KVM: add memslots argument to kvm_arch_memslots_updated
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73 * Ordering of locks:
74 *
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76 */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm *kvm,
107 struct kvm_memory_slot *memslot, gfn_t gfn);
108
109 __visible bool kvm_rebooting;
110 EXPORT_SYMBOL_GPL(kvm_rebooting);
111
112 static bool largepages_enabled = true;
113
114 bool kvm_is_reserved_pfn(pfn_t pfn)
115 {
116 if (pfn_valid(pfn))
117 return PageReserved(pfn_to_page(pfn));
118
119 return true;
120 }
121
122 /*
123 * Switches to specified vcpu, until a matching vcpu_put()
124 */
125 int vcpu_load(struct kvm_vcpu *vcpu)
126 {
127 int cpu;
128
129 if (mutex_lock_killable(&vcpu->mutex))
130 return -EINTR;
131 cpu = get_cpu();
132 preempt_notifier_register(&vcpu->preempt_notifier);
133 kvm_arch_vcpu_load(vcpu, cpu);
134 put_cpu();
135 return 0;
136 }
137
138 void vcpu_put(struct kvm_vcpu *vcpu)
139 {
140 preempt_disable();
141 kvm_arch_vcpu_put(vcpu);
142 preempt_notifier_unregister(&vcpu->preempt_notifier);
143 preempt_enable();
144 mutex_unlock(&vcpu->mutex);
145 }
146
147 static void ack_flush(void *_completed)
148 {
149 }
150
151 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
152 {
153 int i, cpu, me;
154 cpumask_var_t cpus;
155 bool called = true;
156 struct kvm_vcpu *vcpu;
157
158 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
159
160 me = get_cpu();
161 kvm_for_each_vcpu(i, vcpu, kvm) {
162 kvm_make_request(req, vcpu);
163 cpu = vcpu->cpu;
164
165 /* Set ->requests bit before we read ->mode */
166 smp_mb();
167
168 if (cpus != NULL && cpu != -1 && cpu != me &&
169 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
170 cpumask_set_cpu(cpu, cpus);
171 }
172 if (unlikely(cpus == NULL))
173 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
174 else if (!cpumask_empty(cpus))
175 smp_call_function_many(cpus, ack_flush, NULL, 1);
176 else
177 called = false;
178 put_cpu();
179 free_cpumask_var(cpus);
180 return called;
181 }
182
183 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
184 void kvm_flush_remote_tlbs(struct kvm *kvm)
185 {
186 long dirty_count = kvm->tlbs_dirty;
187
188 smp_mb();
189 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
190 ++kvm->stat.remote_tlb_flush;
191 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
192 }
193 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
194 #endif
195
196 void kvm_reload_remote_mmus(struct kvm *kvm)
197 {
198 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
199 }
200
201 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
202 {
203 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
204 }
205
206 void kvm_make_scan_ioapic_request(struct kvm *kvm)
207 {
208 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
209 }
210
211 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
212 {
213 struct page *page;
214 int r;
215
216 mutex_init(&vcpu->mutex);
217 vcpu->cpu = -1;
218 vcpu->kvm = kvm;
219 vcpu->vcpu_id = id;
220 vcpu->pid = NULL;
221 init_waitqueue_head(&vcpu->wq);
222 kvm_async_pf_vcpu_init(vcpu);
223
224 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
225 if (!page) {
226 r = -ENOMEM;
227 goto fail;
228 }
229 vcpu->run = page_address(page);
230
231 kvm_vcpu_set_in_spin_loop(vcpu, false);
232 kvm_vcpu_set_dy_eligible(vcpu, false);
233 vcpu->preempted = false;
234
235 r = kvm_arch_vcpu_init(vcpu);
236 if (r < 0)
237 goto fail_free_run;
238 return 0;
239
240 fail_free_run:
241 free_page((unsigned long)vcpu->run);
242 fail:
243 return r;
244 }
245 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
246
247 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
248 {
249 put_pid(vcpu->pid);
250 kvm_arch_vcpu_uninit(vcpu);
251 free_page((unsigned long)vcpu->run);
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
254
255 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
256 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
257 {
258 return container_of(mn, struct kvm, mmu_notifier);
259 }
260
261 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
262 struct mm_struct *mm,
263 unsigned long address)
264 {
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int need_tlb_flush, idx;
267
268 /*
269 * When ->invalidate_page runs, the linux pte has been zapped
270 * already but the page is still allocated until
271 * ->invalidate_page returns. So if we increase the sequence
272 * here the kvm page fault will notice if the spte can't be
273 * established because the page is going to be freed. If
274 * instead the kvm page fault establishes the spte before
275 * ->invalidate_page runs, kvm_unmap_hva will release it
276 * before returning.
277 *
278 * The sequence increase only need to be seen at spin_unlock
279 * time, and not at spin_lock time.
280 *
281 * Increasing the sequence after the spin_unlock would be
282 * unsafe because the kvm page fault could then establish the
283 * pte after kvm_unmap_hva returned, without noticing the page
284 * is going to be freed.
285 */
286 idx = srcu_read_lock(&kvm->srcu);
287 spin_lock(&kvm->mmu_lock);
288
289 kvm->mmu_notifier_seq++;
290 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
291 /* we've to flush the tlb before the pages can be freed */
292 if (need_tlb_flush)
293 kvm_flush_remote_tlbs(kvm);
294
295 spin_unlock(&kvm->mmu_lock);
296
297 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
298
299 srcu_read_unlock(&kvm->srcu, idx);
300 }
301
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
305 pte_t pte)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 int idx;
309
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
316 }
317
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
320 unsigned long start,
321 unsigned long end)
322 {
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
325
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
328 /*
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
332 */
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
337 if (need_tlb_flush)
338 kvm_flush_remote_tlbs(kvm);
339
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 smp_wmb();
359 /*
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
374 {
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 int young, idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380
381 young = kvm_age_hva(kvm, start, end);
382 if (young)
383 kvm_flush_remote_tlbs(kvm);
384
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow_all(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static struct kvm_memslots *kvm_alloc_memslots(void)
444 {
445 int i;
446 struct kvm_memslots *slots;
447
448 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
449 if (!slots)
450 return NULL;
451
452 /*
453 * Init kvm generation close to the maximum to easily test the
454 * code of handling generation number wrap-around.
455 */
456 slots->generation = -150;
457 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
458 slots->id_to_index[i] = slots->memslots[i].id = i;
459
460 return slots;
461 }
462
463 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
464 {
465 if (!memslot->dirty_bitmap)
466 return;
467
468 kvfree(memslot->dirty_bitmap);
469 memslot->dirty_bitmap = NULL;
470 }
471
472 /*
473 * Free any memory in @free but not in @dont.
474 */
475 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
476 struct kvm_memory_slot *dont)
477 {
478 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
479 kvm_destroy_dirty_bitmap(free);
480
481 kvm_arch_free_memslot(kvm, free, dont);
482
483 free->npages = 0;
484 }
485
486 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
487 {
488 struct kvm_memory_slot *memslot;
489
490 if (!slots)
491 return;
492
493 kvm_for_each_memslot(memslot, slots)
494 kvm_free_memslot(kvm, memslot, NULL);
495
496 kvfree(slots);
497 }
498
499 static struct kvm *kvm_create_vm(unsigned long type)
500 {
501 int r, i;
502 struct kvm *kvm = kvm_arch_alloc_vm();
503
504 if (!kvm)
505 return ERR_PTR(-ENOMEM);
506
507 r = kvm_arch_init_vm(kvm, type);
508 if (r)
509 goto out_err_no_disable;
510
511 r = hardware_enable_all();
512 if (r)
513 goto out_err_no_disable;
514
515 #ifdef CONFIG_HAVE_KVM_IRQFD
516 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
517 #endif
518
519 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
520
521 r = -ENOMEM;
522 kvm->memslots = kvm_alloc_memslots();
523 if (!kvm->memslots)
524 goto out_err_no_srcu;
525
526 if (init_srcu_struct(&kvm->srcu))
527 goto out_err_no_srcu;
528 if (init_srcu_struct(&kvm->irq_srcu))
529 goto out_err_no_irq_srcu;
530 for (i = 0; i < KVM_NR_BUSES; i++) {
531 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
532 GFP_KERNEL);
533 if (!kvm->buses[i])
534 goto out_err;
535 }
536
537 spin_lock_init(&kvm->mmu_lock);
538 kvm->mm = current->mm;
539 atomic_inc(&kvm->mm->mm_count);
540 kvm_eventfd_init(kvm);
541 mutex_init(&kvm->lock);
542 mutex_init(&kvm->irq_lock);
543 mutex_init(&kvm->slots_lock);
544 atomic_set(&kvm->users_count, 1);
545 INIT_LIST_HEAD(&kvm->devices);
546
547 r = kvm_init_mmu_notifier(kvm);
548 if (r)
549 goto out_err;
550
551 spin_lock(&kvm_lock);
552 list_add(&kvm->vm_list, &vm_list);
553 spin_unlock(&kvm_lock);
554
555 return kvm;
556
557 out_err:
558 cleanup_srcu_struct(&kvm->irq_srcu);
559 out_err_no_irq_srcu:
560 cleanup_srcu_struct(&kvm->srcu);
561 out_err_no_srcu:
562 hardware_disable_all();
563 out_err_no_disable:
564 for (i = 0; i < KVM_NR_BUSES; i++)
565 kfree(kvm->buses[i]);
566 kvm_free_memslots(kvm, kvm->memslots);
567 kvm_arch_free_vm(kvm);
568 return ERR_PTR(r);
569 }
570
571 /*
572 * Avoid using vmalloc for a small buffer.
573 * Should not be used when the size is statically known.
574 */
575 void *kvm_kvzalloc(unsigned long size)
576 {
577 if (size > PAGE_SIZE)
578 return vzalloc(size);
579 else
580 return kzalloc(size, GFP_KERNEL);
581 }
582
583 static void kvm_destroy_devices(struct kvm *kvm)
584 {
585 struct list_head *node, *tmp;
586
587 list_for_each_safe(node, tmp, &kvm->devices) {
588 struct kvm_device *dev =
589 list_entry(node, struct kvm_device, vm_node);
590
591 list_del(node);
592 dev->ops->destroy(dev);
593 }
594 }
595
596 static void kvm_destroy_vm(struct kvm *kvm)
597 {
598 int i;
599 struct mm_struct *mm = kvm->mm;
600
601 kvm_arch_sync_events(kvm);
602 spin_lock(&kvm_lock);
603 list_del(&kvm->vm_list);
604 spin_unlock(&kvm_lock);
605 kvm_free_irq_routing(kvm);
606 for (i = 0; i < KVM_NR_BUSES; i++)
607 kvm_io_bus_destroy(kvm->buses[i]);
608 kvm_coalesced_mmio_free(kvm);
609 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
610 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
611 #else
612 kvm_arch_flush_shadow_all(kvm);
613 #endif
614 kvm_arch_destroy_vm(kvm);
615 kvm_destroy_devices(kvm);
616 kvm_free_memslots(kvm, kvm->memslots);
617 cleanup_srcu_struct(&kvm->irq_srcu);
618 cleanup_srcu_struct(&kvm->srcu);
619 kvm_arch_free_vm(kvm);
620 hardware_disable_all();
621 mmdrop(mm);
622 }
623
624 void kvm_get_kvm(struct kvm *kvm)
625 {
626 atomic_inc(&kvm->users_count);
627 }
628 EXPORT_SYMBOL_GPL(kvm_get_kvm);
629
630 void kvm_put_kvm(struct kvm *kvm)
631 {
632 if (atomic_dec_and_test(&kvm->users_count))
633 kvm_destroy_vm(kvm);
634 }
635 EXPORT_SYMBOL_GPL(kvm_put_kvm);
636
637
638 static int kvm_vm_release(struct inode *inode, struct file *filp)
639 {
640 struct kvm *kvm = filp->private_data;
641
642 kvm_irqfd_release(kvm);
643
644 kvm_put_kvm(kvm);
645 return 0;
646 }
647
648 /*
649 * Allocation size is twice as large as the actual dirty bitmap size.
650 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
651 */
652 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
653 {
654 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
655
656 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
657 if (!memslot->dirty_bitmap)
658 return -ENOMEM;
659
660 return 0;
661 }
662
663 /*
664 * Insert memslot and re-sort memslots based on their GFN,
665 * so binary search could be used to lookup GFN.
666 * Sorting algorithm takes advantage of having initially
667 * sorted array and known changed memslot position.
668 */
669 static void update_memslots(struct kvm_memslots *slots,
670 struct kvm_memory_slot *new)
671 {
672 int id = new->id;
673 int i = slots->id_to_index[id];
674 struct kvm_memory_slot *mslots = slots->memslots;
675
676 WARN_ON(mslots[i].id != id);
677 if (!new->npages) {
678 WARN_ON(!mslots[i].npages);
679 if (mslots[i].npages)
680 slots->used_slots--;
681 } else {
682 if (!mslots[i].npages)
683 slots->used_slots++;
684 }
685
686 while (i < KVM_MEM_SLOTS_NUM - 1 &&
687 new->base_gfn <= mslots[i + 1].base_gfn) {
688 if (!mslots[i + 1].npages)
689 break;
690 mslots[i] = mslots[i + 1];
691 slots->id_to_index[mslots[i].id] = i;
692 i++;
693 }
694
695 /*
696 * The ">=" is needed when creating a slot with base_gfn == 0,
697 * so that it moves before all those with base_gfn == npages == 0.
698 *
699 * On the other hand, if new->npages is zero, the above loop has
700 * already left i pointing to the beginning of the empty part of
701 * mslots, and the ">=" would move the hole backwards in this
702 * case---which is wrong. So skip the loop when deleting a slot.
703 */
704 if (new->npages) {
705 while (i > 0 &&
706 new->base_gfn >= mslots[i - 1].base_gfn) {
707 mslots[i] = mslots[i - 1];
708 slots->id_to_index[mslots[i].id] = i;
709 i--;
710 }
711 } else
712 WARN_ON_ONCE(i != slots->used_slots);
713
714 mslots[i] = *new;
715 slots->id_to_index[mslots[i].id] = i;
716 }
717
718 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
719 {
720 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
721
722 #ifdef __KVM_HAVE_READONLY_MEM
723 valid_flags |= KVM_MEM_READONLY;
724 #endif
725
726 if (mem->flags & ~valid_flags)
727 return -EINVAL;
728
729 return 0;
730 }
731
732 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
733 struct kvm_memslots *slots)
734 {
735 struct kvm_memslots *old_memslots = kvm_memslots(kvm);
736
737 /*
738 * Set the low bit in the generation, which disables SPTE caching
739 * until the end of synchronize_srcu_expedited.
740 */
741 WARN_ON(old_memslots->generation & 1);
742 slots->generation = old_memslots->generation + 1;
743
744 rcu_assign_pointer(kvm->memslots, slots);
745 synchronize_srcu_expedited(&kvm->srcu);
746
747 /*
748 * Increment the new memslot generation a second time. This prevents
749 * vm exits that race with memslot updates from caching a memslot
750 * generation that will (potentially) be valid forever.
751 */
752 slots->generation++;
753
754 kvm_arch_memslots_updated(kvm, slots);
755
756 return old_memslots;
757 }
758
759 /*
760 * Allocate some memory and give it an address in the guest physical address
761 * space.
762 *
763 * Discontiguous memory is allowed, mostly for framebuffers.
764 *
765 * Must be called holding kvm->slots_lock for write.
766 */
767 int __kvm_set_memory_region(struct kvm *kvm,
768 const struct kvm_userspace_memory_region *mem)
769 {
770 int r;
771 gfn_t base_gfn;
772 unsigned long npages;
773 struct kvm_memory_slot *slot;
774 struct kvm_memory_slot old, new;
775 struct kvm_memslots *slots = NULL, *old_memslots;
776 enum kvm_mr_change change;
777
778 r = check_memory_region_flags(mem);
779 if (r)
780 goto out;
781
782 r = -EINVAL;
783 /* General sanity checks */
784 if (mem->memory_size & (PAGE_SIZE - 1))
785 goto out;
786 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
787 goto out;
788 /* We can read the guest memory with __xxx_user() later on. */
789 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
790 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
791 !access_ok(VERIFY_WRITE,
792 (void __user *)(unsigned long)mem->userspace_addr,
793 mem->memory_size)))
794 goto out;
795 if (mem->slot >= KVM_MEM_SLOTS_NUM)
796 goto out;
797 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
798 goto out;
799
800 slot = id_to_memslot(kvm_memslots(kvm), mem->slot);
801 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
802 npages = mem->memory_size >> PAGE_SHIFT;
803
804 if (npages > KVM_MEM_MAX_NR_PAGES)
805 goto out;
806
807 new = old = *slot;
808
809 new.id = mem->slot;
810 new.base_gfn = base_gfn;
811 new.npages = npages;
812 new.flags = mem->flags;
813
814 if (npages) {
815 if (!old.npages)
816 change = KVM_MR_CREATE;
817 else { /* Modify an existing slot. */
818 if ((mem->userspace_addr != old.userspace_addr) ||
819 (npages != old.npages) ||
820 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
821 goto out;
822
823 if (base_gfn != old.base_gfn)
824 change = KVM_MR_MOVE;
825 else if (new.flags != old.flags)
826 change = KVM_MR_FLAGS_ONLY;
827 else { /* Nothing to change. */
828 r = 0;
829 goto out;
830 }
831 }
832 } else {
833 if (!old.npages)
834 goto out;
835
836 change = KVM_MR_DELETE;
837 new.base_gfn = 0;
838 new.flags = 0;
839 }
840
841 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
842 /* Check for overlaps */
843 r = -EEXIST;
844 kvm_for_each_memslot(slot, kvm_memslots(kvm)) {
845 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
846 (slot->id == mem->slot))
847 continue;
848 if (!((base_gfn + npages <= slot->base_gfn) ||
849 (base_gfn >= slot->base_gfn + slot->npages)))
850 goto out;
851 }
852 }
853
854 /* Free page dirty bitmap if unneeded */
855 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
856 new.dirty_bitmap = NULL;
857
858 r = -ENOMEM;
859 if (change == KVM_MR_CREATE) {
860 new.userspace_addr = mem->userspace_addr;
861
862 if (kvm_arch_create_memslot(kvm, &new, npages))
863 goto out_free;
864 }
865
866 /* Allocate page dirty bitmap if needed */
867 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
868 if (kvm_create_dirty_bitmap(&new) < 0)
869 goto out_free;
870 }
871
872 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
873 if (!slots)
874 goto out_free;
875 memcpy(slots, kvm_memslots(kvm), sizeof(struct kvm_memslots));
876
877 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
878 slot = id_to_memslot(slots, mem->slot);
879 slot->flags |= KVM_MEMSLOT_INVALID;
880
881 old_memslots = install_new_memslots(kvm, slots);
882
883 /* slot was deleted or moved, clear iommu mapping */
884 kvm_iommu_unmap_pages(kvm, &old);
885 /* From this point no new shadow pages pointing to a deleted,
886 * or moved, memslot will be created.
887 *
888 * validation of sp->gfn happens in:
889 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
890 * - kvm_is_visible_gfn (mmu_check_roots)
891 */
892 kvm_arch_flush_shadow_memslot(kvm, slot);
893
894 /*
895 * We can re-use the old_memslots from above, the only difference
896 * from the currently installed memslots is the invalid flag. This
897 * will get overwritten by update_memslots anyway.
898 */
899 slots = old_memslots;
900 }
901
902 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
903 if (r)
904 goto out_slots;
905
906 /* actual memory is freed via old in kvm_free_memslot below */
907 if (change == KVM_MR_DELETE) {
908 new.dirty_bitmap = NULL;
909 memset(&new.arch, 0, sizeof(new.arch));
910 }
911
912 update_memslots(slots, &new);
913 old_memslots = install_new_memslots(kvm, slots);
914
915 kvm_arch_commit_memory_region(kvm, mem, &old, change);
916
917 kvm_free_memslot(kvm, &old, &new);
918 kvfree(old_memslots);
919
920 /*
921 * IOMMU mapping: New slots need to be mapped. Old slots need to be
922 * un-mapped and re-mapped if their base changes. Since base change
923 * unmapping is handled above with slot deletion, mapping alone is
924 * needed here. Anything else the iommu might care about for existing
925 * slots (size changes, userspace addr changes and read-only flag
926 * changes) is disallowed above, so any other attribute changes getting
927 * here can be skipped.
928 */
929 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
930 r = kvm_iommu_map_pages(kvm, &new);
931 return r;
932 }
933
934 return 0;
935
936 out_slots:
937 kvfree(slots);
938 out_free:
939 kvm_free_memslot(kvm, &new, &old);
940 out:
941 return r;
942 }
943 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
944
945 int kvm_set_memory_region(struct kvm *kvm,
946 const struct kvm_userspace_memory_region *mem)
947 {
948 int r;
949
950 mutex_lock(&kvm->slots_lock);
951 r = __kvm_set_memory_region(kvm, mem);
952 mutex_unlock(&kvm->slots_lock);
953 return r;
954 }
955 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
956
957 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
958 struct kvm_userspace_memory_region *mem)
959 {
960 if (mem->slot >= KVM_USER_MEM_SLOTS)
961 return -EINVAL;
962
963 return kvm_set_memory_region(kvm, mem);
964 }
965
966 int kvm_get_dirty_log(struct kvm *kvm,
967 struct kvm_dirty_log *log, int *is_dirty)
968 {
969 struct kvm_memslots *slots;
970 struct kvm_memory_slot *memslot;
971 int r, i;
972 unsigned long n;
973 unsigned long any = 0;
974
975 r = -EINVAL;
976 if (log->slot >= KVM_USER_MEM_SLOTS)
977 goto out;
978
979 slots = kvm_memslots(kvm);
980 memslot = id_to_memslot(slots, log->slot);
981 r = -ENOENT;
982 if (!memslot->dirty_bitmap)
983 goto out;
984
985 n = kvm_dirty_bitmap_bytes(memslot);
986
987 for (i = 0; !any && i < n/sizeof(long); ++i)
988 any = memslot->dirty_bitmap[i];
989
990 r = -EFAULT;
991 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
992 goto out;
993
994 if (any)
995 *is_dirty = 1;
996
997 r = 0;
998 out:
999 return r;
1000 }
1001 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1002
1003 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1004 /**
1005 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1006 * are dirty write protect them for next write.
1007 * @kvm: pointer to kvm instance
1008 * @log: slot id and address to which we copy the log
1009 * @is_dirty: flag set if any page is dirty
1010 *
1011 * We need to keep it in mind that VCPU threads can write to the bitmap
1012 * concurrently. So, to avoid losing track of dirty pages we keep the
1013 * following order:
1014 *
1015 * 1. Take a snapshot of the bit and clear it if needed.
1016 * 2. Write protect the corresponding page.
1017 * 3. Copy the snapshot to the userspace.
1018 * 4. Upon return caller flushes TLB's if needed.
1019 *
1020 * Between 2 and 4, the guest may write to the page using the remaining TLB
1021 * entry. This is not a problem because the page is reported dirty using
1022 * the snapshot taken before and step 4 ensures that writes done after
1023 * exiting to userspace will be logged for the next call.
1024 *
1025 */
1026 int kvm_get_dirty_log_protect(struct kvm *kvm,
1027 struct kvm_dirty_log *log, bool *is_dirty)
1028 {
1029 struct kvm_memslots *slots;
1030 struct kvm_memory_slot *memslot;
1031 int r, i;
1032 unsigned long n;
1033 unsigned long *dirty_bitmap;
1034 unsigned long *dirty_bitmap_buffer;
1035
1036 r = -EINVAL;
1037 if (log->slot >= KVM_USER_MEM_SLOTS)
1038 goto out;
1039
1040 slots = kvm_memslots(kvm);
1041 memslot = id_to_memslot(slots, log->slot);
1042
1043 dirty_bitmap = memslot->dirty_bitmap;
1044 r = -ENOENT;
1045 if (!dirty_bitmap)
1046 goto out;
1047
1048 n = kvm_dirty_bitmap_bytes(memslot);
1049
1050 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1051 memset(dirty_bitmap_buffer, 0, n);
1052
1053 spin_lock(&kvm->mmu_lock);
1054 *is_dirty = false;
1055 for (i = 0; i < n / sizeof(long); i++) {
1056 unsigned long mask;
1057 gfn_t offset;
1058
1059 if (!dirty_bitmap[i])
1060 continue;
1061
1062 *is_dirty = true;
1063
1064 mask = xchg(&dirty_bitmap[i], 0);
1065 dirty_bitmap_buffer[i] = mask;
1066
1067 if (mask) {
1068 offset = i * BITS_PER_LONG;
1069 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1070 offset, mask);
1071 }
1072 }
1073
1074 spin_unlock(&kvm->mmu_lock);
1075
1076 r = -EFAULT;
1077 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1078 goto out;
1079
1080 r = 0;
1081 out:
1082 return r;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1085 #endif
1086
1087 bool kvm_largepages_enabled(void)
1088 {
1089 return largepages_enabled;
1090 }
1091
1092 void kvm_disable_largepages(void)
1093 {
1094 largepages_enabled = false;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1097
1098 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1099 {
1100 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1101 }
1102 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1103
1104 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1105 {
1106 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1107
1108 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1109 memslot->flags & KVM_MEMSLOT_INVALID)
1110 return 0;
1111
1112 return 1;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1115
1116 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1117 {
1118 struct vm_area_struct *vma;
1119 unsigned long addr, size;
1120
1121 size = PAGE_SIZE;
1122
1123 addr = gfn_to_hva(kvm, gfn);
1124 if (kvm_is_error_hva(addr))
1125 return PAGE_SIZE;
1126
1127 down_read(&current->mm->mmap_sem);
1128 vma = find_vma(current->mm, addr);
1129 if (!vma)
1130 goto out;
1131
1132 size = vma_kernel_pagesize(vma);
1133
1134 out:
1135 up_read(&current->mm->mmap_sem);
1136
1137 return size;
1138 }
1139
1140 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1141 {
1142 return slot->flags & KVM_MEM_READONLY;
1143 }
1144
1145 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1146 gfn_t *nr_pages, bool write)
1147 {
1148 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1149 return KVM_HVA_ERR_BAD;
1150
1151 if (memslot_is_readonly(slot) && write)
1152 return KVM_HVA_ERR_RO_BAD;
1153
1154 if (nr_pages)
1155 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1156
1157 return __gfn_to_hva_memslot(slot, gfn);
1158 }
1159
1160 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1161 gfn_t *nr_pages)
1162 {
1163 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1164 }
1165
1166 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1167 gfn_t gfn)
1168 {
1169 return gfn_to_hva_many(slot, gfn, NULL);
1170 }
1171 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1172
1173 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1174 {
1175 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1176 }
1177 EXPORT_SYMBOL_GPL(gfn_to_hva);
1178
1179 /*
1180 * If writable is set to false, the hva returned by this function is only
1181 * allowed to be read.
1182 */
1183 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1184 gfn_t gfn, bool *writable)
1185 {
1186 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1187
1188 if (!kvm_is_error_hva(hva) && writable)
1189 *writable = !memslot_is_readonly(slot);
1190
1191 return hva;
1192 }
1193
1194 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1195 {
1196 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1197
1198 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1199 }
1200
1201 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1202 unsigned long start, int write, struct page **page)
1203 {
1204 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1205
1206 if (write)
1207 flags |= FOLL_WRITE;
1208
1209 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1210 }
1211
1212 static inline int check_user_page_hwpoison(unsigned long addr)
1213 {
1214 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1215
1216 rc = __get_user_pages(current, current->mm, addr, 1,
1217 flags, NULL, NULL, NULL);
1218 return rc == -EHWPOISON;
1219 }
1220
1221 /*
1222 * The atomic path to get the writable pfn which will be stored in @pfn,
1223 * true indicates success, otherwise false is returned.
1224 */
1225 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1226 bool write_fault, bool *writable, pfn_t *pfn)
1227 {
1228 struct page *page[1];
1229 int npages;
1230
1231 if (!(async || atomic))
1232 return false;
1233
1234 /*
1235 * Fast pin a writable pfn only if it is a write fault request
1236 * or the caller allows to map a writable pfn for a read fault
1237 * request.
1238 */
1239 if (!(write_fault || writable))
1240 return false;
1241
1242 npages = __get_user_pages_fast(addr, 1, 1, page);
1243 if (npages == 1) {
1244 *pfn = page_to_pfn(page[0]);
1245
1246 if (writable)
1247 *writable = true;
1248 return true;
1249 }
1250
1251 return false;
1252 }
1253
1254 /*
1255 * The slow path to get the pfn of the specified host virtual address,
1256 * 1 indicates success, -errno is returned if error is detected.
1257 */
1258 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1259 bool *writable, pfn_t *pfn)
1260 {
1261 struct page *page[1];
1262 int npages = 0;
1263
1264 might_sleep();
1265
1266 if (writable)
1267 *writable = write_fault;
1268
1269 if (async) {
1270 down_read(&current->mm->mmap_sem);
1271 npages = get_user_page_nowait(current, current->mm,
1272 addr, write_fault, page);
1273 up_read(&current->mm->mmap_sem);
1274 } else
1275 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1276 write_fault, 0, page,
1277 FOLL_TOUCH|FOLL_HWPOISON);
1278 if (npages != 1)
1279 return npages;
1280
1281 /* map read fault as writable if possible */
1282 if (unlikely(!write_fault) && writable) {
1283 struct page *wpage[1];
1284
1285 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1286 if (npages == 1) {
1287 *writable = true;
1288 put_page(page[0]);
1289 page[0] = wpage[0];
1290 }
1291
1292 npages = 1;
1293 }
1294 *pfn = page_to_pfn(page[0]);
1295 return npages;
1296 }
1297
1298 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1299 {
1300 if (unlikely(!(vma->vm_flags & VM_READ)))
1301 return false;
1302
1303 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1304 return false;
1305
1306 return true;
1307 }
1308
1309 /*
1310 * Pin guest page in memory and return its pfn.
1311 * @addr: host virtual address which maps memory to the guest
1312 * @atomic: whether this function can sleep
1313 * @async: whether this function need to wait IO complete if the
1314 * host page is not in the memory
1315 * @write_fault: whether we should get a writable host page
1316 * @writable: whether it allows to map a writable host page for !@write_fault
1317 *
1318 * The function will map a writable host page for these two cases:
1319 * 1): @write_fault = true
1320 * 2): @write_fault = false && @writable, @writable will tell the caller
1321 * whether the mapping is writable.
1322 */
1323 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1324 bool write_fault, bool *writable)
1325 {
1326 struct vm_area_struct *vma;
1327 pfn_t pfn = 0;
1328 int npages;
1329
1330 /* we can do it either atomically or asynchronously, not both */
1331 BUG_ON(atomic && async);
1332
1333 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1334 return pfn;
1335
1336 if (atomic)
1337 return KVM_PFN_ERR_FAULT;
1338
1339 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1340 if (npages == 1)
1341 return pfn;
1342
1343 down_read(&current->mm->mmap_sem);
1344 if (npages == -EHWPOISON ||
1345 (!async && check_user_page_hwpoison(addr))) {
1346 pfn = KVM_PFN_ERR_HWPOISON;
1347 goto exit;
1348 }
1349
1350 vma = find_vma_intersection(current->mm, addr, addr + 1);
1351
1352 if (vma == NULL)
1353 pfn = KVM_PFN_ERR_FAULT;
1354 else if ((vma->vm_flags & VM_PFNMAP)) {
1355 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1356 vma->vm_pgoff;
1357 BUG_ON(!kvm_is_reserved_pfn(pfn));
1358 } else {
1359 if (async && vma_is_valid(vma, write_fault))
1360 *async = true;
1361 pfn = KVM_PFN_ERR_FAULT;
1362 }
1363 exit:
1364 up_read(&current->mm->mmap_sem);
1365 return pfn;
1366 }
1367
1368 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1369 bool *async, bool write_fault, bool *writable)
1370 {
1371 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1372
1373 if (addr == KVM_HVA_ERR_RO_BAD)
1374 return KVM_PFN_ERR_RO_FAULT;
1375
1376 if (kvm_is_error_hva(addr))
1377 return KVM_PFN_NOSLOT;
1378
1379 /* Do not map writable pfn in the readonly memslot. */
1380 if (writable && memslot_is_readonly(slot)) {
1381 *writable = false;
1382 writable = NULL;
1383 }
1384
1385 return hva_to_pfn(addr, atomic, async, write_fault,
1386 writable);
1387 }
1388 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1389
1390 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic,
1391 bool write_fault, bool *writable)
1392 {
1393 struct kvm_memory_slot *slot;
1394
1395 slot = gfn_to_memslot(kvm, gfn);
1396
1397 return __gfn_to_pfn_memslot(slot, gfn, atomic, NULL, write_fault,
1398 writable);
1399 }
1400
1401 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1402 {
1403 return __gfn_to_pfn(kvm, gfn, true, true, NULL);
1404 }
1405 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1406
1407 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1408 {
1409 return __gfn_to_pfn(kvm, gfn, false, true, NULL);
1410 }
1411 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1412
1413 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1414 bool *writable)
1415 {
1416 return __gfn_to_pfn(kvm, gfn, false, write_fault, writable);
1417 }
1418 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1419
1420 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1421 {
1422 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1423 }
1424
1425 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1426 {
1427 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1428 }
1429 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1430
1431 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1432 int nr_pages)
1433 {
1434 unsigned long addr;
1435 gfn_t entry;
1436
1437 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1438 if (kvm_is_error_hva(addr))
1439 return -1;
1440
1441 if (entry < nr_pages)
1442 return 0;
1443
1444 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1445 }
1446 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1447
1448 static struct page *kvm_pfn_to_page(pfn_t pfn)
1449 {
1450 if (is_error_noslot_pfn(pfn))
1451 return KVM_ERR_PTR_BAD_PAGE;
1452
1453 if (kvm_is_reserved_pfn(pfn)) {
1454 WARN_ON(1);
1455 return KVM_ERR_PTR_BAD_PAGE;
1456 }
1457
1458 return pfn_to_page(pfn);
1459 }
1460
1461 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1462 {
1463 pfn_t pfn;
1464
1465 pfn = gfn_to_pfn(kvm, gfn);
1466
1467 return kvm_pfn_to_page(pfn);
1468 }
1469 EXPORT_SYMBOL_GPL(gfn_to_page);
1470
1471 void kvm_release_page_clean(struct page *page)
1472 {
1473 WARN_ON(is_error_page(page));
1474
1475 kvm_release_pfn_clean(page_to_pfn(page));
1476 }
1477 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1478
1479 void kvm_release_pfn_clean(pfn_t pfn)
1480 {
1481 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1482 put_page(pfn_to_page(pfn));
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1485
1486 void kvm_release_page_dirty(struct page *page)
1487 {
1488 WARN_ON(is_error_page(page));
1489
1490 kvm_release_pfn_dirty(page_to_pfn(page));
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1493
1494 static void kvm_release_pfn_dirty(pfn_t pfn)
1495 {
1496 kvm_set_pfn_dirty(pfn);
1497 kvm_release_pfn_clean(pfn);
1498 }
1499
1500 void kvm_set_pfn_dirty(pfn_t pfn)
1501 {
1502 if (!kvm_is_reserved_pfn(pfn)) {
1503 struct page *page = pfn_to_page(pfn);
1504
1505 if (!PageReserved(page))
1506 SetPageDirty(page);
1507 }
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1510
1511 void kvm_set_pfn_accessed(pfn_t pfn)
1512 {
1513 if (!kvm_is_reserved_pfn(pfn))
1514 mark_page_accessed(pfn_to_page(pfn));
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1517
1518 void kvm_get_pfn(pfn_t pfn)
1519 {
1520 if (!kvm_is_reserved_pfn(pfn))
1521 get_page(pfn_to_page(pfn));
1522 }
1523 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1524
1525 static int next_segment(unsigned long len, int offset)
1526 {
1527 if (len > PAGE_SIZE - offset)
1528 return PAGE_SIZE - offset;
1529 else
1530 return len;
1531 }
1532
1533 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1534 int len)
1535 {
1536 int r;
1537 unsigned long addr;
1538
1539 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1540 if (kvm_is_error_hva(addr))
1541 return -EFAULT;
1542 r = __copy_from_user(data, (void __user *)addr + offset, len);
1543 if (r)
1544 return -EFAULT;
1545 return 0;
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1548
1549 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1550 {
1551 gfn_t gfn = gpa >> PAGE_SHIFT;
1552 int seg;
1553 int offset = offset_in_page(gpa);
1554 int ret;
1555
1556 while ((seg = next_segment(len, offset)) != 0) {
1557 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1558 if (ret < 0)
1559 return ret;
1560 offset = 0;
1561 len -= seg;
1562 data += seg;
1563 ++gfn;
1564 }
1565 return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_read_guest);
1568
1569 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1570 unsigned long len)
1571 {
1572 int r;
1573 unsigned long addr;
1574 gfn_t gfn = gpa >> PAGE_SHIFT;
1575 int offset = offset_in_page(gpa);
1576
1577 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1578 if (kvm_is_error_hva(addr))
1579 return -EFAULT;
1580 pagefault_disable();
1581 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1582 pagefault_enable();
1583 if (r)
1584 return -EFAULT;
1585 return 0;
1586 }
1587 EXPORT_SYMBOL(kvm_read_guest_atomic);
1588
1589 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1590 int offset, int len)
1591 {
1592 int r;
1593 struct kvm_memory_slot *memslot;
1594 unsigned long addr;
1595
1596 memslot = gfn_to_memslot(kvm, gfn);
1597 addr = gfn_to_hva_memslot(memslot, gfn);
1598 if (kvm_is_error_hva(addr))
1599 return -EFAULT;
1600 r = __copy_to_user((void __user *)addr + offset, data, len);
1601 if (r)
1602 return -EFAULT;
1603 mark_page_dirty_in_slot(kvm, memslot, gfn);
1604 return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1607
1608 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1609 unsigned long len)
1610 {
1611 gfn_t gfn = gpa >> PAGE_SHIFT;
1612 int seg;
1613 int offset = offset_in_page(gpa);
1614 int ret;
1615
1616 while ((seg = next_segment(len, offset)) != 0) {
1617 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1618 if (ret < 0)
1619 return ret;
1620 offset = 0;
1621 len -= seg;
1622 data += seg;
1623 ++gfn;
1624 }
1625 return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_write_guest);
1628
1629 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1630 gpa_t gpa, unsigned long len)
1631 {
1632 struct kvm_memslots *slots = kvm_memslots(kvm);
1633 int offset = offset_in_page(gpa);
1634 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1635 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1636 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1637 gfn_t nr_pages_avail;
1638
1639 ghc->gpa = gpa;
1640 ghc->generation = slots->generation;
1641 ghc->len = len;
1642 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1643 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1644 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1645 ghc->hva += offset;
1646 } else {
1647 /*
1648 * If the requested region crosses two memslots, we still
1649 * verify that the entire region is valid here.
1650 */
1651 while (start_gfn <= end_gfn) {
1652 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1653 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1654 &nr_pages_avail);
1655 if (kvm_is_error_hva(ghc->hva))
1656 return -EFAULT;
1657 start_gfn += nr_pages_avail;
1658 }
1659 /* Use the slow path for cross page reads and writes. */
1660 ghc->memslot = NULL;
1661 }
1662 return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1665
1666 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1667 void *data, unsigned long len)
1668 {
1669 struct kvm_memslots *slots = kvm_memslots(kvm);
1670 int r;
1671
1672 BUG_ON(len > ghc->len);
1673
1674 if (slots->generation != ghc->generation)
1675 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1676
1677 if (unlikely(!ghc->memslot))
1678 return kvm_write_guest(kvm, ghc->gpa, data, len);
1679
1680 if (kvm_is_error_hva(ghc->hva))
1681 return -EFAULT;
1682
1683 r = __copy_to_user((void __user *)ghc->hva, data, len);
1684 if (r)
1685 return -EFAULT;
1686 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1687
1688 return 0;
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1691
1692 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1693 void *data, unsigned long len)
1694 {
1695 struct kvm_memslots *slots = kvm_memslots(kvm);
1696 int r;
1697
1698 BUG_ON(len > ghc->len);
1699
1700 if (slots->generation != ghc->generation)
1701 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1702
1703 if (unlikely(!ghc->memslot))
1704 return kvm_read_guest(kvm, ghc->gpa, data, len);
1705
1706 if (kvm_is_error_hva(ghc->hva))
1707 return -EFAULT;
1708
1709 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1710 if (r)
1711 return -EFAULT;
1712
1713 return 0;
1714 }
1715 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1716
1717 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1718 {
1719 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1720
1721 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1724
1725 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1726 {
1727 gfn_t gfn = gpa >> PAGE_SHIFT;
1728 int seg;
1729 int offset = offset_in_page(gpa);
1730 int ret;
1731
1732 while ((seg = next_segment(len, offset)) != 0) {
1733 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1734 if (ret < 0)
1735 return ret;
1736 offset = 0;
1737 len -= seg;
1738 ++gfn;
1739 }
1740 return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1743
1744 static void mark_page_dirty_in_slot(struct kvm *kvm,
1745 struct kvm_memory_slot *memslot,
1746 gfn_t gfn)
1747 {
1748 if (memslot && memslot->dirty_bitmap) {
1749 unsigned long rel_gfn = gfn - memslot->base_gfn;
1750
1751 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1752 }
1753 }
1754
1755 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1756 {
1757 struct kvm_memory_slot *memslot;
1758
1759 memslot = gfn_to_memslot(kvm, gfn);
1760 mark_page_dirty_in_slot(kvm, memslot, gfn);
1761 }
1762 EXPORT_SYMBOL_GPL(mark_page_dirty);
1763
1764 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1765 {
1766 if (kvm_arch_vcpu_runnable(vcpu)) {
1767 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1768 return -EINTR;
1769 }
1770 if (kvm_cpu_has_pending_timer(vcpu))
1771 return -EINTR;
1772 if (signal_pending(current))
1773 return -EINTR;
1774
1775 return 0;
1776 }
1777
1778 /*
1779 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1780 */
1781 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1782 {
1783 ktime_t start, cur;
1784 DEFINE_WAIT(wait);
1785 bool waited = false;
1786
1787 start = cur = ktime_get();
1788 if (halt_poll_ns) {
1789 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1790
1791 do {
1792 /*
1793 * This sets KVM_REQ_UNHALT if an interrupt
1794 * arrives.
1795 */
1796 if (kvm_vcpu_check_block(vcpu) < 0) {
1797 ++vcpu->stat.halt_successful_poll;
1798 goto out;
1799 }
1800 cur = ktime_get();
1801 } while (single_task_running() && ktime_before(cur, stop));
1802 }
1803
1804 for (;;) {
1805 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1806
1807 if (kvm_vcpu_check_block(vcpu) < 0)
1808 break;
1809
1810 waited = true;
1811 schedule();
1812 }
1813
1814 finish_wait(&vcpu->wq, &wait);
1815 cur = ktime_get();
1816
1817 out:
1818 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1821
1822 #ifndef CONFIG_S390
1823 /*
1824 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1825 */
1826 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1827 {
1828 int me;
1829 int cpu = vcpu->cpu;
1830 wait_queue_head_t *wqp;
1831
1832 wqp = kvm_arch_vcpu_wq(vcpu);
1833 if (waitqueue_active(wqp)) {
1834 wake_up_interruptible(wqp);
1835 ++vcpu->stat.halt_wakeup;
1836 }
1837
1838 me = get_cpu();
1839 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1840 if (kvm_arch_vcpu_should_kick(vcpu))
1841 smp_send_reschedule(cpu);
1842 put_cpu();
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1845 #endif /* !CONFIG_S390 */
1846
1847 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1848 {
1849 struct pid *pid;
1850 struct task_struct *task = NULL;
1851 int ret = 0;
1852
1853 rcu_read_lock();
1854 pid = rcu_dereference(target->pid);
1855 if (pid)
1856 task = get_pid_task(pid, PIDTYPE_PID);
1857 rcu_read_unlock();
1858 if (!task)
1859 return ret;
1860 ret = yield_to(task, 1);
1861 put_task_struct(task);
1862
1863 return ret;
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1866
1867 /*
1868 * Helper that checks whether a VCPU is eligible for directed yield.
1869 * Most eligible candidate to yield is decided by following heuristics:
1870 *
1871 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1872 * (preempted lock holder), indicated by @in_spin_loop.
1873 * Set at the beiginning and cleared at the end of interception/PLE handler.
1874 *
1875 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1876 * chance last time (mostly it has become eligible now since we have probably
1877 * yielded to lockholder in last iteration. This is done by toggling
1878 * @dy_eligible each time a VCPU checked for eligibility.)
1879 *
1880 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1881 * to preempted lock-holder could result in wrong VCPU selection and CPU
1882 * burning. Giving priority for a potential lock-holder increases lock
1883 * progress.
1884 *
1885 * Since algorithm is based on heuristics, accessing another VCPU data without
1886 * locking does not harm. It may result in trying to yield to same VCPU, fail
1887 * and continue with next VCPU and so on.
1888 */
1889 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1890 {
1891 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1892 bool eligible;
1893
1894 eligible = !vcpu->spin_loop.in_spin_loop ||
1895 vcpu->spin_loop.dy_eligible;
1896
1897 if (vcpu->spin_loop.in_spin_loop)
1898 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1899
1900 return eligible;
1901 #else
1902 return true;
1903 #endif
1904 }
1905
1906 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1907 {
1908 struct kvm *kvm = me->kvm;
1909 struct kvm_vcpu *vcpu;
1910 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1911 int yielded = 0;
1912 int try = 3;
1913 int pass;
1914 int i;
1915
1916 kvm_vcpu_set_in_spin_loop(me, true);
1917 /*
1918 * We boost the priority of a VCPU that is runnable but not
1919 * currently running, because it got preempted by something
1920 * else and called schedule in __vcpu_run. Hopefully that
1921 * VCPU is holding the lock that we need and will release it.
1922 * We approximate round-robin by starting at the last boosted VCPU.
1923 */
1924 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1925 kvm_for_each_vcpu(i, vcpu, kvm) {
1926 if (!pass && i <= last_boosted_vcpu) {
1927 i = last_boosted_vcpu;
1928 continue;
1929 } else if (pass && i > last_boosted_vcpu)
1930 break;
1931 if (!ACCESS_ONCE(vcpu->preempted))
1932 continue;
1933 if (vcpu == me)
1934 continue;
1935 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1936 continue;
1937 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1938 continue;
1939
1940 yielded = kvm_vcpu_yield_to(vcpu);
1941 if (yielded > 0) {
1942 kvm->last_boosted_vcpu = i;
1943 break;
1944 } else if (yielded < 0) {
1945 try--;
1946 if (!try)
1947 break;
1948 }
1949 }
1950 }
1951 kvm_vcpu_set_in_spin_loop(me, false);
1952
1953 /* Ensure vcpu is not eligible during next spinloop */
1954 kvm_vcpu_set_dy_eligible(me, false);
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1957
1958 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1959 {
1960 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1961 struct page *page;
1962
1963 if (vmf->pgoff == 0)
1964 page = virt_to_page(vcpu->run);
1965 #ifdef CONFIG_X86
1966 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1967 page = virt_to_page(vcpu->arch.pio_data);
1968 #endif
1969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1970 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1971 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1972 #endif
1973 else
1974 return kvm_arch_vcpu_fault(vcpu, vmf);
1975 get_page(page);
1976 vmf->page = page;
1977 return 0;
1978 }
1979
1980 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1981 .fault = kvm_vcpu_fault,
1982 };
1983
1984 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1985 {
1986 vma->vm_ops = &kvm_vcpu_vm_ops;
1987 return 0;
1988 }
1989
1990 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1991 {
1992 struct kvm_vcpu *vcpu = filp->private_data;
1993
1994 kvm_put_kvm(vcpu->kvm);
1995 return 0;
1996 }
1997
1998 static struct file_operations kvm_vcpu_fops = {
1999 .release = kvm_vcpu_release,
2000 .unlocked_ioctl = kvm_vcpu_ioctl,
2001 #ifdef CONFIG_KVM_COMPAT
2002 .compat_ioctl = kvm_vcpu_compat_ioctl,
2003 #endif
2004 .mmap = kvm_vcpu_mmap,
2005 .llseek = noop_llseek,
2006 };
2007
2008 /*
2009 * Allocates an inode for the vcpu.
2010 */
2011 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2012 {
2013 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2014 }
2015
2016 /*
2017 * Creates some virtual cpus. Good luck creating more than one.
2018 */
2019 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2020 {
2021 int r;
2022 struct kvm_vcpu *vcpu, *v;
2023
2024 if (id >= KVM_MAX_VCPUS)
2025 return -EINVAL;
2026
2027 vcpu = kvm_arch_vcpu_create(kvm, id);
2028 if (IS_ERR(vcpu))
2029 return PTR_ERR(vcpu);
2030
2031 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2032
2033 r = kvm_arch_vcpu_setup(vcpu);
2034 if (r)
2035 goto vcpu_destroy;
2036
2037 mutex_lock(&kvm->lock);
2038 if (!kvm_vcpu_compatible(vcpu)) {
2039 r = -EINVAL;
2040 goto unlock_vcpu_destroy;
2041 }
2042 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2043 r = -EINVAL;
2044 goto unlock_vcpu_destroy;
2045 }
2046
2047 kvm_for_each_vcpu(r, v, kvm)
2048 if (v->vcpu_id == id) {
2049 r = -EEXIST;
2050 goto unlock_vcpu_destroy;
2051 }
2052
2053 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2054
2055 /* Now it's all set up, let userspace reach it */
2056 kvm_get_kvm(kvm);
2057 r = create_vcpu_fd(vcpu);
2058 if (r < 0) {
2059 kvm_put_kvm(kvm);
2060 goto unlock_vcpu_destroy;
2061 }
2062
2063 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2064 smp_wmb();
2065 atomic_inc(&kvm->online_vcpus);
2066
2067 mutex_unlock(&kvm->lock);
2068 kvm_arch_vcpu_postcreate(vcpu);
2069 return r;
2070
2071 unlock_vcpu_destroy:
2072 mutex_unlock(&kvm->lock);
2073 vcpu_destroy:
2074 kvm_arch_vcpu_destroy(vcpu);
2075 return r;
2076 }
2077
2078 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2079 {
2080 if (sigset) {
2081 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2082 vcpu->sigset_active = 1;
2083 vcpu->sigset = *sigset;
2084 } else
2085 vcpu->sigset_active = 0;
2086 return 0;
2087 }
2088
2089 static long kvm_vcpu_ioctl(struct file *filp,
2090 unsigned int ioctl, unsigned long arg)
2091 {
2092 struct kvm_vcpu *vcpu = filp->private_data;
2093 void __user *argp = (void __user *)arg;
2094 int r;
2095 struct kvm_fpu *fpu = NULL;
2096 struct kvm_sregs *kvm_sregs = NULL;
2097
2098 if (vcpu->kvm->mm != current->mm)
2099 return -EIO;
2100
2101 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2102 return -EINVAL;
2103
2104 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2105 /*
2106 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2107 * so vcpu_load() would break it.
2108 */
2109 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2110 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2111 #endif
2112
2113
2114 r = vcpu_load(vcpu);
2115 if (r)
2116 return r;
2117 switch (ioctl) {
2118 case KVM_RUN:
2119 r = -EINVAL;
2120 if (arg)
2121 goto out;
2122 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2123 /* The thread running this VCPU changed. */
2124 struct pid *oldpid = vcpu->pid;
2125 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2126
2127 rcu_assign_pointer(vcpu->pid, newpid);
2128 if (oldpid)
2129 synchronize_rcu();
2130 put_pid(oldpid);
2131 }
2132 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2133 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2134 break;
2135 case KVM_GET_REGS: {
2136 struct kvm_regs *kvm_regs;
2137
2138 r = -ENOMEM;
2139 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2140 if (!kvm_regs)
2141 goto out;
2142 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2143 if (r)
2144 goto out_free1;
2145 r = -EFAULT;
2146 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2147 goto out_free1;
2148 r = 0;
2149 out_free1:
2150 kfree(kvm_regs);
2151 break;
2152 }
2153 case KVM_SET_REGS: {
2154 struct kvm_regs *kvm_regs;
2155
2156 r = -ENOMEM;
2157 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2158 if (IS_ERR(kvm_regs)) {
2159 r = PTR_ERR(kvm_regs);
2160 goto out;
2161 }
2162 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2163 kfree(kvm_regs);
2164 break;
2165 }
2166 case KVM_GET_SREGS: {
2167 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2168 r = -ENOMEM;
2169 if (!kvm_sregs)
2170 goto out;
2171 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2172 if (r)
2173 goto out;
2174 r = -EFAULT;
2175 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2176 goto out;
2177 r = 0;
2178 break;
2179 }
2180 case KVM_SET_SREGS: {
2181 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2182 if (IS_ERR(kvm_sregs)) {
2183 r = PTR_ERR(kvm_sregs);
2184 kvm_sregs = NULL;
2185 goto out;
2186 }
2187 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2188 break;
2189 }
2190 case KVM_GET_MP_STATE: {
2191 struct kvm_mp_state mp_state;
2192
2193 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2194 if (r)
2195 goto out;
2196 r = -EFAULT;
2197 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2198 goto out;
2199 r = 0;
2200 break;
2201 }
2202 case KVM_SET_MP_STATE: {
2203 struct kvm_mp_state mp_state;
2204
2205 r = -EFAULT;
2206 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2207 goto out;
2208 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2209 break;
2210 }
2211 case KVM_TRANSLATE: {
2212 struct kvm_translation tr;
2213
2214 r = -EFAULT;
2215 if (copy_from_user(&tr, argp, sizeof(tr)))
2216 goto out;
2217 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2218 if (r)
2219 goto out;
2220 r = -EFAULT;
2221 if (copy_to_user(argp, &tr, sizeof(tr)))
2222 goto out;
2223 r = 0;
2224 break;
2225 }
2226 case KVM_SET_GUEST_DEBUG: {
2227 struct kvm_guest_debug dbg;
2228
2229 r = -EFAULT;
2230 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2231 goto out;
2232 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2233 break;
2234 }
2235 case KVM_SET_SIGNAL_MASK: {
2236 struct kvm_signal_mask __user *sigmask_arg = argp;
2237 struct kvm_signal_mask kvm_sigmask;
2238 sigset_t sigset, *p;
2239
2240 p = NULL;
2241 if (argp) {
2242 r = -EFAULT;
2243 if (copy_from_user(&kvm_sigmask, argp,
2244 sizeof(kvm_sigmask)))
2245 goto out;
2246 r = -EINVAL;
2247 if (kvm_sigmask.len != sizeof(sigset))
2248 goto out;
2249 r = -EFAULT;
2250 if (copy_from_user(&sigset, sigmask_arg->sigset,
2251 sizeof(sigset)))
2252 goto out;
2253 p = &sigset;
2254 }
2255 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2256 break;
2257 }
2258 case KVM_GET_FPU: {
2259 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2260 r = -ENOMEM;
2261 if (!fpu)
2262 goto out;
2263 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2264 if (r)
2265 goto out;
2266 r = -EFAULT;
2267 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2268 goto out;
2269 r = 0;
2270 break;
2271 }
2272 case KVM_SET_FPU: {
2273 fpu = memdup_user(argp, sizeof(*fpu));
2274 if (IS_ERR(fpu)) {
2275 r = PTR_ERR(fpu);
2276 fpu = NULL;
2277 goto out;
2278 }
2279 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2280 break;
2281 }
2282 default:
2283 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2284 }
2285 out:
2286 vcpu_put(vcpu);
2287 kfree(fpu);
2288 kfree(kvm_sregs);
2289 return r;
2290 }
2291
2292 #ifdef CONFIG_KVM_COMPAT
2293 static long kvm_vcpu_compat_ioctl(struct file *filp,
2294 unsigned int ioctl, unsigned long arg)
2295 {
2296 struct kvm_vcpu *vcpu = filp->private_data;
2297 void __user *argp = compat_ptr(arg);
2298 int r;
2299
2300 if (vcpu->kvm->mm != current->mm)
2301 return -EIO;
2302
2303 switch (ioctl) {
2304 case KVM_SET_SIGNAL_MASK: {
2305 struct kvm_signal_mask __user *sigmask_arg = argp;
2306 struct kvm_signal_mask kvm_sigmask;
2307 compat_sigset_t csigset;
2308 sigset_t sigset;
2309
2310 if (argp) {
2311 r = -EFAULT;
2312 if (copy_from_user(&kvm_sigmask, argp,
2313 sizeof(kvm_sigmask)))
2314 goto out;
2315 r = -EINVAL;
2316 if (kvm_sigmask.len != sizeof(csigset))
2317 goto out;
2318 r = -EFAULT;
2319 if (copy_from_user(&csigset, sigmask_arg->sigset,
2320 sizeof(csigset)))
2321 goto out;
2322 sigset_from_compat(&sigset, &csigset);
2323 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2324 } else
2325 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2326 break;
2327 }
2328 default:
2329 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2330 }
2331
2332 out:
2333 return r;
2334 }
2335 #endif
2336
2337 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2338 int (*accessor)(struct kvm_device *dev,
2339 struct kvm_device_attr *attr),
2340 unsigned long arg)
2341 {
2342 struct kvm_device_attr attr;
2343
2344 if (!accessor)
2345 return -EPERM;
2346
2347 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2348 return -EFAULT;
2349
2350 return accessor(dev, &attr);
2351 }
2352
2353 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2354 unsigned long arg)
2355 {
2356 struct kvm_device *dev = filp->private_data;
2357
2358 switch (ioctl) {
2359 case KVM_SET_DEVICE_ATTR:
2360 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2361 case KVM_GET_DEVICE_ATTR:
2362 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2363 case KVM_HAS_DEVICE_ATTR:
2364 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2365 default:
2366 if (dev->ops->ioctl)
2367 return dev->ops->ioctl(dev, ioctl, arg);
2368
2369 return -ENOTTY;
2370 }
2371 }
2372
2373 static int kvm_device_release(struct inode *inode, struct file *filp)
2374 {
2375 struct kvm_device *dev = filp->private_data;
2376 struct kvm *kvm = dev->kvm;
2377
2378 kvm_put_kvm(kvm);
2379 return 0;
2380 }
2381
2382 static const struct file_operations kvm_device_fops = {
2383 .unlocked_ioctl = kvm_device_ioctl,
2384 #ifdef CONFIG_KVM_COMPAT
2385 .compat_ioctl = kvm_device_ioctl,
2386 #endif
2387 .release = kvm_device_release,
2388 };
2389
2390 struct kvm_device *kvm_device_from_filp(struct file *filp)
2391 {
2392 if (filp->f_op != &kvm_device_fops)
2393 return NULL;
2394
2395 return filp->private_data;
2396 }
2397
2398 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2399 #ifdef CONFIG_KVM_MPIC
2400 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2401 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2402 #endif
2403
2404 #ifdef CONFIG_KVM_XICS
2405 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2406 #endif
2407 };
2408
2409 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2410 {
2411 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2412 return -ENOSPC;
2413
2414 if (kvm_device_ops_table[type] != NULL)
2415 return -EEXIST;
2416
2417 kvm_device_ops_table[type] = ops;
2418 return 0;
2419 }
2420
2421 void kvm_unregister_device_ops(u32 type)
2422 {
2423 if (kvm_device_ops_table[type] != NULL)
2424 kvm_device_ops_table[type] = NULL;
2425 }
2426
2427 static int kvm_ioctl_create_device(struct kvm *kvm,
2428 struct kvm_create_device *cd)
2429 {
2430 struct kvm_device_ops *ops = NULL;
2431 struct kvm_device *dev;
2432 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2433 int ret;
2434
2435 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2436 return -ENODEV;
2437
2438 ops = kvm_device_ops_table[cd->type];
2439 if (ops == NULL)
2440 return -ENODEV;
2441
2442 if (test)
2443 return 0;
2444
2445 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2446 if (!dev)
2447 return -ENOMEM;
2448
2449 dev->ops = ops;
2450 dev->kvm = kvm;
2451
2452 ret = ops->create(dev, cd->type);
2453 if (ret < 0) {
2454 kfree(dev);
2455 return ret;
2456 }
2457
2458 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2459 if (ret < 0) {
2460 ops->destroy(dev);
2461 return ret;
2462 }
2463
2464 list_add(&dev->vm_node, &kvm->devices);
2465 kvm_get_kvm(kvm);
2466 cd->fd = ret;
2467 return 0;
2468 }
2469
2470 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2471 {
2472 switch (arg) {
2473 case KVM_CAP_USER_MEMORY:
2474 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2475 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2476 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2477 case KVM_CAP_SET_BOOT_CPU_ID:
2478 #endif
2479 case KVM_CAP_INTERNAL_ERROR_DATA:
2480 #ifdef CONFIG_HAVE_KVM_MSI
2481 case KVM_CAP_SIGNAL_MSI:
2482 #endif
2483 #ifdef CONFIG_HAVE_KVM_IRQFD
2484 case KVM_CAP_IRQFD:
2485 case KVM_CAP_IRQFD_RESAMPLE:
2486 #endif
2487 case KVM_CAP_CHECK_EXTENSION_VM:
2488 return 1;
2489 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2490 case KVM_CAP_IRQ_ROUTING:
2491 return KVM_MAX_IRQ_ROUTES;
2492 #endif
2493 default:
2494 break;
2495 }
2496 return kvm_vm_ioctl_check_extension(kvm, arg);
2497 }
2498
2499 static long kvm_vm_ioctl(struct file *filp,
2500 unsigned int ioctl, unsigned long arg)
2501 {
2502 struct kvm *kvm = filp->private_data;
2503 void __user *argp = (void __user *)arg;
2504 int r;
2505
2506 if (kvm->mm != current->mm)
2507 return -EIO;
2508 switch (ioctl) {
2509 case KVM_CREATE_VCPU:
2510 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2511 break;
2512 case KVM_SET_USER_MEMORY_REGION: {
2513 struct kvm_userspace_memory_region kvm_userspace_mem;
2514
2515 r = -EFAULT;
2516 if (copy_from_user(&kvm_userspace_mem, argp,
2517 sizeof(kvm_userspace_mem)))
2518 goto out;
2519
2520 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2521 break;
2522 }
2523 case KVM_GET_DIRTY_LOG: {
2524 struct kvm_dirty_log log;
2525
2526 r = -EFAULT;
2527 if (copy_from_user(&log, argp, sizeof(log)))
2528 goto out;
2529 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2530 break;
2531 }
2532 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2533 case KVM_REGISTER_COALESCED_MMIO: {
2534 struct kvm_coalesced_mmio_zone zone;
2535
2536 r = -EFAULT;
2537 if (copy_from_user(&zone, argp, sizeof(zone)))
2538 goto out;
2539 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2540 break;
2541 }
2542 case KVM_UNREGISTER_COALESCED_MMIO: {
2543 struct kvm_coalesced_mmio_zone zone;
2544
2545 r = -EFAULT;
2546 if (copy_from_user(&zone, argp, sizeof(zone)))
2547 goto out;
2548 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2549 break;
2550 }
2551 #endif
2552 case KVM_IRQFD: {
2553 struct kvm_irqfd data;
2554
2555 r = -EFAULT;
2556 if (copy_from_user(&data, argp, sizeof(data)))
2557 goto out;
2558 r = kvm_irqfd(kvm, &data);
2559 break;
2560 }
2561 case KVM_IOEVENTFD: {
2562 struct kvm_ioeventfd data;
2563
2564 r = -EFAULT;
2565 if (copy_from_user(&data, argp, sizeof(data)))
2566 goto out;
2567 r = kvm_ioeventfd(kvm, &data);
2568 break;
2569 }
2570 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2571 case KVM_SET_BOOT_CPU_ID:
2572 r = 0;
2573 mutex_lock(&kvm->lock);
2574 if (atomic_read(&kvm->online_vcpus) != 0)
2575 r = -EBUSY;
2576 else
2577 kvm->bsp_vcpu_id = arg;
2578 mutex_unlock(&kvm->lock);
2579 break;
2580 #endif
2581 #ifdef CONFIG_HAVE_KVM_MSI
2582 case KVM_SIGNAL_MSI: {
2583 struct kvm_msi msi;
2584
2585 r = -EFAULT;
2586 if (copy_from_user(&msi, argp, sizeof(msi)))
2587 goto out;
2588 r = kvm_send_userspace_msi(kvm, &msi);
2589 break;
2590 }
2591 #endif
2592 #ifdef __KVM_HAVE_IRQ_LINE
2593 case KVM_IRQ_LINE_STATUS:
2594 case KVM_IRQ_LINE: {
2595 struct kvm_irq_level irq_event;
2596
2597 r = -EFAULT;
2598 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2599 goto out;
2600
2601 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2602 ioctl == KVM_IRQ_LINE_STATUS);
2603 if (r)
2604 goto out;
2605
2606 r = -EFAULT;
2607 if (ioctl == KVM_IRQ_LINE_STATUS) {
2608 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2609 goto out;
2610 }
2611
2612 r = 0;
2613 break;
2614 }
2615 #endif
2616 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2617 case KVM_SET_GSI_ROUTING: {
2618 struct kvm_irq_routing routing;
2619 struct kvm_irq_routing __user *urouting;
2620 struct kvm_irq_routing_entry *entries;
2621
2622 r = -EFAULT;
2623 if (copy_from_user(&routing, argp, sizeof(routing)))
2624 goto out;
2625 r = -EINVAL;
2626 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2627 goto out;
2628 if (routing.flags)
2629 goto out;
2630 r = -ENOMEM;
2631 entries = vmalloc(routing.nr * sizeof(*entries));
2632 if (!entries)
2633 goto out;
2634 r = -EFAULT;
2635 urouting = argp;
2636 if (copy_from_user(entries, urouting->entries,
2637 routing.nr * sizeof(*entries)))
2638 goto out_free_irq_routing;
2639 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2640 routing.flags);
2641 out_free_irq_routing:
2642 vfree(entries);
2643 break;
2644 }
2645 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2646 case KVM_CREATE_DEVICE: {
2647 struct kvm_create_device cd;
2648
2649 r = -EFAULT;
2650 if (copy_from_user(&cd, argp, sizeof(cd)))
2651 goto out;
2652
2653 r = kvm_ioctl_create_device(kvm, &cd);
2654 if (r)
2655 goto out;
2656
2657 r = -EFAULT;
2658 if (copy_to_user(argp, &cd, sizeof(cd)))
2659 goto out;
2660
2661 r = 0;
2662 break;
2663 }
2664 case KVM_CHECK_EXTENSION:
2665 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2666 break;
2667 default:
2668 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2669 }
2670 out:
2671 return r;
2672 }
2673
2674 #ifdef CONFIG_KVM_COMPAT
2675 struct compat_kvm_dirty_log {
2676 __u32 slot;
2677 __u32 padding1;
2678 union {
2679 compat_uptr_t dirty_bitmap; /* one bit per page */
2680 __u64 padding2;
2681 };
2682 };
2683
2684 static long kvm_vm_compat_ioctl(struct file *filp,
2685 unsigned int ioctl, unsigned long arg)
2686 {
2687 struct kvm *kvm = filp->private_data;
2688 int r;
2689
2690 if (kvm->mm != current->mm)
2691 return -EIO;
2692 switch (ioctl) {
2693 case KVM_GET_DIRTY_LOG: {
2694 struct compat_kvm_dirty_log compat_log;
2695 struct kvm_dirty_log log;
2696
2697 r = -EFAULT;
2698 if (copy_from_user(&compat_log, (void __user *)arg,
2699 sizeof(compat_log)))
2700 goto out;
2701 log.slot = compat_log.slot;
2702 log.padding1 = compat_log.padding1;
2703 log.padding2 = compat_log.padding2;
2704 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2705
2706 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2707 break;
2708 }
2709 default:
2710 r = kvm_vm_ioctl(filp, ioctl, arg);
2711 }
2712
2713 out:
2714 return r;
2715 }
2716 #endif
2717
2718 static struct file_operations kvm_vm_fops = {
2719 .release = kvm_vm_release,
2720 .unlocked_ioctl = kvm_vm_ioctl,
2721 #ifdef CONFIG_KVM_COMPAT
2722 .compat_ioctl = kvm_vm_compat_ioctl,
2723 #endif
2724 .llseek = noop_llseek,
2725 };
2726
2727 static int kvm_dev_ioctl_create_vm(unsigned long type)
2728 {
2729 int r;
2730 struct kvm *kvm;
2731
2732 kvm = kvm_create_vm(type);
2733 if (IS_ERR(kvm))
2734 return PTR_ERR(kvm);
2735 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2736 r = kvm_coalesced_mmio_init(kvm);
2737 if (r < 0) {
2738 kvm_put_kvm(kvm);
2739 return r;
2740 }
2741 #endif
2742 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2743 if (r < 0)
2744 kvm_put_kvm(kvm);
2745
2746 return r;
2747 }
2748
2749 static long kvm_dev_ioctl(struct file *filp,
2750 unsigned int ioctl, unsigned long arg)
2751 {
2752 long r = -EINVAL;
2753
2754 switch (ioctl) {
2755 case KVM_GET_API_VERSION:
2756 if (arg)
2757 goto out;
2758 r = KVM_API_VERSION;
2759 break;
2760 case KVM_CREATE_VM:
2761 r = kvm_dev_ioctl_create_vm(arg);
2762 break;
2763 case KVM_CHECK_EXTENSION:
2764 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2765 break;
2766 case KVM_GET_VCPU_MMAP_SIZE:
2767 if (arg)
2768 goto out;
2769 r = PAGE_SIZE; /* struct kvm_run */
2770 #ifdef CONFIG_X86
2771 r += PAGE_SIZE; /* pio data page */
2772 #endif
2773 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2774 r += PAGE_SIZE; /* coalesced mmio ring page */
2775 #endif
2776 break;
2777 case KVM_TRACE_ENABLE:
2778 case KVM_TRACE_PAUSE:
2779 case KVM_TRACE_DISABLE:
2780 r = -EOPNOTSUPP;
2781 break;
2782 default:
2783 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2784 }
2785 out:
2786 return r;
2787 }
2788
2789 static struct file_operations kvm_chardev_ops = {
2790 .unlocked_ioctl = kvm_dev_ioctl,
2791 .compat_ioctl = kvm_dev_ioctl,
2792 .llseek = noop_llseek,
2793 };
2794
2795 static struct miscdevice kvm_dev = {
2796 KVM_MINOR,
2797 "kvm",
2798 &kvm_chardev_ops,
2799 };
2800
2801 static void hardware_enable_nolock(void *junk)
2802 {
2803 int cpu = raw_smp_processor_id();
2804 int r;
2805
2806 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2807 return;
2808
2809 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2810
2811 r = kvm_arch_hardware_enable();
2812
2813 if (r) {
2814 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2815 atomic_inc(&hardware_enable_failed);
2816 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2817 }
2818 }
2819
2820 static void hardware_enable(void)
2821 {
2822 raw_spin_lock(&kvm_count_lock);
2823 if (kvm_usage_count)
2824 hardware_enable_nolock(NULL);
2825 raw_spin_unlock(&kvm_count_lock);
2826 }
2827
2828 static void hardware_disable_nolock(void *junk)
2829 {
2830 int cpu = raw_smp_processor_id();
2831
2832 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2833 return;
2834 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2835 kvm_arch_hardware_disable();
2836 }
2837
2838 static void hardware_disable(void)
2839 {
2840 raw_spin_lock(&kvm_count_lock);
2841 if (kvm_usage_count)
2842 hardware_disable_nolock(NULL);
2843 raw_spin_unlock(&kvm_count_lock);
2844 }
2845
2846 static void hardware_disable_all_nolock(void)
2847 {
2848 BUG_ON(!kvm_usage_count);
2849
2850 kvm_usage_count--;
2851 if (!kvm_usage_count)
2852 on_each_cpu(hardware_disable_nolock, NULL, 1);
2853 }
2854
2855 static void hardware_disable_all(void)
2856 {
2857 raw_spin_lock(&kvm_count_lock);
2858 hardware_disable_all_nolock();
2859 raw_spin_unlock(&kvm_count_lock);
2860 }
2861
2862 static int hardware_enable_all(void)
2863 {
2864 int r = 0;
2865
2866 raw_spin_lock(&kvm_count_lock);
2867
2868 kvm_usage_count++;
2869 if (kvm_usage_count == 1) {
2870 atomic_set(&hardware_enable_failed, 0);
2871 on_each_cpu(hardware_enable_nolock, NULL, 1);
2872
2873 if (atomic_read(&hardware_enable_failed)) {
2874 hardware_disable_all_nolock();
2875 r = -EBUSY;
2876 }
2877 }
2878
2879 raw_spin_unlock(&kvm_count_lock);
2880
2881 return r;
2882 }
2883
2884 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2885 void *v)
2886 {
2887 val &= ~CPU_TASKS_FROZEN;
2888 switch (val) {
2889 case CPU_DYING:
2890 hardware_disable();
2891 break;
2892 case CPU_STARTING:
2893 hardware_enable();
2894 break;
2895 }
2896 return NOTIFY_OK;
2897 }
2898
2899 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2900 void *v)
2901 {
2902 /*
2903 * Some (well, at least mine) BIOSes hang on reboot if
2904 * in vmx root mode.
2905 *
2906 * And Intel TXT required VMX off for all cpu when system shutdown.
2907 */
2908 pr_info("kvm: exiting hardware virtualization\n");
2909 kvm_rebooting = true;
2910 on_each_cpu(hardware_disable_nolock, NULL, 1);
2911 return NOTIFY_OK;
2912 }
2913
2914 static struct notifier_block kvm_reboot_notifier = {
2915 .notifier_call = kvm_reboot,
2916 .priority = 0,
2917 };
2918
2919 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2920 {
2921 int i;
2922
2923 for (i = 0; i < bus->dev_count; i++) {
2924 struct kvm_io_device *pos = bus->range[i].dev;
2925
2926 kvm_iodevice_destructor(pos);
2927 }
2928 kfree(bus);
2929 }
2930
2931 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2932 const struct kvm_io_range *r2)
2933 {
2934 if (r1->addr < r2->addr)
2935 return -1;
2936 if (r1->addr + r1->len > r2->addr + r2->len)
2937 return 1;
2938 return 0;
2939 }
2940
2941 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2942 {
2943 return kvm_io_bus_cmp(p1, p2);
2944 }
2945
2946 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2947 gpa_t addr, int len)
2948 {
2949 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2950 .addr = addr,
2951 .len = len,
2952 .dev = dev,
2953 };
2954
2955 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2956 kvm_io_bus_sort_cmp, NULL);
2957
2958 return 0;
2959 }
2960
2961 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2962 gpa_t addr, int len)
2963 {
2964 struct kvm_io_range *range, key;
2965 int off;
2966
2967 key = (struct kvm_io_range) {
2968 .addr = addr,
2969 .len = len,
2970 };
2971
2972 range = bsearch(&key, bus->range, bus->dev_count,
2973 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2974 if (range == NULL)
2975 return -ENOENT;
2976
2977 off = range - bus->range;
2978
2979 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2980 off--;
2981
2982 return off;
2983 }
2984
2985 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
2986 struct kvm_io_range *range, const void *val)
2987 {
2988 int idx;
2989
2990 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2991 if (idx < 0)
2992 return -EOPNOTSUPP;
2993
2994 while (idx < bus->dev_count &&
2995 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2996 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
2997 range->len, val))
2998 return idx;
2999 idx++;
3000 }
3001
3002 return -EOPNOTSUPP;
3003 }
3004
3005 /* kvm_io_bus_write - called under kvm->slots_lock */
3006 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3007 int len, const void *val)
3008 {
3009 struct kvm_io_bus *bus;
3010 struct kvm_io_range range;
3011 int r;
3012
3013 range = (struct kvm_io_range) {
3014 .addr = addr,
3015 .len = len,
3016 };
3017
3018 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3019 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3020 return r < 0 ? r : 0;
3021 }
3022
3023 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3024 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3025 gpa_t addr, int len, const void *val, long cookie)
3026 {
3027 struct kvm_io_bus *bus;
3028 struct kvm_io_range range;
3029
3030 range = (struct kvm_io_range) {
3031 .addr = addr,
3032 .len = len,
3033 };
3034
3035 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3036
3037 /* First try the device referenced by cookie. */
3038 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3039 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3040 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3041 val))
3042 return cookie;
3043
3044 /*
3045 * cookie contained garbage; fall back to search and return the
3046 * correct cookie value.
3047 */
3048 return __kvm_io_bus_write(vcpu, bus, &range, val);
3049 }
3050
3051 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3052 struct kvm_io_range *range, void *val)
3053 {
3054 int idx;
3055
3056 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3057 if (idx < 0)
3058 return -EOPNOTSUPP;
3059
3060 while (idx < bus->dev_count &&
3061 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3062 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3063 range->len, val))
3064 return idx;
3065 idx++;
3066 }
3067
3068 return -EOPNOTSUPP;
3069 }
3070 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3071
3072 /* kvm_io_bus_read - called under kvm->slots_lock */
3073 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3074 int len, void *val)
3075 {
3076 struct kvm_io_bus *bus;
3077 struct kvm_io_range range;
3078 int r;
3079
3080 range = (struct kvm_io_range) {
3081 .addr = addr,
3082 .len = len,
3083 };
3084
3085 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3086 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3087 return r < 0 ? r : 0;
3088 }
3089
3090
3091 /* Caller must hold slots_lock. */
3092 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3093 int len, struct kvm_io_device *dev)
3094 {
3095 struct kvm_io_bus *new_bus, *bus;
3096
3097 bus = kvm->buses[bus_idx];
3098 /* exclude ioeventfd which is limited by maximum fd */
3099 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3100 return -ENOSPC;
3101
3102 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3103 sizeof(struct kvm_io_range)), GFP_KERNEL);
3104 if (!new_bus)
3105 return -ENOMEM;
3106 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3107 sizeof(struct kvm_io_range)));
3108 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3109 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3110 synchronize_srcu_expedited(&kvm->srcu);
3111 kfree(bus);
3112
3113 return 0;
3114 }
3115
3116 /* Caller must hold slots_lock. */
3117 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3118 struct kvm_io_device *dev)
3119 {
3120 int i, r;
3121 struct kvm_io_bus *new_bus, *bus;
3122
3123 bus = kvm->buses[bus_idx];
3124 r = -ENOENT;
3125 for (i = 0; i < bus->dev_count; i++)
3126 if (bus->range[i].dev == dev) {
3127 r = 0;
3128 break;
3129 }
3130
3131 if (r)
3132 return r;
3133
3134 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3135 sizeof(struct kvm_io_range)), GFP_KERNEL);
3136 if (!new_bus)
3137 return -ENOMEM;
3138
3139 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3140 new_bus->dev_count--;
3141 memcpy(new_bus->range + i, bus->range + i + 1,
3142 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3143
3144 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3145 synchronize_srcu_expedited(&kvm->srcu);
3146 kfree(bus);
3147 return r;
3148 }
3149
3150 static struct notifier_block kvm_cpu_notifier = {
3151 .notifier_call = kvm_cpu_hotplug,
3152 };
3153
3154 static int vm_stat_get(void *_offset, u64 *val)
3155 {
3156 unsigned offset = (long)_offset;
3157 struct kvm *kvm;
3158
3159 *val = 0;
3160 spin_lock(&kvm_lock);
3161 list_for_each_entry(kvm, &vm_list, vm_list)
3162 *val += *(u32 *)((void *)kvm + offset);
3163 spin_unlock(&kvm_lock);
3164 return 0;
3165 }
3166
3167 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3168
3169 static int vcpu_stat_get(void *_offset, u64 *val)
3170 {
3171 unsigned offset = (long)_offset;
3172 struct kvm *kvm;
3173 struct kvm_vcpu *vcpu;
3174 int i;
3175
3176 *val = 0;
3177 spin_lock(&kvm_lock);
3178 list_for_each_entry(kvm, &vm_list, vm_list)
3179 kvm_for_each_vcpu(i, vcpu, kvm)
3180 *val += *(u32 *)((void *)vcpu + offset);
3181
3182 spin_unlock(&kvm_lock);
3183 return 0;
3184 }
3185
3186 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3187
3188 static const struct file_operations *stat_fops[] = {
3189 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3190 [KVM_STAT_VM] = &vm_stat_fops,
3191 };
3192
3193 static int kvm_init_debug(void)
3194 {
3195 int r = -EEXIST;
3196 struct kvm_stats_debugfs_item *p;
3197
3198 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3199 if (kvm_debugfs_dir == NULL)
3200 goto out;
3201
3202 for (p = debugfs_entries; p->name; ++p) {
3203 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3204 (void *)(long)p->offset,
3205 stat_fops[p->kind]);
3206 if (p->dentry == NULL)
3207 goto out_dir;
3208 }
3209
3210 return 0;
3211
3212 out_dir:
3213 debugfs_remove_recursive(kvm_debugfs_dir);
3214 out:
3215 return r;
3216 }
3217
3218 static void kvm_exit_debug(void)
3219 {
3220 struct kvm_stats_debugfs_item *p;
3221
3222 for (p = debugfs_entries; p->name; ++p)
3223 debugfs_remove(p->dentry);
3224 debugfs_remove(kvm_debugfs_dir);
3225 }
3226
3227 static int kvm_suspend(void)
3228 {
3229 if (kvm_usage_count)
3230 hardware_disable_nolock(NULL);
3231 return 0;
3232 }
3233
3234 static void kvm_resume(void)
3235 {
3236 if (kvm_usage_count) {
3237 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3238 hardware_enable_nolock(NULL);
3239 }
3240 }
3241
3242 static struct syscore_ops kvm_syscore_ops = {
3243 .suspend = kvm_suspend,
3244 .resume = kvm_resume,
3245 };
3246
3247 static inline
3248 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3249 {
3250 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3251 }
3252
3253 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3254 {
3255 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3256
3257 if (vcpu->preempted)
3258 vcpu->preempted = false;
3259
3260 kvm_arch_sched_in(vcpu, cpu);
3261
3262 kvm_arch_vcpu_load(vcpu, cpu);
3263 }
3264
3265 static void kvm_sched_out(struct preempt_notifier *pn,
3266 struct task_struct *next)
3267 {
3268 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3269
3270 if (current->state == TASK_RUNNING)
3271 vcpu->preempted = true;
3272 kvm_arch_vcpu_put(vcpu);
3273 }
3274
3275 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3276 struct module *module)
3277 {
3278 int r;
3279 int cpu;
3280
3281 r = kvm_arch_init(opaque);
3282 if (r)
3283 goto out_fail;
3284
3285 /*
3286 * kvm_arch_init makes sure there's at most one caller
3287 * for architectures that support multiple implementations,
3288 * like intel and amd on x86.
3289 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3290 * conflicts in case kvm is already setup for another implementation.
3291 */
3292 r = kvm_irqfd_init();
3293 if (r)
3294 goto out_irqfd;
3295
3296 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3297 r = -ENOMEM;
3298 goto out_free_0;
3299 }
3300
3301 r = kvm_arch_hardware_setup();
3302 if (r < 0)
3303 goto out_free_0a;
3304
3305 for_each_online_cpu(cpu) {
3306 smp_call_function_single(cpu,
3307 kvm_arch_check_processor_compat,
3308 &r, 1);
3309 if (r < 0)
3310 goto out_free_1;
3311 }
3312
3313 r = register_cpu_notifier(&kvm_cpu_notifier);
3314 if (r)
3315 goto out_free_2;
3316 register_reboot_notifier(&kvm_reboot_notifier);
3317
3318 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3319 if (!vcpu_align)
3320 vcpu_align = __alignof__(struct kvm_vcpu);
3321 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3322 0, NULL);
3323 if (!kvm_vcpu_cache) {
3324 r = -ENOMEM;
3325 goto out_free_3;
3326 }
3327
3328 r = kvm_async_pf_init();
3329 if (r)
3330 goto out_free;
3331
3332 kvm_chardev_ops.owner = module;
3333 kvm_vm_fops.owner = module;
3334 kvm_vcpu_fops.owner = module;
3335
3336 r = misc_register(&kvm_dev);
3337 if (r) {
3338 pr_err("kvm: misc device register failed\n");
3339 goto out_unreg;
3340 }
3341
3342 register_syscore_ops(&kvm_syscore_ops);
3343
3344 kvm_preempt_ops.sched_in = kvm_sched_in;
3345 kvm_preempt_ops.sched_out = kvm_sched_out;
3346
3347 r = kvm_init_debug();
3348 if (r) {
3349 pr_err("kvm: create debugfs files failed\n");
3350 goto out_undebugfs;
3351 }
3352
3353 r = kvm_vfio_ops_init();
3354 WARN_ON(r);
3355
3356 return 0;
3357
3358 out_undebugfs:
3359 unregister_syscore_ops(&kvm_syscore_ops);
3360 misc_deregister(&kvm_dev);
3361 out_unreg:
3362 kvm_async_pf_deinit();
3363 out_free:
3364 kmem_cache_destroy(kvm_vcpu_cache);
3365 out_free_3:
3366 unregister_reboot_notifier(&kvm_reboot_notifier);
3367 unregister_cpu_notifier(&kvm_cpu_notifier);
3368 out_free_2:
3369 out_free_1:
3370 kvm_arch_hardware_unsetup();
3371 out_free_0a:
3372 free_cpumask_var(cpus_hardware_enabled);
3373 out_free_0:
3374 kvm_irqfd_exit();
3375 out_irqfd:
3376 kvm_arch_exit();
3377 out_fail:
3378 return r;
3379 }
3380 EXPORT_SYMBOL_GPL(kvm_init);
3381
3382 void kvm_exit(void)
3383 {
3384 kvm_exit_debug();
3385 misc_deregister(&kvm_dev);
3386 kmem_cache_destroy(kvm_vcpu_cache);
3387 kvm_async_pf_deinit();
3388 unregister_syscore_ops(&kvm_syscore_ops);
3389 unregister_reboot_notifier(&kvm_reboot_notifier);
3390 unregister_cpu_notifier(&kvm_cpu_notifier);
3391 on_each_cpu(hardware_disable_nolock, NULL, 1);
3392 kvm_arch_hardware_unsetup();
3393 kvm_arch_exit();
3394 kvm_irqfd_exit();
3395 free_cpumask_var(cpus_hardware_enabled);
3396 kvm_vfio_ops_exit();
3397 }
3398 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.12688 seconds and 5 git commands to generate.