perf: Collapse and fix event_function_call() users
[deliverable/linux.git] / kernel / events / core.c
index c77b05d9a37d00956704a4810c45c3141f24fffd..6620432491f6e1213c5d6b1d7408d453938e5f89 100644 (file)
@@ -126,21 +126,150 @@ static int cpu_function_call(int cpu, remote_function_f func, void *info)
        return data.ret;
 }
 
-static void event_function_call(struct perf_event *event,
-                               int (*active)(void *),
-                               void (*inactive)(void *),
-                               void *data)
+static inline struct perf_cpu_context *
+__get_cpu_context(struct perf_event_context *ctx)
+{
+       return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
+}
+
+static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
+                         struct perf_event_context *ctx)
+{
+       raw_spin_lock(&cpuctx->ctx.lock);
+       if (ctx)
+               raw_spin_lock(&ctx->lock);
+}
+
+static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
+                           struct perf_event_context *ctx)
+{
+       if (ctx)
+               raw_spin_unlock(&ctx->lock);
+       raw_spin_unlock(&cpuctx->ctx.lock);
+}
+
+/*
+ * On task ctx scheduling...
+ *
+ * When !ctx->nr_events a task context will not be scheduled. This means
+ * we can disable the scheduler hooks (for performance) without leaving
+ * pending task ctx state.
+ *
+ * This however results in two special cases:
+ *
+ *  - removing the last event from a task ctx; this is relatively straight
+ *    forward and is done in __perf_remove_from_context.
+ *
+ *  - adding the first event to a task ctx; this is tricky because we cannot
+ *    rely on ctx->is_active and therefore cannot use event_function_call().
+ *    See perf_install_in_context().
+ *
+ * This is because we need a ctx->lock serialized variable (ctx->is_active)
+ * to reliably determine if a particular task/context is scheduled in. The
+ * task_curr() use in task_function_call() is racy in that a remote context
+ * switch is not a single atomic operation.
+ *
+ * As is, the situation is 'safe' because we set rq->curr before we do the
+ * actual context switch. This means that task_curr() will fail early, but
+ * we'll continue spinning on ctx->is_active until we've passed
+ * perf_event_task_sched_out().
+ *
+ * Without this ctx->lock serialized variable we could have race where we find
+ * the task (and hence the context) would not be active while in fact they are.
+ *
+ * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
+ */
+
+typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
+                       struct perf_event_context *, void *);
+
+struct event_function_struct {
+       struct perf_event *event;
+       event_f func;
+       void *data;
+};
+
+static int event_function(void *info)
+{
+       struct event_function_struct *efs = info;
+       struct perf_event *event = efs->event;
+       struct perf_event_context *ctx = event->ctx;
+       struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+       struct perf_event_context *task_ctx = cpuctx->task_ctx;
+
+       WARN_ON_ONCE(!irqs_disabled());
+
+       /*
+        * Since we do the IPI call without holding ctx->lock things can have
+        * changed, double check we hit the task we set out to hit.
+        *
+        * If ctx->task == current, we know things must remain valid because
+        * we have IRQs disabled so we cannot schedule.
+        */
+       if (ctx->task) {
+               if (ctx->task != current)
+                       return -EAGAIN;
+
+               WARN_ON_ONCE(task_ctx != ctx);
+       } else {
+               WARN_ON_ONCE(&cpuctx->ctx != ctx);
+       }
+
+       perf_ctx_lock(cpuctx, task_ctx);
+       /*
+        * Now that we hold locks, double check state. Paranoia pays.
+        */
+       if (task_ctx) {
+               WARN_ON_ONCE(task_ctx->task != current);
+               /*
+                * We only use event_function_call() on established contexts,
+                * and event_function() is only ever called when active (or
+                * rather, we'll have bailed in task_function_call() or the
+                * above ctx->task != current test), therefore we must have
+                * ctx->is_active here.
+                */
+               WARN_ON_ONCE(!ctx->is_active);
+               /*
+                * And since we have ctx->is_active, cpuctx->task_ctx must
+                * match.
+                */
+               WARN_ON_ONCE(cpuctx->task_ctx != task_ctx);
+       }
+       efs->func(event, cpuctx, ctx, efs->data);
+       perf_ctx_unlock(cpuctx, task_ctx);
+
+       return 0;
+}
+
+static void event_function_local(struct perf_event *event, event_f func, void *data)
+{
+       struct event_function_struct efs = {
+               .event = event,
+               .func = func,
+               .data = data,
+       };
+
+       int ret = event_function(&efs);
+       WARN_ON_ONCE(ret);
+}
+
+static void event_function_call(struct perf_event *event, event_f func, void *data)
 {
        struct perf_event_context *ctx = event->ctx;
        struct task_struct *task = ctx->task;
+       struct event_function_struct efs = {
+               .event = event,
+               .func = func,
+               .data = data,
+       };
 
        if (!task) {
-               cpu_function_call(event->cpu, active, data);
+               cpu_function_call(event->cpu, event_function, &efs);
                return;
        }
 
 again:
-       if (!task_function_call(task, active, data))
+       if (!task_function_call(task, event_function, &efs))
                return;
 
        raw_spin_lock_irq(&ctx->lock);
@@ -153,7 +282,7 @@ again:
                raw_spin_unlock_irq(&ctx->lock);
                goto again;
        }
-       inactive(data);
+       func(event, NULL, ctx, data);
        raw_spin_unlock_irq(&ctx->lock);
 }
 
@@ -368,28 +497,6 @@ static inline u64 perf_event_clock(struct perf_event *event)
        return event->clock();
 }
 
-static inline struct perf_cpu_context *
-__get_cpu_context(struct perf_event_context *ctx)
-{
-       return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
-}
-
-static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
-                         struct perf_event_context *ctx)
-{
-       raw_spin_lock(&cpuctx->ctx.lock);
-       if (ctx)
-               raw_spin_lock(&ctx->lock);
-}
-
-static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
-                           struct perf_event_context *ctx)
-{
-       if (ctx)
-               raw_spin_unlock(&ctx->lock);
-       raw_spin_unlock(&cpuctx->ctx.lock);
-}
-
 #ifdef CONFIG_CGROUP_PERF
 
 static inline bool
@@ -579,13 +686,7 @@ static inline void perf_cgroup_sched_out(struct task_struct *task,
         * we are holding the rcu lock
         */
        cgrp1 = perf_cgroup_from_task(task, NULL);
-
-       /*
-        * next is NULL when called from perf_event_enable_on_exec()
-        * that will systematically cause a cgroup_switch()
-        */
-       if (next)
-               cgrp2 = perf_cgroup_from_task(next, NULL);
+       cgrp2 = perf_cgroup_from_task(next, NULL);
 
        /*
         * only schedule out current cgroup events if we know
@@ -611,8 +712,6 @@ static inline void perf_cgroup_sched_in(struct task_struct *prev,
         * we are holding the rcu lock
         */
        cgrp1 = perf_cgroup_from_task(task, NULL);
-
-       /* prev can never be NULL */
        cgrp2 = perf_cgroup_from_task(prev, NULL);
 
        /*
@@ -1450,11 +1549,14 @@ list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 
        if (is_cgroup_event(event)) {
                ctx->nr_cgroups--;
+               /*
+                * Because cgroup events are always per-cpu events, this will
+                * always be called from the right CPU.
+                */
                cpuctx = __get_cpu_context(ctx);
                /*
-                * if there are no more cgroup events
-                * then cler cgrp to avoid stale pointer
-                * in update_cgrp_time_from_cpuctx()
+                * If there are no more cgroup events then clear cgrp to avoid
+                * stale pointer in update_cgrp_time_from_cpuctx().
                 */
                if (!ctx->nr_cgroups)
                        cpuctx->cgrp = NULL;
@@ -1657,55 +1759,37 @@ group_sched_out(struct perf_event *group_event,
                cpuctx->exclusive = 0;
 }
 
-struct remove_event {
-       struct perf_event *event;
-       bool detach_group;
-};
-
-static void ___perf_remove_from_context(void *info)
-{
-       struct remove_event *re = info;
-       struct perf_event *event = re->event;
-       struct perf_event_context *ctx = event->ctx;
-
-       if (re->detach_group)
-               perf_group_detach(event);
-       list_del_event(event, ctx);
-}
-
 /*
  * Cross CPU call to remove a performance event
  *
  * We disable the event on the hardware level first. After that we
  * remove it from the context list.
  */
-static int __perf_remove_from_context(void *info)
+static void
+__perf_remove_from_context(struct perf_event *event,
+                          struct perf_cpu_context *cpuctx,
+                          struct perf_event_context *ctx,
+                          void *info)
 {
-       struct remove_event *re = info;
-       struct perf_event *event = re->event;
-       struct perf_event_context *ctx = event->ctx;
-       struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+       bool detach_group = (unsigned long)info;
 
-       raw_spin_lock(&ctx->lock);
        event_sched_out(event, cpuctx, ctx);
-       if (re->detach_group)
+       if (detach_group)
                perf_group_detach(event);
        list_del_event(event, ctx);
-       if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
+
+       if (!ctx->nr_events && ctx->is_active) {
                ctx->is_active = 0;
-               cpuctx->task_ctx = NULL;
+               if (ctx->task) {
+                       WARN_ON_ONCE(cpuctx->task_ctx != ctx);
+                       cpuctx->task_ctx = NULL;
+               }
        }
-       raw_spin_unlock(&ctx->lock);
-
-       return 0;
 }
 
 /*
  * Remove the event from a task's (or a CPU's) list of events.
  *
- * CPU events are removed with a smp call. For task events we only
- * call when the task is on a CPU.
- *
  * If event->ctx is a cloned context, callers must make sure that
  * every task struct that event->ctx->task could possibly point to
  * remains valid.  This is OK when called from perf_release since
@@ -1715,71 +1799,31 @@ static int __perf_remove_from_context(void *info)
  */
 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
 {
-       struct perf_event_context *ctx = event->ctx;
-       struct remove_event re = {
-               .event = event,
-               .detach_group = detach_group,
-       };
-
-       lockdep_assert_held(&ctx->mutex);
+       lockdep_assert_held(&event->ctx->mutex);
 
        event_function_call(event, __perf_remove_from_context,
-                           ___perf_remove_from_context, &re);
+                           (void *)(unsigned long)detach_group);
 }
 
 /*
  * Cross CPU call to disable a performance event
  */
-int __perf_event_disable(void *info)
-{
-       struct perf_event *event = info;
-       struct perf_event_context *ctx = event->ctx;
-       struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
-
-       /*
-        * If this is a per-task event, need to check whether this
-        * event's task is the current task on this cpu.
-        *
-        * Can trigger due to concurrent perf_event_context_sched_out()
-        * flipping contexts around.
-        */
-       if (ctx->task && cpuctx->task_ctx != ctx)
-               return -EINVAL;
-
-       raw_spin_lock(&ctx->lock);
-
-       /*
-        * If the event is on, turn it off.
-        * If it is in error state, leave it in error state.
-        */
-       if (event->state >= PERF_EVENT_STATE_INACTIVE) {
-               update_context_time(ctx);
-               update_cgrp_time_from_event(event);
-               update_group_times(event);
-               if (event == event->group_leader)
-                       group_sched_out(event, cpuctx, ctx);
-               else
-                       event_sched_out(event, cpuctx, ctx);
-               event->state = PERF_EVENT_STATE_OFF;
-       }
-
-       raw_spin_unlock(&ctx->lock);
-
-       return 0;
-}
-
-void ___perf_event_disable(void *info)
+static void __perf_event_disable(struct perf_event *event,
+                                struct perf_cpu_context *cpuctx,
+                                struct perf_event_context *ctx,
+                                void *info)
 {
-       struct perf_event *event = info;
+       if (event->state < PERF_EVENT_STATE_INACTIVE)
+               return;
 
-       /*
-        * Since we have the lock this context can't be scheduled
-        * in, so we can change the state safely.
-        */
-       if (event->state == PERF_EVENT_STATE_INACTIVE) {
-               update_group_times(event);
-               event->state = PERF_EVENT_STATE_OFF;
-       }
+       update_context_time(ctx);
+       update_cgrp_time_from_event(event);
+       update_group_times(event);
+       if (event == event->group_leader)
+               group_sched_out(event, cpuctx, ctx);
+       else
+               event_sched_out(event, cpuctx, ctx);
+       event->state = PERF_EVENT_STATE_OFF;
 }
 
 /*
@@ -1806,8 +1850,12 @@ static void _perf_event_disable(struct perf_event *event)
        }
        raw_spin_unlock_irq(&ctx->lock);
 
-       event_function_call(event, __perf_event_disable,
-                           ___perf_event_disable, event);
+       event_function_call(event, __perf_event_disable, NULL);
+}
+
+void perf_event_disable_local(struct perf_event *event)
+{
+       event_function_local(event, __perf_event_disable, NULL);
 }
 
 /*
@@ -2041,7 +2089,8 @@ static void add_event_to_ctx(struct perf_event *event,
        event->tstamp_stopped = tstamp;
 }
 
-static void task_ctx_sched_out(struct perf_event_context *ctx);
+static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
+                              struct perf_event_context *ctx);
 static void
 ctx_sched_in(struct perf_event_context *ctx,
             struct perf_cpu_context *cpuctx,
@@ -2060,16 +2109,15 @@ static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
 }
 
-static void ___perf_install_in_context(void *info)
+static void ctx_resched(struct perf_cpu_context *cpuctx,
+                       struct perf_event_context *task_ctx)
 {
-       struct perf_event *event = info;
-       struct perf_event_context *ctx = event->ctx;
-
-       /*
-        * Since the task isn't running, its safe to add the event, us holding
-        * the ctx->lock ensures the task won't get scheduled in.
-        */
-       add_event_to_ctx(event, ctx);
+       perf_pmu_disable(cpuctx->ctx.pmu);
+       if (task_ctx)
+               task_ctx_sched_out(cpuctx, task_ctx);
+       cpu_ctx_sched_out(cpuctx, EVENT_ALL);
+       perf_event_sched_in(cpuctx, task_ctx, current);
+       perf_pmu_enable(cpuctx->ctx.pmu);
 }
 
 /*
@@ -2079,55 +2127,27 @@ static void ___perf_install_in_context(void *info)
  */
 static int  __perf_install_in_context(void *info)
 {
-       struct perf_event *event = info;
-       struct perf_event_context *ctx = event->ctx;
+       struct perf_event_context *ctx = info;
        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
        struct perf_event_context *task_ctx = cpuctx->task_ctx;
-       struct task_struct *task = current;
-
-       perf_ctx_lock(cpuctx, task_ctx);
-       perf_pmu_disable(cpuctx->ctx.pmu);
 
-       /*
-        * If there was an active task_ctx schedule it out.
-        */
-       if (task_ctx)
-               task_ctx_sched_out(task_ctx);
+       if (ctx->task) {
+               /*
+                * If we hit the 'wrong' task, we've since scheduled and
+                * everything should be sorted, nothing to do!
+                */
+               if (ctx->task != current)
+                       return 0;
 
-       /*
-        * If the context we're installing events in is not the
-        * active task_ctx, flip them.
-        */
-       if (ctx->task && task_ctx != ctx) {
-               if (task_ctx)
-                       raw_spin_unlock(&task_ctx->lock);
-               raw_spin_lock(&ctx->lock);
+               /*
+                * If task_ctx is set, it had better be to us.
+                */
+               WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
                task_ctx = ctx;
        }
 
-       if (task_ctx) {
-               cpuctx->task_ctx = task_ctx;
-               task = task_ctx->task;
-       }
-
-       cpu_ctx_sched_out(cpuctx, EVENT_ALL);
-
-       update_context_time(ctx);
-       /*
-        * update cgrp time only if current cgrp
-        * matches event->cgrp. Must be done before
-        * calling add_event_to_ctx()
-        */
-       update_cgrp_time_from_event(event);
-
-       add_event_to_ctx(event, ctx);
-
-       /*
-        * Schedule everything back in
-        */
-       perf_event_sched_in(cpuctx, task_ctx, task);
-
-       perf_pmu_enable(cpuctx->ctx.pmu);
+       perf_ctx_lock(cpuctx, task_ctx);
+       ctx_resched(cpuctx, task_ctx);
        perf_ctx_unlock(cpuctx, task_ctx);
 
        return 0;
@@ -2135,27 +2155,44 @@ static int  __perf_install_in_context(void *info)
 
 /*
  * Attach a performance event to a context
- *
- * First we add the event to the list with the hardware enable bit
- * in event->hw_config cleared.
- *
- * If the event is attached to a task which is on a CPU we use a smp
- * call to enable it in the task context. The task might have been
- * scheduled away, but we check this in the smp call again.
  */
 static void
 perf_install_in_context(struct perf_event_context *ctx,
                        struct perf_event *event,
                        int cpu)
 {
+       struct task_struct *task = NULL;
+
        lockdep_assert_held(&ctx->mutex);
 
        event->ctx = ctx;
        if (event->cpu != -1)
                event->cpu = cpu;
 
-       event_function_call(event, __perf_install_in_context,
-                           ___perf_install_in_context, event);
+       /*
+        * Installing events is tricky because we cannot rely on ctx->is_active
+        * to be set in case this is the nr_events 0 -> 1 transition.
+        *
+        * So what we do is we add the event to the list here, which will allow
+        * a future context switch to DTRT and then send a racy IPI. If the IPI
+        * fails to hit the right task, this means a context switch must have
+        * happened and that will have taken care of business.
+        */
+       raw_spin_lock_irq(&ctx->lock);
+       update_context_time(ctx);
+       /*
+        * Update cgrp time only if current cgrp matches event->cgrp.
+        * Must be done before calling add_event_to_ctx().
+        */
+       update_cgrp_time_from_event(event);
+       add_event_to_ctx(event, ctx);
+       task = ctx->task;
+       raw_spin_unlock_irq(&ctx->lock);
+
+       if (task)
+               task_function_call(task, __perf_install_in_context, ctx);
+       else
+               cpu_function_call(cpu, __perf_install_in_context, ctx);
 }
 
 /*
@@ -2182,43 +2219,29 @@ static void __perf_event_mark_enabled(struct perf_event *event)
 /*
  * Cross CPU call to enable a performance event
  */
-static int __perf_event_enable(void *info)
+static void __perf_event_enable(struct perf_event *event,
+                               struct perf_cpu_context *cpuctx,
+                               struct perf_event_context *ctx,
+                               void *info)
 {
-       struct perf_event *event = info;
-       struct perf_event_context *ctx = event->ctx;
        struct perf_event *leader = event->group_leader;
-       struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
-       int err;
-
-       /*
-        * There's a time window between 'ctx->is_active' check
-        * in perf_event_enable function and this place having:
-        *   - IRQs on
-        *   - ctx->lock unlocked
-        *
-        * where the task could be killed and 'ctx' deactivated
-        * by perf_event_exit_task.
-        */
-       if (!ctx->is_active)
-               return -EINVAL;
-
-       raw_spin_lock(&ctx->lock);
-       update_context_time(ctx);
+       struct perf_event_context *task_ctx;
 
        if (event->state >= PERF_EVENT_STATE_INACTIVE)
-               goto unlock;
-
-       /*
-        * set current task's cgroup time reference point
-        */
-       perf_cgroup_set_timestamp(current, ctx);
+               return;
 
+       update_context_time(ctx);
        __perf_event_mark_enabled(event);
 
+       if (!ctx->is_active)
+               return;
+
        if (!event_filter_match(event)) {
-               if (is_cgroup_event(event))
+               if (is_cgroup_event(event)) {
+                       perf_cgroup_set_timestamp(current, ctx); // XXX ?
                        perf_cgroup_defer_enabled(event);
-               goto unlock;
+               }
+               return;
        }
 
        /*
@@ -2226,41 +2249,13 @@ static int __perf_event_enable(void *info)
         * then don't put it on unless the group is on.
         */
        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
-               goto unlock;
-
-       if (!group_can_go_on(event, cpuctx, 1)) {
-               err = -EEXIST;
-       } else {
-               if (event == leader)
-                       err = group_sched_in(event, cpuctx, ctx);
-               else
-                       err = event_sched_in(event, cpuctx, ctx);
-       }
-
-       if (err) {
-               /*
-                * If this event can't go on and it's part of a
-                * group, then the whole group has to come off.
-                */
-               if (leader != event) {
-                       group_sched_out(leader, cpuctx, ctx);
-                       perf_mux_hrtimer_restart(cpuctx);
-               }
-               if (leader->attr.pinned) {
-                       update_group_times(leader);
-                       leader->state = PERF_EVENT_STATE_ERROR;
-               }
-       }
+               return;
 
-unlock:
-       raw_spin_unlock(&ctx->lock);
+       task_ctx = cpuctx->task_ctx;
+       if (ctx->task)
+               WARN_ON_ONCE(task_ctx != ctx);
 
-       return 0;
-}
-
-void ___perf_event_enable(void *info)
-{
-       __perf_event_mark_enabled((struct perf_event *)info);
+       ctx_resched(cpuctx, task_ctx);
 }
 
 /*
@@ -2293,8 +2288,7 @@ static void _perf_event_enable(struct perf_event *event)
                event->state = PERF_EVENT_STATE_OFF;
        raw_spin_unlock_irq(&ctx->lock);
 
-       event_function_call(event, __perf_event_enable,
-                           ___perf_event_enable, event);
+       event_function_call(event, __perf_event_enable, NULL);
 }
 
 /*
@@ -2349,9 +2343,22 @@ static void ctx_sched_out(struct perf_event_context *ctx,
 
        lockdep_assert_held(&ctx->lock);
 
-       ctx->is_active &= ~event_type;
-       if (likely(!ctx->nr_events))
+       if (likely(!ctx->nr_events)) {
+               /*
+                * See __perf_remove_from_context().
+                */
+               WARN_ON_ONCE(ctx->is_active);
+               if (ctx->task)
+                       WARN_ON_ONCE(cpuctx->task_ctx);
                return;
+       }
+
+       ctx->is_active &= ~event_type;
+       if (ctx->task) {
+               WARN_ON_ONCE(cpuctx->task_ctx != ctx);
+               if (!ctx->is_active)
+                       cpuctx->task_ctx = NULL;
+       }
 
        update_context_time(ctx);
        update_cgrp_time_from_cpuctx(cpuctx);
@@ -2545,8 +2552,7 @@ unlock:
 
        if (do_switch) {
                raw_spin_lock(&ctx->lock);
-               ctx_sched_out(ctx, cpuctx, EVENT_ALL);
-               cpuctx->task_ctx = NULL;
+               task_ctx_sched_out(cpuctx, ctx);
                raw_spin_unlock(&ctx->lock);
        }
 }
@@ -2641,10 +2647,9 @@ void __perf_event_task_sched_out(struct task_struct *task,
                perf_cgroup_sched_out(task, next);
 }
 
-static void task_ctx_sched_out(struct perf_event_context *ctx)
+static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
+                              struct perf_event_context *ctx)
 {
-       struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
-
        if (!cpuctx->task_ctx)
                return;
 
@@ -2652,7 +2657,6 @@ static void task_ctx_sched_out(struct perf_event_context *ctx)
                return;
 
        ctx_sched_out(ctx, cpuctx, EVENT_ALL);
-       cpuctx->task_ctx = NULL;
 }
 
 /*
@@ -2734,10 +2738,17 @@ ctx_sched_in(struct perf_event_context *ctx,
 
        lockdep_assert_held(&ctx->lock);
 
-       ctx->is_active |= event_type;
        if (likely(!ctx->nr_events))
                return;
 
+       ctx->is_active |= event_type;
+       if (ctx->task) {
+               if (!is_active)
+                       cpuctx->task_ctx = ctx;
+               else
+                       WARN_ON_ONCE(cpuctx->task_ctx != ctx);
+       }
+
        now = perf_clock();
        ctx->timestamp = now;
        perf_cgroup_set_timestamp(task, ctx);
@@ -2779,12 +2790,7 @@ static void perf_event_context_sched_in(struct perf_event_context *ctx,
         * cpu flexible, task flexible.
         */
        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
-
-       if (ctx->nr_events)
-               cpuctx->task_ctx = ctx;
-
-       perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
-
+       perf_event_sched_in(cpuctx, ctx, task);
        perf_pmu_enable(ctx->pmu);
        perf_ctx_unlock(cpuctx, ctx);
 }
@@ -2806,6 +2812,16 @@ void __perf_event_task_sched_in(struct task_struct *prev,
        struct perf_event_context *ctx;
        int ctxn;
 
+       /*
+        * If cgroup events exist on this CPU, then we need to check if we have
+        * to switch in PMU state; cgroup event are system-wide mode only.
+        *
+        * Since cgroup events are CPU events, we must schedule these in before
+        * we schedule in the task events.
+        */
+       if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
+               perf_cgroup_sched_in(prev, task);
+
        for_each_task_context_nr(ctxn) {
                ctx = task->perf_event_ctxp[ctxn];
                if (likely(!ctx))
@@ -2813,13 +2829,6 @@ void __perf_event_task_sched_in(struct task_struct *prev,
 
                perf_event_context_sched_in(ctx, task);
        }
-       /*
-        * if cgroup events exist on this CPU, then we need
-        * to check if we have to switch in PMU state.
-        * cgroup event are system-wide mode only
-        */
-       if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
-               perf_cgroup_sched_in(prev, task);
 
        if (atomic_read(&nr_switch_events))
                perf_event_switch(task, prev, true);
@@ -3105,46 +3114,30 @@ static int event_enable_on_exec(struct perf_event *event,
 static void perf_event_enable_on_exec(int ctxn)
 {
        struct perf_event_context *ctx, *clone_ctx = NULL;
+       struct perf_cpu_context *cpuctx;
        struct perf_event *event;
        unsigned long flags;
        int enabled = 0;
-       int ret;
 
        local_irq_save(flags);
        ctx = current->perf_event_ctxp[ctxn];
        if (!ctx || !ctx->nr_events)
                goto out;
 
-       /*
-        * We must ctxsw out cgroup events to avoid conflict
-        * when invoking perf_task_event_sched_in() later on
-        * in this function. Otherwise we end up trying to
-        * ctxswin cgroup events which are already scheduled
-        * in.
-        */
-       perf_cgroup_sched_out(current, NULL);
-
-       raw_spin_lock(&ctx->lock);
-       task_ctx_sched_out(ctx);
-
-       list_for_each_entry(event, &ctx->event_list, event_entry) {
-               ret = event_enable_on_exec(event, ctx);
-               if (ret)
-                       enabled = 1;
-       }
+       cpuctx = __get_cpu_context(ctx);
+       perf_ctx_lock(cpuctx, ctx);
+       list_for_each_entry(event, &ctx->event_list, event_entry)
+               enabled |= event_enable_on_exec(event, ctx);
 
        /*
-        * Unclone this context if we enabled any event.
+        * Unclone and reschedule this context if we enabled any event.
         */
-       if (enabled)
+       if (enabled) {
                clone_ctx = unclone_ctx(ctx);
+               ctx_resched(cpuctx, ctx);
+       }
+       perf_ctx_unlock(cpuctx, ctx);
 
-       raw_spin_unlock(&ctx->lock);
-
-       /*
-        * Also calls ctxswin for cgroup events, if any:
-        */
-       perf_event_context_sched_in(ctx, ctx->task);
 out:
        local_irq_restore(flags);
 
@@ -3527,11 +3520,13 @@ static void unaccount_event_cpu(struct perf_event *event, int cpu)
 
 static void unaccount_event(struct perf_event *event)
 {
+       bool dec = false;
+
        if (event->parent)
                return;
 
        if (event->attach_state & PERF_ATTACH_TASK)
-               static_key_slow_dec_deferred(&perf_sched_events);
+               dec = true;
        if (event->attr.mmap || event->attr.mmap_data)
                atomic_dec(&nr_mmap_events);
        if (event->attr.comm)
@@ -3541,12 +3536,15 @@ static void unaccount_event(struct perf_event *event)
        if (event->attr.freq)
                atomic_dec(&nr_freq_events);
        if (event->attr.context_switch) {
-               static_key_slow_dec_deferred(&perf_sched_events);
+               dec = true;
                atomic_dec(&nr_switch_events);
        }
        if (is_cgroup_event(event))
-               static_key_slow_dec_deferred(&perf_sched_events);
+               dec = true;
        if (has_branch_stack(event))
+               dec = true;
+
+       if (dec)
                static_key_slow_dec_deferred(&perf_sched_events);
 
        unaccount_event_cpu(event, event->cpu);
@@ -4092,36 +4090,14 @@ static void perf_event_for_each(struct perf_event *event,
                perf_event_for_each_child(sibling, func);
 }
 
-struct period_event {
-       struct perf_event *event;
-       u64 value;
-};
-
-static void ___perf_event_period(void *info)
-{
-       struct period_event *pe = info;
-       struct perf_event *event = pe->event;
-       u64 value = pe->value;
-
-       if (event->attr.freq) {
-               event->attr.sample_freq = value;
-       } else {
-               event->attr.sample_period = value;
-               event->hw.sample_period = value;
-       }
-
-       local64_set(&event->hw.period_left, 0);
-}
-
-static int __perf_event_period(void *info)
+static void __perf_event_period(struct perf_event *event,
+                               struct perf_cpu_context *cpuctx,
+                               struct perf_event_context *ctx,
+                               void *info)
 {
-       struct period_event *pe = info;
-       struct perf_event *event = pe->event;
-       struct perf_event_context *ctx = event->ctx;
-       u64 value = pe->value;
+       u64 value = *((u64 *)info);
        bool active;
 
-       raw_spin_lock(&ctx->lock);
        if (event->attr.freq) {
                event->attr.sample_freq = value;
        } else {
@@ -4141,14 +4117,10 @@ static int __perf_event_period(void *info)
                event->pmu->start(event, PERF_EF_RELOAD);
                perf_pmu_enable(ctx->pmu);
        }
-       raw_spin_unlock(&ctx->lock);
-
-       return 0;
 }
 
 static int perf_event_period(struct perf_event *event, u64 __user *arg)
 {
-       struct period_event pe = { .event = event, };
        u64 value;
 
        if (!is_sampling_event(event))
@@ -4163,10 +4135,7 @@ static int perf_event_period(struct perf_event *event, u64 __user *arg)
        if (event->attr.freq && value > sysctl_perf_event_sample_rate)
                return -EINVAL;
 
-       pe.value = value;
-
-       event_function_call(event, __perf_event_period,
-                           ___perf_event_period, &pe);
+       event_function_call(event, __perf_event_period, &value);
 
        return 0;
 }
@@ -4938,7 +4907,7 @@ static void perf_pending_event(struct irq_work *entry)
 
        if (event->pending_disable) {
                event->pending_disable = 0;
-               __perf_event_disable(event);
+               perf_event_disable_local(event);
        }
 
        if (event->pending_wakeup) {
@@ -7759,11 +7728,13 @@ static void account_event_cpu(struct perf_event *event, int cpu)
 
 static void account_event(struct perf_event *event)
 {
+       bool inc = false;
+
        if (event->parent)
                return;
 
        if (event->attach_state & PERF_ATTACH_TASK)
-               static_key_slow_inc(&perf_sched_events.key);
+               inc = true;
        if (event->attr.mmap || event->attr.mmap_data)
                atomic_inc(&nr_mmap_events);
        if (event->attr.comm)
@@ -7776,11 +7747,14 @@ static void account_event(struct perf_event *event)
        }
        if (event->attr.context_switch) {
                atomic_inc(&nr_switch_events);
-               static_key_slow_inc(&perf_sched_events.key);
+               inc = true;
        }
        if (has_branch_stack(event))
-               static_key_slow_inc(&perf_sched_events.key);
+               inc = true;
        if (is_cgroup_event(event))
+               inc = true;
+
+       if (inc)
                static_key_slow_inc(&perf_sched_events.key);
 
        account_event_cpu(event, event->cpu);
@@ -8718,7 +8692,13 @@ __perf_event_exit_task(struct perf_event *child_event,
         * Do destroy all inherited groups, we don't care about those
         * and being thorough is better.
         */
-       perf_remove_from_context(child_event, !!child_event->parent);
+       raw_spin_lock_irq(&child_ctx->lock);
+       WARN_ON_ONCE(child_ctx->is_active);
+
+       if (!!child_event->parent)
+               perf_group_detach(child_event);
+       list_del_event(child_event, child_ctx);
+       raw_spin_unlock_irq(&child_ctx->lock);
 
        /*
         * It can happen that the parent exits first, and has events
@@ -8738,17 +8718,15 @@ static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
 {
        struct perf_event *child_event, *next;
        struct perf_event_context *child_ctx, *clone_ctx = NULL;
-       unsigned long flags;
 
        if (likely(!child->perf_event_ctxp[ctxn]))
                return;
 
-       local_irq_save(flags);
+       local_irq_disable();
+       WARN_ON_ONCE(child != current);
        /*
         * We can't reschedule here because interrupts are disabled,
-        * and either child is current or it is a task that can't be
-        * scheduled, so we are now safe from rescheduling changing
-        * our context.
+        * and child must be current.
         */
        child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
 
@@ -8758,7 +8736,7 @@ static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
         * incremented the context's refcount before we do put_ctx below.
         */
        raw_spin_lock(&child_ctx->lock);
-       task_ctx_sched_out(child_ctx);
+       task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
        child->perf_event_ctxp[ctxn] = NULL;
 
        /*
@@ -8768,7 +8746,7 @@ static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
         */
        clone_ctx = unclone_ctx(child_ctx);
        update_context_time(child_ctx);
-       raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
+       raw_spin_unlock_irq(&child_ctx->lock);
 
        if (clone_ctx)
                put_ctx(clone_ctx);
@@ -9227,13 +9205,14 @@ static void perf_event_init_cpu(int cpu)
 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
 static void __perf_event_exit_context(void *__info)
 {
-       struct remove_event re = { .detach_group = true };
        struct perf_event_context *ctx = __info;
+       struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+       struct perf_event *event;
 
-       rcu_read_lock();
-       list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
-               __perf_remove_from_context(&re);
-       rcu_read_unlock();
+       raw_spin_lock(&ctx->lock);
+       list_for_each_entry(event, &ctx->event_list, event_entry)
+               __perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
+       raw_spin_unlock(&ctx->lock);
 }
 
 static void perf_event_exit_cpu_context(int cpu)
This page took 0.037845 seconds and 5 git commands to generate.