ACPI / util: cast data to u64 before shifting to fix sign extension
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode */
174 smp_mb();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 long dirty_count = kvm->tlbs_dirty;
195
196 smp_mb();
197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 ++kvm->stat.remote_tlb_flush;
199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211 struct page *page;
212 int r;
213
214 mutex_init(&vcpu->mutex);
215 vcpu->cpu = -1;
216 vcpu->kvm = kvm;
217 vcpu->vcpu_id = id;
218 vcpu->pid = NULL;
219 vcpu->halt_poll_ns = 0;
220 init_waitqueue_head(&vcpu->wq);
221 kvm_async_pf_vcpu_init(vcpu);
222
223 vcpu->pre_pcpu = -1;
224 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
225
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
230 }
231 vcpu->run = page_address(page);
232
233 kvm_vcpu_set_in_spin_loop(vcpu, false);
234 kvm_vcpu_set_dy_eligible(vcpu, false);
235 vcpu->preempted = false;
236
237 r = kvm_arch_vcpu_init(vcpu);
238 if (r < 0)
239 goto fail_free_run;
240 return 0;
241
242 fail_free_run:
243 free_page((unsigned long)vcpu->run);
244 fail:
245 return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251 put_pid(vcpu->pid);
252 kvm_arch_vcpu_uninit(vcpu);
253 free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260 return container_of(mn, struct kvm, mmu_notifier);
261 }
262
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 struct mm_struct *mm,
265 unsigned long address)
266 {
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush, idx;
269
270 /*
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
278 * before returning.
279 *
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
282 *
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
287 */
288 idx = srcu_read_lock(&kvm->srcu);
289 spin_lock(&kvm->mmu_lock);
290
291 kvm->mmu_notifier_seq++;
292 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 /* we've to flush the tlb before the pages can be freed */
294 if (need_tlb_flush)
295 kvm_flush_remote_tlbs(kvm);
296
297 spin_unlock(&kvm->mmu_lock);
298
299 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
300
301 srcu_read_unlock(&kvm->srcu, idx);
302 }
303
304 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
305 struct mm_struct *mm,
306 unsigned long address,
307 pte_t pte)
308 {
309 struct kvm *kvm = mmu_notifier_to_kvm(mn);
310 int idx;
311
312 idx = srcu_read_lock(&kvm->srcu);
313 spin_lock(&kvm->mmu_lock);
314 kvm->mmu_notifier_seq++;
315 kvm_set_spte_hva(kvm, address, pte);
316 spin_unlock(&kvm->mmu_lock);
317 srcu_read_unlock(&kvm->srcu, idx);
318 }
319
320 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
321 struct mm_struct *mm,
322 unsigned long start,
323 unsigned long end)
324 {
325 struct kvm *kvm = mmu_notifier_to_kvm(mn);
326 int need_tlb_flush = 0, idx;
327
328 idx = srcu_read_lock(&kvm->srcu);
329 spin_lock(&kvm->mmu_lock);
330 /*
331 * The count increase must become visible at unlock time as no
332 * spte can be established without taking the mmu_lock and
333 * count is also read inside the mmu_lock critical section.
334 */
335 kvm->mmu_notifier_count++;
336 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
341
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 smp_wmb();
361 /*
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long start,
375 unsigned long end)
376 {
377 struct kvm *kvm = mmu_notifier_to_kvm(mn);
378 int young, idx;
379
380 idx = srcu_read_lock(&kvm->srcu);
381 spin_lock(&kvm->mmu_lock);
382
383 young = kvm_age_hva(kvm, start, end);
384 if (young)
385 kvm_flush_remote_tlbs(kvm);
386
387 spin_unlock(&kvm->mmu_lock);
388 srcu_read_unlock(&kvm->srcu, idx);
389
390 return young;
391 }
392
393 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403 /*
404 * Even though we do not flush TLB, this will still adversely
405 * affect performance on pre-Haswell Intel EPT, where there is
406 * no EPT Access Bit to clear so that we have to tear down EPT
407 * tables instead. If we find this unacceptable, we can always
408 * add a parameter to kvm_age_hva so that it effectively doesn't
409 * do anything on clear_young.
410 *
411 * Also note that currently we never issue secondary TLB flushes
412 * from clear_young, leaving this job up to the regular system
413 * cadence. If we find this inaccurate, we might come up with a
414 * more sophisticated heuristic later.
415 */
416 young = kvm_age_hva(kvm, start, end);
417 spin_unlock(&kvm->mmu_lock);
418 srcu_read_unlock(&kvm->srcu, idx);
419
420 return young;
421 }
422
423 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
424 struct mm_struct *mm,
425 unsigned long address)
426 {
427 struct kvm *kvm = mmu_notifier_to_kvm(mn);
428 int young, idx;
429
430 idx = srcu_read_lock(&kvm->srcu);
431 spin_lock(&kvm->mmu_lock);
432 young = kvm_test_age_hva(kvm, address);
433 spin_unlock(&kvm->mmu_lock);
434 srcu_read_unlock(&kvm->srcu, idx);
435
436 return young;
437 }
438
439 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
440 struct mm_struct *mm)
441 {
442 struct kvm *kvm = mmu_notifier_to_kvm(mn);
443 int idx;
444
445 idx = srcu_read_lock(&kvm->srcu);
446 kvm_arch_flush_shadow_all(kvm);
447 srcu_read_unlock(&kvm->srcu, idx);
448 }
449
450 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
451 .invalidate_page = kvm_mmu_notifier_invalidate_page,
452 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
453 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
454 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
455 .clear_young = kvm_mmu_notifier_clear_young,
456 .test_young = kvm_mmu_notifier_test_young,
457 .change_pte = kvm_mmu_notifier_change_pte,
458 .release = kvm_mmu_notifier_release,
459 };
460
461 static int kvm_init_mmu_notifier(struct kvm *kvm)
462 {
463 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
464 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
465 }
466
467 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
468
469 static int kvm_init_mmu_notifier(struct kvm *kvm)
470 {
471 return 0;
472 }
473
474 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
475
476 static struct kvm_memslots *kvm_alloc_memslots(void)
477 {
478 int i;
479 struct kvm_memslots *slots;
480
481 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
482 if (!slots)
483 return NULL;
484
485 /*
486 * Init kvm generation close to the maximum to easily test the
487 * code of handling generation number wrap-around.
488 */
489 slots->generation = -150;
490 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
491 slots->id_to_index[i] = slots->memslots[i].id = i;
492
493 return slots;
494 }
495
496 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
497 {
498 if (!memslot->dirty_bitmap)
499 return;
500
501 kvfree(memslot->dirty_bitmap);
502 memslot->dirty_bitmap = NULL;
503 }
504
505 /*
506 * Free any memory in @free but not in @dont.
507 */
508 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
509 struct kvm_memory_slot *dont)
510 {
511 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
512 kvm_destroy_dirty_bitmap(free);
513
514 kvm_arch_free_memslot(kvm, free, dont);
515
516 free->npages = 0;
517 }
518
519 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
520 {
521 struct kvm_memory_slot *memslot;
522
523 if (!slots)
524 return;
525
526 kvm_for_each_memslot(memslot, slots)
527 kvm_free_memslot(kvm, memslot, NULL);
528
529 kvfree(slots);
530 }
531
532 static struct kvm *kvm_create_vm(unsigned long type)
533 {
534 int r, i;
535 struct kvm *kvm = kvm_arch_alloc_vm();
536
537 if (!kvm)
538 return ERR_PTR(-ENOMEM);
539
540 r = kvm_arch_init_vm(kvm, type);
541 if (r)
542 goto out_err_no_disable;
543
544 r = hardware_enable_all();
545 if (r)
546 goto out_err_no_disable;
547
548 #ifdef CONFIG_HAVE_KVM_IRQFD
549 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
550 #endif
551
552 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
553
554 r = -ENOMEM;
555 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
556 kvm->memslots[i] = kvm_alloc_memslots();
557 if (!kvm->memslots[i])
558 goto out_err_no_srcu;
559 }
560
561 if (init_srcu_struct(&kvm->srcu))
562 goto out_err_no_srcu;
563 if (init_srcu_struct(&kvm->irq_srcu))
564 goto out_err_no_irq_srcu;
565 for (i = 0; i < KVM_NR_BUSES; i++) {
566 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
567 GFP_KERNEL);
568 if (!kvm->buses[i])
569 goto out_err;
570 }
571
572 spin_lock_init(&kvm->mmu_lock);
573 kvm->mm = current->mm;
574 atomic_inc(&kvm->mm->mm_count);
575 kvm_eventfd_init(kvm);
576 mutex_init(&kvm->lock);
577 mutex_init(&kvm->irq_lock);
578 mutex_init(&kvm->slots_lock);
579 atomic_set(&kvm->users_count, 1);
580 INIT_LIST_HEAD(&kvm->devices);
581
582 r = kvm_init_mmu_notifier(kvm);
583 if (r)
584 goto out_err;
585
586 spin_lock(&kvm_lock);
587 list_add(&kvm->vm_list, &vm_list);
588 spin_unlock(&kvm_lock);
589
590 preempt_notifier_inc();
591
592 return kvm;
593
594 out_err:
595 cleanup_srcu_struct(&kvm->irq_srcu);
596 out_err_no_irq_srcu:
597 cleanup_srcu_struct(&kvm->srcu);
598 out_err_no_srcu:
599 hardware_disable_all();
600 out_err_no_disable:
601 for (i = 0; i < KVM_NR_BUSES; i++)
602 kfree(kvm->buses[i]);
603 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
604 kvm_free_memslots(kvm, kvm->memslots[i]);
605 kvm_arch_free_vm(kvm);
606 return ERR_PTR(r);
607 }
608
609 /*
610 * Avoid using vmalloc for a small buffer.
611 * Should not be used when the size is statically known.
612 */
613 void *kvm_kvzalloc(unsigned long size)
614 {
615 if (size > PAGE_SIZE)
616 return vzalloc(size);
617 else
618 return kzalloc(size, GFP_KERNEL);
619 }
620
621 static void kvm_destroy_devices(struct kvm *kvm)
622 {
623 struct list_head *node, *tmp;
624
625 list_for_each_safe(node, tmp, &kvm->devices) {
626 struct kvm_device *dev =
627 list_entry(node, struct kvm_device, vm_node);
628
629 list_del(node);
630 dev->ops->destroy(dev);
631 }
632 }
633
634 static void kvm_destroy_vm(struct kvm *kvm)
635 {
636 int i;
637 struct mm_struct *mm = kvm->mm;
638
639 kvm_arch_sync_events(kvm);
640 spin_lock(&kvm_lock);
641 list_del(&kvm->vm_list);
642 spin_unlock(&kvm_lock);
643 kvm_free_irq_routing(kvm);
644 for (i = 0; i < KVM_NR_BUSES; i++)
645 kvm_io_bus_destroy(kvm->buses[i]);
646 kvm_coalesced_mmio_free(kvm);
647 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
648 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
649 #else
650 kvm_arch_flush_shadow_all(kvm);
651 #endif
652 kvm_arch_destroy_vm(kvm);
653 kvm_destroy_devices(kvm);
654 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
655 kvm_free_memslots(kvm, kvm->memslots[i]);
656 cleanup_srcu_struct(&kvm->irq_srcu);
657 cleanup_srcu_struct(&kvm->srcu);
658 kvm_arch_free_vm(kvm);
659 preempt_notifier_dec();
660 hardware_disable_all();
661 mmdrop(mm);
662 }
663
664 void kvm_get_kvm(struct kvm *kvm)
665 {
666 atomic_inc(&kvm->users_count);
667 }
668 EXPORT_SYMBOL_GPL(kvm_get_kvm);
669
670 void kvm_put_kvm(struct kvm *kvm)
671 {
672 if (atomic_dec_and_test(&kvm->users_count))
673 kvm_destroy_vm(kvm);
674 }
675 EXPORT_SYMBOL_GPL(kvm_put_kvm);
676
677
678 static int kvm_vm_release(struct inode *inode, struct file *filp)
679 {
680 struct kvm *kvm = filp->private_data;
681
682 kvm_irqfd_release(kvm);
683
684 kvm_put_kvm(kvm);
685 return 0;
686 }
687
688 /*
689 * Allocation size is twice as large as the actual dirty bitmap size.
690 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
691 */
692 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
693 {
694 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
695
696 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
697 if (!memslot->dirty_bitmap)
698 return -ENOMEM;
699
700 return 0;
701 }
702
703 /*
704 * Insert memslot and re-sort memslots based on their GFN,
705 * so binary search could be used to lookup GFN.
706 * Sorting algorithm takes advantage of having initially
707 * sorted array and known changed memslot position.
708 */
709 static void update_memslots(struct kvm_memslots *slots,
710 struct kvm_memory_slot *new)
711 {
712 int id = new->id;
713 int i = slots->id_to_index[id];
714 struct kvm_memory_slot *mslots = slots->memslots;
715
716 WARN_ON(mslots[i].id != id);
717 if (!new->npages) {
718 WARN_ON(!mslots[i].npages);
719 if (mslots[i].npages)
720 slots->used_slots--;
721 } else {
722 if (!mslots[i].npages)
723 slots->used_slots++;
724 }
725
726 while (i < KVM_MEM_SLOTS_NUM - 1 &&
727 new->base_gfn <= mslots[i + 1].base_gfn) {
728 if (!mslots[i + 1].npages)
729 break;
730 mslots[i] = mslots[i + 1];
731 slots->id_to_index[mslots[i].id] = i;
732 i++;
733 }
734
735 /*
736 * The ">=" is needed when creating a slot with base_gfn == 0,
737 * so that it moves before all those with base_gfn == npages == 0.
738 *
739 * On the other hand, if new->npages is zero, the above loop has
740 * already left i pointing to the beginning of the empty part of
741 * mslots, and the ">=" would move the hole backwards in this
742 * case---which is wrong. So skip the loop when deleting a slot.
743 */
744 if (new->npages) {
745 while (i > 0 &&
746 new->base_gfn >= mslots[i - 1].base_gfn) {
747 mslots[i] = mslots[i - 1];
748 slots->id_to_index[mslots[i].id] = i;
749 i--;
750 }
751 } else
752 WARN_ON_ONCE(i != slots->used_slots);
753
754 mslots[i] = *new;
755 slots->id_to_index[mslots[i].id] = i;
756 }
757
758 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
759 {
760 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
761
762 #ifdef __KVM_HAVE_READONLY_MEM
763 valid_flags |= KVM_MEM_READONLY;
764 #endif
765
766 if (mem->flags & ~valid_flags)
767 return -EINVAL;
768
769 return 0;
770 }
771
772 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
773 int as_id, struct kvm_memslots *slots)
774 {
775 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
776
777 /*
778 * Set the low bit in the generation, which disables SPTE caching
779 * until the end of synchronize_srcu_expedited.
780 */
781 WARN_ON(old_memslots->generation & 1);
782 slots->generation = old_memslots->generation + 1;
783
784 rcu_assign_pointer(kvm->memslots[as_id], slots);
785 synchronize_srcu_expedited(&kvm->srcu);
786
787 /*
788 * Increment the new memslot generation a second time. This prevents
789 * vm exits that race with memslot updates from caching a memslot
790 * generation that will (potentially) be valid forever.
791 */
792 slots->generation++;
793
794 kvm_arch_memslots_updated(kvm, slots);
795
796 return old_memslots;
797 }
798
799 /*
800 * Allocate some memory and give it an address in the guest physical address
801 * space.
802 *
803 * Discontiguous memory is allowed, mostly for framebuffers.
804 *
805 * Must be called holding kvm->slots_lock for write.
806 */
807 int __kvm_set_memory_region(struct kvm *kvm,
808 const struct kvm_userspace_memory_region *mem)
809 {
810 int r;
811 gfn_t base_gfn;
812 unsigned long npages;
813 struct kvm_memory_slot *slot;
814 struct kvm_memory_slot old, new;
815 struct kvm_memslots *slots = NULL, *old_memslots;
816 int as_id, id;
817 enum kvm_mr_change change;
818
819 r = check_memory_region_flags(mem);
820 if (r)
821 goto out;
822
823 r = -EINVAL;
824 as_id = mem->slot >> 16;
825 id = (u16)mem->slot;
826
827 /* General sanity checks */
828 if (mem->memory_size & (PAGE_SIZE - 1))
829 goto out;
830 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
831 goto out;
832 /* We can read the guest memory with __xxx_user() later on. */
833 if ((id < KVM_USER_MEM_SLOTS) &&
834 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
835 !access_ok(VERIFY_WRITE,
836 (void __user *)(unsigned long)mem->userspace_addr,
837 mem->memory_size)))
838 goto out;
839 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
840 goto out;
841 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
842 goto out;
843
844 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
845 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
846 npages = mem->memory_size >> PAGE_SHIFT;
847
848 if (npages > KVM_MEM_MAX_NR_PAGES)
849 goto out;
850
851 new = old = *slot;
852
853 new.id = id;
854 new.base_gfn = base_gfn;
855 new.npages = npages;
856 new.flags = mem->flags;
857
858 if (npages) {
859 if (!old.npages)
860 change = KVM_MR_CREATE;
861 else { /* Modify an existing slot. */
862 if ((mem->userspace_addr != old.userspace_addr) ||
863 (npages != old.npages) ||
864 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
865 goto out;
866
867 if (base_gfn != old.base_gfn)
868 change = KVM_MR_MOVE;
869 else if (new.flags != old.flags)
870 change = KVM_MR_FLAGS_ONLY;
871 else { /* Nothing to change. */
872 r = 0;
873 goto out;
874 }
875 }
876 } else {
877 if (!old.npages)
878 goto out;
879
880 change = KVM_MR_DELETE;
881 new.base_gfn = 0;
882 new.flags = 0;
883 }
884
885 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
886 /* Check for overlaps */
887 r = -EEXIST;
888 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
889 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
890 (slot->id == id))
891 continue;
892 if (!((base_gfn + npages <= slot->base_gfn) ||
893 (base_gfn >= slot->base_gfn + slot->npages)))
894 goto out;
895 }
896 }
897
898 /* Free page dirty bitmap if unneeded */
899 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
900 new.dirty_bitmap = NULL;
901
902 r = -ENOMEM;
903 if (change == KVM_MR_CREATE) {
904 new.userspace_addr = mem->userspace_addr;
905
906 if (kvm_arch_create_memslot(kvm, &new, npages))
907 goto out_free;
908 }
909
910 /* Allocate page dirty bitmap if needed */
911 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
912 if (kvm_create_dirty_bitmap(&new) < 0)
913 goto out_free;
914 }
915
916 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
917 if (!slots)
918 goto out_free;
919 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
920
921 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
922 slot = id_to_memslot(slots, id);
923 slot->flags |= KVM_MEMSLOT_INVALID;
924
925 old_memslots = install_new_memslots(kvm, as_id, slots);
926
927 /* slot was deleted or moved, clear iommu mapping */
928 kvm_iommu_unmap_pages(kvm, &old);
929 /* From this point no new shadow pages pointing to a deleted,
930 * or moved, memslot will be created.
931 *
932 * validation of sp->gfn happens in:
933 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
934 * - kvm_is_visible_gfn (mmu_check_roots)
935 */
936 kvm_arch_flush_shadow_memslot(kvm, slot);
937
938 /*
939 * We can re-use the old_memslots from above, the only difference
940 * from the currently installed memslots is the invalid flag. This
941 * will get overwritten by update_memslots anyway.
942 */
943 slots = old_memslots;
944 }
945
946 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
947 if (r)
948 goto out_slots;
949
950 /* actual memory is freed via old in kvm_free_memslot below */
951 if (change == KVM_MR_DELETE) {
952 new.dirty_bitmap = NULL;
953 memset(&new.arch, 0, sizeof(new.arch));
954 }
955
956 update_memslots(slots, &new);
957 old_memslots = install_new_memslots(kvm, as_id, slots);
958
959 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
960
961 kvm_free_memslot(kvm, &old, &new);
962 kvfree(old_memslots);
963
964 /*
965 * IOMMU mapping: New slots need to be mapped. Old slots need to be
966 * un-mapped and re-mapped if their base changes. Since base change
967 * unmapping is handled above with slot deletion, mapping alone is
968 * needed here. Anything else the iommu might care about for existing
969 * slots (size changes, userspace addr changes and read-only flag
970 * changes) is disallowed above, so any other attribute changes getting
971 * here can be skipped.
972 */
973 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
974 r = kvm_iommu_map_pages(kvm, &new);
975 return r;
976 }
977
978 return 0;
979
980 out_slots:
981 kvfree(slots);
982 out_free:
983 kvm_free_memslot(kvm, &new, &old);
984 out:
985 return r;
986 }
987 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
988
989 int kvm_set_memory_region(struct kvm *kvm,
990 const struct kvm_userspace_memory_region *mem)
991 {
992 int r;
993
994 mutex_lock(&kvm->slots_lock);
995 r = __kvm_set_memory_region(kvm, mem);
996 mutex_unlock(&kvm->slots_lock);
997 return r;
998 }
999 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1000
1001 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1002 struct kvm_userspace_memory_region *mem)
1003 {
1004 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1005 return -EINVAL;
1006
1007 return kvm_set_memory_region(kvm, mem);
1008 }
1009
1010 int kvm_get_dirty_log(struct kvm *kvm,
1011 struct kvm_dirty_log *log, int *is_dirty)
1012 {
1013 struct kvm_memslots *slots;
1014 struct kvm_memory_slot *memslot;
1015 int r, i, as_id, id;
1016 unsigned long n;
1017 unsigned long any = 0;
1018
1019 r = -EINVAL;
1020 as_id = log->slot >> 16;
1021 id = (u16)log->slot;
1022 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1023 goto out;
1024
1025 slots = __kvm_memslots(kvm, as_id);
1026 memslot = id_to_memslot(slots, id);
1027 r = -ENOENT;
1028 if (!memslot->dirty_bitmap)
1029 goto out;
1030
1031 n = kvm_dirty_bitmap_bytes(memslot);
1032
1033 for (i = 0; !any && i < n/sizeof(long); ++i)
1034 any = memslot->dirty_bitmap[i];
1035
1036 r = -EFAULT;
1037 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1038 goto out;
1039
1040 if (any)
1041 *is_dirty = 1;
1042
1043 r = 0;
1044 out:
1045 return r;
1046 }
1047 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1048
1049 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1050 /**
1051 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1052 * are dirty write protect them for next write.
1053 * @kvm: pointer to kvm instance
1054 * @log: slot id and address to which we copy the log
1055 * @is_dirty: flag set if any page is dirty
1056 *
1057 * We need to keep it in mind that VCPU threads can write to the bitmap
1058 * concurrently. So, to avoid losing track of dirty pages we keep the
1059 * following order:
1060 *
1061 * 1. Take a snapshot of the bit and clear it if needed.
1062 * 2. Write protect the corresponding page.
1063 * 3. Copy the snapshot to the userspace.
1064 * 4. Upon return caller flushes TLB's if needed.
1065 *
1066 * Between 2 and 4, the guest may write to the page using the remaining TLB
1067 * entry. This is not a problem because the page is reported dirty using
1068 * the snapshot taken before and step 4 ensures that writes done after
1069 * exiting to userspace will be logged for the next call.
1070 *
1071 */
1072 int kvm_get_dirty_log_protect(struct kvm *kvm,
1073 struct kvm_dirty_log *log, bool *is_dirty)
1074 {
1075 struct kvm_memslots *slots;
1076 struct kvm_memory_slot *memslot;
1077 int r, i, as_id, id;
1078 unsigned long n;
1079 unsigned long *dirty_bitmap;
1080 unsigned long *dirty_bitmap_buffer;
1081
1082 r = -EINVAL;
1083 as_id = log->slot >> 16;
1084 id = (u16)log->slot;
1085 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1086 goto out;
1087
1088 slots = __kvm_memslots(kvm, as_id);
1089 memslot = id_to_memslot(slots, id);
1090
1091 dirty_bitmap = memslot->dirty_bitmap;
1092 r = -ENOENT;
1093 if (!dirty_bitmap)
1094 goto out;
1095
1096 n = kvm_dirty_bitmap_bytes(memslot);
1097
1098 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1099 memset(dirty_bitmap_buffer, 0, n);
1100
1101 spin_lock(&kvm->mmu_lock);
1102 *is_dirty = false;
1103 for (i = 0; i < n / sizeof(long); i++) {
1104 unsigned long mask;
1105 gfn_t offset;
1106
1107 if (!dirty_bitmap[i])
1108 continue;
1109
1110 *is_dirty = true;
1111
1112 mask = xchg(&dirty_bitmap[i], 0);
1113 dirty_bitmap_buffer[i] = mask;
1114
1115 if (mask) {
1116 offset = i * BITS_PER_LONG;
1117 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1118 offset, mask);
1119 }
1120 }
1121
1122 spin_unlock(&kvm->mmu_lock);
1123
1124 r = -EFAULT;
1125 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1126 goto out;
1127
1128 r = 0;
1129 out:
1130 return r;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1133 #endif
1134
1135 bool kvm_largepages_enabled(void)
1136 {
1137 return largepages_enabled;
1138 }
1139
1140 void kvm_disable_largepages(void)
1141 {
1142 largepages_enabled = false;
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1145
1146 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1147 {
1148 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1149 }
1150 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1151
1152 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1153 {
1154 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1155 }
1156
1157 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1158 {
1159 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1160
1161 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1162 memslot->flags & KVM_MEMSLOT_INVALID)
1163 return false;
1164
1165 return true;
1166 }
1167 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1168
1169 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1170 {
1171 struct vm_area_struct *vma;
1172 unsigned long addr, size;
1173
1174 size = PAGE_SIZE;
1175
1176 addr = gfn_to_hva(kvm, gfn);
1177 if (kvm_is_error_hva(addr))
1178 return PAGE_SIZE;
1179
1180 down_read(&current->mm->mmap_sem);
1181 vma = find_vma(current->mm, addr);
1182 if (!vma)
1183 goto out;
1184
1185 size = vma_kernel_pagesize(vma);
1186
1187 out:
1188 up_read(&current->mm->mmap_sem);
1189
1190 return size;
1191 }
1192
1193 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1194 {
1195 return slot->flags & KVM_MEM_READONLY;
1196 }
1197
1198 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1199 gfn_t *nr_pages, bool write)
1200 {
1201 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1202 return KVM_HVA_ERR_BAD;
1203
1204 if (memslot_is_readonly(slot) && write)
1205 return KVM_HVA_ERR_RO_BAD;
1206
1207 if (nr_pages)
1208 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1209
1210 return __gfn_to_hva_memslot(slot, gfn);
1211 }
1212
1213 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1214 gfn_t *nr_pages)
1215 {
1216 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1217 }
1218
1219 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1220 gfn_t gfn)
1221 {
1222 return gfn_to_hva_many(slot, gfn, NULL);
1223 }
1224 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1225
1226 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1227 {
1228 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1229 }
1230 EXPORT_SYMBOL_GPL(gfn_to_hva);
1231
1232 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1233 {
1234 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1237
1238 /*
1239 * If writable is set to false, the hva returned by this function is only
1240 * allowed to be read.
1241 */
1242 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1243 gfn_t gfn, bool *writable)
1244 {
1245 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1246
1247 if (!kvm_is_error_hva(hva) && writable)
1248 *writable = !memslot_is_readonly(slot);
1249
1250 return hva;
1251 }
1252
1253 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1254 {
1255 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1256
1257 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1258 }
1259
1260 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1261 {
1262 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1263
1264 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1265 }
1266
1267 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1268 unsigned long start, int write, struct page **page)
1269 {
1270 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1271
1272 if (write)
1273 flags |= FOLL_WRITE;
1274
1275 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1276 }
1277
1278 static inline int check_user_page_hwpoison(unsigned long addr)
1279 {
1280 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1281
1282 rc = __get_user_pages(current, current->mm, addr, 1,
1283 flags, NULL, NULL, NULL);
1284 return rc == -EHWPOISON;
1285 }
1286
1287 /*
1288 * The atomic path to get the writable pfn which will be stored in @pfn,
1289 * true indicates success, otherwise false is returned.
1290 */
1291 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1292 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1293 {
1294 struct page *page[1];
1295 int npages;
1296
1297 if (!(async || atomic))
1298 return false;
1299
1300 /*
1301 * Fast pin a writable pfn only if it is a write fault request
1302 * or the caller allows to map a writable pfn for a read fault
1303 * request.
1304 */
1305 if (!(write_fault || writable))
1306 return false;
1307
1308 npages = __get_user_pages_fast(addr, 1, 1, page);
1309 if (npages == 1) {
1310 *pfn = page_to_pfn(page[0]);
1311
1312 if (writable)
1313 *writable = true;
1314 return true;
1315 }
1316
1317 return false;
1318 }
1319
1320 /*
1321 * The slow path to get the pfn of the specified host virtual address,
1322 * 1 indicates success, -errno is returned if error is detected.
1323 */
1324 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1325 bool *writable, kvm_pfn_t *pfn)
1326 {
1327 struct page *page[1];
1328 int npages = 0;
1329
1330 might_sleep();
1331
1332 if (writable)
1333 *writable = write_fault;
1334
1335 if (async) {
1336 down_read(&current->mm->mmap_sem);
1337 npages = get_user_page_nowait(current, current->mm,
1338 addr, write_fault, page);
1339 up_read(&current->mm->mmap_sem);
1340 } else
1341 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1342 write_fault, 0, page,
1343 FOLL_TOUCH|FOLL_HWPOISON);
1344 if (npages != 1)
1345 return npages;
1346
1347 /* map read fault as writable if possible */
1348 if (unlikely(!write_fault) && writable) {
1349 struct page *wpage[1];
1350
1351 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1352 if (npages == 1) {
1353 *writable = true;
1354 put_page(page[0]);
1355 page[0] = wpage[0];
1356 }
1357
1358 npages = 1;
1359 }
1360 *pfn = page_to_pfn(page[0]);
1361 return npages;
1362 }
1363
1364 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1365 {
1366 if (unlikely(!(vma->vm_flags & VM_READ)))
1367 return false;
1368
1369 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1370 return false;
1371
1372 return true;
1373 }
1374
1375 /*
1376 * Pin guest page in memory and return its pfn.
1377 * @addr: host virtual address which maps memory to the guest
1378 * @atomic: whether this function can sleep
1379 * @async: whether this function need to wait IO complete if the
1380 * host page is not in the memory
1381 * @write_fault: whether we should get a writable host page
1382 * @writable: whether it allows to map a writable host page for !@write_fault
1383 *
1384 * The function will map a writable host page for these two cases:
1385 * 1): @write_fault = true
1386 * 2): @write_fault = false && @writable, @writable will tell the caller
1387 * whether the mapping is writable.
1388 */
1389 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1390 bool write_fault, bool *writable)
1391 {
1392 struct vm_area_struct *vma;
1393 kvm_pfn_t pfn = 0;
1394 int npages;
1395
1396 /* we can do it either atomically or asynchronously, not both */
1397 BUG_ON(atomic && async);
1398
1399 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1400 return pfn;
1401
1402 if (atomic)
1403 return KVM_PFN_ERR_FAULT;
1404
1405 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1406 if (npages == 1)
1407 return pfn;
1408
1409 down_read(&current->mm->mmap_sem);
1410 if (npages == -EHWPOISON ||
1411 (!async && check_user_page_hwpoison(addr))) {
1412 pfn = KVM_PFN_ERR_HWPOISON;
1413 goto exit;
1414 }
1415
1416 vma = find_vma_intersection(current->mm, addr, addr + 1);
1417
1418 if (vma == NULL)
1419 pfn = KVM_PFN_ERR_FAULT;
1420 else if ((vma->vm_flags & VM_PFNMAP)) {
1421 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1422 vma->vm_pgoff;
1423 BUG_ON(!kvm_is_reserved_pfn(pfn));
1424 } else {
1425 if (async && vma_is_valid(vma, write_fault))
1426 *async = true;
1427 pfn = KVM_PFN_ERR_FAULT;
1428 }
1429 exit:
1430 up_read(&current->mm->mmap_sem);
1431 return pfn;
1432 }
1433
1434 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1435 bool atomic, bool *async, bool write_fault,
1436 bool *writable)
1437 {
1438 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1439
1440 if (addr == KVM_HVA_ERR_RO_BAD)
1441 return KVM_PFN_ERR_RO_FAULT;
1442
1443 if (kvm_is_error_hva(addr))
1444 return KVM_PFN_NOSLOT;
1445
1446 /* Do not map writable pfn in the readonly memslot. */
1447 if (writable && memslot_is_readonly(slot)) {
1448 *writable = false;
1449 writable = NULL;
1450 }
1451
1452 return hva_to_pfn(addr, atomic, async, write_fault,
1453 writable);
1454 }
1455 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1456
1457 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1458 bool *writable)
1459 {
1460 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1461 write_fault, writable);
1462 }
1463 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1464
1465 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1466 {
1467 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1468 }
1469 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1470
1471 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1472 {
1473 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1474 }
1475 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1476
1477 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1478 {
1479 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1480 }
1481 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1482
1483 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1484 {
1485 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1488
1489 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1490 {
1491 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1492 }
1493 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1494
1495 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1496 {
1497 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1500
1501 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1502 struct page **pages, int nr_pages)
1503 {
1504 unsigned long addr;
1505 gfn_t entry;
1506
1507 addr = gfn_to_hva_many(slot, gfn, &entry);
1508 if (kvm_is_error_hva(addr))
1509 return -1;
1510
1511 if (entry < nr_pages)
1512 return 0;
1513
1514 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1515 }
1516 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1517
1518 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1519 {
1520 if (is_error_noslot_pfn(pfn))
1521 return KVM_ERR_PTR_BAD_PAGE;
1522
1523 if (kvm_is_reserved_pfn(pfn)) {
1524 WARN_ON(1);
1525 return KVM_ERR_PTR_BAD_PAGE;
1526 }
1527
1528 return pfn_to_page(pfn);
1529 }
1530
1531 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1532 {
1533 kvm_pfn_t pfn;
1534
1535 pfn = gfn_to_pfn(kvm, gfn);
1536
1537 return kvm_pfn_to_page(pfn);
1538 }
1539 EXPORT_SYMBOL_GPL(gfn_to_page);
1540
1541 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1542 {
1543 kvm_pfn_t pfn;
1544
1545 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1546
1547 return kvm_pfn_to_page(pfn);
1548 }
1549 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1550
1551 void kvm_release_page_clean(struct page *page)
1552 {
1553 WARN_ON(is_error_page(page));
1554
1555 kvm_release_pfn_clean(page_to_pfn(page));
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1558
1559 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1560 {
1561 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1562 put_page(pfn_to_page(pfn));
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1565
1566 void kvm_release_page_dirty(struct page *page)
1567 {
1568 WARN_ON(is_error_page(page));
1569
1570 kvm_release_pfn_dirty(page_to_pfn(page));
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1573
1574 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1575 {
1576 kvm_set_pfn_dirty(pfn);
1577 kvm_release_pfn_clean(pfn);
1578 }
1579
1580 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1581 {
1582 if (!kvm_is_reserved_pfn(pfn)) {
1583 struct page *page = pfn_to_page(pfn);
1584
1585 if (!PageReserved(page))
1586 SetPageDirty(page);
1587 }
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1590
1591 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1592 {
1593 if (!kvm_is_reserved_pfn(pfn))
1594 mark_page_accessed(pfn_to_page(pfn));
1595 }
1596 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1597
1598 void kvm_get_pfn(kvm_pfn_t pfn)
1599 {
1600 if (!kvm_is_reserved_pfn(pfn))
1601 get_page(pfn_to_page(pfn));
1602 }
1603 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1604
1605 static int next_segment(unsigned long len, int offset)
1606 {
1607 if (len > PAGE_SIZE - offset)
1608 return PAGE_SIZE - offset;
1609 else
1610 return len;
1611 }
1612
1613 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1614 void *data, int offset, int len)
1615 {
1616 int r;
1617 unsigned long addr;
1618
1619 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1620 if (kvm_is_error_hva(addr))
1621 return -EFAULT;
1622 r = __copy_from_user(data, (void __user *)addr + offset, len);
1623 if (r)
1624 return -EFAULT;
1625 return 0;
1626 }
1627
1628 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1629 int len)
1630 {
1631 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1632
1633 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1636
1637 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1638 int offset, int len)
1639 {
1640 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1641
1642 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1645
1646 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1647 {
1648 gfn_t gfn = gpa >> PAGE_SHIFT;
1649 int seg;
1650 int offset = offset_in_page(gpa);
1651 int ret;
1652
1653 while ((seg = next_segment(len, offset)) != 0) {
1654 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1655 if (ret < 0)
1656 return ret;
1657 offset = 0;
1658 len -= seg;
1659 data += seg;
1660 ++gfn;
1661 }
1662 return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_read_guest);
1665
1666 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1667 {
1668 gfn_t gfn = gpa >> PAGE_SHIFT;
1669 int seg;
1670 int offset = offset_in_page(gpa);
1671 int ret;
1672
1673 while ((seg = next_segment(len, offset)) != 0) {
1674 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1675 if (ret < 0)
1676 return ret;
1677 offset = 0;
1678 len -= seg;
1679 data += seg;
1680 ++gfn;
1681 }
1682 return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1685
1686 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1687 void *data, int offset, unsigned long len)
1688 {
1689 int r;
1690 unsigned long addr;
1691
1692 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1693 if (kvm_is_error_hva(addr))
1694 return -EFAULT;
1695 pagefault_disable();
1696 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1697 pagefault_enable();
1698 if (r)
1699 return -EFAULT;
1700 return 0;
1701 }
1702
1703 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1704 unsigned long len)
1705 {
1706 gfn_t gfn = gpa >> PAGE_SHIFT;
1707 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1708 int offset = offset_in_page(gpa);
1709
1710 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1713
1714 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1715 void *data, unsigned long len)
1716 {
1717 gfn_t gfn = gpa >> PAGE_SHIFT;
1718 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1719 int offset = offset_in_page(gpa);
1720
1721 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1724
1725 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1726 const void *data, int offset, int len)
1727 {
1728 int r;
1729 unsigned long addr;
1730
1731 addr = gfn_to_hva_memslot(memslot, gfn);
1732 if (kvm_is_error_hva(addr))
1733 return -EFAULT;
1734 r = __copy_to_user((void __user *)addr + offset, data, len);
1735 if (r)
1736 return -EFAULT;
1737 mark_page_dirty_in_slot(memslot, gfn);
1738 return 0;
1739 }
1740
1741 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1742 const void *data, int offset, int len)
1743 {
1744 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1745
1746 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1749
1750 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1751 const void *data, int offset, int len)
1752 {
1753 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1754
1755 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1758
1759 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1760 unsigned long len)
1761 {
1762 gfn_t gfn = gpa >> PAGE_SHIFT;
1763 int seg;
1764 int offset = offset_in_page(gpa);
1765 int ret;
1766
1767 while ((seg = next_segment(len, offset)) != 0) {
1768 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1769 if (ret < 0)
1770 return ret;
1771 offset = 0;
1772 len -= seg;
1773 data += seg;
1774 ++gfn;
1775 }
1776 return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_write_guest);
1779
1780 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1781 unsigned long len)
1782 {
1783 gfn_t gfn = gpa >> PAGE_SHIFT;
1784 int seg;
1785 int offset = offset_in_page(gpa);
1786 int ret;
1787
1788 while ((seg = next_segment(len, offset)) != 0) {
1789 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1790 if (ret < 0)
1791 return ret;
1792 offset = 0;
1793 len -= seg;
1794 data += seg;
1795 ++gfn;
1796 }
1797 return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1800
1801 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1802 gpa_t gpa, unsigned long len)
1803 {
1804 struct kvm_memslots *slots = kvm_memslots(kvm);
1805 int offset = offset_in_page(gpa);
1806 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1807 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1808 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1809 gfn_t nr_pages_avail;
1810
1811 ghc->gpa = gpa;
1812 ghc->generation = slots->generation;
1813 ghc->len = len;
1814 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1815 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1816 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1817 ghc->hva += offset;
1818 } else {
1819 /*
1820 * If the requested region crosses two memslots, we still
1821 * verify that the entire region is valid here.
1822 */
1823 while (start_gfn <= end_gfn) {
1824 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1825 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1826 &nr_pages_avail);
1827 if (kvm_is_error_hva(ghc->hva))
1828 return -EFAULT;
1829 start_gfn += nr_pages_avail;
1830 }
1831 /* Use the slow path for cross page reads and writes. */
1832 ghc->memslot = NULL;
1833 }
1834 return 0;
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1837
1838 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1839 void *data, unsigned long len)
1840 {
1841 struct kvm_memslots *slots = kvm_memslots(kvm);
1842 int r;
1843
1844 BUG_ON(len > ghc->len);
1845
1846 if (slots->generation != ghc->generation)
1847 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1848
1849 if (unlikely(!ghc->memslot))
1850 return kvm_write_guest(kvm, ghc->gpa, data, len);
1851
1852 if (kvm_is_error_hva(ghc->hva))
1853 return -EFAULT;
1854
1855 r = __copy_to_user((void __user *)ghc->hva, data, len);
1856 if (r)
1857 return -EFAULT;
1858 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1859
1860 return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1863
1864 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1865 void *data, unsigned long len)
1866 {
1867 struct kvm_memslots *slots = kvm_memslots(kvm);
1868 int r;
1869
1870 BUG_ON(len > ghc->len);
1871
1872 if (slots->generation != ghc->generation)
1873 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1874
1875 if (unlikely(!ghc->memslot))
1876 return kvm_read_guest(kvm, ghc->gpa, data, len);
1877
1878 if (kvm_is_error_hva(ghc->hva))
1879 return -EFAULT;
1880
1881 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1882 if (r)
1883 return -EFAULT;
1884
1885 return 0;
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1888
1889 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1890 {
1891 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1892
1893 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1894 }
1895 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1896
1897 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1898 {
1899 gfn_t gfn = gpa >> PAGE_SHIFT;
1900 int seg;
1901 int offset = offset_in_page(gpa);
1902 int ret;
1903
1904 while ((seg = next_segment(len, offset)) != 0) {
1905 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1906 if (ret < 0)
1907 return ret;
1908 offset = 0;
1909 len -= seg;
1910 ++gfn;
1911 }
1912 return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1915
1916 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1917 gfn_t gfn)
1918 {
1919 if (memslot && memslot->dirty_bitmap) {
1920 unsigned long rel_gfn = gfn - memslot->base_gfn;
1921
1922 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1923 }
1924 }
1925
1926 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1927 {
1928 struct kvm_memory_slot *memslot;
1929
1930 memslot = gfn_to_memslot(kvm, gfn);
1931 mark_page_dirty_in_slot(memslot, gfn);
1932 }
1933 EXPORT_SYMBOL_GPL(mark_page_dirty);
1934
1935 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1936 {
1937 struct kvm_memory_slot *memslot;
1938
1939 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1940 mark_page_dirty_in_slot(memslot, gfn);
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1943
1944 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1945 {
1946 int old, val;
1947
1948 old = val = vcpu->halt_poll_ns;
1949 /* 10us base */
1950 if (val == 0 && halt_poll_ns_grow)
1951 val = 10000;
1952 else
1953 val *= halt_poll_ns_grow;
1954
1955 vcpu->halt_poll_ns = val;
1956 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1957 }
1958
1959 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1960 {
1961 int old, val;
1962
1963 old = val = vcpu->halt_poll_ns;
1964 if (halt_poll_ns_shrink == 0)
1965 val = 0;
1966 else
1967 val /= halt_poll_ns_shrink;
1968
1969 vcpu->halt_poll_ns = val;
1970 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1971 }
1972
1973 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1974 {
1975 if (kvm_arch_vcpu_runnable(vcpu)) {
1976 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1977 return -EINTR;
1978 }
1979 if (kvm_cpu_has_pending_timer(vcpu))
1980 return -EINTR;
1981 if (signal_pending(current))
1982 return -EINTR;
1983
1984 return 0;
1985 }
1986
1987 /*
1988 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1989 */
1990 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1991 {
1992 ktime_t start, cur;
1993 DEFINE_WAIT(wait);
1994 bool waited = false;
1995 u64 block_ns;
1996
1997 start = cur = ktime_get();
1998 if (vcpu->halt_poll_ns) {
1999 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2000
2001 ++vcpu->stat.halt_attempted_poll;
2002 do {
2003 /*
2004 * This sets KVM_REQ_UNHALT if an interrupt
2005 * arrives.
2006 */
2007 if (kvm_vcpu_check_block(vcpu) < 0) {
2008 ++vcpu->stat.halt_successful_poll;
2009 goto out;
2010 }
2011 cur = ktime_get();
2012 } while (single_task_running() && ktime_before(cur, stop));
2013 }
2014
2015 kvm_arch_vcpu_blocking(vcpu);
2016
2017 for (;;) {
2018 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2019
2020 if (kvm_vcpu_check_block(vcpu) < 0)
2021 break;
2022
2023 waited = true;
2024 schedule();
2025 }
2026
2027 finish_wait(&vcpu->wq, &wait);
2028 cur = ktime_get();
2029
2030 kvm_arch_vcpu_unblocking(vcpu);
2031 out:
2032 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2033
2034 if (halt_poll_ns) {
2035 if (block_ns <= vcpu->halt_poll_ns)
2036 ;
2037 /* we had a long block, shrink polling */
2038 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2039 shrink_halt_poll_ns(vcpu);
2040 /* we had a short halt and our poll time is too small */
2041 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2042 block_ns < halt_poll_ns)
2043 grow_halt_poll_ns(vcpu);
2044 } else
2045 vcpu->halt_poll_ns = 0;
2046
2047 trace_kvm_vcpu_wakeup(block_ns, waited);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2050
2051 #ifndef CONFIG_S390
2052 /*
2053 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2054 */
2055 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2056 {
2057 int me;
2058 int cpu = vcpu->cpu;
2059 wait_queue_head_t *wqp;
2060
2061 wqp = kvm_arch_vcpu_wq(vcpu);
2062 if (waitqueue_active(wqp)) {
2063 wake_up_interruptible(wqp);
2064 ++vcpu->stat.halt_wakeup;
2065 }
2066
2067 me = get_cpu();
2068 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2069 if (kvm_arch_vcpu_should_kick(vcpu))
2070 smp_send_reschedule(cpu);
2071 put_cpu();
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2074 #endif /* !CONFIG_S390 */
2075
2076 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2077 {
2078 struct pid *pid;
2079 struct task_struct *task = NULL;
2080 int ret = 0;
2081
2082 rcu_read_lock();
2083 pid = rcu_dereference(target->pid);
2084 if (pid)
2085 task = get_pid_task(pid, PIDTYPE_PID);
2086 rcu_read_unlock();
2087 if (!task)
2088 return ret;
2089 ret = yield_to(task, 1);
2090 put_task_struct(task);
2091
2092 return ret;
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2095
2096 /*
2097 * Helper that checks whether a VCPU is eligible for directed yield.
2098 * Most eligible candidate to yield is decided by following heuristics:
2099 *
2100 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2101 * (preempted lock holder), indicated by @in_spin_loop.
2102 * Set at the beiginning and cleared at the end of interception/PLE handler.
2103 *
2104 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2105 * chance last time (mostly it has become eligible now since we have probably
2106 * yielded to lockholder in last iteration. This is done by toggling
2107 * @dy_eligible each time a VCPU checked for eligibility.)
2108 *
2109 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2110 * to preempted lock-holder could result in wrong VCPU selection and CPU
2111 * burning. Giving priority for a potential lock-holder increases lock
2112 * progress.
2113 *
2114 * Since algorithm is based on heuristics, accessing another VCPU data without
2115 * locking does not harm. It may result in trying to yield to same VCPU, fail
2116 * and continue with next VCPU and so on.
2117 */
2118 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2119 {
2120 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2121 bool eligible;
2122
2123 eligible = !vcpu->spin_loop.in_spin_loop ||
2124 vcpu->spin_loop.dy_eligible;
2125
2126 if (vcpu->spin_loop.in_spin_loop)
2127 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2128
2129 return eligible;
2130 #else
2131 return true;
2132 #endif
2133 }
2134
2135 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2136 {
2137 struct kvm *kvm = me->kvm;
2138 struct kvm_vcpu *vcpu;
2139 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2140 int yielded = 0;
2141 int try = 3;
2142 int pass;
2143 int i;
2144
2145 kvm_vcpu_set_in_spin_loop(me, true);
2146 /*
2147 * We boost the priority of a VCPU that is runnable but not
2148 * currently running, because it got preempted by something
2149 * else and called schedule in __vcpu_run. Hopefully that
2150 * VCPU is holding the lock that we need and will release it.
2151 * We approximate round-robin by starting at the last boosted VCPU.
2152 */
2153 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2154 kvm_for_each_vcpu(i, vcpu, kvm) {
2155 if (!pass && i <= last_boosted_vcpu) {
2156 i = last_boosted_vcpu;
2157 continue;
2158 } else if (pass && i > last_boosted_vcpu)
2159 break;
2160 if (!ACCESS_ONCE(vcpu->preempted))
2161 continue;
2162 if (vcpu == me)
2163 continue;
2164 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2165 continue;
2166 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2167 continue;
2168
2169 yielded = kvm_vcpu_yield_to(vcpu);
2170 if (yielded > 0) {
2171 kvm->last_boosted_vcpu = i;
2172 break;
2173 } else if (yielded < 0) {
2174 try--;
2175 if (!try)
2176 break;
2177 }
2178 }
2179 }
2180 kvm_vcpu_set_in_spin_loop(me, false);
2181
2182 /* Ensure vcpu is not eligible during next spinloop */
2183 kvm_vcpu_set_dy_eligible(me, false);
2184 }
2185 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2186
2187 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2188 {
2189 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2190 struct page *page;
2191
2192 if (vmf->pgoff == 0)
2193 page = virt_to_page(vcpu->run);
2194 #ifdef CONFIG_X86
2195 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2196 page = virt_to_page(vcpu->arch.pio_data);
2197 #endif
2198 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2199 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2200 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2201 #endif
2202 else
2203 return kvm_arch_vcpu_fault(vcpu, vmf);
2204 get_page(page);
2205 vmf->page = page;
2206 return 0;
2207 }
2208
2209 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2210 .fault = kvm_vcpu_fault,
2211 };
2212
2213 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2214 {
2215 vma->vm_ops = &kvm_vcpu_vm_ops;
2216 return 0;
2217 }
2218
2219 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2220 {
2221 struct kvm_vcpu *vcpu = filp->private_data;
2222
2223 kvm_put_kvm(vcpu->kvm);
2224 return 0;
2225 }
2226
2227 static struct file_operations kvm_vcpu_fops = {
2228 .release = kvm_vcpu_release,
2229 .unlocked_ioctl = kvm_vcpu_ioctl,
2230 #ifdef CONFIG_KVM_COMPAT
2231 .compat_ioctl = kvm_vcpu_compat_ioctl,
2232 #endif
2233 .mmap = kvm_vcpu_mmap,
2234 .llseek = noop_llseek,
2235 };
2236
2237 /*
2238 * Allocates an inode for the vcpu.
2239 */
2240 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2241 {
2242 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2243 }
2244
2245 /*
2246 * Creates some virtual cpus. Good luck creating more than one.
2247 */
2248 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2249 {
2250 int r;
2251 struct kvm_vcpu *vcpu;
2252
2253 if (id >= KVM_MAX_VCPUS)
2254 return -EINVAL;
2255
2256 vcpu = kvm_arch_vcpu_create(kvm, id);
2257 if (IS_ERR(vcpu))
2258 return PTR_ERR(vcpu);
2259
2260 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2261
2262 r = kvm_arch_vcpu_setup(vcpu);
2263 if (r)
2264 goto vcpu_destroy;
2265
2266 mutex_lock(&kvm->lock);
2267 if (!kvm_vcpu_compatible(vcpu)) {
2268 r = -EINVAL;
2269 goto unlock_vcpu_destroy;
2270 }
2271 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2272 r = -EINVAL;
2273 goto unlock_vcpu_destroy;
2274 }
2275 if (kvm_get_vcpu_by_id(kvm, id)) {
2276 r = -EEXIST;
2277 goto unlock_vcpu_destroy;
2278 }
2279
2280 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2281
2282 /* Now it's all set up, let userspace reach it */
2283 kvm_get_kvm(kvm);
2284 r = create_vcpu_fd(vcpu);
2285 if (r < 0) {
2286 kvm_put_kvm(kvm);
2287 goto unlock_vcpu_destroy;
2288 }
2289
2290 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2291
2292 /*
2293 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2294 * before kvm->online_vcpu's incremented value.
2295 */
2296 smp_wmb();
2297 atomic_inc(&kvm->online_vcpus);
2298
2299 mutex_unlock(&kvm->lock);
2300 kvm_arch_vcpu_postcreate(vcpu);
2301 return r;
2302
2303 unlock_vcpu_destroy:
2304 mutex_unlock(&kvm->lock);
2305 vcpu_destroy:
2306 kvm_arch_vcpu_destroy(vcpu);
2307 return r;
2308 }
2309
2310 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2311 {
2312 if (sigset) {
2313 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2314 vcpu->sigset_active = 1;
2315 vcpu->sigset = *sigset;
2316 } else
2317 vcpu->sigset_active = 0;
2318 return 0;
2319 }
2320
2321 static long kvm_vcpu_ioctl(struct file *filp,
2322 unsigned int ioctl, unsigned long arg)
2323 {
2324 struct kvm_vcpu *vcpu = filp->private_data;
2325 void __user *argp = (void __user *)arg;
2326 int r;
2327 struct kvm_fpu *fpu = NULL;
2328 struct kvm_sregs *kvm_sregs = NULL;
2329
2330 if (vcpu->kvm->mm != current->mm)
2331 return -EIO;
2332
2333 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2334 return -EINVAL;
2335
2336 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2337 /*
2338 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2339 * so vcpu_load() would break it.
2340 */
2341 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2342 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2343 #endif
2344
2345
2346 r = vcpu_load(vcpu);
2347 if (r)
2348 return r;
2349 switch (ioctl) {
2350 case KVM_RUN:
2351 r = -EINVAL;
2352 if (arg)
2353 goto out;
2354 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2355 /* The thread running this VCPU changed. */
2356 struct pid *oldpid = vcpu->pid;
2357 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2358
2359 rcu_assign_pointer(vcpu->pid, newpid);
2360 if (oldpid)
2361 synchronize_rcu();
2362 put_pid(oldpid);
2363 }
2364 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2365 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2366 break;
2367 case KVM_GET_REGS: {
2368 struct kvm_regs *kvm_regs;
2369
2370 r = -ENOMEM;
2371 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2372 if (!kvm_regs)
2373 goto out;
2374 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2375 if (r)
2376 goto out_free1;
2377 r = -EFAULT;
2378 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2379 goto out_free1;
2380 r = 0;
2381 out_free1:
2382 kfree(kvm_regs);
2383 break;
2384 }
2385 case KVM_SET_REGS: {
2386 struct kvm_regs *kvm_regs;
2387
2388 r = -ENOMEM;
2389 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2390 if (IS_ERR(kvm_regs)) {
2391 r = PTR_ERR(kvm_regs);
2392 goto out;
2393 }
2394 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2395 kfree(kvm_regs);
2396 break;
2397 }
2398 case KVM_GET_SREGS: {
2399 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2400 r = -ENOMEM;
2401 if (!kvm_sregs)
2402 goto out;
2403 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2404 if (r)
2405 goto out;
2406 r = -EFAULT;
2407 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2408 goto out;
2409 r = 0;
2410 break;
2411 }
2412 case KVM_SET_SREGS: {
2413 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2414 if (IS_ERR(kvm_sregs)) {
2415 r = PTR_ERR(kvm_sregs);
2416 kvm_sregs = NULL;
2417 goto out;
2418 }
2419 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2420 break;
2421 }
2422 case KVM_GET_MP_STATE: {
2423 struct kvm_mp_state mp_state;
2424
2425 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2426 if (r)
2427 goto out;
2428 r = -EFAULT;
2429 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2430 goto out;
2431 r = 0;
2432 break;
2433 }
2434 case KVM_SET_MP_STATE: {
2435 struct kvm_mp_state mp_state;
2436
2437 r = -EFAULT;
2438 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2439 goto out;
2440 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2441 break;
2442 }
2443 case KVM_TRANSLATE: {
2444 struct kvm_translation tr;
2445
2446 r = -EFAULT;
2447 if (copy_from_user(&tr, argp, sizeof(tr)))
2448 goto out;
2449 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2450 if (r)
2451 goto out;
2452 r = -EFAULT;
2453 if (copy_to_user(argp, &tr, sizeof(tr)))
2454 goto out;
2455 r = 0;
2456 break;
2457 }
2458 case KVM_SET_GUEST_DEBUG: {
2459 struct kvm_guest_debug dbg;
2460
2461 r = -EFAULT;
2462 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2463 goto out;
2464 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2465 break;
2466 }
2467 case KVM_SET_SIGNAL_MASK: {
2468 struct kvm_signal_mask __user *sigmask_arg = argp;
2469 struct kvm_signal_mask kvm_sigmask;
2470 sigset_t sigset, *p;
2471
2472 p = NULL;
2473 if (argp) {
2474 r = -EFAULT;
2475 if (copy_from_user(&kvm_sigmask, argp,
2476 sizeof(kvm_sigmask)))
2477 goto out;
2478 r = -EINVAL;
2479 if (kvm_sigmask.len != sizeof(sigset))
2480 goto out;
2481 r = -EFAULT;
2482 if (copy_from_user(&sigset, sigmask_arg->sigset,
2483 sizeof(sigset)))
2484 goto out;
2485 p = &sigset;
2486 }
2487 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2488 break;
2489 }
2490 case KVM_GET_FPU: {
2491 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2492 r = -ENOMEM;
2493 if (!fpu)
2494 goto out;
2495 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2496 if (r)
2497 goto out;
2498 r = -EFAULT;
2499 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2500 goto out;
2501 r = 0;
2502 break;
2503 }
2504 case KVM_SET_FPU: {
2505 fpu = memdup_user(argp, sizeof(*fpu));
2506 if (IS_ERR(fpu)) {
2507 r = PTR_ERR(fpu);
2508 fpu = NULL;
2509 goto out;
2510 }
2511 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2512 break;
2513 }
2514 default:
2515 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2516 }
2517 out:
2518 vcpu_put(vcpu);
2519 kfree(fpu);
2520 kfree(kvm_sregs);
2521 return r;
2522 }
2523
2524 #ifdef CONFIG_KVM_COMPAT
2525 static long kvm_vcpu_compat_ioctl(struct file *filp,
2526 unsigned int ioctl, unsigned long arg)
2527 {
2528 struct kvm_vcpu *vcpu = filp->private_data;
2529 void __user *argp = compat_ptr(arg);
2530 int r;
2531
2532 if (vcpu->kvm->mm != current->mm)
2533 return -EIO;
2534
2535 switch (ioctl) {
2536 case KVM_SET_SIGNAL_MASK: {
2537 struct kvm_signal_mask __user *sigmask_arg = argp;
2538 struct kvm_signal_mask kvm_sigmask;
2539 compat_sigset_t csigset;
2540 sigset_t sigset;
2541
2542 if (argp) {
2543 r = -EFAULT;
2544 if (copy_from_user(&kvm_sigmask, argp,
2545 sizeof(kvm_sigmask)))
2546 goto out;
2547 r = -EINVAL;
2548 if (kvm_sigmask.len != sizeof(csigset))
2549 goto out;
2550 r = -EFAULT;
2551 if (copy_from_user(&csigset, sigmask_arg->sigset,
2552 sizeof(csigset)))
2553 goto out;
2554 sigset_from_compat(&sigset, &csigset);
2555 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2556 } else
2557 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2558 break;
2559 }
2560 default:
2561 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2562 }
2563
2564 out:
2565 return r;
2566 }
2567 #endif
2568
2569 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2570 int (*accessor)(struct kvm_device *dev,
2571 struct kvm_device_attr *attr),
2572 unsigned long arg)
2573 {
2574 struct kvm_device_attr attr;
2575
2576 if (!accessor)
2577 return -EPERM;
2578
2579 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2580 return -EFAULT;
2581
2582 return accessor(dev, &attr);
2583 }
2584
2585 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2586 unsigned long arg)
2587 {
2588 struct kvm_device *dev = filp->private_data;
2589
2590 switch (ioctl) {
2591 case KVM_SET_DEVICE_ATTR:
2592 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2593 case KVM_GET_DEVICE_ATTR:
2594 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2595 case KVM_HAS_DEVICE_ATTR:
2596 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2597 default:
2598 if (dev->ops->ioctl)
2599 return dev->ops->ioctl(dev, ioctl, arg);
2600
2601 return -ENOTTY;
2602 }
2603 }
2604
2605 static int kvm_device_release(struct inode *inode, struct file *filp)
2606 {
2607 struct kvm_device *dev = filp->private_data;
2608 struct kvm *kvm = dev->kvm;
2609
2610 kvm_put_kvm(kvm);
2611 return 0;
2612 }
2613
2614 static const struct file_operations kvm_device_fops = {
2615 .unlocked_ioctl = kvm_device_ioctl,
2616 #ifdef CONFIG_KVM_COMPAT
2617 .compat_ioctl = kvm_device_ioctl,
2618 #endif
2619 .release = kvm_device_release,
2620 };
2621
2622 struct kvm_device *kvm_device_from_filp(struct file *filp)
2623 {
2624 if (filp->f_op != &kvm_device_fops)
2625 return NULL;
2626
2627 return filp->private_data;
2628 }
2629
2630 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2631 #ifdef CONFIG_KVM_MPIC
2632 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2633 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2634 #endif
2635
2636 #ifdef CONFIG_KVM_XICS
2637 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2638 #endif
2639 };
2640
2641 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2642 {
2643 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2644 return -ENOSPC;
2645
2646 if (kvm_device_ops_table[type] != NULL)
2647 return -EEXIST;
2648
2649 kvm_device_ops_table[type] = ops;
2650 return 0;
2651 }
2652
2653 void kvm_unregister_device_ops(u32 type)
2654 {
2655 if (kvm_device_ops_table[type] != NULL)
2656 kvm_device_ops_table[type] = NULL;
2657 }
2658
2659 static int kvm_ioctl_create_device(struct kvm *kvm,
2660 struct kvm_create_device *cd)
2661 {
2662 struct kvm_device_ops *ops = NULL;
2663 struct kvm_device *dev;
2664 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2665 int ret;
2666
2667 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2668 return -ENODEV;
2669
2670 ops = kvm_device_ops_table[cd->type];
2671 if (ops == NULL)
2672 return -ENODEV;
2673
2674 if (test)
2675 return 0;
2676
2677 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2678 if (!dev)
2679 return -ENOMEM;
2680
2681 dev->ops = ops;
2682 dev->kvm = kvm;
2683
2684 ret = ops->create(dev, cd->type);
2685 if (ret < 0) {
2686 kfree(dev);
2687 return ret;
2688 }
2689
2690 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2691 if (ret < 0) {
2692 ops->destroy(dev);
2693 return ret;
2694 }
2695
2696 list_add(&dev->vm_node, &kvm->devices);
2697 kvm_get_kvm(kvm);
2698 cd->fd = ret;
2699 return 0;
2700 }
2701
2702 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2703 {
2704 switch (arg) {
2705 case KVM_CAP_USER_MEMORY:
2706 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2707 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2708 case KVM_CAP_INTERNAL_ERROR_DATA:
2709 #ifdef CONFIG_HAVE_KVM_MSI
2710 case KVM_CAP_SIGNAL_MSI:
2711 #endif
2712 #ifdef CONFIG_HAVE_KVM_IRQFD
2713 case KVM_CAP_IRQFD:
2714 case KVM_CAP_IRQFD_RESAMPLE:
2715 #endif
2716 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2717 case KVM_CAP_CHECK_EXTENSION_VM:
2718 return 1;
2719 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2720 case KVM_CAP_IRQ_ROUTING:
2721 return KVM_MAX_IRQ_ROUTES;
2722 #endif
2723 #if KVM_ADDRESS_SPACE_NUM > 1
2724 case KVM_CAP_MULTI_ADDRESS_SPACE:
2725 return KVM_ADDRESS_SPACE_NUM;
2726 #endif
2727 default:
2728 break;
2729 }
2730 return kvm_vm_ioctl_check_extension(kvm, arg);
2731 }
2732
2733 static long kvm_vm_ioctl(struct file *filp,
2734 unsigned int ioctl, unsigned long arg)
2735 {
2736 struct kvm *kvm = filp->private_data;
2737 void __user *argp = (void __user *)arg;
2738 int r;
2739
2740 if (kvm->mm != current->mm)
2741 return -EIO;
2742 switch (ioctl) {
2743 case KVM_CREATE_VCPU:
2744 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2745 break;
2746 case KVM_SET_USER_MEMORY_REGION: {
2747 struct kvm_userspace_memory_region kvm_userspace_mem;
2748
2749 r = -EFAULT;
2750 if (copy_from_user(&kvm_userspace_mem, argp,
2751 sizeof(kvm_userspace_mem)))
2752 goto out;
2753
2754 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2755 break;
2756 }
2757 case KVM_GET_DIRTY_LOG: {
2758 struct kvm_dirty_log log;
2759
2760 r = -EFAULT;
2761 if (copy_from_user(&log, argp, sizeof(log)))
2762 goto out;
2763 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2764 break;
2765 }
2766 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2767 case KVM_REGISTER_COALESCED_MMIO: {
2768 struct kvm_coalesced_mmio_zone zone;
2769
2770 r = -EFAULT;
2771 if (copy_from_user(&zone, argp, sizeof(zone)))
2772 goto out;
2773 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2774 break;
2775 }
2776 case KVM_UNREGISTER_COALESCED_MMIO: {
2777 struct kvm_coalesced_mmio_zone zone;
2778
2779 r = -EFAULT;
2780 if (copy_from_user(&zone, argp, sizeof(zone)))
2781 goto out;
2782 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2783 break;
2784 }
2785 #endif
2786 case KVM_IRQFD: {
2787 struct kvm_irqfd data;
2788
2789 r = -EFAULT;
2790 if (copy_from_user(&data, argp, sizeof(data)))
2791 goto out;
2792 r = kvm_irqfd(kvm, &data);
2793 break;
2794 }
2795 case KVM_IOEVENTFD: {
2796 struct kvm_ioeventfd data;
2797
2798 r = -EFAULT;
2799 if (copy_from_user(&data, argp, sizeof(data)))
2800 goto out;
2801 r = kvm_ioeventfd(kvm, &data);
2802 break;
2803 }
2804 #ifdef CONFIG_HAVE_KVM_MSI
2805 case KVM_SIGNAL_MSI: {
2806 struct kvm_msi msi;
2807
2808 r = -EFAULT;
2809 if (copy_from_user(&msi, argp, sizeof(msi)))
2810 goto out;
2811 r = kvm_send_userspace_msi(kvm, &msi);
2812 break;
2813 }
2814 #endif
2815 #ifdef __KVM_HAVE_IRQ_LINE
2816 case KVM_IRQ_LINE_STATUS:
2817 case KVM_IRQ_LINE: {
2818 struct kvm_irq_level irq_event;
2819
2820 r = -EFAULT;
2821 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2822 goto out;
2823
2824 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2825 ioctl == KVM_IRQ_LINE_STATUS);
2826 if (r)
2827 goto out;
2828
2829 r = -EFAULT;
2830 if (ioctl == KVM_IRQ_LINE_STATUS) {
2831 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2832 goto out;
2833 }
2834
2835 r = 0;
2836 break;
2837 }
2838 #endif
2839 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2840 case KVM_SET_GSI_ROUTING: {
2841 struct kvm_irq_routing routing;
2842 struct kvm_irq_routing __user *urouting;
2843 struct kvm_irq_routing_entry *entries;
2844
2845 r = -EFAULT;
2846 if (copy_from_user(&routing, argp, sizeof(routing)))
2847 goto out;
2848 r = -EINVAL;
2849 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2850 goto out;
2851 if (routing.flags)
2852 goto out;
2853 r = -ENOMEM;
2854 entries = vmalloc(routing.nr * sizeof(*entries));
2855 if (!entries)
2856 goto out;
2857 r = -EFAULT;
2858 urouting = argp;
2859 if (copy_from_user(entries, urouting->entries,
2860 routing.nr * sizeof(*entries)))
2861 goto out_free_irq_routing;
2862 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2863 routing.flags);
2864 out_free_irq_routing:
2865 vfree(entries);
2866 break;
2867 }
2868 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2869 case KVM_CREATE_DEVICE: {
2870 struct kvm_create_device cd;
2871
2872 r = -EFAULT;
2873 if (copy_from_user(&cd, argp, sizeof(cd)))
2874 goto out;
2875
2876 r = kvm_ioctl_create_device(kvm, &cd);
2877 if (r)
2878 goto out;
2879
2880 r = -EFAULT;
2881 if (copy_to_user(argp, &cd, sizeof(cd)))
2882 goto out;
2883
2884 r = 0;
2885 break;
2886 }
2887 case KVM_CHECK_EXTENSION:
2888 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2889 break;
2890 default:
2891 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2892 }
2893 out:
2894 return r;
2895 }
2896
2897 #ifdef CONFIG_KVM_COMPAT
2898 struct compat_kvm_dirty_log {
2899 __u32 slot;
2900 __u32 padding1;
2901 union {
2902 compat_uptr_t dirty_bitmap; /* one bit per page */
2903 __u64 padding2;
2904 };
2905 };
2906
2907 static long kvm_vm_compat_ioctl(struct file *filp,
2908 unsigned int ioctl, unsigned long arg)
2909 {
2910 struct kvm *kvm = filp->private_data;
2911 int r;
2912
2913 if (kvm->mm != current->mm)
2914 return -EIO;
2915 switch (ioctl) {
2916 case KVM_GET_DIRTY_LOG: {
2917 struct compat_kvm_dirty_log compat_log;
2918 struct kvm_dirty_log log;
2919
2920 r = -EFAULT;
2921 if (copy_from_user(&compat_log, (void __user *)arg,
2922 sizeof(compat_log)))
2923 goto out;
2924 log.slot = compat_log.slot;
2925 log.padding1 = compat_log.padding1;
2926 log.padding2 = compat_log.padding2;
2927 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2928
2929 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2930 break;
2931 }
2932 default:
2933 r = kvm_vm_ioctl(filp, ioctl, arg);
2934 }
2935
2936 out:
2937 return r;
2938 }
2939 #endif
2940
2941 static struct file_operations kvm_vm_fops = {
2942 .release = kvm_vm_release,
2943 .unlocked_ioctl = kvm_vm_ioctl,
2944 #ifdef CONFIG_KVM_COMPAT
2945 .compat_ioctl = kvm_vm_compat_ioctl,
2946 #endif
2947 .llseek = noop_llseek,
2948 };
2949
2950 static int kvm_dev_ioctl_create_vm(unsigned long type)
2951 {
2952 int r;
2953 struct kvm *kvm;
2954
2955 kvm = kvm_create_vm(type);
2956 if (IS_ERR(kvm))
2957 return PTR_ERR(kvm);
2958 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2959 r = kvm_coalesced_mmio_init(kvm);
2960 if (r < 0) {
2961 kvm_put_kvm(kvm);
2962 return r;
2963 }
2964 #endif
2965 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2966 if (r < 0)
2967 kvm_put_kvm(kvm);
2968
2969 return r;
2970 }
2971
2972 static long kvm_dev_ioctl(struct file *filp,
2973 unsigned int ioctl, unsigned long arg)
2974 {
2975 long r = -EINVAL;
2976
2977 switch (ioctl) {
2978 case KVM_GET_API_VERSION:
2979 if (arg)
2980 goto out;
2981 r = KVM_API_VERSION;
2982 break;
2983 case KVM_CREATE_VM:
2984 r = kvm_dev_ioctl_create_vm(arg);
2985 break;
2986 case KVM_CHECK_EXTENSION:
2987 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2988 break;
2989 case KVM_GET_VCPU_MMAP_SIZE:
2990 if (arg)
2991 goto out;
2992 r = PAGE_SIZE; /* struct kvm_run */
2993 #ifdef CONFIG_X86
2994 r += PAGE_SIZE; /* pio data page */
2995 #endif
2996 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2997 r += PAGE_SIZE; /* coalesced mmio ring page */
2998 #endif
2999 break;
3000 case KVM_TRACE_ENABLE:
3001 case KVM_TRACE_PAUSE:
3002 case KVM_TRACE_DISABLE:
3003 r = -EOPNOTSUPP;
3004 break;
3005 default:
3006 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3007 }
3008 out:
3009 return r;
3010 }
3011
3012 static struct file_operations kvm_chardev_ops = {
3013 .unlocked_ioctl = kvm_dev_ioctl,
3014 .compat_ioctl = kvm_dev_ioctl,
3015 .llseek = noop_llseek,
3016 };
3017
3018 static struct miscdevice kvm_dev = {
3019 KVM_MINOR,
3020 "kvm",
3021 &kvm_chardev_ops,
3022 };
3023
3024 static void hardware_enable_nolock(void *junk)
3025 {
3026 int cpu = raw_smp_processor_id();
3027 int r;
3028
3029 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3030 return;
3031
3032 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3033
3034 r = kvm_arch_hardware_enable();
3035
3036 if (r) {
3037 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3038 atomic_inc(&hardware_enable_failed);
3039 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3040 }
3041 }
3042
3043 static void hardware_enable(void)
3044 {
3045 raw_spin_lock(&kvm_count_lock);
3046 if (kvm_usage_count)
3047 hardware_enable_nolock(NULL);
3048 raw_spin_unlock(&kvm_count_lock);
3049 }
3050
3051 static void hardware_disable_nolock(void *junk)
3052 {
3053 int cpu = raw_smp_processor_id();
3054
3055 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3056 return;
3057 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3058 kvm_arch_hardware_disable();
3059 }
3060
3061 static void hardware_disable(void)
3062 {
3063 raw_spin_lock(&kvm_count_lock);
3064 if (kvm_usage_count)
3065 hardware_disable_nolock(NULL);
3066 raw_spin_unlock(&kvm_count_lock);
3067 }
3068
3069 static void hardware_disable_all_nolock(void)
3070 {
3071 BUG_ON(!kvm_usage_count);
3072
3073 kvm_usage_count--;
3074 if (!kvm_usage_count)
3075 on_each_cpu(hardware_disable_nolock, NULL, 1);
3076 }
3077
3078 static void hardware_disable_all(void)
3079 {
3080 raw_spin_lock(&kvm_count_lock);
3081 hardware_disable_all_nolock();
3082 raw_spin_unlock(&kvm_count_lock);
3083 }
3084
3085 static int hardware_enable_all(void)
3086 {
3087 int r = 0;
3088
3089 raw_spin_lock(&kvm_count_lock);
3090
3091 kvm_usage_count++;
3092 if (kvm_usage_count == 1) {
3093 atomic_set(&hardware_enable_failed, 0);
3094 on_each_cpu(hardware_enable_nolock, NULL, 1);
3095
3096 if (atomic_read(&hardware_enable_failed)) {
3097 hardware_disable_all_nolock();
3098 r = -EBUSY;
3099 }
3100 }
3101
3102 raw_spin_unlock(&kvm_count_lock);
3103
3104 return r;
3105 }
3106
3107 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3108 void *v)
3109 {
3110 val &= ~CPU_TASKS_FROZEN;
3111 switch (val) {
3112 case CPU_DYING:
3113 hardware_disable();
3114 break;
3115 case CPU_STARTING:
3116 hardware_enable();
3117 break;
3118 }
3119 return NOTIFY_OK;
3120 }
3121
3122 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3123 void *v)
3124 {
3125 /*
3126 * Some (well, at least mine) BIOSes hang on reboot if
3127 * in vmx root mode.
3128 *
3129 * And Intel TXT required VMX off for all cpu when system shutdown.
3130 */
3131 pr_info("kvm: exiting hardware virtualization\n");
3132 kvm_rebooting = true;
3133 on_each_cpu(hardware_disable_nolock, NULL, 1);
3134 return NOTIFY_OK;
3135 }
3136
3137 static struct notifier_block kvm_reboot_notifier = {
3138 .notifier_call = kvm_reboot,
3139 .priority = 0,
3140 };
3141
3142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3143 {
3144 int i;
3145
3146 for (i = 0; i < bus->dev_count; i++) {
3147 struct kvm_io_device *pos = bus->range[i].dev;
3148
3149 kvm_iodevice_destructor(pos);
3150 }
3151 kfree(bus);
3152 }
3153
3154 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3155 const struct kvm_io_range *r2)
3156 {
3157 gpa_t addr1 = r1->addr;
3158 gpa_t addr2 = r2->addr;
3159
3160 if (addr1 < addr2)
3161 return -1;
3162
3163 /* If r2->len == 0, match the exact address. If r2->len != 0,
3164 * accept any overlapping write. Any order is acceptable for
3165 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3166 * we process all of them.
3167 */
3168 if (r2->len) {
3169 addr1 += r1->len;
3170 addr2 += r2->len;
3171 }
3172
3173 if (addr1 > addr2)
3174 return 1;
3175
3176 return 0;
3177 }
3178
3179 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3180 {
3181 return kvm_io_bus_cmp(p1, p2);
3182 }
3183
3184 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3185 gpa_t addr, int len)
3186 {
3187 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3188 .addr = addr,
3189 .len = len,
3190 .dev = dev,
3191 };
3192
3193 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3194 kvm_io_bus_sort_cmp, NULL);
3195
3196 return 0;
3197 }
3198
3199 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3200 gpa_t addr, int len)
3201 {
3202 struct kvm_io_range *range, key;
3203 int off;
3204
3205 key = (struct kvm_io_range) {
3206 .addr = addr,
3207 .len = len,
3208 };
3209
3210 range = bsearch(&key, bus->range, bus->dev_count,
3211 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3212 if (range == NULL)
3213 return -ENOENT;
3214
3215 off = range - bus->range;
3216
3217 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3218 off--;
3219
3220 return off;
3221 }
3222
3223 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3224 struct kvm_io_range *range, const void *val)
3225 {
3226 int idx;
3227
3228 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3229 if (idx < 0)
3230 return -EOPNOTSUPP;
3231
3232 while (idx < bus->dev_count &&
3233 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3234 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3235 range->len, val))
3236 return idx;
3237 idx++;
3238 }
3239
3240 return -EOPNOTSUPP;
3241 }
3242
3243 /* kvm_io_bus_write - called under kvm->slots_lock */
3244 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3245 int len, const void *val)
3246 {
3247 struct kvm_io_bus *bus;
3248 struct kvm_io_range range;
3249 int r;
3250
3251 range = (struct kvm_io_range) {
3252 .addr = addr,
3253 .len = len,
3254 };
3255
3256 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3257 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3258 return r < 0 ? r : 0;
3259 }
3260
3261 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3262 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3263 gpa_t addr, int len, const void *val, long cookie)
3264 {
3265 struct kvm_io_bus *bus;
3266 struct kvm_io_range range;
3267
3268 range = (struct kvm_io_range) {
3269 .addr = addr,
3270 .len = len,
3271 };
3272
3273 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3274
3275 /* First try the device referenced by cookie. */
3276 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3277 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3278 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3279 val))
3280 return cookie;
3281
3282 /*
3283 * cookie contained garbage; fall back to search and return the
3284 * correct cookie value.
3285 */
3286 return __kvm_io_bus_write(vcpu, bus, &range, val);
3287 }
3288
3289 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3290 struct kvm_io_range *range, void *val)
3291 {
3292 int idx;
3293
3294 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3295 if (idx < 0)
3296 return -EOPNOTSUPP;
3297
3298 while (idx < bus->dev_count &&
3299 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3300 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3301 range->len, val))
3302 return idx;
3303 idx++;
3304 }
3305
3306 return -EOPNOTSUPP;
3307 }
3308 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3309
3310 /* kvm_io_bus_read - called under kvm->slots_lock */
3311 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3312 int len, void *val)
3313 {
3314 struct kvm_io_bus *bus;
3315 struct kvm_io_range range;
3316 int r;
3317
3318 range = (struct kvm_io_range) {
3319 .addr = addr,
3320 .len = len,
3321 };
3322
3323 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3324 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3325 return r < 0 ? r : 0;
3326 }
3327
3328
3329 /* Caller must hold slots_lock. */
3330 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3331 int len, struct kvm_io_device *dev)
3332 {
3333 struct kvm_io_bus *new_bus, *bus;
3334
3335 bus = kvm->buses[bus_idx];
3336 /* exclude ioeventfd which is limited by maximum fd */
3337 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3338 return -ENOSPC;
3339
3340 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3341 sizeof(struct kvm_io_range)), GFP_KERNEL);
3342 if (!new_bus)
3343 return -ENOMEM;
3344 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3345 sizeof(struct kvm_io_range)));
3346 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3347 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3348 synchronize_srcu_expedited(&kvm->srcu);
3349 kfree(bus);
3350
3351 return 0;
3352 }
3353
3354 /* Caller must hold slots_lock. */
3355 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3356 struct kvm_io_device *dev)
3357 {
3358 int i, r;
3359 struct kvm_io_bus *new_bus, *bus;
3360
3361 bus = kvm->buses[bus_idx];
3362 r = -ENOENT;
3363 for (i = 0; i < bus->dev_count; i++)
3364 if (bus->range[i].dev == dev) {
3365 r = 0;
3366 break;
3367 }
3368
3369 if (r)
3370 return r;
3371
3372 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3373 sizeof(struct kvm_io_range)), GFP_KERNEL);
3374 if (!new_bus)
3375 return -ENOMEM;
3376
3377 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3378 new_bus->dev_count--;
3379 memcpy(new_bus->range + i, bus->range + i + 1,
3380 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3381
3382 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3383 synchronize_srcu_expedited(&kvm->srcu);
3384 kfree(bus);
3385 return r;
3386 }
3387
3388 static struct notifier_block kvm_cpu_notifier = {
3389 .notifier_call = kvm_cpu_hotplug,
3390 };
3391
3392 static int vm_stat_get(void *_offset, u64 *val)
3393 {
3394 unsigned offset = (long)_offset;
3395 struct kvm *kvm;
3396
3397 *val = 0;
3398 spin_lock(&kvm_lock);
3399 list_for_each_entry(kvm, &vm_list, vm_list)
3400 *val += *(u32 *)((void *)kvm + offset);
3401 spin_unlock(&kvm_lock);
3402 return 0;
3403 }
3404
3405 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3406
3407 static int vcpu_stat_get(void *_offset, u64 *val)
3408 {
3409 unsigned offset = (long)_offset;
3410 struct kvm *kvm;
3411 struct kvm_vcpu *vcpu;
3412 int i;
3413
3414 *val = 0;
3415 spin_lock(&kvm_lock);
3416 list_for_each_entry(kvm, &vm_list, vm_list)
3417 kvm_for_each_vcpu(i, vcpu, kvm)
3418 *val += *(u32 *)((void *)vcpu + offset);
3419
3420 spin_unlock(&kvm_lock);
3421 return 0;
3422 }
3423
3424 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3425
3426 static const struct file_operations *stat_fops[] = {
3427 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3428 [KVM_STAT_VM] = &vm_stat_fops,
3429 };
3430
3431 static int kvm_init_debug(void)
3432 {
3433 int r = -EEXIST;
3434 struct kvm_stats_debugfs_item *p;
3435
3436 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3437 if (kvm_debugfs_dir == NULL)
3438 goto out;
3439
3440 for (p = debugfs_entries; p->name; ++p) {
3441 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3442 (void *)(long)p->offset,
3443 stat_fops[p->kind]))
3444 goto out_dir;
3445 }
3446
3447 return 0;
3448
3449 out_dir:
3450 debugfs_remove_recursive(kvm_debugfs_dir);
3451 out:
3452 return r;
3453 }
3454
3455 static int kvm_suspend(void)
3456 {
3457 if (kvm_usage_count)
3458 hardware_disable_nolock(NULL);
3459 return 0;
3460 }
3461
3462 static void kvm_resume(void)
3463 {
3464 if (kvm_usage_count) {
3465 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3466 hardware_enable_nolock(NULL);
3467 }
3468 }
3469
3470 static struct syscore_ops kvm_syscore_ops = {
3471 .suspend = kvm_suspend,
3472 .resume = kvm_resume,
3473 };
3474
3475 static inline
3476 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3477 {
3478 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3479 }
3480
3481 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3482 {
3483 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3484
3485 if (vcpu->preempted)
3486 vcpu->preempted = false;
3487
3488 kvm_arch_sched_in(vcpu, cpu);
3489
3490 kvm_arch_vcpu_load(vcpu, cpu);
3491 }
3492
3493 static void kvm_sched_out(struct preempt_notifier *pn,
3494 struct task_struct *next)
3495 {
3496 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3497
3498 if (current->state == TASK_RUNNING)
3499 vcpu->preempted = true;
3500 kvm_arch_vcpu_put(vcpu);
3501 }
3502
3503 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3504 struct module *module)
3505 {
3506 int r;
3507 int cpu;
3508
3509 r = kvm_arch_init(opaque);
3510 if (r)
3511 goto out_fail;
3512
3513 /*
3514 * kvm_arch_init makes sure there's at most one caller
3515 * for architectures that support multiple implementations,
3516 * like intel and amd on x86.
3517 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3518 * conflicts in case kvm is already setup for another implementation.
3519 */
3520 r = kvm_irqfd_init();
3521 if (r)
3522 goto out_irqfd;
3523
3524 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3525 r = -ENOMEM;
3526 goto out_free_0;
3527 }
3528
3529 r = kvm_arch_hardware_setup();
3530 if (r < 0)
3531 goto out_free_0a;
3532
3533 for_each_online_cpu(cpu) {
3534 smp_call_function_single(cpu,
3535 kvm_arch_check_processor_compat,
3536 &r, 1);
3537 if (r < 0)
3538 goto out_free_1;
3539 }
3540
3541 r = register_cpu_notifier(&kvm_cpu_notifier);
3542 if (r)
3543 goto out_free_2;
3544 register_reboot_notifier(&kvm_reboot_notifier);
3545
3546 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3547 if (!vcpu_align)
3548 vcpu_align = __alignof__(struct kvm_vcpu);
3549 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3550 0, NULL);
3551 if (!kvm_vcpu_cache) {
3552 r = -ENOMEM;
3553 goto out_free_3;
3554 }
3555
3556 r = kvm_async_pf_init();
3557 if (r)
3558 goto out_free;
3559
3560 kvm_chardev_ops.owner = module;
3561 kvm_vm_fops.owner = module;
3562 kvm_vcpu_fops.owner = module;
3563
3564 r = misc_register(&kvm_dev);
3565 if (r) {
3566 pr_err("kvm: misc device register failed\n");
3567 goto out_unreg;
3568 }
3569
3570 register_syscore_ops(&kvm_syscore_ops);
3571
3572 kvm_preempt_ops.sched_in = kvm_sched_in;
3573 kvm_preempt_ops.sched_out = kvm_sched_out;
3574
3575 r = kvm_init_debug();
3576 if (r) {
3577 pr_err("kvm: create debugfs files failed\n");
3578 goto out_undebugfs;
3579 }
3580
3581 r = kvm_vfio_ops_init();
3582 WARN_ON(r);
3583
3584 return 0;
3585
3586 out_undebugfs:
3587 unregister_syscore_ops(&kvm_syscore_ops);
3588 misc_deregister(&kvm_dev);
3589 out_unreg:
3590 kvm_async_pf_deinit();
3591 out_free:
3592 kmem_cache_destroy(kvm_vcpu_cache);
3593 out_free_3:
3594 unregister_reboot_notifier(&kvm_reboot_notifier);
3595 unregister_cpu_notifier(&kvm_cpu_notifier);
3596 out_free_2:
3597 out_free_1:
3598 kvm_arch_hardware_unsetup();
3599 out_free_0a:
3600 free_cpumask_var(cpus_hardware_enabled);
3601 out_free_0:
3602 kvm_irqfd_exit();
3603 out_irqfd:
3604 kvm_arch_exit();
3605 out_fail:
3606 return r;
3607 }
3608 EXPORT_SYMBOL_GPL(kvm_init);
3609
3610 void kvm_exit(void)
3611 {
3612 debugfs_remove_recursive(kvm_debugfs_dir);
3613 misc_deregister(&kvm_dev);
3614 kmem_cache_destroy(kvm_vcpu_cache);
3615 kvm_async_pf_deinit();
3616 unregister_syscore_ops(&kvm_syscore_ops);
3617 unregister_reboot_notifier(&kvm_reboot_notifier);
3618 unregister_cpu_notifier(&kvm_cpu_notifier);
3619 on_each_cpu(hardware_disable_nolock, NULL, 1);
3620 kvm_arch_hardware_unsetup();
3621 kvm_arch_exit();
3622 kvm_irqfd_exit();
3623 free_cpumask_var(cpus_hardware_enabled);
3624 kvm_vfio_ops_exit();
3625 }
3626 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.105565 seconds and 5 git commands to generate.