gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / bfd / coff-sh.c
CommitLineData
c2dcd04e 1/* BFD back-end for Renesas Super-H COFF binaries.
b3adc24a 2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by Cygnus Support.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
6
c2dcd04e 7 This file is part of BFD, the Binary File Descriptor library.
252b5132 8
c2dcd04e
NC
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
cd123cb7 11 the Free Software Foundation; either version 3 of the License, or
c2dcd04e 12 (at your option) any later version.
252b5132 13
c2dcd04e
NC
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
252b5132 18
c2dcd04e
NC
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
cd123cb7
NC
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
252b5132 23
252b5132 24#include "sysdep.h"
3db64b00 25#include "bfd.h"
993e9275 26#include "libiberty.h"
252b5132
RH
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "coff/sh.h"
30#include "coff/internal.h"
17505c5c 31
799c00e0
NC
32#undef bfd_pe_print_pdata
33
17505c5c
NC
34#ifdef COFF_WITH_PE
35#include "coff/pe.h"
86033394
NC
36
37#ifndef COFF_IMAGE_WITH_PE
b34976b6 38static bfd_boolean sh_align_load_span
2c3fc389
NC
39 (bfd *, asection *, bfd_byte *,
40 bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *);
86033394
NC
42
43#define _bfd_sh_align_load_span sh_align_load_span
44#endif
17505c5c 45
799c00e0
NC
46#define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
47
48#else
49
50#define bfd_pe_print_pdata NULL
51
52#endif /* COFF_WITH_PE. */
2b5c217d 53
252b5132
RH
54#include "libcoff.h"
55
56/* Internal functions. */
252b5132 57
17505c5c
NC
58#ifdef COFF_WITH_PE
59/* Can't build import tables with 2**4 alignment. */
60#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
61#else
252b5132 62/* Default section alignment to 2**4. */
17505c5c
NC
63#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
64#endif
65
66#ifdef COFF_IMAGE_WITH_PE
67/* Align PE executables. */
68#define COFF_PAGE_SIZE 0x1000
69#endif
252b5132
RH
70
71/* Generate long file names. */
72#define COFF_LONG_FILENAMES
73
17505c5c 74#ifdef COFF_WITH_PE
b34976b6 75/* Return TRUE if this relocation should
17505c5c 76 appear in the output .reloc section. */
2c3fc389
NC
77
78static bfd_boolean
79in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80 reloc_howto_type * howto)
17505c5c
NC
81{
82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
cbfe05c4 83}
17505c5c
NC
84#endif
85
2c3fc389
NC
86static bfd_reloc_status_type
87sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
88static bfd_boolean
89sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90 bfd_byte *, struct internal_reloc *,
91 struct internal_syment *, asection **);
92static bfd_boolean
93sh_align_loads (bfd *, asection *, struct internal_reloc *,
94 bfd_byte *, bfd_boolean *);
95
252b5132
RH
96/* The supported relocations. There are a lot of relocations defined
97 in coff/internal.h which we do not expect to ever see. */
98static reloc_howto_type sh_coff_howtos[] =
99{
5f771d47
ILT
100 EMPTY_HOWTO (0),
101 EMPTY_HOWTO (1),
17505c5c
NC
102#ifdef COFF_WITH_PE
103 /* Windows CE */
104 HOWTO (R_SH_IMM32CE, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 32, /* bitsize */
b34976b6 108 FALSE, /* pc_relative */
17505c5c
NC
109 0, /* bitpos */
110 complain_overflow_bitfield, /* complain_on_overflow */
111 sh_reloc, /* special_function */
112 "r_imm32ce", /* name */
b34976b6 113 TRUE, /* partial_inplace */
17505c5c
NC
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
b34976b6 116 FALSE), /* pcrel_offset */
17505c5c 117#else
5f771d47 118 EMPTY_HOWTO (2),
17505c5c 119#endif
5f771d47
ILT
120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123 EMPTY_HOWTO (6), /* R_SH_IMM24 */
124 EMPTY_HOWTO (7), /* R_SH_LOW16 */
125 EMPTY_HOWTO (8),
126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
252b5132
RH
127
128 HOWTO (R_SH_PCDISP8BY2, /* type */
129 1, /* rightshift */
130 1, /* size (0 = byte, 1 = short, 2 = long) */
131 8, /* bitsize */
b34976b6 132 TRUE, /* pc_relative */
252b5132
RH
133 0, /* bitpos */
134 complain_overflow_signed, /* complain_on_overflow */
135 sh_reloc, /* special_function */
136 "r_pcdisp8by2", /* name */
b34976b6 137 TRUE, /* partial_inplace */
252b5132
RH
138 0xff, /* src_mask */
139 0xff, /* dst_mask */
b34976b6 140 TRUE), /* pcrel_offset */
252b5132 141
5f771d47 142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
252b5132
RH
143
144 HOWTO (R_SH_PCDISP, /* type */
145 1, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 12, /* bitsize */
b34976b6 148 TRUE, /* pc_relative */
252b5132
RH
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 sh_reloc, /* special_function */
152 "r_pcdisp12by2", /* name */
b34976b6 153 TRUE, /* partial_inplace */
252b5132
RH
154 0xfff, /* src_mask */
155 0xfff, /* dst_mask */
b34976b6 156 TRUE), /* pcrel_offset */
252b5132 157
5f771d47 158 EMPTY_HOWTO (13),
252b5132
RH
159
160 HOWTO (R_SH_IMM32, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 32, /* bitsize */
b34976b6 164 FALSE, /* pc_relative */
252b5132
RH
165 0, /* bitpos */
166 complain_overflow_bitfield, /* complain_on_overflow */
167 sh_reloc, /* special_function */
168 "r_imm32", /* name */
b34976b6 169 TRUE, /* partial_inplace */
252b5132
RH
170 0xffffffff, /* src_mask */
171 0xffffffff, /* dst_mask */
b34976b6 172 FALSE), /* pcrel_offset */
252b5132 173
5f771d47 174 EMPTY_HOWTO (15),
17505c5c 175#ifdef COFF_WITH_PE
07d6d2b8
AM
176 HOWTO (R_SH_IMAGEBASE, /* type */
177 0, /* rightshift */
178 2, /* size (0 = byte, 1 = short, 2 = long) */
179 32, /* bitsize */
180 FALSE, /* pc_relative */
181 0, /* bitpos */
17505c5c 182 complain_overflow_bitfield, /* complain_on_overflow */
07d6d2b8
AM
183 sh_reloc, /* special_function */
184 "rva32", /* name */
185 TRUE, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
17505c5c 189#else
5f771d47 190 EMPTY_HOWTO (16), /* R_SH_IMM8 */
17505c5c 191#endif
5f771d47
ILT
192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194 EMPTY_HOWTO (19), /* R_SH_IMM4 */
195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
252b5132
RH
197
198 HOWTO (R_SH_PCRELIMM8BY2, /* type */
199 1, /* rightshift */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
b34976b6 202 TRUE, /* pc_relative */
252b5132
RH
203 0, /* bitpos */
204 complain_overflow_unsigned, /* complain_on_overflow */
205 sh_reloc, /* special_function */
206 "r_pcrelimm8by2", /* name */
b34976b6 207 TRUE, /* partial_inplace */
252b5132
RH
208 0xff, /* src_mask */
209 0xff, /* dst_mask */
b34976b6 210 TRUE), /* pcrel_offset */
252b5132
RH
211
212 HOWTO (R_SH_PCRELIMM8BY4, /* type */
213 2, /* rightshift */
214 1, /* size (0 = byte, 1 = short, 2 = long) */
215 8, /* bitsize */
b34976b6 216 TRUE, /* pc_relative */
252b5132
RH
217 0, /* bitpos */
218 complain_overflow_unsigned, /* complain_on_overflow */
219 sh_reloc, /* special_function */
220 "r_pcrelimm8by4", /* name */
b34976b6 221 TRUE, /* partial_inplace */
252b5132
RH
222 0xff, /* src_mask */
223 0xff, /* dst_mask */
b34976b6 224 TRUE), /* pcrel_offset */
252b5132
RH
225
226 HOWTO (R_SH_IMM16, /* type */
227 0, /* rightshift */
228 1, /* size (0 = byte, 1 = short, 2 = long) */
229 16, /* bitsize */
b34976b6 230 FALSE, /* pc_relative */
252b5132
RH
231 0, /* bitpos */
232 complain_overflow_bitfield, /* complain_on_overflow */
233 sh_reloc, /* special_function */
234 "r_imm16", /* name */
b34976b6 235 TRUE, /* partial_inplace */
252b5132
RH
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
b34976b6 238 FALSE), /* pcrel_offset */
252b5132
RH
239
240 HOWTO (R_SH_SWITCH16, /* type */
241 0, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 16, /* bitsize */
b34976b6 244 FALSE, /* pc_relative */
252b5132
RH
245 0, /* bitpos */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 sh_reloc, /* special_function */
248 "r_switch16", /* name */
b34976b6 249 TRUE, /* partial_inplace */
252b5132
RH
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
b34976b6 252 FALSE), /* pcrel_offset */
252b5132
RH
253
254 HOWTO (R_SH_SWITCH32, /* type */
255 0, /* rightshift */
256 2, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
b34976b6 258 FALSE, /* pc_relative */
252b5132
RH
259 0, /* bitpos */
260 complain_overflow_bitfield, /* complain_on_overflow */
261 sh_reloc, /* special_function */
262 "r_switch32", /* name */
b34976b6 263 TRUE, /* partial_inplace */
252b5132
RH
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
b34976b6 266 FALSE), /* pcrel_offset */
252b5132
RH
267
268 HOWTO (R_SH_USES, /* type */
269 0, /* rightshift */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
271 16, /* bitsize */
b34976b6 272 FALSE, /* pc_relative */
252b5132
RH
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 sh_reloc, /* special_function */
276 "r_uses", /* name */
b34976b6 277 TRUE, /* partial_inplace */
252b5132
RH
278 0xffff, /* src_mask */
279 0xffff, /* dst_mask */
b34976b6 280 FALSE), /* pcrel_offset */
252b5132
RH
281
282 HOWTO (R_SH_COUNT, /* type */
283 0, /* rightshift */
284 2, /* size (0 = byte, 1 = short, 2 = long) */
285 32, /* bitsize */
b34976b6 286 FALSE, /* pc_relative */
252b5132
RH
287 0, /* bitpos */
288 complain_overflow_bitfield, /* complain_on_overflow */
289 sh_reloc, /* special_function */
290 "r_count", /* name */
b34976b6 291 TRUE, /* partial_inplace */
252b5132
RH
292 0xffffffff, /* src_mask */
293 0xffffffff, /* dst_mask */
b34976b6 294 FALSE), /* pcrel_offset */
252b5132
RH
295
296 HOWTO (R_SH_ALIGN, /* type */
297 0, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 32, /* bitsize */
b34976b6 300 FALSE, /* pc_relative */
252b5132
RH
301 0, /* bitpos */
302 complain_overflow_bitfield, /* complain_on_overflow */
303 sh_reloc, /* special_function */
304 "r_align", /* name */
b34976b6 305 TRUE, /* partial_inplace */
252b5132
RH
306 0xffffffff, /* src_mask */
307 0xffffffff, /* dst_mask */
b34976b6 308 FALSE), /* pcrel_offset */
252b5132
RH
309
310 HOWTO (R_SH_CODE, /* type */
311 0, /* rightshift */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
313 32, /* bitsize */
b34976b6 314 FALSE, /* pc_relative */
252b5132
RH
315 0, /* bitpos */
316 complain_overflow_bitfield, /* complain_on_overflow */
317 sh_reloc, /* special_function */
318 "r_code", /* name */
b34976b6 319 TRUE, /* partial_inplace */
252b5132
RH
320 0xffffffff, /* src_mask */
321 0xffffffff, /* dst_mask */
b34976b6 322 FALSE), /* pcrel_offset */
252b5132
RH
323
324 HOWTO (R_SH_DATA, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
b34976b6 328 FALSE, /* pc_relative */
252b5132
RH
329 0, /* bitpos */
330 complain_overflow_bitfield, /* complain_on_overflow */
331 sh_reloc, /* special_function */
332 "r_data", /* name */
b34976b6 333 TRUE, /* partial_inplace */
252b5132
RH
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
b34976b6 336 FALSE), /* pcrel_offset */
252b5132
RH
337
338 HOWTO (R_SH_LABEL, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
b34976b6 342 FALSE, /* pc_relative */
252b5132
RH
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 sh_reloc, /* special_function */
346 "r_label", /* name */
b34976b6 347 TRUE, /* partial_inplace */
252b5132
RH
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
b34976b6 350 FALSE), /* pcrel_offset */
252b5132
RH
351
352 HOWTO (R_SH_SWITCH8, /* type */
353 0, /* rightshift */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
355 8, /* bitsize */
b34976b6 356 FALSE, /* pc_relative */
252b5132
RH
357 0, /* bitpos */
358 complain_overflow_bitfield, /* complain_on_overflow */
359 sh_reloc, /* special_function */
360 "r_switch8", /* name */
b34976b6 361 TRUE, /* partial_inplace */
252b5132
RH
362 0xff, /* src_mask */
363 0xff, /* dst_mask */
b34976b6 364 FALSE) /* pcrel_offset */
252b5132
RH
365};
366
367#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
368
369/* Check for a bad magic number. */
370#define BADMAG(x) SHBADMAG(x)
371
372/* Customize coffcode.h (this is not currently used). */
373#define SH 1
374
375/* FIXME: This should not be set here. */
376#define __A_MAGIC_SET__
377
17505c5c 378#ifndef COFF_WITH_PE
252b5132 379/* Swap the r_offset field in and out. */
dc810e39
AM
380#define SWAP_IN_RELOC_OFFSET H_GET_32
381#define SWAP_OUT_RELOC_OFFSET H_PUT_32
252b5132
RH
382
383/* Swap out extra information in the reloc structure. */
384#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
385 do \
386 { \
387 dst->r_stuff[0] = 'S'; \
388 dst->r_stuff[1] = 'C'; \
389 } \
390 while (0)
17505c5c 391#endif
252b5132
RH
392
393/* Get the value of a symbol, when performing a relocation. */
394
395static long
2c3fc389 396get_symbol_value (asymbol *symbol)
cbfe05c4 397{
252b5132
RH
398 bfd_vma relocation;
399
400 if (bfd_is_com_section (symbol->section))
cbfe05c4
KH
401 relocation = 0;
402 else
252b5132
RH
403 relocation = (symbol->value +
404 symbol->section->output_section->vma +
405 symbol->section->output_offset);
406
407 return relocation;
408}
409
17505c5c
NC
410#ifdef COFF_WITH_PE
411/* Convert an rtype to howto for the COFF backend linker.
412 Copied from coff-i386. */
413#define coff_rtype_to_howto coff_sh_rtype_to_howto
2c3fc389 414
17505c5c
NC
415
416static reloc_howto_type *
2c3fc389
NC
417coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
418 asection * sec,
419 struct internal_reloc * rel,
420 struct coff_link_hash_entry * h,
421 struct internal_syment * sym,
422 bfd_vma * addendp)
17505c5c
NC
423{
424 reloc_howto_type * howto;
425
426 howto = sh_coff_howtos + rel->r_type;
427
428 *addendp = 0;
429
430 if (howto->pc_relative)
431 *addendp += sec->vma;
432
433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
434 {
435 /* This is a common symbol. The section contents include the
436 size (sym->n_value) as an addend. The relocate_section
437 function will be adding in the final value of the symbol. We
438 need to subtract out the current size in order to get the
439 correct result. */
440 BFD_ASSERT (h != NULL);
441 }
442
443 if (howto->pc_relative)
444 {
445 *addendp -= 4;
446
447 /* If the symbol is defined, then the generic code is going to
07d6d2b8
AM
448 add back the symbol value in order to cancel out an
449 adjustment it made to the addend. However, we set the addend
450 to 0 at the start of this function. We need to adjust here,
451 to avoid the adjustment the generic code will make. FIXME:
452 This is getting a bit hackish. */
17505c5c
NC
453 if (sym != NULL && sym->n_scnum != 0)
454 *addendp -= sym->n_value;
455 }
456
457 if (rel->r_type == R_SH_IMAGEBASE)
458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
459
460 return howto;
461}
462
993e9275
NC
463#endif /* COFF_WITH_PE */
464
17505c5c
NC
465/* This structure is used to map BFD reloc codes to SH PE relocs. */
466struct shcoff_reloc_map
467{
aa066ac8 468 bfd_reloc_code_real_type bfd_reloc_val;
17505c5c
NC
469 unsigned char shcoff_reloc_val;
470};
471
a9a32010 472#ifdef COFF_WITH_PE
17505c5c
NC
473/* An array mapping BFD reloc codes to SH PE relocs. */
474static const struct shcoff_reloc_map sh_reloc_map[] =
475{
476 { BFD_RELOC_32, R_SH_IMM32CE },
477 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478 { BFD_RELOC_CTOR, R_SH_IMM32CE },
479};
a9a32010
DJ
480#else
481/* An array mapping BFD reloc codes to SH PE relocs. */
482static const struct shcoff_reloc_map sh_reloc_map[] =
483{
484 { BFD_RELOC_32, R_SH_IMM32 },
485 { BFD_RELOC_CTOR, R_SH_IMM32 },
486};
487#endif
17505c5c
NC
488
489/* Given a BFD reloc code, return the howto structure for the
490 corresponding SH PE reloc. */
491#define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
157090f7 492#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
17505c5c
NC
493
494static reloc_howto_type *
0aa13fee 495sh_coff_reloc_type_lookup (bfd *abfd,
2c3fc389 496 bfd_reloc_code_real_type code)
17505c5c
NC
497{
498 unsigned int i;
499
993e9275
NC
500 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501 if (sh_reloc_map[i].bfd_reloc_val == code)
502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
17505c5c 503
0aa13fee
AM
504 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505 abfd, (unsigned int) code);
17505c5c
NC
506 return NULL;
507}
17505c5c 508
157090f7
AM
509static reloc_howto_type *
510sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
511 const char *r_name)
512{
513 unsigned int i;
514
515 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
516 if (sh_coff_howtos[i].name != NULL
517 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
518 return &sh_coff_howtos[i];
519
520 return NULL;
521}
522
252b5132
RH
523/* This macro is used in coffcode.h to get the howto corresponding to
524 an internal reloc. */
525
526#define RTYPE2HOWTO(relent, internal) \
527 ((relent)->howto = \
528 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
529 ? &sh_coff_howtos[(internal)->r_type] \
530 : (reloc_howto_type *) NULL))
531
532/* This is the same as the macro in coffcode.h, except that it copies
533 r_offset into reloc_entry->addend for some relocs. */
f4943d82
AM
534#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
535 { \
536 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
537 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
538 coffsym = (obj_symbols (abfd) \
539 + (cache_ptr->sym_ptr_ptr - symbols)); \
540 else if (ptr) \
541 coffsym = coff_symbol_from (ptr); \
542 if (coffsym != (coff_symbol_type *) NULL \
543 && coffsym->native->u.syment.n_scnum == 0) \
544 cache_ptr->addend = 0; \
545 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
546 && ptr->section != (asection *) NULL) \
547 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
548 else \
549 cache_ptr->addend = 0; \
252b5132
RH
550 if ((reloc).r_type == R_SH_SWITCH8 \
551 || (reloc).r_type == R_SH_SWITCH16 \
552 || (reloc).r_type == R_SH_SWITCH32 \
553 || (reloc).r_type == R_SH_USES \
554 || (reloc).r_type == R_SH_COUNT \
555 || (reloc).r_type == R_SH_ALIGN) \
556 cache_ptr->addend = (reloc).r_offset; \
557 }
558
559/* This is the howto function for the SH relocations. */
560
561static bfd_reloc_status_type
2c3fc389
NC
562sh_reloc (bfd * abfd,
563 arelent * reloc_entry,
564 asymbol * symbol_in,
565 void * data,
566 asection * input_section,
567 bfd * output_bfd,
568 char ** error_message ATTRIBUTE_UNUSED)
252b5132 569{
96e2dbda 570 bfd_vma insn;
252b5132
RH
571 bfd_vma sym_value;
572 unsigned short r_type;
573 bfd_vma addr = reloc_entry->address;
574 bfd_byte *hit_data = addr + (bfd_byte *) data;
575
576 r_type = reloc_entry->howto->type;
577
578 if (output_bfd != NULL)
579 {
580 /* Partial linking--do nothing. */
581 reloc_entry->address += input_section->output_offset;
582 return bfd_reloc_ok;
583 }
584
585 /* Almost all relocs have to do with relaxing. If any work must be
586 done for them, it has been done in sh_relax_section. */
587 if (r_type != R_SH_IMM32
17505c5c
NC
588#ifdef COFF_WITH_PE
589 && r_type != R_SH_IMM32CE
590 && r_type != R_SH_IMAGEBASE
591#endif
252b5132
RH
592 && (r_type != R_SH_PCDISP
593 || (symbol_in->flags & BSF_LOCAL) != 0))
594 return bfd_reloc_ok;
595
596 if (symbol_in != NULL
597 && bfd_is_und_section (symbol_in->section))
598 return bfd_reloc_undefined;
599
6879f5a9
NC
600 if (addr > input_section->size)
601 return bfd_reloc_outofrange;
602
252b5132
RH
603 sym_value = get_symbol_value (symbol_in);
604
605 switch (r_type)
606 {
607 case R_SH_IMM32:
17505c5c
NC
608#ifdef COFF_WITH_PE
609 case R_SH_IMM32CE:
610#endif
252b5132
RH
611 insn = bfd_get_32 (abfd, hit_data);
612 insn += sym_value + reloc_entry->addend;
96e2dbda 613 bfd_put_32 (abfd, insn, hit_data);
252b5132 614 break;
17505c5c
NC
615#ifdef COFF_WITH_PE
616 case R_SH_IMAGEBASE:
617 insn = bfd_get_32 (abfd, hit_data);
dc810e39
AM
618 insn += sym_value + reloc_entry->addend;
619 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
96e2dbda 620 bfd_put_32 (abfd, insn, hit_data);
17505c5c
NC
621 break;
622#endif
252b5132
RH
623 case R_SH_PCDISP:
624 insn = bfd_get_16 (abfd, hit_data);
625 sym_value += reloc_entry->addend;
626 sym_value -= (input_section->output_section->vma
627 + input_section->output_offset
628 + addr
629 + 4);
96e2dbda
AM
630 sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1;
631 insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff);
632 bfd_put_16 (abfd, insn, hit_data);
633 if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0)
252b5132
RH
634 return bfd_reloc_overflow;
635 break;
636 default:
637 abort ();
638 break;
639 }
640
641 return bfd_reloc_ok;
642}
643
875f7f69 644#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
252b5132
RH
645
646/* We can do relaxing. */
647#define coff_bfd_relax_section sh_relax_section
648
649/* We use the special COFF backend linker. */
650#define coff_relocate_section sh_relocate_section
651
652/* When relaxing, we need to use special code to get the relocated
653 section contents. */
654#define coff_bfd_get_relocated_section_contents \
655 sh_coff_get_relocated_section_contents
656
657#include "coffcode.h"
658\f
2c3fc389
NC
659static bfd_boolean
660sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
661
252b5132
RH
662/* This function handles relaxing on the SH.
663
664 Function calls on the SH look like this:
665
666 movl L1,r0
667 ...
668 jsr @r0
669 ...
670 L1:
671 .long function
672
673 The compiler and assembler will cooperate to create R_SH_USES
674 relocs on the jsr instructions. The r_offset field of the
675 R_SH_USES reloc is the PC relative offset to the instruction which
676 loads the register (the r_offset field is computed as though it
677 were a jump instruction, so the offset value is actually from four
678 bytes past the instruction). The linker can use this reloc to
679 determine just which function is being called, and thus decide
680 whether it is possible to replace the jsr with a bsr.
681
682 If multiple function calls are all based on a single register load
683 (i.e., the same function is called multiple times), the compiler
684 guarantees that each function call will have an R_SH_USES reloc.
685 Therefore, if the linker is able to convert each R_SH_USES reloc
686 which refers to that address, it can safely eliminate the register
687 load.
688
689 When the assembler creates an R_SH_USES reloc, it examines it to
690 determine which address is being loaded (L1 in the above example).
691 It then counts the number of references to that address, and
692 creates an R_SH_COUNT reloc at that address. The r_offset field of
693 the R_SH_COUNT reloc will be the number of references. If the
694 linker is able to eliminate a register load, it can use the
695 R_SH_COUNT reloc to see whether it can also eliminate the function
696 address.
697
698 SH relaxing also handles another, unrelated, matter. On the SH, if
699 a load or store instruction is not aligned on a four byte boundary,
700 the memory cycle interferes with the 32 bit instruction fetch,
701 causing a one cycle bubble in the pipeline. Therefore, we try to
702 align load and store instructions on four byte boundaries if we
703 can, by swapping them with one of the adjacent instructions. */
704
b34976b6 705static bfd_boolean
2c3fc389
NC
706sh_relax_section (bfd *abfd,
707 asection *sec,
708 struct bfd_link_info *link_info,
709 bfd_boolean *again)
252b5132
RH
710{
711 struct internal_reloc *internal_relocs;
b34976b6 712 bfd_boolean have_code;
252b5132
RH
713 struct internal_reloc *irel, *irelend;
714 bfd_byte *contents = NULL;
252b5132 715
b34976b6 716 *again = FALSE;
252b5132 717
0e1862bb 718 if (bfd_link_relocatable (link_info)
252b5132
RH
719 || (sec->flags & SEC_RELOC) == 0
720 || sec->reloc_count == 0)
b34976b6 721 return TRUE;
252b5132 722
eea6121a
AM
723 if (coff_section_data (abfd, sec) == NULL)
724 {
986f0783 725 size_t amt = sizeof (struct coff_section_tdata);
2c3fc389 726 sec->used_by_bfd = bfd_zalloc (abfd, amt);
eea6121a
AM
727 if (sec->used_by_bfd == NULL)
728 return FALSE;
729 }
252b5132
RH
730
731 internal_relocs = (_bfd_coff_read_internal_relocs
732 (abfd, sec, link_info->keep_memory,
b34976b6 733 (bfd_byte *) NULL, FALSE,
252b5132
RH
734 (struct internal_reloc *) NULL));
735 if (internal_relocs == NULL)
736 goto error_return;
252b5132 737
b34976b6 738 have_code = FALSE;
252b5132
RH
739
740 irelend = internal_relocs + sec->reloc_count;
741 for (irel = internal_relocs; irel < irelend; irel++)
742 {
743 bfd_vma laddr, paddr, symval;
744 unsigned short insn;
745 struct internal_reloc *irelfn, *irelscan, *irelcount;
746 struct internal_syment sym;
747 bfd_signed_vma foff;
748
749 if (irel->r_type == R_SH_CODE)
b34976b6 750 have_code = TRUE;
252b5132
RH
751
752 if (irel->r_type != R_SH_USES)
753 continue;
754
755 /* Get the section contents. */
756 if (contents == NULL)
757 {
eea6121a 758 if (coff_section_data (abfd, sec)->contents != NULL)
252b5132
RH
759 contents = coff_section_data (abfd, sec)->contents;
760 else
761 {
eea6121a 762 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
763 goto error_return;
764 }
765 }
766
767 /* The r_offset field of the R_SH_USES reloc will point us to
07d6d2b8
AM
768 the register load. The 4 is because the r_offset field is
769 computed as though it were a jump offset, which are based
770 from 4 bytes after the jump instruction. */
252b5132
RH
771 laddr = irel->r_vaddr - sec->vma + 4;
772 /* Careful to sign extend the 32-bit offset. */
773 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
eea6121a 774 if (laddr >= sec->size)
252b5132 775 {
695344c0 776 /* xgettext: c-format */
2dcf00ce
AM
777 _bfd_error_handler
778 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"),
779 abfd, (uint64_t) irel->r_vaddr);
252b5132
RH
780 continue;
781 }
782 insn = bfd_get_16 (abfd, contents + laddr);
783
784 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
785 if ((insn & 0xf000) != 0xd000)
786 {
4eca0228 787 _bfd_error_handler
695344c0 788 /* xgettext: c-format */
2dcf00ce
AM
789 (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"),
790 abfd, (uint64_t) irel->r_vaddr, insn);
252b5132
RH
791 continue;
792 }
793
794 /* Get the address from which the register is being loaded. The
07d6d2b8
AM
795 displacement in the mov.l instruction is quadrupled. It is a
796 displacement from four bytes after the movl instruction, but,
797 before adding in the PC address, two least significant bits
798 of the PC are cleared. We assume that the section is aligned
799 on a four byte boundary. */
252b5132
RH
800 paddr = insn & 0xff;
801 paddr *= 4;
dc810e39 802 paddr += (laddr + 4) &~ (bfd_vma) 3;
eea6121a 803 if (paddr >= sec->size)
252b5132 804 {
4eca0228 805 _bfd_error_handler
695344c0 806 /* xgettext: c-format */
2dcf00ce
AM
807 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"),
808 abfd, (uint64_t) irel->r_vaddr);
252b5132
RH
809 continue;
810 }
811
812 /* Get the reloc for the address from which the register is
07d6d2b8
AM
813 being loaded. This reloc will tell us which function is
814 actually being called. */
252b5132
RH
815 paddr += sec->vma;
816 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
817 if (irelfn->r_vaddr == paddr
17505c5c
NC
818#ifdef COFF_WITH_PE
819 && (irelfn->r_type == R_SH_IMM32
820 || irelfn->r_type == R_SH_IMM32CE
eea6121a 821 || irelfn->r_type == R_SH_IMAGEBASE)
17505c5c
NC
822
823#else
eea6121a 824 && irelfn->r_type == R_SH_IMM32
17505c5c 825#endif
eea6121a 826 )
252b5132
RH
827 break;
828 if (irelfn >= irelend)
829 {
4eca0228 830 _bfd_error_handler
695344c0 831 /* xgettext: c-format */
2dcf00ce
AM
832 (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"),
833 abfd, (uint64_t) paddr);
252b5132
RH
834 continue;
835 }
836
837 /* Get the value of the symbol referred to by the reloc. */
838 if (! _bfd_coff_get_external_symbols (abfd))
839 goto error_return;
840 bfd_coff_swap_sym_in (abfd,
841 ((bfd_byte *) obj_coff_external_syms (abfd)
842 + (irelfn->r_symndx
843 * bfd_coff_symesz (abfd))),
844 &sym);
845 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
846 {
4eca0228 847 _bfd_error_handler
695344c0 848 /* xgettext: c-format */
2dcf00ce
AM
849 (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"),
850 abfd, (uint64_t) paddr);
252b5132
RH
851 continue;
852 }
853
854 if (sym.n_sclass != C_EXT)
855 {
856 symval = (sym.n_value
857 - sec->vma
858 + sec->output_section->vma
859 + sec->output_offset);
860 }
861 else
862 {
863 struct coff_link_hash_entry *h;
864
865 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
866 BFD_ASSERT (h != NULL);
867 if (h->root.type != bfd_link_hash_defined
868 && h->root.type != bfd_link_hash_defweak)
869 {
870 /* This appears to be a reference to an undefined
07d6d2b8
AM
871 symbol. Just ignore it--it will be caught by the
872 regular reloc processing. */
252b5132
RH
873 continue;
874 }
875
876 symval = (h->root.u.def.value
877 + h->root.u.def.section->output_section->vma
878 + h->root.u.def.section->output_offset);
879 }
880
881 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
882
883 /* See if this function call can be shortened. */
884 foff = (symval
885 - (irel->r_vaddr
886 - sec->vma
887 + sec->output_section->vma
888 + sec->output_offset
889 + 4));
890 if (foff < -0x1000 || foff >= 0x1000)
891 {
892 /* After all that work, we can't shorten this function call. */
893 continue;
894 }
895
896 /* Shorten the function call. */
897
898 /* For simplicity of coding, we are going to modify the section
899 contents, the section relocs, and the BFD symbol table. We
900 must tell the rest of the code not to free up this
901 information. It would be possible to instead create a table
902 of changes which have to be made, as is done in coff-mips.c;
903 that would be more work, but would require less memory when
904 the linker is run. */
905
252b5132 906 coff_section_data (abfd, sec)->relocs = internal_relocs;
b34976b6 907 coff_section_data (abfd, sec)->keep_relocs = TRUE;
252b5132
RH
908
909 coff_section_data (abfd, sec)->contents = contents;
b34976b6 910 coff_section_data (abfd, sec)->keep_contents = TRUE;
252b5132 911
b34976b6 912 obj_coff_keep_syms (abfd) = TRUE;
252b5132
RH
913
914 /* Replace the jsr with a bsr. */
915
916 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
07d6d2b8 917 replace the jsr with a bsr. */
252b5132
RH
918 irel->r_type = R_SH_PCDISP;
919 irel->r_symndx = irelfn->r_symndx;
920 if (sym.n_sclass != C_EXT)
921 {
922 /* If this needs to be changed because of future relaxing,
07d6d2b8
AM
923 it will be handled here like other internal PCDISP
924 relocs. */
252b5132 925 bfd_put_16 (abfd,
dc810e39 926 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
252b5132
RH
927 contents + irel->r_vaddr - sec->vma);
928 }
929 else
930 {
931 /* We can't fully resolve this yet, because the external
07d6d2b8
AM
932 symbol value may be changed by future relaxing. We let
933 the final link phase handle it. */
dc810e39
AM
934 bfd_put_16 (abfd, (bfd_vma) 0xb000,
935 contents + irel->r_vaddr - sec->vma);
252b5132
RH
936 }
937
938 /* See if there is another R_SH_USES reloc referring to the same
07d6d2b8 939 register load. */
252b5132
RH
940 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
941 if (irelscan->r_type == R_SH_USES
942 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
943 break;
944 if (irelscan < irelend)
945 {
946 /* Some other function call depends upon this register load,
947 and we have not yet converted that function call.
948 Indeed, we may never be able to convert it. There is
949 nothing else we can do at this point. */
950 continue;
951 }
952
953 /* Look for a R_SH_COUNT reloc on the location where the
07d6d2b8
AM
954 function address is stored. Do this before deleting any
955 bytes, to avoid confusion about the address. */
252b5132
RH
956 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
957 if (irelcount->r_vaddr == paddr
958 && irelcount->r_type == R_SH_COUNT)
959 break;
960
961 /* Delete the register load. */
962 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
963 goto error_return;
964
965 /* That will change things, so, just in case it permits some
07d6d2b8
AM
966 other function call to come within range, we should relax
967 again. Note that this is not required, and it may be slow. */
b34976b6 968 *again = TRUE;
252b5132
RH
969
970 /* Now check whether we got a COUNT reloc. */
971 if (irelcount >= irelend)
972 {
4eca0228 973 _bfd_error_handler
695344c0 974 /* xgettext: c-format */
2dcf00ce
AM
975 (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"),
976 abfd, (uint64_t) paddr);
252b5132
RH
977 continue;
978 }
979
980 /* The number of uses is stored in the r_offset field. We've
07d6d2b8 981 just deleted one. */
252b5132
RH
982 if (irelcount->r_offset == 0)
983 {
695344c0 984 /* xgettext: c-format */
2dcf00ce
AM
985 _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"),
986 abfd, (uint64_t) paddr);
252b5132
RH
987 continue;
988 }
989
990 --irelcount->r_offset;
991
992 /* If there are no more uses, we can delete the address. Reload
07d6d2b8
AM
993 the address from irelfn, in case it was changed by the
994 previous call to sh_relax_delete_bytes. */
252b5132
RH
995 if (irelcount->r_offset == 0)
996 {
997 if (! sh_relax_delete_bytes (abfd, sec,
998 irelfn->r_vaddr - sec->vma, 4))
999 goto error_return;
1000 }
1001
1002 /* We've done all we can with that function call. */
1003 }
1004
1005 /* Look for load and store instructions that we can align on four
1006 byte boundaries. */
1007 if (have_code)
1008 {
b34976b6 1009 bfd_boolean swapped;
252b5132
RH
1010
1011 /* Get the section contents. */
1012 if (contents == NULL)
1013 {
eea6121a 1014 if (coff_section_data (abfd, sec)->contents != NULL)
252b5132
RH
1015 contents = coff_section_data (abfd, sec)->contents;
1016 else
1017 {
eea6121a 1018 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
1019 goto error_return;
1020 }
1021 }
1022
1023 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1024 goto error_return;
1025
1026 if (swapped)
1027 {
252b5132 1028 coff_section_data (abfd, sec)->relocs = internal_relocs;
b34976b6 1029 coff_section_data (abfd, sec)->keep_relocs = TRUE;
252b5132
RH
1030
1031 coff_section_data (abfd, sec)->contents = contents;
b34976b6 1032 coff_section_data (abfd, sec)->keep_contents = TRUE;
252b5132 1033
b34976b6 1034 obj_coff_keep_syms (abfd) = TRUE;
252b5132
RH
1035 }
1036 }
1037
eea6121a
AM
1038 if (internal_relocs != NULL
1039 && internal_relocs != coff_section_data (abfd, sec)->relocs)
252b5132 1040 {
eea6121a
AM
1041 if (! link_info->keep_memory)
1042 free (internal_relocs);
1043 else
1044 coff_section_data (abfd, sec)->relocs = internal_relocs;
252b5132
RH
1045 }
1046
eea6121a 1047 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
252b5132
RH
1048 {
1049 if (! link_info->keep_memory)
eea6121a 1050 free (contents);
252b5132 1051 else
eea6121a
AM
1052 /* Cache the section contents for coff_link_input_bfd. */
1053 coff_section_data (abfd, sec)->contents = contents;
252b5132
RH
1054 }
1055
b34976b6 1056 return TRUE;
252b5132
RH
1057
1058 error_return:
c9594989 1059 if (internal_relocs != coff_section_data (abfd, sec)->relocs)
eea6121a 1060 free (internal_relocs);
c9594989 1061 if (contents != coff_section_data (abfd, sec)->contents)
eea6121a 1062 free (contents);
b34976b6 1063 return FALSE;
252b5132
RH
1064}
1065
1066/* Delete some bytes from a section while relaxing. */
1067
b34976b6 1068static bfd_boolean
2c3fc389
NC
1069sh_relax_delete_bytes (bfd *abfd,
1070 asection *sec,
1071 bfd_vma addr,
1072 int count)
252b5132
RH
1073{
1074 bfd_byte *contents;
1075 struct internal_reloc *irel, *irelend;
1076 struct internal_reloc *irelalign;
1077 bfd_vma toaddr;
1078 bfd_byte *esym, *esymend;
1079 bfd_size_type symesz;
1080 struct coff_link_hash_entry **sym_hash;
1081 asection *o;
1082
1083 contents = coff_section_data (abfd, sec)->contents;
1084
de194d85 1085 /* The deletion must stop at the next ALIGN reloc for an alignment
252b5132
RH
1086 power larger than the number of bytes we are deleting. */
1087
1088 irelalign = NULL;
eea6121a 1089 toaddr = sec->size;
252b5132
RH
1090
1091 irel = coff_section_data (abfd, sec)->relocs;
1092 irelend = irel + sec->reloc_count;
1093 for (; irel < irelend; irel++)
1094 {
1095 if (irel->r_type == R_SH_ALIGN
1096 && irel->r_vaddr - sec->vma > addr
1097 && count < (1 << irel->r_offset))
1098 {
1099 irelalign = irel;
1100 toaddr = irel->r_vaddr - sec->vma;
1101 break;
1102 }
1103 }
1104
1105 /* Actually delete the bytes. */
dc810e39
AM
1106 memmove (contents + addr, contents + addr + count,
1107 (size_t) (toaddr - addr - count));
252b5132 1108 if (irelalign == NULL)
eea6121a 1109 sec->size -= count;
252b5132
RH
1110 else
1111 {
1112 int i;
1113
1114#define NOP_OPCODE (0x0009)
1115
1116 BFD_ASSERT ((count & 1) == 0);
1117 for (i = 0; i < count; i += 2)
dc810e39 1118 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
252b5132
RH
1119 }
1120
1121 /* Adjust all the relocs. */
1122 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1123 {
1124 bfd_vma nraddr, stop;
1125 bfd_vma start = 0;
1126 int insn = 0;
1127 struct internal_syment sym;
1128 int off, adjust, oinsn;
1129 bfd_signed_vma voff = 0;
b34976b6 1130 bfd_boolean overflow;
252b5132
RH
1131
1132 /* Get the new reloc address. */
1133 nraddr = irel->r_vaddr - sec->vma;
1134 if ((irel->r_vaddr - sec->vma > addr
1135 && irel->r_vaddr - sec->vma < toaddr)
1136 || (irel->r_type == R_SH_ALIGN
1137 && irel->r_vaddr - sec->vma == toaddr))
1138 nraddr -= count;
1139
1140 /* See if this reloc was for the bytes we have deleted, in which
1141 case we no longer care about it. Don't delete relocs which
1142 represent addresses, though. */
1143 if (irel->r_vaddr - sec->vma >= addr
1144 && irel->r_vaddr - sec->vma < addr + count
1145 && irel->r_type != R_SH_ALIGN
1146 && irel->r_type != R_SH_CODE
1147 && irel->r_type != R_SH_DATA
1148 && irel->r_type != R_SH_LABEL)
1149 irel->r_type = R_SH_UNUSED;
1150
1151 /* If this is a PC relative reloc, see if the range it covers
07d6d2b8 1152 includes the bytes we have deleted. */
252b5132
RH
1153 switch (irel->r_type)
1154 {
1155 default:
1156 break;
1157
1158 case R_SH_PCDISP8BY2:
1159 case R_SH_PCDISP:
1160 case R_SH_PCRELIMM8BY2:
1161 case R_SH_PCRELIMM8BY4:
1162 start = irel->r_vaddr - sec->vma;
1163 insn = bfd_get_16 (abfd, contents + nraddr);
1164 break;
1165 }
1166
1167 switch (irel->r_type)
1168 {
1169 default:
1170 start = stop = addr;
1171 break;
1172
1173 case R_SH_IMM32:
17505c5c
NC
1174#ifdef COFF_WITH_PE
1175 case R_SH_IMM32CE:
1176 case R_SH_IMAGEBASE:
1177#endif
252b5132 1178 /* If this reloc is against a symbol defined in this
07d6d2b8
AM
1179 section, and the symbol will not be adjusted below, we
1180 must check the addend to see it will put the value in
1181 range to be adjusted, and hence must be changed. */
252b5132
RH
1182 bfd_coff_swap_sym_in (abfd,
1183 ((bfd_byte *) obj_coff_external_syms (abfd)
1184 + (irel->r_symndx
1185 * bfd_coff_symesz (abfd))),
1186 &sym);
1187 if (sym.n_sclass != C_EXT
1188 && sym.n_scnum == sec->target_index
1189 && ((bfd_vma) sym.n_value <= addr
1190 || (bfd_vma) sym.n_value >= toaddr))
1191 {
1192 bfd_vma val;
1193
1194 val = bfd_get_32 (abfd, contents + nraddr);
1195 val += sym.n_value;
1196 if (val > addr && val < toaddr)
1197 bfd_put_32 (abfd, val - count, contents + nraddr);
1198 }
1199 start = stop = addr;
1200 break;
1201
1202 case R_SH_PCDISP8BY2:
1203 off = insn & 0xff;
1204 if (off & 0x80)
1205 off -= 0x100;
1206 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1207 break;
1208
1209 case R_SH_PCDISP:
1210 bfd_coff_swap_sym_in (abfd,
1211 ((bfd_byte *) obj_coff_external_syms (abfd)
1212 + (irel->r_symndx
1213 * bfd_coff_symesz (abfd))),
1214 &sym);
1215 if (sym.n_sclass == C_EXT)
1216 start = stop = addr;
1217 else
1218 {
1219 off = insn & 0xfff;
1220 if (off & 0x800)
1221 off -= 0x1000;
1222 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1223 }
1224 break;
1225
1226 case R_SH_PCRELIMM8BY2:
1227 off = insn & 0xff;
1228 stop = start + 4 + off * 2;
1229 break;
1230
1231 case R_SH_PCRELIMM8BY4:
1232 off = insn & 0xff;
1233 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1234 break;
1235
1236 case R_SH_SWITCH8:
1237 case R_SH_SWITCH16:
1238 case R_SH_SWITCH32:
1239 /* These relocs types represent
1240 .word L2-L1
1241 The r_offset field holds the difference between the reloc
1242 address and L1. That is the start of the reloc, and
1243 adding in the contents gives us the top. We must adjust
1244 both the r_offset field and the section contents. */
1245
1246 start = irel->r_vaddr - sec->vma;
1247 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1248
1249 if (start > addr
1250 && start < toaddr
1251 && (stop <= addr || stop >= toaddr))
1252 irel->r_offset += count;
1253 else if (stop > addr
1254 && stop < toaddr
1255 && (start <= addr || start >= toaddr))
1256 irel->r_offset -= count;
1257
1258 start = stop;
1259
1260 if (irel->r_type == R_SH_SWITCH16)
1261 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1262 else if (irel->r_type == R_SH_SWITCH8)
1263 voff = bfd_get_8 (abfd, contents + nraddr);
1264 else
1265 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1266 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1267
1268 break;
1269
1270 case R_SH_USES:
1271 start = irel->r_vaddr - sec->vma;
1272 stop = (bfd_vma) ((bfd_signed_vma) start
1273 + (long) irel->r_offset
1274 + 4);
1275 break;
1276 }
1277
1278 if (start > addr
1279 && start < toaddr
1280 && (stop <= addr || stop >= toaddr))
1281 adjust = count;
1282 else if (stop > addr
1283 && stop < toaddr
1284 && (start <= addr || start >= toaddr))
1285 adjust = - count;
1286 else
1287 adjust = 0;
1288
1289 if (adjust != 0)
1290 {
1291 oinsn = insn;
b34976b6 1292 overflow = FALSE;
252b5132
RH
1293 switch (irel->r_type)
1294 {
1295 default:
1296 abort ();
1297 break;
1298
1299 case R_SH_PCDISP8BY2:
1300 case R_SH_PCRELIMM8BY2:
1301 insn += adjust / 2;
1302 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 1303 overflow = TRUE;
dc810e39 1304 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1305 break;
1306
1307 case R_SH_PCDISP:
1308 insn += adjust / 2;
1309 if ((oinsn & 0xf000) != (insn & 0xf000))
b34976b6 1310 overflow = TRUE;
dc810e39 1311 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1312 break;
1313
1314 case R_SH_PCRELIMM8BY4:
1315 BFD_ASSERT (adjust == count || count >= 4);
1316 if (count >= 4)
1317 insn += adjust / 4;
1318 else
1319 {
1320 if ((irel->r_vaddr & 3) == 0)
1321 ++insn;
1322 }
1323 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 1324 overflow = TRUE;
dc810e39 1325 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1326 break;
1327
1328 case R_SH_SWITCH8:
1329 voff += adjust;
1330 if (voff < 0 || voff >= 0xff)
b34976b6 1331 overflow = TRUE;
dc810e39 1332 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1333 break;
1334
1335 case R_SH_SWITCH16:
1336 voff += adjust;
1337 if (voff < - 0x8000 || voff >= 0x8000)
b34976b6 1338 overflow = TRUE;
dc810e39 1339 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1340 break;
1341
1342 case R_SH_SWITCH32:
1343 voff += adjust;
dc810e39 1344 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1345 break;
1346
1347 case R_SH_USES:
1348 irel->r_offset += adjust;
1349 break;
1350 }
1351
1352 if (overflow)
1353 {
4eca0228 1354 _bfd_error_handler
695344c0 1355 /* xgettext: c-format */
2dcf00ce
AM
1356 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
1357 abfd, (uint64_t) irel->r_vaddr);
252b5132 1358 bfd_set_error (bfd_error_bad_value);
b34976b6 1359 return FALSE;
252b5132
RH
1360 }
1361 }
1362
1363 irel->r_vaddr = nraddr + sec->vma;
1364 }
1365
1366 /* Look through all the other sections. If there contain any IMM32
1367 relocs against internal symbols which we are not going to adjust
1368 below, we may need to adjust the addends. */
1369 for (o = abfd->sections; o != NULL; o = o->next)
1370 {
1371 struct internal_reloc *internal_relocs;
1372 struct internal_reloc *irelscan, *irelscanend;
1373 bfd_byte *ocontents;
1374
1375 if (o == sec
1376 || (o->flags & SEC_RELOC) == 0
1377 || o->reloc_count == 0)
1378 continue;
1379
1380 /* We always cache the relocs. Perhaps, if info->keep_memory is
07d6d2b8
AM
1381 FALSE, we should free them, if we are permitted to, when we
1382 leave sh_coff_relax_section. */
252b5132 1383 internal_relocs = (_bfd_coff_read_internal_relocs
b34976b6 1384 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
252b5132
RH
1385 (struct internal_reloc *) NULL));
1386 if (internal_relocs == NULL)
b34976b6 1387 return FALSE;
252b5132
RH
1388
1389 ocontents = NULL;
1390 irelscanend = internal_relocs + o->reloc_count;
1391 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1392 {
1393 struct internal_syment sym;
1394
17505c5c
NC
1395#ifdef COFF_WITH_PE
1396 if (irelscan->r_type != R_SH_IMM32
1397 && irelscan->r_type != R_SH_IMAGEBASE
1398 && irelscan->r_type != R_SH_IMM32CE)
1399#else
252b5132 1400 if (irelscan->r_type != R_SH_IMM32)
17505c5c 1401#endif
252b5132
RH
1402 continue;
1403
1404 bfd_coff_swap_sym_in (abfd,
1405 ((bfd_byte *) obj_coff_external_syms (abfd)
1406 + (irelscan->r_symndx
1407 * bfd_coff_symesz (abfd))),
1408 &sym);
1409 if (sym.n_sclass != C_EXT
1410 && sym.n_scnum == sec->target_index
1411 && ((bfd_vma) sym.n_value <= addr
1412 || (bfd_vma) sym.n_value >= toaddr))
1413 {
1414 bfd_vma val;
1415
1416 if (ocontents == NULL)
1417 {
1418 if (coff_section_data (abfd, o)->contents != NULL)
1419 ocontents = coff_section_data (abfd, o)->contents;
1420 else
1421 {
eea6121a
AM
1422 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1423 return FALSE;
252b5132 1424 /* We always cache the section contents.
07d6d2b8
AM
1425 Perhaps, if info->keep_memory is FALSE, we
1426 should free them, if we are permitted to,
1427 when we leave sh_coff_relax_section. */
252b5132
RH
1428 coff_section_data (abfd, o)->contents = ocontents;
1429 }
1430 }
1431
1432 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1433 val += sym.n_value;
1434 if (val > addr && val < toaddr)
1435 bfd_put_32 (abfd, val - count,
1436 ocontents + irelscan->r_vaddr - o->vma);
1437
b34976b6 1438 coff_section_data (abfd, o)->keep_contents = TRUE;
252b5132
RH
1439 }
1440 }
1441 }
1442
1443 /* Adjusting the internal symbols will not work if something has
1444 already retrieved the generic symbols. It would be possible to
1445 make this work by adjusting the generic symbols at the same time.
1446 However, this case should not arise in normal usage. */
1447 if (obj_symbols (abfd) != NULL
1448 || obj_raw_syments (abfd) != NULL)
1449 {
4eca0228 1450 _bfd_error_handler
871b3ab2 1451 (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd);
252b5132 1452 bfd_set_error (bfd_error_invalid_operation);
b34976b6 1453 return FALSE;
252b5132
RH
1454 }
1455
1456 /* Adjust all the symbols. */
1457 sym_hash = obj_coff_sym_hashes (abfd);
1458 symesz = bfd_coff_symesz (abfd);
1459 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1460 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1461 while (esym < esymend)
1462 {
1463 struct internal_syment isym;
1464
2c3fc389 1465 bfd_coff_swap_sym_in (abfd, esym, &isym);
252b5132
RH
1466
1467 if (isym.n_scnum == sec->target_index
1468 && (bfd_vma) isym.n_value > addr
1469 && (bfd_vma) isym.n_value < toaddr)
1470 {
1471 isym.n_value -= count;
1472
2c3fc389 1473 bfd_coff_swap_sym_out (abfd, &isym, esym);
252b5132
RH
1474
1475 if (*sym_hash != NULL)
1476 {
1477 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1478 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1479 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1480 && (*sym_hash)->root.u.def.value < toaddr);
1481 (*sym_hash)->root.u.def.value -= count;
1482 }
1483 }
1484
1485 esym += (isym.n_numaux + 1) * symesz;
1486 sym_hash += isym.n_numaux + 1;
1487 }
1488
1489 /* See if we can move the ALIGN reloc forward. We have adjusted
1490 r_vaddr for it already. */
1491 if (irelalign != NULL)
1492 {
1493 bfd_vma alignto, alignaddr;
1494
1495 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1496 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1497 1 << irelalign->r_offset);
1498 if (alignto != alignaddr)
1499 {
1500 /* Tail recursion. */
1501 return sh_relax_delete_bytes (abfd, sec, alignaddr,
dc810e39 1502 (int) (alignto - alignaddr));
252b5132
RH
1503 }
1504 }
1505
b34976b6 1506 return TRUE;
252b5132
RH
1507}
1508\f
1509/* This is yet another version of the SH opcode table, used to rapidly
1510 get information about a particular instruction. */
1511
1512/* The opcode map is represented by an array of these structures. The
1513 array is indexed by the high order four bits in the instruction. */
1514
1515struct sh_major_opcode
1516{
1517 /* A pointer to the instruction list. This is an array which
1518 contains all the instructions with this major opcode. */
1519 const struct sh_minor_opcode *minor_opcodes;
1520 /* The number of elements in minor_opcodes. */
1521 unsigned short count;
1522};
1523
1524/* This structure holds information for a set of SH opcodes. The
1525 instruction code is anded with the mask value, and the resulting
1526 value is used to search the order opcode list. */
1527
1528struct sh_minor_opcode
1529{
1530 /* The sorted opcode list. */
1531 const struct sh_opcode *opcodes;
1532 /* The number of elements in opcodes. */
1533 unsigned short count;
1534 /* The mask value to use when searching the opcode list. */
1535 unsigned short mask;
1536};
1537
1538/* This structure holds information for an SH instruction. An array
1539 of these structures is sorted in order by opcode. */
1540
1541struct sh_opcode
1542{
1543 /* The code for this instruction, after it has been anded with the
1544 mask value in the sh_major_opcode structure. */
1545 unsigned short opcode;
1546 /* Flags for this instruction. */
86033394 1547 unsigned long flags;
252b5132
RH
1548};
1549
1550/* Flag which appear in the sh_opcode structure. */
1551
1552/* This instruction loads a value from memory. */
1553#define LOAD (0x1)
1554
1555/* This instruction stores a value to memory. */
1556#define STORE (0x2)
1557
1558/* This instruction is a branch. */
1559#define BRANCH (0x4)
1560
1561/* This instruction has a delay slot. */
1562#define DELAY (0x8)
1563
1564/* This instruction uses the value in the register in the field at
1565 mask 0x0f00 of the instruction. */
1566#define USES1 (0x10)
84dcfba7 1567#define USES1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1568
1569/* This instruction uses the value in the register in the field at
1570 mask 0x00f0 of the instruction. */
1571#define USES2 (0x20)
84dcfba7 1572#define USES2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1573
1574/* This instruction uses the value in register 0. */
1575#define USESR0 (0x40)
1576
1577/* This instruction sets the value in the register in the field at
1578 mask 0x0f00 of the instruction. */
1579#define SETS1 (0x80)
84dcfba7 1580#define SETS1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1581
1582/* This instruction sets the value in the register in the field at
1583 mask 0x00f0 of the instruction. */
1584#define SETS2 (0x100)
84dcfba7 1585#define SETS2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1586
1587/* This instruction sets register 0. */
1588#define SETSR0 (0x200)
1589
1590/* This instruction sets a special register. */
1591#define SETSSP (0x400)
1592
1593/* This instruction uses a special register. */
1594#define USESSP (0x800)
1595
1596/* This instruction uses the floating point register in the field at
1597 mask 0x0f00 of the instruction. */
1598#define USESF1 (0x1000)
84dcfba7 1599#define USESF1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1600
1601/* This instruction uses the floating point register in the field at
1602 mask 0x00f0 of the instruction. */
1603#define USESF2 (0x2000)
84dcfba7 1604#define USESF2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1605
1606/* This instruction uses floating point register 0. */
1607#define USESF0 (0x4000)
1608
1609/* This instruction sets the floating point register in the field at
1610 mask 0x0f00 of the instruction. */
1611#define SETSF1 (0x8000)
84dcfba7 1612#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
252b5132 1613
d4845d57
JR
1614#define USESAS (0x10000)
1615#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1616#define USESR8 (0x20000)
1617#define SETSAS (0x40000)
1618#define SETSAS_REG(x) USESAS_REG (x)
1619
8d6ad26e
AM
1620#define MAP(a) a, sizeof a / sizeof a[0]
1621
86033394 1622#ifndef COFF_IMAGE_WITH_PE
252b5132 1623
8d6ad26e 1624/* The opcode maps. */
252b5132
RH
1625
1626static const struct sh_opcode sh_opcode00[] =
1627{
1628 { 0x0008, SETSSP }, /* clrt */
1629 { 0x0009, 0 }, /* nop */
1630 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1631 { 0x0018, SETSSP }, /* sett */
1632 { 0x0019, SETSSP }, /* div0u */
1633 { 0x001b, 0 }, /* sleep */
1634 { 0x0028, SETSSP }, /* clrmac */
1635 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1636 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1637 { 0x0048, SETSSP }, /* clrs */
1638 { 0x0058, SETSSP } /* sets */
1639};
1640
1641static const struct sh_opcode sh_opcode01[] =
1642{
252b5132
RH
1643 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1644 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
252b5132 1645 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
252b5132
RH
1646 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1647 { 0x0029, SETS1 | USESSP }, /* movt rn */
1648 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
d4845d57
JR
1649 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1650 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1651 { 0x0083, LOAD | USES1 }, /* pref @rn */
1652 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1653 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1654 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1655 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1656 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1657};
1658
252b5132
RH
1659static const struct sh_opcode sh_opcode02[] =
1660{
d4845d57 1661 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
252b5132
RH
1662 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1663 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1664 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1665 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1666 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1667 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1668 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1669 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1670};
1671
1672static const struct sh_minor_opcode sh_opcode0[] =
1673{
1674 { MAP (sh_opcode00), 0xffff },
1675 { MAP (sh_opcode01), 0xf0ff },
1676 { MAP (sh_opcode02), 0xf00f }
1677};
1678
1679static const struct sh_opcode sh_opcode10[] =
1680{
1681 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1682};
1683
1684static const struct sh_minor_opcode sh_opcode1[] =
1685{
1686 { MAP (sh_opcode10), 0xf000 }
1687};
1688
1689static const struct sh_opcode sh_opcode20[] =
1690{
1691 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1692 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1693 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1694 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1695 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1696 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1697 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1698 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1699 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1700 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1701 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1702 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1703 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1704 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1705 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1706};
1707
1708static const struct sh_minor_opcode sh_opcode2[] =
1709{
1710 { MAP (sh_opcode20), 0xf00f }
1711};
1712
1713static const struct sh_opcode sh_opcode30[] =
1714{
1715 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1716 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1717 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1718 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1719 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1720 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1721 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1722 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1723 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1724 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1725 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1726 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1727 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1728 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1729};
1730
1731static const struct sh_minor_opcode sh_opcode3[] =
1732{
1733 { MAP (sh_opcode30), 0xf00f }
1734};
1735
1736static const struct sh_opcode sh_opcode40[] =
1737{
1738 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1739 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1740 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
252b5132
RH
1741 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1742 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1743 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
252b5132
RH
1744 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1745 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1746 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1747 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
252b5132
RH
1748 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1749 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1750 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
d4845d57 1751 { 0x4014, SETSSP | USES1 }, /* setrc rm */
252b5132
RH
1752 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1753 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
252b5132
RH
1754 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1755 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1756 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1757 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
252b5132
RH
1758 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1759 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1760 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
252b5132
RH
1761 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1762 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1763 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
252b5132
RH
1764 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1765 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1766 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1767 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
d4845d57
JR
1768 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1769 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1770 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1771 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1772 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1773 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1774 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1775 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1776 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1777 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1778 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1779 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1780 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1781 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1782 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1783 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1784 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1785 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1786 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1787 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1788 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
252b5132
RH
1789};
1790
1791static const struct sh_opcode sh_opcode41[] =
1792{
d4845d57
JR
1793 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1794 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1795 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1796 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1797 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
252b5132
RH
1798 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1799};
1800
1801static const struct sh_minor_opcode sh_opcode4[] =
1802{
1803 { MAP (sh_opcode40), 0xf0ff },
d4845d57 1804 { MAP (sh_opcode41), 0xf00f }
252b5132
RH
1805};
1806
1807static const struct sh_opcode sh_opcode50[] =
1808{
1809 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1810};
1811
1812static const struct sh_minor_opcode sh_opcode5[] =
1813{
1814 { MAP (sh_opcode50), 0xf000 }
1815};
1816
1817static const struct sh_opcode sh_opcode60[] =
1818{
1819 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1820 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1821 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1822 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1823 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1824 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1825 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1826 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1827 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1828 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1829 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1830 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1831 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1832 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1833 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1834 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1835};
1836
1837static const struct sh_minor_opcode sh_opcode6[] =
1838{
1839 { MAP (sh_opcode60), 0xf00f }
1840};
1841
1842static const struct sh_opcode sh_opcode70[] =
1843{
1844 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1845};
1846
1847static const struct sh_minor_opcode sh_opcode7[] =
1848{
1849 { MAP (sh_opcode70), 0xf000 }
1850};
1851
1852static const struct sh_opcode sh_opcode80[] =
1853{
1854 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1855 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
d4845d57 1856 { 0x8200, SETSSP }, /* setrc #imm */
252b5132
RH
1857 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1858 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1859 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1860 { 0x8900, BRANCH | USESSP }, /* bt label */
1861 { 0x8b00, BRANCH | USESSP }, /* bf label */
d4845d57 1862 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
252b5132 1863 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
d4845d57 1864 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
252b5132
RH
1865 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1866};
1867
1868static const struct sh_minor_opcode sh_opcode8[] =
1869{
1870 { MAP (sh_opcode80), 0xff00 }
1871};
1872
1873static const struct sh_opcode sh_opcode90[] =
1874{
1875 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1876};
1877
1878static const struct sh_minor_opcode sh_opcode9[] =
1879{
1880 { MAP (sh_opcode90), 0xf000 }
1881};
1882
1883static const struct sh_opcode sh_opcodea0[] =
1884{
1885 { 0xa000, BRANCH | DELAY } /* bra label */
1886};
1887
1888static const struct sh_minor_opcode sh_opcodea[] =
1889{
1890 { MAP (sh_opcodea0), 0xf000 }
1891};
1892
1893static const struct sh_opcode sh_opcodeb0[] =
1894{
1895 { 0xb000, BRANCH | DELAY } /* bsr label */
1896};
1897
1898static const struct sh_minor_opcode sh_opcodeb[] =
1899{
1900 { MAP (sh_opcodeb0), 0xf000 }
1901};
1902
1903static const struct sh_opcode sh_opcodec0[] =
1904{
1905 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
1906 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
1907 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
1908 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
1909 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
1910 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
1911 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
1912 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
1913 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
1914 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
1915 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
1916 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
1917 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
1918 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1919 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1920 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
1921};
1922
1923static const struct sh_minor_opcode sh_opcodec[] =
1924{
1925 { MAP (sh_opcodec0), 0xff00 }
1926};
1927
1928static const struct sh_opcode sh_opcoded0[] =
1929{
1930 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
1931};
1932
1933static const struct sh_minor_opcode sh_opcoded[] =
1934{
1935 { MAP (sh_opcoded0), 0xf000 }
1936};
1937
1938static const struct sh_opcode sh_opcodee0[] =
1939{
1940 { 0xe000, SETS1 } /* mov #imm,rn */
1941};
1942
1943static const struct sh_minor_opcode sh_opcodee[] =
1944{
1945 { MAP (sh_opcodee0), 0xf000 }
1946};
1947
1948static const struct sh_opcode sh_opcodef0[] =
1949{
1950 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
1951 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
1952 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
1953 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
1954 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
1955 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
1956 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1957 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
1958 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
1959 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
1960 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
1961 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1962 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
1963 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1964};
1965
1966static const struct sh_opcode sh_opcodef1[] =
1967{
1968 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
1969 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
1970 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
1971 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
1972 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
1973 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
1974 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
1975 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
1976 { 0xf08d, SETSF1 }, /* fldi0 fn */
1977 { 0xf09d, SETSF1 } /* fldi1 fn */
1978};
1979
1980static const struct sh_minor_opcode sh_opcodef[] =
1981{
1982 { MAP (sh_opcodef0), 0xf00f },
1983 { MAP (sh_opcodef1), 0xf0ff }
1984};
1985
d4845d57 1986static struct sh_major_opcode sh_opcodes[] =
252b5132
RH
1987{
1988 { MAP (sh_opcode0) },
1989 { MAP (sh_opcode1) },
1990 { MAP (sh_opcode2) },
1991 { MAP (sh_opcode3) },
1992 { MAP (sh_opcode4) },
1993 { MAP (sh_opcode5) },
1994 { MAP (sh_opcode6) },
1995 { MAP (sh_opcode7) },
1996 { MAP (sh_opcode8) },
1997 { MAP (sh_opcode9) },
1998 { MAP (sh_opcodea) },
1999 { MAP (sh_opcodeb) },
2000 { MAP (sh_opcodec) },
2001 { MAP (sh_opcoded) },
2002 { MAP (sh_opcodee) },
2003 { MAP (sh_opcodef) }
2004};
2005
d4845d57
JR
2006/* The double data transfer / parallel processing insns are not
2007 described here. This will cause sh_align_load_span to leave them alone. */
2008
2009static const struct sh_opcode sh_dsp_opcodef0[] =
2010{
2011 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2012 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2013 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2014 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2015 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2016 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2017 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2018 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2019};
2020
2021static const struct sh_minor_opcode sh_dsp_opcodef[] =
2022{
2023 { MAP (sh_dsp_opcodef0), 0xfc0d }
2024};
2025
252b5132
RH
2026/* Given an instruction, return a pointer to the corresponding
2027 sh_opcode structure. Return NULL if the instruction is not
2028 recognized. */
2029
2030static const struct sh_opcode *
2c3fc389 2031sh_insn_info (unsigned int insn)
252b5132
RH
2032{
2033 const struct sh_major_opcode *maj;
2034 const struct sh_minor_opcode *min, *minend;
2035
2036 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2037 min = maj->minor_opcodes;
2038 minend = min + maj->count;
2039 for (; min < minend; min++)
2040 {
2041 unsigned int l;
2042 const struct sh_opcode *op, *opend;
2043
2044 l = insn & min->mask;
2045 op = min->opcodes;
2046 opend = op + min->count;
2047
2048 /* Since the opcodes tables are sorted, we could use a binary
07d6d2b8 2049 search here if the count were above some cutoff value. */
252b5132
RH
2050 for (; op < opend; op++)
2051 if (op->opcode == l)
2052 return op;
2053 }
2054
cbfe05c4 2055 return NULL;
252b5132
RH
2056}
2057
2058/* See whether an instruction uses a general purpose register. */
2059
b34976b6 2060static bfd_boolean
2c3fc389
NC
2061sh_insn_uses_reg (unsigned int insn,
2062 const struct sh_opcode *op,
2063 unsigned int reg)
252b5132
RH
2064{
2065 unsigned int f;
2066
2067 f = op->flags;
2068
2069 if ((f & USES1) != 0
84dcfba7 2070 && USES1_REG (insn) == reg)
b34976b6 2071 return TRUE;
252b5132 2072 if ((f & USES2) != 0
84dcfba7 2073 && USES2_REG (insn) == reg)
b34976b6 2074 return TRUE;
252b5132
RH
2075 if ((f & USESR0) != 0
2076 && reg == 0)
b34976b6 2077 return TRUE;
d4845d57 2078 if ((f & USESAS) && reg == USESAS_REG (insn))
b34976b6 2079 return TRUE;
d4845d57 2080 if ((f & USESR8) && reg == 8)
b34976b6 2081 return TRUE;
252b5132 2082
b34976b6 2083 return FALSE;
252b5132 2084}
17505c5c 2085
84dcfba7
JR
2086/* See whether an instruction sets a general purpose register. */
2087
b34976b6 2088static bfd_boolean
2c3fc389
NC
2089sh_insn_sets_reg (unsigned int insn,
2090 const struct sh_opcode *op,
2091 unsigned int reg)
84dcfba7
JR
2092{
2093 unsigned int f;
2094
2095 f = op->flags;
2096
2097 if ((f & SETS1) != 0
2098 && SETS1_REG (insn) == reg)
b34976b6 2099 return TRUE;
84dcfba7
JR
2100 if ((f & SETS2) != 0
2101 && SETS2_REG (insn) == reg)
b34976b6 2102 return TRUE;
84dcfba7
JR
2103 if ((f & SETSR0) != 0
2104 && reg == 0)
b34976b6 2105 return TRUE;
d4845d57 2106 if ((f & SETSAS) && reg == SETSAS_REG (insn))
b34976b6 2107 return TRUE;
84dcfba7 2108
b34976b6 2109 return FALSE;
84dcfba7
JR
2110}
2111
2c3fc389 2112/* See whether an instruction uses or sets a general purpose register */
84dcfba7 2113
b34976b6 2114static bfd_boolean
2c3fc389
NC
2115sh_insn_uses_or_sets_reg (unsigned int insn,
2116 const struct sh_opcode *op,
2117 unsigned int reg)
84dcfba7 2118{
2c3fc389 2119 if (sh_insn_uses_reg (insn, op, reg))
b34976b6 2120 return TRUE;
84dcfba7 2121
2c3fc389 2122 return sh_insn_sets_reg (insn, op, reg);
84dcfba7 2123}
252b5132
RH
2124
2125/* See whether an instruction uses a floating point register. */
2126
b34976b6 2127static bfd_boolean
2c3fc389
NC
2128sh_insn_uses_freg (unsigned int insn,
2129 const struct sh_opcode *op,
2130 unsigned int freg)
252b5132
RH
2131{
2132 unsigned int f;
2133
2134 f = op->flags;
2135
2136 /* We can't tell if this is a double-precision insn, so just play safe
2137 and assume that it might be. So not only have we test FREG against
2138 itself, but also even FREG against FREG+1 - if the using insn uses
2139 just the low part of a double precision value - but also an odd
2140 FREG against FREG-1 - if the setting insn sets just the low part
2141 of a double precision value.
2142 So what this all boils down to is that we have to ignore the lowest
2143 bit of the register number. */
cbfe05c4 2144
252b5132 2145 if ((f & USESF1) != 0
84dcfba7 2146 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2147 return TRUE;
252b5132 2148 if ((f & USESF2) != 0
84dcfba7 2149 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2150 return TRUE;
252b5132
RH
2151 if ((f & USESF0) != 0
2152 && freg == 0)
b34976b6 2153 return TRUE;
252b5132 2154
b34976b6 2155 return FALSE;
252b5132
RH
2156}
2157
84dcfba7
JR
2158/* See whether an instruction sets a floating point register. */
2159
b34976b6 2160static bfd_boolean
2c3fc389
NC
2161sh_insn_sets_freg (unsigned int insn,
2162 const struct sh_opcode *op,
2163 unsigned int freg)
84dcfba7
JR
2164{
2165 unsigned int f;
2166
2167 f = op->flags;
2168
2169 /* We can't tell if this is a double-precision insn, so just play safe
2170 and assume that it might be. So not only have we test FREG against
2171 itself, but also even FREG against FREG+1 - if the using insn uses
2172 just the low part of a double precision value - but also an odd
2173 FREG against FREG-1 - if the setting insn sets just the low part
2174 of a double precision value.
2175 So what this all boils down to is that we have to ignore the lowest
2176 bit of the register number. */
cbfe05c4 2177
84dcfba7
JR
2178 if ((f & SETSF1) != 0
2179 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2180 return TRUE;
84dcfba7 2181
b34976b6 2182 return FALSE;
84dcfba7
JR
2183}
2184
2c3fc389
NC
2185/* See whether an instruction uses or sets a floating point register */
2186
2187static bfd_boolean
2188sh_insn_uses_or_sets_freg (unsigned int insn,
2189 const struct sh_opcode *op,
2190 unsigned int reg)
2191{
2192 if (sh_insn_uses_freg (insn, op, reg))
2193 return TRUE;
2194
2195 return sh_insn_sets_freg (insn, op, reg);
2196}
2197
252b5132
RH
2198/* See whether instructions I1 and I2 conflict, assuming I1 comes
2199 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
b34976b6 2200 This should return TRUE if there is a conflict, or FALSE if the
252b5132
RH
2201 instructions can be swapped safely. */
2202
b34976b6 2203static bfd_boolean
2c3fc389
NC
2204sh_insns_conflict (unsigned int i1,
2205 const struct sh_opcode *op1,
2206 unsigned int i2,
2207 const struct sh_opcode *op2)
252b5132
RH
2208{
2209 unsigned int f1, f2;
2210
2211 f1 = op1->flags;
2212 f2 = op2->flags;
2213
2214 /* Load of fpscr conflicts with floating point operations.
2215 FIXME: shouldn't test raw opcodes here. */
2216 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2217 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
b34976b6 2218 return TRUE;
252b5132
RH
2219
2220 if ((f1 & (BRANCH | DELAY)) != 0
2221 || (f2 & (BRANCH | DELAY)) != 0)
b34976b6 2222 return TRUE;
252b5132 2223
84dcfba7
JR
2224 if (((f1 | f2) & SETSSP)
2225 && (f1 & (SETSSP | USESSP))
2226 && (f2 & (SETSSP | USESSP)))
b34976b6 2227 return TRUE;
252b5132
RH
2228
2229 if ((f1 & SETS1) != 0
84dcfba7 2230 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
b34976b6 2231 return TRUE;
252b5132 2232 if ((f1 & SETS2) != 0
84dcfba7 2233 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
b34976b6 2234 return TRUE;
252b5132 2235 if ((f1 & SETSR0) != 0
84dcfba7 2236 && sh_insn_uses_or_sets_reg (i2, op2, 0))
b34976b6 2237 return TRUE;
d4845d57
JR
2238 if ((f1 & SETSAS)
2239 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
b34976b6 2240 return TRUE;
252b5132 2241 if ((f1 & SETSF1) != 0
84dcfba7 2242 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
b34976b6 2243 return TRUE;
252b5132
RH
2244
2245 if ((f2 & SETS1) != 0
84dcfba7 2246 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
b34976b6 2247 return TRUE;
252b5132 2248 if ((f2 & SETS2) != 0
84dcfba7 2249 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
b34976b6 2250 return TRUE;
252b5132 2251 if ((f2 & SETSR0) != 0
84dcfba7 2252 && sh_insn_uses_or_sets_reg (i1, op1, 0))
b34976b6 2253 return TRUE;
d4845d57
JR
2254 if ((f2 & SETSAS)
2255 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
b34976b6 2256 return TRUE;
252b5132 2257 if ((f2 & SETSF1) != 0
84dcfba7 2258 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
b34976b6 2259 return TRUE;
252b5132
RH
2260
2261 /* The instructions do not conflict. */
b34976b6 2262 return FALSE;
252b5132
RH
2263}
2264
2265/* I1 is a load instruction, and I2 is some other instruction. Return
b34976b6 2266 TRUE if I1 loads a register which I2 uses. */
252b5132 2267
b34976b6 2268static bfd_boolean
2c3fc389
NC
2269sh_load_use (unsigned int i1,
2270 const struct sh_opcode *op1,
2271 unsigned int i2,
2272 const struct sh_opcode *op2)
252b5132
RH
2273{
2274 unsigned int f1;
2275
2276 f1 = op1->flags;
2277
2278 if ((f1 & LOAD) == 0)
b34976b6 2279 return FALSE;
252b5132
RH
2280
2281 /* If both SETS1 and SETSSP are set, that means a load to a special
2282 register using postincrement addressing mode, which we don't care
2283 about here. */
2284 if ((f1 & SETS1) != 0
2285 && (f1 & SETSSP) == 0
2286 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
b34976b6 2287 return TRUE;
252b5132
RH
2288
2289 if ((f1 & SETSR0) != 0
2290 && sh_insn_uses_reg (i2, op2, 0))
b34976b6 2291 return TRUE;
252b5132
RH
2292
2293 if ((f1 & SETSF1) != 0
2294 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
b34976b6 2295 return TRUE;
252b5132 2296
b34976b6 2297 return FALSE;
252b5132
RH
2298}
2299
2300/* Try to align loads and stores within a span of memory. This is
2301 called by both the ELF and the COFF sh targets. ABFD and SEC are
2302 the BFD and section we are examining. CONTENTS is the contents of
2303 the section. SWAP is the routine to call to swap two instructions.
2304 RELOCS is a pointer to the internal relocation information, to be
2305 passed to SWAP. PLABEL is a pointer to the current label in a
2306 sorted list of labels; LABEL_END is the end of the list. START and
2307 STOP are the range of memory to examine. If a swap is made,
b34976b6 2308 *PSWAPPED is set to TRUE. */
252b5132 2309
86033394
NC
2310#ifdef COFF_WITH_PE
2311static
2312#endif
b34976b6 2313bfd_boolean
2c3fc389
NC
2314_bfd_sh_align_load_span (bfd *abfd,
2315 asection *sec,
2316 bfd_byte *contents,
2317 bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2318 void * relocs,
2319 bfd_vma **plabel,
2320 bfd_vma *label_end,
2321 bfd_vma start,
2322 bfd_vma stop,
2323 bfd_boolean *pswapped)
252b5132 2324{
d4845d57
JR
2325 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2326 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
252b5132
RH
2327 bfd_vma i;
2328
d4845d57
JR
2329 /* The SH4 has a Harvard architecture, hence aligning loads is not
2330 desirable. In fact, it is counter-productive, since it interferes
2331 with the schedules generated by the compiler. */
2332 if (abfd->arch_info->mach == bfd_mach_sh4)
b34976b6 2333 return TRUE;
d4845d57
JR
2334
2335 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2336 instructions. */
2337 if (dsp)
2338 {
2339 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
4c0160b8 2340 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
d4845d57
JR
2341 }
2342
252b5132
RH
2343 /* Instructions should be aligned on 2 byte boundaries. */
2344 if ((start & 1) == 1)
2345 ++start;
2346
2347 /* Now look through the unaligned addresses. */
2348 i = start;
2349 if ((i & 2) == 0)
2350 i += 2;
2351 for (; i < stop; i += 4)
2352 {
2353 unsigned int insn;
2354 const struct sh_opcode *op;
2355 unsigned int prev_insn = 0;
2356 const struct sh_opcode *prev_op = NULL;
2357
2358 insn = bfd_get_16 (abfd, contents + i);
2359 op = sh_insn_info (insn);
2360 if (op == NULL
2361 || (op->flags & (LOAD | STORE)) == 0)
2362 continue;
2363
2364 /* This is a load or store which is not on a four byte boundary. */
2365
2366 while (*plabel < label_end && **plabel < i)
2367 ++*plabel;
2368
2369 if (i > start)
2370 {
2371 prev_insn = bfd_get_16 (abfd, contents + i - 2);
d4845d57
JR
2372 /* If INSN is the field b of a parallel processing insn, it is not
2373 a load / store after all. Note that the test here might mistake
2374 the field_b of a pcopy insn for the starting code of a parallel
2375 processing insn; this might miss a swapping opportunity, but at
2376 least we're on the safe side. */
2377 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2378 continue;
2379
2380 /* Check if prev_insn is actually the field b of a parallel
2381 processing insn. Again, this can give a spurious match
2382 after a pcopy. */
2383 if (dsp && i - 2 > start)
2384 {
2385 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
cbfe05c4 2386
d4845d57
JR
2387 if ((pprev_insn & 0xfc00) == 0xf800)
2388 prev_op = NULL;
2389 else
2390 prev_op = sh_insn_info (prev_insn);
2391 }
2392 else
2393 prev_op = sh_insn_info (prev_insn);
252b5132
RH
2394
2395 /* If the load/store instruction is in a delay slot, we
2396 can't swap. */
2397 if (prev_op == NULL
2398 || (prev_op->flags & DELAY) != 0)
2399 continue;
2400 }
2401 if (i > start
2402 && (*plabel >= label_end || **plabel != i)
2403 && prev_op != NULL
2404 && (prev_op->flags & (LOAD | STORE)) == 0
2405 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2406 {
b34976b6 2407 bfd_boolean ok;
252b5132
RH
2408
2409 /* The load/store instruction does not have a label, and
2410 there is a previous instruction; PREV_INSN is not
2411 itself a load/store instruction, and PREV_INSN and
2412 INSN do not conflict. */
2413
b34976b6 2414 ok = TRUE;
252b5132
RH
2415
2416 if (i >= start + 4)
2417 {
2418 unsigned int prev2_insn;
2419 const struct sh_opcode *prev2_op;
2420
2421 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2422 prev2_op = sh_insn_info (prev2_insn);
2423
2424 /* If the instruction before PREV_INSN has a delay
2425 slot--that is, PREV_INSN is in a delay slot--we
2426 can not swap. */
2427 if (prev2_op == NULL
2428 || (prev2_op->flags & DELAY) != 0)
b34976b6 2429 ok = FALSE;
252b5132
RH
2430
2431 /* If the instruction before PREV_INSN is a load,
2432 and it sets a register which INSN uses, then
2433 putting INSN immediately after PREV_INSN will
2434 cause a pipeline bubble, so there is no point to
2435 making the swap. */
2436 if (ok
2437 && (prev2_op->flags & LOAD) != 0
2438 && sh_load_use (prev2_insn, prev2_op, insn, op))
b34976b6 2439 ok = FALSE;
252b5132
RH
2440 }
2441
2442 if (ok)
2443 {
2444 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
b34976b6
AM
2445 return FALSE;
2446 *pswapped = TRUE;
252b5132
RH
2447 continue;
2448 }
2449 }
2450
2451 while (*plabel < label_end && **plabel < i + 2)
2452 ++*plabel;
2453
2454 if (i + 2 < stop
2455 && (*plabel >= label_end || **plabel != i + 2))
2456 {
2457 unsigned int next_insn;
2458 const struct sh_opcode *next_op;
2459
2460 /* There is an instruction after the load/store
2461 instruction, and it does not have a label. */
2462 next_insn = bfd_get_16 (abfd, contents + i + 2);
2463 next_op = sh_insn_info (next_insn);
2464 if (next_op != NULL
2465 && (next_op->flags & (LOAD | STORE)) == 0
2466 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2467 {
b34976b6 2468 bfd_boolean ok;
252b5132
RH
2469
2470 /* NEXT_INSN is not itself a load/store instruction,
2471 and it does not conflict with INSN. */
2472
b34976b6 2473 ok = TRUE;
252b5132
RH
2474
2475 /* If PREV_INSN is a load, and it sets a register
2476 which NEXT_INSN uses, then putting NEXT_INSN
2477 immediately after PREV_INSN will cause a pipeline
2478 bubble, so there is no reason to make this swap. */
2479 if (prev_op != NULL
2480 && (prev_op->flags & LOAD) != 0
2481 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
b34976b6 2482 ok = FALSE;
252b5132
RH
2483
2484 /* If INSN is a load, and it sets a register which
2485 the insn after NEXT_INSN uses, then doing the
2486 swap will cause a pipeline bubble, so there is no
2487 reason to make the swap. However, if the insn
2488 after NEXT_INSN is itself a load or store
2489 instruction, then it is misaligned, so
2490 optimistically hope that it will be swapped
2491 itself, and just live with the pipeline bubble if
2492 it isn't. */
2493 if (ok
2494 && i + 4 < stop
2495 && (op->flags & LOAD) != 0)
2496 {
2497 unsigned int next2_insn;
2498 const struct sh_opcode *next2_op;
2499
2500 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2501 next2_op = sh_insn_info (next2_insn);
230d6d81
NC
2502 if (next2_op == NULL
2503 || ((next2_op->flags & (LOAD | STORE)) == 0
2504 && sh_load_use (insn, op, next2_insn, next2_op)))
b34976b6 2505 ok = FALSE;
252b5132
RH
2506 }
2507
2508 if (ok)
2509 {
2510 if (! (*swap) (abfd, sec, relocs, contents, i))
b34976b6
AM
2511 return FALSE;
2512 *pswapped = TRUE;
252b5132
RH
2513 continue;
2514 }
2515 }
2516 }
2517 }
2518
b34976b6 2519 return TRUE;
252b5132 2520}
86033394 2521#endif /* not COFF_IMAGE_WITH_PE */
252b5132 2522
252b5132
RH
2523/* Swap two SH instructions. */
2524
b34976b6 2525static bfd_boolean
2c3fc389
NC
2526sh_swap_insns (bfd * abfd,
2527 asection * sec,
2528 void * relocs,
2529 bfd_byte * contents,
2530 bfd_vma addr)
252b5132
RH
2531{
2532 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2533 unsigned short i1, i2;
2534 struct internal_reloc *irel, *irelend;
2535
2536 /* Swap the instructions themselves. */
2537 i1 = bfd_get_16 (abfd, contents + addr);
2538 i2 = bfd_get_16 (abfd, contents + addr + 2);
dc810e39
AM
2539 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2540 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
252b5132
RH
2541
2542 /* Adjust all reloc addresses. */
2543 irelend = internal_relocs + sec->reloc_count;
2544 for (irel = internal_relocs; irel < irelend; irel++)
2545 {
2546 int type, add;
2547
2548 /* There are a few special types of relocs that we don't want to
07d6d2b8
AM
2549 adjust. These relocs do not apply to the instruction itself,
2550 but are only associated with the address. */
252b5132
RH
2551 type = irel->r_type;
2552 if (type == R_SH_ALIGN
2553 || type == R_SH_CODE
2554 || type == R_SH_DATA
2555 || type == R_SH_LABEL)
2556 continue;
2557
2558 /* If an R_SH_USES reloc points to one of the addresses being
07d6d2b8
AM
2559 swapped, we must adjust it. It would be incorrect to do this
2560 for a jump, though, since we want to execute both
2561 instructions after the jump. (We have avoided swapping
2562 around a label, so the jump will not wind up executing an
2563 instruction it shouldn't). */
252b5132
RH
2564 if (type == R_SH_USES)
2565 {
2566 bfd_vma off;
2567
2568 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2569 if (off == addr)
2570 irel->r_offset += 2;
2571 else if (off == addr + 2)
2572 irel->r_offset -= 2;
2573 }
2574
2575 if (irel->r_vaddr - sec->vma == addr)
2576 {
2577 irel->r_vaddr += 2;
2578 add = -2;
2579 }
2580 else if (irel->r_vaddr - sec->vma == addr + 2)
2581 {
2582 irel->r_vaddr -= 2;
2583 add = 2;
2584 }
2585 else
2586 add = 0;
2587
2588 if (add != 0)
2589 {
2590 bfd_byte *loc;
2591 unsigned short insn, oinsn;
b34976b6 2592 bfd_boolean overflow;
252b5132
RH
2593
2594 loc = contents + irel->r_vaddr - sec->vma;
b34976b6 2595 overflow = FALSE;
252b5132
RH
2596 switch (type)
2597 {
2598 default:
2599 break;
2600
2601 case R_SH_PCDISP8BY2:
2602 case R_SH_PCRELIMM8BY2:
2603 insn = bfd_get_16 (abfd, loc);
2604 oinsn = insn;
2605 insn += add / 2;
2606 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 2607 overflow = TRUE;
dc810e39 2608 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2609 break;
2610
2611 case R_SH_PCDISP:
2612 insn = bfd_get_16 (abfd, loc);
2613 oinsn = insn;
2614 insn += add / 2;
2615 if ((oinsn & 0xf000) != (insn & 0xf000))
b34976b6 2616 overflow = TRUE;
dc810e39 2617 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2618 break;
2619
2620 case R_SH_PCRELIMM8BY4:
2621 /* This reloc ignores the least significant 3 bits of
07d6d2b8
AM
2622 the program counter before adding in the offset.
2623 This means that if ADDR is at an even address, the
2624 swap will not affect the offset. If ADDR is an at an
2625 odd address, then the instruction will be crossing a
2626 four byte boundary, and must be adjusted. */
252b5132
RH
2627 if ((addr & 3) != 0)
2628 {
2629 insn = bfd_get_16 (abfd, loc);
2630 oinsn = insn;
2631 insn += add / 2;
2632 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 2633 overflow = TRUE;
dc810e39 2634 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2635 }
2636
2637 break;
2638 }
2639
2640 if (overflow)
2641 {
4eca0228 2642 _bfd_error_handler
695344c0 2643 /* xgettext: c-format */
2dcf00ce
AM
2644 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
2645 abfd, (uint64_t) irel->r_vaddr);
252b5132 2646 bfd_set_error (bfd_error_bad_value);
b34976b6 2647 return FALSE;
252b5132
RH
2648 }
2649 }
2650 }
2651
b34976b6 2652 return TRUE;
252b5132 2653}
2c3fc389
NC
2654
2655/* Look for loads and stores which we can align to four byte
2656 boundaries. See the longer comment above sh_relax_section for why
2657 this is desirable. This sets *PSWAPPED if some instruction was
2658 swapped. */
2659
2660static bfd_boolean
2661sh_align_loads (bfd *abfd,
2662 asection *sec,
2663 struct internal_reloc *internal_relocs,
2664 bfd_byte *contents,
2665 bfd_boolean *pswapped)
2666{
2667 struct internal_reloc *irel, *irelend;
2668 bfd_vma *labels = NULL;
2669 bfd_vma *label, *label_end;
2670 bfd_size_type amt;
2671
2672 *pswapped = FALSE;
2673
2674 irelend = internal_relocs + sec->reloc_count;
2675
2676 /* Get all the addresses with labels on them. */
2677 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2678 labels = (bfd_vma *) bfd_malloc (amt);
2679 if (labels == NULL)
2680 goto error_return;
2681 label_end = labels;
2682 for (irel = internal_relocs; irel < irelend; irel++)
2683 {
2684 if (irel->r_type == R_SH_LABEL)
2685 {
2686 *label_end = irel->r_vaddr - sec->vma;
2687 ++label_end;
2688 }
2689 }
2690
2691 /* Note that the assembler currently always outputs relocs in
2692 address order. If that ever changes, this code will need to sort
2693 the label values and the relocs. */
2694
2695 label = labels;
2696
2697 for (irel = internal_relocs; irel < irelend; irel++)
2698 {
2699 bfd_vma start, stop;
2700
2701 if (irel->r_type != R_SH_CODE)
2702 continue;
2703
2704 start = irel->r_vaddr - sec->vma;
2705
2706 for (irel++; irel < irelend; irel++)
2707 if (irel->r_type == R_SH_DATA)
2708 break;
2709 if (irel < irelend)
2710 stop = irel->r_vaddr - sec->vma;
2711 else
2712 stop = sec->size;
2713
2714 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2715 internal_relocs, &label,
2716 label_end, start, stop, pswapped))
2717 goto error_return;
2718 }
2719
2720 free (labels);
2721
2722 return TRUE;
2723
2724 error_return:
c9594989 2725 free (labels);
2c3fc389
NC
2726 return FALSE;
2727}
252b5132
RH
2728\f
2729/* This is a modification of _bfd_coff_generic_relocate_section, which
2730 will handle SH relaxing. */
2731
b34976b6 2732static bfd_boolean
2c3fc389
NC
2733sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2734 struct bfd_link_info *info,
2735 bfd *input_bfd,
2736 asection *input_section,
2737 bfd_byte *contents,
2738 struct internal_reloc *relocs,
2739 struct internal_syment *syms,
2740 asection **sections)
252b5132
RH
2741{
2742 struct internal_reloc *rel;
2743 struct internal_reloc *relend;
2744
2745 rel = relocs;
2746 relend = rel + input_section->reloc_count;
2747 for (; rel < relend; rel++)
2748 {
2749 long symndx;
2750 struct coff_link_hash_entry *h;
2751 struct internal_syment *sym;
2752 bfd_vma addend;
2753 bfd_vma val;
2754 reloc_howto_type *howto;
2755 bfd_reloc_status_type rstat;
2756
2757 /* Almost all relocs have to do with relaxing. If any work must
07d6d2b8 2758 be done for them, it has been done in sh_relax_section. */
252b5132 2759 if (rel->r_type != R_SH_IMM32
17505c5c
NC
2760#ifdef COFF_WITH_PE
2761 && rel->r_type != R_SH_IMM32CE
2762 && rel->r_type != R_SH_IMAGEBASE
2763#endif
252b5132
RH
2764 && rel->r_type != R_SH_PCDISP)
2765 continue;
2766
2767 symndx = rel->r_symndx;
2768
2769 if (symndx == -1)
2770 {
2771 h = NULL;
2772 sym = NULL;
2773 }
2774 else
cbfe05c4 2775 {
252b5132
RH
2776 if (symndx < 0
2777 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2778 {
4eca0228 2779 _bfd_error_handler
695344c0 2780 /* xgettext: c-format */
871b3ab2 2781 (_("%pB: illegal symbol index %ld in relocs"),
d003868e 2782 input_bfd, symndx);
252b5132 2783 bfd_set_error (bfd_error_bad_value);
b34976b6 2784 return FALSE;
252b5132
RH
2785 }
2786 h = obj_coff_sym_hashes (input_bfd)[symndx];
2787 sym = syms + symndx;
2788 }
2789
2790 if (sym != NULL && sym->n_scnum != 0)
2791 addend = - sym->n_value;
2792 else
2793 addend = 0;
2794
2795 if (rel->r_type == R_SH_PCDISP)
2796 addend -= 4;
2797
2798 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2799 howto = NULL;
2800 else
2801 howto = &sh_coff_howtos[rel->r_type];
2802
2803 if (howto == NULL)
2804 {
2805 bfd_set_error (bfd_error_bad_value);
b34976b6 2806 return FALSE;
252b5132
RH
2807 }
2808
17505c5c
NC
2809#ifdef COFF_WITH_PE
2810 if (rel->r_type == R_SH_IMAGEBASE)
2811 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2812#endif
cbfe05c4 2813
252b5132
RH
2814 val = 0;
2815
2816 if (h == NULL)
2817 {
2818 asection *sec;
2819
2820 /* There is nothing to do for an internal PCDISP reloc. */
2821 if (rel->r_type == R_SH_PCDISP)
2822 continue;
2823
2824 if (symndx == -1)
2825 {
2826 sec = bfd_abs_section_ptr;
2827 val = 0;
2828 }
2829 else
2830 {
2831 sec = sections[symndx];
07d6d2b8 2832 val = (sec->output_section->vma
252b5132
RH
2833 + sec->output_offset
2834 + sym->n_value
2835 - sec->vma);
2836 }
2837 }
2838 else
2839 {
2840 if (h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2842 {
2843 asection *sec;
2844
2845 sec = h->root.u.def.section;
2846 val = (h->root.u.def.value
2847 + sec->output_section->vma
2848 + sec->output_offset);
2849 }
0e1862bb 2850 else if (! bfd_link_relocatable (info))
1a72702b
AM
2851 (*info->callbacks->undefined_symbol)
2852 (info, h->root.root.string, input_bfd, input_section,
2853 rel->r_vaddr - input_section->vma, TRUE);
252b5132
RH
2854 }
2855
2856 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2857 contents,
2858 rel->r_vaddr - input_section->vma,
2859 val, addend);
2860
2861 switch (rstat)
2862 {
2863 default:
2864 abort ();
2865 case bfd_reloc_ok:
2866 break;
2867 case bfd_reloc_overflow:
2868 {
2869 const char *name;
2870 char buf[SYMNMLEN + 1];
2871
2872 if (symndx == -1)
2873 name = "*ABS*";
2874 else if (h != NULL)
dfeffb9f 2875 name = NULL;
252b5132
RH
2876 else if (sym->_n._n_n._n_zeroes == 0
2877 && sym->_n._n_n._n_offset != 0)
2878 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2879 else
2880 {
07d6d2b8 2881 strncpy (buf, sym->_n._n_name, SYMNMLEN);
252b5132
RH
2882 buf[SYMNMLEN] = '\0';
2883 name = buf;
2884 }
2885
1a72702b
AM
2886 (*info->callbacks->reloc_overflow)
2887 (info, (h ? &h->root : NULL), name, howto->name,
2888 (bfd_vma) 0, input_bfd, input_section,
2889 rel->r_vaddr - input_section->vma);
252b5132
RH
2890 }
2891 }
2892 }
2893
b34976b6 2894 return TRUE;
252b5132
RH
2895}
2896
2897/* This is a version of bfd_generic_get_relocated_section_contents
2898 which uses sh_relocate_section. */
2899
2900static bfd_byte *
2c3fc389
NC
2901sh_coff_get_relocated_section_contents (bfd *output_bfd,
2902 struct bfd_link_info *link_info,
2903 struct bfd_link_order *link_order,
2904 bfd_byte *data,
2905 bfd_boolean relocatable,
2906 asymbol **symbols)
252b5132
RH
2907{
2908 asection *input_section = link_order->u.indirect.section;
2909 bfd *input_bfd = input_section->owner;
2910 asection **sections = NULL;
2911 struct internal_reloc *internal_relocs = NULL;
2912 struct internal_syment *internal_syms = NULL;
2913
2914 /* We only need to handle the case of relaxing, or of having a
2915 particular set of section contents, specially. */
1049f94e 2916 if (relocatable
252b5132
RH
2917 || coff_section_data (input_bfd, input_section) == NULL
2918 || coff_section_data (input_bfd, input_section)->contents == NULL)
2919 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2920 link_order, data,
1049f94e 2921 relocatable,
252b5132
RH
2922 symbols);
2923
2924 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
eea6121a 2925 (size_t) input_section->size);
252b5132
RH
2926
2927 if ((input_section->flags & SEC_RELOC) != 0
2928 && input_section->reloc_count > 0)
2929 {
2930 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2931 bfd_byte *esym, *esymend;
2932 struct internal_syment *isymp;
2933 asection **secpp;
dc810e39 2934 bfd_size_type amt;
252b5132
RH
2935
2936 if (! _bfd_coff_get_external_symbols (input_bfd))
2937 goto error_return;
2938
2939 internal_relocs = (_bfd_coff_read_internal_relocs
b34976b6
AM
2940 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
2941 FALSE, (struct internal_reloc *) NULL));
252b5132
RH
2942 if (internal_relocs == NULL)
2943 goto error_return;
2944
dc810e39
AM
2945 amt = obj_raw_syment_count (input_bfd);
2946 amt *= sizeof (struct internal_syment);
2947 internal_syms = (struct internal_syment *) bfd_malloc (amt);
252b5132
RH
2948 if (internal_syms == NULL)
2949 goto error_return;
2950
dc810e39
AM
2951 amt = obj_raw_syment_count (input_bfd);
2952 amt *= sizeof (asection *);
2953 sections = (asection **) bfd_malloc (amt);
252b5132
RH
2954 if (sections == NULL)
2955 goto error_return;
2956
2957 isymp = internal_syms;
2958 secpp = sections;
2959 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2960 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2961 while (esym < esymend)
2962 {
2c3fc389 2963 bfd_coff_swap_sym_in (input_bfd, esym, isymp);
252b5132
RH
2964
2965 if (isymp->n_scnum != 0)
2966 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2967 else
2968 {
2969 if (isymp->n_value == 0)
2970 *secpp = bfd_und_section_ptr;
2971 else
2972 *secpp = bfd_com_section_ptr;
2973 }
2974
2975 esym += (isymp->n_numaux + 1) * symesz;
2976 secpp += isymp->n_numaux + 1;
2977 isymp += isymp->n_numaux + 1;
2978 }
2979
2980 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2981 input_section, data, internal_relocs,
2982 internal_syms, sections))
2983 goto error_return;
2984
2985 free (sections);
2986 sections = NULL;
2987 free (internal_syms);
2988 internal_syms = NULL;
2989 free (internal_relocs);
2990 internal_relocs = NULL;
2991 }
2992
2993 return data;
2994
2995 error_return:
c9594989
AM
2996 free (internal_relocs);
2997 free (internal_syms);
2998 free (sections);
252b5132
RH
2999 return NULL;
3000}
3001
3002/* The target vectors. */
3003
17505c5c 3004#ifndef TARGET_SHL_SYM
6d00b590 3005CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
17505c5c 3006#endif
252b5132 3007
c3c89269
NC
3008#ifdef TARGET_SHL_SYM
3009#define TARGET_SYM TARGET_SHL_SYM
3010#else
6d00b590 3011#define TARGET_SYM sh_coff_le_vec
c3c89269 3012#endif
cbfe05c4 3013
c3c89269
NC
3014#ifndef TARGET_SHL_NAME
3015#define TARGET_SHL_NAME "coff-shl"
3016#endif
252b5132 3017
17505c5c
NC
3018#ifdef COFF_WITH_PE
3019CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3fa78519 3020 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
17505c5c 3021#else
86033394 3022CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3fa78519 3023 0, '_', NULL, COFF_SWAP_TABLE)
17505c5c 3024#endif
86033394 3025
17505c5c 3026#ifndef TARGET_SHL_SYM
2c3fc389 3027
252b5132
RH
3028/* Some people want versions of the SH COFF target which do not align
3029 to 16 byte boundaries. We implement that by adding a couple of new
3030 target vectors. These are just like the ones above, but they
3031 change the default section alignment. To generate them in the
3032 assembler, use -small. To use them in the linker, use -b
3033 coff-sh{l}-small and -oformat coff-sh{l}-small.
3034
3035 Yes, this is a horrible hack. A general solution for setting
3036 section alignment in COFF is rather complex. ELF handles this
3037 correctly. */
3038
3039/* Only recognize the small versions if the target was not defaulted.
3040 Otherwise we won't recognize the non default endianness. */
3041
cb001c0d 3042static bfd_cleanup
2c3fc389 3043coff_small_object_p (bfd *abfd)
252b5132
RH
3044{
3045 if (abfd->target_defaulted)
3046 {
3047 bfd_set_error (bfd_error_wrong_format);
3048 return NULL;
3049 }
3050 return coff_object_p (abfd);
3051}
3052
3053/* Set the section alignment for the small versions. */
3054
b34976b6 3055static bfd_boolean
2c3fc389 3056coff_small_new_section_hook (bfd *abfd, asection *section)
252b5132
RH
3057{
3058 if (! coff_new_section_hook (abfd, section))
b34976b6 3059 return FALSE;
252b5132
RH
3060
3061 /* We must align to at least a four byte boundary, because longword
3062 accesses must be on a four byte boundary. */
3063 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3064 section->alignment_power = 2;
3065
b34976b6 3066 return TRUE;
252b5132
RH
3067}
3068
3069/* This is copied from bfd_coff_std_swap_table so that we can change
3070 the default section alignment power. */
3071
88183869 3072static bfd_coff_backend_data bfd_coff_small_swap_table =
252b5132
RH
3073{
3074 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3075 coff_swap_aux_out, coff_swap_sym_out,
3076 coff_swap_lineno_out, coff_swap_reloc_out,
3077 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3078 coff_swap_scnhdr_out,
692b7d62 3079 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
252b5132 3080#ifdef COFF_LONG_FILENAMES
b34976b6 3081 TRUE,
252b5132 3082#else
b34976b6 3083 FALSE,
252b5132 3084#endif
88183869 3085 COFF_DEFAULT_LONG_SECTION_NAMES,
252b5132 3086 2,
ecefdb58 3087#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
b34976b6 3088 TRUE,
ecefdb58 3089#else
b34976b6 3090 FALSE,
ecefdb58
CP
3091#endif
3092#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3093 4,
3094#else
3095 2,
3096#endif
167ad85b 3097 32768,
252b5132
RH
3098 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3099 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3100 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3101 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3102 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
5d54c628 3103 coff_classify_symbol, coff_compute_section_file_positions,
252b5132
RH
3104 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3105 coff_adjust_symndx, coff_link_add_one_symbol,
2b5c217d
NC
3106 coff_link_output_has_begun, coff_final_link_postscript,
3107 bfd_pe_print_pdata
252b5132
RH
3108};
3109
3110#define coff_small_close_and_cleanup \
3111 coff_close_and_cleanup
3112#define coff_small_bfd_free_cached_info \
3113 coff_bfd_free_cached_info
3114#define coff_small_get_section_contents \
3115 coff_get_section_contents
3116#define coff_small_get_section_contents_in_window \
3117 coff_get_section_contents_in_window
3118
6d00b590 3119extern const bfd_target sh_coff_small_le_vec;
c3c89269 3120
6d00b590 3121const bfd_target sh_coff_small_vec =
252b5132
RH
3122{
3123 "coff-sh-small", /* name */
3124 bfd_target_coff_flavour,
3125 BFD_ENDIAN_BIG, /* data byte order is big */
3126 BFD_ENDIAN_BIG, /* header byte order is big */
3127
d00dd7dc
AM
3128 (HAS_RELOC | EXEC_P /* object flags */
3129 | HAS_LINENO | HAS_DEBUG
3130 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
252b5132
RH
3131
3132 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3133 '_', /* leading symbol underscore */
3134 '/', /* ar_pad_char */
3135 15, /* ar_max_namelen */
0aabe54e 3136 0, /* match priority. */
252b5132
RH
3137 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3138 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3139 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3140 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3141 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3142 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3143
d00dd7dc
AM
3144 { /* bfd_check_format */
3145 _bfd_dummy_target,
3146 coff_small_object_p,
3147 bfd_generic_archive_p,
3148 _bfd_dummy_target
3149 },
3150 { /* bfd_set_format */
3151 _bfd_bool_bfd_false_error,
3152 coff_mkobject,
3153 _bfd_generic_mkarchive,
3154 _bfd_bool_bfd_false_error
3155 },
3156 { /* bfd_write_contents */
3157 _bfd_bool_bfd_false_error,
3158 coff_write_object_contents,
3159 _bfd_write_archive_contents,
3160 _bfd_bool_bfd_false_error
3161 },
252b5132
RH
3162
3163 BFD_JUMP_TABLE_GENERIC (coff_small),
3164 BFD_JUMP_TABLE_COPY (coff),
3165 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3166 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3167 BFD_JUMP_TABLE_SYMBOLS (coff),
3168 BFD_JUMP_TABLE_RELOCS (coff),
3169 BFD_JUMP_TABLE_WRITE (coff),
3170 BFD_JUMP_TABLE_LINK (coff),
3171 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3172
d00dd7dc 3173 &sh_coff_small_le_vec,
cbfe05c4 3174
d00dd7dc 3175 &bfd_coff_small_swap_table
252b5132
RH
3176};
3177
6d00b590 3178const bfd_target sh_coff_small_le_vec =
252b5132
RH
3179{
3180 "coff-shl-small", /* name */
3181 bfd_target_coff_flavour,
3182 BFD_ENDIAN_LITTLE, /* data byte order is little */
3183 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3184
d00dd7dc
AM
3185 (HAS_RELOC | EXEC_P /* object flags */
3186 | HAS_LINENO | HAS_DEBUG
3187 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
252b5132
RH
3188
3189 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3190 '_', /* leading symbol underscore */
3191 '/', /* ar_pad_char */
3192 15, /* ar_max_namelen */
0aabe54e 3193 0, /* match priority. */
252b5132
RH
3194 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3195 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3196 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3197 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3198 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3199 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3200
d00dd7dc
AM
3201 { /* bfd_check_format */
3202 _bfd_dummy_target,
3203 coff_small_object_p,
3204 bfd_generic_archive_p,
3205 _bfd_dummy_target
3206 },
3207 { /* bfd_set_format */
3208 _bfd_bool_bfd_false_error,
3209 coff_mkobject,
3210 _bfd_generic_mkarchive,
3211 _bfd_bool_bfd_false_error
3212 },
3213 { /* bfd_write_contents */
3214 _bfd_bool_bfd_false_error,
3215 coff_write_object_contents,
3216 _bfd_write_archive_contents,
3217 _bfd_bool_bfd_false_error
3218 },
252b5132
RH
3219
3220 BFD_JUMP_TABLE_GENERIC (coff_small),
3221 BFD_JUMP_TABLE_COPY (coff),
3222 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3223 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3224 BFD_JUMP_TABLE_SYMBOLS (coff),
3225 BFD_JUMP_TABLE_RELOCS (coff),
3226 BFD_JUMP_TABLE_WRITE (coff),
3227 BFD_JUMP_TABLE_LINK (coff),
3228 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3229
d00dd7dc 3230 &sh_coff_small_vec,
cbfe05c4 3231
d00dd7dc 3232 &bfd_coff_small_swap_table
252b5132 3233};
17505c5c 3234#endif
This page took 1.10519 seconds and 4 git commands to generate.