KVM: reuse memslot in kvm_write_guest_page
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73 * Ordering of locks:
74 *
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76 */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm *kvm,
107 struct kvm_memory_slot *memslot, gfn_t gfn);
108
109 __visible bool kvm_rebooting;
110 EXPORT_SYMBOL_GPL(kvm_rebooting);
111
112 static bool largepages_enabled = true;
113
114 bool kvm_is_reserved_pfn(pfn_t pfn)
115 {
116 if (pfn_valid(pfn))
117 return PageReserved(pfn_to_page(pfn));
118
119 return true;
120 }
121
122 /*
123 * Switches to specified vcpu, until a matching vcpu_put()
124 */
125 int vcpu_load(struct kvm_vcpu *vcpu)
126 {
127 int cpu;
128
129 if (mutex_lock_killable(&vcpu->mutex))
130 return -EINTR;
131 cpu = get_cpu();
132 preempt_notifier_register(&vcpu->preempt_notifier);
133 kvm_arch_vcpu_load(vcpu, cpu);
134 put_cpu();
135 return 0;
136 }
137
138 void vcpu_put(struct kvm_vcpu *vcpu)
139 {
140 preempt_disable();
141 kvm_arch_vcpu_put(vcpu);
142 preempt_notifier_unregister(&vcpu->preempt_notifier);
143 preempt_enable();
144 mutex_unlock(&vcpu->mutex);
145 }
146
147 static void ack_flush(void *_completed)
148 {
149 }
150
151 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
152 {
153 int i, cpu, me;
154 cpumask_var_t cpus;
155 bool called = true;
156 struct kvm_vcpu *vcpu;
157
158 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
159
160 me = get_cpu();
161 kvm_for_each_vcpu(i, vcpu, kvm) {
162 kvm_make_request(req, vcpu);
163 cpu = vcpu->cpu;
164
165 /* Set ->requests bit before we read ->mode */
166 smp_mb();
167
168 if (cpus != NULL && cpu != -1 && cpu != me &&
169 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
170 cpumask_set_cpu(cpu, cpus);
171 }
172 if (unlikely(cpus == NULL))
173 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
174 else if (!cpumask_empty(cpus))
175 smp_call_function_many(cpus, ack_flush, NULL, 1);
176 else
177 called = false;
178 put_cpu();
179 free_cpumask_var(cpus);
180 return called;
181 }
182
183 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
184 void kvm_flush_remote_tlbs(struct kvm *kvm)
185 {
186 long dirty_count = kvm->tlbs_dirty;
187
188 smp_mb();
189 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
190 ++kvm->stat.remote_tlb_flush;
191 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
192 }
193 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
194 #endif
195
196 void kvm_reload_remote_mmus(struct kvm *kvm)
197 {
198 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
199 }
200
201 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
202 {
203 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
204 }
205
206 void kvm_make_scan_ioapic_request(struct kvm *kvm)
207 {
208 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
209 }
210
211 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
212 {
213 struct page *page;
214 int r;
215
216 mutex_init(&vcpu->mutex);
217 vcpu->cpu = -1;
218 vcpu->kvm = kvm;
219 vcpu->vcpu_id = id;
220 vcpu->pid = NULL;
221 init_waitqueue_head(&vcpu->wq);
222 kvm_async_pf_vcpu_init(vcpu);
223
224 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
225 if (!page) {
226 r = -ENOMEM;
227 goto fail;
228 }
229 vcpu->run = page_address(page);
230
231 kvm_vcpu_set_in_spin_loop(vcpu, false);
232 kvm_vcpu_set_dy_eligible(vcpu, false);
233 vcpu->preempted = false;
234
235 r = kvm_arch_vcpu_init(vcpu);
236 if (r < 0)
237 goto fail_free_run;
238 return 0;
239
240 fail_free_run:
241 free_page((unsigned long)vcpu->run);
242 fail:
243 return r;
244 }
245 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
246
247 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
248 {
249 put_pid(vcpu->pid);
250 kvm_arch_vcpu_uninit(vcpu);
251 free_page((unsigned long)vcpu->run);
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
254
255 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
256 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
257 {
258 return container_of(mn, struct kvm, mmu_notifier);
259 }
260
261 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
262 struct mm_struct *mm,
263 unsigned long address)
264 {
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int need_tlb_flush, idx;
267
268 /*
269 * When ->invalidate_page runs, the linux pte has been zapped
270 * already but the page is still allocated until
271 * ->invalidate_page returns. So if we increase the sequence
272 * here the kvm page fault will notice if the spte can't be
273 * established because the page is going to be freed. If
274 * instead the kvm page fault establishes the spte before
275 * ->invalidate_page runs, kvm_unmap_hva will release it
276 * before returning.
277 *
278 * The sequence increase only need to be seen at spin_unlock
279 * time, and not at spin_lock time.
280 *
281 * Increasing the sequence after the spin_unlock would be
282 * unsafe because the kvm page fault could then establish the
283 * pte after kvm_unmap_hva returned, without noticing the page
284 * is going to be freed.
285 */
286 idx = srcu_read_lock(&kvm->srcu);
287 spin_lock(&kvm->mmu_lock);
288
289 kvm->mmu_notifier_seq++;
290 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
291 /* we've to flush the tlb before the pages can be freed */
292 if (need_tlb_flush)
293 kvm_flush_remote_tlbs(kvm);
294
295 spin_unlock(&kvm->mmu_lock);
296
297 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
298
299 srcu_read_unlock(&kvm->srcu, idx);
300 }
301
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
305 pte_t pte)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 int idx;
309
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
316 }
317
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
320 unsigned long start,
321 unsigned long end)
322 {
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
325
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
328 /*
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
332 */
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
337 if (need_tlb_flush)
338 kvm_flush_remote_tlbs(kvm);
339
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 smp_wmb();
359 /*
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
374 {
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 int young, idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380
381 young = kvm_age_hva(kvm, start, end);
382 if (young)
383 kvm_flush_remote_tlbs(kvm);
384
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow_all(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static void kvm_init_memslots_id(struct kvm *kvm)
444 {
445 int i;
446 struct kvm_memslots *slots = kvm->memslots;
447
448 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449 slots->id_to_index[i] = slots->memslots[i].id = i;
450 }
451
452 static struct kvm *kvm_create_vm(unsigned long type)
453 {
454 int r, i;
455 struct kvm *kvm = kvm_arch_alloc_vm();
456
457 if (!kvm)
458 return ERR_PTR(-ENOMEM);
459
460 r = kvm_arch_init_vm(kvm, type);
461 if (r)
462 goto out_err_no_disable;
463
464 r = hardware_enable_all();
465 if (r)
466 goto out_err_no_disable;
467
468 #ifdef CONFIG_HAVE_KVM_IRQFD
469 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471
472 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
473
474 r = -ENOMEM;
475 kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
476 if (!kvm->memslots)
477 goto out_err_no_srcu;
478
479 /*
480 * Init kvm generation close to the maximum to easily test the
481 * code of handling generation number wrap-around.
482 */
483 kvm->memslots->generation = -150;
484
485 kvm_init_memslots_id(kvm);
486 if (init_srcu_struct(&kvm->srcu))
487 goto out_err_no_srcu;
488 if (init_srcu_struct(&kvm->irq_srcu))
489 goto out_err_no_irq_srcu;
490 for (i = 0; i < KVM_NR_BUSES; i++) {
491 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
492 GFP_KERNEL);
493 if (!kvm->buses[i])
494 goto out_err;
495 }
496
497 spin_lock_init(&kvm->mmu_lock);
498 kvm->mm = current->mm;
499 atomic_inc(&kvm->mm->mm_count);
500 kvm_eventfd_init(kvm);
501 mutex_init(&kvm->lock);
502 mutex_init(&kvm->irq_lock);
503 mutex_init(&kvm->slots_lock);
504 atomic_set(&kvm->users_count, 1);
505 INIT_LIST_HEAD(&kvm->devices);
506
507 r = kvm_init_mmu_notifier(kvm);
508 if (r)
509 goto out_err;
510
511 spin_lock(&kvm_lock);
512 list_add(&kvm->vm_list, &vm_list);
513 spin_unlock(&kvm_lock);
514
515 return kvm;
516
517 out_err:
518 cleanup_srcu_struct(&kvm->irq_srcu);
519 out_err_no_irq_srcu:
520 cleanup_srcu_struct(&kvm->srcu);
521 out_err_no_srcu:
522 hardware_disable_all();
523 out_err_no_disable:
524 for (i = 0; i < KVM_NR_BUSES; i++)
525 kfree(kvm->buses[i]);
526 kvfree(kvm->memslots);
527 kvm_arch_free_vm(kvm);
528 return ERR_PTR(r);
529 }
530
531 /*
532 * Avoid using vmalloc for a small buffer.
533 * Should not be used when the size is statically known.
534 */
535 void *kvm_kvzalloc(unsigned long size)
536 {
537 if (size > PAGE_SIZE)
538 return vzalloc(size);
539 else
540 return kzalloc(size, GFP_KERNEL);
541 }
542
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 if (!memslot->dirty_bitmap)
546 return;
547
548 kvfree(memslot->dirty_bitmap);
549 memslot->dirty_bitmap = NULL;
550 }
551
552 /*
553 * Free any memory in @free but not in @dont.
554 */
555 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
556 struct kvm_memory_slot *dont)
557 {
558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 kvm_destroy_dirty_bitmap(free);
560
561 kvm_arch_free_memslot(kvm, free, dont);
562
563 free->npages = 0;
564 }
565
566 static void kvm_free_physmem(struct kvm *kvm)
567 {
568 struct kvm_memslots *slots = kvm->memslots;
569 struct kvm_memory_slot *memslot;
570
571 kvm_for_each_memslot(memslot, slots)
572 kvm_free_physmem_slot(kvm, memslot, NULL);
573
574 kvfree(kvm->memslots);
575 }
576
577 static void kvm_destroy_devices(struct kvm *kvm)
578 {
579 struct list_head *node, *tmp;
580
581 list_for_each_safe(node, tmp, &kvm->devices) {
582 struct kvm_device *dev =
583 list_entry(node, struct kvm_device, vm_node);
584
585 list_del(node);
586 dev->ops->destroy(dev);
587 }
588 }
589
590 static void kvm_destroy_vm(struct kvm *kvm)
591 {
592 int i;
593 struct mm_struct *mm = kvm->mm;
594
595 kvm_arch_sync_events(kvm);
596 spin_lock(&kvm_lock);
597 list_del(&kvm->vm_list);
598 spin_unlock(&kvm_lock);
599 kvm_free_irq_routing(kvm);
600 for (i = 0; i < KVM_NR_BUSES; i++)
601 kvm_io_bus_destroy(kvm->buses[i]);
602 kvm_coalesced_mmio_free(kvm);
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
605 #else
606 kvm_arch_flush_shadow_all(kvm);
607 #endif
608 kvm_arch_destroy_vm(kvm);
609 kvm_destroy_devices(kvm);
610 kvm_free_physmem(kvm);
611 cleanup_srcu_struct(&kvm->irq_srcu);
612 cleanup_srcu_struct(&kvm->srcu);
613 kvm_arch_free_vm(kvm);
614 hardware_disable_all();
615 mmdrop(mm);
616 }
617
618 void kvm_get_kvm(struct kvm *kvm)
619 {
620 atomic_inc(&kvm->users_count);
621 }
622 EXPORT_SYMBOL_GPL(kvm_get_kvm);
623
624 void kvm_put_kvm(struct kvm *kvm)
625 {
626 if (atomic_dec_and_test(&kvm->users_count))
627 kvm_destroy_vm(kvm);
628 }
629 EXPORT_SYMBOL_GPL(kvm_put_kvm);
630
631
632 static int kvm_vm_release(struct inode *inode, struct file *filp)
633 {
634 struct kvm *kvm = filp->private_data;
635
636 kvm_irqfd_release(kvm);
637
638 kvm_put_kvm(kvm);
639 return 0;
640 }
641
642 /*
643 * Allocation size is twice as large as the actual dirty bitmap size.
644 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
645 */
646 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
647 {
648 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
649
650 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
651 if (!memslot->dirty_bitmap)
652 return -ENOMEM;
653
654 return 0;
655 }
656
657 /*
658 * Insert memslot and re-sort memslots based on their GFN,
659 * so binary search could be used to lookup GFN.
660 * Sorting algorithm takes advantage of having initially
661 * sorted array and known changed memslot position.
662 */
663 static void update_memslots(struct kvm_memslots *slots,
664 struct kvm_memory_slot *new)
665 {
666 int id = new->id;
667 int i = slots->id_to_index[id];
668 struct kvm_memory_slot *mslots = slots->memslots;
669
670 WARN_ON(mslots[i].id != id);
671 if (!new->npages) {
672 WARN_ON(!mslots[i].npages);
673 new->base_gfn = 0;
674 new->flags = 0;
675 if (mslots[i].npages)
676 slots->used_slots--;
677 } else {
678 if (!mslots[i].npages)
679 slots->used_slots++;
680 }
681
682 while (i < KVM_MEM_SLOTS_NUM - 1 &&
683 new->base_gfn <= mslots[i + 1].base_gfn) {
684 if (!mslots[i + 1].npages)
685 break;
686 mslots[i] = mslots[i + 1];
687 slots->id_to_index[mslots[i].id] = i;
688 i++;
689 }
690
691 /*
692 * The ">=" is needed when creating a slot with base_gfn == 0,
693 * so that it moves before all those with base_gfn == npages == 0.
694 *
695 * On the other hand, if new->npages is zero, the above loop has
696 * already left i pointing to the beginning of the empty part of
697 * mslots, and the ">=" would move the hole backwards in this
698 * case---which is wrong. So skip the loop when deleting a slot.
699 */
700 if (new->npages) {
701 while (i > 0 &&
702 new->base_gfn >= mslots[i - 1].base_gfn) {
703 mslots[i] = mslots[i - 1];
704 slots->id_to_index[mslots[i].id] = i;
705 i--;
706 }
707 } else
708 WARN_ON_ONCE(i != slots->used_slots);
709
710 mslots[i] = *new;
711 slots->id_to_index[mslots[i].id] = i;
712 }
713
714 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
715 {
716 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
717
718 #ifdef __KVM_HAVE_READONLY_MEM
719 valid_flags |= KVM_MEM_READONLY;
720 #endif
721
722 if (mem->flags & ~valid_flags)
723 return -EINVAL;
724
725 return 0;
726 }
727
728 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
729 struct kvm_memslots *slots)
730 {
731 struct kvm_memslots *old_memslots = kvm->memslots;
732
733 /*
734 * Set the low bit in the generation, which disables SPTE caching
735 * until the end of synchronize_srcu_expedited.
736 */
737 WARN_ON(old_memslots->generation & 1);
738 slots->generation = old_memslots->generation + 1;
739
740 rcu_assign_pointer(kvm->memslots, slots);
741 synchronize_srcu_expedited(&kvm->srcu);
742
743 /*
744 * Increment the new memslot generation a second time. This prevents
745 * vm exits that race with memslot updates from caching a memslot
746 * generation that will (potentially) be valid forever.
747 */
748 slots->generation++;
749
750 kvm_arch_memslots_updated(kvm);
751
752 return old_memslots;
753 }
754
755 /*
756 * Allocate some memory and give it an address in the guest physical address
757 * space.
758 *
759 * Discontiguous memory is allowed, mostly for framebuffers.
760 *
761 * Must be called holding kvm->slots_lock for write.
762 */
763 int __kvm_set_memory_region(struct kvm *kvm,
764 struct kvm_userspace_memory_region *mem)
765 {
766 int r;
767 gfn_t base_gfn;
768 unsigned long npages;
769 struct kvm_memory_slot *slot;
770 struct kvm_memory_slot old, new;
771 struct kvm_memslots *slots = NULL, *old_memslots;
772 enum kvm_mr_change change;
773
774 r = check_memory_region_flags(mem);
775 if (r)
776 goto out;
777
778 r = -EINVAL;
779 /* General sanity checks */
780 if (mem->memory_size & (PAGE_SIZE - 1))
781 goto out;
782 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
783 goto out;
784 /* We can read the guest memory with __xxx_user() later on. */
785 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
786 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
787 !access_ok(VERIFY_WRITE,
788 (void __user *)(unsigned long)mem->userspace_addr,
789 mem->memory_size)))
790 goto out;
791 if (mem->slot >= KVM_MEM_SLOTS_NUM)
792 goto out;
793 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
794 goto out;
795
796 slot = id_to_memslot(kvm->memslots, mem->slot);
797 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
798 npages = mem->memory_size >> PAGE_SHIFT;
799
800 if (npages > KVM_MEM_MAX_NR_PAGES)
801 goto out;
802
803 if (!npages)
804 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
805
806 new = old = *slot;
807
808 new.id = mem->slot;
809 new.base_gfn = base_gfn;
810 new.npages = npages;
811 new.flags = mem->flags;
812
813 if (npages) {
814 if (!old.npages)
815 change = KVM_MR_CREATE;
816 else { /* Modify an existing slot. */
817 if ((mem->userspace_addr != old.userspace_addr) ||
818 (npages != old.npages) ||
819 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
820 goto out;
821
822 if (base_gfn != old.base_gfn)
823 change = KVM_MR_MOVE;
824 else if (new.flags != old.flags)
825 change = KVM_MR_FLAGS_ONLY;
826 else { /* Nothing to change. */
827 r = 0;
828 goto out;
829 }
830 }
831 } else if (old.npages) {
832 change = KVM_MR_DELETE;
833 } else /* Modify a non-existent slot: disallowed. */
834 goto out;
835
836 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
837 /* Check for overlaps */
838 r = -EEXIST;
839 kvm_for_each_memslot(slot, kvm->memslots) {
840 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
841 (slot->id == mem->slot))
842 continue;
843 if (!((base_gfn + npages <= slot->base_gfn) ||
844 (base_gfn >= slot->base_gfn + slot->npages)))
845 goto out;
846 }
847 }
848
849 /* Free page dirty bitmap if unneeded */
850 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
851 new.dirty_bitmap = NULL;
852
853 r = -ENOMEM;
854 if (change == KVM_MR_CREATE) {
855 new.userspace_addr = mem->userspace_addr;
856
857 if (kvm_arch_create_memslot(kvm, &new, npages))
858 goto out_free;
859 }
860
861 /* Allocate page dirty bitmap if needed */
862 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
863 if (kvm_create_dirty_bitmap(&new) < 0)
864 goto out_free;
865 }
866
867 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
868 if (!slots)
869 goto out_free;
870 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
871
872 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
873 slot = id_to_memslot(slots, mem->slot);
874 slot->flags |= KVM_MEMSLOT_INVALID;
875
876 old_memslots = install_new_memslots(kvm, slots);
877
878 /* slot was deleted or moved, clear iommu mapping */
879 kvm_iommu_unmap_pages(kvm, &old);
880 /* From this point no new shadow pages pointing to a deleted,
881 * or moved, memslot will be created.
882 *
883 * validation of sp->gfn happens in:
884 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
885 * - kvm_is_visible_gfn (mmu_check_roots)
886 */
887 kvm_arch_flush_shadow_memslot(kvm, slot);
888
889 /*
890 * We can re-use the old_memslots from above, the only difference
891 * from the currently installed memslots is the invalid flag. This
892 * will get overwritten by update_memslots anyway.
893 */
894 slots = old_memslots;
895 }
896
897 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
898 if (r)
899 goto out_slots;
900
901 /* actual memory is freed via old in kvm_free_physmem_slot below */
902 if (change == KVM_MR_DELETE) {
903 new.dirty_bitmap = NULL;
904 memset(&new.arch, 0, sizeof(new.arch));
905 }
906
907 update_memslots(slots, &new);
908 old_memslots = install_new_memslots(kvm, slots);
909
910 kvm_arch_commit_memory_region(kvm, mem, &old, change);
911
912 kvm_free_physmem_slot(kvm, &old, &new);
913 kvfree(old_memslots);
914
915 /*
916 * IOMMU mapping: New slots need to be mapped. Old slots need to be
917 * un-mapped and re-mapped if their base changes. Since base change
918 * unmapping is handled above with slot deletion, mapping alone is
919 * needed here. Anything else the iommu might care about for existing
920 * slots (size changes, userspace addr changes and read-only flag
921 * changes) is disallowed above, so any other attribute changes getting
922 * here can be skipped.
923 */
924 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
925 r = kvm_iommu_map_pages(kvm, &new);
926 return r;
927 }
928
929 return 0;
930
931 out_slots:
932 kvfree(slots);
933 out_free:
934 kvm_free_physmem_slot(kvm, &new, &old);
935 out:
936 return r;
937 }
938 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
939
940 int kvm_set_memory_region(struct kvm *kvm,
941 struct kvm_userspace_memory_region *mem)
942 {
943 int r;
944
945 mutex_lock(&kvm->slots_lock);
946 r = __kvm_set_memory_region(kvm, mem);
947 mutex_unlock(&kvm->slots_lock);
948 return r;
949 }
950 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
951
952 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
953 struct kvm_userspace_memory_region *mem)
954 {
955 if (mem->slot >= KVM_USER_MEM_SLOTS)
956 return -EINVAL;
957 return kvm_set_memory_region(kvm, mem);
958 }
959
960 int kvm_get_dirty_log(struct kvm *kvm,
961 struct kvm_dirty_log *log, int *is_dirty)
962 {
963 struct kvm_memory_slot *memslot;
964 int r, i;
965 unsigned long n;
966 unsigned long any = 0;
967
968 r = -EINVAL;
969 if (log->slot >= KVM_USER_MEM_SLOTS)
970 goto out;
971
972 memslot = id_to_memslot(kvm->memslots, log->slot);
973 r = -ENOENT;
974 if (!memslot->dirty_bitmap)
975 goto out;
976
977 n = kvm_dirty_bitmap_bytes(memslot);
978
979 for (i = 0; !any && i < n/sizeof(long); ++i)
980 any = memslot->dirty_bitmap[i];
981
982 r = -EFAULT;
983 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
984 goto out;
985
986 if (any)
987 *is_dirty = 1;
988
989 r = 0;
990 out:
991 return r;
992 }
993 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
994
995 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
996 /**
997 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
998 * are dirty write protect them for next write.
999 * @kvm: pointer to kvm instance
1000 * @log: slot id and address to which we copy the log
1001 * @is_dirty: flag set if any page is dirty
1002 *
1003 * We need to keep it in mind that VCPU threads can write to the bitmap
1004 * concurrently. So, to avoid losing track of dirty pages we keep the
1005 * following order:
1006 *
1007 * 1. Take a snapshot of the bit and clear it if needed.
1008 * 2. Write protect the corresponding page.
1009 * 3. Copy the snapshot to the userspace.
1010 * 4. Upon return caller flushes TLB's if needed.
1011 *
1012 * Between 2 and 4, the guest may write to the page using the remaining TLB
1013 * entry. This is not a problem because the page is reported dirty using
1014 * the snapshot taken before and step 4 ensures that writes done after
1015 * exiting to userspace will be logged for the next call.
1016 *
1017 */
1018 int kvm_get_dirty_log_protect(struct kvm *kvm,
1019 struct kvm_dirty_log *log, bool *is_dirty)
1020 {
1021 struct kvm_memory_slot *memslot;
1022 int r, i;
1023 unsigned long n;
1024 unsigned long *dirty_bitmap;
1025 unsigned long *dirty_bitmap_buffer;
1026
1027 r = -EINVAL;
1028 if (log->slot >= KVM_USER_MEM_SLOTS)
1029 goto out;
1030
1031 memslot = id_to_memslot(kvm->memslots, log->slot);
1032
1033 dirty_bitmap = memslot->dirty_bitmap;
1034 r = -ENOENT;
1035 if (!dirty_bitmap)
1036 goto out;
1037
1038 n = kvm_dirty_bitmap_bytes(memslot);
1039
1040 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1041 memset(dirty_bitmap_buffer, 0, n);
1042
1043 spin_lock(&kvm->mmu_lock);
1044 *is_dirty = false;
1045 for (i = 0; i < n / sizeof(long); i++) {
1046 unsigned long mask;
1047 gfn_t offset;
1048
1049 if (!dirty_bitmap[i])
1050 continue;
1051
1052 *is_dirty = true;
1053
1054 mask = xchg(&dirty_bitmap[i], 0);
1055 dirty_bitmap_buffer[i] = mask;
1056
1057 if (mask) {
1058 offset = i * BITS_PER_LONG;
1059 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1060 offset, mask);
1061 }
1062 }
1063
1064 spin_unlock(&kvm->mmu_lock);
1065
1066 r = -EFAULT;
1067 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1068 goto out;
1069
1070 r = 0;
1071 out:
1072 return r;
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1075 #endif
1076
1077 bool kvm_largepages_enabled(void)
1078 {
1079 return largepages_enabled;
1080 }
1081
1082 void kvm_disable_largepages(void)
1083 {
1084 largepages_enabled = false;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1087
1088 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1089 {
1090 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1091 }
1092 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1093
1094 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1095 {
1096 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1097
1098 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1099 memslot->flags & KVM_MEMSLOT_INVALID)
1100 return 0;
1101
1102 return 1;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1105
1106 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1107 {
1108 struct vm_area_struct *vma;
1109 unsigned long addr, size;
1110
1111 size = PAGE_SIZE;
1112
1113 addr = gfn_to_hva(kvm, gfn);
1114 if (kvm_is_error_hva(addr))
1115 return PAGE_SIZE;
1116
1117 down_read(&current->mm->mmap_sem);
1118 vma = find_vma(current->mm, addr);
1119 if (!vma)
1120 goto out;
1121
1122 size = vma_kernel_pagesize(vma);
1123
1124 out:
1125 up_read(&current->mm->mmap_sem);
1126
1127 return size;
1128 }
1129
1130 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1131 {
1132 return slot->flags & KVM_MEM_READONLY;
1133 }
1134
1135 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1136 gfn_t *nr_pages, bool write)
1137 {
1138 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1139 return KVM_HVA_ERR_BAD;
1140
1141 if (memslot_is_readonly(slot) && write)
1142 return KVM_HVA_ERR_RO_BAD;
1143
1144 if (nr_pages)
1145 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1146
1147 return __gfn_to_hva_memslot(slot, gfn);
1148 }
1149
1150 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1151 gfn_t *nr_pages)
1152 {
1153 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1154 }
1155
1156 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1157 gfn_t gfn)
1158 {
1159 return gfn_to_hva_many(slot, gfn, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1162
1163 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1164 {
1165 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1166 }
1167 EXPORT_SYMBOL_GPL(gfn_to_hva);
1168
1169 /*
1170 * If writable is set to false, the hva returned by this function is only
1171 * allowed to be read.
1172 */
1173 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1174 gfn_t gfn, bool *writable)
1175 {
1176 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1177
1178 if (!kvm_is_error_hva(hva) && writable)
1179 *writable = !memslot_is_readonly(slot);
1180
1181 return hva;
1182 }
1183
1184 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1185 {
1186 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1187
1188 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1189 }
1190
1191 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1192 unsigned long start, int write, struct page **page)
1193 {
1194 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1195
1196 if (write)
1197 flags |= FOLL_WRITE;
1198
1199 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1200 }
1201
1202 static inline int check_user_page_hwpoison(unsigned long addr)
1203 {
1204 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1205
1206 rc = __get_user_pages(current, current->mm, addr, 1,
1207 flags, NULL, NULL, NULL);
1208 return rc == -EHWPOISON;
1209 }
1210
1211 /*
1212 * The atomic path to get the writable pfn which will be stored in @pfn,
1213 * true indicates success, otherwise false is returned.
1214 */
1215 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1216 bool write_fault, bool *writable, pfn_t *pfn)
1217 {
1218 struct page *page[1];
1219 int npages;
1220
1221 if (!(async || atomic))
1222 return false;
1223
1224 /*
1225 * Fast pin a writable pfn only if it is a write fault request
1226 * or the caller allows to map a writable pfn for a read fault
1227 * request.
1228 */
1229 if (!(write_fault || writable))
1230 return false;
1231
1232 npages = __get_user_pages_fast(addr, 1, 1, page);
1233 if (npages == 1) {
1234 *pfn = page_to_pfn(page[0]);
1235
1236 if (writable)
1237 *writable = true;
1238 return true;
1239 }
1240
1241 return false;
1242 }
1243
1244 /*
1245 * The slow path to get the pfn of the specified host virtual address,
1246 * 1 indicates success, -errno is returned if error is detected.
1247 */
1248 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1249 bool *writable, pfn_t *pfn)
1250 {
1251 struct page *page[1];
1252 int npages = 0;
1253
1254 might_sleep();
1255
1256 if (writable)
1257 *writable = write_fault;
1258
1259 if (async) {
1260 down_read(&current->mm->mmap_sem);
1261 npages = get_user_page_nowait(current, current->mm,
1262 addr, write_fault, page);
1263 up_read(&current->mm->mmap_sem);
1264 } else
1265 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1266 write_fault, 0, page,
1267 FOLL_TOUCH|FOLL_HWPOISON);
1268 if (npages != 1)
1269 return npages;
1270
1271 /* map read fault as writable if possible */
1272 if (unlikely(!write_fault) && writable) {
1273 struct page *wpage[1];
1274
1275 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1276 if (npages == 1) {
1277 *writable = true;
1278 put_page(page[0]);
1279 page[0] = wpage[0];
1280 }
1281
1282 npages = 1;
1283 }
1284 *pfn = page_to_pfn(page[0]);
1285 return npages;
1286 }
1287
1288 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1289 {
1290 if (unlikely(!(vma->vm_flags & VM_READ)))
1291 return false;
1292
1293 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1294 return false;
1295
1296 return true;
1297 }
1298
1299 /*
1300 * Pin guest page in memory and return its pfn.
1301 * @addr: host virtual address which maps memory to the guest
1302 * @atomic: whether this function can sleep
1303 * @async: whether this function need to wait IO complete if the
1304 * host page is not in the memory
1305 * @write_fault: whether we should get a writable host page
1306 * @writable: whether it allows to map a writable host page for !@write_fault
1307 *
1308 * The function will map a writable host page for these two cases:
1309 * 1): @write_fault = true
1310 * 2): @write_fault = false && @writable, @writable will tell the caller
1311 * whether the mapping is writable.
1312 */
1313 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1314 bool write_fault, bool *writable)
1315 {
1316 struct vm_area_struct *vma;
1317 pfn_t pfn = 0;
1318 int npages;
1319
1320 /* we can do it either atomically or asynchronously, not both */
1321 BUG_ON(atomic && async);
1322
1323 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1324 return pfn;
1325
1326 if (atomic)
1327 return KVM_PFN_ERR_FAULT;
1328
1329 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1330 if (npages == 1)
1331 return pfn;
1332
1333 down_read(&current->mm->mmap_sem);
1334 if (npages == -EHWPOISON ||
1335 (!async && check_user_page_hwpoison(addr))) {
1336 pfn = KVM_PFN_ERR_HWPOISON;
1337 goto exit;
1338 }
1339
1340 vma = find_vma_intersection(current->mm, addr, addr + 1);
1341
1342 if (vma == NULL)
1343 pfn = KVM_PFN_ERR_FAULT;
1344 else if ((vma->vm_flags & VM_PFNMAP)) {
1345 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1346 vma->vm_pgoff;
1347 BUG_ON(!kvm_is_reserved_pfn(pfn));
1348 } else {
1349 if (async && vma_is_valid(vma, write_fault))
1350 *async = true;
1351 pfn = KVM_PFN_ERR_FAULT;
1352 }
1353 exit:
1354 up_read(&current->mm->mmap_sem);
1355 return pfn;
1356 }
1357
1358 static pfn_t
1359 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1360 bool *async, bool write_fault, bool *writable)
1361 {
1362 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1363
1364 if (addr == KVM_HVA_ERR_RO_BAD)
1365 return KVM_PFN_ERR_RO_FAULT;
1366
1367 if (kvm_is_error_hva(addr))
1368 return KVM_PFN_NOSLOT;
1369
1370 /* Do not map writable pfn in the readonly memslot. */
1371 if (writable && memslot_is_readonly(slot)) {
1372 *writable = false;
1373 writable = NULL;
1374 }
1375
1376 return hva_to_pfn(addr, atomic, async, write_fault,
1377 writable);
1378 }
1379
1380 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1381 bool write_fault, bool *writable)
1382 {
1383 struct kvm_memory_slot *slot;
1384
1385 if (async)
1386 *async = false;
1387
1388 slot = gfn_to_memslot(kvm, gfn);
1389
1390 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1391 writable);
1392 }
1393
1394 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1395 {
1396 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1397 }
1398 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1399
1400 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1401 bool write_fault, bool *writable)
1402 {
1403 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1404 }
1405 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1406
1407 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1408 {
1409 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1410 }
1411 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1412
1413 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1414 bool *writable)
1415 {
1416 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1417 }
1418 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1419
1420 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1421 {
1422 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1423 }
1424
1425 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1426 {
1427 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1428 }
1429 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1430
1431 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1432 int nr_pages)
1433 {
1434 unsigned long addr;
1435 gfn_t entry;
1436
1437 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1438 if (kvm_is_error_hva(addr))
1439 return -1;
1440
1441 if (entry < nr_pages)
1442 return 0;
1443
1444 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1445 }
1446 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1447
1448 static struct page *kvm_pfn_to_page(pfn_t pfn)
1449 {
1450 if (is_error_noslot_pfn(pfn))
1451 return KVM_ERR_PTR_BAD_PAGE;
1452
1453 if (kvm_is_reserved_pfn(pfn)) {
1454 WARN_ON(1);
1455 return KVM_ERR_PTR_BAD_PAGE;
1456 }
1457
1458 return pfn_to_page(pfn);
1459 }
1460
1461 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1462 {
1463 pfn_t pfn;
1464
1465 pfn = gfn_to_pfn(kvm, gfn);
1466
1467 return kvm_pfn_to_page(pfn);
1468 }
1469 EXPORT_SYMBOL_GPL(gfn_to_page);
1470
1471 void kvm_release_page_clean(struct page *page)
1472 {
1473 WARN_ON(is_error_page(page));
1474
1475 kvm_release_pfn_clean(page_to_pfn(page));
1476 }
1477 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1478
1479 void kvm_release_pfn_clean(pfn_t pfn)
1480 {
1481 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1482 put_page(pfn_to_page(pfn));
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1485
1486 void kvm_release_page_dirty(struct page *page)
1487 {
1488 WARN_ON(is_error_page(page));
1489
1490 kvm_release_pfn_dirty(page_to_pfn(page));
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1493
1494 static void kvm_release_pfn_dirty(pfn_t pfn)
1495 {
1496 kvm_set_pfn_dirty(pfn);
1497 kvm_release_pfn_clean(pfn);
1498 }
1499
1500 void kvm_set_pfn_dirty(pfn_t pfn)
1501 {
1502 if (!kvm_is_reserved_pfn(pfn)) {
1503 struct page *page = pfn_to_page(pfn);
1504
1505 if (!PageReserved(page))
1506 SetPageDirty(page);
1507 }
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1510
1511 void kvm_set_pfn_accessed(pfn_t pfn)
1512 {
1513 if (!kvm_is_reserved_pfn(pfn))
1514 mark_page_accessed(pfn_to_page(pfn));
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1517
1518 void kvm_get_pfn(pfn_t pfn)
1519 {
1520 if (!kvm_is_reserved_pfn(pfn))
1521 get_page(pfn_to_page(pfn));
1522 }
1523 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1524
1525 static int next_segment(unsigned long len, int offset)
1526 {
1527 if (len > PAGE_SIZE - offset)
1528 return PAGE_SIZE - offset;
1529 else
1530 return len;
1531 }
1532
1533 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1534 int len)
1535 {
1536 int r;
1537 unsigned long addr;
1538
1539 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1540 if (kvm_is_error_hva(addr))
1541 return -EFAULT;
1542 r = __copy_from_user(data, (void __user *)addr + offset, len);
1543 if (r)
1544 return -EFAULT;
1545 return 0;
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1548
1549 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1550 {
1551 gfn_t gfn = gpa >> PAGE_SHIFT;
1552 int seg;
1553 int offset = offset_in_page(gpa);
1554 int ret;
1555
1556 while ((seg = next_segment(len, offset)) != 0) {
1557 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1558 if (ret < 0)
1559 return ret;
1560 offset = 0;
1561 len -= seg;
1562 data += seg;
1563 ++gfn;
1564 }
1565 return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_read_guest);
1568
1569 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1570 unsigned long len)
1571 {
1572 int r;
1573 unsigned long addr;
1574 gfn_t gfn = gpa >> PAGE_SHIFT;
1575 int offset = offset_in_page(gpa);
1576
1577 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1578 if (kvm_is_error_hva(addr))
1579 return -EFAULT;
1580 pagefault_disable();
1581 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1582 pagefault_enable();
1583 if (r)
1584 return -EFAULT;
1585 return 0;
1586 }
1587 EXPORT_SYMBOL(kvm_read_guest_atomic);
1588
1589 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1590 int offset, int len)
1591 {
1592 int r;
1593 struct kvm_memory_slot *memslot;
1594 unsigned long addr;
1595
1596 memslot = gfn_to_memslot(kvm, gfn);
1597 addr = gfn_to_hva_memslot(memslot, gfn);
1598 if (kvm_is_error_hva(addr))
1599 return -EFAULT;
1600 r = __copy_to_user((void __user *)addr + offset, data, len);
1601 if (r)
1602 return -EFAULT;
1603 mark_page_dirty_in_slot(kvm, memslot, gfn);
1604 return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1607
1608 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1609 unsigned long len)
1610 {
1611 gfn_t gfn = gpa >> PAGE_SHIFT;
1612 int seg;
1613 int offset = offset_in_page(gpa);
1614 int ret;
1615
1616 while ((seg = next_segment(len, offset)) != 0) {
1617 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1618 if (ret < 0)
1619 return ret;
1620 offset = 0;
1621 len -= seg;
1622 data += seg;
1623 ++gfn;
1624 }
1625 return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_write_guest);
1628
1629 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1630 gpa_t gpa, unsigned long len)
1631 {
1632 struct kvm_memslots *slots = kvm_memslots(kvm);
1633 int offset = offset_in_page(gpa);
1634 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1635 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1636 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1637 gfn_t nr_pages_avail;
1638
1639 ghc->gpa = gpa;
1640 ghc->generation = slots->generation;
1641 ghc->len = len;
1642 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1643 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1644 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1645 ghc->hva += offset;
1646 } else {
1647 /*
1648 * If the requested region crosses two memslots, we still
1649 * verify that the entire region is valid here.
1650 */
1651 while (start_gfn <= end_gfn) {
1652 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1653 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1654 &nr_pages_avail);
1655 if (kvm_is_error_hva(ghc->hva))
1656 return -EFAULT;
1657 start_gfn += nr_pages_avail;
1658 }
1659 /* Use the slow path for cross page reads and writes. */
1660 ghc->memslot = NULL;
1661 }
1662 return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1665
1666 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1667 void *data, unsigned long len)
1668 {
1669 struct kvm_memslots *slots = kvm_memslots(kvm);
1670 int r;
1671
1672 BUG_ON(len > ghc->len);
1673
1674 if (slots->generation != ghc->generation)
1675 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1676
1677 if (unlikely(!ghc->memslot))
1678 return kvm_write_guest(kvm, ghc->gpa, data, len);
1679
1680 if (kvm_is_error_hva(ghc->hva))
1681 return -EFAULT;
1682
1683 r = __copy_to_user((void __user *)ghc->hva, data, len);
1684 if (r)
1685 return -EFAULT;
1686 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1687
1688 return 0;
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1691
1692 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1693 void *data, unsigned long len)
1694 {
1695 struct kvm_memslots *slots = kvm_memslots(kvm);
1696 int r;
1697
1698 BUG_ON(len > ghc->len);
1699
1700 if (slots->generation != ghc->generation)
1701 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1702
1703 if (unlikely(!ghc->memslot))
1704 return kvm_read_guest(kvm, ghc->gpa, data, len);
1705
1706 if (kvm_is_error_hva(ghc->hva))
1707 return -EFAULT;
1708
1709 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1710 if (r)
1711 return -EFAULT;
1712
1713 return 0;
1714 }
1715 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1716
1717 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1718 {
1719 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1720
1721 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1724
1725 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1726 {
1727 gfn_t gfn = gpa >> PAGE_SHIFT;
1728 int seg;
1729 int offset = offset_in_page(gpa);
1730 int ret;
1731
1732 while ((seg = next_segment(len, offset)) != 0) {
1733 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1734 if (ret < 0)
1735 return ret;
1736 offset = 0;
1737 len -= seg;
1738 ++gfn;
1739 }
1740 return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1743
1744 static void mark_page_dirty_in_slot(struct kvm *kvm,
1745 struct kvm_memory_slot *memslot,
1746 gfn_t gfn)
1747 {
1748 if (memslot && memslot->dirty_bitmap) {
1749 unsigned long rel_gfn = gfn - memslot->base_gfn;
1750
1751 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1752 }
1753 }
1754
1755 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1756 {
1757 struct kvm_memory_slot *memslot;
1758
1759 memslot = gfn_to_memslot(kvm, gfn);
1760 mark_page_dirty_in_slot(kvm, memslot, gfn);
1761 }
1762 EXPORT_SYMBOL_GPL(mark_page_dirty);
1763
1764 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1765 {
1766 if (kvm_arch_vcpu_runnable(vcpu)) {
1767 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1768 return -EINTR;
1769 }
1770 if (kvm_cpu_has_pending_timer(vcpu))
1771 return -EINTR;
1772 if (signal_pending(current))
1773 return -EINTR;
1774
1775 return 0;
1776 }
1777
1778 /*
1779 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1780 */
1781 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1782 {
1783 ktime_t start, cur;
1784 DEFINE_WAIT(wait);
1785 bool waited = false;
1786
1787 start = cur = ktime_get();
1788 if (halt_poll_ns) {
1789 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1790
1791 do {
1792 /*
1793 * This sets KVM_REQ_UNHALT if an interrupt
1794 * arrives.
1795 */
1796 if (kvm_vcpu_check_block(vcpu) < 0) {
1797 ++vcpu->stat.halt_successful_poll;
1798 goto out;
1799 }
1800 cur = ktime_get();
1801 } while (single_task_running() && ktime_before(cur, stop));
1802 }
1803
1804 for (;;) {
1805 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1806
1807 if (kvm_vcpu_check_block(vcpu) < 0)
1808 break;
1809
1810 waited = true;
1811 schedule();
1812 }
1813
1814 finish_wait(&vcpu->wq, &wait);
1815 cur = ktime_get();
1816
1817 out:
1818 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1821
1822 #ifndef CONFIG_S390
1823 /*
1824 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1825 */
1826 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1827 {
1828 int me;
1829 int cpu = vcpu->cpu;
1830 wait_queue_head_t *wqp;
1831
1832 wqp = kvm_arch_vcpu_wq(vcpu);
1833 if (waitqueue_active(wqp)) {
1834 wake_up_interruptible(wqp);
1835 ++vcpu->stat.halt_wakeup;
1836 }
1837
1838 me = get_cpu();
1839 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1840 if (kvm_arch_vcpu_should_kick(vcpu))
1841 smp_send_reschedule(cpu);
1842 put_cpu();
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1845 #endif /* !CONFIG_S390 */
1846
1847 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1848 {
1849 struct pid *pid;
1850 struct task_struct *task = NULL;
1851 int ret = 0;
1852
1853 rcu_read_lock();
1854 pid = rcu_dereference(target->pid);
1855 if (pid)
1856 task = get_pid_task(pid, PIDTYPE_PID);
1857 rcu_read_unlock();
1858 if (!task)
1859 return ret;
1860 ret = yield_to(task, 1);
1861 put_task_struct(task);
1862
1863 return ret;
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1866
1867 /*
1868 * Helper that checks whether a VCPU is eligible for directed yield.
1869 * Most eligible candidate to yield is decided by following heuristics:
1870 *
1871 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1872 * (preempted lock holder), indicated by @in_spin_loop.
1873 * Set at the beiginning and cleared at the end of interception/PLE handler.
1874 *
1875 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1876 * chance last time (mostly it has become eligible now since we have probably
1877 * yielded to lockholder in last iteration. This is done by toggling
1878 * @dy_eligible each time a VCPU checked for eligibility.)
1879 *
1880 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1881 * to preempted lock-holder could result in wrong VCPU selection and CPU
1882 * burning. Giving priority for a potential lock-holder increases lock
1883 * progress.
1884 *
1885 * Since algorithm is based on heuristics, accessing another VCPU data without
1886 * locking does not harm. It may result in trying to yield to same VCPU, fail
1887 * and continue with next VCPU and so on.
1888 */
1889 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1890 {
1891 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1892 bool eligible;
1893
1894 eligible = !vcpu->spin_loop.in_spin_loop ||
1895 vcpu->spin_loop.dy_eligible;
1896
1897 if (vcpu->spin_loop.in_spin_loop)
1898 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1899
1900 return eligible;
1901 #else
1902 return true;
1903 #endif
1904 }
1905
1906 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1907 {
1908 struct kvm *kvm = me->kvm;
1909 struct kvm_vcpu *vcpu;
1910 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1911 int yielded = 0;
1912 int try = 3;
1913 int pass;
1914 int i;
1915
1916 kvm_vcpu_set_in_spin_loop(me, true);
1917 /*
1918 * We boost the priority of a VCPU that is runnable but not
1919 * currently running, because it got preempted by something
1920 * else and called schedule in __vcpu_run. Hopefully that
1921 * VCPU is holding the lock that we need and will release it.
1922 * We approximate round-robin by starting at the last boosted VCPU.
1923 */
1924 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1925 kvm_for_each_vcpu(i, vcpu, kvm) {
1926 if (!pass && i <= last_boosted_vcpu) {
1927 i = last_boosted_vcpu;
1928 continue;
1929 } else if (pass && i > last_boosted_vcpu)
1930 break;
1931 if (!ACCESS_ONCE(vcpu->preempted))
1932 continue;
1933 if (vcpu == me)
1934 continue;
1935 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1936 continue;
1937 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1938 continue;
1939
1940 yielded = kvm_vcpu_yield_to(vcpu);
1941 if (yielded > 0) {
1942 kvm->last_boosted_vcpu = i;
1943 break;
1944 } else if (yielded < 0) {
1945 try--;
1946 if (!try)
1947 break;
1948 }
1949 }
1950 }
1951 kvm_vcpu_set_in_spin_loop(me, false);
1952
1953 /* Ensure vcpu is not eligible during next spinloop */
1954 kvm_vcpu_set_dy_eligible(me, false);
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1957
1958 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1959 {
1960 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1961 struct page *page;
1962
1963 if (vmf->pgoff == 0)
1964 page = virt_to_page(vcpu->run);
1965 #ifdef CONFIG_X86
1966 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1967 page = virt_to_page(vcpu->arch.pio_data);
1968 #endif
1969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1970 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1971 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1972 #endif
1973 else
1974 return kvm_arch_vcpu_fault(vcpu, vmf);
1975 get_page(page);
1976 vmf->page = page;
1977 return 0;
1978 }
1979
1980 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1981 .fault = kvm_vcpu_fault,
1982 };
1983
1984 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1985 {
1986 vma->vm_ops = &kvm_vcpu_vm_ops;
1987 return 0;
1988 }
1989
1990 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1991 {
1992 struct kvm_vcpu *vcpu = filp->private_data;
1993
1994 kvm_put_kvm(vcpu->kvm);
1995 return 0;
1996 }
1997
1998 static struct file_operations kvm_vcpu_fops = {
1999 .release = kvm_vcpu_release,
2000 .unlocked_ioctl = kvm_vcpu_ioctl,
2001 #ifdef CONFIG_KVM_COMPAT
2002 .compat_ioctl = kvm_vcpu_compat_ioctl,
2003 #endif
2004 .mmap = kvm_vcpu_mmap,
2005 .llseek = noop_llseek,
2006 };
2007
2008 /*
2009 * Allocates an inode for the vcpu.
2010 */
2011 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2012 {
2013 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2014 }
2015
2016 /*
2017 * Creates some virtual cpus. Good luck creating more than one.
2018 */
2019 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2020 {
2021 int r;
2022 struct kvm_vcpu *vcpu, *v;
2023
2024 if (id >= KVM_MAX_VCPUS)
2025 return -EINVAL;
2026
2027 vcpu = kvm_arch_vcpu_create(kvm, id);
2028 if (IS_ERR(vcpu))
2029 return PTR_ERR(vcpu);
2030
2031 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2032
2033 r = kvm_arch_vcpu_setup(vcpu);
2034 if (r)
2035 goto vcpu_destroy;
2036
2037 mutex_lock(&kvm->lock);
2038 if (!kvm_vcpu_compatible(vcpu)) {
2039 r = -EINVAL;
2040 goto unlock_vcpu_destroy;
2041 }
2042 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2043 r = -EINVAL;
2044 goto unlock_vcpu_destroy;
2045 }
2046
2047 kvm_for_each_vcpu(r, v, kvm)
2048 if (v->vcpu_id == id) {
2049 r = -EEXIST;
2050 goto unlock_vcpu_destroy;
2051 }
2052
2053 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2054
2055 /* Now it's all set up, let userspace reach it */
2056 kvm_get_kvm(kvm);
2057 r = create_vcpu_fd(vcpu);
2058 if (r < 0) {
2059 kvm_put_kvm(kvm);
2060 goto unlock_vcpu_destroy;
2061 }
2062
2063 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2064 smp_wmb();
2065 atomic_inc(&kvm->online_vcpus);
2066
2067 mutex_unlock(&kvm->lock);
2068 kvm_arch_vcpu_postcreate(vcpu);
2069 return r;
2070
2071 unlock_vcpu_destroy:
2072 mutex_unlock(&kvm->lock);
2073 vcpu_destroy:
2074 kvm_arch_vcpu_destroy(vcpu);
2075 return r;
2076 }
2077
2078 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2079 {
2080 if (sigset) {
2081 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2082 vcpu->sigset_active = 1;
2083 vcpu->sigset = *sigset;
2084 } else
2085 vcpu->sigset_active = 0;
2086 return 0;
2087 }
2088
2089 static long kvm_vcpu_ioctl(struct file *filp,
2090 unsigned int ioctl, unsigned long arg)
2091 {
2092 struct kvm_vcpu *vcpu = filp->private_data;
2093 void __user *argp = (void __user *)arg;
2094 int r;
2095 struct kvm_fpu *fpu = NULL;
2096 struct kvm_sregs *kvm_sregs = NULL;
2097
2098 if (vcpu->kvm->mm != current->mm)
2099 return -EIO;
2100
2101 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2102 return -EINVAL;
2103
2104 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2105 /*
2106 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2107 * so vcpu_load() would break it.
2108 */
2109 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2110 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2111 #endif
2112
2113
2114 r = vcpu_load(vcpu);
2115 if (r)
2116 return r;
2117 switch (ioctl) {
2118 case KVM_RUN:
2119 r = -EINVAL;
2120 if (arg)
2121 goto out;
2122 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2123 /* The thread running this VCPU changed. */
2124 struct pid *oldpid = vcpu->pid;
2125 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2126
2127 rcu_assign_pointer(vcpu->pid, newpid);
2128 if (oldpid)
2129 synchronize_rcu();
2130 put_pid(oldpid);
2131 }
2132 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2133 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2134 break;
2135 case KVM_GET_REGS: {
2136 struct kvm_regs *kvm_regs;
2137
2138 r = -ENOMEM;
2139 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2140 if (!kvm_regs)
2141 goto out;
2142 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2143 if (r)
2144 goto out_free1;
2145 r = -EFAULT;
2146 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2147 goto out_free1;
2148 r = 0;
2149 out_free1:
2150 kfree(kvm_regs);
2151 break;
2152 }
2153 case KVM_SET_REGS: {
2154 struct kvm_regs *kvm_regs;
2155
2156 r = -ENOMEM;
2157 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2158 if (IS_ERR(kvm_regs)) {
2159 r = PTR_ERR(kvm_regs);
2160 goto out;
2161 }
2162 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2163 kfree(kvm_regs);
2164 break;
2165 }
2166 case KVM_GET_SREGS: {
2167 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2168 r = -ENOMEM;
2169 if (!kvm_sregs)
2170 goto out;
2171 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2172 if (r)
2173 goto out;
2174 r = -EFAULT;
2175 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2176 goto out;
2177 r = 0;
2178 break;
2179 }
2180 case KVM_SET_SREGS: {
2181 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2182 if (IS_ERR(kvm_sregs)) {
2183 r = PTR_ERR(kvm_sregs);
2184 kvm_sregs = NULL;
2185 goto out;
2186 }
2187 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2188 break;
2189 }
2190 case KVM_GET_MP_STATE: {
2191 struct kvm_mp_state mp_state;
2192
2193 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2194 if (r)
2195 goto out;
2196 r = -EFAULT;
2197 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2198 goto out;
2199 r = 0;
2200 break;
2201 }
2202 case KVM_SET_MP_STATE: {
2203 struct kvm_mp_state mp_state;
2204
2205 r = -EFAULT;
2206 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2207 goto out;
2208 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2209 break;
2210 }
2211 case KVM_TRANSLATE: {
2212 struct kvm_translation tr;
2213
2214 r = -EFAULT;
2215 if (copy_from_user(&tr, argp, sizeof(tr)))
2216 goto out;
2217 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2218 if (r)
2219 goto out;
2220 r = -EFAULT;
2221 if (copy_to_user(argp, &tr, sizeof(tr)))
2222 goto out;
2223 r = 0;
2224 break;
2225 }
2226 case KVM_SET_GUEST_DEBUG: {
2227 struct kvm_guest_debug dbg;
2228
2229 r = -EFAULT;
2230 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2231 goto out;
2232 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2233 break;
2234 }
2235 case KVM_SET_SIGNAL_MASK: {
2236 struct kvm_signal_mask __user *sigmask_arg = argp;
2237 struct kvm_signal_mask kvm_sigmask;
2238 sigset_t sigset, *p;
2239
2240 p = NULL;
2241 if (argp) {
2242 r = -EFAULT;
2243 if (copy_from_user(&kvm_sigmask, argp,
2244 sizeof(kvm_sigmask)))
2245 goto out;
2246 r = -EINVAL;
2247 if (kvm_sigmask.len != sizeof(sigset))
2248 goto out;
2249 r = -EFAULT;
2250 if (copy_from_user(&sigset, sigmask_arg->sigset,
2251 sizeof(sigset)))
2252 goto out;
2253 p = &sigset;
2254 }
2255 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2256 break;
2257 }
2258 case KVM_GET_FPU: {
2259 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2260 r = -ENOMEM;
2261 if (!fpu)
2262 goto out;
2263 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2264 if (r)
2265 goto out;
2266 r = -EFAULT;
2267 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2268 goto out;
2269 r = 0;
2270 break;
2271 }
2272 case KVM_SET_FPU: {
2273 fpu = memdup_user(argp, sizeof(*fpu));
2274 if (IS_ERR(fpu)) {
2275 r = PTR_ERR(fpu);
2276 fpu = NULL;
2277 goto out;
2278 }
2279 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2280 break;
2281 }
2282 default:
2283 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2284 }
2285 out:
2286 vcpu_put(vcpu);
2287 kfree(fpu);
2288 kfree(kvm_sregs);
2289 return r;
2290 }
2291
2292 #ifdef CONFIG_KVM_COMPAT
2293 static long kvm_vcpu_compat_ioctl(struct file *filp,
2294 unsigned int ioctl, unsigned long arg)
2295 {
2296 struct kvm_vcpu *vcpu = filp->private_data;
2297 void __user *argp = compat_ptr(arg);
2298 int r;
2299
2300 if (vcpu->kvm->mm != current->mm)
2301 return -EIO;
2302
2303 switch (ioctl) {
2304 case KVM_SET_SIGNAL_MASK: {
2305 struct kvm_signal_mask __user *sigmask_arg = argp;
2306 struct kvm_signal_mask kvm_sigmask;
2307 compat_sigset_t csigset;
2308 sigset_t sigset;
2309
2310 if (argp) {
2311 r = -EFAULT;
2312 if (copy_from_user(&kvm_sigmask, argp,
2313 sizeof(kvm_sigmask)))
2314 goto out;
2315 r = -EINVAL;
2316 if (kvm_sigmask.len != sizeof(csigset))
2317 goto out;
2318 r = -EFAULT;
2319 if (copy_from_user(&csigset, sigmask_arg->sigset,
2320 sizeof(csigset)))
2321 goto out;
2322 sigset_from_compat(&sigset, &csigset);
2323 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2324 } else
2325 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2326 break;
2327 }
2328 default:
2329 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2330 }
2331
2332 out:
2333 return r;
2334 }
2335 #endif
2336
2337 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2338 int (*accessor)(struct kvm_device *dev,
2339 struct kvm_device_attr *attr),
2340 unsigned long arg)
2341 {
2342 struct kvm_device_attr attr;
2343
2344 if (!accessor)
2345 return -EPERM;
2346
2347 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2348 return -EFAULT;
2349
2350 return accessor(dev, &attr);
2351 }
2352
2353 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2354 unsigned long arg)
2355 {
2356 struct kvm_device *dev = filp->private_data;
2357
2358 switch (ioctl) {
2359 case KVM_SET_DEVICE_ATTR:
2360 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2361 case KVM_GET_DEVICE_ATTR:
2362 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2363 case KVM_HAS_DEVICE_ATTR:
2364 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2365 default:
2366 if (dev->ops->ioctl)
2367 return dev->ops->ioctl(dev, ioctl, arg);
2368
2369 return -ENOTTY;
2370 }
2371 }
2372
2373 static int kvm_device_release(struct inode *inode, struct file *filp)
2374 {
2375 struct kvm_device *dev = filp->private_data;
2376 struct kvm *kvm = dev->kvm;
2377
2378 kvm_put_kvm(kvm);
2379 return 0;
2380 }
2381
2382 static const struct file_operations kvm_device_fops = {
2383 .unlocked_ioctl = kvm_device_ioctl,
2384 #ifdef CONFIG_KVM_COMPAT
2385 .compat_ioctl = kvm_device_ioctl,
2386 #endif
2387 .release = kvm_device_release,
2388 };
2389
2390 struct kvm_device *kvm_device_from_filp(struct file *filp)
2391 {
2392 if (filp->f_op != &kvm_device_fops)
2393 return NULL;
2394
2395 return filp->private_data;
2396 }
2397
2398 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2399 #ifdef CONFIG_KVM_MPIC
2400 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2401 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2402 #endif
2403
2404 #ifdef CONFIG_KVM_XICS
2405 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2406 #endif
2407 };
2408
2409 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2410 {
2411 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2412 return -ENOSPC;
2413
2414 if (kvm_device_ops_table[type] != NULL)
2415 return -EEXIST;
2416
2417 kvm_device_ops_table[type] = ops;
2418 return 0;
2419 }
2420
2421 void kvm_unregister_device_ops(u32 type)
2422 {
2423 if (kvm_device_ops_table[type] != NULL)
2424 kvm_device_ops_table[type] = NULL;
2425 }
2426
2427 static int kvm_ioctl_create_device(struct kvm *kvm,
2428 struct kvm_create_device *cd)
2429 {
2430 struct kvm_device_ops *ops = NULL;
2431 struct kvm_device *dev;
2432 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2433 int ret;
2434
2435 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2436 return -ENODEV;
2437
2438 ops = kvm_device_ops_table[cd->type];
2439 if (ops == NULL)
2440 return -ENODEV;
2441
2442 if (test)
2443 return 0;
2444
2445 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2446 if (!dev)
2447 return -ENOMEM;
2448
2449 dev->ops = ops;
2450 dev->kvm = kvm;
2451
2452 ret = ops->create(dev, cd->type);
2453 if (ret < 0) {
2454 kfree(dev);
2455 return ret;
2456 }
2457
2458 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2459 if (ret < 0) {
2460 ops->destroy(dev);
2461 return ret;
2462 }
2463
2464 list_add(&dev->vm_node, &kvm->devices);
2465 kvm_get_kvm(kvm);
2466 cd->fd = ret;
2467 return 0;
2468 }
2469
2470 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2471 {
2472 switch (arg) {
2473 case KVM_CAP_USER_MEMORY:
2474 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2475 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2476 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2477 case KVM_CAP_SET_BOOT_CPU_ID:
2478 #endif
2479 case KVM_CAP_INTERNAL_ERROR_DATA:
2480 #ifdef CONFIG_HAVE_KVM_MSI
2481 case KVM_CAP_SIGNAL_MSI:
2482 #endif
2483 #ifdef CONFIG_HAVE_KVM_IRQFD
2484 case KVM_CAP_IRQFD:
2485 case KVM_CAP_IRQFD_RESAMPLE:
2486 #endif
2487 case KVM_CAP_CHECK_EXTENSION_VM:
2488 return 1;
2489 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2490 case KVM_CAP_IRQ_ROUTING:
2491 return KVM_MAX_IRQ_ROUTES;
2492 #endif
2493 default:
2494 break;
2495 }
2496 return kvm_vm_ioctl_check_extension(kvm, arg);
2497 }
2498
2499 static long kvm_vm_ioctl(struct file *filp,
2500 unsigned int ioctl, unsigned long arg)
2501 {
2502 struct kvm *kvm = filp->private_data;
2503 void __user *argp = (void __user *)arg;
2504 int r;
2505
2506 if (kvm->mm != current->mm)
2507 return -EIO;
2508 switch (ioctl) {
2509 case KVM_CREATE_VCPU:
2510 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2511 break;
2512 case KVM_SET_USER_MEMORY_REGION: {
2513 struct kvm_userspace_memory_region kvm_userspace_mem;
2514
2515 r = -EFAULT;
2516 if (copy_from_user(&kvm_userspace_mem, argp,
2517 sizeof(kvm_userspace_mem)))
2518 goto out;
2519
2520 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2521 break;
2522 }
2523 case KVM_GET_DIRTY_LOG: {
2524 struct kvm_dirty_log log;
2525
2526 r = -EFAULT;
2527 if (copy_from_user(&log, argp, sizeof(log)))
2528 goto out;
2529 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2530 break;
2531 }
2532 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2533 case KVM_REGISTER_COALESCED_MMIO: {
2534 struct kvm_coalesced_mmio_zone zone;
2535
2536 r = -EFAULT;
2537 if (copy_from_user(&zone, argp, sizeof(zone)))
2538 goto out;
2539 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2540 break;
2541 }
2542 case KVM_UNREGISTER_COALESCED_MMIO: {
2543 struct kvm_coalesced_mmio_zone zone;
2544
2545 r = -EFAULT;
2546 if (copy_from_user(&zone, argp, sizeof(zone)))
2547 goto out;
2548 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2549 break;
2550 }
2551 #endif
2552 case KVM_IRQFD: {
2553 struct kvm_irqfd data;
2554
2555 r = -EFAULT;
2556 if (copy_from_user(&data, argp, sizeof(data)))
2557 goto out;
2558 r = kvm_irqfd(kvm, &data);
2559 break;
2560 }
2561 case KVM_IOEVENTFD: {
2562 struct kvm_ioeventfd data;
2563
2564 r = -EFAULT;
2565 if (copy_from_user(&data, argp, sizeof(data)))
2566 goto out;
2567 r = kvm_ioeventfd(kvm, &data);
2568 break;
2569 }
2570 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2571 case KVM_SET_BOOT_CPU_ID:
2572 r = 0;
2573 mutex_lock(&kvm->lock);
2574 if (atomic_read(&kvm->online_vcpus) != 0)
2575 r = -EBUSY;
2576 else
2577 kvm->bsp_vcpu_id = arg;
2578 mutex_unlock(&kvm->lock);
2579 break;
2580 #endif
2581 #ifdef CONFIG_HAVE_KVM_MSI
2582 case KVM_SIGNAL_MSI: {
2583 struct kvm_msi msi;
2584
2585 r = -EFAULT;
2586 if (copy_from_user(&msi, argp, sizeof(msi)))
2587 goto out;
2588 r = kvm_send_userspace_msi(kvm, &msi);
2589 break;
2590 }
2591 #endif
2592 #ifdef __KVM_HAVE_IRQ_LINE
2593 case KVM_IRQ_LINE_STATUS:
2594 case KVM_IRQ_LINE: {
2595 struct kvm_irq_level irq_event;
2596
2597 r = -EFAULT;
2598 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2599 goto out;
2600
2601 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2602 ioctl == KVM_IRQ_LINE_STATUS);
2603 if (r)
2604 goto out;
2605
2606 r = -EFAULT;
2607 if (ioctl == KVM_IRQ_LINE_STATUS) {
2608 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2609 goto out;
2610 }
2611
2612 r = 0;
2613 break;
2614 }
2615 #endif
2616 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2617 case KVM_SET_GSI_ROUTING: {
2618 struct kvm_irq_routing routing;
2619 struct kvm_irq_routing __user *urouting;
2620 struct kvm_irq_routing_entry *entries;
2621
2622 r = -EFAULT;
2623 if (copy_from_user(&routing, argp, sizeof(routing)))
2624 goto out;
2625 r = -EINVAL;
2626 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2627 goto out;
2628 if (routing.flags)
2629 goto out;
2630 r = -ENOMEM;
2631 entries = vmalloc(routing.nr * sizeof(*entries));
2632 if (!entries)
2633 goto out;
2634 r = -EFAULT;
2635 urouting = argp;
2636 if (copy_from_user(entries, urouting->entries,
2637 routing.nr * sizeof(*entries)))
2638 goto out_free_irq_routing;
2639 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2640 routing.flags);
2641 out_free_irq_routing:
2642 vfree(entries);
2643 break;
2644 }
2645 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2646 case KVM_CREATE_DEVICE: {
2647 struct kvm_create_device cd;
2648
2649 r = -EFAULT;
2650 if (copy_from_user(&cd, argp, sizeof(cd)))
2651 goto out;
2652
2653 r = kvm_ioctl_create_device(kvm, &cd);
2654 if (r)
2655 goto out;
2656
2657 r = -EFAULT;
2658 if (copy_to_user(argp, &cd, sizeof(cd)))
2659 goto out;
2660
2661 r = 0;
2662 break;
2663 }
2664 case KVM_CHECK_EXTENSION:
2665 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2666 break;
2667 default:
2668 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2669 }
2670 out:
2671 return r;
2672 }
2673
2674 #ifdef CONFIG_KVM_COMPAT
2675 struct compat_kvm_dirty_log {
2676 __u32 slot;
2677 __u32 padding1;
2678 union {
2679 compat_uptr_t dirty_bitmap; /* one bit per page */
2680 __u64 padding2;
2681 };
2682 };
2683
2684 static long kvm_vm_compat_ioctl(struct file *filp,
2685 unsigned int ioctl, unsigned long arg)
2686 {
2687 struct kvm *kvm = filp->private_data;
2688 int r;
2689
2690 if (kvm->mm != current->mm)
2691 return -EIO;
2692 switch (ioctl) {
2693 case KVM_GET_DIRTY_LOG: {
2694 struct compat_kvm_dirty_log compat_log;
2695 struct kvm_dirty_log log;
2696
2697 r = -EFAULT;
2698 if (copy_from_user(&compat_log, (void __user *)arg,
2699 sizeof(compat_log)))
2700 goto out;
2701 log.slot = compat_log.slot;
2702 log.padding1 = compat_log.padding1;
2703 log.padding2 = compat_log.padding2;
2704 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2705
2706 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2707 break;
2708 }
2709 default:
2710 r = kvm_vm_ioctl(filp, ioctl, arg);
2711 }
2712
2713 out:
2714 return r;
2715 }
2716 #endif
2717
2718 static struct file_operations kvm_vm_fops = {
2719 .release = kvm_vm_release,
2720 .unlocked_ioctl = kvm_vm_ioctl,
2721 #ifdef CONFIG_KVM_COMPAT
2722 .compat_ioctl = kvm_vm_compat_ioctl,
2723 #endif
2724 .llseek = noop_llseek,
2725 };
2726
2727 static int kvm_dev_ioctl_create_vm(unsigned long type)
2728 {
2729 int r;
2730 struct kvm *kvm;
2731
2732 kvm = kvm_create_vm(type);
2733 if (IS_ERR(kvm))
2734 return PTR_ERR(kvm);
2735 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2736 r = kvm_coalesced_mmio_init(kvm);
2737 if (r < 0) {
2738 kvm_put_kvm(kvm);
2739 return r;
2740 }
2741 #endif
2742 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2743 if (r < 0)
2744 kvm_put_kvm(kvm);
2745
2746 return r;
2747 }
2748
2749 static long kvm_dev_ioctl(struct file *filp,
2750 unsigned int ioctl, unsigned long arg)
2751 {
2752 long r = -EINVAL;
2753
2754 switch (ioctl) {
2755 case KVM_GET_API_VERSION:
2756 if (arg)
2757 goto out;
2758 r = KVM_API_VERSION;
2759 break;
2760 case KVM_CREATE_VM:
2761 r = kvm_dev_ioctl_create_vm(arg);
2762 break;
2763 case KVM_CHECK_EXTENSION:
2764 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2765 break;
2766 case KVM_GET_VCPU_MMAP_SIZE:
2767 if (arg)
2768 goto out;
2769 r = PAGE_SIZE; /* struct kvm_run */
2770 #ifdef CONFIG_X86
2771 r += PAGE_SIZE; /* pio data page */
2772 #endif
2773 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2774 r += PAGE_SIZE; /* coalesced mmio ring page */
2775 #endif
2776 break;
2777 case KVM_TRACE_ENABLE:
2778 case KVM_TRACE_PAUSE:
2779 case KVM_TRACE_DISABLE:
2780 r = -EOPNOTSUPP;
2781 break;
2782 default:
2783 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2784 }
2785 out:
2786 return r;
2787 }
2788
2789 static struct file_operations kvm_chardev_ops = {
2790 .unlocked_ioctl = kvm_dev_ioctl,
2791 .compat_ioctl = kvm_dev_ioctl,
2792 .llseek = noop_llseek,
2793 };
2794
2795 static struct miscdevice kvm_dev = {
2796 KVM_MINOR,
2797 "kvm",
2798 &kvm_chardev_ops,
2799 };
2800
2801 static void hardware_enable_nolock(void *junk)
2802 {
2803 int cpu = raw_smp_processor_id();
2804 int r;
2805
2806 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2807 return;
2808
2809 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2810
2811 r = kvm_arch_hardware_enable();
2812
2813 if (r) {
2814 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2815 atomic_inc(&hardware_enable_failed);
2816 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2817 }
2818 }
2819
2820 static void hardware_enable(void)
2821 {
2822 raw_spin_lock(&kvm_count_lock);
2823 if (kvm_usage_count)
2824 hardware_enable_nolock(NULL);
2825 raw_spin_unlock(&kvm_count_lock);
2826 }
2827
2828 static void hardware_disable_nolock(void *junk)
2829 {
2830 int cpu = raw_smp_processor_id();
2831
2832 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2833 return;
2834 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2835 kvm_arch_hardware_disable();
2836 }
2837
2838 static void hardware_disable(void)
2839 {
2840 raw_spin_lock(&kvm_count_lock);
2841 if (kvm_usage_count)
2842 hardware_disable_nolock(NULL);
2843 raw_spin_unlock(&kvm_count_lock);
2844 }
2845
2846 static void hardware_disable_all_nolock(void)
2847 {
2848 BUG_ON(!kvm_usage_count);
2849
2850 kvm_usage_count--;
2851 if (!kvm_usage_count)
2852 on_each_cpu(hardware_disable_nolock, NULL, 1);
2853 }
2854
2855 static void hardware_disable_all(void)
2856 {
2857 raw_spin_lock(&kvm_count_lock);
2858 hardware_disable_all_nolock();
2859 raw_spin_unlock(&kvm_count_lock);
2860 }
2861
2862 static int hardware_enable_all(void)
2863 {
2864 int r = 0;
2865
2866 raw_spin_lock(&kvm_count_lock);
2867
2868 kvm_usage_count++;
2869 if (kvm_usage_count == 1) {
2870 atomic_set(&hardware_enable_failed, 0);
2871 on_each_cpu(hardware_enable_nolock, NULL, 1);
2872
2873 if (atomic_read(&hardware_enable_failed)) {
2874 hardware_disable_all_nolock();
2875 r = -EBUSY;
2876 }
2877 }
2878
2879 raw_spin_unlock(&kvm_count_lock);
2880
2881 return r;
2882 }
2883
2884 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2885 void *v)
2886 {
2887 int cpu = (long)v;
2888
2889 val &= ~CPU_TASKS_FROZEN;
2890 switch (val) {
2891 case CPU_DYING:
2892 pr_info("kvm: disabling virtualization on CPU%d\n",
2893 cpu);
2894 hardware_disable();
2895 break;
2896 case CPU_STARTING:
2897 pr_info("kvm: enabling virtualization on CPU%d\n",
2898 cpu);
2899 hardware_enable();
2900 break;
2901 }
2902 return NOTIFY_OK;
2903 }
2904
2905 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2906 void *v)
2907 {
2908 /*
2909 * Some (well, at least mine) BIOSes hang on reboot if
2910 * in vmx root mode.
2911 *
2912 * And Intel TXT required VMX off for all cpu when system shutdown.
2913 */
2914 pr_info("kvm: exiting hardware virtualization\n");
2915 kvm_rebooting = true;
2916 on_each_cpu(hardware_disable_nolock, NULL, 1);
2917 return NOTIFY_OK;
2918 }
2919
2920 static struct notifier_block kvm_reboot_notifier = {
2921 .notifier_call = kvm_reboot,
2922 .priority = 0,
2923 };
2924
2925 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2926 {
2927 int i;
2928
2929 for (i = 0; i < bus->dev_count; i++) {
2930 struct kvm_io_device *pos = bus->range[i].dev;
2931
2932 kvm_iodevice_destructor(pos);
2933 }
2934 kfree(bus);
2935 }
2936
2937 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2938 const struct kvm_io_range *r2)
2939 {
2940 if (r1->addr < r2->addr)
2941 return -1;
2942 if (r1->addr + r1->len > r2->addr + r2->len)
2943 return 1;
2944 return 0;
2945 }
2946
2947 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2948 {
2949 return kvm_io_bus_cmp(p1, p2);
2950 }
2951
2952 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2953 gpa_t addr, int len)
2954 {
2955 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2956 .addr = addr,
2957 .len = len,
2958 .dev = dev,
2959 };
2960
2961 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2962 kvm_io_bus_sort_cmp, NULL);
2963
2964 return 0;
2965 }
2966
2967 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2968 gpa_t addr, int len)
2969 {
2970 struct kvm_io_range *range, key;
2971 int off;
2972
2973 key = (struct kvm_io_range) {
2974 .addr = addr,
2975 .len = len,
2976 };
2977
2978 range = bsearch(&key, bus->range, bus->dev_count,
2979 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2980 if (range == NULL)
2981 return -ENOENT;
2982
2983 off = range - bus->range;
2984
2985 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2986 off--;
2987
2988 return off;
2989 }
2990
2991 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
2992 struct kvm_io_range *range, const void *val)
2993 {
2994 int idx;
2995
2996 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2997 if (idx < 0)
2998 return -EOPNOTSUPP;
2999
3000 while (idx < bus->dev_count &&
3001 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3002 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3003 range->len, val))
3004 return idx;
3005 idx++;
3006 }
3007
3008 return -EOPNOTSUPP;
3009 }
3010
3011 /* kvm_io_bus_write - called under kvm->slots_lock */
3012 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3013 int len, const void *val)
3014 {
3015 struct kvm_io_bus *bus;
3016 struct kvm_io_range range;
3017 int r;
3018
3019 range = (struct kvm_io_range) {
3020 .addr = addr,
3021 .len = len,
3022 };
3023
3024 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3025 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3026 return r < 0 ? r : 0;
3027 }
3028
3029 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3030 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3031 gpa_t addr, int len, const void *val, long cookie)
3032 {
3033 struct kvm_io_bus *bus;
3034 struct kvm_io_range range;
3035
3036 range = (struct kvm_io_range) {
3037 .addr = addr,
3038 .len = len,
3039 };
3040
3041 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3042
3043 /* First try the device referenced by cookie. */
3044 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3045 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3046 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3047 val))
3048 return cookie;
3049
3050 /*
3051 * cookie contained garbage; fall back to search and return the
3052 * correct cookie value.
3053 */
3054 return __kvm_io_bus_write(vcpu, bus, &range, val);
3055 }
3056
3057 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3058 struct kvm_io_range *range, void *val)
3059 {
3060 int idx;
3061
3062 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3063 if (idx < 0)
3064 return -EOPNOTSUPP;
3065
3066 while (idx < bus->dev_count &&
3067 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3068 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3069 range->len, val))
3070 return idx;
3071 idx++;
3072 }
3073
3074 return -EOPNOTSUPP;
3075 }
3076 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3077
3078 /* kvm_io_bus_read - called under kvm->slots_lock */
3079 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3080 int len, void *val)
3081 {
3082 struct kvm_io_bus *bus;
3083 struct kvm_io_range range;
3084 int r;
3085
3086 range = (struct kvm_io_range) {
3087 .addr = addr,
3088 .len = len,
3089 };
3090
3091 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3092 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3093 return r < 0 ? r : 0;
3094 }
3095
3096
3097 /* Caller must hold slots_lock. */
3098 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3099 int len, struct kvm_io_device *dev)
3100 {
3101 struct kvm_io_bus *new_bus, *bus;
3102
3103 bus = kvm->buses[bus_idx];
3104 /* exclude ioeventfd which is limited by maximum fd */
3105 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3106 return -ENOSPC;
3107
3108 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3109 sizeof(struct kvm_io_range)), GFP_KERNEL);
3110 if (!new_bus)
3111 return -ENOMEM;
3112 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3113 sizeof(struct kvm_io_range)));
3114 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3115 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3116 synchronize_srcu_expedited(&kvm->srcu);
3117 kfree(bus);
3118
3119 return 0;
3120 }
3121
3122 /* Caller must hold slots_lock. */
3123 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3124 struct kvm_io_device *dev)
3125 {
3126 int i, r;
3127 struct kvm_io_bus *new_bus, *bus;
3128
3129 bus = kvm->buses[bus_idx];
3130 r = -ENOENT;
3131 for (i = 0; i < bus->dev_count; i++)
3132 if (bus->range[i].dev == dev) {
3133 r = 0;
3134 break;
3135 }
3136
3137 if (r)
3138 return r;
3139
3140 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3141 sizeof(struct kvm_io_range)), GFP_KERNEL);
3142 if (!new_bus)
3143 return -ENOMEM;
3144
3145 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3146 new_bus->dev_count--;
3147 memcpy(new_bus->range + i, bus->range + i + 1,
3148 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3149
3150 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3151 synchronize_srcu_expedited(&kvm->srcu);
3152 kfree(bus);
3153 return r;
3154 }
3155
3156 static struct notifier_block kvm_cpu_notifier = {
3157 .notifier_call = kvm_cpu_hotplug,
3158 };
3159
3160 static int vm_stat_get(void *_offset, u64 *val)
3161 {
3162 unsigned offset = (long)_offset;
3163 struct kvm *kvm;
3164
3165 *val = 0;
3166 spin_lock(&kvm_lock);
3167 list_for_each_entry(kvm, &vm_list, vm_list)
3168 *val += *(u32 *)((void *)kvm + offset);
3169 spin_unlock(&kvm_lock);
3170 return 0;
3171 }
3172
3173 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3174
3175 static int vcpu_stat_get(void *_offset, u64 *val)
3176 {
3177 unsigned offset = (long)_offset;
3178 struct kvm *kvm;
3179 struct kvm_vcpu *vcpu;
3180 int i;
3181
3182 *val = 0;
3183 spin_lock(&kvm_lock);
3184 list_for_each_entry(kvm, &vm_list, vm_list)
3185 kvm_for_each_vcpu(i, vcpu, kvm)
3186 *val += *(u32 *)((void *)vcpu + offset);
3187
3188 spin_unlock(&kvm_lock);
3189 return 0;
3190 }
3191
3192 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3193
3194 static const struct file_operations *stat_fops[] = {
3195 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3196 [KVM_STAT_VM] = &vm_stat_fops,
3197 };
3198
3199 static int kvm_init_debug(void)
3200 {
3201 int r = -EEXIST;
3202 struct kvm_stats_debugfs_item *p;
3203
3204 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3205 if (kvm_debugfs_dir == NULL)
3206 goto out;
3207
3208 for (p = debugfs_entries; p->name; ++p) {
3209 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3210 (void *)(long)p->offset,
3211 stat_fops[p->kind]);
3212 if (p->dentry == NULL)
3213 goto out_dir;
3214 }
3215
3216 return 0;
3217
3218 out_dir:
3219 debugfs_remove_recursive(kvm_debugfs_dir);
3220 out:
3221 return r;
3222 }
3223
3224 static void kvm_exit_debug(void)
3225 {
3226 struct kvm_stats_debugfs_item *p;
3227
3228 for (p = debugfs_entries; p->name; ++p)
3229 debugfs_remove(p->dentry);
3230 debugfs_remove(kvm_debugfs_dir);
3231 }
3232
3233 static int kvm_suspend(void)
3234 {
3235 if (kvm_usage_count)
3236 hardware_disable_nolock(NULL);
3237 return 0;
3238 }
3239
3240 static void kvm_resume(void)
3241 {
3242 if (kvm_usage_count) {
3243 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3244 hardware_enable_nolock(NULL);
3245 }
3246 }
3247
3248 static struct syscore_ops kvm_syscore_ops = {
3249 .suspend = kvm_suspend,
3250 .resume = kvm_resume,
3251 };
3252
3253 static inline
3254 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3255 {
3256 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3257 }
3258
3259 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3260 {
3261 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3262
3263 if (vcpu->preempted)
3264 vcpu->preempted = false;
3265
3266 kvm_arch_sched_in(vcpu, cpu);
3267
3268 kvm_arch_vcpu_load(vcpu, cpu);
3269 }
3270
3271 static void kvm_sched_out(struct preempt_notifier *pn,
3272 struct task_struct *next)
3273 {
3274 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3275
3276 if (current->state == TASK_RUNNING)
3277 vcpu->preempted = true;
3278 kvm_arch_vcpu_put(vcpu);
3279 }
3280
3281 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3282 struct module *module)
3283 {
3284 int r;
3285 int cpu;
3286
3287 r = kvm_arch_init(opaque);
3288 if (r)
3289 goto out_fail;
3290
3291 /*
3292 * kvm_arch_init makes sure there's at most one caller
3293 * for architectures that support multiple implementations,
3294 * like intel and amd on x86.
3295 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3296 * conflicts in case kvm is already setup for another implementation.
3297 */
3298 r = kvm_irqfd_init();
3299 if (r)
3300 goto out_irqfd;
3301
3302 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3303 r = -ENOMEM;
3304 goto out_free_0;
3305 }
3306
3307 r = kvm_arch_hardware_setup();
3308 if (r < 0)
3309 goto out_free_0a;
3310
3311 for_each_online_cpu(cpu) {
3312 smp_call_function_single(cpu,
3313 kvm_arch_check_processor_compat,
3314 &r, 1);
3315 if (r < 0)
3316 goto out_free_1;
3317 }
3318
3319 r = register_cpu_notifier(&kvm_cpu_notifier);
3320 if (r)
3321 goto out_free_2;
3322 register_reboot_notifier(&kvm_reboot_notifier);
3323
3324 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3325 if (!vcpu_align)
3326 vcpu_align = __alignof__(struct kvm_vcpu);
3327 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3328 0, NULL);
3329 if (!kvm_vcpu_cache) {
3330 r = -ENOMEM;
3331 goto out_free_3;
3332 }
3333
3334 r = kvm_async_pf_init();
3335 if (r)
3336 goto out_free;
3337
3338 kvm_chardev_ops.owner = module;
3339 kvm_vm_fops.owner = module;
3340 kvm_vcpu_fops.owner = module;
3341
3342 r = misc_register(&kvm_dev);
3343 if (r) {
3344 pr_err("kvm: misc device register failed\n");
3345 goto out_unreg;
3346 }
3347
3348 register_syscore_ops(&kvm_syscore_ops);
3349
3350 kvm_preempt_ops.sched_in = kvm_sched_in;
3351 kvm_preempt_ops.sched_out = kvm_sched_out;
3352
3353 r = kvm_init_debug();
3354 if (r) {
3355 pr_err("kvm: create debugfs files failed\n");
3356 goto out_undebugfs;
3357 }
3358
3359 r = kvm_vfio_ops_init();
3360 WARN_ON(r);
3361
3362 return 0;
3363
3364 out_undebugfs:
3365 unregister_syscore_ops(&kvm_syscore_ops);
3366 misc_deregister(&kvm_dev);
3367 out_unreg:
3368 kvm_async_pf_deinit();
3369 out_free:
3370 kmem_cache_destroy(kvm_vcpu_cache);
3371 out_free_3:
3372 unregister_reboot_notifier(&kvm_reboot_notifier);
3373 unregister_cpu_notifier(&kvm_cpu_notifier);
3374 out_free_2:
3375 out_free_1:
3376 kvm_arch_hardware_unsetup();
3377 out_free_0a:
3378 free_cpumask_var(cpus_hardware_enabled);
3379 out_free_0:
3380 kvm_irqfd_exit();
3381 out_irqfd:
3382 kvm_arch_exit();
3383 out_fail:
3384 return r;
3385 }
3386 EXPORT_SYMBOL_GPL(kvm_init);
3387
3388 void kvm_exit(void)
3389 {
3390 kvm_exit_debug();
3391 misc_deregister(&kvm_dev);
3392 kmem_cache_destroy(kvm_vcpu_cache);
3393 kvm_async_pf_deinit();
3394 unregister_syscore_ops(&kvm_syscore_ops);
3395 unregister_reboot_notifier(&kvm_reboot_notifier);
3396 unregister_cpu_notifier(&kvm_cpu_notifier);
3397 on_each_cpu(hardware_disable_nolock, NULL, 1);
3398 kvm_arch_hardware_unsetup();
3399 kvm_arch_exit();
3400 kvm_irqfd_exit();
3401 free_cpumask_var(cpus_hardware_enabled);
3402 kvm_vfio_ops_exit();
3403 }
3404 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.129953 seconds and 5 git commands to generate.