Declaration scope lookup
[babeltrace.git] / include / babeltrace / types.h
1 #ifndef _BABELTRACE_TYPES_H
2 #define _BABELTRACE_TYPES_H
3
4 /*
5 * BabelTrace
6 *
7 * Type Header
8 *
9 * Copyright 2010, 2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a copy
12 * of this software and associated documentation files (the "Software"), to deal
13 * in the Software without restriction, including without limitation the rights
14 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15 * copies of the Software, and to permit persons to whom the Software is
16 * furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice shall be included in
19 * all copies or substantial portions of the Software.
20 */
21
22 #include <babeltrace/align.h>
23 #include <babeltrace/list.h>
24 #include <stdbool.h>
25 #include <stdint.h>
26 #include <limits.h>
27 #include <string.h>
28 #include <glib.h>
29 #include <assert.h>
30
31 /* Preallocate this many fields for structures */
32 #define DEFAULT_NR_STRUCT_FIELDS 8
33
34 /*
35 * Always update stream_pos with move_pos and init_pos.
36 */
37 struct stream_pos {
38 char *base; /* Base address */
39 size_t offset; /* Offset from base, in bits */
40 int dummy; /* Dummy position, for length calculation */
41 };
42
43 static inline
44 void init_pos(struct stream_pos *pos, char *base)
45 {
46 pos->base = base; /* initial base, page-aligned */
47 pos->offset = 0;
48 pos->dummy = false;
49 }
50
51 /*
52 * move_pos - move position of a relative bit offset
53 *
54 * TODO: allow larger files by updating base too.
55 */
56 static inline
57 void move_pos(struct stream_pos *pos, size_t offset)
58 {
59 pos->offset = pos->offset + offset;
60 }
61
62 /*
63 * align_pos - align position on a bit offset (> 0)
64 *
65 * TODO: allow larger files by updating base too.
66 */
67 static inline
68 void align_pos(struct stream_pos *pos, size_t offset)
69 {
70 pos->offset += offset_align(pos->offset, offset);
71 }
72
73 static inline
74 void copy_pos(struct stream_pos *dest, struct stream_pos *src)
75 {
76 memcpy(dest, src, sizeof(struct stream_pos));
77 }
78
79 static inline
80 char *get_pos_addr(struct stream_pos *pos)
81 {
82 /* Only makes sense to get the address after aligning on CHAR_BIT */
83 assert(!(pos->offset % CHAR_BIT));
84 return pos->base + (pos->offset / CHAR_BIT);
85 }
86
87 struct format;
88 struct declaration;
89
90 /* Type declaration scope */
91 struct declaration_scope {
92 /* Hash table mapping type name GQuark to struct type */
93 GHashTable *types;
94 /* Hash table mapping field name GQuark to struct declaration */
95 GHashTable *declarations;
96 struct declaration_scope *parent_scope;
97 };
98
99 struct type {
100 GQuark name; /* type name */
101 size_t alignment; /* type alignment, in bits */
102 int ref; /* number of references to the type */
103 /*
104 * type_free called with type ref is decremented to 0.
105 */
106 void (*type_free)(struct type *type);
107 struct declaration *
108 (*declaration_new)(struct type *type,
109 struct declaration_scope *parent_scope);
110 /*
111 * declaration_free called with declaration ref is decremented to 0.
112 */
113 void (*declaration_free)(struct declaration *declaration);
114 /*
115 * Declaration copy function. Knows how to find the child declaration
116 * from the parent declaration.
117 */
118 void (*copy)(struct stream_pos *dest, const struct format *fdest,
119 struct stream_pos *src, const struct format *fsrc,
120 struct declaration *declaration);
121 };
122
123 struct declaration {
124 struct type *type;
125 int ref; /* number of references to the declaration */
126 };
127
128 /*
129 * Because we address in bits, bitfields end up being exactly the same as
130 * integers, except that their read/write functions must be able to deal with
131 * read/write non aligned on CHAR_BIT.
132 */
133 struct type_integer {
134 struct type p;
135 size_t len; /* length, in bits. */
136 int byte_order; /* byte order */
137 int signedness;
138 };
139
140 struct declaration_integer {
141 struct declaration p;
142 struct type_integer *type;
143 /* Last values read */
144 union {
145 uint64_t _unsigned;
146 int64_t _signed;
147 } value;
148 };
149
150 struct type_float {
151 struct type p;
152 struct type_integer *sign;
153 struct type_integer *mantissa;
154 struct type_integer *exp;
155 int byte_order;
156 /* TODO: we might want to express more info about NaN, +inf and -inf */
157 };
158
159 struct declaration_float {
160 struct declaration p;
161 struct type_float *type;
162 /* Last values read */
163 long double value;
164 };
165
166 /*
167 * enum_val_equal assumes that signed and unsigned memory layout overlap.
168 */
169 struct enum_range {
170 union {
171 int64_t _signed;
172 uint64_t _unsigned;
173 } start; /* lowest range value */
174 union {
175 int64_t _signed;
176 uint64_t _unsigned;
177 } end; /* highest range value */
178 };
179
180 struct enum_range_to_quark {
181 struct cds_list_head node;
182 struct enum_range range;
183 GQuark quark;
184 };
185
186 /*
187 * We optimize the common case (range of size 1: single value) by creating a
188 * hash table mapping values to quark sets. We then lookup the ranges to
189 * complete the quark set.
190 *
191 * TODO: The proper structure to hold the range to quark set mapping would be an
192 * interval tree, with O(n) size, O(n*log(n)) build time and O(log(n)) query
193 * time. Using a simple O(n) list search for now for implementation speed and
194 * given that we can expect to have a _relatively_ small number of enumeration
195 * ranges. This might become untrue if we are fed with symbol tables often
196 * required to lookup function names from instruction pointer value.
197 */
198 struct enum_table {
199 GHashTable *value_to_quark_set; /* (value, GQuark GArray) */
200 struct cds_list_head range_to_quark; /* (range, GQuark) */
201 GHashTable *quark_to_range_set; /* (GQuark, range GArray) */
202 };
203
204 struct type_enum {
205 struct type p;
206 struct type_integer *integer_type;
207 struct enum_table table;
208 };
209
210 struct declaration_enum {
211 struct declaration p;
212 struct declaration_integer *integer;
213 struct type_enum *type;
214 /* Last GQuark values read. Keeping a reference on the GQuark array. */
215 GArray *value;
216 };
217
218 struct type_string {
219 struct type p;
220 };
221
222 struct declaration_string {
223 struct declaration p;
224 struct type_string *type;
225 char *value; /* freed at declaration_string teardown */
226 };
227
228 struct type_field {
229 GQuark name;
230 struct type *type;
231 };
232
233 struct field {
234 GQuark name;
235 struct declaration *declaration;
236 };
237
238 struct type_struct {
239 struct type p;
240 GHashTable *fields_by_name; /* Tuples (field name, field index) */
241 GArray *fields; /* Array of type_field */
242 };
243
244 struct declaration_struct {
245 struct declaration p;
246 struct type_struct *type;
247 struct declaration_scope *scope;
248 GArray *fields; /* Array of struct field */
249 };
250
251 struct type_variant {
252 struct type p;
253 GHashTable *fields_by_tag; /* Tuples (field tag, field index) */
254 GArray *fields; /* Array of type_field */
255 };
256
257 struct declaration_variant {
258 struct declaration p;
259 struct type_variant *type;
260 struct declaration_scope *scope;
261 struct declaration *enum_tag;
262 GArray *fields; /* Array of struct field */
263 struct field *current_field; /* Last field read */
264 };
265
266 struct type_array {
267 struct type p;
268 size_t len;
269 struct type *elem;
270 };
271
272 struct declaration_array {
273 struct declaration p;
274 struct type_array *type;
275 struct declaration_scope *scope;
276 struct field current_element; /* struct field */
277 };
278
279 struct type_sequence {
280 struct type p;
281 struct type_integer *len_type;
282 struct type *elem;
283 };
284
285 struct declaration_sequence {
286 struct declaration p;
287 struct type_sequence *type;
288 struct declaration_scope *scope;
289 struct declaration_integer *len;
290 struct field current_element; /* struct field */
291 };
292
293 struct type *lookup_type(GQuark type_name, struct declaration_scope *scope);
294 int register_type(struct type *type, struct declaration_scope *scope);
295
296 struct declaration *
297 lookup_declaration(GQuark field_name, struct declaration_scope *scope);
298 int register_declaration(GQuark field_name, struct declaration *declaration,
299 struct declaration_scope *scope);
300
301 void type_ref(struct type *type);
302 void type_unref(struct type *type);
303
304 struct declaration_scope *
305 new_declaration_scope(struct declaration_scope *parent_scope);
306 void free_declaration_scope(struct declaration_scope *scope);
307
308 void declaration_ref(struct declaration *declaration);
309 void declaration_unref(struct declaration *declaration);
310
311 /* Nameless types can be created by passing a NULL name */
312
313 struct type_integer *integer_type_new(const char *name,
314 size_t len, int byte_order,
315 int signedness, size_t alignment);
316
317 /*
318 * mantissa_len is the length of the number of bytes represented by the mantissa
319 * (e.g. result of DBL_MANT_DIG). It includes the leading 1.
320 */
321 struct type_float *float_type_new(const char *name,
322 size_t mantissa_len,
323 size_t exp_len, int byte_order,
324 size_t alignment);
325
326 /*
327 * A GQuark can be translated to/from strings with g_quark_from_string() and
328 * g_quark_to_string().
329 */
330
331 /*
332 * Returns a GArray of GQuark or NULL.
333 * Caller must release the GArray with g_array_unref().
334 */
335 GArray *enum_uint_to_quark_set(const struct type_enum *enum_type, uint64_t v);
336
337 /*
338 * Returns a GArray of GQuark or NULL.
339 * Caller must release the GArray with g_array_unref().
340 */
341 GArray *enum_int_to_quark_set(const struct type_enum *enum_type, uint64_t v);
342
343 /*
344 * Returns a GArray of struct enum_range or NULL.
345 * Callers do _not_ own the returned GArray (and therefore _don't_ need to
346 * release it).
347 */
348 GArray *enum_quark_to_range_set(const struct type_enum *enum_type, GQuark q);
349 void enum_signed_insert(struct type_enum *enum_type,
350 int64_t start, int64_t end, GQuark q);
351 void enum_unsigned_insert(struct type_enum *enum_type,
352 uint64_t start, uint64_t end, GQuark q);
353 size_t enum_get_nr_enumerators(struct type_enum *enum_type);
354
355 struct type_enum *enum_type_new(const char *name,
356 struct type_integer *integer_type);
357
358 struct type_struct *struct_type_new(const char *name);
359 void struct_type_add_field(struct type_struct *struct_type,
360 const char *field_name, struct type *field_type);
361 /*
362 * Returns the index of a field within a structure.
363 */
364 unsigned long struct_type_lookup_field_index(struct type_struct *struct_type,
365 GQuark field_name);
366 /*
367 * field returned only valid as long as the field structure is not appended to.
368 */
369 struct type_field *
370 struct_type_get_field_from_index(struct type_struct *struct_type,
371 unsigned long index);
372 struct field *
373 struct_get_field_from_index(struct declaration_struct *struct_declaration,
374 unsigned long index);
375
376 /*
377 * The tag enumeration is validated to ensure that it contains only mappings
378 * from numeric values to a single tag. Overlapping tag value ranges are
379 * therefore forbidden.
380 */
381 struct type_variant *variant_type_new(const char *name);
382 void variant_type_add_field(struct type_variant *variant_type,
383 const char *tag_name, struct type *tag_type);
384 struct type_field *
385 variant_type_get_field_from_tag(struct type_variant *variant_type, GQuark tag);
386 /*
387 * Returns 0 on success, -EPERM on error.
388 */
389 int variant_declaration_set_tag(struct declaration_variant *variant,
390 struct declaration *enum_tag);
391 /*
392 * Returns the field selected by the current tag value.
393 * field returned only valid as long as the variant structure is not appended
394 * to.
395 */
396 struct field *
397 variant_get_current_field(struct declaration_variant *variant);
398
399 /*
400 * elem_type passed as parameter now belongs to the array. No need to free it
401 * explicitly. "len" is the number of elements in the array.
402 */
403 struct type_array *array_type_new(const char *name,
404 size_t len, struct type *elem_type);
405
406 /*
407 * int_type and elem_type passed as parameter now belong to the sequence. No
408 * need to free them explicitly.
409 */
410 struct type_sequence *sequence_type_new(const char *name,
411 struct type_integer *len_type,
412 struct type *elem_type);
413
414 #endif /* _BABELTRACE_TYPES_H */
This page took 0.037831 seconds and 5 git commands to generate.