From: Philippe Proulx Date: Fri, 22 Sep 2023 15:35:22 +0000 (-0400) Subject: tests: use a local `typing` module with Python 3.4 only X-Git-Url: http://git.efficios.com/?p=babeltrace.git;a=commitdiff_plain;h=7747a39ff4d33f722737ff57a1a3b69cca97909a tests: use a local `typing` module with Python 3.4 only This patch changes the strategy to support the `typing` module in tests. To make it possible to include compatible third-party/portable Python modules as is, Python needs to find the `typing` module. Python 3.5+ will find it, but Python 3.4 won't. To fix this: 1. `tests/utils/utils.sh` calls the Python interpreter specified by BT_TESTS_PYTHON_BIN to get the Python version. 2. The run_python() function in `tests/utils/utils.sh` adds the `tests/utils/python/typing` directory to `PYTHONPATH` if the version of Python is 3.4. 3. Move `tests/utils/python/local_typing.py` to `tests/utils/python/typing/typing.py`. 4. Remove `tests/utils/python/utils.py` (not needed anymore). Signed-off-by: Philippe Proulx Change-Id: Ifc939f617627ff11cd6a7cbf8642c7b33006d303 Reviewed-on: https://review.lttng.org/c/babeltrace/+/10915 Tested-by: jenkins --- diff --git a/LICENSE b/LICENSE index e0e84e95..22b5a72e 100644 --- a/LICENSE +++ b/LICENSE @@ -103,7 +103,7 @@ According with: This applies to: - tests/utils/python/local_typing.py + tests/utils/python/typing/typing.py In addition, other licenses may also apply, see SPDX-License-Identifier in diff --git a/pyproject.toml b/pyproject.toml index 2dac3d6c..44afa406 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,7 +11,7 @@ | src/bindings/python/bt2/setup\.py$ | src/bindings/python/bt2/bt2/native_bt\.py$ | src/bindings/python/bt2/bt2/version\.py$ - | tests/utils/python/local_typing\.py$ + | tests/utils/python/typing/typing\.py$ | tests/utils/python/tap ) @@ -21,6 +21,6 @@ profile = "black" extend_skip_glob = [ "tests/utils/python/tap", - "tests/utils/python/local_typing.py", + "tests/utils/python/typing/typing.py", ] length_sort = true diff --git a/setup.cfg b/setup.cfg index 9fbc23cf..7788df8a 100644 --- a/setup.cfg +++ b/setup.cfg @@ -13,4 +13,4 @@ ignore = E501,W503 # Has code to set up the DLL search path before imports. per-file-ignores = src/bindings/python/bt2/bt2/__init__.py:F401,E402 -exclude = tests/utils/python/tap tests/utils/python/local_typing.py +exclude = tests/utils/python/tap tests/utils/python/typing/typing.py diff --git a/tests/utils/python/local_typing.py b/tests/utils/python/local_typing.py deleted file mode 100644 index 70c59d85..00000000 --- a/tests/utils/python/local_typing.py +++ /dev/null @@ -1,2454 +0,0 @@ -import abc -from abc import abstractmethod, abstractproperty -import collections -import contextlib -import functools -import re as stdlib_re # Avoid confusion with the re we export. -import sys -import types -try: - import collections.abc as collections_abc -except ImportError: - import collections as collections_abc # Fallback for PY3.2. -if sys.version_info[:2] >= (3, 6): - import _collections_abc # Needed for private function _check_methods # noqa -try: - from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType -except ImportError: - WrapperDescriptorType = type(object.__init__) - MethodWrapperType = type(object().__str__) - MethodDescriptorType = type(str.join) - - -# Please keep __all__ alphabetized within each category. -__all__ = [ - # Super-special typing primitives. - 'Any', - 'Callable', - 'ClassVar', - 'Generic', - 'Optional', - 'Tuple', - 'Type', - 'TypeVar', - 'Union', - - # ABCs (from collections.abc). - 'AbstractSet', # collections.abc.Set. - 'GenericMeta', # subclass of abc.ABCMeta and a metaclass - # for 'Generic' and ABCs below. - 'ByteString', - 'Container', - 'ContextManager', - 'Hashable', - 'ItemsView', - 'Iterable', - 'Iterator', - 'KeysView', - 'Mapping', - 'MappingView', - 'MutableMapping', - 'MutableSequence', - 'MutableSet', - 'Sequence', - 'Sized', - 'ValuesView', - # The following are added depending on presence - # of their non-generic counterparts in stdlib: - # Awaitable, - # AsyncIterator, - # AsyncIterable, - # Coroutine, - # Collection, - # AsyncGenerator, - # AsyncContextManager - - # Structural checks, a.k.a. protocols. - 'Reversible', - 'SupportsAbs', - 'SupportsBytes', - 'SupportsComplex', - 'SupportsFloat', - 'SupportsIndex', - 'SupportsInt', - 'SupportsRound', - - # Concrete collection types. - 'Counter', - 'Deque', - 'Dict', - 'DefaultDict', - 'List', - 'Set', - 'FrozenSet', - 'NamedTuple', # Not really a type. - 'Generator', - - # One-off things. - 'AnyStr', - 'cast', - 'get_type_hints', - 'NewType', - 'no_type_check', - 'no_type_check_decorator', - 'NoReturn', - 'overload', - 'Text', - 'TYPE_CHECKING', -] - -# The pseudo-submodules 're' and 'io' are part of the public -# namespace, but excluded from __all__ because they might stomp on -# legitimate imports of those modules. - - -def _qualname(x): - if sys.version_info[:2] >= (3, 3): - return x.__qualname__ - else: - # Fall back to just name. - return x.__name__ - - -def _trim_name(nm): - whitelist = ('_TypeAlias', '_ForwardRef', '_TypingBase', '_FinalTypingBase') - if nm.startswith('_') and nm not in whitelist: - nm = nm[1:] - return nm - - -class TypingMeta(type): - """Metaclass for most types defined in typing module - (not a part of public API). - - This overrides __new__() to require an extra keyword parameter - '_root', which serves as a guard against naive subclassing of the - typing classes. Any legitimate class defined using a metaclass - derived from TypingMeta must pass _root=True. - - This also defines a dummy constructor (all the work for most typing - constructs is done in __new__) and a nicer repr(). - """ - - _is_protocol = False - - def __new__(cls, name, bases, namespace, *, _root=False): - if not _root: - raise TypeError("Cannot subclass %s" % - (', '.join(map(_type_repr, bases)) or '()')) - return super().__new__(cls, name, bases, namespace) - - def __init__(self, *args, **kwds): - pass - - def _eval_type(self, globalns, localns): - """Override this in subclasses to interpret forward references. - - For example, List['C'] is internally stored as - List[_ForwardRef('C')], which should evaluate to List[C], - where C is an object found in globalns or localns (searching - localns first, of course). - """ - return self - - def _get_type_vars(self, tvars): - pass - - def __repr__(self): - qname = _trim_name(_qualname(self)) - return '%s.%s' % (self.__module__, qname) - - -class _TypingBase(metaclass=TypingMeta, _root=True): - """Internal indicator of special typing constructs.""" - - __slots__ = ('__weakref__',) - - def __init__(self, *args, **kwds): - pass - - def __new__(cls, *args, **kwds): - """Constructor. - - This only exists to give a better error message in case - someone tries to subclass a special typing object (not a good idea). - """ - if (len(args) == 3 and - isinstance(args[0], str) and - isinstance(args[1], tuple)): - # Close enough. - raise TypeError("Cannot subclass %r" % cls) - return super().__new__(cls) - - # Things that are not classes also need these. - def _eval_type(self, globalns, localns): - return self - - def _get_type_vars(self, tvars): - pass - - def __repr__(self): - cls = type(self) - qname = _trim_name(_qualname(cls)) - return '%s.%s' % (cls.__module__, qname) - - def __call__(self, *args, **kwds): - raise TypeError("Cannot instantiate %r" % type(self)) - - -class _FinalTypingBase(_TypingBase, _root=True): - """Internal mix-in class to prevent instantiation. - - Prevents instantiation unless _root=True is given in class call. - It is used to create pseudo-singleton instances Any, Union, Optional, etc. - """ - - __slots__ = () - - def __new__(cls, *args, _root=False, **kwds): - self = super().__new__(cls, *args, **kwds) - if _root is True: - return self - raise TypeError("Cannot instantiate %r" % cls) - - def __reduce__(self): - return _trim_name(type(self).__name__) - - -class _ForwardRef(_TypingBase, _root=True): - """Internal wrapper to hold a forward reference.""" - - __slots__ = ('__forward_arg__', '__forward_code__', - '__forward_evaluated__', '__forward_value__') - - def __init__(self, arg): - super().__init__(arg) - if not isinstance(arg, str): - raise TypeError('Forward reference must be a string -- got %r' % (arg,)) - try: - code = compile(arg, '', 'eval') - except SyntaxError: - raise SyntaxError('Forward reference must be an expression -- got %r' % - (arg,)) - self.__forward_arg__ = arg - self.__forward_code__ = code - self.__forward_evaluated__ = False - self.__forward_value__ = None - - def _eval_type(self, globalns, localns): - if not self.__forward_evaluated__ or localns is not globalns: - if globalns is None and localns is None: - globalns = localns = {} - elif globalns is None: - globalns = localns - elif localns is None: - localns = globalns - self.__forward_value__ = _type_check( - eval(self.__forward_code__, globalns, localns), - "Forward references must evaluate to types.") - self.__forward_evaluated__ = True - return self.__forward_value__ - - def __eq__(self, other): - if not isinstance(other, _ForwardRef): - return NotImplemented - if self.__forward_evaluated__ and other.__forward_evaluated__: - return (self.__forward_arg__ == other.__forward_arg__ and - self.__forward_value__ == other.__forward_value__) - return self.__forward_arg__ == other.__forward_arg__ - - def __hash__(self): - return hash(self.__forward_arg__) - - def __instancecheck__(self, obj): - raise TypeError("Forward references cannot be used with isinstance().") - - def __subclasscheck__(self, cls): - raise TypeError("Forward references cannot be used with issubclass().") - - def __repr__(self): - return '_ForwardRef(%r)' % (self.__forward_arg__,) - - -class _TypeAlias(_TypingBase, _root=True): - """Internal helper class for defining generic variants of concrete types. - - Note that this is not a type; let's call it a pseudo-type. It cannot - be used in instance and subclass checks in parameterized form, i.e. - ``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning - ``False``. - """ - - __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') - - def __init__(self, name, type_var, impl_type, type_checker): - """Initializer. - - Args: - name: The name, e.g. 'Pattern'. - type_var: The type parameter, e.g. AnyStr, or the - specific type, e.g. str. - impl_type: The implementation type. - type_checker: Function that takes an impl_type instance. - and returns a value that should be a type_var instance. - """ - assert isinstance(name, str), repr(name) - assert isinstance(impl_type, type), repr(impl_type) - assert not isinstance(impl_type, TypingMeta), repr(impl_type) - assert isinstance(type_var, (type, _TypingBase)), repr(type_var) - self.name = name - self.type_var = type_var - self.impl_type = impl_type - self.type_checker = type_checker - - def __repr__(self): - return "%s[%s]" % (self.name, _type_repr(self.type_var)) - - def __getitem__(self, parameter): - if not isinstance(self.type_var, TypeVar): - raise TypeError("%s cannot be further parameterized." % self) - if self.type_var.__constraints__ and isinstance(parameter, type): - if not issubclass(parameter, self.type_var.__constraints__): - raise TypeError("%s is not a valid substitution for %s." % - (parameter, self.type_var)) - if isinstance(parameter, TypeVar) and parameter is not self.type_var: - raise TypeError("%s cannot be re-parameterized." % self) - return self.__class__(self.name, parameter, - self.impl_type, self.type_checker) - - def __eq__(self, other): - if not isinstance(other, _TypeAlias): - return NotImplemented - return self.name == other.name and self.type_var == other.type_var - - def __hash__(self): - return hash((self.name, self.type_var)) - - def __instancecheck__(self, obj): - if not isinstance(self.type_var, TypeVar): - raise TypeError("Parameterized type aliases cannot be used " - "with isinstance().") - return isinstance(obj, self.impl_type) - - def __subclasscheck__(self, cls): - if not isinstance(self.type_var, TypeVar): - raise TypeError("Parameterized type aliases cannot be used " - "with issubclass().") - return issubclass(cls, self.impl_type) - - -def _get_type_vars(types, tvars): - for t in types: - if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): - t._get_type_vars(tvars) - - -def _type_vars(types): - tvars = [] - _get_type_vars(types, tvars) - return tuple(tvars) - - -def _eval_type(t, globalns, localns): - if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): - return t._eval_type(globalns, localns) - return t - - -def _type_check(arg, msg): - """Check that the argument is a type, and return it (internal helper). - - As a special case, accept None and return type(None) instead. - Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. - - The msg argument is a human-readable error message, e.g. - - "Union[arg, ...]: arg should be a type." - - We append the repr() of the actual value (truncated to 100 chars). - """ - if arg is None: - return type(None) - if isinstance(arg, str): - arg = _ForwardRef(arg) - if ( - isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or - not isinstance(arg, (type, _TypingBase)) and not callable(arg) - ): - raise TypeError(msg + " Got %.100r." % (arg,)) - # Bare Union etc. are not valid as type arguments - if ( - type(arg).__name__ in ('_Union', '_Optional') and - not getattr(arg, '__origin__', None) or - isinstance(arg, TypingMeta) and arg._gorg in (Generic, _Protocol) - ): - raise TypeError("Plain %s is not valid as type argument" % arg) - return arg - - -def _type_repr(obj): - """Return the repr() of an object, special-casing types (internal helper). - - If obj is a type, we return a shorter version than the default - type.__repr__, based on the module and qualified name, which is - typically enough to uniquely identify a type. For everything - else, we fall back on repr(obj). - """ - if isinstance(obj, type) and not isinstance(obj, TypingMeta): - if obj.__module__ == 'builtins': - return _qualname(obj) - return '%s.%s' % (obj.__module__, _qualname(obj)) - if obj is ...: - return('...') - if isinstance(obj, types.FunctionType): - return obj.__name__ - return repr(obj) - - -class _Any(_FinalTypingBase, _root=True): - """Special type indicating an unconstrained type. - - - Any is compatible with every type. - - Any assumed to have all methods. - - All values assumed to be instances of Any. - - Note that all the above statements are true from the point of view of - static type checkers. At runtime, Any should not be used with instance - or class checks. - """ - - __slots__ = () - - def __instancecheck__(self, obj): - raise TypeError("Any cannot be used with isinstance().") - - def __subclasscheck__(self, cls): - raise TypeError("Any cannot be used with issubclass().") - - -Any = _Any(_root=True) - - -class _NoReturn(_FinalTypingBase, _root=True): - """Special type indicating functions that never return. - Example:: - - from typing import NoReturn - - def stop() -> NoReturn: - raise Exception('no way') - - This type is invalid in other positions, e.g., ``List[NoReturn]`` - will fail in static type checkers. - """ - - __slots__ = () - - def __instancecheck__(self, obj): - raise TypeError("NoReturn cannot be used with isinstance().") - - def __subclasscheck__(self, cls): - raise TypeError("NoReturn cannot be used with issubclass().") - - -NoReturn = _NoReturn(_root=True) - - -class TypeVar(_TypingBase, _root=True): - """Type variable. - - Usage:: - - T = TypeVar('T') # Can be anything - A = TypeVar('A', str, bytes) # Must be str or bytes - - Type variables exist primarily for the benefit of static type - checkers. They serve as the parameters for generic types as well - as for generic function definitions. See class Generic for more - information on generic types. Generic functions work as follows: - - def repeat(x: T, n: int) -> List[T]: - '''Return a list containing n references to x.''' - return [x]*n - - def longest(x: A, y: A) -> A: - '''Return the longest of two strings.''' - return x if len(x) >= len(y) else y - - The latter example's signature is essentially the overloading - of (str, str) -> str and (bytes, bytes) -> bytes. Also note - that if the arguments are instances of some subclass of str, - the return type is still plain str. - - At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. - - Type variables defined with covariant=True or contravariant=True - can be used do declare covariant or contravariant generic types. - See PEP 484 for more details. By default generic types are invariant - in all type variables. - - Type variables can be introspected. e.g.: - - T.__name__ == 'T' - T.__constraints__ == () - T.__covariant__ == False - T.__contravariant__ = False - A.__constraints__ == (str, bytes) - """ - - __slots__ = ('__name__', '__bound__', '__constraints__', - '__covariant__', '__contravariant__') - - def __init__(self, name, *constraints, bound=None, - covariant=False, contravariant=False): - super().__init__(name, *constraints, bound=bound, - covariant=covariant, contravariant=contravariant) - self.__name__ = name - if covariant and contravariant: - raise ValueError("Bivariant types are not supported.") - self.__covariant__ = bool(covariant) - self.__contravariant__ = bool(contravariant) - if constraints and bound is not None: - raise TypeError("Constraints cannot be combined with bound=...") - if constraints and len(constraints) == 1: - raise TypeError("A single constraint is not allowed") - msg = "TypeVar(name, constraint, ...): constraints must be types." - self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) - if bound: - self.__bound__ = _type_check(bound, "Bound must be a type.") - else: - self.__bound__ = None - - def _get_type_vars(self, tvars): - if self not in tvars: - tvars.append(self) - - def __repr__(self): - if self.__covariant__: - prefix = '+' - elif self.__contravariant__: - prefix = '-' - else: - prefix = '~' - return prefix + self.__name__ - - def __instancecheck__(self, instance): - raise TypeError("Type variables cannot be used with isinstance().") - - def __subclasscheck__(self, cls): - raise TypeError("Type variables cannot be used with issubclass().") - - -# Some unconstrained type variables. These are used by the container types. -# (These are not for export.) -T = TypeVar('T') # Any type. -KT = TypeVar('KT') # Key type. -VT = TypeVar('VT') # Value type. -T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. -V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. -VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. -T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. - -# A useful type variable with constraints. This represents string types. -# (This one *is* for export!) -AnyStr = TypeVar('AnyStr', bytes, str) - - -def _replace_arg(arg, tvars, args): - """An internal helper function: replace arg if it is a type variable - found in tvars with corresponding substitution from args or - with corresponding substitution sub-tree if arg is a generic type. - """ - - if tvars is None: - tvars = [] - if hasattr(arg, '_subs_tree') and isinstance(arg, (GenericMeta, _TypingBase)): - return arg._subs_tree(tvars, args) - if isinstance(arg, TypeVar): - for i, tvar in enumerate(tvars): - if arg == tvar: - return args[i] - return arg - - -# Special typing constructs Union, Optional, Generic, Callable and Tuple -# use three special attributes for internal bookkeeping of generic types: -# * __parameters__ is a tuple of unique free type parameters of a generic -# type, for example, Dict[T, T].__parameters__ == (T,); -# * __origin__ keeps a reference to a type that was subscripted, -# e.g., Union[T, int].__origin__ == Union; -# * __args__ is a tuple of all arguments used in subscripting, -# e.g., Dict[T, int].__args__ == (T, int). - - -def _subs_tree(cls, tvars=None, args=None): - """An internal helper function: calculate substitution tree - for generic cls after replacing its type parameters with - substitutions in tvars -> args (if any). - Repeat the same following __origin__'s. - - Return a list of arguments with all possible substitutions - performed. Arguments that are generic classes themselves are represented - as tuples (so that no new classes are created by this function). - For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)] - """ - - if cls.__origin__ is None: - return cls - # Make of chain of origins (i.e. cls -> cls.__origin__) - current = cls.__origin__ - orig_chain = [] - while current.__origin__ is not None: - orig_chain.append(current) - current = current.__origin__ - # Replace type variables in __args__ if asked ... - tree_args = [] - for arg in cls.__args__: - tree_args.append(_replace_arg(arg, tvars, args)) - # ... then continue replacing down the origin chain. - for ocls in orig_chain: - new_tree_args = [] - for arg in ocls.__args__: - new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args)) - tree_args = new_tree_args - return tree_args - - -def _remove_dups_flatten(parameters): - """An internal helper for Union creation and substitution: flatten Union's - among parameters, then remove duplicates and strict subclasses. - """ - - # Flatten out Union[Union[...], ...]. - params = [] - for p in parameters: - if isinstance(p, _Union) and p.__origin__ is Union: - params.extend(p.__args__) - elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union: - params.extend(p[1:]) - else: - params.append(p) - # Weed out strict duplicates, preserving the first of each occurrence. - all_params = set(params) - if len(all_params) < len(params): - new_params = [] - for t in params: - if t in all_params: - new_params.append(t) - all_params.remove(t) - params = new_params - assert not all_params, all_params - # Weed out subclasses. - # E.g. Union[int, Employee, Manager] == Union[int, Employee]. - # If object is present it will be sole survivor among proper classes. - # Never discard type variables. - # (In particular, Union[str, AnyStr] != AnyStr.) - all_params = set(params) - for t1 in params: - if not isinstance(t1, type): - continue - if any(isinstance(t2, type) and issubclass(t1, t2) - for t2 in all_params - {t1} - if not (isinstance(t2, GenericMeta) and - t2.__origin__ is not None)): - all_params.remove(t1) - return tuple(t for t in params if t in all_params) - - -def _check_generic(cls, parameters): - # Check correct count for parameters of a generic cls (internal helper). - if not cls.__parameters__: - raise TypeError("%s is not a generic class" % repr(cls)) - alen = len(parameters) - elen = len(cls.__parameters__) - if alen != elen: - raise TypeError("Too %s parameters for %s; actual %s, expected %s" % - ("many" if alen > elen else "few", repr(cls), alen, elen)) - - -_cleanups = [] - - -def _tp_cache(func): - """Internal wrapper caching __getitem__ of generic types with a fallback to - original function for non-hashable arguments. - """ - - cached = functools.lru_cache()(func) - _cleanups.append(cached.cache_clear) - - @functools.wraps(func) - def inner(*args, **kwds): - try: - return cached(*args, **kwds) - except TypeError: - pass # All real errors (not unhashable args) are raised below. - return func(*args, **kwds) - return inner - - -class _Union(_FinalTypingBase, _root=True): - """Union type; Union[X, Y] means either X or Y. - - To define a union, use e.g. Union[int, str]. Details: - - - The arguments must be types and there must be at least one. - - - None as an argument is a special case and is replaced by - type(None). - - - Unions of unions are flattened, e.g.:: - - Union[Union[int, str], float] == Union[int, str, float] - - - Unions of a single argument vanish, e.g.:: - - Union[int] == int # The constructor actually returns int - - - Redundant arguments are skipped, e.g.:: - - Union[int, str, int] == Union[int, str] - - - When comparing unions, the argument order is ignored, e.g.:: - - Union[int, str] == Union[str, int] - - - When two arguments have a subclass relationship, the least - derived argument is kept, e.g.:: - - class Employee: pass - class Manager(Employee): pass - Union[int, Employee, Manager] == Union[int, Employee] - Union[Manager, int, Employee] == Union[int, Employee] - Union[Employee, Manager] == Employee - - - Similar for object:: - - Union[int, object] == object - - - You cannot subclass or instantiate a union. - - - You can use Optional[X] as a shorthand for Union[X, None]. - """ - - __slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__') - - def __new__(cls, parameters=None, origin=None, *args, _root=False): - self = super().__new__(cls, parameters, origin, *args, _root=_root) - if origin is None: - self.__parameters__ = None - self.__args__ = None - self.__origin__ = None - self.__tree_hash__ = hash(frozenset(('Union',))) - return self - if not isinstance(parameters, tuple): - raise TypeError("Expected parameters=") - if origin is Union: - parameters = _remove_dups_flatten(parameters) - # It's not a union if there's only one type left. - if len(parameters) == 1: - return parameters[0] - self.__parameters__ = _type_vars(parameters) - self.__args__ = parameters - self.__origin__ = origin - # Pre-calculate the __hash__ on instantiation. - # This improves speed for complex substitutions. - subs_tree = self._subs_tree() - if isinstance(subs_tree, tuple): - self.__tree_hash__ = hash(frozenset(subs_tree)) - else: - self.__tree_hash__ = hash(subs_tree) - return self - - def _eval_type(self, globalns, localns): - if self.__args__ is None: - return self - ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__) - ev_origin = _eval_type(self.__origin__, globalns, localns) - if ev_args == self.__args__ and ev_origin == self.__origin__: - # Everything is already evaluated. - return self - return self.__class__(ev_args, ev_origin, _root=True) - - def _get_type_vars(self, tvars): - if self.__origin__ and self.__parameters__: - _get_type_vars(self.__parameters__, tvars) - - def __repr__(self): - if self.__origin__ is None: - return super().__repr__() - tree = self._subs_tree() - if not isinstance(tree, tuple): - return repr(tree) - return tree[0]._tree_repr(tree) - - def _tree_repr(self, tree): - arg_list = [] - for arg in tree[1:]: - if not isinstance(arg, tuple): - arg_list.append(_type_repr(arg)) - else: - arg_list.append(arg[0]._tree_repr(arg)) - return super().__repr__() + '[%s]' % ', '.join(arg_list) - - @_tp_cache - def __getitem__(self, parameters): - if parameters == (): - raise TypeError("Cannot take a Union of no types.") - if not isinstance(parameters, tuple): - parameters = (parameters,) - if self.__origin__ is None: - msg = "Union[arg, ...]: each arg must be a type." - else: - msg = "Parameters to generic types must be types." - parameters = tuple(_type_check(p, msg) for p in parameters) - if self is not Union: - _check_generic(self, parameters) - return self.__class__(parameters, origin=self, _root=True) - - def _subs_tree(self, tvars=None, args=None): - if self is Union: - return Union # Nothing to substitute - tree_args = _subs_tree(self, tvars, args) - tree_args = _remove_dups_flatten(tree_args) - if len(tree_args) == 1: - return tree_args[0] # Union of a single type is that type - return (Union,) + tree_args - - def __eq__(self, other): - if isinstance(other, _Union): - return self.__tree_hash__ == other.__tree_hash__ - elif self is not Union: - return self._subs_tree() == other - else: - return self is other - - def __hash__(self): - return self.__tree_hash__ - - def __instancecheck__(self, obj): - raise TypeError("Unions cannot be used with isinstance().") - - def __subclasscheck__(self, cls): - raise TypeError("Unions cannot be used with issubclass().") - - -Union = _Union(_root=True) - - -class _Optional(_FinalTypingBase, _root=True): - """Optional type. - - Optional[X] is equivalent to Union[X, None]. - """ - - __slots__ = () - - @_tp_cache - def __getitem__(self, arg): - arg = _type_check(arg, "Optional[t] requires a single type.") - return Union[arg, type(None)] - - -Optional = _Optional(_root=True) - - -def _next_in_mro(cls): - """Helper for Generic.__new__. - - Returns the class after the last occurrence of Generic or - Generic[...] in cls.__mro__. - """ - next_in_mro = object - # Look for the last occurrence of Generic or Generic[...]. - for i, c in enumerate(cls.__mro__[:-1]): - if isinstance(c, GenericMeta) and c._gorg is Generic: - next_in_mro = cls.__mro__[i + 1] - return next_in_mro - - -def _make_subclasshook(cls): - """Construct a __subclasshook__ callable that incorporates - the associated __extra__ class in subclass checks performed - against cls. - """ - if isinstance(cls.__extra__, abc.ABCMeta): - # The logic mirrors that of ABCMeta.__subclasscheck__. - # Registered classes need not be checked here because - # cls and its extra share the same _abc_registry. - def __extrahook__(subclass): - res = cls.__extra__.__subclasshook__(subclass) - if res is not NotImplemented: - return res - if cls.__extra__ in subclass.__mro__: - return True - for scls in cls.__extra__.__subclasses__(): - if isinstance(scls, GenericMeta): - continue - if issubclass(subclass, scls): - return True - return NotImplemented - else: - # For non-ABC extras we'll just call issubclass(). - def __extrahook__(subclass): - if cls.__extra__ and issubclass(subclass, cls.__extra__): - return True - return NotImplemented - return __extrahook__ - - -def _no_slots_copy(dct): - """Internal helper: copy class __dict__ and clean slots class variables. - (They will be re-created if necessary by normal class machinery.) - """ - dict_copy = dict(dct) - if '__slots__' in dict_copy: - for slot in dict_copy['__slots__']: - dict_copy.pop(slot, None) - return dict_copy - - -class GenericMeta(TypingMeta, abc.ABCMeta): - """Metaclass for generic types. - - This is a metaclass for typing.Generic and generic ABCs defined in - typing module. User defined subclasses of GenericMeta can override - __new__ and invoke super().__new__. Note that GenericMeta.__new__ - has strict rules on what is allowed in its bases argument: - * plain Generic is disallowed in bases; - * Generic[...] should appear in bases at most once; - * if Generic[...] is present, then it should list all type variables - that appear in other bases. - In addition, type of all generic bases is erased, e.g., C[int] is - stripped to plain C. - """ - - def __new__(cls, name, bases, namespace, - tvars=None, args=None, origin=None, extra=None, orig_bases=None): - """Create a new generic class. GenericMeta.__new__ accepts - keyword arguments that are used for internal bookkeeping, therefore - an override should pass unused keyword arguments to super(). - """ - if tvars is not None: - # Called from __getitem__() below. - assert origin is not None - assert all(isinstance(t, TypeVar) for t in tvars), tvars - else: - # Called from class statement. - assert tvars is None, tvars - assert args is None, args - assert origin is None, origin - - # Get the full set of tvars from the bases. - tvars = _type_vars(bases) - # Look for Generic[T1, ..., Tn]. - # If found, tvars must be a subset of it. - # If not found, tvars is it. - # Also check for and reject plain Generic, - # and reject multiple Generic[...]. - gvars = None - for base in bases: - if base is Generic: - raise TypeError("Cannot inherit from plain Generic") - if (isinstance(base, GenericMeta) and - base.__origin__ is Generic): - if gvars is not None: - raise TypeError( - "Cannot inherit from Generic[...] multiple types.") - gvars = base.__parameters__ - if gvars is None: - gvars = tvars - else: - tvarset = set(tvars) - gvarset = set(gvars) - if not tvarset <= gvarset: - raise TypeError( - "Some type variables (%s) " - "are not listed in Generic[%s]" % - (", ".join(str(t) for t in tvars if t not in gvarset), - ", ".join(str(g) for g in gvars))) - tvars = gvars - - initial_bases = bases - if extra is not None and type(extra) is abc.ABCMeta and extra not in bases: - bases = (extra,) + bases - bases = tuple(b._gorg if isinstance(b, GenericMeta) else b for b in bases) - - # remove bare Generic from bases if there are other generic bases - if any(isinstance(b, GenericMeta) and b is not Generic for b in bases): - bases = tuple(b for b in bases if b is not Generic) - namespace.update({'__origin__': origin, '__extra__': extra, - '_gorg': None if not origin else origin._gorg}) - self = super().__new__(cls, name, bases, namespace, _root=True) - super(GenericMeta, self).__setattr__('_gorg', - self if not origin else origin._gorg) - self.__parameters__ = tvars - # Be prepared that GenericMeta will be subclassed by TupleMeta - # and CallableMeta, those two allow ..., (), or [] in __args___. - self.__args__ = tuple(... if a is _TypingEllipsis else - () if a is _TypingEmpty else - a for a in args) if args else None - # Speed hack (https://github.com/python/typing/issues/196). - self.__next_in_mro__ = _next_in_mro(self) - # Preserve base classes on subclassing (__bases__ are type erased now). - if orig_bases is None: - self.__orig_bases__ = initial_bases - - # This allows unparameterized generic collections to be used - # with issubclass() and isinstance() in the same way as their - # collections.abc counterparts (e.g., isinstance([], Iterable)). - if ( - '__subclasshook__' not in namespace and extra or - # allow overriding - getattr(self.__subclasshook__, '__name__', '') == '__extrahook__' - ): - self.__subclasshook__ = _make_subclasshook(self) - if isinstance(extra, abc.ABCMeta): - self._abc_registry = extra._abc_registry - self._abc_cache = extra._abc_cache - elif origin is not None: - self._abc_registry = origin._abc_registry - self._abc_cache = origin._abc_cache - - if origin and hasattr(origin, '__qualname__'): # Fix for Python 3.2. - self.__qualname__ = origin.__qualname__ - self.__tree_hash__ = (hash(self._subs_tree()) if origin else - super(GenericMeta, self).__hash__()) - return self - - # _abc_negative_cache and _abc_negative_cache_version - # realised as descriptors, since GenClass[t1, t2, ...] always - # share subclass info with GenClass. - # This is an important memory optimization. - @property - def _abc_negative_cache(self): - if isinstance(self.__extra__, abc.ABCMeta): - return self.__extra__._abc_negative_cache - return self._gorg._abc_generic_negative_cache - - @_abc_negative_cache.setter - def _abc_negative_cache(self, value): - if self.__origin__ is None: - if isinstance(self.__extra__, abc.ABCMeta): - self.__extra__._abc_negative_cache = value - else: - self._abc_generic_negative_cache = value - - @property - def _abc_negative_cache_version(self): - if isinstance(self.__extra__, abc.ABCMeta): - return self.__extra__._abc_negative_cache_version - return self._gorg._abc_generic_negative_cache_version - - @_abc_negative_cache_version.setter - def _abc_negative_cache_version(self, value): - if self.__origin__ is None: - if isinstance(self.__extra__, abc.ABCMeta): - self.__extra__._abc_negative_cache_version = value - else: - self._abc_generic_negative_cache_version = value - - def _get_type_vars(self, tvars): - if self.__origin__ and self.__parameters__: - _get_type_vars(self.__parameters__, tvars) - - def _eval_type(self, globalns, localns): - ev_origin = (self.__origin__._eval_type(globalns, localns) - if self.__origin__ else None) - ev_args = tuple(_eval_type(a, globalns, localns) for a - in self.__args__) if self.__args__ else None - if ev_origin == self.__origin__ and ev_args == self.__args__: - return self - return self.__class__(self.__name__, - self.__bases__, - _no_slots_copy(self.__dict__), - tvars=_type_vars(ev_args) if ev_args else None, - args=ev_args, - origin=ev_origin, - extra=self.__extra__, - orig_bases=self.__orig_bases__) - - def __repr__(self): - if self.__origin__ is None: - return super().__repr__() - return self._tree_repr(self._subs_tree()) - - def _tree_repr(self, tree): - arg_list = [] - for arg in tree[1:]: - if arg == (): - arg_list.append('()') - elif not isinstance(arg, tuple): - arg_list.append(_type_repr(arg)) - else: - arg_list.append(arg[0]._tree_repr(arg)) - return super().__repr__() + '[%s]' % ', '.join(arg_list) - - def _subs_tree(self, tvars=None, args=None): - if self.__origin__ is None: - return self - tree_args = _subs_tree(self, tvars, args) - return (self._gorg,) + tuple(tree_args) - - def __eq__(self, other): - if not isinstance(other, GenericMeta): - return NotImplemented - if self.__origin__ is None or other.__origin__ is None: - return self is other - return self.__tree_hash__ == other.__tree_hash__ - - def __hash__(self): - return self.__tree_hash__ - - @_tp_cache - def __getitem__(self, params): - if not isinstance(params, tuple): - params = (params,) - if not params and self._gorg is not Tuple: - raise TypeError( - "Parameter list to %s[...] cannot be empty" % _qualname(self)) - msg = "Parameters to generic types must be types." - params = tuple(_type_check(p, msg) for p in params) - if self is Generic: - # Generic can only be subscripted with unique type variables. - if not all(isinstance(p, TypeVar) for p in params): - raise TypeError( - "Parameters to Generic[...] must all be type variables") - if len(set(params)) != len(params): - raise TypeError( - "Parameters to Generic[...] must all be unique") - tvars = params - args = params - elif self in (Tuple, Callable): - tvars = _type_vars(params) - args = params - elif self is _Protocol: - # _Protocol is internal, don't check anything. - tvars = params - args = params - elif self.__origin__ in (Generic, _Protocol): - # Can't subscript Generic[...] or _Protocol[...]. - raise TypeError("Cannot subscript already-subscripted %s" % - repr(self)) - else: - # Subscripting a regular Generic subclass. - _check_generic(self, params) - tvars = _type_vars(params) - args = params - - prepend = (self,) if self.__origin__ is None else () - return self.__class__(self.__name__, - prepend + self.__bases__, - _no_slots_copy(self.__dict__), - tvars=tvars, - args=args, - origin=self, - extra=self.__extra__, - orig_bases=self.__orig_bases__) - - def __subclasscheck__(self, cls): - if self.__origin__ is not None: - if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']: - raise TypeError("Parameterized generics cannot be used with class " - "or instance checks") - return False - if self is Generic: - raise TypeError("Class %r cannot be used with class " - "or instance checks" % self) - return super().__subclasscheck__(cls) - - def __instancecheck__(self, instance): - # Since we extend ABC.__subclasscheck__ and - # ABC.__instancecheck__ inlines the cache checking done by the - # latter, we must extend __instancecheck__ too. For simplicity - # we just skip the cache check -- instance checks for generic - # classes are supposed to be rare anyways. - return issubclass(instance.__class__, self) - - def __setattr__(self, attr, value): - # We consider all the subscripted generics as proxies for original class - if ( - attr.startswith('__') and attr.endswith('__') or - attr.startswith('_abc_') or - self._gorg is None # The class is not fully created, see #typing/506 - ): - super(GenericMeta, self).__setattr__(attr, value) - else: - super(GenericMeta, self._gorg).__setattr__(attr, value) - - -# Prevent checks for Generic to crash when defining Generic. -Generic = None - - -def _generic_new(base_cls, cls, *args, **kwds): - # Assure type is erased on instantiation, - # but attempt to store it in __orig_class__ - if cls.__origin__ is None: - if (base_cls.__new__ is object.__new__ and - cls.__init__ is not object.__init__): - return base_cls.__new__(cls) - else: - return base_cls.__new__(cls, *args, **kwds) - else: - origin = cls._gorg - if (base_cls.__new__ is object.__new__ and - cls.__init__ is not object.__init__): - obj = base_cls.__new__(origin) - else: - obj = base_cls.__new__(origin, *args, **kwds) - try: - obj.__orig_class__ = cls - except AttributeError: - pass - obj.__init__(*args, **kwds) - return obj - - -class Generic(metaclass=GenericMeta): - """Abstract base class for generic types. - - A generic type is typically declared by inheriting from - this class parameterized with one or more type variables. - For example, a generic mapping type might be defined as:: - - class Mapping(Generic[KT, VT]): - def __getitem__(self, key: KT) -> VT: - ... - # Etc. - - This class can then be used as follows:: - - def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: - try: - return mapping[key] - except KeyError: - return default - """ - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is Generic: - raise TypeError("Type Generic cannot be instantiated; " - "it can be used only as a base class") - return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) - - -class _TypingEmpty: - """Internal placeholder for () or []. Used by TupleMeta and CallableMeta - to allow empty list/tuple in specific places, without allowing them - to sneak in where prohibited. - """ - - -class _TypingEllipsis: - """Internal placeholder for ... (ellipsis).""" - - -class TupleMeta(GenericMeta): - """Metaclass for Tuple (internal).""" - - @_tp_cache - def __getitem__(self, parameters): - if self.__origin__ is not None or self._gorg is not Tuple: - # Normal generic rules apply if this is not the first subscription - # or a subscription of a subclass. - return super().__getitem__(parameters) - if parameters == (): - return super().__getitem__((_TypingEmpty,)) - if not isinstance(parameters, tuple): - parameters = (parameters,) - if len(parameters) == 2 and parameters[1] is ...: - msg = "Tuple[t, ...]: t must be a type." - p = _type_check(parameters[0], msg) - return super().__getitem__((p, _TypingEllipsis)) - msg = "Tuple[t0, t1, ...]: each t must be a type." - parameters = tuple(_type_check(p, msg) for p in parameters) - return super().__getitem__(parameters) - - def __instancecheck__(self, obj): - if self.__args__ is None: - return isinstance(obj, tuple) - raise TypeError("Parameterized Tuple cannot be used " - "with isinstance().") - - def __subclasscheck__(self, cls): - if self.__args__ is None: - return issubclass(cls, tuple) - raise TypeError("Parameterized Tuple cannot be used " - "with issubclass().") - - -class Tuple(tuple, extra=tuple, metaclass=TupleMeta): - """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. - - Example: Tuple[T1, T2] is a tuple of two elements corresponding - to type variables T1 and T2. Tuple[int, float, str] is a tuple - of an int, a float and a string. - - To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. - """ - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is Tuple: - raise TypeError("Type Tuple cannot be instantiated; " - "use tuple() instead") - return _generic_new(tuple, cls, *args, **kwds) - - -class CallableMeta(GenericMeta): - """Metaclass for Callable (internal).""" - - def __repr__(self): - if self.__origin__ is None: - return super().__repr__() - return self._tree_repr(self._subs_tree()) - - def _tree_repr(self, tree): - if self._gorg is not Callable: - return super()._tree_repr(tree) - # For actual Callable (not its subclass) we override - # super()._tree_repr() for nice formatting. - arg_list = [] - for arg in tree[1:]: - if not isinstance(arg, tuple): - arg_list.append(_type_repr(arg)) - else: - arg_list.append(arg[0]._tree_repr(arg)) - if arg_list[0] == '...': - return repr(tree[0]) + '[..., %s]' % arg_list[1] - return (repr(tree[0]) + - '[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1])) - - def __getitem__(self, parameters): - """A thin wrapper around __getitem_inner__ to provide the latter - with hashable arguments to improve speed. - """ - - if self.__origin__ is not None or self._gorg is not Callable: - return super().__getitem__(parameters) - if not isinstance(parameters, tuple) or len(parameters) != 2: - raise TypeError("Callable must be used as " - "Callable[[arg, ...], result].") - args, result = parameters - if args is Ellipsis: - parameters = (Ellipsis, result) - else: - if not isinstance(args, list): - raise TypeError("Callable[args, result]: args must be a list." - " Got %.100r." % (args,)) - parameters = (tuple(args), result) - return self.__getitem_inner__(parameters) - - @_tp_cache - def __getitem_inner__(self, parameters): - args, result = parameters - msg = "Callable[args, result]: result must be a type." - result = _type_check(result, msg) - if args is Ellipsis: - return super().__getitem__((_TypingEllipsis, result)) - msg = "Callable[[arg, ...], result]: each arg must be a type." - args = tuple(_type_check(arg, msg) for arg in args) - parameters = args + (result,) - return super().__getitem__(parameters) - - -class Callable(extra=collections_abc.Callable, metaclass=CallableMeta): - """Callable type; Callable[[int], str] is a function of (int) -> str. - - The subscription syntax must always be used with exactly two - values: the argument list and the return type. The argument list - must be a list of types or ellipsis; the return type must be a single type. - - There is no syntax to indicate optional or keyword arguments, - such function types are rarely used as callback types. - """ - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is Callable: - raise TypeError("Type Callable cannot be instantiated; " - "use a non-abstract subclass instead") - return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) - - -class _ClassVar(_FinalTypingBase, _root=True): - """Special type construct to mark class variables. - - An annotation wrapped in ClassVar indicates that a given - attribute is intended to be used as a class variable and - should not be set on instances of that class. Usage:: - - class Starship: - stats: ClassVar[Dict[str, int]] = {} # class variable - damage: int = 10 # instance variable - - ClassVar accepts only types and cannot be further subscribed. - - Note that ClassVar is not a class itself, and should not - be used with isinstance() or issubclass(). - """ - - __slots__ = ('__type__',) - - def __init__(self, tp=None, **kwds): - self.__type__ = tp - - def __getitem__(self, item): - cls = type(self) - if self.__type__ is None: - return cls(_type_check(item, - '{} accepts only single type.'.format(cls.__name__[1:])), - _root=True) - raise TypeError('{} cannot be further subscripted' - .format(cls.__name__[1:])) - - def _eval_type(self, globalns, localns): - new_tp = _eval_type(self.__type__, globalns, localns) - if new_tp == self.__type__: - return self - return type(self)(new_tp, _root=True) - - def __repr__(self): - r = super().__repr__() - if self.__type__ is not None: - r += '[{}]'.format(_type_repr(self.__type__)) - return r - - def __hash__(self): - return hash((type(self).__name__, self.__type__)) - - def __eq__(self, other): - if not isinstance(other, _ClassVar): - return NotImplemented - if self.__type__ is not None: - return self.__type__ == other.__type__ - return self is other - - -ClassVar = _ClassVar(_root=True) - - -def cast(typ, val): - """Cast a value to a type. - - This returns the value unchanged. To the type checker this - signals that the return value has the designated type, but at - runtime we intentionally don't check anything (we want this - to be as fast as possible). - """ - return val - - -def _get_defaults(func): - """Internal helper to extract the default arguments, by name.""" - try: - code = func.__code__ - except AttributeError: - # Some built-in functions don't have __code__, __defaults__, etc. - return {} - pos_count = code.co_argcount - arg_names = code.co_varnames - arg_names = arg_names[:pos_count] - defaults = func.__defaults__ or () - kwdefaults = func.__kwdefaults__ - res = dict(kwdefaults) if kwdefaults else {} - pos_offset = pos_count - len(defaults) - for name, value in zip(arg_names[pos_offset:], defaults): - assert name not in res - res[name] = value - return res - - -_allowed_types = (types.FunctionType, types.BuiltinFunctionType, - types.MethodType, types.ModuleType, - WrapperDescriptorType, MethodWrapperType, MethodDescriptorType) - - -def get_type_hints(obj, globalns=None, localns=None): - """Return type hints for an object. - - This is often the same as obj.__annotations__, but it handles - forward references encoded as string literals, and if necessary - adds Optional[t] if a default value equal to None is set. - - The argument may be a module, class, method, or function. The annotations - are returned as a dictionary. For classes, annotations include also - inherited members. - - TypeError is raised if the argument is not of a type that can contain - annotations, and an empty dictionary is returned if no annotations are - present. - - BEWARE -- the behavior of globalns and localns is counterintuitive - (unless you are familiar with how eval() and exec() work). The - search order is locals first, then globals. - - - If no dict arguments are passed, an attempt is made to use the - globals from obj (or the respective module's globals for classes), - and these are also used as the locals. If the object does not appear - to have globals, an empty dictionary is used. - - - If one dict argument is passed, it is used for both globals and - locals. - - - If two dict arguments are passed, they specify globals and - locals, respectively. - """ - - if getattr(obj, '__no_type_check__', None): - return {} - # Classes require a special treatment. - if isinstance(obj, type): - hints = {} - for base in reversed(obj.__mro__): - if globalns is None: - base_globals = sys.modules[base.__module__].__dict__ - else: - base_globals = globalns - ann = base.__dict__.get('__annotations__', {}) - for name, value in ann.items(): - if value is None: - value = type(None) - if isinstance(value, str): - value = _ForwardRef(value) - value = _eval_type(value, base_globals, localns) - hints[name] = value - return hints - - if globalns is None: - if isinstance(obj, types.ModuleType): - globalns = obj.__dict__ - else: - globalns = getattr(obj, '__globals__', {}) - if localns is None: - localns = globalns - elif localns is None: - localns = globalns - hints = getattr(obj, '__annotations__', None) - if hints is None: - # Return empty annotations for something that _could_ have them. - if isinstance(obj, _allowed_types): - return {} - else: - raise TypeError('{!r} is not a module, class, method, ' - 'or function.'.format(obj)) - defaults = _get_defaults(obj) - hints = dict(hints) - for name, value in hints.items(): - if value is None: - value = type(None) - if isinstance(value, str): - value = _ForwardRef(value) - value = _eval_type(value, globalns, localns) - if name in defaults and defaults[name] is None: - value = Optional[value] - hints[name] = value - return hints - - -def no_type_check(arg): - """Decorator to indicate that annotations are not type hints. - - The argument must be a class or function; if it is a class, it - applies recursively to all methods and classes defined in that class - (but not to methods defined in its superclasses or subclasses). - - This mutates the function(s) or class(es) in place. - """ - if isinstance(arg, type): - arg_attrs = arg.__dict__.copy() - for attr, val in arg.__dict__.items(): - if val in arg.__bases__ + (arg,): - arg_attrs.pop(attr) - for obj in arg_attrs.values(): - if isinstance(obj, types.FunctionType): - obj.__no_type_check__ = True - if isinstance(obj, type): - no_type_check(obj) - try: - arg.__no_type_check__ = True - except TypeError: # built-in classes - pass - return arg - - -def no_type_check_decorator(decorator): - """Decorator to give another decorator the @no_type_check effect. - - This wraps the decorator with something that wraps the decorated - function in @no_type_check. - """ - - @functools.wraps(decorator) - def wrapped_decorator(*args, **kwds): - func = decorator(*args, **kwds) - func = no_type_check(func) - return func - - return wrapped_decorator - - -def _overload_dummy(*args, **kwds): - """Helper for @overload to raise when called.""" - raise NotImplementedError( - "You should not call an overloaded function. " - "A series of @overload-decorated functions " - "outside a stub module should always be followed " - "by an implementation that is not @overload-ed.") - - -def overload(func): - """Decorator for overloaded functions/methods. - - In a stub file, place two or more stub definitions for the same - function in a row, each decorated with @overload. For example: - - @overload - def utf8(value: None) -> None: ... - @overload - def utf8(value: bytes) -> bytes: ... - @overload - def utf8(value: str) -> bytes: ... - - In a non-stub file (i.e. a regular .py file), do the same but - follow it with an implementation. The implementation should *not* - be decorated with @overload. For example: - - @overload - def utf8(value: None) -> None: ... - @overload - def utf8(value: bytes) -> bytes: ... - @overload - def utf8(value: str) -> bytes: ... - def utf8(value): - # implementation goes here - """ - return _overload_dummy - - -class _ProtocolMeta(GenericMeta): - """Internal metaclass for _Protocol. - - This exists so _Protocol classes can be generic without deriving - from Generic. - """ - - def __instancecheck__(self, obj): - if _Protocol not in self.__bases__: - return super().__instancecheck__(obj) - raise TypeError("Protocols cannot be used with isinstance().") - - def __subclasscheck__(self, cls): - if not self._is_protocol: - # No structural checks since this isn't a protocol. - return NotImplemented - - if self is _Protocol: - # Every class is a subclass of the empty protocol. - return True - - # Find all attributes defined in the protocol. - attrs = self._get_protocol_attrs() - - for attr in attrs: - if not any(attr in d.__dict__ for d in cls.__mro__): - return False - return True - - def _get_protocol_attrs(self): - # Get all Protocol base classes. - protocol_bases = [] - for c in self.__mro__: - if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': - protocol_bases.append(c) - - # Get attributes included in protocol. - attrs = set() - for base in protocol_bases: - for attr in base.__dict__.keys(): - # Include attributes not defined in any non-protocol bases. - for c in self.__mro__: - if (c is not base and attr in c.__dict__ and - not getattr(c, '_is_protocol', False)): - break - else: - if (not attr.startswith('_abc_') and - attr != '__abstractmethods__' and - attr != '__annotations__' and - attr != '__weakref__' and - attr != '_is_protocol' and - attr != '_gorg' and - attr != '__dict__' and - attr != '__args__' and - attr != '__slots__' and - attr != '_get_protocol_attrs' and - attr != '__next_in_mro__' and - attr != '__parameters__' and - attr != '__origin__' and - attr != '__orig_bases__' and - attr != '__extra__' and - attr != '__tree_hash__' and - attr != '__module__'): - attrs.add(attr) - - return attrs - - -class _Protocol(metaclass=_ProtocolMeta): - """Internal base class for protocol classes. - - This implements a simple-minded structural issubclass check - (similar but more general than the one-offs in collections.abc - such as Hashable). - """ - - __slots__ = () - - _is_protocol = True - - -# Various ABCs mimicking those in collections.abc. -# A few are simply re-exported for completeness. - -Hashable = collections_abc.Hashable # Not generic. - - -if hasattr(collections_abc, 'Awaitable'): - class Awaitable(Generic[T_co], extra=collections_abc.Awaitable): - __slots__ = () - - __all__.append('Awaitable') - - -if hasattr(collections_abc, 'Coroutine'): - class Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co], - extra=collections_abc.Coroutine): - __slots__ = () - - __all__.append('Coroutine') - - -if hasattr(collections_abc, 'AsyncIterable'): - - class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable): - __slots__ = () - - class AsyncIterator(AsyncIterable[T_co], - extra=collections_abc.AsyncIterator): - __slots__ = () - - __all__.append('AsyncIterable') - __all__.append('AsyncIterator') - - -class Iterable(Generic[T_co], extra=collections_abc.Iterable): - __slots__ = () - - -class Iterator(Iterable[T_co], extra=collections_abc.Iterator): - __slots__ = () - - -class SupportsInt(_Protocol): - __slots__ = () - - @abstractmethod - def __int__(self) -> int: - pass - - -class SupportsFloat(_Protocol): - __slots__ = () - - @abstractmethod - def __float__(self) -> float: - pass - - -class SupportsComplex(_Protocol): - __slots__ = () - - @abstractmethod - def __complex__(self) -> complex: - pass - - -class SupportsBytes(_Protocol): - __slots__ = () - - @abstractmethod - def __bytes__(self) -> bytes: - pass - - -class SupportsIndex(_Protocol): - __slots__ = () - - @abstractmethod - def __index__(self) -> int: - pass - - -class SupportsAbs(_Protocol[T_co]): - __slots__ = () - - @abstractmethod - def __abs__(self) -> T_co: - pass - - -class SupportsRound(_Protocol[T_co]): - __slots__ = () - - @abstractmethod - def __round__(self, ndigits: int = 0) -> T_co: - pass - - -if hasattr(collections_abc, 'Reversible'): - class Reversible(Iterable[T_co], extra=collections_abc.Reversible): - __slots__ = () -else: - class Reversible(_Protocol[T_co]): - __slots__ = () - - @abstractmethod - def __reversed__(self) -> 'Iterator[T_co]': - pass - - -Sized = collections_abc.Sized # Not generic. - - -class Container(Generic[T_co], extra=collections_abc.Container): - __slots__ = () - - -if hasattr(collections_abc, 'Collection'): - class Collection(Sized, Iterable[T_co], Container[T_co], - extra=collections_abc.Collection): - __slots__ = () - - __all__.append('Collection') - - -# Callable was defined earlier. - -if hasattr(collections_abc, 'Collection'): - class AbstractSet(Collection[T_co], - extra=collections_abc.Set): - __slots__ = () -else: - class AbstractSet(Sized, Iterable[T_co], Container[T_co], - extra=collections_abc.Set): - __slots__ = () - - -class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): - __slots__ = () - - -# NOTE: It is only covariant in the value type. -if hasattr(collections_abc, 'Collection'): - class Mapping(Collection[KT], Generic[KT, VT_co], - extra=collections_abc.Mapping): - __slots__ = () -else: - class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co], - extra=collections_abc.Mapping): - __slots__ = () - - -class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): - __slots__ = () - - -if hasattr(collections_abc, 'Reversible'): - if hasattr(collections_abc, 'Collection'): - class Sequence(Reversible[T_co], Collection[T_co], - extra=collections_abc.Sequence): - __slots__ = () - else: - class Sequence(Sized, Reversible[T_co], Container[T_co], - extra=collections_abc.Sequence): - __slots__ = () -else: - class Sequence(Sized, Iterable[T_co], Container[T_co], - extra=collections_abc.Sequence): - __slots__ = () - - -class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): - __slots__ = () - - -class ByteString(Sequence[int], extra=collections_abc.ByteString): - __slots__ = () - - -class List(list, MutableSequence[T], extra=list): - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is List: - raise TypeError("Type List cannot be instantiated; " - "use list() instead") - return _generic_new(list, cls, *args, **kwds) - - -class Deque(collections.deque, MutableSequence[T], extra=collections.deque): - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is Deque: - return collections.deque(*args, **kwds) - return _generic_new(collections.deque, cls, *args, **kwds) - - -class Set(set, MutableSet[T], extra=set): - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is Set: - raise TypeError("Type Set cannot be instantiated; " - "use set() instead") - return _generic_new(set, cls, *args, **kwds) - - -class FrozenSet(frozenset, AbstractSet[T_co], extra=frozenset): - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is FrozenSet: - raise TypeError("Type FrozenSet cannot be instantiated; " - "use frozenset() instead") - return _generic_new(frozenset, cls, *args, **kwds) - - -class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): - __slots__ = () - - -class KeysView(MappingView[KT], AbstractSet[KT], - extra=collections_abc.KeysView): - __slots__ = () - - -class ItemsView(MappingView[Tuple[KT, VT_co]], - AbstractSet[Tuple[KT, VT_co]], - Generic[KT, VT_co], - extra=collections_abc.ItemsView): - __slots__ = () - - -class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): - __slots__ = () - - -if hasattr(contextlib, 'AbstractContextManager'): - class ContextManager(Generic[T_co], extra=contextlib.AbstractContextManager): - __slots__ = () -else: - class ContextManager(Generic[T_co]): - __slots__ = () - - def __enter__(self): - return self - - @abc.abstractmethod - def __exit__(self, exc_type, exc_value, traceback): - return None - - @classmethod - def __subclasshook__(cls, C): - if cls is ContextManager: - # In Python 3.6+, it is possible to set a method to None to - # explicitly indicate that the class does not implement an ABC - # (https://bugs.python.org/issue25958), but we do not support - # that pattern here because this fallback class is only used - # in Python 3.5 and earlier. - if (any("__enter__" in B.__dict__ for B in C.__mro__) and - any("__exit__" in B.__dict__ for B in C.__mro__)): - return True - return NotImplemented - - -if hasattr(contextlib, 'AbstractAsyncContextManager'): - class AsyncContextManager(Generic[T_co], - extra=contextlib.AbstractAsyncContextManager): - __slots__ = () - - __all__.append('AsyncContextManager') -elif sys.version_info[:2] >= (3, 5): - exec(""" -class AsyncContextManager(Generic[T_co]): - __slots__ = () - - async def __aenter__(self): - return self - - @abc.abstractmethod - async def __aexit__(self, exc_type, exc_value, traceback): - return None - - @classmethod - def __subclasshook__(cls, C): - if cls is AsyncContextManager: - if sys.version_info[:2] >= (3, 6): - return _collections_abc._check_methods(C, "__aenter__", "__aexit__") - if (any("__aenter__" in B.__dict__ for B in C.__mro__) and - any("__aexit__" in B.__dict__ for B in C.__mro__)): - return True - return NotImplemented - -__all__.append('AsyncContextManager') -""") - - -class Dict(dict, MutableMapping[KT, VT], extra=dict): - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is Dict: - raise TypeError("Type Dict cannot be instantiated; " - "use dict() instead") - return _generic_new(dict, cls, *args, **kwds) - - -class DefaultDict(collections.defaultdict, MutableMapping[KT, VT], - extra=collections.defaultdict): - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is DefaultDict: - return collections.defaultdict(*args, **kwds) - return _generic_new(collections.defaultdict, cls, *args, **kwds) - - -class Counter(collections.Counter, Dict[T, int], extra=collections.Counter): - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is Counter: - return collections.Counter(*args, **kwds) - return _generic_new(collections.Counter, cls, *args, **kwds) - - -if hasattr(collections, 'ChainMap'): - # ChainMap only exists in 3.3+ - __all__.append('ChainMap') - - class ChainMap(collections.ChainMap, MutableMapping[KT, VT], - extra=collections.ChainMap): - - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is ChainMap: - return collections.ChainMap(*args, **kwds) - return _generic_new(collections.ChainMap, cls, *args, **kwds) - - -# Determine what base class to use for Generator. -if hasattr(collections_abc, 'Generator'): - # Sufficiently recent versions of 3.5 have a Generator ABC. - _G_base = collections_abc.Generator -else: - # Fall back on the exact type. - _G_base = types.GeneratorType - - -class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], - extra=_G_base): - __slots__ = () - - def __new__(cls, *args, **kwds): - if cls._gorg is Generator: - raise TypeError("Type Generator cannot be instantiated; " - "create a subclass instead") - return _generic_new(_G_base, cls, *args, **kwds) - - -if hasattr(collections_abc, 'AsyncGenerator'): - class AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra], - extra=collections_abc.AsyncGenerator): - __slots__ = () - - __all__.append('AsyncGenerator') - - -# Internal type variable used for Type[]. -CT_co = TypeVar('CT_co', covariant=True, bound=type) - - -# This is not a real generic class. Don't use outside annotations. -class Type(Generic[CT_co], extra=type): - """A special construct usable to annotate class objects. - - For example, suppose we have the following classes:: - - class User: ... # Abstract base for User classes - class BasicUser(User): ... - class ProUser(User): ... - class TeamUser(User): ... - - And a function that takes a class argument that's a subclass of - User and returns an instance of the corresponding class:: - - U = TypeVar('U', bound=User) - def new_user(user_class: Type[U]) -> U: - user = user_class() - # (Here we could write the user object to a database) - return user - - joe = new_user(BasicUser) - - At this point the type checker knows that joe has type BasicUser. - """ - - __slots__ = () - - -def _make_nmtuple(name, types): - msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type" - types = [(n, _type_check(t, msg)) for n, t in types] - nm_tpl = collections.namedtuple(name, [n for n, t in types]) - # Prior to PEP 526, only _field_types attribute was assigned. - # Now, both __annotations__ and _field_types are used to maintain compatibility. - nm_tpl.__annotations__ = nm_tpl._field_types = collections.OrderedDict(types) - try: - nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__') - except (AttributeError, ValueError): - pass - return nm_tpl - - -_PY36 = sys.version_info[:2] >= (3, 6) - -# attributes prohibited to set in NamedTuple class syntax -_prohibited = ('__new__', '__init__', '__slots__', '__getnewargs__', - '_fields', '_field_defaults', '_field_types', - '_make', '_replace', '_asdict', '_source') - -_special = ('__module__', '__name__', '__qualname__', '__annotations__') - - -class NamedTupleMeta(type): - - def __new__(cls, typename, bases, ns): - if ns.get('_root', False): - return super().__new__(cls, typename, bases, ns) - if not _PY36: - raise TypeError("Class syntax for NamedTuple is only supported" - " in Python 3.6+") - types = ns.get('__annotations__', {}) - nm_tpl = _make_nmtuple(typename, types.items()) - defaults = [] - defaults_dict = {} - for field_name in types: - if field_name in ns: - default_value = ns[field_name] - defaults.append(default_value) - defaults_dict[field_name] = default_value - elif defaults: - raise TypeError("Non-default namedtuple field {field_name} cannot " - "follow default field(s) {default_names}" - .format(field_name=field_name, - default_names=', '.join(defaults_dict.keys()))) - nm_tpl.__new__.__annotations__ = collections.OrderedDict(types) - nm_tpl.__new__.__defaults__ = tuple(defaults) - nm_tpl._field_defaults = defaults_dict - # update from user namespace without overriding special namedtuple attributes - for key in ns: - if key in _prohibited: - raise AttributeError("Cannot overwrite NamedTuple attribute " + key) - elif key not in _special and key not in nm_tpl._fields: - setattr(nm_tpl, key, ns[key]) - return nm_tpl - - -class NamedTuple(metaclass=NamedTupleMeta): - """Typed version of namedtuple. - - Usage in Python versions >= 3.6:: - - class Employee(NamedTuple): - name: str - id: int - - This is equivalent to:: - - Employee = collections.namedtuple('Employee', ['name', 'id']) - - The resulting class has extra __annotations__ and _field_types - attributes, giving an ordered dict mapping field names to types. - __annotations__ should be preferred, while _field_types - is kept to maintain pre PEP 526 compatibility. (The field names - are in the _fields attribute, which is part of the namedtuple - API.) Alternative equivalent keyword syntax is also accepted:: - - Employee = NamedTuple('Employee', name=str, id=int) - - In Python versions <= 3.5 use:: - - Employee = NamedTuple('Employee', [('name', str), ('id', int)]) - """ - _root = True - - def __new__(*args, **kwargs): - if kwargs and not _PY36: - raise TypeError("Keyword syntax for NamedTuple is only supported" - " in Python 3.6+") - if not args: - raise TypeError('NamedTuple.__new__(): not enough arguments') - _, args = args[0], args[1:] # allow the "cls" keyword be passed - if args: - typename, args = args[0], args[1:] # allow the "typename" keyword be passed - elif 'typename' in kwargs: - typename = kwargs.pop('typename') - import warnings - warnings.warn("Passing 'typename' as keyword argument is deprecated", - DeprecationWarning, stacklevel=2) - else: - raise TypeError("NamedTuple.__new__() missing 1 required positional " - "argument: 'typename'") - if args: - try: - fields, = args # allow the "fields" keyword be passed - except ValueError: - raise TypeError('NamedTuple.__new__() takes from 2 to 3 ' - 'positional arguments but {} ' - 'were given'.format(len(args) + 2)) - elif 'fields' in kwargs and len(kwargs) == 1: - fields = kwargs.pop('fields') - import warnings - warnings.warn("Passing 'fields' as keyword argument is deprecated", - DeprecationWarning, stacklevel=2) - else: - fields = None - - if fields is None: - fields = kwargs.items() - elif kwargs: - raise TypeError("Either list of fields or keywords" - " can be provided to NamedTuple, not both") - return _make_nmtuple(typename, fields) - - __new__.__text_signature__ = '($cls, typename, fields=None, /, **kwargs)' - - -def NewType(name, tp): - """NewType creates simple unique types with almost zero - runtime overhead. NewType(name, tp) is considered a subtype of tp - by static type checkers. At runtime, NewType(name, tp) returns - a dummy function that simply returns its argument. Usage:: - - UserId = NewType('UserId', int) - - def name_by_id(user_id: UserId) -> str: - ... - - UserId('user') # Fails type check - - name_by_id(42) # Fails type check - name_by_id(UserId(42)) # OK - - num = UserId(5) + 1 # type: int - """ - - def new_type(x): - return x - - new_type.__name__ = name - new_type.__supertype__ = tp - return new_type - - -# Python-version-specific alias (Python 2: unicode; Python 3: str) -Text = str - - -# Constant that's True when type checking, but False here. -TYPE_CHECKING = False - - -class IO(Generic[AnyStr]): - """Generic base class for TextIO and BinaryIO. - - This is an abstract, generic version of the return of open(). - - NOTE: This does not distinguish between the different possible - classes (text vs. binary, read vs. write vs. read/write, - append-only, unbuffered). The TextIO and BinaryIO subclasses - below capture the distinctions between text vs. binary, which is - pervasive in the interface; however we currently do not offer a - way to track the other distinctions in the type system. - """ - - __slots__ = () - - @abstractproperty - def mode(self) -> str: - pass - - @abstractproperty - def name(self) -> str: - pass - - @abstractmethod - def close(self) -> None: - pass - - @abstractproperty - def closed(self) -> bool: - pass - - @abstractmethod - def fileno(self) -> int: - pass - - @abstractmethod - def flush(self) -> None: - pass - - @abstractmethod - def isatty(self) -> bool: - pass - - @abstractmethod - def read(self, n: int = -1) -> AnyStr: - pass - - @abstractmethod - def readable(self) -> bool: - pass - - @abstractmethod - def readline(self, limit: int = -1) -> AnyStr: - pass - - @abstractmethod - def readlines(self, hint: int = -1) -> List[AnyStr]: - pass - - @abstractmethod - def seek(self, offset: int, whence: int = 0) -> int: - pass - - @abstractmethod - def seekable(self) -> bool: - pass - - @abstractmethod - def tell(self) -> int: - pass - - @abstractmethod - def truncate(self, size: int = None) -> int: - pass - - @abstractmethod - def writable(self) -> bool: - pass - - @abstractmethod - def write(self, s: AnyStr) -> int: - pass - - @abstractmethod - def writelines(self, lines: List[AnyStr]) -> None: - pass - - @abstractmethod - def __enter__(self) -> 'IO[AnyStr]': - pass - - @abstractmethod - def __exit__(self, type, value, traceback) -> None: - pass - - -class BinaryIO(IO[bytes]): - """Typed version of the return of open() in binary mode.""" - - __slots__ = () - - @abstractmethod - def write(self, s: Union[bytes, bytearray]) -> int: - pass - - @abstractmethod - def __enter__(self) -> 'BinaryIO': - pass - - -class TextIO(IO[str]): - """Typed version of the return of open() in text mode.""" - - __slots__ = () - - @abstractproperty - def buffer(self) -> BinaryIO: - pass - - @abstractproperty - def encoding(self) -> str: - pass - - @abstractproperty - def errors(self) -> Optional[str]: - pass - - @abstractproperty - def line_buffering(self) -> bool: - pass - - @abstractproperty - def newlines(self) -> Any: - pass - - @abstractmethod - def __enter__(self) -> 'TextIO': - pass - - -class io: - """Wrapper namespace for IO generic classes.""" - - __all__ = ['IO', 'TextIO', 'BinaryIO'] - IO = IO - TextIO = TextIO - BinaryIO = BinaryIO - - -io.__name__ = __name__ + '.io' -sys.modules[io.__name__] = io - - -Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), - lambda p: p.pattern) -Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), - lambda m: m.re.pattern) - - -class re: - """Wrapper namespace for re type aliases.""" - - __all__ = ['Pattern', 'Match'] - Pattern = Pattern - Match = Match - - -re.__name__ = __name__ + '.re' -sys.modules[re.__name__] = re diff --git a/tests/utils/python/typing/typing.py b/tests/utils/python/typing/typing.py new file mode 100644 index 00000000..70c59d85 --- /dev/null +++ b/tests/utils/python/typing/typing.py @@ -0,0 +1,2454 @@ +import abc +from abc import abstractmethod, abstractproperty +import collections +import contextlib +import functools +import re as stdlib_re # Avoid confusion with the re we export. +import sys +import types +try: + import collections.abc as collections_abc +except ImportError: + import collections as collections_abc # Fallback for PY3.2. +if sys.version_info[:2] >= (3, 6): + import _collections_abc # Needed for private function _check_methods # noqa +try: + from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType +except ImportError: + WrapperDescriptorType = type(object.__init__) + MethodWrapperType = type(object().__str__) + MethodDescriptorType = type(str.join) + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'Any', + 'Callable', + 'ClassVar', + 'Generic', + 'Optional', + 'Tuple', + 'Type', + 'TypeVar', + 'Union', + + # ABCs (from collections.abc). + 'AbstractSet', # collections.abc.Set. + 'GenericMeta', # subclass of abc.ABCMeta and a metaclass + # for 'Generic' and ABCs below. + 'ByteString', + 'Container', + 'ContextManager', + 'Hashable', + 'ItemsView', + 'Iterable', + 'Iterator', + 'KeysView', + 'Mapping', + 'MappingView', + 'MutableMapping', + 'MutableSequence', + 'MutableSet', + 'Sequence', + 'Sized', + 'ValuesView', + # The following are added depending on presence + # of their non-generic counterparts in stdlib: + # Awaitable, + # AsyncIterator, + # AsyncIterable, + # Coroutine, + # Collection, + # AsyncGenerator, + # AsyncContextManager + + # Structural checks, a.k.a. protocols. + 'Reversible', + 'SupportsAbs', + 'SupportsBytes', + 'SupportsComplex', + 'SupportsFloat', + 'SupportsIndex', + 'SupportsInt', + 'SupportsRound', + + # Concrete collection types. + 'Counter', + 'Deque', + 'Dict', + 'DefaultDict', + 'List', + 'Set', + 'FrozenSet', + 'NamedTuple', # Not really a type. + 'Generator', + + # One-off things. + 'AnyStr', + 'cast', + 'get_type_hints', + 'NewType', + 'no_type_check', + 'no_type_check_decorator', + 'NoReturn', + 'overload', + 'Text', + 'TYPE_CHECKING', +] + +# The pseudo-submodules 're' and 'io' are part of the public +# namespace, but excluded from __all__ because they might stomp on +# legitimate imports of those modules. + + +def _qualname(x): + if sys.version_info[:2] >= (3, 3): + return x.__qualname__ + else: + # Fall back to just name. + return x.__name__ + + +def _trim_name(nm): + whitelist = ('_TypeAlias', '_ForwardRef', '_TypingBase', '_FinalTypingBase') + if nm.startswith('_') and nm not in whitelist: + nm = nm[1:] + return nm + + +class TypingMeta(type): + """Metaclass for most types defined in typing module + (not a part of public API). + + This overrides __new__() to require an extra keyword parameter + '_root', which serves as a guard against naive subclassing of the + typing classes. Any legitimate class defined using a metaclass + derived from TypingMeta must pass _root=True. + + This also defines a dummy constructor (all the work for most typing + constructs is done in __new__) and a nicer repr(). + """ + + _is_protocol = False + + def __new__(cls, name, bases, namespace, *, _root=False): + if not _root: + raise TypeError("Cannot subclass %s" % + (', '.join(map(_type_repr, bases)) or '()')) + return super().__new__(cls, name, bases, namespace) + + def __init__(self, *args, **kwds): + pass + + def _eval_type(self, globalns, localns): + """Override this in subclasses to interpret forward references. + + For example, List['C'] is internally stored as + List[_ForwardRef('C')], which should evaluate to List[C], + where C is an object found in globalns or localns (searching + localns first, of course). + """ + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + qname = _trim_name(_qualname(self)) + return '%s.%s' % (self.__module__, qname) + + +class _TypingBase(metaclass=TypingMeta, _root=True): + """Internal indicator of special typing constructs.""" + + __slots__ = ('__weakref__',) + + def __init__(self, *args, **kwds): + pass + + def __new__(cls, *args, **kwds): + """Constructor. + + This only exists to give a better error message in case + someone tries to subclass a special typing object (not a good idea). + """ + if (len(args) == 3 and + isinstance(args[0], str) and + isinstance(args[1], tuple)): + # Close enough. + raise TypeError("Cannot subclass %r" % cls) + return super().__new__(cls) + + # Things that are not classes also need these. + def _eval_type(self, globalns, localns): + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + cls = type(self) + qname = _trim_name(_qualname(cls)) + return '%s.%s' % (cls.__module__, qname) + + def __call__(self, *args, **kwds): + raise TypeError("Cannot instantiate %r" % type(self)) + + +class _FinalTypingBase(_TypingBase, _root=True): + """Internal mix-in class to prevent instantiation. + + Prevents instantiation unless _root=True is given in class call. + It is used to create pseudo-singleton instances Any, Union, Optional, etc. + """ + + __slots__ = () + + def __new__(cls, *args, _root=False, **kwds): + self = super().__new__(cls, *args, **kwds) + if _root is True: + return self + raise TypeError("Cannot instantiate %r" % cls) + + def __reduce__(self): + return _trim_name(type(self).__name__) + + +class _ForwardRef(_TypingBase, _root=True): + """Internal wrapper to hold a forward reference.""" + + __slots__ = ('__forward_arg__', '__forward_code__', + '__forward_evaluated__', '__forward_value__') + + def __init__(self, arg): + super().__init__(arg) + if not isinstance(arg, str): + raise TypeError('Forward reference must be a string -- got %r' % (arg,)) + try: + code = compile(arg, '', 'eval') + except SyntaxError: + raise SyntaxError('Forward reference must be an expression -- got %r' % + (arg,)) + self.__forward_arg__ = arg + self.__forward_code__ = code + self.__forward_evaluated__ = False + self.__forward_value__ = None + + def _eval_type(self, globalns, localns): + if not self.__forward_evaluated__ or localns is not globalns: + if globalns is None and localns is None: + globalns = localns = {} + elif globalns is None: + globalns = localns + elif localns is None: + localns = globalns + self.__forward_value__ = _type_check( + eval(self.__forward_code__, globalns, localns), + "Forward references must evaluate to types.") + self.__forward_evaluated__ = True + return self.__forward_value__ + + def __eq__(self, other): + if not isinstance(other, _ForwardRef): + return NotImplemented + if self.__forward_evaluated__ and other.__forward_evaluated__: + return (self.__forward_arg__ == other.__forward_arg__ and + self.__forward_value__ == other.__forward_value__) + return self.__forward_arg__ == other.__forward_arg__ + + def __hash__(self): + return hash(self.__forward_arg__) + + def __instancecheck__(self, obj): + raise TypeError("Forward references cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Forward references cannot be used with issubclass().") + + def __repr__(self): + return '_ForwardRef(%r)' % (self.__forward_arg__,) + + +class _TypeAlias(_TypingBase, _root=True): + """Internal helper class for defining generic variants of concrete types. + + Note that this is not a type; let's call it a pseudo-type. It cannot + be used in instance and subclass checks in parameterized form, i.e. + ``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning + ``False``. + """ + + __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') + + def __init__(self, name, type_var, impl_type, type_checker): + """Initializer. + + Args: + name: The name, e.g. 'Pattern'. + type_var: The type parameter, e.g. AnyStr, or the + specific type, e.g. str. + impl_type: The implementation type. + type_checker: Function that takes an impl_type instance. + and returns a value that should be a type_var instance. + """ + assert isinstance(name, str), repr(name) + assert isinstance(impl_type, type), repr(impl_type) + assert not isinstance(impl_type, TypingMeta), repr(impl_type) + assert isinstance(type_var, (type, _TypingBase)), repr(type_var) + self.name = name + self.type_var = type_var + self.impl_type = impl_type + self.type_checker = type_checker + + def __repr__(self): + return "%s[%s]" % (self.name, _type_repr(self.type_var)) + + def __getitem__(self, parameter): + if not isinstance(self.type_var, TypeVar): + raise TypeError("%s cannot be further parameterized." % self) + if self.type_var.__constraints__ and isinstance(parameter, type): + if not issubclass(parameter, self.type_var.__constraints__): + raise TypeError("%s is not a valid substitution for %s." % + (parameter, self.type_var)) + if isinstance(parameter, TypeVar) and parameter is not self.type_var: + raise TypeError("%s cannot be re-parameterized." % self) + return self.__class__(self.name, parameter, + self.impl_type, self.type_checker) + + def __eq__(self, other): + if not isinstance(other, _TypeAlias): + return NotImplemented + return self.name == other.name and self.type_var == other.type_var + + def __hash__(self): + return hash((self.name, self.type_var)) + + def __instancecheck__(self, obj): + if not isinstance(self.type_var, TypeVar): + raise TypeError("Parameterized type aliases cannot be used " + "with isinstance().") + return isinstance(obj, self.impl_type) + + def __subclasscheck__(self, cls): + if not isinstance(self.type_var, TypeVar): + raise TypeError("Parameterized type aliases cannot be used " + "with issubclass().") + return issubclass(cls, self.impl_type) + + +def _get_type_vars(types, tvars): + for t in types: + if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): + t._get_type_vars(tvars) + + +def _type_vars(types): + tvars = [] + _get_type_vars(types, tvars) + return tuple(tvars) + + +def _eval_type(t, globalns, localns): + if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): + return t._eval_type(globalns, localns) + return t + + +def _type_check(arg, msg): + """Check that the argument is a type, and return it (internal helper). + + As a special case, accept None and return type(None) instead. + Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. + + The msg argument is a human-readable error message, e.g. + + "Union[arg, ...]: arg should be a type." + + We append the repr() of the actual value (truncated to 100 chars). + """ + if arg is None: + return type(None) + if isinstance(arg, str): + arg = _ForwardRef(arg) + if ( + isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or + not isinstance(arg, (type, _TypingBase)) and not callable(arg) + ): + raise TypeError(msg + " Got %.100r." % (arg,)) + # Bare Union etc. are not valid as type arguments + if ( + type(arg).__name__ in ('_Union', '_Optional') and + not getattr(arg, '__origin__', None) or + isinstance(arg, TypingMeta) and arg._gorg in (Generic, _Protocol) + ): + raise TypeError("Plain %s is not valid as type argument" % arg) + return arg + + +def _type_repr(obj): + """Return the repr() of an object, special-casing types (internal helper). + + If obj is a type, we return a shorter version than the default + type.__repr__, based on the module and qualified name, which is + typically enough to uniquely identify a type. For everything + else, we fall back on repr(obj). + """ + if isinstance(obj, type) and not isinstance(obj, TypingMeta): + if obj.__module__ == 'builtins': + return _qualname(obj) + return '%s.%s' % (obj.__module__, _qualname(obj)) + if obj is ...: + return('...') + if isinstance(obj, types.FunctionType): + return obj.__name__ + return repr(obj) + + +class _Any(_FinalTypingBase, _root=True): + """Special type indicating an unconstrained type. + + - Any is compatible with every type. + - Any assumed to have all methods. + - All values assumed to be instances of Any. + + Note that all the above statements are true from the point of view of + static type checkers. At runtime, Any should not be used with instance + or class checks. + """ + + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("Any cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Any cannot be used with issubclass().") + + +Any = _Any(_root=True) + + +class _NoReturn(_FinalTypingBase, _root=True): + """Special type indicating functions that never return. + Example:: + + from typing import NoReturn + + def stop() -> NoReturn: + raise Exception('no way') + + This type is invalid in other positions, e.g., ``List[NoReturn]`` + will fail in static type checkers. + """ + + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("NoReturn cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("NoReturn cannot be used with issubclass().") + + +NoReturn = _NoReturn(_root=True) + + +class TypeVar(_TypingBase, _root=True): + """Type variable. + + Usage:: + + T = TypeVar('T') # Can be anything + A = TypeVar('A', str, bytes) # Must be str or bytes + + Type variables exist primarily for the benefit of static type + checkers. They serve as the parameters for generic types as well + as for generic function definitions. See class Generic for more + information on generic types. Generic functions work as follows: + + def repeat(x: T, n: int) -> List[T]: + '''Return a list containing n references to x.''' + return [x]*n + + def longest(x: A, y: A) -> A: + '''Return the longest of two strings.''' + return x if len(x) >= len(y) else y + + The latter example's signature is essentially the overloading + of (str, str) -> str and (bytes, bytes) -> bytes. Also note + that if the arguments are instances of some subclass of str, + the return type is still plain str. + + At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. + + Type variables defined with covariant=True or contravariant=True + can be used do declare covariant or contravariant generic types. + See PEP 484 for more details. By default generic types are invariant + in all type variables. + + Type variables can be introspected. e.g.: + + T.__name__ == 'T' + T.__constraints__ == () + T.__covariant__ == False + T.__contravariant__ = False + A.__constraints__ == (str, bytes) + """ + + __slots__ = ('__name__', '__bound__', '__constraints__', + '__covariant__', '__contravariant__') + + def __init__(self, name, *constraints, bound=None, + covariant=False, contravariant=False): + super().__init__(name, *constraints, bound=bound, + covariant=covariant, contravariant=contravariant) + self.__name__ = name + if covariant and contravariant: + raise ValueError("Bivariant types are not supported.") + self.__covariant__ = bool(covariant) + self.__contravariant__ = bool(contravariant) + if constraints and bound is not None: + raise TypeError("Constraints cannot be combined with bound=...") + if constraints and len(constraints) == 1: + raise TypeError("A single constraint is not allowed") + msg = "TypeVar(name, constraint, ...): constraints must be types." + self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) + if bound: + self.__bound__ = _type_check(bound, "Bound must be a type.") + else: + self.__bound__ = None + + def _get_type_vars(self, tvars): + if self not in tvars: + tvars.append(self) + + def __repr__(self): + if self.__covariant__: + prefix = '+' + elif self.__contravariant__: + prefix = '-' + else: + prefix = '~' + return prefix + self.__name__ + + def __instancecheck__(self, instance): + raise TypeError("Type variables cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Type variables cannot be used with issubclass().") + + +# Some unconstrained type variables. These are used by the container types. +# (These are not for export.) +T = TypeVar('T') # Any type. +KT = TypeVar('KT') # Key type. +VT = TypeVar('VT') # Value type. +T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. + +# A useful type variable with constraints. This represents string types. +# (This one *is* for export!) +AnyStr = TypeVar('AnyStr', bytes, str) + + +def _replace_arg(arg, tvars, args): + """An internal helper function: replace arg if it is a type variable + found in tvars with corresponding substitution from args or + with corresponding substitution sub-tree if arg is a generic type. + """ + + if tvars is None: + tvars = [] + if hasattr(arg, '_subs_tree') and isinstance(arg, (GenericMeta, _TypingBase)): + return arg._subs_tree(tvars, args) + if isinstance(arg, TypeVar): + for i, tvar in enumerate(tvars): + if arg == tvar: + return args[i] + return arg + + +# Special typing constructs Union, Optional, Generic, Callable and Tuple +# use three special attributes for internal bookkeeping of generic types: +# * __parameters__ is a tuple of unique free type parameters of a generic +# type, for example, Dict[T, T].__parameters__ == (T,); +# * __origin__ keeps a reference to a type that was subscripted, +# e.g., Union[T, int].__origin__ == Union; +# * __args__ is a tuple of all arguments used in subscripting, +# e.g., Dict[T, int].__args__ == (T, int). + + +def _subs_tree(cls, tvars=None, args=None): + """An internal helper function: calculate substitution tree + for generic cls after replacing its type parameters with + substitutions in tvars -> args (if any). + Repeat the same following __origin__'s. + + Return a list of arguments with all possible substitutions + performed. Arguments that are generic classes themselves are represented + as tuples (so that no new classes are created by this function). + For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)] + """ + + if cls.__origin__ is None: + return cls + # Make of chain of origins (i.e. cls -> cls.__origin__) + current = cls.__origin__ + orig_chain = [] + while current.__origin__ is not None: + orig_chain.append(current) + current = current.__origin__ + # Replace type variables in __args__ if asked ... + tree_args = [] + for arg in cls.__args__: + tree_args.append(_replace_arg(arg, tvars, args)) + # ... then continue replacing down the origin chain. + for ocls in orig_chain: + new_tree_args = [] + for arg in ocls.__args__: + new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args)) + tree_args = new_tree_args + return tree_args + + +def _remove_dups_flatten(parameters): + """An internal helper for Union creation and substitution: flatten Union's + among parameters, then remove duplicates and strict subclasses. + """ + + # Flatten out Union[Union[...], ...]. + params = [] + for p in parameters: + if isinstance(p, _Union) and p.__origin__ is Union: + params.extend(p.__args__) + elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union: + params.extend(p[1:]) + else: + params.append(p) + # Weed out strict duplicates, preserving the first of each occurrence. + all_params = set(params) + if len(all_params) < len(params): + new_params = [] + for t in params: + if t in all_params: + new_params.append(t) + all_params.remove(t) + params = new_params + assert not all_params, all_params + # Weed out subclasses. + # E.g. Union[int, Employee, Manager] == Union[int, Employee]. + # If object is present it will be sole survivor among proper classes. + # Never discard type variables. + # (In particular, Union[str, AnyStr] != AnyStr.) + all_params = set(params) + for t1 in params: + if not isinstance(t1, type): + continue + if any(isinstance(t2, type) and issubclass(t1, t2) + for t2 in all_params - {t1} + if not (isinstance(t2, GenericMeta) and + t2.__origin__ is not None)): + all_params.remove(t1) + return tuple(t for t in params if t in all_params) + + +def _check_generic(cls, parameters): + # Check correct count for parameters of a generic cls (internal helper). + if not cls.__parameters__: + raise TypeError("%s is not a generic class" % repr(cls)) + alen = len(parameters) + elen = len(cls.__parameters__) + if alen != elen: + raise TypeError("Too %s parameters for %s; actual %s, expected %s" % + ("many" if alen > elen else "few", repr(cls), alen, elen)) + + +_cleanups = [] + + +def _tp_cache(func): + """Internal wrapper caching __getitem__ of generic types with a fallback to + original function for non-hashable arguments. + """ + + cached = functools.lru_cache()(func) + _cleanups.append(cached.cache_clear) + + @functools.wraps(func) + def inner(*args, **kwds): + try: + return cached(*args, **kwds) + except TypeError: + pass # All real errors (not unhashable args) are raised below. + return func(*args, **kwds) + return inner + + +class _Union(_FinalTypingBase, _root=True): + """Union type; Union[X, Y] means either X or Y. + + To define a union, use e.g. Union[int, str]. Details: + + - The arguments must be types and there must be at least one. + + - None as an argument is a special case and is replaced by + type(None). + + - Unions of unions are flattened, e.g.:: + + Union[Union[int, str], float] == Union[int, str, float] + + - Unions of a single argument vanish, e.g.:: + + Union[int] == int # The constructor actually returns int + + - Redundant arguments are skipped, e.g.:: + + Union[int, str, int] == Union[int, str] + + - When comparing unions, the argument order is ignored, e.g.:: + + Union[int, str] == Union[str, int] + + - When two arguments have a subclass relationship, the least + derived argument is kept, e.g.:: + + class Employee: pass + class Manager(Employee): pass + Union[int, Employee, Manager] == Union[int, Employee] + Union[Manager, int, Employee] == Union[int, Employee] + Union[Employee, Manager] == Employee + + - Similar for object:: + + Union[int, object] == object + + - You cannot subclass or instantiate a union. + + - You can use Optional[X] as a shorthand for Union[X, None]. + """ + + __slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__') + + def __new__(cls, parameters=None, origin=None, *args, _root=False): + self = super().__new__(cls, parameters, origin, *args, _root=_root) + if origin is None: + self.__parameters__ = None + self.__args__ = None + self.__origin__ = None + self.__tree_hash__ = hash(frozenset(('Union',))) + return self + if not isinstance(parameters, tuple): + raise TypeError("Expected parameters=") + if origin is Union: + parameters = _remove_dups_flatten(parameters) + # It's not a union if there's only one type left. + if len(parameters) == 1: + return parameters[0] + self.__parameters__ = _type_vars(parameters) + self.__args__ = parameters + self.__origin__ = origin + # Pre-calculate the __hash__ on instantiation. + # This improves speed for complex substitutions. + subs_tree = self._subs_tree() + if isinstance(subs_tree, tuple): + self.__tree_hash__ = hash(frozenset(subs_tree)) + else: + self.__tree_hash__ = hash(subs_tree) + return self + + def _eval_type(self, globalns, localns): + if self.__args__ is None: + return self + ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__) + ev_origin = _eval_type(self.__origin__, globalns, localns) + if ev_args == self.__args__ and ev_origin == self.__origin__: + # Everything is already evaluated. + return self + return self.__class__(ev_args, ev_origin, _root=True) + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + tree = self._subs_tree() + if not isinstance(tree, tuple): + return repr(tree) + return tree[0]._tree_repr(tree) + + def _tree_repr(self, tree): + arg_list = [] + for arg in tree[1:]: + if not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + return super().__repr__() + '[%s]' % ', '.join(arg_list) + + @_tp_cache + def __getitem__(self, parameters): + if parameters == (): + raise TypeError("Cannot take a Union of no types.") + if not isinstance(parameters, tuple): + parameters = (parameters,) + if self.__origin__ is None: + msg = "Union[arg, ...]: each arg must be a type." + else: + msg = "Parameters to generic types must be types." + parameters = tuple(_type_check(p, msg) for p in parameters) + if self is not Union: + _check_generic(self, parameters) + return self.__class__(parameters, origin=self, _root=True) + + def _subs_tree(self, tvars=None, args=None): + if self is Union: + return Union # Nothing to substitute + tree_args = _subs_tree(self, tvars, args) + tree_args = _remove_dups_flatten(tree_args) + if len(tree_args) == 1: + return tree_args[0] # Union of a single type is that type + return (Union,) + tree_args + + def __eq__(self, other): + if isinstance(other, _Union): + return self.__tree_hash__ == other.__tree_hash__ + elif self is not Union: + return self._subs_tree() == other + else: + return self is other + + def __hash__(self): + return self.__tree_hash__ + + def __instancecheck__(self, obj): + raise TypeError("Unions cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Unions cannot be used with issubclass().") + + +Union = _Union(_root=True) + + +class _Optional(_FinalTypingBase, _root=True): + """Optional type. + + Optional[X] is equivalent to Union[X, None]. + """ + + __slots__ = () + + @_tp_cache + def __getitem__(self, arg): + arg = _type_check(arg, "Optional[t] requires a single type.") + return Union[arg, type(None)] + + +Optional = _Optional(_root=True) + + +def _next_in_mro(cls): + """Helper for Generic.__new__. + + Returns the class after the last occurrence of Generic or + Generic[...] in cls.__mro__. + """ + next_in_mro = object + # Look for the last occurrence of Generic or Generic[...]. + for i, c in enumerate(cls.__mro__[:-1]): + if isinstance(c, GenericMeta) and c._gorg is Generic: + next_in_mro = cls.__mro__[i + 1] + return next_in_mro + + +def _make_subclasshook(cls): + """Construct a __subclasshook__ callable that incorporates + the associated __extra__ class in subclass checks performed + against cls. + """ + if isinstance(cls.__extra__, abc.ABCMeta): + # The logic mirrors that of ABCMeta.__subclasscheck__. + # Registered classes need not be checked here because + # cls and its extra share the same _abc_registry. + def __extrahook__(subclass): + res = cls.__extra__.__subclasshook__(subclass) + if res is not NotImplemented: + return res + if cls.__extra__ in subclass.__mro__: + return True + for scls in cls.__extra__.__subclasses__(): + if isinstance(scls, GenericMeta): + continue + if issubclass(subclass, scls): + return True + return NotImplemented + else: + # For non-ABC extras we'll just call issubclass(). + def __extrahook__(subclass): + if cls.__extra__ and issubclass(subclass, cls.__extra__): + return True + return NotImplemented + return __extrahook__ + + +def _no_slots_copy(dct): + """Internal helper: copy class __dict__ and clean slots class variables. + (They will be re-created if necessary by normal class machinery.) + """ + dict_copy = dict(dct) + if '__slots__' in dict_copy: + for slot in dict_copy['__slots__']: + dict_copy.pop(slot, None) + return dict_copy + + +class GenericMeta(TypingMeta, abc.ABCMeta): + """Metaclass for generic types. + + This is a metaclass for typing.Generic and generic ABCs defined in + typing module. User defined subclasses of GenericMeta can override + __new__ and invoke super().__new__. Note that GenericMeta.__new__ + has strict rules on what is allowed in its bases argument: + * plain Generic is disallowed in bases; + * Generic[...] should appear in bases at most once; + * if Generic[...] is present, then it should list all type variables + that appear in other bases. + In addition, type of all generic bases is erased, e.g., C[int] is + stripped to plain C. + """ + + def __new__(cls, name, bases, namespace, + tvars=None, args=None, origin=None, extra=None, orig_bases=None): + """Create a new generic class. GenericMeta.__new__ accepts + keyword arguments that are used for internal bookkeeping, therefore + an override should pass unused keyword arguments to super(). + """ + if tvars is not None: + # Called from __getitem__() below. + assert origin is not None + assert all(isinstance(t, TypeVar) for t in tvars), tvars + else: + # Called from class statement. + assert tvars is None, tvars + assert args is None, args + assert origin is None, origin + + # Get the full set of tvars from the bases. + tvars = _type_vars(bases) + # Look for Generic[T1, ..., Tn]. + # If found, tvars must be a subset of it. + # If not found, tvars is it. + # Also check for and reject plain Generic, + # and reject multiple Generic[...]. + gvars = None + for base in bases: + if base is Generic: + raise TypeError("Cannot inherit from plain Generic") + if (isinstance(base, GenericMeta) and + base.__origin__ is Generic): + if gvars is not None: + raise TypeError( + "Cannot inherit from Generic[...] multiple types.") + gvars = base.__parameters__ + if gvars is None: + gvars = tvars + else: + tvarset = set(tvars) + gvarset = set(gvars) + if not tvarset <= gvarset: + raise TypeError( + "Some type variables (%s) " + "are not listed in Generic[%s]" % + (", ".join(str(t) for t in tvars if t not in gvarset), + ", ".join(str(g) for g in gvars))) + tvars = gvars + + initial_bases = bases + if extra is not None and type(extra) is abc.ABCMeta and extra not in bases: + bases = (extra,) + bases + bases = tuple(b._gorg if isinstance(b, GenericMeta) else b for b in bases) + + # remove bare Generic from bases if there are other generic bases + if any(isinstance(b, GenericMeta) and b is not Generic for b in bases): + bases = tuple(b for b in bases if b is not Generic) + namespace.update({'__origin__': origin, '__extra__': extra, + '_gorg': None if not origin else origin._gorg}) + self = super().__new__(cls, name, bases, namespace, _root=True) + super(GenericMeta, self).__setattr__('_gorg', + self if not origin else origin._gorg) + self.__parameters__ = tvars + # Be prepared that GenericMeta will be subclassed by TupleMeta + # and CallableMeta, those two allow ..., (), or [] in __args___. + self.__args__ = tuple(... if a is _TypingEllipsis else + () if a is _TypingEmpty else + a for a in args) if args else None + # Speed hack (https://github.com/python/typing/issues/196). + self.__next_in_mro__ = _next_in_mro(self) + # Preserve base classes on subclassing (__bases__ are type erased now). + if orig_bases is None: + self.__orig_bases__ = initial_bases + + # This allows unparameterized generic collections to be used + # with issubclass() and isinstance() in the same way as their + # collections.abc counterparts (e.g., isinstance([], Iterable)). + if ( + '__subclasshook__' not in namespace and extra or + # allow overriding + getattr(self.__subclasshook__, '__name__', '') == '__extrahook__' + ): + self.__subclasshook__ = _make_subclasshook(self) + if isinstance(extra, abc.ABCMeta): + self._abc_registry = extra._abc_registry + self._abc_cache = extra._abc_cache + elif origin is not None: + self._abc_registry = origin._abc_registry + self._abc_cache = origin._abc_cache + + if origin and hasattr(origin, '__qualname__'): # Fix for Python 3.2. + self.__qualname__ = origin.__qualname__ + self.__tree_hash__ = (hash(self._subs_tree()) if origin else + super(GenericMeta, self).__hash__()) + return self + + # _abc_negative_cache and _abc_negative_cache_version + # realised as descriptors, since GenClass[t1, t2, ...] always + # share subclass info with GenClass. + # This is an important memory optimization. + @property + def _abc_negative_cache(self): + if isinstance(self.__extra__, abc.ABCMeta): + return self.__extra__._abc_negative_cache + return self._gorg._abc_generic_negative_cache + + @_abc_negative_cache.setter + def _abc_negative_cache(self, value): + if self.__origin__ is None: + if isinstance(self.__extra__, abc.ABCMeta): + self.__extra__._abc_negative_cache = value + else: + self._abc_generic_negative_cache = value + + @property + def _abc_negative_cache_version(self): + if isinstance(self.__extra__, abc.ABCMeta): + return self.__extra__._abc_negative_cache_version + return self._gorg._abc_generic_negative_cache_version + + @_abc_negative_cache_version.setter + def _abc_negative_cache_version(self, value): + if self.__origin__ is None: + if isinstance(self.__extra__, abc.ABCMeta): + self.__extra__._abc_negative_cache_version = value + else: + self._abc_generic_negative_cache_version = value + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def _eval_type(self, globalns, localns): + ev_origin = (self.__origin__._eval_type(globalns, localns) + if self.__origin__ else None) + ev_args = tuple(_eval_type(a, globalns, localns) for a + in self.__args__) if self.__args__ else None + if ev_origin == self.__origin__ and ev_args == self.__args__: + return self + return self.__class__(self.__name__, + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=_type_vars(ev_args) if ev_args else None, + args=ev_args, + origin=ev_origin, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + return self._tree_repr(self._subs_tree()) + + def _tree_repr(self, tree): + arg_list = [] + for arg in tree[1:]: + if arg == (): + arg_list.append('()') + elif not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + return super().__repr__() + '[%s]' % ', '.join(arg_list) + + def _subs_tree(self, tvars=None, args=None): + if self.__origin__ is None: + return self + tree_args = _subs_tree(self, tvars, args) + return (self._gorg,) + tuple(tree_args) + + def __eq__(self, other): + if not isinstance(other, GenericMeta): + return NotImplemented + if self.__origin__ is None or other.__origin__ is None: + return self is other + return self.__tree_hash__ == other.__tree_hash__ + + def __hash__(self): + return self.__tree_hash__ + + @_tp_cache + def __getitem__(self, params): + if not isinstance(params, tuple): + params = (params,) + if not params and self._gorg is not Tuple: + raise TypeError( + "Parameter list to %s[...] cannot be empty" % _qualname(self)) + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if self is Generic: + # Generic can only be subscripted with unique type variables. + if not all(isinstance(p, TypeVar) for p in params): + raise TypeError( + "Parameters to Generic[...] must all be type variables") + if len(set(params)) != len(params): + raise TypeError( + "Parameters to Generic[...] must all be unique") + tvars = params + args = params + elif self in (Tuple, Callable): + tvars = _type_vars(params) + args = params + elif self is _Protocol: + # _Protocol is internal, don't check anything. + tvars = params + args = params + elif self.__origin__ in (Generic, _Protocol): + # Can't subscript Generic[...] or _Protocol[...]. + raise TypeError("Cannot subscript already-subscripted %s" % + repr(self)) + else: + # Subscripting a regular Generic subclass. + _check_generic(self, params) + tvars = _type_vars(params) + args = params + + prepend = (self,) if self.__origin__ is None else () + return self.__class__(self.__name__, + prepend + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=tvars, + args=args, + origin=self, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + def __subclasscheck__(self, cls): + if self.__origin__ is not None: + if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']: + raise TypeError("Parameterized generics cannot be used with class " + "or instance checks") + return False + if self is Generic: + raise TypeError("Class %r cannot be used with class " + "or instance checks" % self) + return super().__subclasscheck__(cls) + + def __instancecheck__(self, instance): + # Since we extend ABC.__subclasscheck__ and + # ABC.__instancecheck__ inlines the cache checking done by the + # latter, we must extend __instancecheck__ too. For simplicity + # we just skip the cache check -- instance checks for generic + # classes are supposed to be rare anyways. + return issubclass(instance.__class__, self) + + def __setattr__(self, attr, value): + # We consider all the subscripted generics as proxies for original class + if ( + attr.startswith('__') and attr.endswith('__') or + attr.startswith('_abc_') or + self._gorg is None # The class is not fully created, see #typing/506 + ): + super(GenericMeta, self).__setattr__(attr, value) + else: + super(GenericMeta, self._gorg).__setattr__(attr, value) + + +# Prevent checks for Generic to crash when defining Generic. +Generic = None + + +def _generic_new(base_cls, cls, *args, **kwds): + # Assure type is erased on instantiation, + # but attempt to store it in __orig_class__ + if cls.__origin__ is None: + if (base_cls.__new__ is object.__new__ and + cls.__init__ is not object.__init__): + return base_cls.__new__(cls) + else: + return base_cls.__new__(cls, *args, **kwds) + else: + origin = cls._gorg + if (base_cls.__new__ is object.__new__ and + cls.__init__ is not object.__init__): + obj = base_cls.__new__(origin) + else: + obj = base_cls.__new__(origin, *args, **kwds) + try: + obj.__orig_class__ = cls + except AttributeError: + pass + obj.__init__(*args, **kwds) + return obj + + +class Generic(metaclass=GenericMeta): + """Abstract base class for generic types. + + A generic type is typically declared by inheriting from + this class parameterized with one or more type variables. + For example, a generic mapping type might be defined as:: + + class Mapping(Generic[KT, VT]): + def __getitem__(self, key: KT) -> VT: + ... + # Etc. + + This class can then be used as follows:: + + def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: + try: + return mapping[key] + except KeyError: + return default + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Generic: + raise TypeError("Type Generic cannot be instantiated; " + "it can be used only as a base class") + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + + +class _TypingEmpty: + """Internal placeholder for () or []. Used by TupleMeta and CallableMeta + to allow empty list/tuple in specific places, without allowing them + to sneak in where prohibited. + """ + + +class _TypingEllipsis: + """Internal placeholder for ... (ellipsis).""" + + +class TupleMeta(GenericMeta): + """Metaclass for Tuple (internal).""" + + @_tp_cache + def __getitem__(self, parameters): + if self.__origin__ is not None or self._gorg is not Tuple: + # Normal generic rules apply if this is not the first subscription + # or a subscription of a subclass. + return super().__getitem__(parameters) + if parameters == (): + return super().__getitem__((_TypingEmpty,)) + if not isinstance(parameters, tuple): + parameters = (parameters,) + if len(parameters) == 2 and parameters[1] is ...: + msg = "Tuple[t, ...]: t must be a type." + p = _type_check(parameters[0], msg) + return super().__getitem__((p, _TypingEllipsis)) + msg = "Tuple[t0, t1, ...]: each t must be a type." + parameters = tuple(_type_check(p, msg) for p in parameters) + return super().__getitem__(parameters) + + def __instancecheck__(self, obj): + if self.__args__ is None: + return isinstance(obj, tuple) + raise TypeError("Parameterized Tuple cannot be used " + "with isinstance().") + + def __subclasscheck__(self, cls): + if self.__args__ is None: + return issubclass(cls, tuple) + raise TypeError("Parameterized Tuple cannot be used " + "with issubclass().") + + +class Tuple(tuple, extra=tuple, metaclass=TupleMeta): + """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. + + Example: Tuple[T1, T2] is a tuple of two elements corresponding + to type variables T1 and T2. Tuple[int, float, str] is a tuple + of an int, a float and a string. + + To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Tuple: + raise TypeError("Type Tuple cannot be instantiated; " + "use tuple() instead") + return _generic_new(tuple, cls, *args, **kwds) + + +class CallableMeta(GenericMeta): + """Metaclass for Callable (internal).""" + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + return self._tree_repr(self._subs_tree()) + + def _tree_repr(self, tree): + if self._gorg is not Callable: + return super()._tree_repr(tree) + # For actual Callable (not its subclass) we override + # super()._tree_repr() for nice formatting. + arg_list = [] + for arg in tree[1:]: + if not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + if arg_list[0] == '...': + return repr(tree[0]) + '[..., %s]' % arg_list[1] + return (repr(tree[0]) + + '[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1])) + + def __getitem__(self, parameters): + """A thin wrapper around __getitem_inner__ to provide the latter + with hashable arguments to improve speed. + """ + + if self.__origin__ is not None or self._gorg is not Callable: + return super().__getitem__(parameters) + if not isinstance(parameters, tuple) or len(parameters) != 2: + raise TypeError("Callable must be used as " + "Callable[[arg, ...], result].") + args, result = parameters + if args is Ellipsis: + parameters = (Ellipsis, result) + else: + if not isinstance(args, list): + raise TypeError("Callable[args, result]: args must be a list." + " Got %.100r." % (args,)) + parameters = (tuple(args), result) + return self.__getitem_inner__(parameters) + + @_tp_cache + def __getitem_inner__(self, parameters): + args, result = parameters + msg = "Callable[args, result]: result must be a type." + result = _type_check(result, msg) + if args is Ellipsis: + return super().__getitem__((_TypingEllipsis, result)) + msg = "Callable[[arg, ...], result]: each arg must be a type." + args = tuple(_type_check(arg, msg) for arg in args) + parameters = args + (result,) + return super().__getitem__(parameters) + + +class Callable(extra=collections_abc.Callable, metaclass=CallableMeta): + """Callable type; Callable[[int], str] is a function of (int) -> str. + + The subscription syntax must always be used with exactly two + values: the argument list and the return type. The argument list + must be a list of types or ellipsis; the return type must be a single type. + + There is no syntax to indicate optional or keyword arguments, + such function types are rarely used as callback types. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Callable: + raise TypeError("Type Callable cannot be instantiated; " + "use a non-abstract subclass instead") + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + + +class _ClassVar(_FinalTypingBase, _root=True): + """Special type construct to mark class variables. + + An annotation wrapped in ClassVar indicates that a given + attribute is intended to be used as a class variable and + should not be set on instances of that class. Usage:: + + class Starship: + stats: ClassVar[Dict[str, int]] = {} # class variable + damage: int = 10 # instance variable + + ClassVar accepts only types and cannot be further subscribed. + + Note that ClassVar is not a class itself, and should not + be used with isinstance() or issubclass(). + """ + + __slots__ = ('__type__',) + + def __init__(self, tp=None, **kwds): + self.__type__ = tp + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is None: + return cls(_type_check(item, + '{} accepts only single type.'.format(cls.__name__[1:])), + _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + new_tp = _eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(new_tp, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(_type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, _ClassVar): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + +ClassVar = _ClassVar(_root=True) + + +def cast(typ, val): + """Cast a value to a type. + + This returns the value unchanged. To the type checker this + signals that the return value has the designated type, but at + runtime we intentionally don't check anything (we want this + to be as fast as possible). + """ + return val + + +def _get_defaults(func): + """Internal helper to extract the default arguments, by name.""" + try: + code = func.__code__ + except AttributeError: + # Some built-in functions don't have __code__, __defaults__, etc. + return {} + pos_count = code.co_argcount + arg_names = code.co_varnames + arg_names = arg_names[:pos_count] + defaults = func.__defaults__ or () + kwdefaults = func.__kwdefaults__ + res = dict(kwdefaults) if kwdefaults else {} + pos_offset = pos_count - len(defaults) + for name, value in zip(arg_names[pos_offset:], defaults): + assert name not in res + res[name] = value + return res + + +_allowed_types = (types.FunctionType, types.BuiltinFunctionType, + types.MethodType, types.ModuleType, + WrapperDescriptorType, MethodWrapperType, MethodDescriptorType) + + +def get_type_hints(obj, globalns=None, localns=None): + """Return type hints for an object. + + This is often the same as obj.__annotations__, but it handles + forward references encoded as string literals, and if necessary + adds Optional[t] if a default value equal to None is set. + + The argument may be a module, class, method, or function. The annotations + are returned as a dictionary. For classes, annotations include also + inherited members. + + TypeError is raised if the argument is not of a type that can contain + annotations, and an empty dictionary is returned if no annotations are + present. + + BEWARE -- the behavior of globalns and localns is counterintuitive + (unless you are familiar with how eval() and exec() work). The + search order is locals first, then globals. + + - If no dict arguments are passed, an attempt is made to use the + globals from obj (or the respective module's globals for classes), + and these are also used as the locals. If the object does not appear + to have globals, an empty dictionary is used. + + - If one dict argument is passed, it is used for both globals and + locals. + + - If two dict arguments are passed, they specify globals and + locals, respectively. + """ + + if getattr(obj, '__no_type_check__', None): + return {} + # Classes require a special treatment. + if isinstance(obj, type): + hints = {} + for base in reversed(obj.__mro__): + if globalns is None: + base_globals = sys.modules[base.__module__].__dict__ + else: + base_globals = globalns + ann = base.__dict__.get('__annotations__', {}) + for name, value in ann.items(): + if value is None: + value = type(None) + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, base_globals, localns) + hints[name] = value + return hints + + if globalns is None: + if isinstance(obj, types.ModuleType): + globalns = obj.__dict__ + else: + globalns = getattr(obj, '__globals__', {}) + if localns is None: + localns = globalns + elif localns is None: + localns = globalns + hints = getattr(obj, '__annotations__', None) + if hints is None: + # Return empty annotations for something that _could_ have them. + if isinstance(obj, _allowed_types): + return {} + else: + raise TypeError('{!r} is not a module, class, method, ' + 'or function.'.format(obj)) + defaults = _get_defaults(obj) + hints = dict(hints) + for name, value in hints.items(): + if value is None: + value = type(None) + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + if name in defaults and defaults[name] is None: + value = Optional[value] + hints[name] = value + return hints + + +def no_type_check(arg): + """Decorator to indicate that annotations are not type hints. + + The argument must be a class or function; if it is a class, it + applies recursively to all methods and classes defined in that class + (but not to methods defined in its superclasses or subclasses). + + This mutates the function(s) or class(es) in place. + """ + if isinstance(arg, type): + arg_attrs = arg.__dict__.copy() + for attr, val in arg.__dict__.items(): + if val in arg.__bases__ + (arg,): + arg_attrs.pop(attr) + for obj in arg_attrs.values(): + if isinstance(obj, types.FunctionType): + obj.__no_type_check__ = True + if isinstance(obj, type): + no_type_check(obj) + try: + arg.__no_type_check__ = True + except TypeError: # built-in classes + pass + return arg + + +def no_type_check_decorator(decorator): + """Decorator to give another decorator the @no_type_check effect. + + This wraps the decorator with something that wraps the decorated + function in @no_type_check. + """ + + @functools.wraps(decorator) + def wrapped_decorator(*args, **kwds): + func = decorator(*args, **kwds) + func = no_type_check(func) + return func + + return wrapped_decorator + + +def _overload_dummy(*args, **kwds): + """Helper for @overload to raise when called.""" + raise NotImplementedError( + "You should not call an overloaded function. " + "A series of @overload-decorated functions " + "outside a stub module should always be followed " + "by an implementation that is not @overload-ed.") + + +def overload(func): + """Decorator for overloaded functions/methods. + + In a stub file, place two or more stub definitions for the same + function in a row, each decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + + In a non-stub file (i.e. a regular .py file), do the same but + follow it with an implementation. The implementation should *not* + be decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + def utf8(value): + # implementation goes here + """ + return _overload_dummy + + +class _ProtocolMeta(GenericMeta): + """Internal metaclass for _Protocol. + + This exists so _Protocol classes can be generic without deriving + from Generic. + """ + + def __instancecheck__(self, obj): + if _Protocol not in self.__bases__: + return super().__instancecheck__(obj) + raise TypeError("Protocols cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self._is_protocol: + # No structural checks since this isn't a protocol. + return NotImplemented + + if self is _Protocol: + # Every class is a subclass of the empty protocol. + return True + + # Find all attributes defined in the protocol. + attrs = self._get_protocol_attrs() + + for attr in attrs: + if not any(attr in d.__dict__ for d in cls.__mro__): + return False + return True + + def _get_protocol_attrs(self): + # Get all Protocol base classes. + protocol_bases = [] + for c in self.__mro__: + if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': + protocol_bases.append(c) + + # Get attributes included in protocol. + attrs = set() + for base in protocol_bases: + for attr in base.__dict__.keys(): + # Include attributes not defined in any non-protocol bases. + for c in self.__mro__: + if (c is not base and attr in c.__dict__ and + not getattr(c, '_is_protocol', False)): + break + else: + if (not attr.startswith('_abc_') and + attr != '__abstractmethods__' and + attr != '__annotations__' and + attr != '__weakref__' and + attr != '_is_protocol' and + attr != '_gorg' and + attr != '__dict__' and + attr != '__args__' and + attr != '__slots__' and + attr != '_get_protocol_attrs' and + attr != '__next_in_mro__' and + attr != '__parameters__' and + attr != '__origin__' and + attr != '__orig_bases__' and + attr != '__extra__' and + attr != '__tree_hash__' and + attr != '__module__'): + attrs.add(attr) + + return attrs + + +class _Protocol(metaclass=_ProtocolMeta): + """Internal base class for protocol classes. + + This implements a simple-minded structural issubclass check + (similar but more general than the one-offs in collections.abc + such as Hashable). + """ + + __slots__ = () + + _is_protocol = True + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +Hashable = collections_abc.Hashable # Not generic. + + +if hasattr(collections_abc, 'Awaitable'): + class Awaitable(Generic[T_co], extra=collections_abc.Awaitable): + __slots__ = () + + __all__.append('Awaitable') + + +if hasattr(collections_abc, 'Coroutine'): + class Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co], + extra=collections_abc.Coroutine): + __slots__ = () + + __all__.append('Coroutine') + + +if hasattr(collections_abc, 'AsyncIterable'): + + class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable): + __slots__ = () + + class AsyncIterator(AsyncIterable[T_co], + extra=collections_abc.AsyncIterator): + __slots__ = () + + __all__.append('AsyncIterable') + __all__.append('AsyncIterator') + + +class Iterable(Generic[T_co], extra=collections_abc.Iterable): + __slots__ = () + + +class Iterator(Iterable[T_co], extra=collections_abc.Iterator): + __slots__ = () + + +class SupportsInt(_Protocol): + __slots__ = () + + @abstractmethod + def __int__(self) -> int: + pass + + +class SupportsFloat(_Protocol): + __slots__ = () + + @abstractmethod + def __float__(self) -> float: + pass + + +class SupportsComplex(_Protocol): + __slots__ = () + + @abstractmethod + def __complex__(self) -> complex: + pass + + +class SupportsBytes(_Protocol): + __slots__ = () + + @abstractmethod + def __bytes__(self) -> bytes: + pass + + +class SupportsIndex(_Protocol): + __slots__ = () + + @abstractmethod + def __index__(self) -> int: + pass + + +class SupportsAbs(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __abs__(self) -> T_co: + pass + + +class SupportsRound(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __round__(self, ndigits: int = 0) -> T_co: + pass + + +if hasattr(collections_abc, 'Reversible'): + class Reversible(Iterable[T_co], extra=collections_abc.Reversible): + __slots__ = () +else: + class Reversible(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __reversed__(self) -> 'Iterator[T_co]': + pass + + +Sized = collections_abc.Sized # Not generic. + + +class Container(Generic[T_co], extra=collections_abc.Container): + __slots__ = () + + +if hasattr(collections_abc, 'Collection'): + class Collection(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Collection): + __slots__ = () + + __all__.append('Collection') + + +# Callable was defined earlier. + +if hasattr(collections_abc, 'Collection'): + class AbstractSet(Collection[T_co], + extra=collections_abc.Set): + __slots__ = () +else: + class AbstractSet(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Set): + __slots__ = () + + +class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): + __slots__ = () + + +# NOTE: It is only covariant in the value type. +if hasattr(collections_abc, 'Collection'): + class Mapping(Collection[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + __slots__ = () +else: + class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + __slots__ = () + + +class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): + __slots__ = () + + +if hasattr(collections_abc, 'Reversible'): + if hasattr(collections_abc, 'Collection'): + class Sequence(Reversible[T_co], Collection[T_co], + extra=collections_abc.Sequence): + __slots__ = () + else: + class Sequence(Sized, Reversible[T_co], Container[T_co], + extra=collections_abc.Sequence): + __slots__ = () +else: + class Sequence(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Sequence): + __slots__ = () + + +class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): + __slots__ = () + + +class ByteString(Sequence[int], extra=collections_abc.ByteString): + __slots__ = () + + +class List(list, MutableSequence[T], extra=list): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is List: + raise TypeError("Type List cannot be instantiated; " + "use list() instead") + return _generic_new(list, cls, *args, **kwds) + + +class Deque(collections.deque, MutableSequence[T], extra=collections.deque): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Deque: + return collections.deque(*args, **kwds) + return _generic_new(collections.deque, cls, *args, **kwds) + + +class Set(set, MutableSet[T], extra=set): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Set: + raise TypeError("Type Set cannot be instantiated; " + "use set() instead") + return _generic_new(set, cls, *args, **kwds) + + +class FrozenSet(frozenset, AbstractSet[T_co], extra=frozenset): + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is FrozenSet: + raise TypeError("Type FrozenSet cannot be instantiated; " + "use frozenset() instead") + return _generic_new(frozenset, cls, *args, **kwds) + + +class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): + __slots__ = () + + +class KeysView(MappingView[KT], AbstractSet[KT], + extra=collections_abc.KeysView): + __slots__ = () + + +class ItemsView(MappingView[Tuple[KT, VT_co]], + AbstractSet[Tuple[KT, VT_co]], + Generic[KT, VT_co], + extra=collections_abc.ItemsView): + __slots__ = () + + +class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): + __slots__ = () + + +if hasattr(contextlib, 'AbstractContextManager'): + class ContextManager(Generic[T_co], extra=contextlib.AbstractContextManager): + __slots__ = () +else: + class ContextManager(Generic[T_co]): + __slots__ = () + + def __enter__(self): + return self + + @abc.abstractmethod + def __exit__(self, exc_type, exc_value, traceback): + return None + + @classmethod + def __subclasshook__(cls, C): + if cls is ContextManager: + # In Python 3.6+, it is possible to set a method to None to + # explicitly indicate that the class does not implement an ABC + # (https://bugs.python.org/issue25958), but we do not support + # that pattern here because this fallback class is only used + # in Python 3.5 and earlier. + if (any("__enter__" in B.__dict__ for B in C.__mro__) and + any("__exit__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + + +if hasattr(contextlib, 'AbstractAsyncContextManager'): + class AsyncContextManager(Generic[T_co], + extra=contextlib.AbstractAsyncContextManager): + __slots__ = () + + __all__.append('AsyncContextManager') +elif sys.version_info[:2] >= (3, 5): + exec(""" +class AsyncContextManager(Generic[T_co]): + __slots__ = () + + async def __aenter__(self): + return self + + @abc.abstractmethod + async def __aexit__(self, exc_type, exc_value, traceback): + return None + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncContextManager: + if sys.version_info[:2] >= (3, 6): + return _collections_abc._check_methods(C, "__aenter__", "__aexit__") + if (any("__aenter__" in B.__dict__ for B in C.__mro__) and + any("__aexit__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + +__all__.append('AsyncContextManager') +""") + + +class Dict(dict, MutableMapping[KT, VT], extra=dict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Dict: + raise TypeError("Type Dict cannot be instantiated; " + "use dict() instead") + return _generic_new(dict, cls, *args, **kwds) + + +class DefaultDict(collections.defaultdict, MutableMapping[KT, VT], + extra=collections.defaultdict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is DefaultDict: + return collections.defaultdict(*args, **kwds) + return _generic_new(collections.defaultdict, cls, *args, **kwds) + + +class Counter(collections.Counter, Dict[T, int], extra=collections.Counter): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Counter: + return collections.Counter(*args, **kwds) + return _generic_new(collections.Counter, cls, *args, **kwds) + + +if hasattr(collections, 'ChainMap'): + # ChainMap only exists in 3.3+ + __all__.append('ChainMap') + + class ChainMap(collections.ChainMap, MutableMapping[KT, VT], + extra=collections.ChainMap): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is ChainMap: + return collections.ChainMap(*args, **kwds) + return _generic_new(collections.ChainMap, cls, *args, **kwds) + + +# Determine what base class to use for Generator. +if hasattr(collections_abc, 'Generator'): + # Sufficiently recent versions of 3.5 have a Generator ABC. + _G_base = collections_abc.Generator +else: + # Fall back on the exact type. + _G_base = types.GeneratorType + + +class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], + extra=_G_base): + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls._gorg is Generator: + raise TypeError("Type Generator cannot be instantiated; " + "create a subclass instead") + return _generic_new(_G_base, cls, *args, **kwds) + + +if hasattr(collections_abc, 'AsyncGenerator'): + class AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra], + extra=collections_abc.AsyncGenerator): + __slots__ = () + + __all__.append('AsyncGenerator') + + +# Internal type variable used for Type[]. +CT_co = TypeVar('CT_co', covariant=True, bound=type) + + +# This is not a real generic class. Don't use outside annotations. +class Type(Generic[CT_co], extra=type): + """A special construct usable to annotate class objects. + + For example, suppose we have the following classes:: + + class User: ... # Abstract base for User classes + class BasicUser(User): ... + class ProUser(User): ... + class TeamUser(User): ... + + And a function that takes a class argument that's a subclass of + User and returns an instance of the corresponding class:: + + U = TypeVar('U', bound=User) + def new_user(user_class: Type[U]) -> U: + user = user_class() + # (Here we could write the user object to a database) + return user + + joe = new_user(BasicUser) + + At this point the type checker knows that joe has type BasicUser. + """ + + __slots__ = () + + +def _make_nmtuple(name, types): + msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type" + types = [(n, _type_check(t, msg)) for n, t in types] + nm_tpl = collections.namedtuple(name, [n for n, t in types]) + # Prior to PEP 526, only _field_types attribute was assigned. + # Now, both __annotations__ and _field_types are used to maintain compatibility. + nm_tpl.__annotations__ = nm_tpl._field_types = collections.OrderedDict(types) + try: + nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + return nm_tpl + + +_PY36 = sys.version_info[:2] >= (3, 6) + +# attributes prohibited to set in NamedTuple class syntax +_prohibited = ('__new__', '__init__', '__slots__', '__getnewargs__', + '_fields', '_field_defaults', '_field_types', + '_make', '_replace', '_asdict', '_source') + +_special = ('__module__', '__name__', '__qualname__', '__annotations__') + + +class NamedTupleMeta(type): + + def __new__(cls, typename, bases, ns): + if ns.get('_root', False): + return super().__new__(cls, typename, bases, ns) + if not _PY36: + raise TypeError("Class syntax for NamedTuple is only supported" + " in Python 3.6+") + types = ns.get('__annotations__', {}) + nm_tpl = _make_nmtuple(typename, types.items()) + defaults = [] + defaults_dict = {} + for field_name in types: + if field_name in ns: + default_value = ns[field_name] + defaults.append(default_value) + defaults_dict[field_name] = default_value + elif defaults: + raise TypeError("Non-default namedtuple field {field_name} cannot " + "follow default field(s) {default_names}" + .format(field_name=field_name, + default_names=', '.join(defaults_dict.keys()))) + nm_tpl.__new__.__annotations__ = collections.OrderedDict(types) + nm_tpl.__new__.__defaults__ = tuple(defaults) + nm_tpl._field_defaults = defaults_dict + # update from user namespace without overriding special namedtuple attributes + for key in ns: + if key in _prohibited: + raise AttributeError("Cannot overwrite NamedTuple attribute " + key) + elif key not in _special and key not in nm_tpl._fields: + setattr(nm_tpl, key, ns[key]) + return nm_tpl + + +class NamedTuple(metaclass=NamedTupleMeta): + """Typed version of namedtuple. + + Usage in Python versions >= 3.6:: + + class Employee(NamedTuple): + name: str + id: int + + This is equivalent to:: + + Employee = collections.namedtuple('Employee', ['name', 'id']) + + The resulting class has extra __annotations__ and _field_types + attributes, giving an ordered dict mapping field names to types. + __annotations__ should be preferred, while _field_types + is kept to maintain pre PEP 526 compatibility. (The field names + are in the _fields attribute, which is part of the namedtuple + API.) Alternative equivalent keyword syntax is also accepted:: + + Employee = NamedTuple('Employee', name=str, id=int) + + In Python versions <= 3.5 use:: + + Employee = NamedTuple('Employee', [('name', str), ('id', int)]) + """ + _root = True + + def __new__(*args, **kwargs): + if kwargs and not _PY36: + raise TypeError("Keyword syntax for NamedTuple is only supported" + " in Python 3.6+") + if not args: + raise TypeError('NamedTuple.__new__(): not enough arguments') + _, args = args[0], args[1:] # allow the "cls" keyword be passed + if args: + typename, args = args[0], args[1:] # allow the "typename" keyword be passed + elif 'typename' in kwargs: + typename = kwargs.pop('typename') + import warnings + warnings.warn("Passing 'typename' as keyword argument is deprecated", + DeprecationWarning, stacklevel=2) + else: + raise TypeError("NamedTuple.__new__() missing 1 required positional " + "argument: 'typename'") + if args: + try: + fields, = args # allow the "fields" keyword be passed + except ValueError: + raise TypeError('NamedTuple.__new__() takes from 2 to 3 ' + 'positional arguments but {} ' + 'were given'.format(len(args) + 2)) + elif 'fields' in kwargs and len(kwargs) == 1: + fields = kwargs.pop('fields') + import warnings + warnings.warn("Passing 'fields' as keyword argument is deprecated", + DeprecationWarning, stacklevel=2) + else: + fields = None + + if fields is None: + fields = kwargs.items() + elif kwargs: + raise TypeError("Either list of fields or keywords" + " can be provided to NamedTuple, not both") + return _make_nmtuple(typename, fields) + + __new__.__text_signature__ = '($cls, typename, fields=None, /, **kwargs)' + + +def NewType(name, tp): + """NewType creates simple unique types with almost zero + runtime overhead. NewType(name, tp) is considered a subtype of tp + by static type checkers. At runtime, NewType(name, tp) returns + a dummy function that simply returns its argument. Usage:: + + UserId = NewType('UserId', int) + + def name_by_id(user_id: UserId) -> str: + ... + + UserId('user') # Fails type check + + name_by_id(42) # Fails type check + name_by_id(UserId(42)) # OK + + num = UserId(5) + 1 # type: int + """ + + def new_type(x): + return x + + new_type.__name__ = name + new_type.__supertype__ = tp + return new_type + + +# Python-version-specific alias (Python 2: unicode; Python 3: str) +Text = str + + +# Constant that's True when type checking, but False here. +TYPE_CHECKING = False + + +class IO(Generic[AnyStr]): + """Generic base class for TextIO and BinaryIO. + + This is an abstract, generic version of the return of open(). + + NOTE: This does not distinguish between the different possible + classes (text vs. binary, read vs. write vs. read/write, + append-only, unbuffered). The TextIO and BinaryIO subclasses + below capture the distinctions between text vs. binary, which is + pervasive in the interface; however we currently do not offer a + way to track the other distinctions in the type system. + """ + + __slots__ = () + + @abstractproperty + def mode(self) -> str: + pass + + @abstractproperty + def name(self) -> str: + pass + + @abstractmethod + def close(self) -> None: + pass + + @abstractproperty + def closed(self) -> bool: + pass + + @abstractmethod + def fileno(self) -> int: + pass + + @abstractmethod + def flush(self) -> None: + pass + + @abstractmethod + def isatty(self) -> bool: + pass + + @abstractmethod + def read(self, n: int = -1) -> AnyStr: + pass + + @abstractmethod + def readable(self) -> bool: + pass + + @abstractmethod + def readline(self, limit: int = -1) -> AnyStr: + pass + + @abstractmethod + def readlines(self, hint: int = -1) -> List[AnyStr]: + pass + + @abstractmethod + def seek(self, offset: int, whence: int = 0) -> int: + pass + + @abstractmethod + def seekable(self) -> bool: + pass + + @abstractmethod + def tell(self) -> int: + pass + + @abstractmethod + def truncate(self, size: int = None) -> int: + pass + + @abstractmethod + def writable(self) -> bool: + pass + + @abstractmethod + def write(self, s: AnyStr) -> int: + pass + + @abstractmethod + def writelines(self, lines: List[AnyStr]) -> None: + pass + + @abstractmethod + def __enter__(self) -> 'IO[AnyStr]': + pass + + @abstractmethod + def __exit__(self, type, value, traceback) -> None: + pass + + +class BinaryIO(IO[bytes]): + """Typed version of the return of open() in binary mode.""" + + __slots__ = () + + @abstractmethod + def write(self, s: Union[bytes, bytearray]) -> int: + pass + + @abstractmethod + def __enter__(self) -> 'BinaryIO': + pass + + +class TextIO(IO[str]): + """Typed version of the return of open() in text mode.""" + + __slots__ = () + + @abstractproperty + def buffer(self) -> BinaryIO: + pass + + @abstractproperty + def encoding(self) -> str: + pass + + @abstractproperty + def errors(self) -> Optional[str]: + pass + + @abstractproperty + def line_buffering(self) -> bool: + pass + + @abstractproperty + def newlines(self) -> Any: + pass + + @abstractmethod + def __enter__(self) -> 'TextIO': + pass + + +class io: + """Wrapper namespace for IO generic classes.""" + + __all__ = ['IO', 'TextIO', 'BinaryIO'] + IO = IO + TextIO = TextIO + BinaryIO = BinaryIO + + +io.__name__ = __name__ + '.io' +sys.modules[io.__name__] = io + + +Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), + lambda p: p.pattern) +Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), + lambda m: m.re.pattern) + + +class re: + """Wrapper namespace for re type aliases.""" + + __all__ = ['Pattern', 'Match'] + Pattern = Pattern + Match = Match + + +re.__name__ = __name__ + '.re' +sys.modules[re.__name__] = re diff --git a/tests/utils/python/utils.py b/tests/utils/python/utils.py deleted file mode 100644 index 0e045fbf..00000000 --- a/tests/utils/python/utils.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-License-Identifier: MIT -# -# Copyright (c) 2023 EfficiOS, Inc. - -# The purpose of this import is to make the typing module easily accessible -# elsewhere, without having to do the try-except everywhere. -try: - import typing as typing_mod # noqa: F401 -except ImportError: - import local_typing as typing_mod # noqa: F401 diff --git a/tests/utils/utils.sh b/tests/utils/utils.sh index d40011a1..9f5adf5a 100644 --- a/tests/utils/utils.sh +++ b/tests/utils/utils.sh @@ -111,6 +111,8 @@ if [ -z "${BT_TESTS_PYTHON_BIN:-}" ]; then fi export BT_TESTS_PYTHON_BIN +BT_TESTS_PYTHON_VERSION=$($BT_TESTS_PYTHON_BIN -c 'import sys; print("{}.{}".format(sys.version_info.major, sys.version_info.minor))') + if [ -z "${BT_TESTS_PYTHON_CONFIG_BIN:-}" ]; then BT_TESTS_PYTHON_CONFIG_BIN="python3-config" fi @@ -305,7 +307,15 @@ check_coverage() { # Execute a shell command in the appropriate environment to access the Python # test utility modules in `tests/utils/python`. run_python() { - PYTHONPATH="${BT_TESTS_SRCDIR}/utils/python${PYTHONPATH:+:}${PYTHONPATH:-}" "$@" + local our_pythonpath="${BT_TESTS_SRCDIR}/utils/python" + + if [[ $BT_TESTS_PYTHON_VERSION = 3.4 ]]; then + # Add a local directory containing a `typing.py` to `PYTHONPATH` for + # Python 3.4 which doesn't offer the `typing` module. + our_pythonpath="$our_pythonpath:${BT_TESTS_SRCDIR}/utils/python/typing" + fi + + PYTHONPATH="${our_pythonpath}${PYTHONPATH:+:}${PYTHONPATH:-}" "$@" } # Execute a shell command in the appropriate environment to have access to the