Sync zlib sources with GCC, upgrading to 1.2.10.
[deliverable/binutils-gdb.git] / zlib / deflate.c
1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50 /* @(#) $Id: deflate.c,v 1.1.1.2 2002/03/11 21:53:23 tromey Exp $ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55 " deflate 1.2.10 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56 /*
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
61 */
62
63 /* ===========================================================================
64 * Function prototypes.
65 */
66 typedef enum {
67 need_more, /* block not completed, need more input or more output */
68 block_done, /* block flush performed */
69 finish_started, /* finish started, need only more output at next deflate */
70 finish_done /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local int deflateStateCheck OF((z_streamp strm));
77 local void slide_hash OF((deflate_state *s));
78 local void fill_window OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle OF((deflate_state *s, int flush));
85 local block_state deflate_huff OF((deflate_state *s, int flush));
86 local void lm_init OF((deflate_state *s));
87 local void putShortMSB OF((deflate_state *s, uInt b));
88 local void flush_pending OF((z_streamp strm));
89 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 # pragma message("Assembler code may have bugs -- use at your own risk")
92 void match_init OF((void)); /* asm code initialization */
93 uInt longest_match OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match OF((deflate_state *s, IPos cur_match));
96 #endif
97
98 #ifdef ZLIB_DEBUG
99 local void check_match OF((deflate_state *s, IPos start, IPos match,
100 int length));
101 #endif
102
103 /* ===========================================================================
104 * Local data
105 */
106
107 #define NIL 0
108 /* Tail of hash chains */
109
110 #ifndef TOO_FAR
111 # define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116 * the desired pack level (0..9). The values given below have been tuned to
117 * exclude worst case performance for pathological files. Better values may be
118 * found for specific files.
119 */
120 typedef struct config_s {
121 ush good_length; /* reduce lazy search above this match length */
122 ush max_lazy; /* do not perform lazy search above this match length */
123 ush nice_length; /* quit search above this match length */
124 ush max_chain;
125 compress_func func;
126 } config;
127
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /* good lazy nice chain */
131 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
132 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /* good lazy nice chain */
136 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
137 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4, 5, 16, 8, deflate_fast},
139 /* 3 */ {4, 6, 32, 32, deflate_fast},
140
141 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
142 /* 5 */ {8, 16, 32, 32, deflate_slow},
143 /* 6 */ {8, 16, 128, 128, deflate_slow},
144 /* 7 */ {8, 32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151 * meaning.
152 */
153
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157 /* ===========================================================================
158 * Update a hash value with the given input byte
159 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
160 * characters, so that a running hash key can be computed from the previous
161 * key instead of complete recalculation each time.
162 */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166 /* ===========================================================================
167 * Insert string str in the dictionary and set match_head to the previous head
168 * of the hash chain (the most recent string with same hash key). Return
169 * the previous length of the hash chain.
170 * If this file is compiled with -DFASTEST, the compression level is forced
171 * to 1, and no hash chains are maintained.
172 * IN assertion: all calls to INSERT_STRING are made with consecutive input
173 * characters and the first MIN_MATCH bytes of str are valid (except for
174 * the last MIN_MATCH-1 bytes of the input file).
175 */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179 match_head = s->head[s->ins_h], \
180 s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185 s->head[s->ins_h] = (Pos)(str))
186 #endif
187
188 /* ===========================================================================
189 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190 * prev[] will be initialized on the fly.
191 */
192 #define CLEAR_HASH(s) \
193 s->head[s->hash_size-1] = NIL; \
194 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
195
196 /* ===========================================================================
197 * Slide the hash table when sliding the window down (could be avoided with 32
198 * bit values at the expense of memory usage). We slide even when level == 0 to
199 * keep the hash table consistent if we switch back to level > 0 later.
200 */
201 local void slide_hash(s)
202 deflate_state *s;
203 {
204 unsigned n, m;
205 Posf *p;
206 uInt wsize = s->w_size;
207
208 n = s->hash_size;
209 p = &s->head[n];
210 do {
211 m = *--p;
212 *p = (Pos)(m >= wsize ? m - wsize : NIL);
213 } while (--n);
214 n = wsize;
215 #ifndef FASTEST
216 p = &s->prev[n];
217 do {
218 m = *--p;
219 *p = (Pos)(m >= wsize ? m - wsize : NIL);
220 /* If n is not on any hash chain, prev[n] is garbage but
221 * its value will never be used.
222 */
223 } while (--n);
224 #endif
225 }
226
227 /* ========================================================================= */
228 int ZEXPORT deflateInit_(strm, level, version, stream_size)
229 z_streamp strm;
230 int level;
231 const char *version;
232 int stream_size;
233 {
234 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
235 Z_DEFAULT_STRATEGY, version, stream_size);
236 /* To do: ignore strm->next_in if we use it as window */
237 }
238
239 /* ========================================================================= */
240 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
241 version, stream_size)
242 z_streamp strm;
243 int level;
244 int method;
245 int windowBits;
246 int memLevel;
247 int strategy;
248 const char *version;
249 int stream_size;
250 {
251 deflate_state *s;
252 int wrap = 1;
253 static const char my_version[] = ZLIB_VERSION;
254
255 ushf *overlay;
256 /* We overlay pending_buf and d_buf+l_buf. This works since the average
257 * output size for (length,distance) codes is <= 24 bits.
258 */
259
260 if (version == Z_NULL || version[0] != my_version[0] ||
261 stream_size != sizeof(z_stream)) {
262 return Z_VERSION_ERROR;
263 }
264 if (strm == Z_NULL) return Z_STREAM_ERROR;
265
266 strm->msg = Z_NULL;
267 if (strm->zalloc == (alloc_func)0) {
268 #ifdef Z_SOLO
269 return Z_STREAM_ERROR;
270 #else
271 strm->zalloc = zcalloc;
272 strm->opaque = (voidpf)0;
273 #endif
274 }
275 if (strm->zfree == (free_func)0)
276 #ifdef Z_SOLO
277 return Z_STREAM_ERROR;
278 #else
279 strm->zfree = zcfree;
280 #endif
281
282 #ifdef FASTEST
283 if (level != 0) level = 1;
284 #else
285 if (level == Z_DEFAULT_COMPRESSION) level = 6;
286 #endif
287
288 if (windowBits < 0) { /* suppress zlib wrapper */
289 wrap = 0;
290 windowBits = -windowBits;
291 }
292 #ifdef GZIP
293 else if (windowBits > 15) {
294 wrap = 2; /* write gzip wrapper instead */
295 windowBits -= 16;
296 }
297 #endif
298 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
299 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
300 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
301 return Z_STREAM_ERROR;
302 }
303 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
304 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
305 if (s == Z_NULL) return Z_MEM_ERROR;
306 strm->state = (struct internal_state FAR *)s;
307 s->strm = strm;
308 s->status = INIT_STATE; /* to pass state test in deflateReset() */
309
310 s->wrap = wrap;
311 s->gzhead = Z_NULL;
312 s->w_bits = (uInt)windowBits;
313 s->w_size = 1 << s->w_bits;
314 s->w_mask = s->w_size - 1;
315
316 s->hash_bits = (uInt)memLevel + 7;
317 s->hash_size = 1 << s->hash_bits;
318 s->hash_mask = s->hash_size - 1;
319 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
320
321 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
322 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
323 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
324
325 s->high_water = 0; /* nothing written to s->window yet */
326
327 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
328
329 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
330 s->pending_buf = (uchf *) overlay;
331 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
332
333 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
334 s->pending_buf == Z_NULL) {
335 s->status = FINISH_STATE;
336 strm->msg = ERR_MSG(Z_MEM_ERROR);
337 deflateEnd (strm);
338 return Z_MEM_ERROR;
339 }
340 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
341 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
342
343 s->level = level;
344 s->strategy = strategy;
345 s->method = (Byte)method;
346
347 return deflateReset(strm);
348 }
349
350 /* =========================================================================
351 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
352 */
353 local int deflateStateCheck (strm)
354 z_streamp strm;
355 {
356 deflate_state *s;
357 if (strm == Z_NULL ||
358 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
359 return 1;
360 s = strm->state;
361 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
362 #ifdef GZIP
363 s->status != GZIP_STATE &&
364 #endif
365 s->status != EXTRA_STATE &&
366 s->status != NAME_STATE &&
367 s->status != COMMENT_STATE &&
368 s->status != HCRC_STATE &&
369 s->status != BUSY_STATE &&
370 s->status != FINISH_STATE))
371 return 1;
372 return 0;
373 }
374
375 /* ========================================================================= */
376 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
377 z_streamp strm;
378 const Bytef *dictionary;
379 uInt dictLength;
380 {
381 deflate_state *s;
382 uInt str, n;
383 int wrap;
384 unsigned avail;
385 z_const unsigned char *next;
386
387 if (deflateStateCheck(strm) || dictionary == Z_NULL)
388 return Z_STREAM_ERROR;
389 s = strm->state;
390 wrap = s->wrap;
391 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
392 return Z_STREAM_ERROR;
393
394 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
395 if (wrap == 1)
396 strm->adler = adler32(strm->adler, dictionary, dictLength);
397 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
398
399 /* if dictionary would fill window, just replace the history */
400 if (dictLength >= s->w_size) {
401 if (wrap == 0) { /* already empty otherwise */
402 CLEAR_HASH(s);
403 s->strstart = 0;
404 s->block_start = 0L;
405 s->insert = 0;
406 }
407 dictionary += dictLength - s->w_size; /* use the tail */
408 dictLength = s->w_size;
409 }
410
411 /* insert dictionary into window and hash */
412 avail = strm->avail_in;
413 next = strm->next_in;
414 strm->avail_in = dictLength;
415 strm->next_in = (z_const Bytef *)dictionary;
416 fill_window(s);
417 while (s->lookahead >= MIN_MATCH) {
418 str = s->strstart;
419 n = s->lookahead - (MIN_MATCH-1);
420 do {
421 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
422 #ifndef FASTEST
423 s->prev[str & s->w_mask] = s->head[s->ins_h];
424 #endif
425 s->head[s->ins_h] = (Pos)str;
426 str++;
427 } while (--n);
428 s->strstart = str;
429 s->lookahead = MIN_MATCH-1;
430 fill_window(s);
431 }
432 s->strstart += s->lookahead;
433 s->block_start = (long)s->strstart;
434 s->insert = s->lookahead;
435 s->lookahead = 0;
436 s->match_length = s->prev_length = MIN_MATCH-1;
437 s->match_available = 0;
438 strm->next_in = next;
439 strm->avail_in = avail;
440 s->wrap = wrap;
441 return Z_OK;
442 }
443
444 /* ========================================================================= */
445 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
446 z_streamp strm;
447 Bytef *dictionary;
448 uInt *dictLength;
449 {
450 deflate_state *s;
451 uInt len;
452
453 if (deflateStateCheck(strm))
454 return Z_STREAM_ERROR;
455 s = strm->state;
456 len = s->strstart + s->lookahead;
457 if (len > s->w_size)
458 len = s->w_size;
459 if (dictionary != Z_NULL && len)
460 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
461 if (dictLength != Z_NULL)
462 *dictLength = len;
463 return Z_OK;
464 }
465
466 /* ========================================================================= */
467 int ZEXPORT deflateResetKeep (strm)
468 z_streamp strm;
469 {
470 deflate_state *s;
471
472 if (deflateStateCheck(strm)) {
473 return Z_STREAM_ERROR;
474 }
475
476 strm->total_in = strm->total_out = 0;
477 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
478 strm->data_type = Z_UNKNOWN;
479
480 s = (deflate_state *)strm->state;
481 s->pending = 0;
482 s->pending_out = s->pending_buf;
483
484 if (s->wrap < 0) {
485 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
486 }
487 s->status =
488 #ifdef GZIP
489 s->wrap == 2 ? GZIP_STATE :
490 #endif
491 s->wrap ? INIT_STATE : BUSY_STATE;
492 strm->adler =
493 #ifdef GZIP
494 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
495 #endif
496 adler32(0L, Z_NULL, 0);
497 s->last_flush = Z_NO_FLUSH;
498
499 _tr_init(s);
500
501 return Z_OK;
502 }
503
504 /* ========================================================================= */
505 int ZEXPORT deflateReset (strm)
506 z_streamp strm;
507 {
508 int ret;
509
510 ret = deflateResetKeep(strm);
511 if (ret == Z_OK)
512 lm_init(strm->state);
513 return ret;
514 }
515
516 /* ========================================================================= */
517 int ZEXPORT deflateSetHeader (strm, head)
518 z_streamp strm;
519 gz_headerp head;
520 {
521 if (deflateStateCheck(strm) || strm->state->wrap != 2)
522 return Z_STREAM_ERROR;
523 strm->state->gzhead = head;
524 return Z_OK;
525 }
526
527 /* ========================================================================= */
528 int ZEXPORT deflatePending (strm, pending, bits)
529 unsigned *pending;
530 int *bits;
531 z_streamp strm;
532 {
533 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
534 if (pending != Z_NULL)
535 *pending = strm->state->pending;
536 if (bits != Z_NULL)
537 *bits = strm->state->bi_valid;
538 return Z_OK;
539 }
540
541 /* ========================================================================= */
542 int ZEXPORT deflatePrime (strm, bits, value)
543 z_streamp strm;
544 int bits;
545 int value;
546 {
547 deflate_state *s;
548 int put;
549
550 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
551 s = strm->state;
552 if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
553 return Z_BUF_ERROR;
554 do {
555 put = Buf_size - s->bi_valid;
556 if (put > bits)
557 put = bits;
558 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
559 s->bi_valid += put;
560 _tr_flush_bits(s);
561 value >>= put;
562 bits -= put;
563 } while (bits);
564 return Z_OK;
565 }
566
567 /* ========================================================================= */
568 int ZEXPORT deflateParams(strm, level, strategy)
569 z_streamp strm;
570 int level;
571 int strategy;
572 {
573 deflate_state *s;
574 compress_func func;
575
576 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
577 s = strm->state;
578
579 #ifdef FASTEST
580 if (level != 0) level = 1;
581 #else
582 if (level == Z_DEFAULT_COMPRESSION) level = 6;
583 #endif
584 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
585 return Z_STREAM_ERROR;
586 }
587 func = configuration_table[s->level].func;
588
589 if ((strategy != s->strategy || func != configuration_table[level].func)) {
590 /* Flush the last buffer: */
591 int err = deflate(strm, Z_BLOCK);
592 if (err == Z_STREAM_ERROR)
593 return err;
594 if (strm->avail_out == 0)
595 return Z_BUF_ERROR;
596 }
597 if (s->level != level) {
598 if (s->level == 0 && s->matches != 0) {
599 if (s->matches == 1)
600 slide_hash(s);
601 else
602 CLEAR_HASH(s);
603 s->matches = 0;
604 }
605 s->level = level;
606 s->max_lazy_match = configuration_table[level].max_lazy;
607 s->good_match = configuration_table[level].good_length;
608 s->nice_match = configuration_table[level].nice_length;
609 s->max_chain_length = configuration_table[level].max_chain;
610 }
611 s->strategy = strategy;
612 return Z_OK;
613 }
614
615 /* ========================================================================= */
616 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
617 z_streamp strm;
618 int good_length;
619 int max_lazy;
620 int nice_length;
621 int max_chain;
622 {
623 deflate_state *s;
624
625 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
626 s = strm->state;
627 s->good_match = (uInt)good_length;
628 s->max_lazy_match = (uInt)max_lazy;
629 s->nice_match = nice_length;
630 s->max_chain_length = (uInt)max_chain;
631 return Z_OK;
632 }
633
634 /* =========================================================================
635 * For the default windowBits of 15 and memLevel of 8, this function returns
636 * a close to exact, as well as small, upper bound on the compressed size.
637 * They are coded as constants here for a reason--if the #define's are
638 * changed, then this function needs to be changed as well. The return
639 * value for 15 and 8 only works for those exact settings.
640 *
641 * For any setting other than those defaults for windowBits and memLevel,
642 * the value returned is a conservative worst case for the maximum expansion
643 * resulting from using fixed blocks instead of stored blocks, which deflate
644 * can emit on compressed data for some combinations of the parameters.
645 *
646 * This function could be more sophisticated to provide closer upper bounds for
647 * every combination of windowBits and memLevel. But even the conservative
648 * upper bound of about 14% expansion does not seem onerous for output buffer
649 * allocation.
650 */
651 uLong ZEXPORT deflateBound(strm, sourceLen)
652 z_streamp strm;
653 uLong sourceLen;
654 {
655 deflate_state *s;
656 uLong complen, wraplen;
657
658 /* conservative upper bound for compressed data */
659 complen = sourceLen +
660 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
661
662 /* if can't get parameters, return conservative bound plus zlib wrapper */
663 if (deflateStateCheck(strm))
664 return complen + 6;
665
666 /* compute wrapper length */
667 s = strm->state;
668 switch (s->wrap) {
669 case 0: /* raw deflate */
670 wraplen = 0;
671 break;
672 case 1: /* zlib wrapper */
673 wraplen = 6 + (s->strstart ? 4 : 0);
674 break;
675 #ifdef GZIP
676 case 2: /* gzip wrapper */
677 wraplen = 18;
678 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
679 Bytef *str;
680 if (s->gzhead->extra != Z_NULL)
681 wraplen += 2 + s->gzhead->extra_len;
682 str = s->gzhead->name;
683 if (str != Z_NULL)
684 do {
685 wraplen++;
686 } while (*str++);
687 str = s->gzhead->comment;
688 if (str != Z_NULL)
689 do {
690 wraplen++;
691 } while (*str++);
692 if (s->gzhead->hcrc)
693 wraplen += 2;
694 }
695 break;
696 #endif
697 default: /* for compiler happiness */
698 wraplen = 6;
699 }
700
701 /* if not default parameters, return conservative bound */
702 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
703 return complen + wraplen;
704
705 /* default settings: return tight bound for that case */
706 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
707 (sourceLen >> 25) + 13 - 6 + wraplen;
708 }
709
710 /* =========================================================================
711 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
712 * IN assertion: the stream state is correct and there is enough room in
713 * pending_buf.
714 */
715 local void putShortMSB (s, b)
716 deflate_state *s;
717 uInt b;
718 {
719 put_byte(s, (Byte)(b >> 8));
720 put_byte(s, (Byte)(b & 0xff));
721 }
722
723 /* =========================================================================
724 * Flush as much pending output as possible. All deflate() output, except for
725 * some deflate_stored() output, goes through this function so some
726 * applications may wish to modify it to avoid allocating a large
727 * strm->next_out buffer and copying into it. (See also read_buf()).
728 */
729 local void flush_pending(strm)
730 z_streamp strm;
731 {
732 unsigned len;
733 deflate_state *s = strm->state;
734
735 _tr_flush_bits(s);
736 len = s->pending;
737 if (len > strm->avail_out) len = strm->avail_out;
738 if (len == 0) return;
739
740 zmemcpy(strm->next_out, s->pending_out, len);
741 strm->next_out += len;
742 s->pending_out += len;
743 strm->total_out += len;
744 strm->avail_out -= len;
745 s->pending -= len;
746 if (s->pending == 0) {
747 s->pending_out = s->pending_buf;
748 }
749 }
750
751 /* ===========================================================================
752 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
753 */
754 #define HCRC_UPDATE(beg) \
755 do { \
756 if (s->gzhead->hcrc && s->pending > (beg)) \
757 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
758 s->pending - (beg)); \
759 } while (0)
760
761 /* ========================================================================= */
762 int ZEXPORT deflate (strm, flush)
763 z_streamp strm;
764 int flush;
765 {
766 int old_flush; /* value of flush param for previous deflate call */
767 deflate_state *s;
768
769 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
770 return Z_STREAM_ERROR;
771 }
772 s = strm->state;
773
774 if (strm->next_out == Z_NULL ||
775 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
776 (s->status == FINISH_STATE && flush != Z_FINISH)) {
777 ERR_RETURN(strm, Z_STREAM_ERROR);
778 }
779 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
780
781 old_flush = s->last_flush;
782 s->last_flush = flush;
783
784 /* Flush as much pending output as possible */
785 if (s->pending != 0) {
786 flush_pending(strm);
787 if (strm->avail_out == 0) {
788 /* Since avail_out is 0, deflate will be called again with
789 * more output space, but possibly with both pending and
790 * avail_in equal to zero. There won't be anything to do,
791 * but this is not an error situation so make sure we
792 * return OK instead of BUF_ERROR at next call of deflate:
793 */
794 s->last_flush = -1;
795 return Z_OK;
796 }
797
798 /* Make sure there is something to do and avoid duplicate consecutive
799 * flushes. For repeated and useless calls with Z_FINISH, we keep
800 * returning Z_STREAM_END instead of Z_BUF_ERROR.
801 */
802 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
803 flush != Z_FINISH) {
804 ERR_RETURN(strm, Z_BUF_ERROR);
805 }
806
807 /* User must not provide more input after the first FINISH: */
808 if (s->status == FINISH_STATE && strm->avail_in != 0) {
809 ERR_RETURN(strm, Z_BUF_ERROR);
810 }
811
812 /* Write the header */
813 if (s->status == INIT_STATE) {
814 /* zlib header */
815 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
816 uInt level_flags;
817
818 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
819 level_flags = 0;
820 else if (s->level < 6)
821 level_flags = 1;
822 else if (s->level == 6)
823 level_flags = 2;
824 else
825 level_flags = 3;
826 header |= (level_flags << 6);
827 if (s->strstart != 0) header |= PRESET_DICT;
828 header += 31 - (header % 31);
829
830 putShortMSB(s, header);
831
832 /* Save the adler32 of the preset dictionary: */
833 if (s->strstart != 0) {
834 putShortMSB(s, (uInt)(strm->adler >> 16));
835 putShortMSB(s, (uInt)(strm->adler & 0xffff));
836 }
837 strm->adler = adler32(0L, Z_NULL, 0);
838 s->status = BUSY_STATE;
839
840 /* Compression must start with an empty pending buffer */
841 flush_pending(strm);
842 if (s->pending != 0) {
843 s->last_flush = -1;
844 return Z_OK;
845 }
846 }
847 #ifdef GZIP
848 if (s->status == GZIP_STATE) {
849 /* gzip header */
850 strm->adler = crc32(0L, Z_NULL, 0);
851 put_byte(s, 31);
852 put_byte(s, 139);
853 put_byte(s, 8);
854 if (s->gzhead == Z_NULL) {
855 put_byte(s, 0);
856 put_byte(s, 0);
857 put_byte(s, 0);
858 put_byte(s, 0);
859 put_byte(s, 0);
860 put_byte(s, s->level == 9 ? 2 :
861 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
862 4 : 0));
863 put_byte(s, OS_CODE);
864 s->status = BUSY_STATE;
865
866 /* Compression must start with an empty pending buffer */
867 flush_pending(strm);
868 if (s->pending != 0) {
869 s->last_flush = -1;
870 return Z_OK;
871 }
872 }
873 else {
874 put_byte(s, (s->gzhead->text ? 1 : 0) +
875 (s->gzhead->hcrc ? 2 : 0) +
876 (s->gzhead->extra == Z_NULL ? 0 : 4) +
877 (s->gzhead->name == Z_NULL ? 0 : 8) +
878 (s->gzhead->comment == Z_NULL ? 0 : 16)
879 );
880 put_byte(s, (Byte)(s->gzhead->time & 0xff));
881 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
882 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
883 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
884 put_byte(s, s->level == 9 ? 2 :
885 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
886 4 : 0));
887 put_byte(s, s->gzhead->os & 0xff);
888 if (s->gzhead->extra != Z_NULL) {
889 put_byte(s, s->gzhead->extra_len & 0xff);
890 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
891 }
892 if (s->gzhead->hcrc)
893 strm->adler = crc32(strm->adler, s->pending_buf,
894 s->pending);
895 s->gzindex = 0;
896 s->status = EXTRA_STATE;
897 }
898 }
899 if (s->status == EXTRA_STATE) {
900 if (s->gzhead->extra != Z_NULL) {
901 ulg beg = s->pending; /* start of bytes to update crc */
902 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
903 while (s->pending + left > s->pending_buf_size) {
904 uInt copy = s->pending_buf_size - s->pending;
905 zmemcpy(s->pending_buf + s->pending,
906 s->gzhead->extra + s->gzindex, copy);
907 s->pending = s->pending_buf_size;
908 HCRC_UPDATE(beg);
909 s->gzindex += copy;
910 flush_pending(strm);
911 if (s->pending != 0) {
912 s->last_flush = -1;
913 return Z_OK;
914 }
915 beg = 0;
916 left -= copy;
917 }
918 zmemcpy(s->pending_buf + s->pending,
919 s->gzhead->extra + s->gzindex, left);
920 s->pending += left;
921 HCRC_UPDATE(beg);
922 s->gzindex = 0;
923 }
924 s->status = NAME_STATE;
925 }
926 if (s->status == NAME_STATE) {
927 if (s->gzhead->name != Z_NULL) {
928 ulg beg = s->pending; /* start of bytes to update crc */
929 int val;
930 do {
931 if (s->pending == s->pending_buf_size) {
932 HCRC_UPDATE(beg);
933 flush_pending(strm);
934 if (s->pending != 0) {
935 s->last_flush = -1;
936 return Z_OK;
937 }
938 beg = 0;
939 }
940 val = s->gzhead->name[s->gzindex++];
941 put_byte(s, val);
942 } while (val != 0);
943 HCRC_UPDATE(beg);
944 s->gzindex = 0;
945 }
946 s->status = COMMENT_STATE;
947 }
948 if (s->status == COMMENT_STATE) {
949 if (s->gzhead->comment != Z_NULL) {
950 ulg beg = s->pending; /* start of bytes to update crc */
951 int val;
952 do {
953 if (s->pending == s->pending_buf_size) {
954 HCRC_UPDATE(beg);
955 flush_pending(strm);
956 if (s->pending != 0) {
957 s->last_flush = -1;
958 return Z_OK;
959 }
960 beg = 0;
961 }
962 val = s->gzhead->comment[s->gzindex++];
963 put_byte(s, val);
964 } while (val != 0);
965 HCRC_UPDATE(beg);
966 }
967 s->status = HCRC_STATE;
968 }
969 if (s->status == HCRC_STATE) {
970 if (s->gzhead->hcrc) {
971 if (s->pending + 2 > s->pending_buf_size) {
972 flush_pending(strm);
973 if (s->pending != 0) {
974 s->last_flush = -1;
975 return Z_OK;
976 }
977 }
978 put_byte(s, (Byte)(strm->adler & 0xff));
979 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
980 strm->adler = crc32(0L, Z_NULL, 0);
981 }
982 s->status = BUSY_STATE;
983
984 /* Compression must start with an empty pending buffer */
985 flush_pending(strm);
986 if (s->pending != 0) {
987 s->last_flush = -1;
988 return Z_OK;
989 }
990 }
991 #endif
992
993 /* Start a new block or continue the current one.
994 */
995 if (strm->avail_in != 0 || s->lookahead != 0 ||
996 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
997 block_state bstate;
998
999 bstate = s->level == 0 ? deflate_stored(s, flush) :
1000 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1001 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1002 (*(configuration_table[s->level].func))(s, flush);
1003
1004 if (bstate == finish_started || bstate == finish_done) {
1005 s->status = FINISH_STATE;
1006 }
1007 if (bstate == need_more || bstate == finish_started) {
1008 if (strm->avail_out == 0) {
1009 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1010 }
1011 return Z_OK;
1012 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1013 * of deflate should use the same flush parameter to make sure
1014 * that the flush is complete. So we don't have to output an
1015 * empty block here, this will be done at next call. This also
1016 * ensures that for a very small output buffer, we emit at most
1017 * one empty block.
1018 */
1019 }
1020 if (bstate == block_done) {
1021 if (flush == Z_PARTIAL_FLUSH) {
1022 _tr_align(s);
1023 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1024 _tr_stored_block(s, (char*)0, 0L, 0);
1025 /* For a full flush, this empty block will be recognized
1026 * as a special marker by inflate_sync().
1027 */
1028 if (flush == Z_FULL_FLUSH) {
1029 CLEAR_HASH(s); /* forget history */
1030 if (s->lookahead == 0) {
1031 s->strstart = 0;
1032 s->block_start = 0L;
1033 s->insert = 0;
1034 }
1035 }
1036 }
1037 flush_pending(strm);
1038 if (strm->avail_out == 0) {
1039 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1040 return Z_OK;
1041 }
1042 }
1043 }
1044
1045 if (flush != Z_FINISH) return Z_OK;
1046 if (s->wrap <= 0) return Z_STREAM_END;
1047
1048 /* Write the trailer */
1049 #ifdef GZIP
1050 if (s->wrap == 2) {
1051 put_byte(s, (Byte)(strm->adler & 0xff));
1052 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1053 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1054 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1055 put_byte(s, (Byte)(strm->total_in & 0xff));
1056 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1057 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1058 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1059 }
1060 else
1061 #endif
1062 {
1063 putShortMSB(s, (uInt)(strm->adler >> 16));
1064 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1065 }
1066 flush_pending(strm);
1067 /* If avail_out is zero, the application will call deflate again
1068 * to flush the rest.
1069 */
1070 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1071 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1072 }
1073
1074 /* ========================================================================= */
1075 int ZEXPORT deflateEnd (strm)
1076 z_streamp strm;
1077 {
1078 int status;
1079
1080 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1081
1082 status = strm->state->status;
1083
1084 /* Deallocate in reverse order of allocations: */
1085 TRY_FREE(strm, strm->state->pending_buf);
1086 TRY_FREE(strm, strm->state->head);
1087 TRY_FREE(strm, strm->state->prev);
1088 TRY_FREE(strm, strm->state->window);
1089
1090 ZFREE(strm, strm->state);
1091 strm->state = Z_NULL;
1092
1093 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1094 }
1095
1096 /* =========================================================================
1097 * Copy the source state to the destination state.
1098 * To simplify the source, this is not supported for 16-bit MSDOS (which
1099 * doesn't have enough memory anyway to duplicate compression states).
1100 */
1101 int ZEXPORT deflateCopy (dest, source)
1102 z_streamp dest;
1103 z_streamp source;
1104 {
1105 #ifdef MAXSEG_64K
1106 return Z_STREAM_ERROR;
1107 #else
1108 deflate_state *ds;
1109 deflate_state *ss;
1110 ushf *overlay;
1111
1112
1113 if (deflateStateCheck(source) || dest == Z_NULL) {
1114 return Z_STREAM_ERROR;
1115 }
1116
1117 ss = source->state;
1118
1119 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1120
1121 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1122 if (ds == Z_NULL) return Z_MEM_ERROR;
1123 dest->state = (struct internal_state FAR *) ds;
1124 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1125 ds->strm = dest;
1126
1127 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1128 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1129 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1130 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1131 ds->pending_buf = (uchf *) overlay;
1132
1133 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1134 ds->pending_buf == Z_NULL) {
1135 deflateEnd (dest);
1136 return Z_MEM_ERROR;
1137 }
1138 /* following zmemcpy do not work for 16-bit MSDOS */
1139 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1140 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1141 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1142 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1143
1144 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1145 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1146 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1147
1148 ds->l_desc.dyn_tree = ds->dyn_ltree;
1149 ds->d_desc.dyn_tree = ds->dyn_dtree;
1150 ds->bl_desc.dyn_tree = ds->bl_tree;
1151
1152 return Z_OK;
1153 #endif /* MAXSEG_64K */
1154 }
1155
1156 /* ===========================================================================
1157 * Read a new buffer from the current input stream, update the adler32
1158 * and total number of bytes read. All deflate() input goes through
1159 * this function so some applications may wish to modify it to avoid
1160 * allocating a large strm->next_in buffer and copying from it.
1161 * (See also flush_pending()).
1162 */
1163 local unsigned read_buf(strm, buf, size)
1164 z_streamp strm;
1165 Bytef *buf;
1166 unsigned size;
1167 {
1168 unsigned len = strm->avail_in;
1169
1170 if (len > size) len = size;
1171 if (len == 0) return 0;
1172
1173 strm->avail_in -= len;
1174
1175 zmemcpy(buf, strm->next_in, len);
1176 if (strm->state->wrap == 1) {
1177 strm->adler = adler32(strm->adler, buf, len);
1178 }
1179 #ifdef GZIP
1180 else if (strm->state->wrap == 2) {
1181 strm->adler = crc32(strm->adler, buf, len);
1182 }
1183 #endif
1184 strm->next_in += len;
1185 strm->total_in += len;
1186
1187 return len;
1188 }
1189
1190 /* ===========================================================================
1191 * Initialize the "longest match" routines for a new zlib stream
1192 */
1193 local void lm_init (s)
1194 deflate_state *s;
1195 {
1196 s->window_size = (ulg)2L*s->w_size;
1197
1198 CLEAR_HASH(s);
1199
1200 /* Set the default configuration parameters:
1201 */
1202 s->max_lazy_match = configuration_table[s->level].max_lazy;
1203 s->good_match = configuration_table[s->level].good_length;
1204 s->nice_match = configuration_table[s->level].nice_length;
1205 s->max_chain_length = configuration_table[s->level].max_chain;
1206
1207 s->strstart = 0;
1208 s->block_start = 0L;
1209 s->lookahead = 0;
1210 s->insert = 0;
1211 s->match_length = s->prev_length = MIN_MATCH-1;
1212 s->match_available = 0;
1213 s->ins_h = 0;
1214 #ifndef FASTEST
1215 #ifdef ASMV
1216 match_init(); /* initialize the asm code */
1217 #endif
1218 #endif
1219 }
1220
1221 #ifndef FASTEST
1222 /* ===========================================================================
1223 * Set match_start to the longest match starting at the given string and
1224 * return its length. Matches shorter or equal to prev_length are discarded,
1225 * in which case the result is equal to prev_length and match_start is
1226 * garbage.
1227 * IN assertions: cur_match is the head of the hash chain for the current
1228 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1229 * OUT assertion: the match length is not greater than s->lookahead.
1230 */
1231 #ifndef ASMV
1232 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1233 * match.S. The code will be functionally equivalent.
1234 */
1235 local uInt longest_match(s, cur_match)
1236 deflate_state *s;
1237 IPos cur_match; /* current match */
1238 {
1239 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1240 register Bytef *scan = s->window + s->strstart; /* current string */
1241 register Bytef *match; /* matched string */
1242 register int len; /* length of current match */
1243 int best_len = (int)s->prev_length; /* best match length so far */
1244 int nice_match = s->nice_match; /* stop if match long enough */
1245 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1246 s->strstart - (IPos)MAX_DIST(s) : NIL;
1247 /* Stop when cur_match becomes <= limit. To simplify the code,
1248 * we prevent matches with the string of window index 0.
1249 */
1250 Posf *prev = s->prev;
1251 uInt wmask = s->w_mask;
1252
1253 #ifdef UNALIGNED_OK
1254 /* Compare two bytes at a time. Note: this is not always beneficial.
1255 * Try with and without -DUNALIGNED_OK to check.
1256 */
1257 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1258 register ush scan_start = *(ushf*)scan;
1259 register ush scan_end = *(ushf*)(scan+best_len-1);
1260 #else
1261 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1262 register Byte scan_end1 = scan[best_len-1];
1263 register Byte scan_end = scan[best_len];
1264 #endif
1265
1266 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1267 * It is easy to get rid of this optimization if necessary.
1268 */
1269 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1270
1271 /* Do not waste too much time if we already have a good match: */
1272 if (s->prev_length >= s->good_match) {
1273 chain_length >>= 2;
1274 }
1275 /* Do not look for matches beyond the end of the input. This is necessary
1276 * to make deflate deterministic.
1277 */
1278 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1279
1280 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1281
1282 do {
1283 Assert(cur_match < s->strstart, "no future");
1284 match = s->window + cur_match;
1285
1286 /* Skip to next match if the match length cannot increase
1287 * or if the match length is less than 2. Note that the checks below
1288 * for insufficient lookahead only occur occasionally for performance
1289 * reasons. Therefore uninitialized memory will be accessed, and
1290 * conditional jumps will be made that depend on those values.
1291 * However the length of the match is limited to the lookahead, so
1292 * the output of deflate is not affected by the uninitialized values.
1293 */
1294 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1295 /* This code assumes sizeof(unsigned short) == 2. Do not use
1296 * UNALIGNED_OK if your compiler uses a different size.
1297 */
1298 if (*(ushf*)(match+best_len-1) != scan_end ||
1299 *(ushf*)match != scan_start) continue;
1300
1301 /* It is not necessary to compare scan[2] and match[2] since they are
1302 * always equal when the other bytes match, given that the hash keys
1303 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1304 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1305 * lookahead only every 4th comparison; the 128th check will be made
1306 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1307 * necessary to put more guard bytes at the end of the window, or
1308 * to check more often for insufficient lookahead.
1309 */
1310 Assert(scan[2] == match[2], "scan[2]?");
1311 scan++, match++;
1312 do {
1313 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1314 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1315 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1316 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1317 scan < strend);
1318 /* The funny "do {}" generates better code on most compilers */
1319
1320 /* Here, scan <= window+strstart+257 */
1321 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1322 if (*scan == *match) scan++;
1323
1324 len = (MAX_MATCH - 1) - (int)(strend-scan);
1325 scan = strend - (MAX_MATCH-1);
1326
1327 #else /* UNALIGNED_OK */
1328
1329 if (match[best_len] != scan_end ||
1330 match[best_len-1] != scan_end1 ||
1331 *match != *scan ||
1332 *++match != scan[1]) continue;
1333
1334 /* The check at best_len-1 can be removed because it will be made
1335 * again later. (This heuristic is not always a win.)
1336 * It is not necessary to compare scan[2] and match[2] since they
1337 * are always equal when the other bytes match, given that
1338 * the hash keys are equal and that HASH_BITS >= 8.
1339 */
1340 scan += 2, match++;
1341 Assert(*scan == *match, "match[2]?");
1342
1343 /* We check for insufficient lookahead only every 8th comparison;
1344 * the 256th check will be made at strstart+258.
1345 */
1346 do {
1347 } while (*++scan == *++match && *++scan == *++match &&
1348 *++scan == *++match && *++scan == *++match &&
1349 *++scan == *++match && *++scan == *++match &&
1350 *++scan == *++match && *++scan == *++match &&
1351 scan < strend);
1352
1353 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1354
1355 len = MAX_MATCH - (int)(strend - scan);
1356 scan = strend - MAX_MATCH;
1357
1358 #endif /* UNALIGNED_OK */
1359
1360 if (len > best_len) {
1361 s->match_start = cur_match;
1362 best_len = len;
1363 if (len >= nice_match) break;
1364 #ifdef UNALIGNED_OK
1365 scan_end = *(ushf*)(scan+best_len-1);
1366 #else
1367 scan_end1 = scan[best_len-1];
1368 scan_end = scan[best_len];
1369 #endif
1370 }
1371 } while ((cur_match = prev[cur_match & wmask]) > limit
1372 && --chain_length != 0);
1373
1374 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1375 return s->lookahead;
1376 }
1377 #endif /* ASMV */
1378
1379 #else /* FASTEST */
1380
1381 /* ---------------------------------------------------------------------------
1382 * Optimized version for FASTEST only
1383 */
1384 local uInt longest_match(s, cur_match)
1385 deflate_state *s;
1386 IPos cur_match; /* current match */
1387 {
1388 register Bytef *scan = s->window + s->strstart; /* current string */
1389 register Bytef *match; /* matched string */
1390 register int len; /* length of current match */
1391 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1392
1393 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1394 * It is easy to get rid of this optimization if necessary.
1395 */
1396 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1397
1398 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1399
1400 Assert(cur_match < s->strstart, "no future");
1401
1402 match = s->window + cur_match;
1403
1404 /* Return failure if the match length is less than 2:
1405 */
1406 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1407
1408 /* The check at best_len-1 can be removed because it will be made
1409 * again later. (This heuristic is not always a win.)
1410 * It is not necessary to compare scan[2] and match[2] since they
1411 * are always equal when the other bytes match, given that
1412 * the hash keys are equal and that HASH_BITS >= 8.
1413 */
1414 scan += 2, match += 2;
1415 Assert(*scan == *match, "match[2]?");
1416
1417 /* We check for insufficient lookahead only every 8th comparison;
1418 * the 256th check will be made at strstart+258.
1419 */
1420 do {
1421 } while (*++scan == *++match && *++scan == *++match &&
1422 *++scan == *++match && *++scan == *++match &&
1423 *++scan == *++match && *++scan == *++match &&
1424 *++scan == *++match && *++scan == *++match &&
1425 scan < strend);
1426
1427 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1428
1429 len = MAX_MATCH - (int)(strend - scan);
1430
1431 if (len < MIN_MATCH) return MIN_MATCH - 1;
1432
1433 s->match_start = cur_match;
1434 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1435 }
1436
1437 #endif /* FASTEST */
1438
1439 #ifdef ZLIB_DEBUG
1440
1441 #define EQUAL 0
1442 /* result of memcmp for equal strings */
1443
1444 /* ===========================================================================
1445 * Check that the match at match_start is indeed a match.
1446 */
1447 local void check_match(s, start, match, length)
1448 deflate_state *s;
1449 IPos start, match;
1450 int length;
1451 {
1452 /* check that the match is indeed a match */
1453 if (zmemcmp(s->window + match,
1454 s->window + start, length) != EQUAL) {
1455 fprintf(stderr, " start %u, match %u, length %d\n",
1456 start, match, length);
1457 do {
1458 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1459 } while (--length != 0);
1460 z_error("invalid match");
1461 }
1462 if (z_verbose > 1) {
1463 fprintf(stderr,"\\[%d,%d]", start-match, length);
1464 do { putc(s->window[start++], stderr); } while (--length != 0);
1465 }
1466 }
1467 #else
1468 # define check_match(s, start, match, length)
1469 #endif /* ZLIB_DEBUG */
1470
1471 /* ===========================================================================
1472 * Fill the window when the lookahead becomes insufficient.
1473 * Updates strstart and lookahead.
1474 *
1475 * IN assertion: lookahead < MIN_LOOKAHEAD
1476 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1477 * At least one byte has been read, or avail_in == 0; reads are
1478 * performed for at least two bytes (required for the zip translate_eol
1479 * option -- not supported here).
1480 */
1481 local void fill_window(s)
1482 deflate_state *s;
1483 {
1484 unsigned n;
1485 unsigned more; /* Amount of free space at the end of the window. */
1486 uInt wsize = s->w_size;
1487
1488 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1489
1490 do {
1491 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1492
1493 /* Deal with !@#$% 64K limit: */
1494 if (sizeof(int) <= 2) {
1495 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1496 more = wsize;
1497
1498 } else if (more == (unsigned)(-1)) {
1499 /* Very unlikely, but possible on 16 bit machine if
1500 * strstart == 0 && lookahead == 1 (input done a byte at time)
1501 */
1502 more--;
1503 }
1504 }
1505
1506 /* If the window is almost full and there is insufficient lookahead,
1507 * move the upper half to the lower one to make room in the upper half.
1508 */
1509 if (s->strstart >= wsize+MAX_DIST(s)) {
1510
1511 zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1512 s->match_start -= wsize;
1513 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1514 s->block_start -= (long) wsize;
1515 slide_hash(s);
1516 more += wsize;
1517 }
1518 if (s->strm->avail_in == 0) break;
1519
1520 /* If there was no sliding:
1521 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1522 * more == window_size - lookahead - strstart
1523 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1524 * => more >= window_size - 2*WSIZE + 2
1525 * In the BIG_MEM or MMAP case (not yet supported),
1526 * window_size == input_size + MIN_LOOKAHEAD &&
1527 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1528 * Otherwise, window_size == 2*WSIZE so more >= 2.
1529 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1530 */
1531 Assert(more >= 2, "more < 2");
1532
1533 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1534 s->lookahead += n;
1535
1536 /* Initialize the hash value now that we have some input: */
1537 if (s->lookahead + s->insert >= MIN_MATCH) {
1538 uInt str = s->strstart - s->insert;
1539 s->ins_h = s->window[str];
1540 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1541 #if MIN_MATCH != 3
1542 Call UPDATE_HASH() MIN_MATCH-3 more times
1543 #endif
1544 while (s->insert) {
1545 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1546 #ifndef FASTEST
1547 s->prev[str & s->w_mask] = s->head[s->ins_h];
1548 #endif
1549 s->head[s->ins_h] = (Pos)str;
1550 str++;
1551 s->insert--;
1552 if (s->lookahead + s->insert < MIN_MATCH)
1553 break;
1554 }
1555 }
1556 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1557 * but this is not important since only literal bytes will be emitted.
1558 */
1559
1560 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1561
1562 /* If the WIN_INIT bytes after the end of the current data have never been
1563 * written, then zero those bytes in order to avoid memory check reports of
1564 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1565 * the longest match routines. Update the high water mark for the next
1566 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1567 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1568 */
1569 if (s->high_water < s->window_size) {
1570 ulg curr = s->strstart + (ulg)(s->lookahead);
1571 ulg init;
1572
1573 if (s->high_water < curr) {
1574 /* Previous high water mark below current data -- zero WIN_INIT
1575 * bytes or up to end of window, whichever is less.
1576 */
1577 init = s->window_size - curr;
1578 if (init > WIN_INIT)
1579 init = WIN_INIT;
1580 zmemzero(s->window + curr, (unsigned)init);
1581 s->high_water = curr + init;
1582 }
1583 else if (s->high_water < (ulg)curr + WIN_INIT) {
1584 /* High water mark at or above current data, but below current data
1585 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1586 * to end of window, whichever is less.
1587 */
1588 init = (ulg)curr + WIN_INIT - s->high_water;
1589 if (init > s->window_size - s->high_water)
1590 init = s->window_size - s->high_water;
1591 zmemzero(s->window + s->high_water, (unsigned)init);
1592 s->high_water += init;
1593 }
1594 }
1595
1596 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1597 "not enough room for search");
1598 }
1599
1600 /* ===========================================================================
1601 * Flush the current block, with given end-of-file flag.
1602 * IN assertion: strstart is set to the end of the current match.
1603 */
1604 #define FLUSH_BLOCK_ONLY(s, last) { \
1605 _tr_flush_block(s, (s->block_start >= 0L ? \
1606 (charf *)&s->window[(unsigned)s->block_start] : \
1607 (charf *)Z_NULL), \
1608 (ulg)((long)s->strstart - s->block_start), \
1609 (last)); \
1610 s->block_start = s->strstart; \
1611 flush_pending(s->strm); \
1612 Tracev((stderr,"[FLUSH]")); \
1613 }
1614
1615 /* Same but force premature exit if necessary. */
1616 #define FLUSH_BLOCK(s, last) { \
1617 FLUSH_BLOCK_ONLY(s, last); \
1618 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1619 }
1620
1621 /* Maximum stored block length in deflate format (not including header). */
1622 #define MAX_STORED 65535
1623
1624 /* Minimum of a and b. */
1625 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1626
1627 /* ===========================================================================
1628 * Copy without compression as much as possible from the input stream, return
1629 * the current block state.
1630 *
1631 * In case deflateParams() is used to later switch to a non-zero compression
1632 * level, s->matches (otherwise unused when storing) keeps track of the number
1633 * of hash table slides to perform. If s->matches is 1, then one hash table
1634 * slide will be done when switching. If s->matches is 2, the maximum value
1635 * allowed here, then the hash table will be cleared, since two or more slides
1636 * is the same as a clear.
1637 *
1638 * deflate_stored() is written to minimize the number of times an input byte is
1639 * copied. It is most efficient with large input and output buffers, which
1640 * maximizes the opportunites to have a single copy from next_in to next_out.
1641 */
1642 local block_state deflate_stored(s, flush)
1643 deflate_state *s;
1644 int flush;
1645 {
1646 /* Smallest worthy block size when not flushing or finishing. By default
1647 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1648 * large input and output buffers, the stored block size will be larger.
1649 */
1650 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1651
1652 /* Copy as many min_block or larger stored blocks directly to next_out as
1653 * possible. If flushing, copy the remaining available input to next_out as
1654 * stored blocks, if there is enough space.
1655 */
1656 unsigned len, left, have, last = 0;
1657 unsigned used = s->strm->avail_in;
1658 do {
1659 /* Set len to the maximum size block that we can copy directly with the
1660 * available input data and output space. Set left to how much of that
1661 * would be copied from what's left in the window.
1662 */
1663 len = MAX_STORED; /* maximum deflate stored block length */
1664 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1665 if (s->strm->avail_out < have) /* need room for header */
1666 break;
1667 /* maximum stored block length that will fit in avail_out: */
1668 have = s->strm->avail_out - have;
1669 left = s->strstart - s->block_start; /* bytes left in window */
1670 if (len > (ulg)left + s->strm->avail_in)
1671 len = left + s->strm->avail_in; /* limit len to the input */
1672 if (len > have)
1673 len = have; /* limit len to the output */
1674 if (left > len)
1675 left = len; /* limit window pull to len */
1676
1677 /* If the stored block would be less than min_block in length, or if
1678 * unable to copy all of the available input when flushing, then try
1679 * copying to the window and the pending buffer instead. Also don't
1680 * write an empty block when flushing -- deflate() does that.
1681 */
1682 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1683 flush == Z_NO_FLUSH ||
1684 len - left != s->strm->avail_in))
1685 break;
1686
1687 /* Make a dummy stored block in pending to get the header bytes,
1688 * including any pending bits. This also updates the debugging counts.
1689 */
1690 last = flush == Z_FINISH && len - left == s->strm->avail_in ? 1 : 0;
1691 _tr_stored_block(s, (char *)0, 0L, last);
1692
1693 /* Replace the lengths in the dummy stored block with len. */
1694 s->pending_buf[s->pending - 4] = len;
1695 s->pending_buf[s->pending - 3] = len >> 8;
1696 s->pending_buf[s->pending - 2] = ~len;
1697 s->pending_buf[s->pending - 1] = ~len >> 8;
1698
1699 /* Write the stored block header bytes. */
1700 flush_pending(s->strm);
1701
1702 /* Update debugging counts for the data about to be copied. */
1703 #ifdef ZLIB_DEBUG
1704 s->compressed_len += len << 3;
1705 s->bits_sent += len << 3;
1706 #endif
1707
1708 /* Copy uncompressed bytes from the window to next_out. */
1709 if (left) {
1710 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1711 s->strm->next_out += left;
1712 s->strm->avail_out -= left;
1713 s->strm->total_out += left;
1714 s->block_start += left;
1715 len -= left;
1716 }
1717
1718 /* Copy uncompressed bytes directly from next_in to next_out, updating
1719 * the check value.
1720 */
1721 if (len) {
1722 read_buf(s->strm, s->strm->next_out, len);
1723 s->strm->next_out += len;
1724 s->strm->avail_out -= len;
1725 s->strm->total_out += len;
1726 }
1727 } while (last == 0);
1728
1729 /* Update the sliding window with the last s->w_size bytes of the copied
1730 * data, or append all of the copied data to the existing window if less
1731 * than s->w_size bytes were copied. Also update the number of bytes to
1732 * insert in the hash tables, in the event that deflateParams() switches to
1733 * a non-zero compression level.
1734 */
1735 used -= s->strm->avail_in; /* number of input bytes directly copied */
1736 if (used) {
1737 /* If any input was used, then no unused input remains in the window,
1738 * therefore s->block_start == s->strstart.
1739 */
1740 if (used >= s->w_size) { /* supplant the previous history */
1741 s->matches = 2; /* clear hash */
1742 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1743 s->strstart = s->w_size;
1744 }
1745 else {
1746 if (s->window_size - s->strstart <= used) {
1747 /* Slide the window down. */
1748 s->strstart -= s->w_size;
1749 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1750 if (s->matches < 2)
1751 s->matches++; /* add a pending slide_hash() */
1752 }
1753 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1754 s->strstart += used;
1755 }
1756 s->block_start = s->strstart;
1757 s->insert += MIN(used, s->w_size - s->insert);
1758 }
1759
1760 /* If the last block was written to next_out, then done. */
1761 if (last)
1762 return finish_done;
1763
1764 /* If flushing and all input has been consumed, then done. */
1765 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1766 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1767 return block_done;
1768
1769 /* Fill the window with any remaining input. */
1770 have = s->window_size - s->strstart - 1;
1771 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1772 /* Slide the window down. */
1773 s->block_start -= s->w_size;
1774 s->strstart -= s->w_size;
1775 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1776 if (s->matches < 2)
1777 s->matches++; /* add a pending slide_hash() */
1778 have += s->w_size; /* more space now */
1779 }
1780 if (have > s->strm->avail_in)
1781 have = s->strm->avail_in;
1782 if (have) {
1783 read_buf(s->strm, s->window + s->strstart, have);
1784 s->strstart += have;
1785 }
1786
1787 /* There was not enough avail_out to write a complete worthy or flushed
1788 * stored block to next_out. Write a stored block to pending instead, if we
1789 * have enough input for a worthy block, or if flushing and there is enough
1790 * room for the remaining input as a stored block in the pending buffer.
1791 */
1792 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1793 /* maximum stored block length that will fit in pending: */
1794 have = MIN(s->pending_buf_size - have, MAX_STORED);
1795 min_block = MIN(have, s->w_size);
1796 left = s->strstart - s->block_start;
1797 if (left >= min_block ||
1798 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1799 s->strm->avail_in == 0 && left <= have)) {
1800 len = MIN(left, have);
1801 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1802 len == left ? 1 : 0;
1803 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1804 s->block_start += len;
1805 flush_pending(s->strm);
1806 }
1807
1808 /* We've done all we can with the available input and output. */
1809 return last ? finish_started : need_more;
1810 }
1811
1812 /* ===========================================================================
1813 * Compress as much as possible from the input stream, return the current
1814 * block state.
1815 * This function does not perform lazy evaluation of matches and inserts
1816 * new strings in the dictionary only for unmatched strings or for short
1817 * matches. It is used only for the fast compression options.
1818 */
1819 local block_state deflate_fast(s, flush)
1820 deflate_state *s;
1821 int flush;
1822 {
1823 IPos hash_head; /* head of the hash chain */
1824 int bflush; /* set if current block must be flushed */
1825
1826 for (;;) {
1827 /* Make sure that we always have enough lookahead, except
1828 * at the end of the input file. We need MAX_MATCH bytes
1829 * for the next match, plus MIN_MATCH bytes to insert the
1830 * string following the next match.
1831 */
1832 if (s->lookahead < MIN_LOOKAHEAD) {
1833 fill_window(s);
1834 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1835 return need_more;
1836 }
1837 if (s->lookahead == 0) break; /* flush the current block */
1838 }
1839
1840 /* Insert the string window[strstart .. strstart+2] in the
1841 * dictionary, and set hash_head to the head of the hash chain:
1842 */
1843 hash_head = NIL;
1844 if (s->lookahead >= MIN_MATCH) {
1845 INSERT_STRING(s, s->strstart, hash_head);
1846 }
1847
1848 /* Find the longest match, discarding those <= prev_length.
1849 * At this point we have always match_length < MIN_MATCH
1850 */
1851 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1852 /* To simplify the code, we prevent matches with the string
1853 * of window index 0 (in particular we have to avoid a match
1854 * of the string with itself at the start of the input file).
1855 */
1856 s->match_length = longest_match (s, hash_head);
1857 /* longest_match() sets match_start */
1858 }
1859 if (s->match_length >= MIN_MATCH) {
1860 check_match(s, s->strstart, s->match_start, s->match_length);
1861
1862 _tr_tally_dist(s, s->strstart - s->match_start,
1863 s->match_length - MIN_MATCH, bflush);
1864
1865 s->lookahead -= s->match_length;
1866
1867 /* Insert new strings in the hash table only if the match length
1868 * is not too large. This saves time but degrades compression.
1869 */
1870 #ifndef FASTEST
1871 if (s->match_length <= s->max_insert_length &&
1872 s->lookahead >= MIN_MATCH) {
1873 s->match_length--; /* string at strstart already in table */
1874 do {
1875 s->strstart++;
1876 INSERT_STRING(s, s->strstart, hash_head);
1877 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1878 * always MIN_MATCH bytes ahead.
1879 */
1880 } while (--s->match_length != 0);
1881 s->strstart++;
1882 } else
1883 #endif
1884 {
1885 s->strstart += s->match_length;
1886 s->match_length = 0;
1887 s->ins_h = s->window[s->strstart];
1888 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1889 #if MIN_MATCH != 3
1890 Call UPDATE_HASH() MIN_MATCH-3 more times
1891 #endif
1892 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1893 * matter since it will be recomputed at next deflate call.
1894 */
1895 }
1896 } else {
1897 /* No match, output a literal byte */
1898 Tracevv((stderr,"%c", s->window[s->strstart]));
1899 _tr_tally_lit (s, s->window[s->strstart], bflush);
1900 s->lookahead--;
1901 s->strstart++;
1902 }
1903 if (bflush) FLUSH_BLOCK(s, 0);
1904 }
1905 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1906 if (flush == Z_FINISH) {
1907 FLUSH_BLOCK(s, 1);
1908 return finish_done;
1909 }
1910 if (s->last_lit)
1911 FLUSH_BLOCK(s, 0);
1912 return block_done;
1913 }
1914
1915 #ifndef FASTEST
1916 /* ===========================================================================
1917 * Same as above, but achieves better compression. We use a lazy
1918 * evaluation for matches: a match is finally adopted only if there is
1919 * no better match at the next window position.
1920 */
1921 local block_state deflate_slow(s, flush)
1922 deflate_state *s;
1923 int flush;
1924 {
1925 IPos hash_head; /* head of hash chain */
1926 int bflush; /* set if current block must be flushed */
1927
1928 /* Process the input block. */
1929 for (;;) {
1930 /* Make sure that we always have enough lookahead, except
1931 * at the end of the input file. We need MAX_MATCH bytes
1932 * for the next match, plus MIN_MATCH bytes to insert the
1933 * string following the next match.
1934 */
1935 if (s->lookahead < MIN_LOOKAHEAD) {
1936 fill_window(s);
1937 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1938 return need_more;
1939 }
1940 if (s->lookahead == 0) break; /* flush the current block */
1941 }
1942
1943 /* Insert the string window[strstart .. strstart+2] in the
1944 * dictionary, and set hash_head to the head of the hash chain:
1945 */
1946 hash_head = NIL;
1947 if (s->lookahead >= MIN_MATCH) {
1948 INSERT_STRING(s, s->strstart, hash_head);
1949 }
1950
1951 /* Find the longest match, discarding those <= prev_length.
1952 */
1953 s->prev_length = s->match_length, s->prev_match = s->match_start;
1954 s->match_length = MIN_MATCH-1;
1955
1956 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1957 s->strstart - hash_head <= MAX_DIST(s)) {
1958 /* To simplify the code, we prevent matches with the string
1959 * of window index 0 (in particular we have to avoid a match
1960 * of the string with itself at the start of the input file).
1961 */
1962 s->match_length = longest_match (s, hash_head);
1963 /* longest_match() sets match_start */
1964
1965 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1966 #if TOO_FAR <= 32767
1967 || (s->match_length == MIN_MATCH &&
1968 s->strstart - s->match_start > TOO_FAR)
1969 #endif
1970 )) {
1971
1972 /* If prev_match is also MIN_MATCH, match_start is garbage
1973 * but we will ignore the current match anyway.
1974 */
1975 s->match_length = MIN_MATCH-1;
1976 }
1977 }
1978 /* If there was a match at the previous step and the current
1979 * match is not better, output the previous match:
1980 */
1981 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1982 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1983 /* Do not insert strings in hash table beyond this. */
1984
1985 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1986
1987 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1988 s->prev_length - MIN_MATCH, bflush);
1989
1990 /* Insert in hash table all strings up to the end of the match.
1991 * strstart-1 and strstart are already inserted. If there is not
1992 * enough lookahead, the last two strings are not inserted in
1993 * the hash table.
1994 */
1995 s->lookahead -= s->prev_length-1;
1996 s->prev_length -= 2;
1997 do {
1998 if (++s->strstart <= max_insert) {
1999 INSERT_STRING(s, s->strstart, hash_head);
2000 }
2001 } while (--s->prev_length != 0);
2002 s->match_available = 0;
2003 s->match_length = MIN_MATCH-1;
2004 s->strstart++;
2005
2006 if (bflush) FLUSH_BLOCK(s, 0);
2007
2008 } else if (s->match_available) {
2009 /* If there was no match at the previous position, output a
2010 * single literal. If there was a match but the current match
2011 * is longer, truncate the previous match to a single literal.
2012 */
2013 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2014 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2015 if (bflush) {
2016 FLUSH_BLOCK_ONLY(s, 0);
2017 }
2018 s->strstart++;
2019 s->lookahead--;
2020 if (s->strm->avail_out == 0) return need_more;
2021 } else {
2022 /* There is no previous match to compare with, wait for
2023 * the next step to decide.
2024 */
2025 s->match_available = 1;
2026 s->strstart++;
2027 s->lookahead--;
2028 }
2029 }
2030 Assert (flush != Z_NO_FLUSH, "no flush?");
2031 if (s->match_available) {
2032 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2033 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2034 s->match_available = 0;
2035 }
2036 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2037 if (flush == Z_FINISH) {
2038 FLUSH_BLOCK(s, 1);
2039 return finish_done;
2040 }
2041 if (s->last_lit)
2042 FLUSH_BLOCK(s, 0);
2043 return block_done;
2044 }
2045 #endif /* FASTEST */
2046
2047 /* ===========================================================================
2048 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2049 * one. Do not maintain a hash table. (It will be regenerated if this run of
2050 * deflate switches away from Z_RLE.)
2051 */
2052 local block_state deflate_rle(s, flush)
2053 deflate_state *s;
2054 int flush;
2055 {
2056 int bflush; /* set if current block must be flushed */
2057 uInt prev; /* byte at distance one to match */
2058 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2059
2060 for (;;) {
2061 /* Make sure that we always have enough lookahead, except
2062 * at the end of the input file. We need MAX_MATCH bytes
2063 * for the longest run, plus one for the unrolled loop.
2064 */
2065 if (s->lookahead <= MAX_MATCH) {
2066 fill_window(s);
2067 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2068 return need_more;
2069 }
2070 if (s->lookahead == 0) break; /* flush the current block */
2071 }
2072
2073 /* See how many times the previous byte repeats */
2074 s->match_length = 0;
2075 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2076 scan = s->window + s->strstart - 1;
2077 prev = *scan;
2078 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2079 strend = s->window + s->strstart + MAX_MATCH;
2080 do {
2081 } while (prev == *++scan && prev == *++scan &&
2082 prev == *++scan && prev == *++scan &&
2083 prev == *++scan && prev == *++scan &&
2084 prev == *++scan && prev == *++scan &&
2085 scan < strend);
2086 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2087 if (s->match_length > s->lookahead)
2088 s->match_length = s->lookahead;
2089 }
2090 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2091 }
2092
2093 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2094 if (s->match_length >= MIN_MATCH) {
2095 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2096
2097 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2098
2099 s->lookahead -= s->match_length;
2100 s->strstart += s->match_length;
2101 s->match_length = 0;
2102 } else {
2103 /* No match, output a literal byte */
2104 Tracevv((stderr,"%c", s->window[s->strstart]));
2105 _tr_tally_lit (s, s->window[s->strstart], bflush);
2106 s->lookahead--;
2107 s->strstart++;
2108 }
2109 if (bflush) FLUSH_BLOCK(s, 0);
2110 }
2111 s->insert = 0;
2112 if (flush == Z_FINISH) {
2113 FLUSH_BLOCK(s, 1);
2114 return finish_done;
2115 }
2116 if (s->last_lit)
2117 FLUSH_BLOCK(s, 0);
2118 return block_done;
2119 }
2120
2121 /* ===========================================================================
2122 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2123 * (It will be regenerated if this run of deflate switches away from Huffman.)
2124 */
2125 local block_state deflate_huff(s, flush)
2126 deflate_state *s;
2127 int flush;
2128 {
2129 int bflush; /* set if current block must be flushed */
2130
2131 for (;;) {
2132 /* Make sure that we have a literal to write. */
2133 if (s->lookahead == 0) {
2134 fill_window(s);
2135 if (s->lookahead == 0) {
2136 if (flush == Z_NO_FLUSH)
2137 return need_more;
2138 break; /* flush the current block */
2139 }
2140 }
2141
2142 /* Output a literal byte */
2143 s->match_length = 0;
2144 Tracevv((stderr,"%c", s->window[s->strstart]));
2145 _tr_tally_lit (s, s->window[s->strstart], bflush);
2146 s->lookahead--;
2147 s->strstart++;
2148 if (bflush) FLUSH_BLOCK(s, 0);
2149 }
2150 s->insert = 0;
2151 if (flush == Z_FINISH) {
2152 FLUSH_BLOCK(s, 1);
2153 return finish_done;
2154 }
2155 if (s->last_lit)
2156 FLUSH_BLOCK(s, 0);
2157 return block_done;
2158 }
This page took 0.09099 seconds and 5 git commands to generate.