17840c38c5be457d7988997ec3cafd92ac5fb8ca
[babeltrace.git] / CONTRIBUTING.adoc
1 // Render with Asciidoctor
2
3 = Babeltrace{nbsp}2 contributor's guide
4 Jérémie Galarneau, Philippe Proulx
5 1 December 2020
6 :toc: left
7 :toclevels: 3
8 :icons: font
9 :nofooter:
10 :bt2: Babeltrace{nbsp}2
11 :c-cpp: C/{cpp}
12 :cpp11: {cpp}11
13
14 This is a partial contributor's guide for the
15 https://babeltrace.org[{bt2}] project. If you have any
16 questions that are not answered by this guide, please post them on
17 https://lists.lttng.org/cgi-bin/mailman/listinfo/lttng-dev[Babeltrace's
18 mailing list].
19
20 == {bt2} library
21
22 === Object reference counting and lifetime
23
24 This section covers the rationale behind the design of {bt2}'s
25 object lifetime management. This applies to the {bt2} library, as
26 well as to the CTF writer library (although the public reference
27 counting functions are not named the same way).
28
29 Starting from Babeltrace{nbsp}2.0, all publicly exposed objects inherit
30 a common base: `bt_object`. This base provides a number of facilities to
31 all objects, chief amongst which are lifetime management functions.
32
33 The lifetime of some public objects is managed by reference counting. In
34 this case, the API offers the `+bt_*_get_ref()+` and `+bt_*_put_ref()+`
35 functions which respectively increment and decrement an object's
36 reference count.
37
38 As far as lifetime management in concerned, {bt2} makes a clear
39 distinction between regular objects, which have a single parent, and
40 root objects, which don't.
41
42 ==== The problem
43
44 Let us consider a problematic case to illustrate the need for this
45 distinction.
46
47 A user of the {bt2} library creates a trace class, which _has_ a
48 stream class (the class of a stream) and that stream class, in turn,
49 _has_ an event class (the class of an event).
50
51 Nothing prevents this user from releasing his reference on any one of
52 these objects in any order. However, all objects in the
53 __trace--stream class--event class__ hierarchy can be retrieved
54 from any other.
55
56 For instance, the user could discard his reference on both the event
57 class and the stream class, only keeping a reference on the trace class.
58 From this trace class reference, stream classes can be enumerated,
59 providing the user with a new reference to the stream class he discarded
60 earlier. Event classes can also be enumerated from stream classes,
61 providing the user with references to the individual event classes.
62
63 Conversely, the user could also hold a reference to an event class and
64 retrieve its parent stream class. The trace class, in turn, can then be
65 retrieved from the stream class.
66
67 This example illustrates what could be interpreted as a circular
68 reference dependency existing between these objects. Of course, if the
69 objects in such a scenario were to hold references to each other (in
70 both directions), we would be in presence of a circular ownership
71 resulting in a leak of both objects as their reference counts would
72 never reach zero.
73
74 Nonetheless, the API must offer the guarantee that holding a node to any
75 node of the graph keeps all other reachable nodes alive.
76
77 ==== The solution
78
79 The scheme employed in {bt2} to break this cycle consists in the
80 "children" holding _reverse component references_ to their parents. That
81 is, in the context of the trace IR, that event classes hold a reference
82 to their parent stream class and stream classes hold a reference to
83 their parent trace class.
84
85 On the other hand, parents hold _claiming aggregation references_ to
86 their children. A claiming aggregation reference means that the object
87 being referenced should not be deleted as long as the reference still
88 exists. In this respect, it can be said that parents truly hold the
89 ownership of their children, since they control their lifetime.
90 Conversely, the reference counting mechanism is leveraged by children to
91 notify parents that no other child indirectly exposes the parent.
92
93 When a parented object's reference count reaches zero, it invokes
94 `+bt_*_put_ref()+` on its parent and does _not_ free itself. However,
95 from that point, the object depends on its parent to signal the moment
96 when it can be safely reclaimed.
97
98 The invocation of `+bt_*_put_ref()+` by the last children holding a
99 reference to its parent might trigger a cascade of `+bt_*_put_ref()+`
100 from child to parent. Eventually, a **root** object is reached. At that
101 point, if this orphaned object's reference count reaches zero, the
102 object invokes the destructor method defined by everyone of its children
103 as part of their base `struct bt_object`. The key point here is that the
104 cascade of destructor will necessarily originate from the root and
105 propagate in preorder to the children. These children will propagate the
106 destruction to their own children before reclaiming their own memory.
107 This ensures that a node's pointer to its parent is _always_ valid since
108 the parent has the responsibility of tearing-down their children before
109 cleaning themselves up.
110
111 Assuming a reference to an object is _acquired_ by calling
112 `+bt_*_get_ref()+` while its reference count is zero, the object
113 acquires, in turn, a reference on its parent using `+bt_*_get_ref()+`.
114 At that point, the child can be thought of as having converted its weak
115 reference to its parent into a regular reference. That is why this
116 reference is referred to as a _claiming_ aggregation reference.
117
118 ==== Caveats
119
120 This scheme imposes a number of strict rules defining the relation
121 between objects:
122
123 * Objects may only have one parent.
124 * Objects, beside the root, are only retrievable from their direct
125 parent or children.
126
127 ==== Example
128
129 The initial situation is rather simple: **User{nbsp}A** is holding a
130 reference to a trace class, **TC1**. As per the rules previously
131 enounced, stream classes **SC1** and **SC2** don't hold a reference to
132 **TC1** since their own reference counts are zero. The same holds true
133 for **EC1**, **EC2** and **EC3** with respect to **SC1** and **SC2**.
134
135 image::doc/contributing-images/bt-ref01.png[]
136
137 In this second step, we can see that **User{nbsp}A** has acquired a
138 reference on **SC2** through the trace class, **TC1**.
139
140 The stream class's reference count transitions from zero to one,
141 triggering the acquisition of a strong reference on **TC1** from
142 **SC2**.
143
144 Hence, at this point, the trace class's ownership is shared by
145 **User{nbsp}A** and **SC2**.
146
147 image::doc/contributing-images/bt-ref02.png[]
148
149 Next, **User{nbsp}A** acquires a reference on the **EC3** event class
150 through its parent stream class, **SC2**. Again, the transition of an
151 object's reference count from 0 to 1 triggers the acquisition of a
152 reference on its parent.
153
154 Note that SC2's reference count was incremented to 2. The trace class's
155 reference count remains unchanged.
156
157 image::doc/contributing-images/bt-ref03.png[]
158
159 **User{nbsp}A** decides to drop its reference on **SC2**. **SC2**'s
160 reference count returns back to 1, everything else remaining unchanged.
161
162 image::doc/contributing-images/bt-ref04.png[]
163
164 **User{nbsp}A** can then decide to drop its reference on the trace
165 class. This results in a reversal of the initial situation:
166 **User{nbsp}A** now owns an event, **EC3**, which is keeping everything
167 else alive and reachable.
168
169 image::doc/contributing-images/bt-ref05.png[]
170
171 If another object, **User{nbsp}B**, enters the picture and acquires a
172 reference on the **SC1** stream class, we see that **SC1**'s reference
173 count transitioned from 0 to 1, triggering the acquisition of a
174 reference on **TC1**.
175
176 image::doc/contributing-images/bt-ref06.png[]
177
178 **User{nbsp}B** hands off a reference to **EC1**, acquired through
179 **SC1**, to another object, **User{nbsp}C**. The acquisition of a
180 reference on **EC1**, which transitions from 0 to 1, triggers the
181 acquisition of a reference on its parent, **SC1**.
182
183 image::doc/contributing-images/bt-ref07.png[]
184
185 At some point, **User{nbsp}A** releases its reference on **EC3**. Since
186 **EC3**'s reference count transitions to zero, it releases its reference
187 on **SC2**. **SC2**'s reference count, in turn, reaches zero and it
188 releases its reference to **TC1**.
189
190 **TC1**'s reference count is now 1 and no further action is taken.
191
192 image::doc/contributing-images/bt-ref08.png[]
193
194 **User{nbsp}B** releases its reference on **SC1**. **User{nbsp}C**
195 becomes the sole owner of the whole hierarchy through his ownership of
196 **EC1**.
197
198 image::doc/contributing-images/bt-ref09.png[]
199
200 Finally, **User{nbsp}C** releases his ownership of **EC1**, triggering
201 the release of the whole hierarchy. Let's walk through the reclamation
202 of the whole graph.
203
204 Mirroring what happened when **User{nbsp}A** released its last reference
205 on **EC3**, the release of **EC1** by **User{nbsp}C** causes its
206 reference count to fall to zero.
207
208 This transition to zero causes **EC1** to release its reference on
209 **SC1**. **SC1**'s reference count reaching zero causes it to release
210 its reference on **TC1**.
211
212 image::doc/contributing-images/bt-ref10.png[]
213
214 Since the reference count of **TC1**, a root object, has reached zero,
215 it invokes the destructor method on its children. This method is
216 recursive and causes the stream classes to call the destructor method on
217 their event classes.
218
219 The event classes are reached and, having no children of their own, are
220 reclaimed.
221
222 image::doc/contributing-images/bt-ref11.png[]
223
224 The stream classes having destroyed their children, are then reclaimed
225 by the trace class.
226
227 image::doc/contributing-images/bt-ref12.png[]
228
229 Finally, the stream classes having been reclaimed, **TC1** is reclaimed.
230
231 image::doc/contributing-images/bt-ref13.png[]
232
233
234 == Logging
235
236 Logging is a great instrument for a developer to be able to collect
237 information about a running software.
238
239 {bt2} is a complex software with many layers. When a {bt2}
240 graph fails to run, what caused the failure? It could be caused by any
241 component, any message iterator, and any deeply nested validation of a
242 CTF IR object (within the `ctf` plugin), for example. With the
243 appropriate logging statements manually placed in the source code, we
244 can find the cause of a bug faster.
245
246 While <<choose-a-log-level,care must be taken>> when placing _DEBUG_ to
247 _FATAL_ logging statements, you should liberally instrument your
248 {bt2} module with _TRACE_ logging statements to help future you
249 and other developers understand what's happening at run time.
250
251 === Logging API
252
253 The {bt2} logging API is internal: it is not exposed to the users
254 of the library; only to their developers. The only thing that a library
255 user can control is the current log level of the library itself with
256 `bt_logging_set_global_level()` and the initial library's log level with
257 the `LIBBABELTRACE2_INIT_LOG_LEVEL` environment variable.
258
259 This API is based on https://github.com/wonder-mice/zf_log[zf_log], a
260 lightweight, yet featureful, MIT-licensed core logging library for C and
261 {cpp}. The zf_log source files were modified to have the `BT_` and
262 `bt_` prefixes, and other small changes, like color support and using
263 the project's `BT_DEBUG_MODE` definition instead of the standard
264 `NDEBUG`.
265
266 The logging functions are implemented in the logging convenience
267 library (`src/logging` directory).
268
269 [[logging-headers]]
270 ==== Headers
271
272 The logging API headers are:
273
274 `<babeltrace2/logging.h>`::
275 Public header which a library user can use to set and get
276 libbabeltrace2's current log level.
277
278 `"logging/log.h"`::
279 Internal, generic logging API which you can use in any {bt2}
280 module. This is the translation of `zf_log.h`.
281 +
282 This header offers the <<gen-logging-statements,generic logging
283 statement macros>>.
284
285 `"lib/logging.h"`::
286 Specific internal header to use within the library.
287 +
288 This header defines `BT_LOG_OUTPUT_LEVEL` to a custom, library-wide
289 hidden symbol which is the library's current log level before including
290 `"logging/log.h"`.
291 +
292 This header offers the <<lib-logging-statements,library-specific logging
293 statement macros>>.
294
295 `"logging/comp-logging.h"`::
296 Specific internal header to use within a component class.
297 +
298 This header offers the <<comp-logging-statements,component-specific
299 logging statement macros>>.
300
301 [[log-levels]]
302 ==== Log levels
303
304 The internal logging API offers the following log levels, in ascending
305 order of severity:
306
307 [options="header,autowidth",cols="4"]
308 |===
309 |Log level name
310 |Log level short name
311 |Internal API enumerator
312 |Public API enumerator
313
314 |_TRACE_
315 |`T`
316 |`BT_LOG_TRACE`
317 |`BT_LOGGING_LEVEL_TRACE`
318
319 |_DEBUG_
320 |`D`
321 |`BT_LOG_DEBUG`
322 |`BT_LOGGING_LEVEL_DEBUG`
323
324 |_INFO_
325 |`I`
326 |`BT_LOG_INFO`
327 |`BT_LOGGING_LEVEL_INFO`
328
329 |_WARNING_
330 |`W`
331 |`BT_LOG_WARNING`
332 |`BT_LOGGING_LEVEL_WARNING`
333
334 |_ERROR_
335 |`E`
336 |`BT_LOG_ERROR`
337 |`BT_LOGGING_LEVEL_ERROR`
338
339 |_FATAL_
340 |`F`
341 |`BT_LOG_FATAL`
342 |`BT_LOGGING_LEVEL_FATAL`
343
344 |_NONE_
345 |`N`
346 |`BT_LOG_NONE`
347 |`BT_LOGGING_LEVEL_NONE`
348 |===
349
350 The short name is accepted by the log level environment variables and by
351 the CLI's `--log-level` options.
352
353 See <<choose-a-log-level,how to decide which one to use>> below.
354
355 There are two important log level expressions:
356
357 [[build-time-log-level]]Build-time, minimal log level::
358 The minimal log level, or build-time log level, is set at build time
359 and determines the minimal log level of the logging statements which
360 can be executed. This applies to all the modules (CLI, library,
361 plugins, bindings, etc.).
362 +
363 All the logging statements with a level below this level are **not built
364 at all**. All the logging statements with a level equal to or greater
365 than this level _can_ be executed, depending on the
366 <<run-time-log-level,run-time log level>>.
367 +
368 You can set this level at configuration time with the
369 `BABELTRACE_MINIMAL_LOG_LEVEL` environment variable, for example:
370 +
371 --
372 ----
373 $ BABELTRACE_MINIMAL_LOG_LEVEL=INFO ./configure
374 ----
375 --
376 +
377 The default build-time log level is `DEBUG`. For optimal performance,
378 set it to `INFO`, which effectively disables all fast path logging in
379 all the {bt2} modules. You can't set it to `WARNING`, `ERROR`,
380 `FATAL`, or `NONE` because the impact on performance is minuscule
381 starting from the _INFO_ log level anyway and we want any {bt2}
382 build to always be able to print _INFO_-level logs.
383 +
384 The library's public API provides `bt_logging_get_minimal_level()` to
385 get the configured minimal log level.
386
387 [[run-time-log-level]]Run-time, dynamic log level::
388 The dynamic log level is set at run time and determines the current,
389 _active_ log level. All the logging statements with a level below
390 this level are not executed, **but they still evaluate the
391 condition**. All the logging statements with a level equal to or
392 greater than this level are executed, provided that their level is
393 also <<build-time-log-level,enabled at build time>>.
394 +
395 `zf_log` has a concept of a global run-time log level which uses the
396 `_bt_log_global_output_lvl` symbol. In practice, we never use this
397 symbol, and always make sure that `BT_LOG_OUTPUT_LEVEL` is defined to a
398 module-wise expression before including `"logging/log.h"`.
399 +
400 In the library, `"lib/logging.h"` defines its own
401 `BT_LOG_OUTPUT_LEVEL` to the library's log level symbol before it
402 includes `"logging/log.h"` itself.
403 +
404 In libbabeltrace2, the user can set the current run-time log level with
405 the `bt_logging_set_global_level()` function, for example:
406 +
407 --
408 [source,c]
409 ----
410 bt_logging_set_global_level(BT_LOGGING_LEVEL_INFO);
411 ----
412 --
413 +
414 The library's initial run-time log level is defined by the
415 `LIBBABELTRACE2_INIT_LOG_LEVEL` environment variable, or set to _NONE_
416 if this environment variable is undefined.
417 +
418 Other modules have their own way of setting their run-time log level.
419 +
420 For example, the CLI uses the `BABELTRACE_CLI_LOG_LEVEL` environment
421 variable, as well as its global `--log-level` option:
422 +
423 ----
424 $ babeltrace2 --log-level=I ...
425 ----
426 +
427 The components use their own log level (as returned by
428 `bt_component_get_logging_level()`). With the CLI, you can set a
429 specific component's log level with its own, position-dependent
430 `--log-level` option:
431 +
432 ----
433 $ babeltrace2 /path/to/trace -c sink.ctf.fs --log-level=D
434 ----
435 +
436 Code which is common to the whole project, for example `src/common`
437 and `src/compat`, use function parameters to get its run-time log
438 level, for example:
439 +
440 [source,c]
441 ----
442 BT_HIDDEN
443 char *bt_common_get_home_plugin_path(int log_level);
444 ----
445 +
446 Typically, when a logging-enabled module calls such a function, it
447 passes its own log level expression directly (`BT_LOG_OUTPUT_LEVEL`):
448 +
449 [source,c]
450 ----
451 path = bt_common_get_home_plugin_path(BT_LOG_OUTPUT_LEVEL);
452 ----
453 +
454 Otherwise, just pass `BT_LOG_NONE`:
455 +
456 ----
457 path = bt_common_get_home_plugin_path(BT_LOG_NONE);
458 ----
459
460 [[gen-logging-statements]]
461 ==== Generic logging statement macros
462
463 The {bt2} logging statement macros work just like `printf()`
464 (except the `+BT_LOG*_STR()+` ones) and contain their <<log-levels,log
465 level>> (short name) in their name.
466
467 Each of the following macros evaluate the
468 <<build-time-log-level,build-time log level>> definition and
469 <<run-time-log-level,run-time log level>> expression (as defined by
470 `BT_LOG_OUTPUT_LEVEL`) to log conditionally.
471
472 See <<logging-instrument-c-file-gen>> and
473 <<logging-instrument-h-file-gen>> to learn how to be able to use the
474 following macros.
475
476 `+BT_LOGT("format string", ...)+`::
477 Generic trace logging statement.
478
479 `+BT_LOGD("format string", ...)+`::
480 Generic debug logging statement.
481
482 `+BT_LOGI("format string", ...)+`::
483 Generic info logging statement.
484
485 `+BT_LOGW("format string", ...)+`::
486 Generic warning logging statement.
487
488 `+BT_LOGE("format string", ...)+`::
489 Generic error logging statement.
490
491 `+BT_LOGF("format string", ...)+`::
492 Generic fatal logging statement.
493
494 `+BT_LOGT_STR("preformatted string")+`::
495 Generic preformatted string trace logging statement.
496
497 `+BT_LOGD_STR("preformatted string")+`::
498 Generic preformatted string debug logging statement.
499
500 `+BT_LOGI_STR("preformatted string")+`::
501 Generic preformatted string info logging statement.
502
503 `+BT_LOGW_STR("preformatted string")+`::
504 Generic preformatted string warning logging statement.
505
506 `+BT_LOGE_STR("preformatted string")+`::
507 Generic preformatted string error logging statement.
508
509 `+BT_LOGF_STR("preformatted string")+`::
510 Generic preformatted string fatal logging statement.
511
512 `+BT_LOGT_MEM(data_ptr, data_size, "format string", ...)+`::
513 Generic memory trace logging statement.
514
515 `+BT_LOGD_MEM(data_ptr, data_size, "format string", ...)+`::
516 Generic memory debug logging statement.
517
518 `+BT_LOGI_MEM(data_ptr, data_size, "format string", ...)+`::
519 Generic memory info logging statement.
520
521 `+BT_LOGW_MEM(data_ptr, data_size, "format string", ...)+`::
522 Generic memory warning logging statement.
523
524 `+BT_LOGE_MEM(data_ptr, data_size, "format string", ...)+`::
525 Generic memory error logging statement.
526
527 `+BT_LOGF_MEM(data_ptr, data_size, "format string", ...)+`::
528 Generic memory fatal logging statement.
529
530 `+BT_LOGT_ERRNO("initial message", "format string", ...)+`::
531 Generic `errno` string trace logging statement.
532
533 `+BT_LOGD_ERRNO("initial message", "format string", ...)+`::
534 Generic `errno` string debug logging statement.
535
536 `+BT_LOGI_ERRNO("initial message", "format string", ...)+`::
537 Generic `errno` string info logging statement.
538
539 `+BT_LOGW_ERRNO("initial message", "format string", ...)+`::
540 Generic `errno` string warning logging statement.
541
542 `+BT_LOGE_ERRNO("initial message", "format string", ...)+`::
543 Generic `errno` string error logging statement.
544
545 `+BT_LOGF_ERRNO("initial message", "format string", ...)+`::
546 Generic `errno` string fatal logging statement.
547
548 [[lib-logging-statements]]
549 ==== Library-specific logging statement macros
550
551 The {bt2} library contains an internal logging API based on the
552 generic logging framework. You can use it to log known {bt2}
553 objects without having to manually log each member.
554
555 See <<logging-instrument-c-file-lib>>
556 and <<logging-instrument-h-file-lib>> to
557 learn how to be able to use the following macros.
558
559 The library logging statement macros are named `+BT_LIB_LOG*()+` instead
560 of `+BT_LOG*()+`:
561
562 `+BT_LIB_LOGT("format string", ...)+`::
563 Library trace logging statement.
564
565 `+BT_LIB_LOGD("format string", ...)+`::
566 Library debug logging statement.
567
568 `+BT_LIB_LOGI("format string", ...)+`::
569 Library info logging statement.
570
571 `+BT_LIB_LOGW("format string", ...)+`::
572 Library warning logging statement.
573
574 `+BT_LIB_LOGE("format string", ...)+`::
575 Library error logging statement.
576
577 `+BT_LIB_LOGF("format string", ...)+`::
578 Library fatal logging statement.
579
580 `+BT_LIB_LOGW_APPEND_CAUSE("format string", ...)+`::
581 Library warning logging statement, and unconditional error cause
582 appending.
583
584 `+BT_LIB_LOGE_APPEND_CAUSE("format string", ...)+`::
585 Library error logging statement, and unconditional error cause
586 appending.
587
588 The macros above accept the typical `printf()` conversion specifiers
589 with the following limitations:
590
591 * The `+*+` width specifier is not accepted.
592 * The `+*+` precision specifier is not accepted.
593 * The `j` and `t` length modifiers are not accepted.
594 * The `n` format specifier is not accepted.
595 * The format specifiers defined in `<inttypes.h>` are not accepted,
596 except for `PRId64`, `PRIu64`, `PRIx64`, `PRIX64`, `PRIo64`, and
597 `PRIi64`.
598
599 The {bt2} library custom conversion specifier is accepted. Its
600 syntax is either `%!u` to format a UUID (`bt_uuid` type), or:
601
602 . Introductory `%!` sequence.
603
604 . **Optional**: `[` followed by a custom prefix for the printed fields
605 of this specifier, followed by `]`. The standard form is to end this
606 prefix with `-` so that, for example, with the prefix `tc-`, the
607 complete field name becomes `tc-addr`.
608
609 . **Optional**: `pass:[+]` to print extended object members. This
610 depends on the provided format specifier.
611
612 . Format specifier (see below).
613
614 The available format specifiers are:
615
616 [options="header,autowidth",cols="3"]
617 |===
618 |Specifier
619 |Object
620 |Expected C type
621
622 |`F`
623 |Trace IR field class
624 |`+const struct bt_field_class *+`
625
626 |`f`
627 |Trace IR field
628 |`+const struct bt_field *+`
629
630 |`P`
631 |Trace IR field path
632 |`+const struct bt_field_path *+`
633
634 |`E`
635 |Trace IR event class
636 |`+const struct bt_event_class *+`
637
638 |`e`
639 |Trace IR event
640 |`+const struct bt_event *+`
641
642 |`S`
643 |Trace IR stream class.
644 |`+const struct bt_stream_class *+`
645
646 |`s`
647 |Trace IR stream
648 |`+const struct bt_stream *+`
649
650 |`a`
651 |Trace IR packet
652 |`+const struct bt_packet *+`
653
654 |`T`
655 |Trace IR trace class
656 |`+const struct bt_trace_class *+`
657
658 |`t`
659 |Trace IR trace
660 |`+const struct bt_trace *+`
661
662 |`K`
663 |Trace IR clock class
664 |`+const struct bt_clock_class *+`
665
666 |`k`
667 |Trace IR clock snapshot
668 |`+const struct bt_clock_snapshot *+`
669
670 |`v`
671 |Value object
672 |`+const struct bt_value *+`
673
674 |`R`
675 |Integer range set
676 |`const struct bt_integer_range_set *`
677
678 |`n`
679 |Message
680 |`+const struct bt_message *+`
681
682 |`I`
683 |Message iterator class
684 |`struct bt_message_iterator_class *`
685
686 |`i`
687 |Message iterator
688 |`struct bt_message_iterator *`
689
690 |`C`
691 |Component class
692 |`struct bt_component_class *`
693
694 |`c`
695 |Component
696 |`+const struct bt_component *+`
697
698 |`p`
699 |Port
700 |`+const struct bt_port *+`
701
702 |`x`
703 |Connection
704 |`+const struct bt_connection *+`
705
706 |`g`
707 |Graph
708 |`+const struct bt_graph *+`
709
710 |`z`
711 |Interrupter
712 |`+struct bt_interrupter *+`
713
714 |`l`
715 |Plugin
716 |`+const struct bt_plugin *+`
717
718 |`r`
719 |Error cause
720 |`+const struct bt_error_cause *+`
721
722 |`o`
723 |Object pool
724 |`+const struct bt_object_pool *+`
725
726 |`O`
727 |Object
728 |`+const struct bt_object *+`
729 |===
730
731 Conversion specifier examples:
732
733 * `%!f`
734 * `%![my-event-]+e`
735 * `%!t`
736 * `%!+F`
737
738 The ``, `` string (comma and space) is printed between individual
739 fields, but **not after the last one**. Therefore, you must put this
740 separator in the format string between two conversion specifiers, for
741 example:
742
743 [source,c]
744 ----
745 BT_LIB_LOGW("Message: count=%u, %!E, %!+K", count, event_class, clock_class);
746 ----
747
748 Example with a custom prefix:
749
750 [source,c]
751 ----
752 BT_LIB_LOGI("Some message: %![ec-a-]e, %![ec-b-]+e", ec_a, ec_b);
753 ----
754
755 It is safe to pass `NULL` as any {bt2} object parameter: the macros
756 only print its null address.
757
758 WARNING: Build-time `printf()` format checks are disabled for the
759 `+BT_LIB_LOG*()+` macros because there are custom conversion specifiers,
760 so make sure to test your logging statements.
761
762 [[comp-logging-statements]]
763 ==== Component-specific logging statement macros
764
765 There are available logging macros for components. They prepend a prefix
766 including the component's name to the logging message.
767
768 See <<logging-instrument-c-file-compcls>> and
769 <<logging-instrument-h-file-compcls>> to learn how to be able to use the
770 following macros.
771
772 The component logging statement macros are named `+BT_COMP_LOG*()+`
773 instead of `+BT_LOG*()+`:
774
775 `+BT_COMP_LOGT("format string", ...)+`::
776 Component trace logging statement.
777
778 `+BT_COMP_LOGD("format string", ...)+`::
779 Component debug logging statement.
780
781 `+BT_COMP_LOGI("format string", ...)+`::
782 Component info logging statement.
783
784 `+BT_COMP_LOGW("format string", ...)+`::
785 Component warning logging statement.
786
787 `+BT_COMP_LOGE("format string", ...)+`::
788 Component error logging statement.
789
790 `+BT_COMP_LOGF("format string", ...)+`::
791 Component fatal logging statement.
792
793 `+BT_COMP_LOGT_STR("preformatted string")+`::
794 Component preformatted string trace logging statement.
795
796 `+BT_COMP_LOGD_STR("preformatted string")+`::
797 Component preformatted string debug logging statement.
798
799 `+BT_COMP_LOGI_STR("preformatted string")+`::
800 Component preformatted string info logging statement.
801
802 `+BT_COMP_LOGW_STR("preformatted string")+`::
803 Component preformatted string warning logging statement.
804
805 `+BT_COMP_LOGE_STR("preformatted string")+`::
806 Component preformatted string error logging statement.
807
808 `+BT_COMP_LOGF_STR("preformatted string")+`::
809 Component preformatted string fatal logging statement.
810
811 `+BT_COMP_LOGT_ERRNO("initial message", "format string", ...)+`::
812 Component `errno` string trace logging statement.
813
814 `+BT_COMP_LOGD_ERRNO("initial message", "format string", ...)+`::
815 Component `errno` string debug logging statement.
816
817 `+BT_COMP_LOGI_ERRNO("initial message", "format string", ...)+`::
818 Component `errno` string info logging statement.
819
820 `+BT_COMP_LOGW_ERRNO("initial message", "format string", ...)+`::
821 Component `errno` string warning logging statement.
822
823 `+BT_COMP_LOGE_ERRNO("initial message", "format string", ...)+`::
824 Component `errno` string error logging statement.
825
826 `+BT_COMP_LOGF_ERRNO("initial message", "format string", ...)+`::
827 Component `errno` string fatal logging statement.
828
829 `+BT_COMP_LOGT_MEM(data_ptr, data_size, "format string", ...)+`::
830 Component memory trace logging statement.
831
832 `+BT_COMP_LOGD_MEM(data_ptr, data_size, "format string", ...)+`::
833 Component memory debug logging statement.
834
835 `+BT_COMP_LOGI_MEM(data_ptr, data_size, "format string", ...)+`::
836 Component memory info logging statement.
837
838 `+BT_COMP_LOGW_MEM(data_ptr, data_size, "format string", ...)+`::
839 Component memory warning logging statement.
840
841 `+BT_COMP_LOGE_MEM(data_ptr, data_size, "format string", ...)+`::
842 Component memory error logging statement.
843
844 `+BT_COMP_LOGF_MEM(data_ptr, data_size, "format string", ...)+`::
845 Component memory fatal logging statement.
846
847 ==== Conditional logging
848
849 `+BT_LOG_IF(cond, statement)+`::
850 Execute `statement` only if `cond` is true.
851 +
852 Example:
853 +
854 --
855 [source,c]
856 ----
857 BT_LOG_IF(i < count / 2, BT_LOGD("Log this: i=%d", i));
858 ----
859 --
860
861 To check the <<build-time-log-level,build-time log level>>:
862
863 [source,c]
864 ----
865 #if BT_LOG_ENABLED_DEBUG
866 ...
867 #endif
868 ----
869
870 This tests if the _DEBUG_ level was enabled at build time. This means
871 that the current, <<run-time-log-level,run-time log level>> _could_ be
872 _DEBUG_, but it could also be higher. The rule of thumb is to use only
873 logging statements at the same level in a `BT_LOG_ENABLED_*` conditional
874 block.
875
876 The available definitions for build-time conditions are:
877
878 * `BT_LOG_ENABLED_TRACE`
879 * `BT_LOG_ENABLED_DEBUG`
880 * `BT_LOG_ENABLED_INFO`
881 * `BT_LOG_ENABLED_WARNING`
882 * `BT_LOG_ENABLED_ERROR`
883 * `BT_LOG_ENABLED_FATAL`
884
885 To check the current, <<run-time-log-level,run-time log level>>:
886
887 [source,c]
888 ----
889 if (BT_LOG_ON_DEBUG) {
890 ...
891 }
892 ----
893
894 This tests if the _DEBUG_ log level is dynamically turned on
895 (implies that it's also enabled at build time). This check could have a
896 noticeable impact on performance.
897
898 The available definitions for run-time conditions are:
899
900 * `BT_LOG_ON_TRACE`
901 * `BT_LOG_ON_DEBUG`
902 * `BT_LOG_ON_INFO`
903 * `BT_LOG_ON_WARNING`
904 * `BT_LOG_ON_ERROR`
905 * `BT_LOG_ON_FATAL`
906
907 Those macros check the module-specific log level symbol (defined by
908 `BT_LOG_OUTPUT_LEVEL`).
909
910 Never, ever write code which would be executed only to compute the
911 fields of a logging statement outside a conditional logging scope,
912 for example:
913
914 [source,c]
915 ----
916 int number = get_number_of_event_classes_with_property_x(...);
917 BT_LOGD("Bla bla: number=%d", number);
918 ----
919
920 Do this instead:
921
922 [source,c]
923 ----
924 if (BT_LOG_ON_DEBUG) {
925 int number = get_number_of_event_classes_with_property_x(...);
926 BT_LOGD("Bla bla: number=%d", number);
927 }
928 ----
929
930 Or even this:
931
932 [source,c]
933 ----
934 BT_LOGD("Bla bla: number=%d", get_number_of_event_classes_with_property_x(...));
935 ----
936
937 === Guides
938
939 [[logging-instrument-c-file-gen]]
940 ==== Instrument a {c-cpp} source file (generic)
941
942 To instrument a {c-cpp} source file (`.c`/`.cpp`):
943
944 . At the top of the file, before the first `#include` line (if any),
945 define your file's <<choose-a-logging-tag,logging tag>> name:
946 +
947 --
948 [source,c]
949 ----
950 #define BT_LOG_TAG "SUBSYS/MY-MODULE/MY-FILE"
951 ----
952 --
953
954 . Below the line above, define the source file's log level expression,
955 `BT_LOG_OUTPUT_LEVEL`. This expression is evaluated for each
956 <<gen-logging-statements,logging statement>> to know the current
957 <<run-time-log-level,run-time log level>>.
958 +
959 Examples:
960 +
961 [source,c]
962 ----
963 /* Global log level variable */
964 #define BT_LOG_OUTPUT_LEVEL module_global_log_level
965 ----
966 +
967 [source,c]
968 ----
969 /* Local log level variable; must exist where you use BT_LOG*() */
970 #define BT_LOG_OUTPUT_LEVEL log_level
971 ----
972 +
973 [source,c]
974 ----
975 /* Object's log level; `obj` must exist where you use BT_LOG*() */
976 #define BT_LOG_OUTPUT_LEVEL (obj->log_level)
977 ----
978
979 . Include `"logging/log.h"`:
980 +
981 [source,c]
982 ----
983 #include "logging/log.h"
984 ----
985
986 . In the file, instrument your code with the
987 <<gen-logging-statements,generic logging statement macros>>.
988
989 [[logging-instrument-h-file-gen]]
990 ==== Instrument a {c-cpp} header file (generic)
991
992 To instrument a {c-cpp} header file (`.h`/`.hpp`), if you have
993 `static inline` functions in it:
994
995 . Do not include `"logging/log.h"`!
996
997 . Do one of:
998
999 .. In the file, instrument your code with the
1000 <<gen-logging-statements,generic logging statement macros>>, making
1001 each of them conditional to the existence of the macro you're using:
1002 +
1003 [source,c]
1004 ----
1005 static inline
1006 int some_function(int x)
1007 {
1008 /* ... */
1009
1010 #ifdef BT_LOGT
1011 BT_LOGT(...);
1012 #endif
1013
1014 /* ... */
1015
1016 #ifdef BT_LOGW_STR
1017 BT_LOGW_STR(...);
1018 #endif
1019
1020 /* ... */
1021 }
1022 ----
1023 +
1024 The {c-cpp} source files which include this header file determine if
1025 logging is enabled or not for them, and if so, what is their
1026 <<choose-a-logging-tag,logging tag>> and <<run-time-log-level,run-time
1027 log level>> expression.
1028
1029 .. Require that logging be enabled:
1030 +
1031 [source,c]
1032 ----
1033 /* Protection: this file uses BT_LOG*() macros directly */
1034 #ifndef BT_LOG_SUPPORTED
1035 # error Please include "logging/log.h" before including this file.
1036 #endif
1037 ----
1038 +
1039 Then, in the file, instrument your code with the
1040 <<gen-logging-statements,generic logging statement macros>>.
1041
1042 [[logging-instrument-c-file-lib]]
1043 ==== Instrument a library {c-cpp} source file
1044
1045 To instrument a library {c-cpp} source file (`.c`/`.cpp`):
1046
1047 . At the top of the file, before the first `#include` line (if any),
1048 define your file's <<choose-a-logging-tag,logging tag>> name (this
1049 tag must start with `LIB/`):
1050 +
1051 --
1052 [source,c]
1053 ----
1054 #define BT_LOG_TAG "LIB/THE-FILE"
1055 ----
1056 --
1057
1058 . Include `"lib/logging.h"`:
1059 +
1060 [source,c]
1061 ----
1062 #include "lib/logging.h"
1063 ----
1064
1065 . In the file, instrument your code with the
1066 <<lib-logging-statements,library logging statement macros>> or with
1067 the <<gen-logging-statements,generic logging statement macros>>.
1068
1069 [[logging-instrument-h-file-lib]]
1070 ==== Instrument a library {c-cpp} header file
1071
1072 To instrument a library {c-cpp} header file (`.h`/`.hpp`), if you have
1073 `static inline` functions in it:
1074
1075 . Do not include `"lib/logging.h"`!
1076
1077 . Require that library logging be enabled:
1078 +
1079 [source,c]
1080 ----
1081 /* Protection: this file uses BT_LIB_LOG*() macros directly */
1082 #ifndef BT_LIB_LOG_SUPPORTED
1083 # error Please include "lib/logging.h" before including this file.
1084 #endif
1085 ----
1086
1087 . In the file, instrument your code with the
1088 <<lib-logging-statements,library logging statement macros>> or with
1089 the <<gen-logging-statements,generic logging statement macros>>.
1090
1091 [[logging-instrument-c-file-compcls]]
1092 ==== Instrument a component class {c-cpp} source file
1093
1094 To instrument a component class {c-cpp} source file (`.c`/`.cpp`):
1095
1096 . At the top of the file, before the first `#include` line (if any),
1097 define your file's <<choose-a-logging-tag,logging tag>> name (this tag
1098 must start with `PLUGIN/` followed by the component class identifier):
1099 +
1100 --
1101 [source,c]
1102 ----
1103 #define BT_LOG_TAG "PLUGIN/SRC.MY-PLUGIN.MY-SRC"
1104 ----
1105 --
1106
1107 . Below the line above, define the source file's log level expression,
1108 `BT_LOG_OUTPUT_LEVEL`. This expression is evaluated for each
1109 <<comp-logging-statements,logging statement>> to know the current
1110 <<run-time-log-level,run-time log level>>.
1111 +
1112 For a component class file, it is usually a member of a local component
1113 private structure variable:
1114 +
1115 [source,c]
1116 ----
1117 #define BT_LOG_OUTPUT_LEVEL (my_comp->log_level)
1118 ----
1119
1120 . Below the line above, define `BT_COMP_LOG_SELF_COMP` to an expression
1121 which, evaluated in the context of the
1122 <<comp-logging-statements,logging statements>>, evaluates to the self
1123 component address (`+bt_self_component *+`) of the component.
1124 +
1125 This is usually a member of a local component private structure
1126 variable:
1127 +
1128 [source,c]
1129 ----
1130 #define BT_COMP_LOG_SELF_COMP (my_comp->self_comp)
1131 ----
1132
1133 . Include `"logging/comp-logging.h"`:
1134 +
1135 [source,c]
1136 ----
1137 #include "logging/comp-logging.h"
1138 ----
1139
1140 . In the component initialization method, make sure to set the
1141 component private structure's log level member to the initial
1142 component's log level:
1143 +
1144 [source,c]
1145 ----
1146 struct my_comp {
1147 bt_logging_level log_level;
1148 /* ... */
1149 };
1150
1151 BT_HIDDEN
1152 bt_self_component_status my_comp_init(
1153 bt_self_component_source *self_comp_src,
1154 bt_value *params, void *init_method_data)
1155 {
1156 struct my_comp *my_comp = g_new0(struct my_comp, 1);
1157 bt_self_component *self_comp =
1158 bt_self_component_source_as_self_component(self_comp_src);
1159 const bt_component *comp = bt_self_component_as_component(self_comp);
1160
1161 BT_ASSERT(my_comp);
1162 my_comp->log_level = bt_component_get_logging_level(comp);
1163
1164 /* ... */
1165 }
1166 ----
1167
1168 . In the file, instrument your code with the
1169 <<comp-logging-statements,component logging statement macros>>.
1170
1171 [[logging-instrument-h-file-compcls]]
1172 ==== Instrument a component class {c-cpp} header file
1173
1174 To instrument a component class {c-cpp} header file (`.h`/`.hpp`), if
1175 you have `static inline` functions in it:
1176
1177 . Do not include `"logging/comp-logging.h"`!
1178
1179 . Require that component logging be enabled:
1180 +
1181 [source,c]
1182 ----
1183 /* Protection: this file uses BT_COMP_LOG*() macros directly */
1184 #ifndef BT_COMP_LOG_SUPPORTED
1185 # error Please include "logging/comp-logging.h" before including this file.
1186 #endif
1187 ----
1188
1189 . In the file, instrument your code with the
1190 <<comp-logging-statements,component logging statement macros>>.
1191
1192 [[choose-a-logging-tag]]
1193 ==== Choose a logging tag
1194
1195 Each logging-enabled {c-cpp} source file must define `BT_LOG_TAG` to a
1196 logging tag. A logging tag is a namespace to identify the logging
1197 messages of this specific source file.
1198
1199 In general, a logging tag name _must_ be only uppercase letters, digits,
1200 and the `-`, `.`, and `/` characters.
1201
1202 Use `/` to show the subsystem to source file hierarchy.
1203
1204 For the {bt2} library, start with `LIB/`.
1205
1206 For the CTF writer library, start with `CTF-WRITER/`.
1207
1208 For component classes, use:
1209
1210 [verse]
1211 `PLUGIN/__CCTYPE__.__PNAME__.__CCNAME__[/__FILE__]`
1212
1213 With:
1214
1215 `__CCTYPE__`::
1216 Component class's type (`SRC`, `FLT`, or `SINK`).
1217
1218 `__PNAME__`::
1219 Plugin's name.
1220
1221 `__CCNAME__`::
1222 Component class's name.
1223
1224 `__FILE__`::
1225 Additional information to specify the source file name or module.
1226
1227 For plugins (files common to many component classes), use:
1228
1229 [verse]
1230 `PLUGIN/__PNAME__[/__FILE__]`
1231
1232 With:
1233
1234 `__PNAME__`::
1235 Plugin's name.
1236
1237 `__FILE__`::
1238 Additional information to specify the source file name or module.
1239
1240 [[choose-a-log-level]]
1241 ==== Choose a log level
1242
1243 Choosing the appropriate level for your logging statement is very
1244 important.
1245
1246 [options="header,autowidth",cols="1,2,3a,4"]
1247 |===
1248 |Log level |Description |Use cases |Expected impact on performance
1249
1250 |_FATAL_
1251 |
1252 The program, library, or plugin cannot continue to work in this
1253 condition: it must be terminated immediately.
1254
1255 A _FATAL_-level logging statement should always be followed by
1256 `abort()`.
1257 |
1258 * Unexpected return values from system calls.
1259 * Logic error in internal code, for example an unexpected value in a
1260 `switch` statement.
1261 * Failed assertion (within `BT_ASSERT()`).
1262 * Unsatisfied library precondition (within `BT_ASSERT_PRE()` or
1263 `BT_ASSERT_PRE_DEV()`).
1264 * Unsatisfied library postcondition (within `BT_ASSERT_POST()` or
1265 `BT_ASSERT_POST_DEV()`).
1266 |Almost none: always enabled.
1267
1268 |_ERROR_
1269 |
1270 An important error which is somewhat not fatal, that is, the program,
1271 library, or plugin can continue to work after this, but you judge that
1272 it should be reported to the user.
1273
1274 Usually, the program cannot recover from such an error, but it can at
1275 least exit cleanly.
1276 |
1277 * Memory allocation errors.
1278 * Wrong component initialization parameters.
1279 * Corrupted, unrecoverable trace data.
1280 * Failed to perform an operation which should work considering the
1281 implementation and the satisfied preconditions. For example, the
1282 failure to create an empty object (no parameters): most probably
1283 failed internally because of an allocation error.
1284 * Almost any error in terminal elements: CLI and plugins.
1285 |Almost none: always enabled.
1286
1287 |_WARNING_
1288 |
1289 An error which still allows the execution to continue, but you judge
1290 that it should be reported to the user.
1291
1292 _WARNING_-level logging statements are for any error or weird action
1293 that is directly or indirectly caused by the user, often through some
1294 bad input data. For example, not having enough memory is considered
1295 beyond the user's control, so we always log memory errors with an
1296 _ERROR_ level (not _FATAL_ because we usually don't abort in this
1297 condition).
1298 |
1299 * Missing data within something that is expected to have it, but there's
1300 an alternative.
1301 * Invalid file, but recoverable/fixable.
1302 |Almost none: always enabled.
1303
1304 |_INFO_
1305 |
1306 Any useful information which a non-developer user would possibly
1307 understand.
1308
1309 Anything logged with this level must _not_ happen repetitively on the
1310 fast path, that is, nothing related to each message, for example. This
1311 level is used for sporadic and one-shot events.
1312 |
1313 * CLI or component configuration report.
1314 * Successful plugin, component, or message iterator initialization.
1315 * In the library: anything related to plugins, graphs, component
1316 classes, components, message iterators, connections, and ports which
1317 is not on the fast path.
1318 * Successful connection to or disconnection from another system.
1319 * An _optional_ subsystem cannot be loaded.
1320 * An _optional_ field/datum cannot be found.
1321 |
1322 Very little: always enabled.
1323
1324 |_DEBUG_
1325 |
1326 Something that only {bt2} developers would be interested into,
1327 which can occur on the fast path, but not more often than once per
1328 message.
1329
1330 The _DEBUG_ level is the default <<build-time-log-level,build-time log
1331 level>> as, since it's not _too_ verbose, the performance is similar to
1332 an _INFO_ build.
1333 |
1334 * Object construction and destruction.
1335 * Object recycling (except fields).
1336 * Object copying (except fields and values).
1337 * Object freezing (whatever the type, as freezing only occurs in
1338 developer mode).
1339 * Object interruption.
1340 * Calling user methods and logging the result.
1341 * Setting object properties (except fields and values).
1342 |
1343 Noticeable, but not as much as the _TRACE_ level: could be executed
1344 in production if you're going to need a thorough log for support
1345 tickets without having to rebuild the project.
1346
1347 |_TRACE_
1348 |
1349 Low-level debugging context information (anything that does not fit the
1350 other log levels). More appropriate for tracing in general.
1351 |
1352 * Reference count change.
1353 * Fast path, low level state machine's state change.
1354 * Get or set an object's property.
1355 * Object comparison's intermediate results.
1356 |Huge: not executed in production.
1357 |===
1358
1359 [IMPORTANT]
1360 --
1361 Make sure not to use a _WARNING_ (or higher) log level when the
1362 condition leading to the logging statement can occur under normal
1363 circumstances.
1364
1365 For example, a public function to get some object or
1366 property from an object by name or key that fails to find the value is
1367 not a warning scenario: the user could legitimately use this function to
1368 check if the name/key exists in the object. In this case, use the
1369 _TRACE_ level (or do not log at all).
1370 --
1371
1372 [[message]]
1373 ==== Write an appropriate message
1374
1375 Follow those rules when you write a logging statement's message:
1376
1377 * Use an English sentence which starts with a capital letter.
1378
1379 * Start the sentence with the appropriate verb tense depending on the
1380 context. For example:
1381 +
1382 --
1383 ** Beginning of operation (present continuous): _Creating ..._,
1384 _Copying ..._, _Serializing ..._, _Freezing ..._, _Destroying ..._
1385 ** End of operation (simple past): _Created ..._, _Successfully created ..._,
1386 _Failed to create ..._, _Set ..._ (simple past of _to set_ which is
1387 also _set_)
1388 --
1389 +
1390 For warning and error messages, you can start the message with _Cannot_
1391 or _Failed to_ followed by a verb if it's appropriate.
1392
1393 * Do not include the log level in the message itself. For example,
1394 do not start the message with _Error while_ or _Warning:_.
1395
1396 * Do not put newlines, tabs, or other special characters in the message,
1397 unless you want to log a string with such characters. Note that
1398 multiline logging messages can be hard to parse, analyze, and filter,
1399 however, so prefer multiple logging statements over a single statement
1400 with newlines.
1401
1402 * **If there are fields that your logging statement must record**,
1403 follow the message with `:` followed by a space, then with the list of
1404 fields (more about this below). If there are no fields, end the
1405 sentence with a period.
1406
1407 The statement's fields _must_ be a comma-separated list of
1408 `__name__=__value__` tokens. Keep `__name__` as simple as possible; use
1409 kebab case if possible. If `__value__` is a non-alphanumeric string, put
1410 it between double quotes (`"%s"` specifier). Always use the `PRId64` and
1411 `PRIu64` specifiers to log an `int64_t` or an `uint64_t` value. Use `%d`
1412 to log a boolean value.
1413
1414 Example:
1415
1416 "Cannot read stream data for indexing: path=\"%s\", name=\"%s\", "
1417 "stream-id=%" PRIu64 ", stream-fd=%d, "
1418 "index=%" PRIu64 ", status=%s, is-mapped=%d"
1419
1420 By following a standard format for the statement fields, it is easier to
1421 use tools like https://www.elastic.co/products/logstash[Logstash] or
1422 even https://www.splunk.com/[Splunk] to split fields and analyze logs.
1423
1424 Prefer the following suffixes in field names:
1425
1426 [options="header,autowidth"]
1427 |===
1428 |Field name suffix |Description |Format specifier
1429
1430 |`-addr` |Memory address |`%p`
1431 |`-fd` |File descriptor |`%d`
1432 |`-fp` |File stream (`+FILE *+`) |`%p`
1433 |`-id` |Object's ID |`%" PRIu64 "`
1434 |`-index` |Index |`%" PRIu64 "`
1435 |`-name` |Object's name |`\"%s\"`
1436 |===
1437
1438 === Output
1439
1440 The log is printed to the standard error stream. A log line contains the
1441 time, the process and thread IDs, the <<log-levels,log level>>, the
1442 <<choose-a-logging-tag,logging tag>>, the source's function name, file
1443 name and line number, and the <<message,message>>.
1444
1445 When {bt2} supports terminal color codes (depends on the
1446 `BABELTRACE_TERM_COLOR` environment variable's value and what the
1447 standard output and error streams are plugged into), _INFO_-level lines
1448 are blue, _WARNING_-level lines are yellow, and _ERROR_-level and
1449 _FATAL_-level lines are red.
1450
1451 Log line example:
1452
1453 ----
1454 05-11 00:58:03.691 23402 23402 D VALUES bt_value_destroy@values.c:498 Destroying value: addr=0xb9c3eb0
1455 ----
1456
1457 You can easily filter the log with `grep` or `ag`. For example, to keep
1458 only the _DEBUG_-level logging messages that the `FIELD-CLASS` module
1459 generates:
1460
1461 ----
1462 $ babeltrace2 --log-level=D /path/to/trace |& ag 'D FIELD-CLASS'
1463 ----
1464
1465 == Valgrind
1466
1467 To use Valgrind on an application (for example, the CLI or a test) which
1468 loads libbabeltrace2, use:
1469
1470 ----
1471 $ G_SLICE=always-malloc G_DEBUG=gc-friendly PYTHONMALLOC=malloc \
1472 LIBBABELTRACE2_NO_DLCLOSE=1 valgrind --leak-check=full app
1473 ----
1474
1475 `G_SLICE=always-malloc` and `G_DEBUG=gc-friendly` is for GLib and
1476 `PYTHONMALLOC=malloc` is for the Python interpreter, if it is used by
1477 the Python plugin provider (Valgrind will probably show a lot of errors
1478 which originate from the Python interpreter anyway).
1479
1480 `LIBBABELTRACE2_NO_DLCLOSE=1` makes libbabeltrace2 not close the shared
1481 libraries (plugins) which it loads. You need this to see the appropriate
1482 backtrace when Valgrind shows errors.
1483
1484 == Testing
1485
1486 [[test-env]]
1487 === Environment
1488
1489 Running `make check` in the build directory (regardless of whether the build is
1490 in-tree or out-of-tree) automatically sets up the appropriate environment for
1491 tests to run in, so nothing more is needed.
1492
1493 If building in-tree, you can run single tests from the tree directly:
1494
1495 ----
1496 $ ./tests/plugins/sink.text.pretty/test_enum
1497 ----
1498
1499 If building out-of-tree, you can get the appropriate environment by sourcing
1500 the `tests/utils/env.sh` file residing in the build directory against which you
1501 want to run tests.
1502
1503 ----
1504 $ source /path/to/my/build/tests/utils/env.sh
1505 $ ./tests/plugins/sink.text.pretty/test_enum
1506 ----
1507
1508 ==== Python
1509
1510 You can use the `tests/utils/run_python_bt2` script to run any command
1511 within an environment making the build's `bt2` Python package available.
1512
1513 `run_python_bt2` uses <<test-env,`utils.sh`>> which needs to know the
1514 build directory, so make sure you set the `BT_TESTS_BUILDDIR`
1515 environment variable correctly _if you build out of tree_, for example:
1516
1517 ----
1518 $ export BT_TESTS_BUILDDIR=/path/to/build/babeltrace/tests
1519 ----
1520
1521 You can run any command which needs the `bt2` Python package through
1522 `run_python_bt2`, for example:
1523
1524 ----
1525 $ ./tests/utils/run_python_bt2 ipython3
1526 ----
1527
1528 === Report format
1529
1530 All test scripts output the test results following the
1531 https://testanything.org/[Test Anything Protocol] (TAP) format.
1532
1533 The TAP format has two mechanisms to print additional information about
1534 a test:
1535
1536 * Print a line starting with `#` to the standard output.
1537 +
1538 This is usually done with the `diag()` C function or the `diag` shell
1539 function.
1540
1541 * Print to the standard error.
1542
1543 === Python bindings
1544
1545 The `bt2` Python package tests are located in
1546 `tests/bindings/python/bt2`.
1547
1548 ==== Python test runner
1549
1550 `tests/utils/python/testrunner.py` is {bt2}'s Python test runner
1551 which loads Python files containing unit tests, finds all the test
1552 cases, and runs the tests, producing a TAP report.
1553
1554 You can see the test runner command's help with:
1555
1556 ----
1557 $ python3 ./tests/utils/python/testrunner.py --help
1558 ----
1559
1560 By default, the test runner reports failing tests (TAP's `not{nbsp}ok`
1561 line), but continues to run other tests. You can use the `--failfast`
1562 option to make the test runner fail as soon as a test fails.
1563
1564 ==== Guides
1565
1566 To run all the `bt2` Python package tests:
1567
1568 * Run:
1569 +
1570 ----
1571 $ ./tests/utils/run_python_bt2 ./tests/bindings/python/bt2/test_python_bt2
1572 ----
1573 +
1574 or:
1575 +
1576 ----
1577 $ ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1578 ./tests/bindings/python/bt2/ -p '*.py'
1579 ----
1580
1581 To run **all the tests** in a test module (for example,
1582 `test_value.py`):
1583
1584 * Run:
1585 +
1586 ----
1587 $ ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1588 ./tests/bindings/python/bt2 -t test_value
1589 ----
1590
1591 To run a **specific test case** (for example, `RealValueTestCase` within
1592 `test_value.py`):
1593
1594 * Run:
1595 +
1596 ----
1597 $ ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1598 ./tests/bindings/python/bt2/ -t test_value.RealValueTestCase
1599 ----
1600
1601 To run a **specific test** (for example,
1602 `RealValueTestCase.test_assign_pos_int` within `test_value.py`):
1603
1604 * Run:
1605 +
1606 ----
1607 $ ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1608 ./tests/bindings/python/bt2/ -t test_value.RealValueTestCase.test_assign_pos_int
1609 ----
1610
1611 == {cpp} usage
1612
1613 Some parts of {bt2} are written in {cpp}.
1614
1615 This section shows what's important to know about {cpp} to contribute
1616 to {bt2}.
1617
1618 [IMPORTANT]
1619 ====
1620 {bt2} only has {cpp} sources for _internal_ code.
1621
1622 In other words, libbabeltrace2 _must_ expose a pure C99 API to preserve
1623 ABI compatibility over time.
1624 ====
1625
1626 === Standard and dependencies
1627
1628 The {bt2} project is configured to use the {cpp11} standard.
1629
1630 {cpp11} makes it possible to build {bt2} with a broad range of
1631 compilers, from GCC{nbsp}4.8 and Clang{nbsp}3.3.
1632
1633 === Automake/Libtool requirements
1634
1635 To add a {cpp} source file to a part of the project, use the `.cpp`
1636 extension and add it to the list of source files in `Makefile.am` as
1637 usual.
1638
1639 If a program or a shared library has a direct {cpp} source file, then
1640 Libtool uses the {cpp} linker to create the result, dynamically
1641 linking important runtime libraries such as libstdc++ and libgcc_s.
1642
1643 Because a Libtool _convenience library_ is just an archive (`.a`), it's
1644 _not_ dynamically linked to runtime libraries, even if one of its direct
1645 sources is a {cpp} file. This means that for each program or shared
1646 library named `my_target` in `Makefile.am` which is linked to a
1647 convenience library having {cpp} sources (recursively), you _must_ do
1648 one of:
1649
1650 * Have at least one direct {cpp} source file in the
1651 `+*_my_target_SOURCES+` list.
1652
1653 * Add:
1654 +
1655 ----
1656 nodist_EXTRA_my_target_SOURCES = dummy.cpp
1657 ----
1658 +
1659 See
1660 https://www.gnu.org/software/automake/manual/automake.html#Libtool-Convenience-Libraries[Libtool
1661 Convenience Libraries] to learn more.
1662
1663 For a given program or library, you _cannot_ have a C{nbsp}file and a
1664 {cpp}{nbsp}file having the same name, for example `list.c` and
1665 `list.cpp`.
1666
1667 === Coding style
1668
1669 ==== Whitespaces, indentation, and line breaks
1670
1671 All the project's {cpp} files follow the
1672 https://clang.llvm.org/docs/ClangFormat.html[clang-format]
1673 https://clang.llvm.org/docs/ClangFormatStyleOptions.html[style] of the
1674 `.clang-format` file for whitespaces, indentation, and line breaks.
1675
1676 You _must_ format modified and new {cpp} files with clang-format before
1677 you create a contribution patch.
1678
1679 You need clang-format{nbsp}13 to use the project's `.clang-format` file.
1680
1681 To automatically format all the project's {cpp} files, run:
1682
1683 ----
1684 $ ./tools/format-cpp
1685 ----
1686
1687 Use the `FORMATTER` environment variable to override the default
1688 formatter (`clang-format{nbsp}-i`):
1689
1690 ----
1691 $ FORMATTER='clang-format-10 -i' ./tools/format-cpp
1692 ----
1693
1694 ==== Naming
1695
1696 * Use camel case with a lowercase first letter for:
1697 ** Variable names: `size`, `objSize`.
1698 ** Function/method names: `size()`, `formatAndPrint()`.
1699
1700 * Use camel case with an uppercase first letter for:
1701 ** Types: `Pistachio`, `NutManager`.
1702 ** Template parameters: `PlanetT`, `TotalSize`.
1703
1704 * Use snake case with uppercase letters for:
1705 ** Definition/macro names: `MARK_AS_UNUSED()`, `SOME_FEATURE_EXISTS`.
1706 ** Enumerators: `Type::SIGNED_INT`, `Scope::FUNCTION`.
1707
1708 * Use only lowercase letters and digits for namespaces: `mylib`, `bt2`.
1709
1710 * Use the suffix `T` for type template parameters:
1711 +
1712 [source,cpp]
1713 ----
1714 template <typename NameT, typename ItemT>
1715 ----
1716
1717 * Name a template parameter pack `Args`.
1718 +
1719 [source,cpp]
1720 ----
1721 template <typename NameT, typename... Args>
1722 ----
1723
1724 * Use an underscore prefix for private and protected methods and member
1725 type names: `_tryConnect()`, `_NodeType`.
1726
1727 * Use the prefix `_m` for private and protected member variable names:
1728 `_mLogger`, `_mSize`, `_mFieldClass`.
1729
1730 * Name setters and getters like the property name, without `set` and
1731 `get` prefixes.
1732
1733 * Use the `is` or `has` prefix, if possible, to name the functions which
1734 return `bool`.
1735
1736 === Coding convention
1737
1738 In general, the project's contributors make an effort to follow,
1739 for {cpp11} code:
1740
1741 * The
1742 https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md[{cpp} Core Guidelines].
1743
1744 * Scott Meyers's
1745 "`https://www.oreilly.com/library/view/effective-modern-c/9781491908419/[Effective Modern {cpp}]`".
1746
1747 Here are a few important reminders:
1748
1749 * Namespace your code.
1750
1751 * Create one header/source file pair per class when possible.
1752 +
1753 For a class named `MyClass`, name the corresponding files `my-class.hpp`
1754 and `my-class.cpp`.
1755
1756 * When defining a class, put constructors as the first methods, whatever
1757 their access (public/protected/private), then the destructor, and then
1758 the rest.
1759
1760 * Declare variables as close to where they are used as possible.
1761
1762 * Use `auto` when possible.
1763
1764 * Use `const` as much as possible, even for pointer
1765 (`+const char* const+`) and numeric values (`const unsigned int`)
1766 which never need to change.
1767
1768 * Implement simple setters, getters, and one-liners in header files and
1769 everything else that's not a template in source files.
1770
1771 * Make methods `const noexcept` or `const` as much as possible.
1772
1773 * Make constructors `explicit` unless you really need an implicit
1774 constructor (which is rare).
1775
1776 * Use `std::unique_ptr` to manage memory when possible.
1777 +
1778 However, use references (`+*my_unique_ptr+`) and raw pointers
1779 (`+my_unique_ptr.get()+`) when not transferring ownership.
1780
1781 * Use `nullptr`, not `NULL` nor 0.
1782
1783 * Return by value (rvalue) instead of by output parameter (non-const
1784 lvalue reference), even complex objects, unless you can prove that the
1785 performance is improved when returning by parameter.
1786
1787 * For a function parameter or a return value of which the type needs to
1788 be a reference or pointer, use:
1789 +
1790 If the value is mandatory:::
1791 A reference.
1792 If the value is optional:::
1793 A raw pointer.
1794
1795 * Don't use `+std::move()+` when you already have an rvalue, which
1796 means:
1797 ** Don't write `+return std::move(...);+` as this can interfere with
1798 RVO.
1799 ** Don't use `+std::move()+` with a function call
1800 (`+std::move(func())+`).
1801
1802 * For each possible move/copy constructor or assignment operator, do one
1803 of:
1804 ** Write a custom one.
1805 ** Mark it as defaulted (`default`)
1806 ** Mark it as deleted (`delete`).
1807
1808 * Use scoped enumerations (`+enum class+`).
1809
1810 * Mark classes known to be final with the `final` keyword.
1811
1812 * Use type aliases (`using`), not type definitions (`typedef`).
1813
1814 * Use anonymous namespaces for local functions instead of `static`.
1815
1816 * Don't pollute the global namespace:
1817 ** Don't use `using namespace xyz` anywhere.
1818 ** Use only namespace aliases in source files (`.cpp`), trying to
1819 use them in the smallest possible scope (function, or even smaller).
1820
1821 * Return a structure with named members instead of a generic container
1822 such as `std::pair` or `std::tuple`.
1823
1824 * When a class inherits a base class with virtual methods, use the
1825 `override` keyword to mark overridden virtual methods, and do not use
1826 the `virtual` keyword again.
1827
1828 * Define overloaded operators only if their meaning is obvious,
1829 unsurprising, and consistent with the corresponding built-in
1830 operators.
1831 +
1832 For example, use `+|+` as a bitwise- or logical-or, not as a shell-style
1833 pipe.
1834
1835 * Use RAII wrappers when managing system resources or interacting with
1836 C{nbsp}libraries.
1837 +
1838 In other words, don't rely on ``goto``s and error labels to clean up as
1839 you would do in{nbsp}C.
1840 +
1841 Use the RAII, Luke.
1842
1843 * Throw an exception when there's an unexpected, exceptional condition,
1844 https://isocpp.org/wiki/faq/exceptions#ctors-can-throw[including from
1845 a constructor], instead of returning a status code.
1846
1847 * Accept a by-value parameter and move it (when it's moveable) when you
1848 intend to copy it anyway.
1849 +
1850 You can do this with most STL containers.
1851 +
1852 Example:
1853 +
1854 [source,cpp]
1855 ----
1856 void Obj::doSomething(std::string str)
1857 {
1858 _mName = std::move(str);
1859 // ...
1860 }
1861 ----
1862
1863 .`baby.hpp`
1864 ====
1865 This example shows a {cpp} header which follows the {bt2} {cpp} coding
1866 convention.
1867
1868 [source,cpp]
1869 ----
1870 /*
1871 * SPDX-License-Identifier: MIT
1872 *
1873 * Copyright 2020 Harry Burnett <hburnett@reese.choco>
1874 */
1875
1876 #ifndef BABELTRACE_BABY_HPP
1877 #define BABELTRACE_BABY_HPP
1878
1879 #include <string>
1880 #include <unordered_set>
1881 #include <utility>
1882
1883 namespace life {
1884
1885 class Toy;
1886
1887 /*
1888 * A baby is a little human.
1889 */
1890 class Baby : public Human
1891 {
1892 public:
1893 using Toys = std::unordered_set<Toy>;
1894
1895 enum class Gender
1896 {
1897 MALE,
1898 FEMALE,
1899 UNKNOWN,
1900 };
1901
1902 Baby() = default;
1903 explicit Baby(const Toys& toys);
1904 Baby(const Baby&) = delete;
1905 Baby(Baby&&) = delete;
1906 Baby& operator=(const Baby&) = delete;
1907 Baby& operator=(Baby&&) = delete;
1908
1909 protected:
1910 explicit Baby(Gender initialGender = Gender::UNKNOWN);
1911
1912 public:
1913 /*
1914 * Eats `weight` grams of food.
1915 */
1916 void eat(unsigned long weight);
1917
1918 /*
1919 * Sleeps for `duration` seconds.
1920 */
1921 void sleep(double duration);
1922
1923 /*
1924 * Sets this baby's name to `name`.
1925 */
1926 void name(std::string name)
1927 {
1928 _mName = std::move(name);
1929 }
1930
1931 /*
1932 * This baby's name.
1933 */
1934 const std::string& name() const noexcept
1935 {
1936 return _mName;
1937 }
1938
1939 protected:
1940 void _addTeeth(unsigned long index);
1941 void _grow(double size) override;
1942
1943 private:
1944 std::string _mName {"Paul"};
1945 Toys _mToys;
1946 };
1947
1948 } // namespace life
1949
1950 #endif // BABELTRACE_BABY_HPP
1951 ----
1952 ====
This page took 0.082349 seconds and 3 git commands to generate.