.gitignore: add missing test binaries
[babeltrace.git] / CONTRIBUTING.adoc
1 // Render with Asciidoctor
2
3 = Babeltrace contributor's guide
4 Jérémie Galarneau, Philippe Proulx
5 v0.2, 19 June 2019
6 :toc:
7 :toclevels: 5
8
9
10 This is a partial contributor's guide for the
11 http://diamon.org/babeltrace[Babeltrace] project. If you have any
12 questions that are not answered by this guide, please post them on
13 https://lists.lttng.org/cgi-bin/mailman/listinfo/lttng-dev[Babeltrace's
14 mailing list].
15
16
17 == Babeltrace library
18
19 === Object reference counting and lifetime
20
21 This section covers the rationale behind the design of Babeltrace's
22 object lifetime management. This applies to the Babeltrace library, as
23 well as to the CTF writer library (although the public reference
24 counting functions are not named the same way).
25
26 Starting from Babeltrace 2.0, all publicly exposed objects inherit a
27 common base: `bt_object`. This base provides a number of facilities to
28 all objects, chief amongst which are lifetime management functions.
29
30 The lifetime of some public objects is managed by reference counting. In
31 this case, the API offers the `+bt_*_get_ref()+` and `+bt_*_put_ref()+`
32 functions which respectively increment and decrement an object's
33 reference count.
34
35 As far as lifetime management in concerned, Babeltrace makes a clear
36 distinction between regular objects, which have a single parent, and
37 root objects, which don't.
38
39
40 ==== The problem
41
42 Let us consider a problematic case to illustrate the need for this
43 distinction.
44
45 A user of the Babeltrace library creates a trace class, which _has_ a
46 stream class (the class of a stream) and that stream class, in turn,
47 _has_ an event class (the class of an event).
48
49 Nothing prevents this user from releasing his reference on any one of
50 these objects in any order. However, all objects in the
51 __trace--stream class--event class__ hierarchy can be retrieved
52 from any other.
53
54 For instance, the user could discard his reference on both the event
55 class and the stream class, only keeping a reference on the trace class.
56 From this trace class reference, stream classes can be enumerated,
57 providing the user with a new reference to the stream class he discarded
58 earlier. Event classes can also be enumerated from stream classes,
59 providing the user with references to the individual event classes.
60
61 Conversely, the user could also hold a reference to an event class and
62 retrieve its parent stream class. The trace class, in turn, can then be
63 retrieved from the stream class.
64
65 This example illustrates what could be interpreted as a circular
66 reference dependency existing between these objects. Of course, if the
67 objects in such a scenario were to hold references to each other (in
68 both directions), we would be in presence of a circular ownership
69 resulting in a leak of both objects as their reference counts would
70 never reach zero.
71
72 Nonetheless, the API must offer the guarantee that holding a node to any
73 node of the graph keeps all other reachable nodes alive.
74
75
76 ==== The solution
77
78 The scheme employed in Babeltrace to break this cycle consists in the
79 "children" holding _reverse component references_ to their parents. That
80 is, in the context of the trace IR, that event classes hold a reference
81 to their parent stream class and stream classes hold a reference to
82 their parent trace class.
83
84 On the other hand, parents hold _claiming aggregation references_ to
85 their children. A claiming aggregation reference means that the object
86 being referenced should not be deleted as long as the reference still
87 exists. In this respect, it can be said that parents truly hold the
88 ownership of their children, since they control their lifetime.
89 Conversely, the reference counting mechanism is leveraged by children to
90 notify parents that no other child indirectly exposes the parent.
91
92 When a parented object's reference count reaches zero, it invokes
93 `+bt_*_put_ref()+` on its parent and does _not_ free itself. However,
94 from that point, the object depends on its parent to signal the moment
95 when it can be safely reclaimed.
96
97 The invocation of `+bt_*_put_ref()+` by the last children holding a
98 reference to its parent might trigger a cascade of `+bt_*_put_ref()+`
99 from child to parent. Eventually, a **root** object is reached. At that
100 point, if this orphaned object's reference count reaches zero, the
101 object invokes the destructor method defined by everyone of its children
102 as part of their base `struct bt_object`. The key point here is that the
103 cascade of destructor will necessarily originate from the root and
104 propagate in preorder to the children. These children will propagate the
105 destruction to their own children before reclaiming their own memory.
106 This ensures that a node's pointer to its parent is _always_ valid since
107 the parent has the responsibility of tearing-down their children before
108 cleaning themselves up.
109
110 Assuming a reference to an object is _acquired_ by calling
111 `+bt_*_get_ref()+` while its reference count is zero, the object
112 acquires, in turn, a reference on its parent using `+bt_*_get_ref()+`.
113 At that point, the child can be thought of as having converted its weak
114 reference to its parent into a regular reference. That is why this
115 reference is referred to as a _claiming_ aggregation reference.
116
117
118 ==== Caveats
119
120 This scheme imposes a number of strict rules defining the relation
121 between objects:
122
123 * Objects may only have one parent.
124 * Objects, beside the root, are only retrievable from their direct
125 parent or children.
126
127
128 ==== Example
129
130 The initial situation is rather simple: **User{nbsp}A** is holding a
131 reference to a trace class, **TC1**. As per the rules previously
132 enounced, stream classes **SC1** and **SC2** don't hold a reference to
133 **TC1** since their own reference counts are zero. The same holds true
134 for **EC1**, **EC2** and **EC3** with respect to **SC1** and **SC2**.
135
136 image::doc/contributing-images/bt-ref01.png[]
137
138 In this second step, we can see that **User{nbsp}A** has acquired a
139 reference on **SC2** through the trace class, **TC1**.
140
141 The stream class's reference count transitions from zero to one,
142 triggering the acquisition of a strong reference on **TC1** from
143 **SC2**.
144
145 Hence, at this point, the trace class's ownership is shared by
146 **User{nbsp}A** and **SC2**.
147
148 image::doc/contributing-images/bt-ref02.png[]
149
150 Next, **User{nbsp}A** acquires a reference on the **EC3** event class
151 through its parent stream class, **SC2**. Again, the transition of an
152 object's reference count from 0 to 1 triggers the acquisition of a
153 reference on its parent.
154
155 Note that SC2's reference count was incremented to 2. The trace class's
156 reference count remains unchanged.
157
158 image::doc/contributing-images/bt-ref03.png[]
159
160 **User{nbsp}A** decides to drop its reference on **SC2**. **SC2**'s
161 reference count returns back to 1, everything else remaining unchanged.
162
163 image::doc/contributing-images/bt-ref04.png[]
164
165 **User{nbsp}A** can then decide to drop its reference on the trace
166 class. This results in a reversal of the initial situation:
167 **User{nbsp}A** now owns an event, **EC3**, which is keeping everything
168 else alive and reachable.
169
170 image::doc/contributing-images/bt-ref05.png[]
171
172 If another object, **User{nbsp}B**, enters the picture and acquires a
173 reference on the **SC1** stream class, we see that **SC1**'s reference
174 count transitioned from 0 to 1, triggering the acquisition of a
175 reference on **TC1**.
176
177 image::doc/contributing-images/bt-ref06.png[]
178
179 **User{nbsp}B** hands off a reference to **EC1**, acquired through
180 **SC1**, to another object, **User{nbsp}C**. The acquisition of a
181 reference on **EC1**, which transitions from 0 to 1, triggers the
182 acquisition of a reference on its parent, **SC1**.
183
184 image::doc/contributing-images/bt-ref07.png[]
185
186 At some point, **User{nbsp}A** releases its reference on **EC3**. Since
187 **EC3**'s reference count transitions to zero, it releases its reference
188 on **SC2**. **SC2**'s reference count, in turn, reaches zero and it
189 releases its reference to **TC1**.
190
191 **TC1**'s reference count is now 1 and no further action is taken.
192
193 image::doc/contributing-images/bt-ref08.png[]
194
195 **User{nbsp}B** releases its reference on **SC1**. **User{nbsp}C**
196 becomes the sole owner of the whole hierarchy through his ownership of
197 **EC1**.
198
199 image::doc/contributing-images/bt-ref09.png[]
200
201 Finally, **User{nbsp}C** releases his ownership of **EC1**, triggering
202 the release of the whole hierarchy. Let's walk through the reclamation
203 of the whole graph.
204
205 Mirroring what happened when **User{nbsp}A** released its last reference
206 on **EC3**, the release of **EC1** by **User{nbsp}C** causes its
207 reference count to fall to zero.
208
209 This transition to zero causes **EC1** to release its reference on
210 **SC1**. **SC1**'s reference count reaching zero causes it to release
211 its reference on **TC1**.
212
213 image::doc/contributing-images/bt-ref10.png[]
214
215 Since the reference count of **TC1**, a root object, has reached zero,
216 it invokes the destructor method on its children. This method is
217 recursive and causes the stream classes to call the destructor method on
218 their event classes.
219
220 The event classes are reached and, having no children of their own, are
221 reclaimed.
222
223 image::doc/contributing-images/bt-ref11.png[]
224
225 The stream classes having destroyed their children, are then reclaimed
226 by the trace class.
227
228 image::doc/contributing-images/bt-ref12.png[]
229
230 Finally, the stream classes having been reclaimed, **TC1** is reclaimed.
231
232 image::doc/contributing-images/bt-ref13.png[]
233
234
235 == Logging
236
237 Logging is a great instrument for a developer to be able to collect
238 information about a running software.
239
240 Babeltrace is a complex software with many layers. When a Babeltrace
241 graph fails to run, what caused the failure? It could be caused by any
242 component, any message iterator, and any deeply nested validation of a
243 CTF IR object (within the `ctf` plugin), for example. With the
244 appropriate logging statements manually placed in the source code, we
245 can find the cause of a bug faster.
246
247 While <<choose-a-log-level,care must be taken>> when placing _DEBUG_ to
248 _FATAL_ logging statements, you should liberally instrument your
249 Babeltrace module with _TRACE_ logging statements to help future you
250 and other developers understand what's happening at run time.
251
252
253 === Logging API
254
255 The Babeltrace logging API is internal: it is not exposed to the users
256 of the library; only to their developers. The only thing that a library
257 user can control is the current log level of the library itself with
258 `bt_logging_set_global_level()` and the initial library's log level with
259 the `LIBBABELTRACE2_INIT_LOG_LEVEL` environment variable.
260
261 This API is based on https://github.com/wonder-mice/zf_log[zf_log], a
262 lightweight, yet featureful, MIT-licensed core logging library for C and
263 pass:[C++]. The zf_log source files were modified to have the `BT_` and
264 `bt_` prefixes, and other small changes, like color support and using
265 the project's `BT_DEBUG_MODE` definition instead of the standard
266 `NDEBUG`.
267
268 The logging functions are implemented in the logging convenience
269 library (`src/logging` directory).
270
271
272 [[logging-headers]]
273 ==== Headers
274
275 The logging API headers are:
276
277 `<babeltrace2/logging.h>`::
278 Public header which a library user can use to set and get
279 libbabeltrace2's current log level.
280
281 `"logging/log.h"`::
282 Internal, generic logging API which you can use in any Babeltrace
283 module. This is the translation of `zf_log.h`.
284 +
285 This header offers the <<gen-logging-statements,generic logging
286 statement macros>>.
287
288 `"lib/logging.h"`::
289 Specific internal header to use within the library.
290 +
291 This header defines `BT_LOG_OUTPUT_LEVEL` to a custom, library-wide
292 hidden symbol which is the library's current log level before including
293 `"logging/log.h"`.
294 +
295 This header offers the <<lib-logging-statements,library-specific logging
296 statement macros>>.
297
298 `"logging/comp-logging.h"`::
299 Specific internal header to use within a component class.
300 +
301 This header offers the <<comp-logging-statements,component-specific
302 logging statement macros>>.
303
304
305 [[log-levels]]
306 ==== Log levels
307
308 The internal logging API offers the following log levels, in ascending
309 order of severity:
310
311 [options="header,autowidth",cols="4"]
312 |===
313 |Log level name
314 |Log level short name
315 |Internal API enumerator
316 |Public API enumerator
317
318 |_TRACE_
319 |`T`
320 |`BT_LOG_TRACE`
321 |`BT_LOGGING_LEVEL_TRACE`
322
323 |_DEBUG_
324 |`D`
325 |`BT_LOG_DEBUG`
326 |`BT_LOGGING_LEVEL_DEBUG`
327
328 |_INFO_
329 |`I`
330 |`BT_LOG_INFO`
331 |`BT_LOGGING_LEVEL_INFO`
332
333 |_WARNING_
334 |`W`
335 |`BT_LOG_WARNING`
336 |`BT_LOGGING_LEVEL_WARNING`
337
338 |_ERROR_
339 |`E`
340 |`BT_LOG_ERROR`
341 |`BT_LOGGING_LEVEL_ERROR`
342
343 |_FATAL_
344 |`F`
345 |`BT_LOG_FATAL`
346 |`BT_LOGGING_LEVEL_FATAL`
347
348 |_NONE_
349 |`N`
350 |`BT_LOG_NONE`
351 |`BT_LOGGING_LEVEL_NONE`
352 |===
353
354 The short name is accepted by the log level environment variables and by
355 the CLI's `--log-level` options.
356
357 See <<choose-a-log-level,how to decide which one to use>> below.
358
359 There are two important log level expressions:
360
361 [[build-time-log-level]]Build-time, minimal log level::
362 The minimal log level, or build-time log level, is set at build time
363 and determines the minimal log level of the logging statements which
364 can be executed. This applies to all the modules (CLI, library,
365 plugins, bindings, etc.).
366 +
367 All the logging statements with a level below this level are **not built
368 at all**. All the logging statements with a level equal to or greater
369 than this level _can_ be executed, depending on the
370 <<run-time-log-level,run-time log level>>.
371 +
372 You can set this level at configuration time with the
373 `BABELTRACE_MINIMAL_LOG_LEVEL` environment variable, for example:
374 +
375 --
376 ----
377 $ BABELTRACE_MINIMAL_LOG_LEVEL=INFO ./configure
378 ----
379 --
380 +
381 The default build-time log level is `DEBUG`. For optimal performance,
382 set it to `INFO`, which effectively disables all fast path logging in
383 all the Babeltrace modules. You can't set it to `WARNING`, `ERROR`,
384 `FATAL`, or `NONE` because the impact on performance is minuscule
385 starting from the _INFO_ log level anyway and we want any Babeltrace
386 build to always be able to print _INFO_-level logs.
387 +
388 The library's public API provides `bt_logging_get_minimal_level()` to
389 get the configured minimal log level.
390
391 [[run-time-log-level]]Run-time, dynamic log level::
392 The dynamic log level is set at run time and determines the current,
393 _active_ log level. All the logging statements with a level below
394 this level are not executed, **but they still evaluate the
395 condition**. All the logging statements with a level equal to or
396 greater than this level are executed, provided that their level is
397 also <<build-time-log-level,enabled at build time>>.
398 +
399 `zf_log` has a concept of a global run-time log level which uses the
400 `_bt_log_global_output_lvl` symbol. In practice, we never use this
401 symbol, and always make sure that `BT_LOG_OUTPUT_LEVEL` is defined to a
402 module-wise expression before including `"logging/log.h"`.
403 +
404 In the library, `"lib/logging.h"` defines its own
405 `BT_LOG_OUTPUT_LEVEL` to the library's log level symbol before it
406 includes `"logging/log.h"` itself.
407 +
408 In libbabeltrace2, the user can set the current run-time log level with
409 the `bt_logging_set_global_level()` function, for example:
410 +
411 --
412 [source,c]
413 ----
414 bt_logging_set_global_level(BT_LOGGING_LEVEL_INFO);
415 ----
416 --
417 +
418 The library's initial run-time log level is defined by the
419 `LIBBABELTRACE2_INIT_LOG_LEVEL` environment variable, or set to _NONE_
420 if this environment variable is undefined.
421 +
422 Other modules have their own way of setting their run-time log level.
423 +
424 For example, the CLI uses the `BABELTRACE_CLI_LOG_LEVEL` environment
425 variable, as well as its global `--log-level` option:
426 +
427 ----
428 $ babeltrace2 --log-level=I ...
429 ----
430 +
431 The components use their own log level (as returned by
432 `bt_component_get_logging_level()`). With the CLI, you can set a
433 specific component's log level with its own, position-dependent
434 `--log-level` option:
435 +
436 ----
437 $ babeltrace2 /path/to/trace -c sink.ctf.fs --log-level=D
438 ----
439 +
440 Code which is common to the whole project, for example `src/common`
441 and `src/compat`, use function parameters to get its run-time log
442 level, for example:
443 +
444 [source,c]
445 ----
446 BT_HIDDEN
447 char *bt_common_get_home_plugin_path(int log_level);
448 ----
449 +
450 Typically, when a logging-enabled module calls such a function, it
451 passes its own log level expression directly (`BT_LOG_OUTPUT_LEVEL`):
452 +
453 [source,c]
454 ----
455 path = bt_common_get_home_plugin_path(BT_LOG_OUTPUT_LEVEL);
456 ----
457 +
458 Otherwise, just pass `BT_LOG_NONE`:
459 +
460 ----
461 path = bt_common_get_home_plugin_path(BT_LOG_NONE);
462 ----
463
464
465 [[gen-logging-statements]]
466 ==== Generic logging statement macros
467
468 The Babeltrace logging statement macros work just like `printf()`
469 (except the `+BT_LOG*_STR()+` ones) and contain their <<log-levels,log
470 level>> (short name) in their name.
471
472 Each of the following macros evaluate the
473 <<build-time-log-level,build-time log level>> definition and
474 <<run-time-log-level,run-time log level>> expression (as defined by
475 `BT_LOG_OUTPUT_LEVEL`) to log conditionally.
476
477 See <<logging-instrument-c-file-gen,Instrument a C source file
478 (generic)>> and <<logging-instrument-h-file-gen,Instrument a C header
479 file (generic)>> to learn how to be able to use the following macros.
480
481 `+BT_LOGT("format string", ...)+`::
482 Generic trace logging statement.
483
484 `+BT_LOGD("format string", ...)+`::
485 Generic debug logging statement.
486
487 `+BT_LOGI("format string", ...)+`::
488 Generic info logging statement.
489
490 `+BT_LOGW("format string", ...)+`::
491 Generic warning logging statement.
492
493 `+BT_LOGE("format string", ...)+`::
494 Generic error logging statement.
495
496 `+BT_LOGF("format string", ...)+`::
497 Generic fatal logging statement.
498
499 `+BT_LOGT_STR("preformatted string")+`::
500 Generic preformatted string trace logging statement.
501
502 `+BT_LOGD_STR("preformatted string")+`::
503 Generic preformatted string debug logging statement.
504
505 `+BT_LOGI_STR("preformatted string")+`::
506 Generic preformatted string info logging statement.
507
508 `+BT_LOGW_STR("preformatted string")+`::
509 Generic preformatted string warning logging statement.
510
511 `+BT_LOGE_STR("preformatted string")+`::
512 Generic preformatted string error logging statement.
513
514 `+BT_LOGF_STR("preformatted string")+`::
515 Generic preformatted string fatal logging statement.
516
517 `+BT_LOGT_MEM(data_ptr, data_size, "format string", ...)+`::
518 Generic memory trace logging statement.
519
520 `+BT_LOGD_MEM(data_ptr, data_size, "format string", ...)+`::
521 Generic memory debug logging statement.
522
523 `+BT_LOGI_MEM(data_ptr, data_size, "format string", ...)+`::
524 Generic memory info logging statement.
525
526 `+BT_LOGW_MEM(data_ptr, data_size, "format string", ...)+`::
527 Generic memory warning logging statement.
528
529 `+BT_LOGE_MEM(data_ptr, data_size, "format string", ...)+`::
530 Generic memory error logging statement.
531
532 `+BT_LOGF_MEM(data_ptr, data_size, "format string", ...)+`::
533 Generic memory fatal logging statement.
534
535 `+BT_LOGT_ERRNO("initial message", "format string", ...)+`::
536 Generic `errno` string trace logging statement.
537
538 `+BT_LOGD_ERRNO("initial message", "format string", ...)+`::
539 Generic `errno` string debug logging statement.
540
541 `+BT_LOGI_ERRNO("initial message", "format string", ...)+`::
542 Generic `errno` string info logging statement.
543
544 `+BT_LOGW_ERRNO("initial message", "format string", ...)+`::
545 Generic `errno` string warning logging statement.
546
547 `+BT_LOGE_ERRNO("initial message", "format string", ...)+`::
548 Generic `errno` string error logging statement.
549
550 `+BT_LOGF_ERRNO("initial message", "format string", ...)+`::
551 Generic `errno` string fatal logging statement.
552
553
554 [[lib-logging-statements]]
555 ==== Library-specific logging statement macros
556
557 The Babeltrace library contains an internal logging API based on the
558 generic logging framework. You can use it to log known Babeltrace
559 objects without having to manually log each member.
560
561 See <<logging-instrument-c-file-lib,Instrument a library C source file>>
562 and <<logging-instrument-h-file-lib,Instrument a library C header file>> to
563 learn how to be able to use the following macros.
564
565 The library logging statement macros are named `+BT_LIB_LOG*()+` instead
566 of `+BT_LOG*()+`:
567
568 `+BT_LIB_LOGT("format string", ...)+`::
569 Library trace logging statement.
570
571 `+BT_LIB_LOGD("format string", ...)+`::
572 Library debug logging statement.
573
574 `+BT_LIB_LOGI("format string", ...)+`::
575 Library info logging statement.
576
577 `+BT_LIB_LOGW("format string", ...)+`::
578 Library warning logging statement.
579
580 `+BT_LIB_LOGE("format string", ...)+`::
581 Library error logging statement.
582
583 `+BT_LIB_LOGF("format string", ...)+`::
584 Library fatal logging statement.
585
586 `+BT_LIB_LOGW_APPEND_CAUSE("format string", ...)+`::
587 Library warning logging statement, and unconditional error cause
588 appending.
589
590 `+BT_LIB_LOGE_APPEND_CAUSE("format string", ...)+`::
591 Library error logging statement, and unconditional error cause
592 appending.
593
594 `+BT_LIB_LOGF_APPEND_CAUSE("format string", ...)+`::
595 Library fatal logging statement, and unconditional error cause
596 appending.
597
598 The macros above accept the typical `printf()` conversion specifiers
599 with the following limitations:
600
601 * The `+*+` width specifier is not accepted.
602 * The `+*+` precision specifier is not accepted.
603 * The `j` and `t` length modifiers are not accepted.
604 * The `n` format specifier is not accepted.
605 * The format specifiers defined in `<inttypes.h>` are not accepted,
606 except for `PRId64`, `PRIu64`, `PRIx64`, `PRIX64`, `PRIo64`, and
607 `PRIi64`.
608
609 The Babeltrace library custom conversion specifier is accepted. Its
610 syntax is either `%!u` to format a UUID (`bt_uuid` type), or:
611
612 . Introductory `%!` sequence.
613
614 . **Optional**: `[` followed by a custom prefix for the printed fields
615 of this specifier, followed by `]`. The standard form is to end this
616 prefix with `-` so that, for example, with the prefix `tc-`, the
617 complete field name becomes `tc-addr`.
618
619 . **Optional**: `pass:[+]` to print extended object members. This
620 depends on the provided format specifier.
621
622 . Format specifier (see below).
623
624 The available format specifiers are:
625
626 [options="header,autowidth",cols="3"]
627 |===
628 |Specifier
629 |Object
630 |Expected C type
631
632 |`F`
633 |Trace IR field class
634 |`+const struct bt_field_class *+`
635
636 |`f`
637 |Trace IR field
638 |`+const struct bt_field *+`
639
640 |`P`
641 |Trace IR field path
642 |`+const struct bt_field_path *+`
643
644 |`E`
645 |Trace IR event class
646 |`+const struct bt_event_class *+`
647
648 |`e`
649 |Trace IR event
650 |`+const struct bt_event *+`
651
652 |`S`
653 |Trace IR stream class.
654 |`+const struct bt_stream_class *+`
655
656 |`s`
657 |Trace IR stream
658 |`+const struct bt_stream *+`
659
660 |`a`
661 |Trace IR packet
662 |`+const struct bt_packet *+`
663
664 |`T`
665 |Trace IR trace class
666 |`+const struct bt_trace_class *+`
667
668 |`t`
669 |Trace IR trace
670 |`+const struct bt_trace *+`
671
672 |`K`
673 |Trace IR clock class
674 |`+const struct bt_clock_class *+`
675
676 |`k`
677 |Trace IR clock snapshot
678 |`+const struct bt_clock_snapshot *+`
679
680 |`v`
681 |Value object
682 |`+const struct bt_value *+`
683
684 |`R`
685 |Integer range set
686 |`const struct bt_integer_range_set *`
687
688 |`n`
689 |Message
690 |`+const struct bt_message *+`
691
692 |`i`
693 |Message iterator
694 |`struct bt_message_iterator *`
695
696 |`C`
697 |Component class
698 |`struct bt_component_class *`
699
700 |`c`
701 |Component
702 |`+const struct bt_component *+`
703
704 |`p`
705 |Port
706 |`+const struct bt_port *+`
707
708 |`x`
709 |Connection
710 |`+const struct bt_connection *+`
711
712 |`g`
713 |Graph
714 |`+const struct bt_graph *+`
715
716 |`z`
717 |Interrupter
718 |`+struct bt_interrupter *+`
719
720 |`l`
721 |Plugin
722 |`+const struct bt_plugin *+`
723
724 |`r`
725 |Error cause
726 |`+const struct bt_error_cause *+`
727
728 |`o`
729 |Object pool
730 |`+const struct bt_object_pool *+`
731
732 |`O`
733 |Object
734 |`+const struct bt_object *+`
735 |===
736
737 Conversion specifier examples:
738
739 * `%!f`
740 * `%![my-event-]+e`
741 * `%!t`
742 * `%!+F`
743
744 The ``, `` string (comma and space) is printed between individual
745 fields, but **not after the last one**. Therefore, you must put this
746 separator in the format string between two conversion specifiers, for
747 example:
748
749 [source,c]
750 ----
751 BT_LIB_LOGW("Message: count=%u, %!E, %!+K", count, event_class, clock_class);
752 ----
753
754 Example with a custom prefix:
755
756 [source,c]
757 ----
758 BT_LIB_LOGI("Some message: %![ec-a-]e, %![ec-b-]+e", ec_a, ec_b);
759 ----
760
761 It is safe to pass `NULL` as any Babeltrace object parameter: the macros
762 only print its null address.
763
764 WARNING: Build-time `printf()` format checks are disabled for the
765 `+BT_LIB_LOG*()+` macros because there are custom conversion specifiers,
766 so make sure to test your logging statements.
767
768
769 [[comp-logging-statements]]
770 ==== Component-specific logging statement macros
771
772 There are available logging macros for components. They prepend a prefix
773 including the component's name to the logging message.
774
775 See <<logging-instrument-c-file-compcls,Instrument a component class C
776 source file>> and <<logging-instrument-h-file-compcls,Instrument a
777 component class C header file>> to learn how to be able to use the
778 following macros.
779
780 The component logging statement macros are named `+BT_COMP_LOG*()+`
781 instead of `+BT_LOG*()+`:
782
783 `+BT_COMP_LOGT("format string", ...)+`::
784 Component trace logging statement.
785
786 `+BT_COMP_LOGD("format string", ...)+`::
787 Component debug logging statement.
788
789 `+BT_COMP_LOGI("format string", ...)+`::
790 Component info logging statement.
791
792 `+BT_COMP_LOGW("format string", ...)+`::
793 Component warning logging statement.
794
795 `+BT_COMP_LOGE("format string", ...)+`::
796 Component error logging statement.
797
798 `+BT_COMP_LOGF("format string", ...)+`::
799 Component fatal logging statement.
800
801 `+BT_COMP_LOGT_STR("preformatted string")+`::
802 Component preformatted string trace logging statement.
803
804 `+BT_COMP_LOGD_STR("preformatted string")+`::
805 Component preformatted string debug logging statement.
806
807 `+BT_COMP_LOGI_STR("preformatted string")+`::
808 Component preformatted string info logging statement.
809
810 `+BT_COMP_LOGW_STR("preformatted string")+`::
811 Component preformatted string warning logging statement.
812
813 `+BT_COMP_LOGE_STR("preformatted string")+`::
814 Component preformatted string error logging statement.
815
816 `+BT_COMP_LOGF_STR("preformatted string")+`::
817 Component preformatted string fatal logging statement.
818
819 `+BT_COMP_LOGT_ERRNO("initial message", "format string", ...)+`::
820 Component `errno` string trace logging statement.
821
822 `+BT_COMP_LOGD_ERRNO("initial message", "format string", ...)+`::
823 Component `errno` string debug logging statement.
824
825 `+BT_COMP_LOGI_ERRNO("initial message", "format string", ...)+`::
826 Component `errno` string info logging statement.
827
828 `+BT_COMP_LOGW_ERRNO("initial message", "format string", ...)+`::
829 Component `errno` string warning logging statement.
830
831 `+BT_COMP_LOGE_ERRNO("initial message", "format string", ...)+`::
832 Component `errno` string error logging statement.
833
834 `+BT_COMP_LOGF_ERRNO("initial message", "format string", ...)+`::
835 Component `errno` string fatal logging statement.
836
837 `+BT_COMP_LOGT_MEM(data_ptr, data_size, "format string", ...)+`::
838 Component memory trace logging statement.
839
840 `+BT_COMP_LOGD_MEM(data_ptr, data_size, "format string", ...)+`::
841 Component memory debug logging statement.
842
843 `+BT_COMP_LOGI_MEM(data_ptr, data_size, "format string", ...)+`::
844 Component memory info logging statement.
845
846 `+BT_COMP_LOGW_MEM(data_ptr, data_size, "format string", ...)+`::
847 Component memory warning logging statement.
848
849 `+BT_COMP_LOGE_MEM(data_ptr, data_size, "format string", ...)+`::
850 Component memory error logging statement.
851
852 `+BT_COMP_LOGF_MEM(data_ptr, data_size, "format string", ...)+`::
853 Component memory fatal logging statement.
854
855
856 ==== Conditional logging
857
858 `+BT_LOG_IF(cond, statement)+`::
859 Execute `statement` only if `cond` is true.
860 +
861 Example:
862 +
863 --
864 [source,c]
865 ----
866 BT_LOG_IF(i < count / 2, BT_LOGD("Log this: i=%d", i));
867 ----
868 --
869
870 To check the <<build-time-log-level,build-time log level>>:
871
872 [source,c]
873 ----
874 #if BT_LOG_ENABLED_DEBUG
875 ...
876 #endif
877 ----
878
879 This tests if the _DEBUG_ level was enabled at build time. This means
880 that the current, <<run-time-log-level,run-time log level>> _could_ be
881 _DEBUG_, but it could also be higher. The rule of thumb is to use only
882 logging statements at the same level in a `BT_LOG_ENABLED_*` conditional
883 block.
884
885 The available definitions for build-time conditions are:
886
887 * `BT_LOG_ENABLED_TRACE`
888 * `BT_LOG_ENABLED_DEBUG`
889 * `BT_LOG_ENABLED_INFO`
890 * `BT_LOG_ENABLED_WARNING`
891 * `BT_LOG_ENABLED_ERROR`
892 * `BT_LOG_ENABLED_FATAL`
893
894 To check the current, <<run-time-log-level,run-time log level>>:
895
896 [source,c]
897 ----
898 if (BT_LOG_ON_DEBUG) {
899 ...
900 }
901 ----
902
903 This tests if the _DEBUG_ log level is dynamically turned on
904 (implies that it's also enabled at build time). This check could have a
905 noticeable impact on performance.
906
907 The available definitions for run-time conditions are:
908
909 * `BT_LOG_ON_TRACE`
910 * `BT_LOG_ON_DEBUG`
911 * `BT_LOG_ON_INFO`
912 * `BT_LOG_ON_WARNING`
913 * `BT_LOG_ON_ERROR`
914 * `BT_LOG_ON_FATAL`
915
916 Those macros check the module-specific log level symbol (defined by
917 `BT_LOG_OUTPUT_LEVEL`).
918
919 Never, ever write code which would be executed only to compute the
920 fields of a logging statement outside a conditional logging scope,
921 for example:
922
923 [source,c]
924 ----
925 int number = get_number_of_event_classes_with_property_x(...);
926 BT_LOGD("Bla bla: number=%d", number);
927 ----
928
929 Do this instead:
930
931 [source,c]
932 ----
933 if (BT_LOG_ON_DEBUG) {
934 int number = get_number_of_event_classes_with_property_x(...);
935 BT_LOGD("Bla bla: number=%d", number);
936 }
937 ----
938
939 Or even this:
940
941 [source,c]
942 ----
943 BT_LOGD("Bla bla: number=%d", get_number_of_event_classes_with_property_x(...));
944 ----
945
946
947 === Guides
948
949 [[logging-instrument-c-file-gen]]
950 ==== Instrument a C source file (generic)
951
952 To instrument a C source file (`.c`):
953
954 . At the top of the file, before the first `#include` line (if any),
955 define your file's <<choose-a-logging-tag,logging tag>> name:
956 +
957 --
958 [source,c]
959 ----
960 #define BT_LOG_TAG "SUBSYS/MY-MODULE/MY-FILE"
961 ----
962 --
963
964 . Below the line above, define the source file's log level expression,
965 `BT_LOG_OUTPUT_LEVEL`. This expression is evaluated for each
966 <<gen-logging-statements,logging statement>> to know the current
967 <<run-time-log-level,run-time log level>>.
968 +
969 Examples:
970 +
971 [source,c]
972 ----
973 /* Global log level variable */
974 #define BT_LOG_OUTPUT_LEVEL module_global_log_level
975 ----
976 +
977 [source,c]
978 ----
979 /* Local log level variable; must exist where you use BT_LOG*() */
980 #define BT_LOG_OUTPUT_LEVEL log_level
981 ----
982 +
983 [source,c]
984 ----
985 /* Object's log level; `obj` must exist where you use BT_LOG*() */
986 #define BT_LOG_OUTPUT_LEVEL (obj->log_level)
987 ----
988
989 . Include `"logging/log.h"`:
990 +
991 [source,c]
992 ----
993 #include "logging/log.h"
994 ----
995
996 . In the file, instrument your code with the
997 <<gen-logging-statements,generic logging statement macros>>.
998
999
1000 [[logging-instrument-h-file-gen]]
1001 ==== Instrument a C header file (generic)
1002
1003 To instrument a C header file (`.h`), if you have `static inline`
1004 functions in it:
1005
1006 . Do not include `"logging/log.h"`!
1007
1008 . Do one of:
1009
1010 .. In the file, instrument your code with the
1011 <<gen-logging-statements,generic logging statement macros>>, making
1012 each of them conditional to the existence of the macro you're using:
1013 +
1014 [source,c]
1015 ----
1016 static inline
1017 int some_function(int x)
1018 {
1019 /* ... */
1020
1021 #ifdef BT_LOGT
1022 BT_LOGT(...);
1023 #endif
1024
1025 /* ... */
1026
1027 #ifdef BT_LOGW_STR
1028 BT_LOGW_STR(...);
1029 #endif
1030
1031 /* ... */
1032 }
1033 ----
1034 +
1035 The C source files which include this header file determine if logging
1036 is enabled or not for them, and if so, what is their
1037 <<choose-a-logging-tag,logging tag>> and <<run-time-log-level,run-time
1038 log level>> expression.
1039
1040 .. Require that logging be enabled:
1041 +
1042 [source,c]
1043 ----
1044 /* Protection: this file uses BT_LOG*() macros directly */
1045 #ifndef BT_LOG_SUPPORTED
1046 # error Please include "logging/log.h" before including this file.
1047 #endif
1048 ----
1049 +
1050 Then, in the file, instrument your code with the
1051 <<gen-logging-statements,generic logging statement macros>>.
1052
1053
1054 [[logging-instrument-c-file-lib]]
1055 ==== Instrument a library C source file
1056
1057 To instrument a library C source file (`.c`):
1058
1059 . At the top of the file, before the first `#include` line (if any),
1060 define your file's <<choose-a-logging-tag,logging tag>> name (this
1061 tag must start with `LIB/`):
1062 +
1063 --
1064 [source,c]
1065 ----
1066 #define BT_LOG_TAG "LIB/THE-FILE"
1067 ----
1068 --
1069
1070 . Include `"lib/logging.h"`:
1071 +
1072 [source,c]
1073 ----
1074 #include "lib/logging.h"
1075 ----
1076
1077 . In the file, instrument your code with the
1078 <<lib-logging-statements,library logging statement macros>> or with
1079 the <<gen-logging-statements,generic logging statement macros>>.
1080
1081
1082 [[logging-instrument-h-file-lib]]
1083 ==== Instrument a library C header file
1084
1085 To instrument a library C header file (`.h`), if you have `static
1086 inline` functions in it:
1087
1088 . Do not include `"lib/logging.h"`!
1089
1090 . Require that library logging be enabled:
1091 +
1092 [source,c]
1093 ----
1094 /* Protection: this file uses BT_LIB_LOG*() macros directly */
1095 #ifndef BT_LIB_LOG_SUPPORTED
1096 # error Please include "lib/logging.h" before including this file.
1097 #endif
1098 ----
1099
1100 . In the file, instrument your code with the
1101 <<lib-logging-statements,library logging statement macros>> or with
1102 the <<gen-logging-statements,generic logging statement macros>>.
1103
1104
1105 [[logging-instrument-c-file-compcls]]
1106 ==== Instrument a component class C source file
1107
1108 To instrument a component class C source file (`.c`):
1109
1110 . At the top of the file, before the first `#include` line (if any),
1111 define your file's <<choose-a-logging-tag,logging tag>> name (this tag
1112 must start with `PLUGIN/` followed by the component class identifier):
1113 +
1114 --
1115 [source,c]
1116 ----
1117 #define BT_LOG_TAG "PLUGIN/SRC.MY-PLUGIN.MY-SRC"
1118 ----
1119 --
1120
1121 . Below the line above, define the source file's log level expression,
1122 `BT_LOG_OUTPUT_LEVEL`. This expression is evaluated for each
1123 <<comp-logging-statements,logging statement>> to know the current
1124 <<run-time-log-level,run-time log level>>.
1125 +
1126 For a component class file, it is usually a member of a local component
1127 private structure variable:
1128 +
1129 [source,c]
1130 ----
1131 #define BT_LOG_OUTPUT_LEVEL (my_comp->log_level)
1132 ----
1133
1134 . Below the line above, define `BT_COMP_LOG_SELF_COMP` to an expression
1135 which, evaluated in the context of the
1136 <<comp-logging-statements,logging statements>>, evaluates to the self
1137 component address (`+bt_self_component *+`) of the component.
1138 +
1139 This is usually a member of a local component private structure
1140 variable:
1141 +
1142 [source,c]
1143 ----
1144 #define BT_COMP_LOG_SELF_COMP (my_comp->self_comp)
1145 ----
1146
1147 . Include `"logging/comp-logging.h"`:
1148 +
1149 [source,c]
1150 ----
1151 #include "logging/comp-logging.h"
1152 ----
1153
1154 . In the component initialization method, make sure to set the
1155 component private structure's log level member to the initial
1156 component's log level:
1157 +
1158 [source,c]
1159 ----
1160 struct my_comp {
1161 bt_logging_level log_level;
1162 /* ... */
1163 };
1164
1165 BT_HIDDEN
1166 bt_self_component_status my_comp_init(
1167 bt_self_component_source *self_comp_src,
1168 bt_value *params, void *init_method_data)
1169 {
1170 struct my_comp *my_comp = g_new0(struct my_comp, 1);
1171 bt_self_component *self_comp =
1172 bt_self_component_source_as_self_component(self_comp_src);
1173 const bt_component *comp = bt_self_component_as_component(self_comp);
1174
1175 BT_ASSERT(my_comp);
1176 my_comp->log_level = bt_component_get_logging_level(comp);
1177
1178 /* ... */
1179 }
1180 ----
1181
1182 . In the file, instrument your code with the
1183 <<comp-logging-statements,component logging statement macros>>.
1184
1185
1186 [[logging-instrument-h-file-compcls]]
1187 ==== Instrument a component class C header file
1188
1189 To instrument a component class C header file (`.h`), if you have
1190 `static inline` functions in it:
1191
1192 . Do not include `"logging/comp-logging.h"`!
1193
1194 . Require that component logging be enabled:
1195 +
1196 [source,c]
1197 ----
1198 /* Protection: this file uses BT_COMP_LOG*() macros directly */
1199 #ifndef BT_COMP_LOG_SUPPORTED
1200 # error Please include "logging/comp-logging.h" before including this file.
1201 #endif
1202 ----
1203
1204 . In the file, instrument your code with the
1205 <<comp-logging-statements,component logging statement macros>>.
1206
1207
1208 [[choose-a-logging-tag]]
1209 ==== Choose a logging tag
1210
1211 Each logging-enabled C source file must define `BT_LOG_TAG` to a logging
1212 tag. A logging tag is a namespace to identify the logging messages of
1213 this specific source file.
1214
1215 In general, a logging tag name _must_ be only uppercase letters, digits,
1216 and the `-`, `.`, and `/` characters.
1217
1218 Use `/` to show the subsystem to source file hierarchy.
1219
1220 For the Babeltrace library, start with `LIB/`.
1221
1222 For the CTF writer library, start with `CTF-WRITER/`.
1223
1224 For component classes, use:
1225
1226 [verse]
1227 `PLUGIN/__CCTYPE__.__PNAME__.__CCNAME__[/__FILE__]`
1228
1229 With:
1230
1231 `__CCTYPE__`::
1232 Component class's type (`SRC`, `FLT`, or `SINK`).
1233
1234 `__PNAME__`::
1235 Plugin's name.
1236
1237 `__CCNAME__`::
1238 Component class's name.
1239
1240 `__FILE__`::
1241 Additional information to specify the source file name or module.
1242
1243 For plugins (files common to many component classes), use:
1244
1245 [verse]
1246 `PLUGIN/__PNAME__[/__FILE__]`
1247
1248 With:
1249
1250 `__PNAME__`::
1251 Plugin's name.
1252
1253 `__FILE__`::
1254 Additional information to specify the source file name or module.
1255
1256
1257 [[choose-a-log-level]]
1258 ==== Choose a log level
1259
1260 Choosing the appropriate level for your logging statement is very
1261 important.
1262
1263 [options="header,autowidth",cols="1,2,3a,4"]
1264 |===
1265 |Log level |Description |Use cases |Expected impact on performance
1266
1267 |_FATAL_
1268 |
1269 The program, library, or plugin cannot continue to work in this
1270 condition: it must be terminated immediately.
1271
1272 A _FATAL_-level logging statement should always be followed by
1273 `abort()`.
1274 |
1275 * Unexpected return values from system calls.
1276 * Logic error in internal code, for example an unexpected value in a
1277 `switch` statement.
1278 * Failed assertion (within `BT_ASSERT()`).
1279 * Unsatisfied library precondition (within `BT_ASSERT_PRE()` or
1280 `BT_ASSERT_PRE_DEV()`).
1281 * Unsatisfied library postcondition (within `BT_ASSERT_POST()` or
1282 `BT_ASSERT_POST_DEV()`).
1283 |Almost none: always enabled.
1284
1285 |_ERROR_
1286 |
1287 An important error which is somewhat not fatal, that is, the program,
1288 library, or plugin can continue to work after this, but you judge that
1289 it should be reported to the user.
1290
1291 Usually, the program cannot recover from such an error, but it can at
1292 least exit cleanly.
1293 |
1294 * Memory allocation errors.
1295 * Wrong component initialization parameters.
1296 * Corrupted, unrecoverable trace data.
1297 * Failed to perform an operation which should work considering the
1298 implementation and the satisfied preconditions. For example, the
1299 failure to create an empty object (no parameters): most probably
1300 failed internally because of an allocation error.
1301 * Almost any error in terminal elements: CLI and plugins.
1302 |Almost none: always enabled.
1303
1304 |_WARNING_
1305 |
1306 An error which still allows the execution to continue, but you judge
1307 that it should be reported to the user.
1308
1309 _WARNING_-level logging statements are for any error or weird action
1310 that is directly or indirectly caused by the user, often through some
1311 bad input data. For example, not having enough memory is considered
1312 beyond the user's control, so we always log memory errors with an
1313 _ERROR_ level (not _FATAL_ because we usually don't abort in this
1314 condition).
1315 |
1316 * Missing data within something that is expected to have it, but there's
1317 an alternative.
1318 * Invalid file, but recoverable/fixable.
1319 |Almost none: always enabled.
1320
1321 |_INFO_
1322 |
1323 Any useful information which a non-developer user would possibly
1324 understand.
1325
1326 Anything logged with this level must _not_ happen repetitively on the
1327 fast path, that is, nothing related to each message, for example. This
1328 level is used for sporadic and one-shot events.
1329 |
1330 * CLI or component configuration report.
1331 * Successful plugin, component, or message iterator initialization.
1332 * In the library: anything related to plugins, graphs, component
1333 classes, components, message iterators, connections, and ports which
1334 is not on the fast path.
1335 * Successful connection to or disconnection from another system.
1336 * An _optional_ subsystem cannot be loaded.
1337 * An _optional_ field/datum cannot be found.
1338 |
1339 Very little: always enabled.
1340
1341 |_DEBUG_
1342 |
1343 Something that only Babeltrace developers would be interested into,
1344 which can occur on the fast path, but not more often than once per
1345 message.
1346
1347 The _DEBUG_ level is the default <<build-time-log-level,build-time log
1348 level>> as, since it's not _too_ verbose, the performance is similar to
1349 an _INFO_ build.
1350 |
1351 * Object construction and destruction.
1352 * Object recycling (except fields).
1353 * Object copying (except fields and values).
1354 * Object freezing (whatever the type, as freezing only occurs in
1355 developer mode).
1356 * Object interruption.
1357 * Calling user methods and logging the result.
1358 * Setting object properties (except fields and values).
1359 |
1360 Noticeable, but not as much as the _TRACE_ level: could be executed
1361 in production if you're going to need a thorough log for support
1362 tickets without having to rebuild the project.
1363
1364 |_TRACE_
1365 |
1366 Low-level debugging context information (anything that does not fit the
1367 other log levels). More appropriate for tracing in general.
1368 |
1369 * Reference count change.
1370 * Fast path, low level state machine's state change.
1371 * Get or set an object's property.
1372 * Object comparison's intermediate results.
1373 |Huge: not executed in production.
1374 |===
1375
1376 [IMPORTANT]
1377 --
1378 Make sure not to use a _WARNING_ (or higher) log level when the
1379 condition leading to the logging statement can occur under normal
1380 circumstances.
1381
1382 For example, a public function to get some object or
1383 property from an object by name or key that fails to find the value is
1384 not a warning scenario: the user could legitimately use this function to
1385 check if the name/key exists in the object. In this case, use the
1386 _TRACE_ level (or do not log at all).
1387 --
1388
1389
1390 [[message]]
1391 ==== Write an appropriate message
1392
1393 Follow those rules when you write a logging statement's message:
1394
1395 * Use an English sentence which starts with a capital letter.
1396
1397 * Start the sentence with the appropriate verb tense depending on the
1398 context. For example:
1399 +
1400 --
1401 ** Beginning of operation (present continuous): _Creating ..._,
1402 _Copying ..._, _Serializing ..._, _Freezing ..._, _Destroying ..._
1403 ** End of operation (simple past): _Created ..._, _Successfully created ..._,
1404 _Failed to create ..._, _Set ..._ (simple past of _to set_ which is
1405 also _set_)
1406 --
1407 +
1408 For warning and error messages, you can start the message with _Cannot_
1409 or _Failed to_ followed by a verb if it's appropriate.
1410
1411 * Do not include the log level in the message itself. For example,
1412 do not start the message with _Error while_ or _Warning:_.
1413
1414 * Do not put newlines, tabs, or other special characters in the message,
1415 unless you want to log a string with such characters. Note that
1416 multiline logging messages can be hard to parse, analyze, and filter,
1417 however, so prefer multiple logging statements over a single statement
1418 with newlines.
1419
1420 * **If there are fields that your logging statement must record**,
1421 follow the message with `:` followed by a space, then with the list of
1422 fields (more about this below). If there are no fields, end the
1423 sentence with a period.
1424
1425 The statement's fields _must_ be a comma-separated list of
1426 `__name__=__value__` tokens. Keep `__name__` as simple as possible; use
1427 kebab case if possible. If `__value__` is a non-alphanumeric string, put
1428 it between double quotes (`"%s"` specifier). Always use the `PRId64` and
1429 `PRIu64` specifiers to log an `int64_t` or an `uint64_t` value. Use `%d`
1430 to log a boolean value.
1431
1432 Example:
1433
1434 "Cannot read stream data for indexing: path=\"%s\", name=\"%s\", "
1435 "stream-id=%" PRIu64 ", stream-fd=%d, "
1436 "index=%" PRIu64 ", status=%s, is-mapped=%d"
1437
1438 By following a standard format for the statement fields, it is easier to
1439 use tools like https://www.elastic.co/products/logstash[Logstash] or
1440 even https://www.splunk.com/[Splunk] to split fields and analyze logs.
1441
1442 Prefer the following suffixes in field names:
1443
1444 [options="header,autowidth"]
1445 |===
1446 |Field name suffix |Description |Format specifier
1447
1448 |`-addr` |Memory address |`%p`
1449 |`-fd` |File descriptor |`%d`
1450 |`-fp` |File stream (`+FILE *+`) |`%p`
1451 |`-id` |Object's ID |`%" PRIu64 "`
1452 |`-index` |Index |`%" PRIu64 "`
1453 |`-name` |Object's name |`\"%s\"`
1454 |===
1455
1456
1457 === Output
1458
1459 The log is printed to the standard error stream. A log line contains the
1460 time, the process and thread IDs, the <<log-levels,log level>>, the
1461 <<choose-a-logging-tag,logging tag>>, the source's function name, file
1462 name and line number, and the <<message,message>>.
1463
1464 When Babeltrace supports terminal color codes (depends on the
1465 `BABELTRACE_TERM_COLOR` environment variable's value and what the
1466 standard output and error streams are plugged into), _INFO_-level lines
1467 are blue, _WARNING_-level lines are yellow, and _ERROR_-level and
1468 _FATAL_-level lines are red.
1469
1470 Log line example:
1471
1472 ----
1473 05-11 00:58:03.691 23402 23402 D VALUES bt_value_destroy@values.c:498 Destroying value: addr=0xb9c3eb0
1474 ----
1475
1476 You can easily filter the log with `grep` or `ag`. For example, to keep
1477 only the _DEBUG_-level logging messages that the `FIELD-CLASS` module
1478 generates:
1479
1480 ----
1481 $ babeltrace2 --log-level=D /path/to/trace |& ag 'D FIELD-CLASS'
1482 ----
1483
1484
1485 == Valgrind
1486
1487 To use Valgrind on an application (for example, the CLI or a test) which
1488 loads libbabeltrace2, use:
1489
1490 ----
1491 $ G_SLICE=always-malloc G_DEBUG=gc-friendly PYTHONMALLOC=malloc \
1492 LIBBABELTRACE2_NO_DLCLOSE=1 valgrind --leak-check=full app
1493 ----
1494
1495 `G_SLICE=always-malloc` and `G_DEBUG=gc-friendly` is for GLib and
1496 `PYTHONMALLOC=malloc` is for the Python interpreter, if it is used by
1497 the Python plugin provider (Valgrind will probably show a lot of errors
1498 which originate from the Python interpreter anyway).
1499
1500 `LIBBABELTRACE2_NO_DLCLOSE=1` makes libbabeltrace2 not close the shared
1501 libraries (plugins) which it loads. You need this to see the appropriate
1502 backtrace when Valgrind shows errors.
1503
1504 == Testing
1505
1506 [[test-env]]
1507 === Environment
1508
1509 `tests/utils/utils.sh` sets the environment variables for any Babeltrace
1510 test script.
1511
1512 `utils.sh` only needs to know the path to the `tests` directory within
1513 the source and the build directories. By default, `utils.sh` assumes the
1514 build is in tree, that is, you ran `./configure` from the source's root
1515 directory, and sets the `BT_TESTS_SRCDIR` and `BT_TESTS_BUILDDIR`
1516 environment variables accordingly. You can override those variables, for
1517 example if you build out of tree.
1518
1519 All test scripts eventually do something like this to source `utils.sh`,
1520 according to where they are located relative to the `tests` directory:
1521
1522 [source,bash]
1523 ----
1524 if [ "x${BT_TESTS_SRCDIR:-}" != "x" ]; then
1525 UTILSSH="$BT_TESTS_SRCDIR/utils/utils.sh"
1526 else
1527 UTILSSH="$(dirname "$0")/../utils/utils.sh"
1528 fi
1529 ----
1530
1531 ==== Python
1532
1533 You can use the `tests/utils/run_python_bt2` script to run any command
1534 within an environment making the build's `bt2` Python package available.
1535
1536 `run_python_bt2` uses <<test-env,`utils.sh`>> which needs to know the
1537 build directory, so make sure you set the `BT_TESTS_BUILDDIR`
1538 environment variable correctly _if you build out of tree_, for example:
1539
1540 ----
1541 $ export BT_TESTS_BUILDDIR=/path/to/build/babeltrace/tests
1542 ----
1543
1544 You can run any command which needs the `bt2` Python package through
1545 `run_python_bt2`, for example:
1546
1547 ----
1548 $ ./tests/utils/run_python_bt2 ipython3
1549 ----
1550
1551 === Report format
1552
1553 All test scripts output the test results following the
1554 https://testanything.org/[Test Anything Protocol] (TAP) format.
1555
1556 The TAP format has two mechanisms to print additional information about
1557 a test:
1558
1559 * Print a line starting with `#` to the standard output.
1560 +
1561 This is usually done with the `diag()` C function or the `diag` shell
1562 function.
1563
1564 * Print to the standard error.
1565
1566
1567 === Python bindings
1568
1569 The `bt2` Python package tests are located in
1570 `tests/bindings/python/bt2`.
1571
1572
1573 ==== Python test runner
1574
1575 `tests/utils/python/testrunner.py` is Babeltrace's Python test runner
1576 which loads Python files containing unit tests, finds all the test
1577 cases, and runs the tests, producing a TAP report.
1578
1579 You can see the test runner command's help with:
1580
1581 ----
1582 $ python3 ./tests/utils/python/testrunner.py --help
1583 ----
1584
1585 By default, the test runner reports failing tests (TAP's `not{nbsp}ok`
1586 line), but continues to run other tests. You can use the `--failfast`
1587 option to make the test runner fail as soon as a test fails.
1588
1589
1590 ==== Guides
1591
1592 To run all the `bt2` Python package tests:
1593
1594 * Run:
1595 +
1596 ----
1597 $ ./tests/utils/run_python_bt2 ./tests/bindings/python/bt2/test_python_bt2
1598 ----
1599 +
1600 or:
1601 +
1602 ----
1603 $ ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1604 ./tests/bindings/python/bt2/ -p '*.py'
1605 ----
1606
1607 To run **all the tests** in a test module (for example,
1608 `test_value.py`):
1609
1610 * Run:
1611 +
1612 ----
1613 $ ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1614 ./tests/bindings/python/bt2 -t test_value
1615 ----
1616
1617 To run a **specific test case** (for example, `RealValueTestCase` within
1618 `test_value.py`):
1619
1620 * Run:
1621 +
1622 ----
1623 $ ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1624 ./tests/bindings/python/bt2/ -t test_value.RealValueTestCase
1625 ----
1626
1627 To run a **specific test** (for example,
1628 `RealValueTestCase.test_assign_pos_int` within `test_value.py`):
1629
1630 * Run:
1631 +
1632 ----
1633 $ ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1634 ./tests/bindings/python/bt2/ -t test_value.RealValueTestCase.test_assign_pos_int
1635 ----
This page took 0.059841 seconds and 4 git commands to generate.