 {
3342 unsigned offset = (long)_offset;
3343 struct kvm *kvm;
3344 struct kvm_vcpu *vcpu;
3345 int i;
3346
3347 *val = 0;
3348 spin_lock(&kvm_lock);
3349 list_for_each_entry(kvm, &vm_list, vm_list)
3350 kvm_for_each_vcpu(i, vcpu, kvm)
3351 *val += *(u32 *)((void *)vcpu + offset);
3352
3353 spin_unlock(&kvm_lock);
3354 return 0;
3355 }
3356
3357 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3358
3359 static const struct file_operations *stat_fops[] = {
3360 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3361 [KVM_STAT_VM] = &vm_stat_fops,
3362 };
3363
3364 static int kvm_init_debug(void)
3365 {
3366 int r = -EEXIST;
3367 struct kvm_stats_debugfs_item *p;
3368
3369 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3370 if (kvm_debugfs_dir == NULL)
3371 goto out;
3372
3373 for (p = debugfs_entries; p->name; ++p) {
3374 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3375 (void *)(long)p->offset,
3376 stat_fops[p->kind]);
3377 if (p->dentry == NULL)
3378 goto out_dir;
3379 }
3380
3381 return 0;
3382
3383 out_dir:
3384 debugfs_remove_recursive(kvm_debugfs_dir);
3385 out:
3386 return r;
3387 }
3388
3389 static void kvm_exit_debug(void)
3390 {
3391 struct kvm_stats_debugfs_item *p;
3392
3393 for (p = debugfs_entries; p->name; ++p)
3394 debugfs_remove(p->dentry);
3395 debugfs_remove(kvm_debugfs_dir);
3396 }
3397
3398 static int kvm_suspend(void)
3399 {
3400 if (kvm_usage_count)
3401 hardware_disable_nolock(NULL);
3402 return 0;
3403 }
3404
3405 static void kvm_resume(void)
3406 {
3407 if (kvm_usage_count) {
3408 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3409 hardware_enable_nolock(NULL);
3410 }
3411 }
3412
3413 static struct syscore_ops kvm_syscore_ops = {
3414 .suspend = kvm_suspend,
3415 .resume = kvm_resume,
3416 };
3417
3418 static inline
3419 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3420 {
3421 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3422 }
3423
3424 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3425 {
3426 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3427
3428 if (vcpu->preempted)
3429 vcpu->preempted = false;
3430
3431 kvm_arch_sched_in(vcpu, cpu);
3432
3433 kvm_arch_vcpu_load(vcpu, cpu);
3434 }
3435
3436 static void kvm_sched_out(struct preempt_notifier *pn,
3437 struct task_struct *next)
3438 {
3439 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3440
3441 if (current->state == TASK_RUNNING)
3442 vcpu->preempted = true;
3443 kvm_arch_vcpu_put(vcpu);
3444 }
3445
3446 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3447 struct module *module)
3448 {
3449 int r;
3450 int cpu;
3451
3452 r = kvm_arch_init(opaque);
3453 if (r)
3454 goto out_fail;
3455
3456 /*
3457 * kvm_arch_init makes sure there's at most one caller
3458 * for architectures that support multiple implementations,
3459 * like intel and amd on x86.
3460 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3461 * conflicts in case kvm is already setup for another implementation.
3462 */
3463 r = kvm_irqfd_init();
3464 if (r)
3465 goto out_irqfd;
3466
3467 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3468 r = -ENOMEM;
3469 goto out_free_0;
3470 }
3471
3472 r = kvm_arch_hardware_setup();
3473 if (r < 0)
3474 goto out_free_0a;
3475
3476 for_each_online_cpu(cpu) {
3477 smp_call_function_single(cpu,
3478 kvm_arch_check_processor_compat,
3479 &r, 1);
3480 if (r < 0)
3481 goto out_free_1;
3482 }
3483
3484 r = register_cpu_notifier(&kvm_cpu_notifier);
3485 if (r)
3486 goto out_free_2;
3487 register_reboot_notifier(&kvm_reboot_notifier);
3488
3489 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3490 if (!vcpu_align)
3491 vcpu_align = __alignof__(struct kvm_vcpu);
3492 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3493 0, NULL);
3494 if (!kvm_vcpu_cache) {
3495 r = -ENOMEM;
3496 goto out_free_3;
3497 }
3498
3499 r = kvm_async_pf_init();
3500 if (r)
3501 goto out_free;
3502
3503 kvm_chardev_ops.owner = module;
3504 kvm_vm_fops.owner = module;
3505 kvm_vcpu_fops.owner = module;
3506
3507 r = misc_register(&kvm_dev);
3508 if (r) {
3509 pr_err("kvm: misc device register failed\n");
3510 goto out_unreg;
3511 }
3512
3513 register_syscore_ops(&kvm_syscore_ops);
3514
3515 kvm_preempt_ops.sched_in = kvm_sched_in;
3516 kvm_preempt_ops.sched_out = kvm_sched_out;
3517
3518 r = kvm_init_debug();
3519 if (r) {
3520 pr_err("kvm: create debugfs files failed\n");
3521 goto out_undebugfs;
3522 }
3523
3524 r = kvm_vfio_ops_init();
3525 WARN_ON(r);
3526
3527 return 0;
3528
3529 out_undebugfs:
3530 unregister_syscore_ops(&kvm_syscore_ops);
3531 misc_deregister(&kvm_dev);
3532 out_unreg:
3533 kvm_async_pf_deinit();
3534 out_free:
3535 kmem_cache_destroy(kvm_vcpu_cache);
3536 out_free_3:
3537 unregister_reboot_notifier(&kvm_reboot_notifier);
3538 unregister_cpu_notifier(&kvm_cpu_notifier);
3539 out_free_2:
3540 out_free_1:
3541 kvm_arch_hardware_unsetup();
3542 out_free_0a:
3543 free_cpumask_var(cpus_hardware_enabled);
3544 out_free_0:
3545 kvm_irqfd_exit();
3546 out_irqfd:
3547 kvm_arch_exit();
3548 out_fail:
3549 return r;
3550 }
3551 EXPORT_SYMBOL_GPL(kvm_init);
3552
3553 void kvm_exit(void)
3554 {
3555 kvm_exit_debug();
3556 misc_deregister(&kvm_dev);
3557 kmem_cache_destroy(kvm_vcpu_cache);
3558 kvm_async_pf_deinit();
3559 unregister_syscore_ops(&kvm_syscore_ops);
3560 unregister_reboot_notifier(&kvm_reboot_notifier);
3561 unregister_cpu_notifier(&kvm_cpu_notifier);
3562 on_each_cpu(hardware_disable_nolock, NULL, 1);
3563 kvm_arch_hardware_unsetup();
3564 kvm_arch_exit();
3565 kvm_irqfd_exit();
3566 free_cpumask_var(cpus_hardware_enabled);
3567 kvm_vfio_ops_exit();
3568 }
3569 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.117251 seconds and 5 git commands to generate.