Sync from GCC
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
66eb6687 3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69
RS
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b34976b6 496static bfd_boolean mips_elf_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
712\f
0a44bf69
RS
713/* The format of the first PLT entry in a VxWorks executable. */
714static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721};
722
723/* The format of subsequent PLT entries. */
724static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
732 0x00000000 /* nop */
733};
734
735/* The format of the first PLT entry in a VxWorks shared object. */
736static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
742 0x00000000 /* nop */
743};
744
745/* The format of subsequent PLT entries. */
746static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
749};
750\f
b49e97c9
TS
751/* Look up an entry in a MIPS ELF linker hash table. */
752
753#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
756 (copy), (follow)))
757
758/* Traverse a MIPS ELF linker hash table. */
759
760#define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
762 (&(table)->root, \
9719ad41 763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
764 (info)))
765
766/* Get the MIPS ELF linker hash table from a link_info structure. */
767
768#define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
770
0f20cc35
DJ
771/* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
773
774#define TP_OFFSET 0x7000
775#define DTP_OFFSET 0x8000
776
777static bfd_vma
778dtprel_base (struct bfd_link_info *info)
779{
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
782 return 0;
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
784}
785
786static bfd_vma
787tprel_base (struct bfd_link_info *info)
788{
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
791 return 0;
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
793}
794
b49e97c9
TS
795/* Create an entry in a MIPS ELF linker hash table. */
796
797static struct bfd_hash_entry *
9719ad41
RS
798mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
800{
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
803
804 /* Allocate the structure if it has not already been allocated by a
805 subclass. */
9719ad41
RS
806 if (ret == NULL)
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
808 if (ret == NULL)
b49e97c9
TS
809 return (struct bfd_hash_entry *) ret;
810
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
814 table, string));
9719ad41 815 if (ret != NULL)
b49e97c9
TS
816 {
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
821 ret->esym.ifd = -2;
822 ret->possibly_dynamic_relocs = 0;
b34976b6 823 ret->readonly_reloc = FALSE;
b34976b6 824 ret->no_fn_stub = FALSE;
b49e97c9 825 ret->fn_stub = NULL;
b34976b6 826 ret->need_fn_stub = FALSE;
b49e97c9
TS
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
b34976b6 829 ret->forced_local = FALSE;
0a44bf69
RS
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
0f20cc35 832 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
833 }
834
835 return (struct bfd_hash_entry *) ret;
836}
f0abc2a1
AM
837
838bfd_boolean
9719ad41 839_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 840{
f592407e
AM
841 if (!sec->used_by_bfd)
842 {
843 struct _mips_elf_section_data *sdata;
844 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 845
f592407e
AM
846 sdata = bfd_zalloc (abfd, amt);
847 if (sdata == NULL)
848 return FALSE;
849 sec->used_by_bfd = sdata;
850 }
f0abc2a1
AM
851
852 return _bfd_elf_new_section_hook (abfd, sec);
853}
b49e97c9
TS
854\f
855/* Read ECOFF debugging information from a .mdebug section into a
856 ecoff_debug_info structure. */
857
b34976b6 858bfd_boolean
9719ad41
RS
859_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
860 struct ecoff_debug_info *debug)
b49e97c9
TS
861{
862 HDRR *symhdr;
863 const struct ecoff_debug_swap *swap;
9719ad41 864 char *ext_hdr;
b49e97c9
TS
865
866 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
867 memset (debug, 0, sizeof (*debug));
868
9719ad41 869 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
870 if (ext_hdr == NULL && swap->external_hdr_size != 0)
871 goto error_return;
872
9719ad41 873 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 874 swap->external_hdr_size))
b49e97c9
TS
875 goto error_return;
876
877 symhdr = &debug->symbolic_header;
878 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
879
880 /* The symbolic header contains absolute file offsets and sizes to
881 read. */
882#define READ(ptr, offset, count, size, type) \
883 if (symhdr->count == 0) \
884 debug->ptr = NULL; \
885 else \
886 { \
887 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 888 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
889 if (debug->ptr == NULL) \
890 goto error_return; \
9719ad41 891 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
892 || bfd_bread (debug->ptr, amt, abfd) != amt) \
893 goto error_return; \
894 }
895
896 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
897 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
898 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
899 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
900 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
901 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
902 union aux_ext *);
903 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
904 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
905 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
906 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
907 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
908#undef READ
909
910 debug->fdr = NULL;
b49e97c9 911
b34976b6 912 return TRUE;
b49e97c9
TS
913
914 error_return:
915 if (ext_hdr != NULL)
916 free (ext_hdr);
917 if (debug->line != NULL)
918 free (debug->line);
919 if (debug->external_dnr != NULL)
920 free (debug->external_dnr);
921 if (debug->external_pdr != NULL)
922 free (debug->external_pdr);
923 if (debug->external_sym != NULL)
924 free (debug->external_sym);
925 if (debug->external_opt != NULL)
926 free (debug->external_opt);
927 if (debug->external_aux != NULL)
928 free (debug->external_aux);
929 if (debug->ss != NULL)
930 free (debug->ss);
931 if (debug->ssext != NULL)
932 free (debug->ssext);
933 if (debug->external_fdr != NULL)
934 free (debug->external_fdr);
935 if (debug->external_rfd != NULL)
936 free (debug->external_rfd);
937 if (debug->external_ext != NULL)
938 free (debug->external_ext);
b34976b6 939 return FALSE;
b49e97c9
TS
940}
941\f
942/* Swap RPDR (runtime procedure table entry) for output. */
943
944static void
9719ad41 945ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
946{
947 H_PUT_S32 (abfd, in->adr, ex->p_adr);
948 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
949 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
950 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
951 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
952 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
953
954 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
955 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
956
957 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
958}
959
960/* Create a runtime procedure table from the .mdebug section. */
961
b34976b6 962static bfd_boolean
9719ad41
RS
963mips_elf_create_procedure_table (void *handle, bfd *abfd,
964 struct bfd_link_info *info, asection *s,
965 struct ecoff_debug_info *debug)
b49e97c9
TS
966{
967 const struct ecoff_debug_swap *swap;
968 HDRR *hdr = &debug->symbolic_header;
969 RPDR *rpdr, *rp;
970 struct rpdr_ext *erp;
9719ad41 971 void *rtproc;
b49e97c9
TS
972 struct pdr_ext *epdr;
973 struct sym_ext *esym;
974 char *ss, **sv;
975 char *str;
976 bfd_size_type size;
977 bfd_size_type count;
978 unsigned long sindex;
979 unsigned long i;
980 PDR pdr;
981 SYMR sym;
982 const char *no_name_func = _("static procedure (no name)");
983
984 epdr = NULL;
985 rpdr = NULL;
986 esym = NULL;
987 ss = NULL;
988 sv = NULL;
989
990 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
991
992 sindex = strlen (no_name_func) + 1;
993 count = hdr->ipdMax;
994 if (count > 0)
995 {
996 size = swap->external_pdr_size;
997
9719ad41 998 epdr = bfd_malloc (size * count);
b49e97c9
TS
999 if (epdr == NULL)
1000 goto error_return;
1001
9719ad41 1002 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1003 goto error_return;
1004
1005 size = sizeof (RPDR);
9719ad41 1006 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1007 if (rpdr == NULL)
1008 goto error_return;
1009
1010 size = sizeof (char *);
9719ad41 1011 sv = bfd_malloc (size * count);
b49e97c9
TS
1012 if (sv == NULL)
1013 goto error_return;
1014
1015 count = hdr->isymMax;
1016 size = swap->external_sym_size;
9719ad41 1017 esym = bfd_malloc (size * count);
b49e97c9
TS
1018 if (esym == NULL)
1019 goto error_return;
1020
9719ad41 1021 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1022 goto error_return;
1023
1024 count = hdr->issMax;
9719ad41 1025 ss = bfd_malloc (count);
b49e97c9
TS
1026 if (ss == NULL)
1027 goto error_return;
f075ee0c 1028 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1029 goto error_return;
1030
1031 count = hdr->ipdMax;
1032 for (i = 0; i < (unsigned long) count; i++, rp++)
1033 {
9719ad41
RS
1034 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1035 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1036 rp->adr = sym.value;
1037 rp->regmask = pdr.regmask;
1038 rp->regoffset = pdr.regoffset;
1039 rp->fregmask = pdr.fregmask;
1040 rp->fregoffset = pdr.fregoffset;
1041 rp->frameoffset = pdr.frameoffset;
1042 rp->framereg = pdr.framereg;
1043 rp->pcreg = pdr.pcreg;
1044 rp->irpss = sindex;
1045 sv[i] = ss + sym.iss;
1046 sindex += strlen (sv[i]) + 1;
1047 }
1048 }
1049
1050 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1051 size = BFD_ALIGN (size, 16);
9719ad41 1052 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1053 if (rtproc == NULL)
1054 {
1055 mips_elf_hash_table (info)->procedure_count = 0;
1056 goto error_return;
1057 }
1058
1059 mips_elf_hash_table (info)->procedure_count = count + 2;
1060
9719ad41 1061 erp = rtproc;
b49e97c9
TS
1062 memset (erp, 0, sizeof (struct rpdr_ext));
1063 erp++;
1064 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1065 strcpy (str, no_name_func);
1066 str += strlen (no_name_func) + 1;
1067 for (i = 0; i < count; i++)
1068 {
1069 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1070 strcpy (str, sv[i]);
1071 str += strlen (sv[i]) + 1;
1072 }
1073 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1074
1075 /* Set the size and contents of .rtproc section. */
eea6121a 1076 s->size = size;
9719ad41 1077 s->contents = rtproc;
b49e97c9
TS
1078
1079 /* Skip this section later on (I don't think this currently
1080 matters, but someday it might). */
8423293d 1081 s->map_head.link_order = NULL;
b49e97c9
TS
1082
1083 if (epdr != NULL)
1084 free (epdr);
1085 if (rpdr != NULL)
1086 free (rpdr);
1087 if (esym != NULL)
1088 free (esym);
1089 if (ss != NULL)
1090 free (ss);
1091 if (sv != NULL)
1092 free (sv);
1093
b34976b6 1094 return TRUE;
b49e97c9
TS
1095
1096 error_return:
1097 if (epdr != NULL)
1098 free (epdr);
1099 if (rpdr != NULL)
1100 free (rpdr);
1101 if (esym != NULL)
1102 free (esym);
1103 if (ss != NULL)
1104 free (ss);
1105 if (sv != NULL)
1106 free (sv);
b34976b6 1107 return FALSE;
b49e97c9
TS
1108}
1109
1110/* Check the mips16 stubs for a particular symbol, and see if we can
1111 discard them. */
1112
b34976b6 1113static bfd_boolean
9719ad41
RS
1114mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1115 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1116{
1117 if (h->root.root.type == bfd_link_hash_warning)
1118 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1119
1120 if (h->fn_stub != NULL
1121 && ! h->need_fn_stub)
1122 {
1123 /* We don't need the fn_stub; the only references to this symbol
1124 are 16 bit calls. Clobber the size to 0 to prevent it from
1125 being included in the link. */
eea6121a 1126 h->fn_stub->size = 0;
b49e97c9
TS
1127 h->fn_stub->flags &= ~SEC_RELOC;
1128 h->fn_stub->reloc_count = 0;
1129 h->fn_stub->flags |= SEC_EXCLUDE;
1130 }
1131
1132 if (h->call_stub != NULL
1133 && h->root.other == STO_MIPS16)
1134 {
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
eea6121a 1138 h->call_stub->size = 0;
b49e97c9
TS
1139 h->call_stub->flags &= ~SEC_RELOC;
1140 h->call_stub->reloc_count = 0;
1141 h->call_stub->flags |= SEC_EXCLUDE;
1142 }
1143
1144 if (h->call_fp_stub != NULL
1145 && h->root.other == STO_MIPS16)
1146 {
1147 /* We don't need the call_stub; this is a 16 bit function, so
1148 calls from other 16 bit functions are OK. Clobber the size
1149 to 0 to prevent it from being included in the link. */
eea6121a 1150 h->call_fp_stub->size = 0;
b49e97c9
TS
1151 h->call_fp_stub->flags &= ~SEC_RELOC;
1152 h->call_fp_stub->reloc_count = 0;
1153 h->call_fp_stub->flags |= SEC_EXCLUDE;
1154 }
1155
b34976b6 1156 return TRUE;
b49e97c9
TS
1157}
1158\f
d6f16593
MR
1159/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1160 Most mips16 instructions are 16 bits, but these instructions
1161 are 32 bits.
1162
1163 The format of these instructions is:
1164
1165 +--------------+--------------------------------+
1166 | JALX | X| Imm 20:16 | Imm 25:21 |
1167 +--------------+--------------------------------+
1168 | Immediate 15:0 |
1169 +-----------------------------------------------+
1170
1171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1172 Note that the immediate value in the first word is swapped.
1173
1174 When producing a relocatable object file, R_MIPS16_26 is
1175 handled mostly like R_MIPS_26. In particular, the addend is
1176 stored as a straight 26-bit value in a 32-bit instruction.
1177 (gas makes life simpler for itself by never adjusting a
1178 R_MIPS16_26 reloc to be against a section, so the addend is
1179 always zero). However, the 32 bit instruction is stored as 2
1180 16-bit values, rather than a single 32-bit value. In a
1181 big-endian file, the result is the same; in a little-endian
1182 file, the two 16-bit halves of the 32 bit value are swapped.
1183 This is so that a disassembler can recognize the jal
1184 instruction.
1185
1186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1187 instruction stored as two 16-bit values. The addend A is the
1188 contents of the targ26 field. The calculation is the same as
1189 R_MIPS_26. When storing the calculated value, reorder the
1190 immediate value as shown above, and don't forget to store the
1191 value as two 16-bit values.
1192
1193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1194 defined as
1195
1196 big-endian:
1197 +--------+----------------------+
1198 | | |
1199 | | targ26-16 |
1200 |31 26|25 0|
1201 +--------+----------------------+
1202
1203 little-endian:
1204 +----------+------+-------------+
1205 | | | |
1206 | sub1 | | sub2 |
1207 |0 9|10 15|16 31|
1208 +----------+--------------------+
1209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1210 ((sub1 << 16) | sub2)).
1211
1212 When producing a relocatable object file, the calculation is
1213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1214 When producing a fully linked file, the calculation is
1215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1217
1218 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1219 mode. A typical instruction will have a format like this:
1220
1221 +--------------+--------------------------------+
1222 | EXTEND | Imm 10:5 | Imm 15:11 |
1223 +--------------+--------------------------------+
1224 | Major | rx | ry | Imm 4:0 |
1225 +--------------+--------------------------------+
1226
1227 EXTEND is the five bit value 11110. Major is the instruction
1228 opcode.
1229
1230 This is handled exactly like R_MIPS_GPREL16, except that the
1231 addend is retrieved and stored as shown in this diagram; that
1232 is, the Imm fields above replace the V-rel16 field.
1233
1234 All we need to do here is shuffle the bits appropriately. As
1235 above, the two 16-bit halves must be swapped on a
1236 little-endian system.
1237
1238 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1239 access data when neither GP-relative nor PC-relative addressing
1240 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1241 except that the addend is retrieved and stored as shown above
1242 for R_MIPS16_GPREL.
1243 */
1244void
1245_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1246 bfd_boolean jal_shuffle, bfd_byte *data)
1247{
1248 bfd_vma extend, insn, val;
1249
1250 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1251 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1252 return;
1253
1254 /* Pick up the mips16 extend instruction and the real instruction. */
1255 extend = bfd_get_16 (abfd, data);
1256 insn = bfd_get_16 (abfd, data + 2);
1257 if (r_type == R_MIPS16_26)
1258 {
1259 if (jal_shuffle)
1260 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1261 | ((extend & 0x1f) << 21) | insn;
1262 else
1263 val = extend << 16 | insn;
1264 }
1265 else
1266 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1267 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1268 bfd_put_32 (abfd, val, data);
1269}
1270
1271void
1272_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1273 bfd_boolean jal_shuffle, bfd_byte *data)
1274{
1275 bfd_vma extend, insn, val;
1276
1277 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1278 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1279 return;
1280
1281 val = bfd_get_32 (abfd, data);
1282 if (r_type == R_MIPS16_26)
1283 {
1284 if (jal_shuffle)
1285 {
1286 insn = val & 0xffff;
1287 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1288 | ((val >> 21) & 0x1f);
1289 }
1290 else
1291 {
1292 insn = val & 0xffff;
1293 extend = val >> 16;
1294 }
1295 }
1296 else
1297 {
1298 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1299 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1300 }
1301 bfd_put_16 (abfd, insn, data + 2);
1302 bfd_put_16 (abfd, extend, data);
1303}
1304
b49e97c9 1305bfd_reloc_status_type
9719ad41
RS
1306_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1307 arelent *reloc_entry, asection *input_section,
1308 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1309{
1310 bfd_vma relocation;
a7ebbfdf 1311 bfd_signed_vma val;
30ac9238 1312 bfd_reloc_status_type status;
b49e97c9
TS
1313
1314 if (bfd_is_com_section (symbol->section))
1315 relocation = 0;
1316 else
1317 relocation = symbol->value;
1318
1319 relocation += symbol->section->output_section->vma;
1320 relocation += symbol->section->output_offset;
1321
07515404 1322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1323 return bfd_reloc_outofrange;
1324
b49e97c9 1325 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1326 val = reloc_entry->addend;
1327
30ac9238 1328 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1329
b49e97c9 1330 /* Adjust val for the final section location and GP value. If we
1049f94e 1331 are producing relocatable output, we don't want to do this for
b49e97c9 1332 an external symbol. */
1049f94e 1333 if (! relocatable
b49e97c9
TS
1334 || (symbol->flags & BSF_SECTION_SYM) != 0)
1335 val += relocation - gp;
1336
a7ebbfdf
TS
1337 if (reloc_entry->howto->partial_inplace)
1338 {
30ac9238
RS
1339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1340 (bfd_byte *) data
1341 + reloc_entry->address);
1342 if (status != bfd_reloc_ok)
1343 return status;
a7ebbfdf
TS
1344 }
1345 else
1346 reloc_entry->addend = val;
b49e97c9 1347
1049f94e 1348 if (relocatable)
b49e97c9 1349 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1350
1351 return bfd_reloc_ok;
1352}
1353
1354/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1356 that contains the relocation field and DATA points to the start of
1357 INPUT_SECTION. */
1358
1359struct mips_hi16
1360{
1361 struct mips_hi16 *next;
1362 bfd_byte *data;
1363 asection *input_section;
1364 arelent rel;
1365};
1366
1367/* FIXME: This should not be a static variable. */
1368
1369static struct mips_hi16 *mips_hi16_list;
1370
1371/* A howto special_function for REL *HI16 relocations. We can only
1372 calculate the correct value once we've seen the partnering
1373 *LO16 relocation, so just save the information for later.
1374
1375 The ABI requires that the *LO16 immediately follow the *HI16.
1376 However, as a GNU extension, we permit an arbitrary number of
1377 *HI16s to be associated with a single *LO16. This significantly
1378 simplies the relocation handling in gcc. */
1379
1380bfd_reloc_status_type
1381_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1383 asection *input_section, bfd *output_bfd,
1384 char **error_message ATTRIBUTE_UNUSED)
1385{
1386 struct mips_hi16 *n;
1387
07515404 1388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1389 return bfd_reloc_outofrange;
1390
1391 n = bfd_malloc (sizeof *n);
1392 if (n == NULL)
1393 return bfd_reloc_outofrange;
1394
1395 n->next = mips_hi16_list;
1396 n->data = data;
1397 n->input_section = input_section;
1398 n->rel = *reloc_entry;
1399 mips_hi16_list = n;
1400
1401 if (output_bfd != NULL)
1402 reloc_entry->address += input_section->output_offset;
1403
1404 return bfd_reloc_ok;
1405}
1406
1407/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1408 like any other 16-bit relocation when applied to global symbols, but is
1409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1410
1411bfd_reloc_status_type
1412_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1413 void *data, asection *input_section,
1414 bfd *output_bfd, char **error_message)
1415{
1416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1417 || bfd_is_und_section (bfd_get_section (symbol))
1418 || bfd_is_com_section (bfd_get_section (symbol)))
1419 /* The relocation is against a global symbol. */
1420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1421 input_section, output_bfd,
1422 error_message);
1423
1424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426}
1427
1428/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1429 is a straightforward 16 bit inplace relocation, but we must deal with
1430 any partnering high-part relocations as well. */
1431
1432bfd_reloc_status_type
1433_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1434 void *data, asection *input_section,
1435 bfd *output_bfd, char **error_message)
1436{
1437 bfd_vma vallo;
d6f16593 1438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1439
07515404 1440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1441 return bfd_reloc_outofrange;
1442
d6f16593
MR
1443 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1444 location);
1445 vallo = bfd_get_32 (abfd, location);
1446 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1447 location);
1448
30ac9238
RS
1449 while (mips_hi16_list != NULL)
1450 {
1451 bfd_reloc_status_type ret;
1452 struct mips_hi16 *hi;
1453
1454 hi = mips_hi16_list;
1455
1456 /* R_MIPS_GOT16 relocations are something of a special case. We
1457 want to install the addend in the same way as for a R_MIPS_HI16
1458 relocation (with a rightshift of 16). However, since GOT16
1459 relocations can also be used with global symbols, their howto
1460 has a rightshift of 0. */
1461 if (hi->rel.howto->type == R_MIPS_GOT16)
1462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1463
1464 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1465 carry or borrow will induce a change of +1 or -1 in the high part. */
1466 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1467
30ac9238
RS
1468 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1469 hi->input_section, output_bfd,
1470 error_message);
1471 if (ret != bfd_reloc_ok)
1472 return ret;
1473
1474 mips_hi16_list = hi->next;
1475 free (hi);
1476 }
1477
1478 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1479 input_section, output_bfd,
1480 error_message);
1481}
1482
1483/* A generic howto special_function. This calculates and installs the
1484 relocation itself, thus avoiding the oft-discussed problems in
1485 bfd_perform_relocation and bfd_install_relocation. */
1486
1487bfd_reloc_status_type
1488_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1489 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1490 asection *input_section, bfd *output_bfd,
1491 char **error_message ATTRIBUTE_UNUSED)
1492{
1493 bfd_signed_vma val;
1494 bfd_reloc_status_type status;
1495 bfd_boolean relocatable;
1496
1497 relocatable = (output_bfd != NULL);
1498
07515404 1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1500 return bfd_reloc_outofrange;
1501
1502 /* Build up the field adjustment in VAL. */
1503 val = 0;
1504 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1505 {
1506 /* Either we're calculating the final field value or we have a
1507 relocation against a section symbol. Add in the section's
1508 offset or address. */
1509 val += symbol->section->output_section->vma;
1510 val += symbol->section->output_offset;
1511 }
1512
1513 if (!relocatable)
1514 {
1515 /* We're calculating the final field value. Add in the symbol's value
1516 and, if pc-relative, subtract the address of the field itself. */
1517 val += symbol->value;
1518 if (reloc_entry->howto->pc_relative)
1519 {
1520 val -= input_section->output_section->vma;
1521 val -= input_section->output_offset;
1522 val -= reloc_entry->address;
1523 }
1524 }
1525
1526 /* VAL is now the final adjustment. If we're keeping this relocation
1527 in the output file, and if the relocation uses a separate addend,
1528 we just need to add VAL to that addend. Otherwise we need to add
1529 VAL to the relocation field itself. */
1530 if (relocatable && !reloc_entry->howto->partial_inplace)
1531 reloc_entry->addend += val;
1532 else
1533 {
d6f16593
MR
1534 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1535
30ac9238
RS
1536 /* Add in the separate addend, if any. */
1537 val += reloc_entry->addend;
1538
1539 /* Add VAL to the relocation field. */
d6f16593
MR
1540 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1541 location);
30ac9238 1542 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1543 location);
1544 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546
30ac9238
RS
1547 if (status != bfd_reloc_ok)
1548 return status;
1549 }
1550
1551 if (relocatable)
1552 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1553
1554 return bfd_reloc_ok;
1555}
1556\f
1557/* Swap an entry in a .gptab section. Note that these routines rely
1558 on the equivalence of the two elements of the union. */
1559
1560static void
9719ad41
RS
1561bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1562 Elf32_gptab *in)
b49e97c9
TS
1563{
1564 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1565 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1566}
1567
1568static void
9719ad41
RS
1569bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1570 Elf32_External_gptab *ex)
b49e97c9
TS
1571{
1572 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1573 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1574}
1575
1576static void
9719ad41
RS
1577bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1578 Elf32_External_compact_rel *ex)
b49e97c9
TS
1579{
1580 H_PUT_32 (abfd, in->id1, ex->id1);
1581 H_PUT_32 (abfd, in->num, ex->num);
1582 H_PUT_32 (abfd, in->id2, ex->id2);
1583 H_PUT_32 (abfd, in->offset, ex->offset);
1584 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1585 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1586}
1587
1588static void
9719ad41
RS
1589bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1590 Elf32_External_crinfo *ex)
b49e97c9
TS
1591{
1592 unsigned long l;
1593
1594 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1595 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1596 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1597 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1598 H_PUT_32 (abfd, l, ex->info);
1599 H_PUT_32 (abfd, in->konst, ex->konst);
1600 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1601}
b49e97c9
TS
1602\f
1603/* A .reginfo section holds a single Elf32_RegInfo structure. These
1604 routines swap this structure in and out. They are used outside of
1605 BFD, so they are globally visible. */
1606
1607void
9719ad41
RS
1608bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1609 Elf32_RegInfo *in)
b49e97c9
TS
1610{
1611 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1612 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1613 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1614 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1615 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1616 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1617}
1618
1619void
9719ad41
RS
1620bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1621 Elf32_External_RegInfo *ex)
b49e97c9
TS
1622{
1623 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1624 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1625 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1626 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1627 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1628 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1629}
1630
1631/* In the 64 bit ABI, the .MIPS.options section holds register
1632 information in an Elf64_Reginfo structure. These routines swap
1633 them in and out. They are globally visible because they are used
1634 outside of BFD. These routines are here so that gas can call them
1635 without worrying about whether the 64 bit ABI has been included. */
1636
1637void
9719ad41
RS
1638bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1639 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1640{
1641 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1642 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1643 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1644 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1645 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1646 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1647 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1648}
1649
1650void
9719ad41
RS
1651bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1652 Elf64_External_RegInfo *ex)
b49e97c9
TS
1653{
1654 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1655 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1660 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1661}
1662
1663/* Swap in an options header. */
1664
1665void
9719ad41
RS
1666bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1667 Elf_Internal_Options *in)
b49e97c9
TS
1668{
1669 in->kind = H_GET_8 (abfd, ex->kind);
1670 in->size = H_GET_8 (abfd, ex->size);
1671 in->section = H_GET_16 (abfd, ex->section);
1672 in->info = H_GET_32 (abfd, ex->info);
1673}
1674
1675/* Swap out an options header. */
1676
1677void
9719ad41
RS
1678bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1679 Elf_External_Options *ex)
b49e97c9
TS
1680{
1681 H_PUT_8 (abfd, in->kind, ex->kind);
1682 H_PUT_8 (abfd, in->size, ex->size);
1683 H_PUT_16 (abfd, in->section, ex->section);
1684 H_PUT_32 (abfd, in->info, ex->info);
1685}
1686\f
1687/* This function is called via qsort() to sort the dynamic relocation
1688 entries by increasing r_symndx value. */
1689
1690static int
9719ad41 1691sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1692{
947216bf
AM
1693 Elf_Internal_Rela int_reloc1;
1694 Elf_Internal_Rela int_reloc2;
b49e97c9 1695
947216bf
AM
1696 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1698
947216bf 1699 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1700}
1701
f4416af6
AO
1702/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1703
1704static int
7e3102a7
AM
1705sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1706 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1707{
7e3102a7 1708#ifdef BFD64
f4416af6
AO
1709 Elf_Internal_Rela int_reloc1[3];
1710 Elf_Internal_Rela int_reloc2[3];
1711
1712 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1713 (reldyn_sorting_bfd, arg1, int_reloc1);
1714 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1715 (reldyn_sorting_bfd, arg2, int_reloc2);
1716
1717 return (ELF64_R_SYM (int_reloc1[0].r_info)
1718 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1719#else
1720 abort ();
1721#endif
f4416af6
AO
1722}
1723
1724
b49e97c9
TS
1725/* This routine is used to write out ECOFF debugging external symbol
1726 information. It is called via mips_elf_link_hash_traverse. The
1727 ECOFF external symbol information must match the ELF external
1728 symbol information. Unfortunately, at this point we don't know
1729 whether a symbol is required by reloc information, so the two
1730 tables may wind up being different. We must sort out the external
1731 symbol information before we can set the final size of the .mdebug
1732 section, and we must set the size of the .mdebug section before we
1733 can relocate any sections, and we can't know which symbols are
1734 required by relocation until we relocate the sections.
1735 Fortunately, it is relatively unlikely that any symbol will be
1736 stripped but required by a reloc. In particular, it can not happen
1737 when generating a final executable. */
1738
b34976b6 1739static bfd_boolean
9719ad41 1740mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1741{
9719ad41 1742 struct extsym_info *einfo = data;
b34976b6 1743 bfd_boolean strip;
b49e97c9
TS
1744 asection *sec, *output_section;
1745
1746 if (h->root.root.type == bfd_link_hash_warning)
1747 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1748
1749 if (h->root.indx == -2)
b34976b6 1750 strip = FALSE;
f5385ebf 1751 else if ((h->root.def_dynamic
77cfaee6
AM
1752 || h->root.ref_dynamic
1753 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1754 && !h->root.def_regular
1755 && !h->root.ref_regular)
b34976b6 1756 strip = TRUE;
b49e97c9
TS
1757 else if (einfo->info->strip == strip_all
1758 || (einfo->info->strip == strip_some
1759 && bfd_hash_lookup (einfo->info->keep_hash,
1760 h->root.root.root.string,
b34976b6
AM
1761 FALSE, FALSE) == NULL))
1762 strip = TRUE;
b49e97c9 1763 else
b34976b6 1764 strip = FALSE;
b49e97c9
TS
1765
1766 if (strip)
b34976b6 1767 return TRUE;
b49e97c9
TS
1768
1769 if (h->esym.ifd == -2)
1770 {
1771 h->esym.jmptbl = 0;
1772 h->esym.cobol_main = 0;
1773 h->esym.weakext = 0;
1774 h->esym.reserved = 0;
1775 h->esym.ifd = ifdNil;
1776 h->esym.asym.value = 0;
1777 h->esym.asym.st = stGlobal;
1778
1779 if (h->root.root.type == bfd_link_hash_undefined
1780 || h->root.root.type == bfd_link_hash_undefweak)
1781 {
1782 const char *name;
1783
1784 /* Use undefined class. Also, set class and type for some
1785 special symbols. */
1786 name = h->root.root.root.string;
1787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1789 {
1790 h->esym.asym.sc = scData;
1791 h->esym.asym.st = stLabel;
1792 h->esym.asym.value = 0;
1793 }
1794 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1795 {
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value =
1799 mips_elf_hash_table (einfo->info)->procedure_count;
1800 }
4a14403c 1801 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1802 {
1803 h->esym.asym.sc = scAbs;
1804 h->esym.asym.st = stLabel;
1805 h->esym.asym.value = elf_gp (einfo->abfd);
1806 }
1807 else
1808 h->esym.asym.sc = scUndefined;
1809 }
1810 else if (h->root.root.type != bfd_link_hash_defined
1811 && h->root.root.type != bfd_link_hash_defweak)
1812 h->esym.asym.sc = scAbs;
1813 else
1814 {
1815 const char *name;
1816
1817 sec = h->root.root.u.def.section;
1818 output_section = sec->output_section;
1819
1820 /* When making a shared library and symbol h is the one from
1821 the another shared library, OUTPUT_SECTION may be null. */
1822 if (output_section == NULL)
1823 h->esym.asym.sc = scUndefined;
1824 else
1825 {
1826 name = bfd_section_name (output_section->owner, output_section);
1827
1828 if (strcmp (name, ".text") == 0)
1829 h->esym.asym.sc = scText;
1830 else if (strcmp (name, ".data") == 0)
1831 h->esym.asym.sc = scData;
1832 else if (strcmp (name, ".sdata") == 0)
1833 h->esym.asym.sc = scSData;
1834 else if (strcmp (name, ".rodata") == 0
1835 || strcmp (name, ".rdata") == 0)
1836 h->esym.asym.sc = scRData;
1837 else if (strcmp (name, ".bss") == 0)
1838 h->esym.asym.sc = scBss;
1839 else if (strcmp (name, ".sbss") == 0)
1840 h->esym.asym.sc = scSBss;
1841 else if (strcmp (name, ".init") == 0)
1842 h->esym.asym.sc = scInit;
1843 else if (strcmp (name, ".fini") == 0)
1844 h->esym.asym.sc = scFini;
1845 else
1846 h->esym.asym.sc = scAbs;
1847 }
1848 }
1849
1850 h->esym.asym.reserved = 0;
1851 h->esym.asym.index = indexNil;
1852 }
1853
1854 if (h->root.root.type == bfd_link_hash_common)
1855 h->esym.asym.value = h->root.root.u.c.size;
1856 else if (h->root.root.type == bfd_link_hash_defined
1857 || h->root.root.type == bfd_link_hash_defweak)
1858 {
1859 if (h->esym.asym.sc == scCommon)
1860 h->esym.asym.sc = scBss;
1861 else if (h->esym.asym.sc == scSCommon)
1862 h->esym.asym.sc = scSBss;
1863
1864 sec = h->root.root.u.def.section;
1865 output_section = sec->output_section;
1866 if (output_section != NULL)
1867 h->esym.asym.value = (h->root.root.u.def.value
1868 + sec->output_offset
1869 + output_section->vma);
1870 else
1871 h->esym.asym.value = 0;
1872 }
f5385ebf 1873 else if (h->root.needs_plt)
b49e97c9
TS
1874 {
1875 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1876 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1877
1878 while (hd->root.root.type == bfd_link_hash_indirect)
1879 {
1880 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1881 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1882 }
1883
1884 if (!no_fn_stub)
1885 {
1886 /* Set type and value for a symbol with a function stub. */
1887 h->esym.asym.st = stProc;
1888 sec = hd->root.root.u.def.section;
1889 if (sec == NULL)
1890 h->esym.asym.value = 0;
1891 else
1892 {
1893 output_section = sec->output_section;
1894 if (output_section != NULL)
1895 h->esym.asym.value = (hd->root.plt.offset
1896 + sec->output_offset
1897 + output_section->vma);
1898 else
1899 h->esym.asym.value = 0;
1900 }
b49e97c9
TS
1901 }
1902 }
1903
1904 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1905 h->root.root.root.string,
1906 &h->esym))
1907 {
b34976b6
AM
1908 einfo->failed = TRUE;
1909 return FALSE;
b49e97c9
TS
1910 }
1911
b34976b6 1912 return TRUE;
b49e97c9
TS
1913}
1914
1915/* A comparison routine used to sort .gptab entries. */
1916
1917static int
9719ad41 1918gptab_compare (const void *p1, const void *p2)
b49e97c9 1919{
9719ad41
RS
1920 const Elf32_gptab *a1 = p1;
1921 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1922
1923 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1924}
1925\f
b15e6682 1926/* Functions to manage the got entry hash table. */
f4416af6
AO
1927
1928/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1929 hash number. */
1930
1931static INLINE hashval_t
9719ad41 1932mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1933{
1934#ifdef BFD64
1935 return addr + (addr >> 32);
1936#else
1937 return addr;
1938#endif
1939}
1940
1941/* got_entries only match if they're identical, except for gotidx, so
1942 use all fields to compute the hash, and compare the appropriate
1943 union members. */
1944
b15e6682 1945static hashval_t
9719ad41 1946mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1947{
1948 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1949
38985a1c 1950 return entry->symndx
0f20cc35 1951 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1952 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1953 : entry->abfd->id
1954 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1955 : entry->d.h->root.root.root.hash));
b15e6682
AO
1956}
1957
1958static int
9719ad41 1959mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1960{
1961 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1962 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1963
0f20cc35
DJ
1964 /* An LDM entry can only match another LDM entry. */
1965 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1966 return 0;
1967
b15e6682 1968 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1969 && (! e1->abfd ? e1->d.address == e2->d.address
1970 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1971 : e1->d.h == e2->d.h);
1972}
1973
1974/* multi_got_entries are still a match in the case of global objects,
1975 even if the input bfd in which they're referenced differs, so the
1976 hash computation and compare functions are adjusted
1977 accordingly. */
1978
1979static hashval_t
9719ad41 1980mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1981{
1982 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1983
1984 return entry->symndx
1985 + (! entry->abfd
1986 ? mips_elf_hash_bfd_vma (entry->d.address)
1987 : entry->symndx >= 0
0f20cc35
DJ
1988 ? ((entry->tls_type & GOT_TLS_LDM)
1989 ? (GOT_TLS_LDM << 17)
1990 : (entry->abfd->id
1991 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1992 : entry->d.h->root.root.root.hash);
1993}
1994
1995static int
9719ad41 1996mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1997{
1998 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1999 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2000
0f20cc35
DJ
2001 /* Any two LDM entries match. */
2002 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2003 return 1;
2004
2005 /* Nothing else matches an LDM entry. */
2006 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2007 return 0;
2008
f4416af6
AO
2009 return e1->symndx == e2->symndx
2010 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2011 : e1->abfd == NULL || e2->abfd == NULL
2012 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2013 : e1->d.h == e2->d.h);
b15e6682
AO
2014}
2015\f
0a44bf69
RS
2016/* Return the dynamic relocation section. If it doesn't exist, try to
2017 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2018 if creation fails. */
f4416af6
AO
2019
2020static asection *
0a44bf69 2021mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2022{
0a44bf69 2023 const char *dname;
f4416af6 2024 asection *sreloc;
0a44bf69 2025 bfd *dynobj;
f4416af6 2026
0a44bf69
RS
2027 dname = MIPS_ELF_REL_DYN_NAME (info);
2028 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2029 sreloc = bfd_get_section_by_name (dynobj, dname);
2030 if (sreloc == NULL && create_p)
2031 {
3496cb2a
L
2032 sreloc = bfd_make_section_with_flags (dynobj, dname,
2033 (SEC_ALLOC
2034 | SEC_LOAD
2035 | SEC_HAS_CONTENTS
2036 | SEC_IN_MEMORY
2037 | SEC_LINKER_CREATED
2038 | SEC_READONLY));
f4416af6 2039 if (sreloc == NULL
f4416af6 2040 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2042 return NULL;
2043 }
2044 return sreloc;
2045}
2046
b49e97c9
TS
2047/* Returns the GOT section for ABFD. */
2048
2049static asection *
9719ad41 2050mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2051{
f4416af6
AO
2052 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2053 if (sgot == NULL
2054 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2055 return NULL;
2056 return sgot;
b49e97c9
TS
2057}
2058
2059/* Returns the GOT information associated with the link indicated by
2060 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2061 section. */
2062
2063static struct mips_got_info *
9719ad41 2064mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2065{
2066 asection *sgot;
2067 struct mips_got_info *g;
2068
f4416af6 2069 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2070 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2071 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2072 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2073 BFD_ASSERT (g != NULL);
2074
2075 if (sgotp)
f4416af6
AO
2076 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2077
b49e97c9
TS
2078 return g;
2079}
2080
0f20cc35
DJ
2081/* Count the number of relocations needed for a TLS GOT entry, with
2082 access types from TLS_TYPE, and symbol H (or a local symbol if H
2083 is NULL). */
2084
2085static int
2086mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2087 struct elf_link_hash_entry *h)
2088{
2089 int indx = 0;
2090 int ret = 0;
2091 bfd_boolean need_relocs = FALSE;
2092 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2093
2094 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2095 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2096 indx = h->dynindx;
2097
2098 if ((info->shared || indx != 0)
2099 && (h == NULL
2100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2101 || h->root.type != bfd_link_hash_undefweak))
2102 need_relocs = TRUE;
2103
2104 if (!need_relocs)
2105 return FALSE;
2106
2107 if (tls_type & GOT_TLS_GD)
2108 {
2109 ret++;
2110 if (indx != 0)
2111 ret++;
2112 }
2113
2114 if (tls_type & GOT_TLS_IE)
2115 ret++;
2116
2117 if ((tls_type & GOT_TLS_LDM) && info->shared)
2118 ret++;
2119
2120 return ret;
2121}
2122
2123/* Count the number of TLS relocations required for the GOT entry in
2124 ARG1, if it describes a local symbol. */
2125
2126static int
2127mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2128{
2129 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2130 struct mips_elf_count_tls_arg *arg = arg2;
2131
2132 if (entry->abfd != NULL && entry->symndx != -1)
2133 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2134
2135 return 1;
2136}
2137
2138/* Count the number of TLS GOT entries required for the global (or
2139 forced-local) symbol in ARG1. */
2140
2141static int
2142mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2143{
2144 struct mips_elf_link_hash_entry *hm
2145 = (struct mips_elf_link_hash_entry *) arg1;
2146 struct mips_elf_count_tls_arg *arg = arg2;
2147
2148 if (hm->tls_type & GOT_TLS_GD)
2149 arg->needed += 2;
2150 if (hm->tls_type & GOT_TLS_IE)
2151 arg->needed += 1;
2152
2153 return 1;
2154}
2155
2156/* Count the number of TLS relocations required for the global (or
2157 forced-local) symbol in ARG1. */
2158
2159static int
2160mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2161{
2162 struct mips_elf_link_hash_entry *hm
2163 = (struct mips_elf_link_hash_entry *) arg1;
2164 struct mips_elf_count_tls_arg *arg = arg2;
2165
2166 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2167
2168 return 1;
2169}
2170
2171/* Output a simple dynamic relocation into SRELOC. */
2172
2173static void
2174mips_elf_output_dynamic_relocation (bfd *output_bfd,
2175 asection *sreloc,
2176 unsigned long indx,
2177 int r_type,
2178 bfd_vma offset)
2179{
2180 Elf_Internal_Rela rel[3];
2181
2182 memset (rel, 0, sizeof (rel));
2183
2184 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2185 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2186
2187 if (ABI_64_P (output_bfd))
2188 {
2189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2190 (output_bfd, &rel[0],
2191 (sreloc->contents
2192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2193 }
2194 else
2195 bfd_elf32_swap_reloc_out
2196 (output_bfd, &rel[0],
2197 (sreloc->contents
2198 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2199 ++sreloc->reloc_count;
2200}
2201
2202/* Initialize a set of TLS GOT entries for one symbol. */
2203
2204static void
2205mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2206 unsigned char *tls_type_p,
2207 struct bfd_link_info *info,
2208 struct mips_elf_link_hash_entry *h,
2209 bfd_vma value)
2210{
2211 int indx;
2212 asection *sreloc, *sgot;
2213 bfd_vma offset, offset2;
2214 bfd *dynobj;
2215 bfd_boolean need_relocs = FALSE;
2216
2217 dynobj = elf_hash_table (info)->dynobj;
2218 sgot = mips_elf_got_section (dynobj, FALSE);
2219
2220 indx = 0;
2221 if (h != NULL)
2222 {
2223 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2224
2225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2226 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2227 indx = h->root.dynindx;
2228 }
2229
2230 if (*tls_type_p & GOT_TLS_DONE)
2231 return;
2232
2233 if ((info->shared || indx != 0)
2234 && (h == NULL
2235 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2236 || h->root.type != bfd_link_hash_undefweak))
2237 need_relocs = TRUE;
2238
2239 /* MINUS_ONE means the symbol is not defined in this object. It may not
2240 be defined at all; assume that the value doesn't matter in that
2241 case. Otherwise complain if we would use the value. */
2242 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2243 || h->root.root.type == bfd_link_hash_undefweak);
2244
2245 /* Emit necessary relocations. */
0a44bf69 2246 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2247
2248 /* General Dynamic. */
2249 if (*tls_type_p & GOT_TLS_GD)
2250 {
2251 offset = got_offset;
2252 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2253
2254 if (need_relocs)
2255 {
2256 mips_elf_output_dynamic_relocation
2257 (abfd, sreloc, indx,
2258 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2259 sgot->output_offset + sgot->output_section->vma + offset);
2260
2261 if (indx)
2262 mips_elf_output_dynamic_relocation
2263 (abfd, sreloc, indx,
2264 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2265 sgot->output_offset + sgot->output_section->vma + offset2);
2266 else
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2269 }
2270 else
2271 {
2272 MIPS_ELF_PUT_WORD (abfd, 1,
2273 sgot->contents + offset);
2274 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2275 sgot->contents + offset2);
2276 }
2277
2278 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2279 }
2280
2281 /* Initial Exec model. */
2282 if (*tls_type_p & GOT_TLS_IE)
2283 {
2284 offset = got_offset;
2285
2286 if (need_relocs)
2287 {
2288 if (indx == 0)
2289 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2290 sgot->contents + offset);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, 0,
2293 sgot->contents + offset);
2294
2295 mips_elf_output_dynamic_relocation
2296 (abfd, sreloc, indx,
2297 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2298 sgot->output_offset + sgot->output_section->vma + offset);
2299 }
2300 else
2301 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2302 sgot->contents + offset);
2303 }
2304
2305 if (*tls_type_p & GOT_TLS_LDM)
2306 {
2307 /* The initial offset is zero, and the LD offsets will include the
2308 bias by DTP_OFFSET. */
2309 MIPS_ELF_PUT_WORD (abfd, 0,
2310 sgot->contents + got_offset
2311 + MIPS_ELF_GOT_SIZE (abfd));
2312
2313 if (!info->shared)
2314 MIPS_ELF_PUT_WORD (abfd, 1,
2315 sgot->contents + got_offset);
2316 else
2317 mips_elf_output_dynamic_relocation
2318 (abfd, sreloc, indx,
2319 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2320 sgot->output_offset + sgot->output_section->vma + got_offset);
2321 }
2322
2323 *tls_type_p |= GOT_TLS_DONE;
2324}
2325
2326/* Return the GOT index to use for a relocation of type R_TYPE against
2327 a symbol accessed using TLS_TYPE models. The GOT entries for this
2328 symbol in this GOT start at GOT_INDEX. This function initializes the
2329 GOT entries and corresponding relocations. */
2330
2331static bfd_vma
2332mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2333 int r_type, struct bfd_link_info *info,
2334 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2335{
2336 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2337 || r_type == R_MIPS_TLS_LDM);
2338
2339 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2340
2341 if (r_type == R_MIPS_TLS_GOTTPREL)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2344 if (*tls_type & GOT_TLS_GD)
2345 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2346 else
2347 return got_index;
2348 }
2349
2350 if (r_type == R_MIPS_TLS_GD)
2351 {
2352 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2353 return got_index;
2354 }
2355
2356 if (r_type == R_MIPS_TLS_LDM)
2357 {
2358 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2359 return got_index;
2360 }
2361
2362 return got_index;
2363}
2364
0a44bf69
RS
2365/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2366 for global symbol H. .got.plt comes before the GOT, so the offset
2367 will be negative. */
2368
2369static bfd_vma
2370mips_elf_gotplt_index (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2372{
2373 bfd_vma plt_index, got_address, got_value;
2374 struct mips_elf_link_hash_table *htab;
2375
2376 htab = mips_elf_hash_table (info);
2377 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2378
2379 /* Calculate the index of the symbol's PLT entry. */
2380 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2381
2382 /* Calculate the address of the associated .got.plt entry. */
2383 got_address = (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2385 + plt_index * 4);
2386
2387 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2388 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2389 + htab->root.hgot->root.u.def.section->output_offset
2390 + htab->root.hgot->root.u.def.value);
2391
2392 return got_address - got_value;
2393}
2394
2395/* Return the GOT offset for address VALUE, which was derived from
2396 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2397 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2398 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2399 offset can be found. */
b49e97c9
TS
2400
2401static bfd_vma
9719ad41 2402mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2403 asection *input_section, bfd_vma value,
2404 unsigned long r_symndx,
0f20cc35 2405 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2406{
2407 asection *sgot;
2408 struct mips_got_info *g;
b15e6682 2409 struct mips_got_entry *entry;
b49e97c9
TS
2410
2411 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2412
0a44bf69
RS
2413 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2414 input_section, value,
0f20cc35
DJ
2415 r_symndx, h, r_type);
2416 if (!entry)
b15e6682 2417 return MINUS_ONE;
0f20cc35
DJ
2418
2419 if (TLS_RELOC_P (r_type))
ead49a57
RS
2420 {
2421 if (entry->symndx == -1 && g->next == NULL)
2422 /* A type (3) entry in the single-GOT case. We use the symbol's
2423 hash table entry to track the index. */
2424 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2425 r_type, info, h, value);
2426 else
2427 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2428 r_type, info, h, value);
2429 }
0f20cc35
DJ
2430 else
2431 return entry->gotidx;
b49e97c9
TS
2432}
2433
2434/* Returns the GOT index for the global symbol indicated by H. */
2435
2436static bfd_vma
0f20cc35
DJ
2437mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2438 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2439{
2440 bfd_vma index;
2441 asection *sgot;
f4416af6 2442 struct mips_got_info *g, *gg;
d0c7ff07 2443 long global_got_dynindx = 0;
b49e97c9 2444
f4416af6
AO
2445 gg = g = mips_elf_got_info (abfd, &sgot);
2446 if (g->bfd2got && ibfd)
2447 {
2448 struct mips_got_entry e, *p;
143d77c5 2449
f4416af6
AO
2450 BFD_ASSERT (h->dynindx >= 0);
2451
2452 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2453 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2454 {
2455 e.abfd = ibfd;
2456 e.symndx = -1;
2457 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2458 e.tls_type = 0;
f4416af6 2459
9719ad41 2460 p = htab_find (g->got_entries, &e);
f4416af6
AO
2461
2462 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2463
2464 if (TLS_RELOC_P (r_type))
2465 {
2466 bfd_vma value = MINUS_ONE;
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && h->root.u.def.section->output_section)
2470 value = (h->root.u.def.value
2471 + h->root.u.def.section->output_offset
2472 + h->root.u.def.section->output_section->vma);
2473
2474 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2475 info, e.d.h, value);
2476 }
2477 else
2478 return p->gotidx;
f4416af6
AO
2479 }
2480 }
2481
2482 if (gg->global_gotsym != NULL)
2483 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2484
0f20cc35
DJ
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 struct mips_elf_link_hash_entry *hm
2488 = (struct mips_elf_link_hash_entry *) h;
2489 bfd_vma value = MINUS_ONE;
2490
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2499 r_type, info, hm, value);
2500 }
2501 else
2502 {
2503 /* Once we determine the global GOT entry with the lowest dynamic
2504 symbol table index, we must put all dynamic symbols with greater
2505 indices into the GOT. That makes it easy to calculate the GOT
2506 offset. */
2507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2508 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2509 * MIPS_ELF_GOT_SIZE (abfd));
2510 }
eea6121a 2511 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2512
2513 return index;
2514}
2515
0a44bf69
RS
2516/* Find a GOT page entry that points to within 32KB of VALUE, which was
2517 calculated from a symbol belonging to INPUT_SECTION. These entries
2518 are supposed to be placed at small offsets in the GOT, i.e., within
2519 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2520 could be created. If OFFSETP is nonnull, use it to return the
2521 offset of the GOT entry from VALUE. */
b49e97c9
TS
2522
2523static bfd_vma
9719ad41 2524mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69 2525 asection *input_section, bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2526{
2527 asection *sgot;
2528 struct mips_got_info *g;
0a44bf69 2529 bfd_vma page, index;
b15e6682 2530 struct mips_got_entry *entry;
b49e97c9
TS
2531
2532 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2533
0a44bf69
RS
2534 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2535 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2536 input_section, page, 0,
0f20cc35 2537 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2538
b15e6682
AO
2539 if (!entry)
2540 return MINUS_ONE;
143d77c5 2541
b15e6682 2542 index = entry->gotidx;
b49e97c9
TS
2543
2544 if (offsetp)
f4416af6 2545 *offsetp = value - entry->d.address;
b49e97c9
TS
2546
2547 return index;
2548}
2549
0a44bf69
RS
2550/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2551 which was calculated from a symbol belonging to INPUT_SECTION.
2552 EXTERNAL is true if the relocation was against a global symbol
2553 that has been forced local. */
b49e97c9
TS
2554
2555static bfd_vma
9719ad41 2556mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2557 asection *input_section, bfd_vma value,
2558 bfd_boolean external)
b49e97c9
TS
2559{
2560 asection *sgot;
2561 struct mips_got_info *g;
b15e6682 2562 struct mips_got_entry *entry;
b49e97c9 2563
0a44bf69
RS
2564 /* GOT16 relocations against local symbols are followed by a LO16
2565 relocation; those against global symbols are not. Thus if the
2566 symbol was originally local, the GOT16 relocation should load the
2567 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2568 if (! external)
0a44bf69 2569 value = mips_elf_high (value) << 16;
b49e97c9
TS
2570
2571 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2572
0a44bf69
RS
2573 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2574 input_section, value, 0,
2575 NULL, R_MIPS_GOT16);
b15e6682
AO
2576 if (entry)
2577 return entry->gotidx;
2578 else
2579 return MINUS_ONE;
b49e97c9
TS
2580}
2581
2582/* Returns the offset for the entry at the INDEXth position
2583 in the GOT. */
2584
2585static bfd_vma
9719ad41
RS
2586mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2587 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2588{
2589 asection *sgot;
2590 bfd_vma gp;
f4416af6 2591 struct mips_got_info *g;
b49e97c9 2592
f4416af6
AO
2593 g = mips_elf_got_info (dynobj, &sgot);
2594 gp = _bfd_get_gp_value (output_bfd)
2595 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2596
f4416af6 2597 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2598}
2599
0a44bf69
RS
2600/* Create and return a local GOT entry for VALUE, which was calculated
2601 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2602 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2603 instead. */
b49e97c9 2604
b15e6682 2605static struct mips_got_entry *
0a44bf69
RS
2606mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2607 bfd *ibfd, struct mips_got_info *gg,
2608 asection *sgot, asection *input_section,
2609 bfd_vma value, unsigned long r_symndx,
0f20cc35
DJ
2610 struct mips_elf_link_hash_entry *h,
2611 int r_type)
b49e97c9 2612{
b15e6682 2613 struct mips_got_entry entry, **loc;
f4416af6 2614 struct mips_got_info *g;
0a44bf69
RS
2615 struct mips_elf_link_hash_table *htab;
2616
2617 htab = mips_elf_hash_table (info);
b15e6682 2618
f4416af6
AO
2619 entry.abfd = NULL;
2620 entry.symndx = -1;
2621 entry.d.address = value;
0f20cc35 2622 entry.tls_type = 0;
f4416af6
AO
2623
2624 g = mips_elf_got_for_ibfd (gg, ibfd);
2625 if (g == NULL)
2626 {
2627 g = mips_elf_got_for_ibfd (gg, abfd);
2628 BFD_ASSERT (g != NULL);
2629 }
b15e6682 2630
0f20cc35
DJ
2631 /* We might have a symbol, H, if it has been forced local. Use the
2632 global entry then. It doesn't matter whether an entry is local
2633 or global for TLS, since the dynamic linker does not
2634 automatically relocate TLS GOT entries. */
a008ac03 2635 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2636 if (TLS_RELOC_P (r_type))
2637 {
2638 struct mips_got_entry *p;
2639
2640 entry.abfd = ibfd;
2641 if (r_type == R_MIPS_TLS_LDM)
2642 {
2643 entry.tls_type = GOT_TLS_LDM;
2644 entry.symndx = 0;
2645 entry.d.addend = 0;
2646 }
2647 else if (h == NULL)
2648 {
2649 entry.symndx = r_symndx;
2650 entry.d.addend = 0;
2651 }
2652 else
2653 entry.d.h = h;
2654
2655 p = (struct mips_got_entry *)
2656 htab_find (g->got_entries, &entry);
2657
2658 BFD_ASSERT (p);
2659 return p;
2660 }
2661
b15e6682
AO
2662 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2663 INSERT);
2664 if (*loc)
2665 return *loc;
143d77c5 2666
b15e6682 2667 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2668 entry.tls_type = 0;
b15e6682
AO
2669
2670 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2671
2672 if (! *loc)
2673 return NULL;
143d77c5 2674
b15e6682
AO
2675 memcpy (*loc, &entry, sizeof entry);
2676
b49e97c9
TS
2677 if (g->assigned_gotno >= g->local_gotno)
2678 {
f4416af6 2679 (*loc)->gotidx = -1;
b49e97c9
TS
2680 /* We didn't allocate enough space in the GOT. */
2681 (*_bfd_error_handler)
2682 (_("not enough GOT space for local GOT entries"));
2683 bfd_set_error (bfd_error_bad_value);
b15e6682 2684 return NULL;
b49e97c9
TS
2685 }
2686
2687 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2688 (sgot->contents + entry.gotidx));
2689
0a44bf69
RS
2690 /* These GOT entries need a dynamic relocation on VxWorks. Because
2691 the offset between segments is not fixed, the relocation must be
2692 against a symbol in the same segment as the original symbol.
2693 The easiest way to do this is to take INPUT_SECTION's output
2694 section and emit a relocation against its section symbol. */
2695 if (htab->is_vxworks)
2696 {
2697 Elf_Internal_Rela outrel;
2698 asection *s, *output_section;
2699 bfd_byte *loc;
2700 bfd_vma got_address;
2701 int dynindx;
2702
2703 s = mips_elf_rel_dyn_section (info, FALSE);
2704 output_section = input_section->output_section;
2705 dynindx = elf_section_data (output_section)->dynindx;
2706 got_address = (sgot->output_section->vma
2707 + sgot->output_offset
2708 + entry.gotidx);
2709
2710 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2711 outrel.r_offset = got_address;
2712 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2713 outrel.r_addend = value - output_section->vma;
2714 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2715 }
2716
b15e6682 2717 return *loc;
b49e97c9
TS
2718}
2719
2720/* Sort the dynamic symbol table so that symbols that need GOT entries
2721 appear towards the end. This reduces the amount of GOT space
2722 required. MAX_LOCAL is used to set the number of local symbols
2723 known to be in the dynamic symbol table. During
2724 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2725 section symbols are added and the count is higher. */
2726
b34976b6 2727static bfd_boolean
9719ad41 2728mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2729{
2730 struct mips_elf_hash_sort_data hsd;
2731 struct mips_got_info *g;
2732 bfd *dynobj;
2733
2734 dynobj = elf_hash_table (info)->dynobj;
2735
f4416af6
AO
2736 g = mips_elf_got_info (dynobj, NULL);
2737
b49e97c9 2738 hsd.low = NULL;
143d77c5 2739 hsd.max_unref_got_dynindx =
f4416af6
AO
2740 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2741 /* In the multi-got case, assigned_gotno of the master got_info
2742 indicate the number of entries that aren't referenced in the
2743 primary GOT, but that must have entries because there are
2744 dynamic relocations that reference it. Since they aren't
2745 referenced, we move them to the end of the GOT, so that they
2746 don't prevent other entries that are referenced from getting
2747 too large offsets. */
2748 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2749 hsd.max_non_got_dynindx = max_local;
2750 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2751 elf_hash_table (info)),
2752 mips_elf_sort_hash_table_f,
2753 &hsd);
2754
2755 /* There should have been enough room in the symbol table to
44c410de 2756 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2757 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2758 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2759 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2760
2761 /* Now we know which dynamic symbol has the lowest dynamic symbol
2762 table index in the GOT. */
b49e97c9
TS
2763 g->global_gotsym = hsd.low;
2764
b34976b6 2765 return TRUE;
b49e97c9
TS
2766}
2767
2768/* If H needs a GOT entry, assign it the highest available dynamic
2769 index. Otherwise, assign it the lowest available dynamic
2770 index. */
2771
b34976b6 2772static bfd_boolean
9719ad41 2773mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2774{
9719ad41 2775 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2776
2777 if (h->root.root.type == bfd_link_hash_warning)
2778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2779
2780 /* Symbols without dynamic symbol table entries aren't interesting
2781 at all. */
2782 if (h->root.dynindx == -1)
b34976b6 2783 return TRUE;
b49e97c9 2784
f4416af6
AO
2785 /* Global symbols that need GOT entries that are not explicitly
2786 referenced are marked with got offset 2. Those that are
2787 referenced get a 1, and those that don't need GOT entries get
2788 -1. */
2789 if (h->root.got.offset == 2)
2790 {
0f20cc35
DJ
2791 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2792
f4416af6
AO
2793 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2794 hsd->low = (struct elf_link_hash_entry *) h;
2795 h->root.dynindx = hsd->max_unref_got_dynindx++;
2796 }
2797 else if (h->root.got.offset != 1)
b49e97c9
TS
2798 h->root.dynindx = hsd->max_non_got_dynindx++;
2799 else
2800 {
0f20cc35
DJ
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
b49e97c9
TS
2803 h->root.dynindx = --hsd->min_got_dynindx;
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 }
2806
b34976b6 2807 return TRUE;
b49e97c9
TS
2808}
2809
2810/* If H is a symbol that needs a global GOT entry, but has a dynamic
2811 symbol table index lower than any we've seen to date, record it for
2812 posterity. */
2813
b34976b6 2814static bfd_boolean
9719ad41
RS
2815mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2816 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2817 struct mips_got_info *g,
2818 unsigned char tls_flag)
b49e97c9 2819{
f4416af6
AO
2820 struct mips_got_entry entry, **loc;
2821
b49e97c9
TS
2822 /* A global symbol in the GOT must also be in the dynamic symbol
2823 table. */
7c5fcef7
L
2824 if (h->dynindx == -1)
2825 {
2826 switch (ELF_ST_VISIBILITY (h->other))
2827 {
2828 case STV_INTERNAL:
2829 case STV_HIDDEN:
b34976b6 2830 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2831 break;
2832 }
c152c796 2833 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2834 return FALSE;
7c5fcef7 2835 }
b49e97c9 2836
86324f90
EC
2837 /* Make sure we have a GOT to put this entry into. */
2838 BFD_ASSERT (g != NULL);
2839
f4416af6
AO
2840 entry.abfd = abfd;
2841 entry.symndx = -1;
2842 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2843 entry.tls_type = 0;
f4416af6
AO
2844
2845 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2846 INSERT);
2847
b49e97c9
TS
2848 /* If we've already marked this entry as needing GOT space, we don't
2849 need to do it again. */
f4416af6 2850 if (*loc)
0f20cc35
DJ
2851 {
2852 (*loc)->tls_type |= tls_flag;
2853 return TRUE;
2854 }
f4416af6
AO
2855
2856 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2857
2858 if (! *loc)
2859 return FALSE;
143d77c5 2860
f4416af6 2861 entry.gotidx = -1;
0f20cc35
DJ
2862 entry.tls_type = tls_flag;
2863
f4416af6
AO
2864 memcpy (*loc, &entry, sizeof entry);
2865
b49e97c9 2866 if (h->got.offset != MINUS_ONE)
b34976b6 2867 return TRUE;
b49e97c9
TS
2868
2869 /* By setting this to a value other than -1, we are indicating that
2870 there needs to be a GOT entry for H. Avoid using zero, as the
2871 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2872 if (tls_flag == 0)
2873 h->got.offset = 1;
b49e97c9 2874
b34976b6 2875 return TRUE;
b49e97c9 2876}
f4416af6
AO
2877
2878/* Reserve space in G for a GOT entry containing the value of symbol
2879 SYMNDX in input bfd ABDF, plus ADDEND. */
2880
2881static bfd_boolean
9719ad41 2882mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2883 struct mips_got_info *g,
2884 unsigned char tls_flag)
f4416af6
AO
2885{
2886 struct mips_got_entry entry, **loc;
2887
2888 entry.abfd = abfd;
2889 entry.symndx = symndx;
2890 entry.d.addend = addend;
0f20cc35 2891 entry.tls_type = tls_flag;
f4416af6
AO
2892 loc = (struct mips_got_entry **)
2893 htab_find_slot (g->got_entries, &entry, INSERT);
2894
2895 if (*loc)
0f20cc35
DJ
2896 {
2897 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2898 {
2899 g->tls_gotno += 2;
2900 (*loc)->tls_type |= tls_flag;
2901 }
2902 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2903 {
2904 g->tls_gotno += 1;
2905 (*loc)->tls_type |= tls_flag;
2906 }
2907 return TRUE;
2908 }
f4416af6 2909
0f20cc35
DJ
2910 if (tls_flag != 0)
2911 {
2912 entry.gotidx = -1;
2913 entry.tls_type = tls_flag;
2914 if (tls_flag == GOT_TLS_IE)
2915 g->tls_gotno += 1;
2916 else if (tls_flag == GOT_TLS_GD)
2917 g->tls_gotno += 2;
2918 else if (g->tls_ldm_offset == MINUS_ONE)
2919 {
2920 g->tls_ldm_offset = MINUS_TWO;
2921 g->tls_gotno += 2;
2922 }
2923 }
2924 else
2925 {
2926 entry.gotidx = g->local_gotno++;
2927 entry.tls_type = 0;
2928 }
f4416af6
AO
2929
2930 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2931
2932 if (! *loc)
2933 return FALSE;
143d77c5 2934
f4416af6
AO
2935 memcpy (*loc, &entry, sizeof entry);
2936
2937 return TRUE;
2938}
2939\f
2940/* Compute the hash value of the bfd in a bfd2got hash entry. */
2941
2942static hashval_t
9719ad41 2943mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2944{
2945 const struct mips_elf_bfd2got_hash *entry
2946 = (struct mips_elf_bfd2got_hash *)entry_;
2947
2948 return entry->bfd->id;
2949}
2950
2951/* Check whether two hash entries have the same bfd. */
2952
2953static int
9719ad41 2954mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2955{
2956 const struct mips_elf_bfd2got_hash *e1
2957 = (const struct mips_elf_bfd2got_hash *)entry1;
2958 const struct mips_elf_bfd2got_hash *e2
2959 = (const struct mips_elf_bfd2got_hash *)entry2;
2960
2961 return e1->bfd == e2->bfd;
2962}
2963
bad36eac 2964/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2965 be the master GOT data. */
2966
2967static struct mips_got_info *
9719ad41 2968mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2969{
2970 struct mips_elf_bfd2got_hash e, *p;
2971
2972 if (! g->bfd2got)
2973 return g;
2974
2975 e.bfd = ibfd;
9719ad41 2976 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2977 return p ? p->g : NULL;
2978}
2979
2980/* Create one separate got for each bfd that has entries in the global
2981 got, such that we can tell how many local and global entries each
2982 bfd requires. */
2983
2984static int
9719ad41 2985mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2986{
2987 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2988 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2989 htab_t bfd2got = arg->bfd2got;
2990 struct mips_got_info *g;
2991 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2992 void **bfdgotp;
143d77c5 2993
f4416af6
AO
2994 /* Find the got_info for this GOT entry's input bfd. Create one if
2995 none exists. */
2996 bfdgot_entry.bfd = entry->abfd;
2997 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2998 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2999
3000 if (bfdgot != NULL)
3001 g = bfdgot->g;
3002 else
3003 {
3004 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3005 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3006
3007 if (bfdgot == NULL)
3008 {
3009 arg->obfd = 0;
3010 return 0;
3011 }
3012
3013 *bfdgotp = bfdgot;
3014
3015 bfdgot->bfd = entry->abfd;
3016 bfdgot->g = g = (struct mips_got_info *)
3017 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3018 if (g == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->global_gotsym = NULL;
3025 g->global_gotno = 0;
3026 g->local_gotno = 0;
3027 g->assigned_gotno = -1;
0f20cc35
DJ
3028 g->tls_gotno = 0;
3029 g->tls_assigned_gotno = 0;
3030 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3031 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3032 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3033 if (g->got_entries == NULL)
3034 {
3035 arg->obfd = 0;
3036 return 0;
3037 }
3038
3039 g->bfd2got = NULL;
3040 g->next = NULL;
3041 }
3042
3043 /* Insert the GOT entry in the bfd's got entry hash table. */
3044 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3045 if (*entryp != NULL)
3046 return 1;
143d77c5 3047
f4416af6
AO
3048 *entryp = entry;
3049
0f20cc35
DJ
3050 if (entry->tls_type)
3051 {
3052 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3053 g->tls_gotno += 2;
3054 if (entry->tls_type & GOT_TLS_IE)
3055 g->tls_gotno += 1;
3056 }
3057 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3058 ++g->local_gotno;
3059 else
3060 ++g->global_gotno;
3061
3062 return 1;
3063}
3064
3065/* Attempt to merge gots of different input bfds. Try to use as much
3066 as possible of the primary got, since it doesn't require explicit
3067 dynamic relocations, but don't use bfds that would reference global
3068 symbols out of the addressable range. Failing the primary got,
3069 attempt to merge with the current got, or finish the current got
3070 and then make make the new got current. */
3071
3072static int
9719ad41 3073mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3074{
3075 struct mips_elf_bfd2got_hash *bfd2got
3076 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3077 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3078 unsigned int lcount = bfd2got->g->local_gotno;
3079 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3080 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3081 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3082 bfd_boolean too_many_for_tls = FALSE;
3083
3084 /* We place TLS GOT entries after both locals and globals. The globals
3085 for the primary GOT may overflow the normal GOT size limit, so be
3086 sure not to merge a GOT which requires TLS with the primary GOT in that
3087 case. This doesn't affect non-primary GOTs. */
3088 if (tcount > 0)
3089 {
3090 unsigned int primary_total = lcount + tcount + arg->global_count;
3091 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
0a44bf69 3092 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
0f20cc35
DJ
3093 too_many_for_tls = TRUE;
3094 }
143d77c5 3095
f4416af6
AO
3096 /* If we don't have a primary GOT and this is not too big, use it as
3097 a starting point for the primary GOT. */
0f20cc35
DJ
3098 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3099 && ! too_many_for_tls)
f4416af6
AO
3100 {
3101 arg->primary = bfd2got->g;
3102 arg->primary_count = lcount + gcount;
3103 }
3104 /* If it looks like we can merge this bfd's entries with those of
3105 the primary, merge them. The heuristics is conservative, but we
3106 don't have to squeeze it too hard. */
0f20cc35
DJ
3107 else if (arg->primary && ! too_many_for_tls
3108 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3109 {
3110 struct mips_got_info *g = bfd2got->g;
3111 int old_lcount = arg->primary->local_gotno;
3112 int old_gcount = arg->primary->global_gotno;
0f20cc35 3113 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3114
3115 bfd2got->g = arg->primary;
3116
3117 htab_traverse (g->got_entries,
3118 mips_elf_make_got_per_bfd,
3119 arg);
3120 if (arg->obfd == NULL)
3121 return 0;
3122
3123 htab_delete (g->got_entries);
3124 /* We don't have to worry about releasing memory of the actual
3125 got entries, since they're all in the master got_entries hash
3126 table anyway. */
3127
caec41ff 3128 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3129 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3130 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3131
3132 arg->primary_count = arg->primary->local_gotno
0f20cc35 3133 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3134 }
3135 /* If we can merge with the last-created got, do it. */
3136 else if (arg->current
0f20cc35 3137 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3138 {
3139 struct mips_got_info *g = bfd2got->g;
3140 int old_lcount = arg->current->local_gotno;
3141 int old_gcount = arg->current->global_gotno;
0f20cc35 3142 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3143
3144 bfd2got->g = arg->current;
3145
3146 htab_traverse (g->got_entries,
3147 mips_elf_make_got_per_bfd,
3148 arg);
3149 if (arg->obfd == NULL)
3150 return 0;
3151
3152 htab_delete (g->got_entries);
3153
caec41ff 3154 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3155 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3156 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3157
3158 arg->current_count = arg->current->local_gotno
0f20cc35 3159 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3160 }
3161 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3162 fits; if it turns out that it doesn't, we'll get relocation
3163 overflows anyway. */
3164 else
3165 {
3166 bfd2got->g->next = arg->current;
3167 arg->current = bfd2got->g;
143d77c5 3168
0f20cc35
DJ
3169 arg->current_count = lcount + gcount + 2 * tcount;
3170 }
3171
3172 return 1;
3173}
3174
ead49a57
RS
3175/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3176 is null iff there is just a single GOT. */
0f20cc35
DJ
3177
3178static int
3179mips_elf_initialize_tls_index (void **entryp, void *p)
3180{
3181 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3182 struct mips_got_info *g = p;
ead49a57 3183 bfd_vma next_index;
0f20cc35
DJ
3184
3185 /* We're only interested in TLS symbols. */
3186 if (entry->tls_type == 0)
3187 return 1;
3188
ead49a57
RS
3189 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3190
3191 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3192 {
ead49a57
RS
3193 /* A type (3) got entry in the single-GOT case. We use the symbol's
3194 hash table entry to track its index. */
3195 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3196 return 1;
3197 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3198 entry->d.h->tls_got_offset = next_index;
3199 }
3200 else
3201 {
3202 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3203 {
ead49a57
RS
3204 /* There are separate mips_got_entry objects for each input bfd
3205 that requires an LDM entry. Make sure that all LDM entries in
3206 a GOT resolve to the same index. */
3207 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3208 {
ead49a57 3209 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3210 return 1;
3211 }
ead49a57 3212 g->tls_ldm_offset = next_index;
0f20cc35 3213 }
ead49a57 3214 entry->gotidx = next_index;
f4416af6
AO
3215 }
3216
ead49a57 3217 /* Account for the entries we've just allocated. */
0f20cc35
DJ
3218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3219 g->tls_assigned_gotno += 2;
3220 if (entry->tls_type & GOT_TLS_IE)
3221 g->tls_assigned_gotno += 1;
3222
f4416af6
AO
3223 return 1;
3224}
3225
3226/* If passed a NULL mips_got_info in the argument, set the marker used
3227 to tell whether a global symbol needs a got entry (in the primary
3228 got) to the given VALUE.
3229
3230 If passed a pointer G to a mips_got_info in the argument (it must
3231 not be the primary GOT), compute the offset from the beginning of
3232 the (primary) GOT section to the entry in G corresponding to the
3233 global symbol. G's assigned_gotno must contain the index of the
3234 first available global GOT entry in G. VALUE must contain the size
3235 of a GOT entry in bytes. For each global GOT entry that requires a
3236 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3237 marked as not eligible for lazy resolution through a function
f4416af6
AO
3238 stub. */
3239static int
9719ad41 3240mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3241{
3242 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3243 struct mips_elf_set_global_got_offset_arg *arg
3244 = (struct mips_elf_set_global_got_offset_arg *)p;
3245 struct mips_got_info *g = arg->g;
3246
0f20cc35
DJ
3247 if (g && entry->tls_type != GOT_NORMAL)
3248 arg->needed_relocs +=
3249 mips_tls_got_relocs (arg->info, entry->tls_type,
3250 entry->symndx == -1 ? &entry->d.h->root : NULL);
3251
f4416af6 3252 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3253 && entry->d.h->root.dynindx != -1
3254 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3255 {
3256 if (g)
3257 {
3258 BFD_ASSERT (g->global_gotsym == NULL);
3259
3260 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3261 if (arg->info->shared
3262 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3263 && entry->d.h->root.def_dynamic
3264 && !entry->d.h->root.def_regular))
f4416af6
AO
3265 ++arg->needed_relocs;
3266 }
3267 else
3268 entry->d.h->root.got.offset = arg->value;
3269 }
3270
3271 return 1;
3272}
3273
0626d451
RS
3274/* Mark any global symbols referenced in the GOT we are iterating over
3275 as inelligible for lazy resolution stubs. */
3276static int
9719ad41 3277mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3278{
3279 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3280
3281 if (entry->abfd != NULL
3282 && entry->symndx == -1
3283 && entry->d.h->root.dynindx != -1)
3284 entry->d.h->no_fn_stub = TRUE;
3285
3286 return 1;
3287}
3288
f4416af6
AO
3289/* Follow indirect and warning hash entries so that each got entry
3290 points to the final symbol definition. P must point to a pointer
3291 to the hash table we're traversing. Since this traversal may
3292 modify the hash table, we set this pointer to NULL to indicate
3293 we've made a potentially-destructive change to the hash table, so
3294 the traversal must be restarted. */
3295static int
9719ad41 3296mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3297{
3298 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3299 htab_t got_entries = *(htab_t *)p;
3300
3301 if (entry->abfd != NULL && entry->symndx == -1)
3302 {
3303 struct mips_elf_link_hash_entry *h = entry->d.h;
3304
3305 while (h->root.root.type == bfd_link_hash_indirect
3306 || h->root.root.type == bfd_link_hash_warning)
3307 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3308
3309 if (entry->d.h == h)
3310 return 1;
143d77c5 3311
f4416af6
AO
3312 entry->d.h = h;
3313
3314 /* If we can't find this entry with the new bfd hash, re-insert
3315 it, and get the traversal restarted. */
3316 if (! htab_find (got_entries, entry))
3317 {
3318 htab_clear_slot (got_entries, entryp);
3319 entryp = htab_find_slot (got_entries, entry, INSERT);
3320 if (! *entryp)
3321 *entryp = entry;
3322 /* Abort the traversal, since the whole table may have
3323 moved, and leave it up to the parent to restart the
3324 process. */
3325 *(htab_t *)p = NULL;
3326 return 0;
3327 }
3328 /* We might want to decrement the global_gotno count, but it's
3329 either too early or too late for that at this point. */
3330 }
143d77c5 3331
f4416af6
AO
3332 return 1;
3333}
3334
3335/* Turn indirect got entries in a got_entries table into their final
3336 locations. */
3337static void
9719ad41 3338mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3339{
3340 htab_t got_entries;
3341
3342 do
3343 {
3344 got_entries = g->got_entries;
3345
3346 htab_traverse (got_entries,
3347 mips_elf_resolve_final_got_entry,
3348 &got_entries);
3349 }
3350 while (got_entries == NULL);
3351}
3352
3353/* Return the offset of an input bfd IBFD's GOT from the beginning of
3354 the primary GOT. */
3355static bfd_vma
9719ad41 3356mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3357{
3358 if (g->bfd2got == NULL)
3359 return 0;
3360
3361 g = mips_elf_got_for_ibfd (g, ibfd);
3362 if (! g)
3363 return 0;
3364
3365 BFD_ASSERT (g->next);
3366
3367 g = g->next;
143d77c5 3368
0f20cc35
DJ
3369 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3370 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3371}
3372
3373/* Turn a single GOT that is too big for 16-bit addressing into
3374 a sequence of GOTs, each one 16-bit addressable. */
3375
3376static bfd_boolean
9719ad41
RS
3377mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3378 struct mips_got_info *g, asection *got,
3379 bfd_size_type pages)
f4416af6
AO
3380{
3381 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3382 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3383 struct mips_got_info *gg;
3384 unsigned int assign;
3385
3386 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3387 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3388 if (g->bfd2got == NULL)
3389 return FALSE;
3390
3391 got_per_bfd_arg.bfd2got = g->bfd2got;
3392 got_per_bfd_arg.obfd = abfd;
3393 got_per_bfd_arg.info = info;
3394
3395 /* Count how many GOT entries each input bfd requires, creating a
3396 map from bfd to got info while at that. */
f4416af6
AO
3397 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3398 if (got_per_bfd_arg.obfd == NULL)
3399 return FALSE;
3400
3401 got_per_bfd_arg.current = NULL;
3402 got_per_bfd_arg.primary = NULL;
3403 /* Taking out PAGES entries is a worst-case estimate. We could
3404 compute the maximum number of pages that each separate input bfd
3405 uses, but it's probably not worth it. */
0a44bf69 3406 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3407 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3408 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3409 /* The number of globals that will be included in the primary GOT.
3410 See the calls to mips_elf_set_global_got_offset below for more
3411 information. */
3412 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3413
3414 /* Try to merge the GOTs of input bfds together, as long as they
3415 don't seem to exceed the maximum GOT size, choosing one of them
3416 to be the primary GOT. */
3417 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
0f20cc35 3421 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3422 if (got_per_bfd_arg.primary == NULL)
3423 {
3424 g->next = (struct mips_got_info *)
3425 bfd_alloc (abfd, sizeof (struct mips_got_info));
3426 if (g->next == NULL)
3427 return FALSE;
3428
3429 g->next->global_gotsym = NULL;
3430 g->next->global_gotno = 0;
3431 g->next->local_gotno = 0;
0f20cc35 3432 g->next->tls_gotno = 0;
f4416af6 3433 g->next->assigned_gotno = 0;
0f20cc35
DJ
3434 g->next->tls_assigned_gotno = 0;
3435 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3436 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3437 mips_elf_multi_got_entry_eq,
9719ad41 3438 NULL);
f4416af6
AO
3439 if (g->next->got_entries == NULL)
3440 return FALSE;
3441 g->next->bfd2got = NULL;
3442 }
3443 else
3444 g->next = got_per_bfd_arg.primary;
3445 g->next->next = got_per_bfd_arg.current;
3446
3447 /* GG is now the master GOT, and G is the primary GOT. */
3448 gg = g;
3449 g = g->next;
3450
3451 /* Map the output bfd to the primary got. That's what we're going
3452 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3453 didn't mark in check_relocs, and we want a quick way to find it.
3454 We can't just use gg->next because we're going to reverse the
3455 list. */
3456 {
3457 struct mips_elf_bfd2got_hash *bfdgot;
3458 void **bfdgotp;
143d77c5 3459
f4416af6
AO
3460 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3461 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3462
3463 if (bfdgot == NULL)
3464 return FALSE;
3465
3466 bfdgot->bfd = abfd;
3467 bfdgot->g = g;
3468 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3469
3470 BFD_ASSERT (*bfdgotp == NULL);
3471 *bfdgotp = bfdgot;
3472 }
3473
3474 /* The IRIX dynamic linker requires every symbol that is referenced
3475 in a dynamic relocation to be present in the primary GOT, so
3476 arrange for them to appear after those that are actually
3477 referenced.
3478
3479 GNU/Linux could very well do without it, but it would slow down
3480 the dynamic linker, since it would have to resolve every dynamic
3481 symbol referenced in other GOTs more than once, without help from
3482 the cache. Also, knowing that every external symbol has a GOT
3483 helps speed up the resolution of local symbols too, so GNU/Linux
3484 follows IRIX's practice.
143d77c5 3485
f4416af6
AO
3486 The number 2 is used by mips_elf_sort_hash_table_f to count
3487 global GOT symbols that are unreferenced in the primary GOT, with
3488 an initial dynamic index computed from gg->assigned_gotno, where
3489 the number of unreferenced global entries in the primary GOT is
3490 preserved. */
3491 if (1)
3492 {
3493 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3494 g->global_gotno = gg->global_gotno;
3495 set_got_offset_arg.value = 2;
3496 }
3497 else
3498 {
3499 /* This could be used for dynamic linkers that don't optimize
3500 symbol resolution while applying relocations so as to use
3501 primary GOT entries or assuming the symbol is locally-defined.
3502 With this code, we assign lower dynamic indices to global
3503 symbols that are not referenced in the primary GOT, so that
3504 their entries can be omitted. */
3505 gg->assigned_gotno = 0;
3506 set_got_offset_arg.value = -1;
3507 }
3508
3509 /* Reorder dynamic symbols as described above (which behavior
3510 depends on the setting of VALUE). */
3511 set_got_offset_arg.g = NULL;
3512 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 set_got_offset_arg.value = 1;
3515 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 if (! mips_elf_sort_hash_table (info, 1))
3518 return FALSE;
3519
3520 /* Now go through the GOTs assigning them offset ranges.
3521 [assigned_gotno, local_gotno[ will be set to the range of local
3522 entries in each GOT. We can then compute the end of a GOT by
3523 adding local_gotno to global_gotno. We reverse the list and make
3524 it circular since then we'll be able to quickly compute the
3525 beginning of a GOT, by computing the end of its predecessor. To
3526 avoid special cases for the primary GOT, while still preserving
3527 assertions that are valid for both single- and multi-got links,
3528 we arrange for the main got struct to have the right number of
3529 global entries, but set its local_gotno such that the initial
3530 offset of the primary GOT is zero. Remember that the primary GOT
3531 will become the last item in the circular linked list, so it
3532 points back to the master GOT. */
3533 gg->local_gotno = -g->global_gotno;
3534 gg->global_gotno = g->global_gotno;
0f20cc35 3535 gg->tls_gotno = 0;
f4416af6
AO
3536 assign = 0;
3537 gg->next = gg;
3538
3539 do
3540 {
3541 struct mips_got_info *gn;
3542
0a44bf69 3543 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3544 g->assigned_gotno = assign;
3545 g->local_gotno += assign + pages;
0f20cc35
DJ
3546 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3547
ead49a57
RS
3548 /* Take g out of the direct list, and push it onto the reversed
3549 list that gg points to. g->next is guaranteed to be nonnull after
3550 this operation, as required by mips_elf_initialize_tls_index. */
3551 gn = g->next;
3552 g->next = gg->next;
3553 gg->next = g;
3554
0f20cc35
DJ
3555 /* Set up any TLS entries. We always place the TLS entries after
3556 all non-TLS entries. */
3557 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3558 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3559
ead49a57 3560 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3561 g = gn;
0626d451
RS
3562
3563 /* Mark global symbols in every non-primary GOT as ineligible for
3564 stubs. */
3565 if (g)
3566 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3567 }
3568 while (g);
3569
eea6121a 3570 got->size = (gg->next->local_gotno
0f20cc35
DJ
3571 + gg->next->global_gotno
3572 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3573
f4416af6
AO
3574 return TRUE;
3575}
143d77c5 3576
b49e97c9
TS
3577\f
3578/* Returns the first relocation of type r_type found, beginning with
3579 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3580
3581static const Elf_Internal_Rela *
9719ad41
RS
3582mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3583 const Elf_Internal_Rela *relocation,
3584 const Elf_Internal_Rela *relend)
b49e97c9 3585{
b49e97c9
TS
3586 while (relocation < relend)
3587 {
3588 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3589 return relocation;
3590
3591 ++relocation;
3592 }
3593
3594 /* We didn't find it. */
3595 bfd_set_error (bfd_error_bad_value);
3596 return NULL;
3597}
3598
3599/* Return whether a relocation is against a local symbol. */
3600
b34976b6 3601static bfd_boolean
9719ad41
RS
3602mips_elf_local_relocation_p (bfd *input_bfd,
3603 const Elf_Internal_Rela *relocation,
3604 asection **local_sections,
3605 bfd_boolean check_forced)
b49e97c9
TS
3606{
3607 unsigned long r_symndx;
3608 Elf_Internal_Shdr *symtab_hdr;
3609 struct mips_elf_link_hash_entry *h;
3610 size_t extsymoff;
3611
3612 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3613 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3614 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3615
3616 if (r_symndx < extsymoff)
b34976b6 3617 return TRUE;
b49e97c9 3618 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3619 return TRUE;
b49e97c9
TS
3620
3621 if (check_forced)
3622 {
3623 /* Look up the hash table to check whether the symbol
3624 was forced local. */
3625 h = (struct mips_elf_link_hash_entry *)
3626 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3627 /* Find the real hash-table entry for this symbol. */
3628 while (h->root.root.type == bfd_link_hash_indirect
3629 || h->root.root.type == bfd_link_hash_warning)
3630 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3631 if (h->root.forced_local)
b34976b6 3632 return TRUE;
b49e97c9
TS
3633 }
3634
b34976b6 3635 return FALSE;
b49e97c9
TS
3636}
3637\f
3638/* Sign-extend VALUE, which has the indicated number of BITS. */
3639
a7ebbfdf 3640bfd_vma
9719ad41 3641_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3642{
3643 if (value & ((bfd_vma) 1 << (bits - 1)))
3644 /* VALUE is negative. */
3645 value |= ((bfd_vma) - 1) << bits;
3646
3647 return value;
3648}
3649
3650/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3651 range expressible by a signed number with the indicated number of
b49e97c9
TS
3652 BITS. */
3653
b34976b6 3654static bfd_boolean
9719ad41 3655mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3656{
3657 bfd_signed_vma svalue = (bfd_signed_vma) value;
3658
3659 if (svalue > (1 << (bits - 1)) - 1)
3660 /* The value is too big. */
b34976b6 3661 return TRUE;
b49e97c9
TS
3662 else if (svalue < -(1 << (bits - 1)))
3663 /* The value is too small. */
b34976b6 3664 return TRUE;
b49e97c9
TS
3665
3666 /* All is well. */
b34976b6 3667 return FALSE;
b49e97c9
TS
3668}
3669
3670/* Calculate the %high function. */
3671
3672static bfd_vma
9719ad41 3673mips_elf_high (bfd_vma value)
b49e97c9
TS
3674{
3675 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3676}
3677
3678/* Calculate the %higher function. */
3679
3680static bfd_vma
9719ad41 3681mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3682{
3683#ifdef BFD64
3684 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3685#else
3686 abort ();
c5ae1840 3687 return MINUS_ONE;
b49e97c9
TS
3688#endif
3689}
3690
3691/* Calculate the %highest function. */
3692
3693static bfd_vma
9719ad41 3694mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3695{
3696#ifdef BFD64
b15e6682 3697 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3698#else
3699 abort ();
c5ae1840 3700 return MINUS_ONE;
b49e97c9
TS
3701#endif
3702}
3703\f
3704/* Create the .compact_rel section. */
3705
b34976b6 3706static bfd_boolean
9719ad41
RS
3707mips_elf_create_compact_rel_section
3708 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3709{
3710 flagword flags;
3711 register asection *s;
3712
3713 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3714 {
3715 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3716 | SEC_READONLY);
3717
3496cb2a 3718 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3719 if (s == NULL
b49e97c9
TS
3720 || ! bfd_set_section_alignment (abfd, s,
3721 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3722 return FALSE;
b49e97c9 3723
eea6121a 3724 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3725 }
3726
b34976b6 3727 return TRUE;
b49e97c9
TS
3728}
3729
3730/* Create the .got section to hold the global offset table. */
3731
b34976b6 3732static bfd_boolean
9719ad41
RS
3733mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3734 bfd_boolean maybe_exclude)
b49e97c9
TS
3735{
3736 flagword flags;
3737 register asection *s;
3738 struct elf_link_hash_entry *h;
14a793b2 3739 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3740 struct mips_got_info *g;
3741 bfd_size_type amt;
0a44bf69
RS
3742 struct mips_elf_link_hash_table *htab;
3743
3744 htab = mips_elf_hash_table (info);
b49e97c9
TS
3745
3746 /* This function may be called more than once. */
f4416af6
AO
3747 s = mips_elf_got_section (abfd, TRUE);
3748 if (s)
3749 {
3750 if (! maybe_exclude)
3751 s->flags &= ~SEC_EXCLUDE;
3752 return TRUE;
3753 }
b49e97c9
TS
3754
3755 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3756 | SEC_LINKER_CREATED);
3757
f4416af6
AO
3758 if (maybe_exclude)
3759 flags |= SEC_EXCLUDE;
3760
72b4917c
TS
3761 /* We have to use an alignment of 2**4 here because this is hardcoded
3762 in the function stub generation and in the linker script. */
3496cb2a 3763 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3764 if (s == NULL
72b4917c 3765 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3766 return FALSE;
b49e97c9
TS
3767
3768 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3769 linker script because we don't want to define the symbol if we
3770 are not creating a global offset table. */
14a793b2 3771 bh = NULL;
b49e97c9
TS
3772 if (! (_bfd_generic_link_add_one_symbol
3773 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3774 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3775 return FALSE;
14a793b2
AM
3776
3777 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3778 h->non_elf = 0;
3779 h->def_regular = 1;
b49e97c9 3780 h->type = STT_OBJECT;
d329bcd1 3781 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3782
3783 if (info->shared
c152c796 3784 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3785 return FALSE;
b49e97c9 3786
b49e97c9 3787 amt = sizeof (struct mips_got_info);
9719ad41 3788 g = bfd_alloc (abfd, amt);
b49e97c9 3789 if (g == NULL)
b34976b6 3790 return FALSE;
b49e97c9 3791 g->global_gotsym = NULL;
e3d54347 3792 g->global_gotno = 0;
0f20cc35 3793 g->tls_gotno = 0;
0a44bf69
RS
3794 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3795 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3796 g->bfd2got = NULL;
3797 g->next = NULL;
0f20cc35 3798 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3799 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3800 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3801 if (g->got_entries == NULL)
3802 return FALSE;
f0abc2a1
AM
3803 mips_elf_section_data (s)->u.got_info = g;
3804 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3805 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3806
0a44bf69
RS
3807 /* VxWorks also needs a .got.plt section. */
3808 if (htab->is_vxworks)
3809 {
3810 s = bfd_make_section_with_flags (abfd, ".got.plt",
3811 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3812 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3813 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3814 return FALSE;
3815
3816 htab->sgotplt = s;
3817 }
b34976b6 3818 return TRUE;
b49e97c9 3819}
b49e97c9 3820\f
0a44bf69
RS
3821/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3822 __GOTT_INDEX__ symbols. These symbols are only special for
3823 shared objects; they are not used in executables. */
3824
3825static bfd_boolean
3826is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3827{
3828 return (mips_elf_hash_table (info)->is_vxworks
3829 && info->shared
3830 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3831 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3832}
3833\f
b49e97c9
TS
3834/* Calculate the value produced by the RELOCATION (which comes from
3835 the INPUT_BFD). The ADDEND is the addend to use for this
3836 RELOCATION; RELOCATION->R_ADDEND is ignored.
3837
3838 The result of the relocation calculation is stored in VALUEP.
3839 REQUIRE_JALXP indicates whether or not the opcode used with this
3840 relocation must be JALX.
3841
3842 This function returns bfd_reloc_continue if the caller need take no
3843 further action regarding this relocation, bfd_reloc_notsupported if
3844 something goes dramatically wrong, bfd_reloc_overflow if an
3845 overflow occurs, and bfd_reloc_ok to indicate success. */
3846
3847static bfd_reloc_status_type
9719ad41
RS
3848mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3849 asection *input_section,
3850 struct bfd_link_info *info,
3851 const Elf_Internal_Rela *relocation,
3852 bfd_vma addend, reloc_howto_type *howto,
3853 Elf_Internal_Sym *local_syms,
3854 asection **local_sections, bfd_vma *valuep,
3855 const char **namep, bfd_boolean *require_jalxp,
3856 bfd_boolean save_addend)
b49e97c9
TS
3857{
3858 /* The eventual value we will return. */
3859 bfd_vma value;
3860 /* The address of the symbol against which the relocation is
3861 occurring. */
3862 bfd_vma symbol = 0;
3863 /* The final GP value to be used for the relocatable, executable, or
3864 shared object file being produced. */
3865 bfd_vma gp = MINUS_ONE;
3866 /* The place (section offset or address) of the storage unit being
3867 relocated. */
3868 bfd_vma p;
3869 /* The value of GP used to create the relocatable object. */
3870 bfd_vma gp0 = MINUS_ONE;
3871 /* The offset into the global offset table at which the address of
3872 the relocation entry symbol, adjusted by the addend, resides
3873 during execution. */
3874 bfd_vma g = MINUS_ONE;
3875 /* The section in which the symbol referenced by the relocation is
3876 located. */
3877 asection *sec = NULL;
3878 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3879 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3880 symbol. */
b34976b6
AM
3881 bfd_boolean local_p, was_local_p;
3882 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3883 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3884 /* TRUE if the symbol referred to by this relocation is
3885 "__gnu_local_gp". */
3886 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3887 Elf_Internal_Shdr *symtab_hdr;
3888 size_t extsymoff;
3889 unsigned long r_symndx;
3890 int r_type;
b34976b6 3891 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3892 relocation value. */
b34976b6
AM
3893 bfd_boolean overflowed_p;
3894 /* TRUE if this relocation refers to a MIPS16 function. */
3895 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3896 struct mips_elf_link_hash_table *htab;
3897 bfd *dynobj;
3898
3899 dynobj = elf_hash_table (info)->dynobj;
3900 htab = mips_elf_hash_table (info);
b49e97c9
TS
3901
3902 /* Parse the relocation. */
3903 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3904 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3905 p = (input_section->output_section->vma
3906 + input_section->output_offset
3907 + relocation->r_offset);
3908
3909 /* Assume that there will be no overflow. */
b34976b6 3910 overflowed_p = FALSE;
b49e97c9
TS
3911
3912 /* Figure out whether or not the symbol is local, and get the offset
3913 used in the array of hash table entries. */
3914 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3915 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3916 local_sections, FALSE);
bce03d3d 3917 was_local_p = local_p;
b49e97c9
TS
3918 if (! elf_bad_symtab (input_bfd))
3919 extsymoff = symtab_hdr->sh_info;
3920 else
3921 {
3922 /* The symbol table does not follow the rule that local symbols
3923 must come before globals. */
3924 extsymoff = 0;
3925 }
3926
3927 /* Figure out the value of the symbol. */
3928 if (local_p)
3929 {
3930 Elf_Internal_Sym *sym;
3931
3932 sym = local_syms + r_symndx;
3933 sec = local_sections[r_symndx];
3934
3935 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3936 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3937 || (sec->flags & SEC_MERGE))
b49e97c9 3938 symbol += sym->st_value;
d4df96e6
L
3939 if ((sec->flags & SEC_MERGE)
3940 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3941 {
3942 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3943 addend -= symbol;
3944 addend += sec->output_section->vma + sec->output_offset;
3945 }
b49e97c9
TS
3946
3947 /* MIPS16 text labels should be treated as odd. */
3948 if (sym->st_other == STO_MIPS16)
3949 ++symbol;
3950
3951 /* Record the name of this symbol, for our caller. */
3952 *namep = bfd_elf_string_from_elf_section (input_bfd,
3953 symtab_hdr->sh_link,
3954 sym->st_name);
3955 if (*namep == '\0')
3956 *namep = bfd_section_name (input_bfd, sec);
3957
3958 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3959 }
3960 else
3961 {
560e09e9
NC
3962 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3963
b49e97c9
TS
3964 /* For global symbols we look up the symbol in the hash-table. */
3965 h = ((struct mips_elf_link_hash_entry *)
3966 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3967 /* Find the real hash-table entry for this symbol. */
3968 while (h->root.root.type == bfd_link_hash_indirect
3969 || h->root.root.type == bfd_link_hash_warning)
3970 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3971
3972 /* Record the name of this symbol, for our caller. */
3973 *namep = h->root.root.root.string;
3974
3975 /* See if this is the special _gp_disp symbol. Note that such a
3976 symbol must always be a global symbol. */
560e09e9 3977 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3978 && ! NEWABI_P (input_bfd))
3979 {
3980 /* Relocations against _gp_disp are permitted only with
3981 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3982 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3983 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3984 return bfd_reloc_notsupported;
3985
b34976b6 3986 gp_disp_p = TRUE;
b49e97c9 3987 }
bbe506e8
TS
3988 /* See if this is the special _gp symbol. Note that such a
3989 symbol must always be a global symbol. */
3990 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3991 gnu_local_gp_p = TRUE;
3992
3993
b49e97c9
TS
3994 /* If this symbol is defined, calculate its address. Note that
3995 _gp_disp is a magic symbol, always implicitly defined by the
3996 linker, so it's inappropriate to check to see whether or not
3997 its defined. */
3998 else if ((h->root.root.type == bfd_link_hash_defined
3999 || h->root.root.type == bfd_link_hash_defweak)
4000 && h->root.root.u.def.section)
4001 {
4002 sec = h->root.root.u.def.section;
4003 if (sec->output_section)
4004 symbol = (h->root.root.u.def.value
4005 + sec->output_section->vma
4006 + sec->output_offset);
4007 else
4008 symbol = h->root.root.u.def.value;
4009 }
4010 else if (h->root.root.type == bfd_link_hash_undefweak)
4011 /* We allow relocations against undefined weak symbols, giving
4012 it the value zero, so that you can undefined weak functions
4013 and check to see if they exist by looking at their
4014 addresses. */
4015 symbol = 0;
59c2e50f 4016 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4017 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4018 symbol = 0;
a4d0f181
TS
4019 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4020 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4021 {
4022 /* If this is a dynamic link, we should have created a
4023 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4024 in in _bfd_mips_elf_create_dynamic_sections.
4025 Otherwise, we should define the symbol with a value of 0.
4026 FIXME: It should probably get into the symbol table
4027 somehow as well. */
4028 BFD_ASSERT (! info->shared);
4029 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4030 symbol = 0;
4031 }
5e2b0d47
NC
4032 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4033 {
4034 /* This is an optional symbol - an Irix specific extension to the
4035 ELF spec. Ignore it for now.
4036 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4037 than simply ignoring them, but we do not handle this for now.
4038 For information see the "64-bit ELF Object File Specification"
4039 which is available from here:
4040 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4041 symbol = 0;
4042 }
b49e97c9
TS
4043 else
4044 {
4045 if (! ((*info->callbacks->undefined_symbol)
4046 (info, h->root.root.root.string, input_bfd,
4047 input_section, relocation->r_offset,
59c2e50f
L
4048 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4049 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4050 return bfd_reloc_undefined;
4051 symbol = 0;
4052 }
4053
4054 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4055 }
4056
4057 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4058 need to redirect the call to the stub, unless we're already *in*
4059 a stub. */
1049f94e 4060 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
4061 && ((h != NULL && h->fn_stub != NULL)
4062 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4063 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4064 && !mips_elf_stub_section_p (input_bfd, input_section))
4065 {
4066 /* This is a 32- or 64-bit call to a 16-bit function. We should
4067 have already noticed that we were going to need the
4068 stub. */
4069 if (local_p)
4070 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4071 else
4072 {
4073 BFD_ASSERT (h->need_fn_stub);
4074 sec = h->fn_stub;
4075 }
4076
4077 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4078 /* The target is 16-bit, but the stub isn't. */
4079 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4080 }
4081 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4082 need to redirect the call to the stub. */
1049f94e 4083 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
4084 && h != NULL
4085 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4086 && !target_is_16_bit_code_p)
4087 {
4088 /* If both call_stub and call_fp_stub are defined, we can figure
4089 out which one to use by seeing which one appears in the input
4090 file. */
4091 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4092 {
4093 asection *o;
4094
4095 sec = NULL;
4096 for (o = input_bfd->sections; o != NULL; o = o->next)
4097 {
4098 if (strncmp (bfd_get_section_name (input_bfd, o),
4099 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4100 {
4101 sec = h->call_fp_stub;
4102 break;
4103 }
4104 }
4105 if (sec == NULL)
4106 sec = h->call_stub;
4107 }
4108 else if (h->call_stub != NULL)
4109 sec = h->call_stub;
4110 else
4111 sec = h->call_fp_stub;
4112
eea6121a 4113 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4114 symbol = sec->output_section->vma + sec->output_offset;
4115 }
4116
4117 /* Calls from 16-bit code to 32-bit code and vice versa require the
4118 special jalx instruction. */
1049f94e 4119 *require_jalxp = (!info->relocatable
b49e97c9
TS
4120 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4121 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4122
4123 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4124 local_sections, TRUE);
b49e97c9
TS
4125
4126 /* If we haven't already determined the GOT offset, or the GP value,
4127 and we're going to need it, get it now. */
4128 switch (r_type)
4129 {
0fdc1bf1 4130 case R_MIPS_GOT_PAGE:
93a2b7ae 4131 case R_MIPS_GOT_OFST:
d25aed71
RS
4132 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4133 bind locally. */
4134 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4135 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4136 break;
4137 /* Fall through. */
4138
b49e97c9
TS
4139 case R_MIPS_CALL16:
4140 case R_MIPS_GOT16:
4141 case R_MIPS_GOT_DISP:
4142 case R_MIPS_GOT_HI16:
4143 case R_MIPS_CALL_HI16:
4144 case R_MIPS_GOT_LO16:
4145 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4146 case R_MIPS_TLS_GD:
4147 case R_MIPS_TLS_GOTTPREL:
4148 case R_MIPS_TLS_LDM:
b49e97c9 4149 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4150 if (r_type == R_MIPS_TLS_LDM)
4151 {
0a44bf69
RS
4152 g = mips_elf_local_got_index (abfd, input_bfd, info,
4153 sec, 0, 0, NULL, r_type);
0f20cc35
DJ
4154 if (g == MINUS_ONE)
4155 return bfd_reloc_outofrange;
4156 }
4157 else if (!local_p)
b49e97c9 4158 {
0a44bf69
RS
4159 /* On VxWorks, CALL relocations should refer to the .got.plt
4160 entry, which is initialized to point at the PLT stub. */
4161 if (htab->is_vxworks
4162 && (r_type == R_MIPS_CALL_HI16
4163 || r_type == R_MIPS_CALL_LO16
4164 || r_type == R_MIPS_CALL16))
4165 {
4166 BFD_ASSERT (addend == 0);
4167 BFD_ASSERT (h->root.needs_plt);
4168 g = mips_elf_gotplt_index (info, &h->root);
4169 }
4170 else
b49e97c9 4171 {
0a44bf69
RS
4172 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4173 GOT_PAGE relocation that decays to GOT_DISP because the
4174 symbol turns out to be global. The addend is then added
4175 as GOT_OFST. */
4176 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4177 g = mips_elf_global_got_index (dynobj, input_bfd,
4178 &h->root, r_type, info);
4179 if (h->tls_type == GOT_NORMAL
4180 && (! elf_hash_table(info)->dynamic_sections_created
4181 || (info->shared
4182 && (info->symbolic || h->root.forced_local)
4183 && h->root.def_regular)))
4184 {
4185 /* This is a static link or a -Bsymbolic link. The
4186 symbol is defined locally, or was forced to be local.
4187 We must initialize this entry in the GOT. */
4188 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4189 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4190 }
b49e97c9
TS
4191 }
4192 }
0a44bf69
RS
4193 else if (!htab->is_vxworks
4194 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4195 /* The calculation below does not involve "g". */
b49e97c9
TS
4196 break;
4197 else
4198 {
0a44bf69
RS
4199 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4200 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4201 if (g == MINUS_ONE)
4202 return bfd_reloc_outofrange;
4203 }
4204
4205 /* Convert GOT indices to actual offsets. */
0a44bf69 4206 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4207 break;
4208
4209 case R_MIPS_HI16:
4210 case R_MIPS_LO16:
b49e97c9
TS
4211 case R_MIPS_GPREL16:
4212 case R_MIPS_GPREL32:
4213 case R_MIPS_LITERAL:
d6f16593
MR
4214 case R_MIPS16_HI16:
4215 case R_MIPS16_LO16:
4216 case R_MIPS16_GPREL:
b49e97c9
TS
4217 gp0 = _bfd_get_gp_value (input_bfd);
4218 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4219 if (dynobj)
4220 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4221 input_bfd);
b49e97c9
TS
4222 break;
4223
4224 default:
4225 break;
4226 }
4227
bbe506e8
TS
4228 if (gnu_local_gp_p)
4229 symbol = gp;
86324f90 4230
0a44bf69
RS
4231 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4232 symbols are resolved by the loader. Add them to .rela.dyn. */
4233 if (h != NULL && is_gott_symbol (info, &h->root))
4234 {
4235 Elf_Internal_Rela outrel;
4236 bfd_byte *loc;
4237 asection *s;
4238
4239 s = mips_elf_rel_dyn_section (info, FALSE);
4240 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4241
4242 outrel.r_offset = (input_section->output_section->vma
4243 + input_section->output_offset
4244 + relocation->r_offset);
4245 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4246 outrel.r_addend = addend;
4247 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4248 *valuep = 0;
4249 return bfd_reloc_ok;
4250 }
4251
b49e97c9
TS
4252 /* Figure out what kind of relocation is being performed. */
4253 switch (r_type)
4254 {
4255 case R_MIPS_NONE:
4256 return bfd_reloc_continue;
4257
4258 case R_MIPS_16:
a7ebbfdf 4259 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4260 overflowed_p = mips_elf_overflow_p (value, 16);
4261 break;
4262
4263 case R_MIPS_32:
4264 case R_MIPS_REL32:
4265 case R_MIPS_64:
4266 if ((info->shared
0a44bf69
RS
4267 || (!htab->is_vxworks
4268 && htab->root.dynamic_sections_created
b49e97c9 4269 && h != NULL
f5385ebf
AM
4270 && h->root.def_dynamic
4271 && !h->root.def_regular))
b49e97c9
TS
4272 && r_symndx != 0
4273 && (input_section->flags & SEC_ALLOC) != 0)
4274 {
4275 /* If we're creating a shared library, or this relocation is
4276 against a symbol in a shared library, then we can't know
4277 where the symbol will end up. So, we create a relocation
4278 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4279 linker.
4280
4281 In VxWorks executables, references to external symbols
4282 are handled using copy relocs or PLT stubs, so there's
4283 no need to add a dynamic relocation here. */
b49e97c9
TS
4284 value = addend;
4285 if (!mips_elf_create_dynamic_relocation (abfd,
4286 info,
4287 relocation,
4288 h,
4289 sec,
4290 symbol,
4291 &value,
4292 input_section))
4293 return bfd_reloc_undefined;
4294 }
4295 else
4296 {
4297 if (r_type != R_MIPS_REL32)
4298 value = symbol + addend;
4299 else
4300 value = addend;
4301 }
4302 value &= howto->dst_mask;
092dcd75
CD
4303 break;
4304
4305 case R_MIPS_PC32:
4306 value = symbol + addend - p;
4307 value &= howto->dst_mask;
b49e97c9
TS
4308 break;
4309
b49e97c9
TS
4310 case R_MIPS16_26:
4311 /* The calculation for R_MIPS16_26 is just the same as for an
4312 R_MIPS_26. It's only the storage of the relocated field into
4313 the output file that's different. That's handled in
4314 mips_elf_perform_relocation. So, we just fall through to the
4315 R_MIPS_26 case here. */
4316 case R_MIPS_26:
4317 if (local_p)
30ac9238 4318 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4319 else
728b2f21
ILT
4320 {
4321 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4322 if (h->root.root.type != bfd_link_hash_undefweak)
4323 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4324 }
b49e97c9
TS
4325 value &= howto->dst_mask;
4326 break;
4327
0f20cc35
DJ
4328 case R_MIPS_TLS_DTPREL_HI16:
4329 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4330 & howto->dst_mask);
4331 break;
4332
4333 case R_MIPS_TLS_DTPREL_LO16:
4334 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4335 break;
4336
4337 case R_MIPS_TLS_TPREL_HI16:
4338 value = (mips_elf_high (addend + symbol - tprel_base (info))
4339 & howto->dst_mask);
4340 break;
4341
4342 case R_MIPS_TLS_TPREL_LO16:
4343 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4344 break;
4345
b49e97c9 4346 case R_MIPS_HI16:
d6f16593 4347 case R_MIPS16_HI16:
b49e97c9
TS
4348 if (!gp_disp_p)
4349 {
4350 value = mips_elf_high (addend + symbol);
4351 value &= howto->dst_mask;
4352 }
4353 else
4354 {
d6f16593
MR
4355 /* For MIPS16 ABI code we generate this sequence
4356 0: li $v0,%hi(_gp_disp)
4357 4: addiupc $v1,%lo(_gp_disp)
4358 8: sll $v0,16
4359 12: addu $v0,$v1
4360 14: move $gp,$v0
4361 So the offsets of hi and lo relocs are the same, but the
4362 $pc is four higher than $t9 would be, so reduce
4363 both reloc addends by 4. */
4364 if (r_type == R_MIPS16_HI16)
4365 value = mips_elf_high (addend + gp - p - 4);
4366 else
4367 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4368 overflowed_p = mips_elf_overflow_p (value, 16);
4369 }
4370 break;
4371
4372 case R_MIPS_LO16:
d6f16593 4373 case R_MIPS16_LO16:
b49e97c9
TS
4374 if (!gp_disp_p)
4375 value = (symbol + addend) & howto->dst_mask;
4376 else
4377 {
d6f16593
MR
4378 /* See the comment for R_MIPS16_HI16 above for the reason
4379 for this conditional. */
4380 if (r_type == R_MIPS16_LO16)
4381 value = addend + gp - p;
4382 else
4383 value = addend + gp - p + 4;
b49e97c9 4384 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4385 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4386 _gp_disp are normally generated from the .cpload
4387 pseudo-op. It generates code that normally looks like
4388 this:
4389
4390 lui $gp,%hi(_gp_disp)
4391 addiu $gp,$gp,%lo(_gp_disp)
4392 addu $gp,$gp,$t9
4393
4394 Here $t9 holds the address of the function being called,
4395 as required by the MIPS ELF ABI. The R_MIPS_LO16
4396 relocation can easily overflow in this situation, but the
4397 R_MIPS_HI16 relocation will handle the overflow.
4398 Therefore, we consider this a bug in the MIPS ABI, and do
4399 not check for overflow here. */
4400 }
4401 break;
4402
4403 case R_MIPS_LITERAL:
4404 /* Because we don't merge literal sections, we can handle this
4405 just like R_MIPS_GPREL16. In the long run, we should merge
4406 shared literals, and then we will need to additional work
4407 here. */
4408
4409 /* Fall through. */
4410
4411 case R_MIPS16_GPREL:
4412 /* The R_MIPS16_GPREL performs the same calculation as
4413 R_MIPS_GPREL16, but stores the relocated bits in a different
4414 order. We don't need to do anything special here; the
4415 differences are handled in mips_elf_perform_relocation. */
4416 case R_MIPS_GPREL16:
bce03d3d
AO
4417 /* Only sign-extend the addend if it was extracted from the
4418 instruction. If the addend was separate, leave it alone,
4419 otherwise we may lose significant bits. */
4420 if (howto->partial_inplace)
a7ebbfdf 4421 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4422 value = symbol + addend - gp;
4423 /* If the symbol was local, any earlier relocatable links will
4424 have adjusted its addend with the gp offset, so compensate
4425 for that now. Don't do it for symbols forced local in this
4426 link, though, since they won't have had the gp offset applied
4427 to them before. */
4428 if (was_local_p)
4429 value += gp0;
b49e97c9
TS
4430 overflowed_p = mips_elf_overflow_p (value, 16);
4431 break;
4432
4433 case R_MIPS_GOT16:
4434 case R_MIPS_CALL16:
0a44bf69
RS
4435 /* VxWorks does not have separate local and global semantics for
4436 R_MIPS_GOT16; every relocation evaluates to "G". */
4437 if (!htab->is_vxworks && local_p)
b49e97c9 4438 {
b34976b6 4439 bfd_boolean forced;
b49e97c9 4440
b49e97c9 4441 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4442 local_sections, FALSE);
0a44bf69 4443 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
f4416af6 4444 symbol + addend, forced);
b49e97c9
TS
4445 if (value == MINUS_ONE)
4446 return bfd_reloc_outofrange;
4447 value
0a44bf69 4448 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4449 overflowed_p = mips_elf_overflow_p (value, 16);
4450 break;
4451 }
4452
4453 /* Fall through. */
4454
0f20cc35
DJ
4455 case R_MIPS_TLS_GD:
4456 case R_MIPS_TLS_GOTTPREL:
4457 case R_MIPS_TLS_LDM:
b49e97c9 4458 case R_MIPS_GOT_DISP:
0fdc1bf1 4459 got_disp:
b49e97c9
TS
4460 value = g;
4461 overflowed_p = mips_elf_overflow_p (value, 16);
4462 break;
4463
4464 case R_MIPS_GPREL32:
bce03d3d
AO
4465 value = (addend + symbol + gp0 - gp);
4466 if (!save_addend)
4467 value &= howto->dst_mask;
b49e97c9
TS
4468 break;
4469
4470 case R_MIPS_PC16:
bad36eac
DJ
4471 case R_MIPS_GNU_REL16_S2:
4472 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4473 overflowed_p = mips_elf_overflow_p (value, 18);
4474 value = (value >> 2) & howto->dst_mask;
b49e97c9
TS
4475 break;
4476
4477 case R_MIPS_GOT_HI16:
4478 case R_MIPS_CALL_HI16:
4479 /* We're allowed to handle these two relocations identically.
4480 The dynamic linker is allowed to handle the CALL relocations
4481 differently by creating a lazy evaluation stub. */
4482 value = g;
4483 value = mips_elf_high (value);
4484 value &= howto->dst_mask;
4485 break;
4486
4487 case R_MIPS_GOT_LO16:
4488 case R_MIPS_CALL_LO16:
4489 value = g & howto->dst_mask;
4490 break;
4491
4492 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4493 /* GOT_PAGE relocations that reference non-local symbols decay
4494 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4495 0. */
93a2b7ae 4496 if (! local_p)
0fdc1bf1 4497 goto got_disp;
0a44bf69
RS
4498 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4499 symbol + addend, NULL);
b49e97c9
TS
4500 if (value == MINUS_ONE)
4501 return bfd_reloc_outofrange;
0a44bf69 4502 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4503 overflowed_p = mips_elf_overflow_p (value, 16);
4504 break;
4505
4506 case R_MIPS_GOT_OFST:
93a2b7ae 4507 if (local_p)
0a44bf69
RS
4508 mips_elf_got_page (abfd, input_bfd, info, sec,
4509 symbol + addend, &value);
0fdc1bf1
AO
4510 else
4511 value = addend;
b49e97c9
TS
4512 overflowed_p = mips_elf_overflow_p (value, 16);
4513 break;
4514
4515 case R_MIPS_SUB:
4516 value = symbol - addend;
4517 value &= howto->dst_mask;
4518 break;
4519
4520 case R_MIPS_HIGHER:
4521 value = mips_elf_higher (addend + symbol);
4522 value &= howto->dst_mask;
4523 break;
4524
4525 case R_MIPS_HIGHEST:
4526 value = mips_elf_highest (addend + symbol);
4527 value &= howto->dst_mask;
4528 break;
4529
4530 case R_MIPS_SCN_DISP:
4531 value = symbol + addend - sec->output_offset;
4532 value &= howto->dst_mask;
4533 break;
4534
b49e97c9 4535 case R_MIPS_JALR:
1367d393
ILT
4536 /* This relocation is only a hint. In some cases, we optimize
4537 it into a bal instruction. But we don't try to optimize
4538 branches to the PLT; that will wind up wasting time. */
4539 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4540 return bfd_reloc_continue;
4541 value = symbol + addend;
4542 break;
b49e97c9 4543
1367d393 4544 case R_MIPS_PJUMP:
b49e97c9
TS
4545 case R_MIPS_GNU_VTINHERIT:
4546 case R_MIPS_GNU_VTENTRY:
4547 /* We don't do anything with these at present. */
4548 return bfd_reloc_continue;
4549
4550 default:
4551 /* An unrecognized relocation type. */
4552 return bfd_reloc_notsupported;
4553 }
4554
4555 /* Store the VALUE for our caller. */
4556 *valuep = value;
4557 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4558}
4559
4560/* Obtain the field relocated by RELOCATION. */
4561
4562static bfd_vma
9719ad41
RS
4563mips_elf_obtain_contents (reloc_howto_type *howto,
4564 const Elf_Internal_Rela *relocation,
4565 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4566{
4567 bfd_vma x;
4568 bfd_byte *location = contents + relocation->r_offset;
4569
4570 /* Obtain the bytes. */
4571 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4572
b49e97c9
TS
4573 return x;
4574}
4575
4576/* It has been determined that the result of the RELOCATION is the
4577 VALUE. Use HOWTO to place VALUE into the output file at the
4578 appropriate position. The SECTION is the section to which the
b34976b6 4579 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4580 for the relocation must be either JAL or JALX, and it is
4581 unconditionally converted to JALX.
4582
b34976b6 4583 Returns FALSE if anything goes wrong. */
b49e97c9 4584
b34976b6 4585static bfd_boolean
9719ad41
RS
4586mips_elf_perform_relocation (struct bfd_link_info *info,
4587 reloc_howto_type *howto,
4588 const Elf_Internal_Rela *relocation,
4589 bfd_vma value, bfd *input_bfd,
4590 asection *input_section, bfd_byte *contents,
4591 bfd_boolean require_jalx)
b49e97c9
TS
4592{
4593 bfd_vma x;
4594 bfd_byte *location;
4595 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4596
4597 /* Figure out where the relocation is occurring. */
4598 location = contents + relocation->r_offset;
4599
d6f16593
MR
4600 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4601
b49e97c9
TS
4602 /* Obtain the current value. */
4603 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4604
4605 /* Clear the field we are setting. */
4606 x &= ~howto->dst_mask;
4607
b49e97c9
TS
4608 /* Set the field. */
4609 x |= (value & howto->dst_mask);
4610
4611 /* If required, turn JAL into JALX. */
4612 if (require_jalx)
4613 {
b34976b6 4614 bfd_boolean ok;
b49e97c9
TS
4615 bfd_vma opcode = x >> 26;
4616 bfd_vma jalx_opcode;
4617
4618 /* Check to see if the opcode is already JAL or JALX. */
4619 if (r_type == R_MIPS16_26)
4620 {
4621 ok = ((opcode == 0x6) || (opcode == 0x7));
4622 jalx_opcode = 0x7;
4623 }
4624 else
4625 {
4626 ok = ((opcode == 0x3) || (opcode == 0x1d));
4627 jalx_opcode = 0x1d;
4628 }
4629
4630 /* If the opcode is not JAL or JALX, there's a problem. */
4631 if (!ok)
4632 {
4633 (*_bfd_error_handler)
d003868e
AM
4634 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4635 input_bfd,
4636 input_section,
b49e97c9
TS
4637 (unsigned long) relocation->r_offset);
4638 bfd_set_error (bfd_error_bad_value);
b34976b6 4639 return FALSE;
b49e97c9
TS
4640 }
4641
4642 /* Make this the JALX opcode. */
4643 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4644 }
4645
1367d393
ILT
4646 /* On the RM9000, bal is faster than jal, because bal uses branch
4647 prediction hardware. If we are linking for the RM9000, and we
4648 see jal, and bal fits, use it instead. Note that this
4649 transformation should be safe for all architectures. */
4650 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4651 && !info->relocatable
4652 && !require_jalx
4653 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4654 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4655 {
4656 bfd_vma addr;
4657 bfd_vma dest;
4658 bfd_signed_vma off;
4659
4660 addr = (input_section->output_section->vma
4661 + input_section->output_offset
4662 + relocation->r_offset
4663 + 4);
4664 if (r_type == R_MIPS_26)
4665 dest = (value << 2) | ((addr >> 28) << 28);
4666 else
4667 dest = value;
4668 off = dest - addr;
4669 if (off <= 0x1ffff && off >= -0x20000)
4670 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4671 }
4672
b49e97c9
TS
4673 /* Put the value into the output. */
4674 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4675
4676 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4677 location);
4678
b34976b6 4679 return TRUE;
b49e97c9
TS
4680}
4681
b34976b6 4682/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4683
b34976b6 4684static bfd_boolean
9719ad41 4685mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4686{
4687 const char *name = bfd_get_section_name (abfd, section);
4688
4689 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4690 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4691 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4692}
4693\f
0a44bf69 4694/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4695
4696static void
0a44bf69
RS
4697mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4698 unsigned int n)
b49e97c9
TS
4699{
4700 asection *s;
0a44bf69 4701 struct mips_elf_link_hash_table *htab;
b49e97c9 4702
0a44bf69
RS
4703 htab = mips_elf_hash_table (info);
4704 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4705 BFD_ASSERT (s != NULL);
4706
0a44bf69
RS
4707 if (htab->is_vxworks)
4708 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4709 else
b49e97c9 4710 {
0a44bf69
RS
4711 if (s->size == 0)
4712 {
4713 /* Make room for a null element. */
4714 s->size += MIPS_ELF_REL_SIZE (abfd);
4715 ++s->reloc_count;
4716 }
4717 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4718 }
b49e97c9
TS
4719}
4720
4721/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4722 is the original relocation, which is now being transformed into a
4723 dynamic relocation. The ADDENDP is adjusted if necessary; the
4724 caller should store the result in place of the original addend. */
4725
b34976b6 4726static bfd_boolean
9719ad41
RS
4727mips_elf_create_dynamic_relocation (bfd *output_bfd,
4728 struct bfd_link_info *info,
4729 const Elf_Internal_Rela *rel,
4730 struct mips_elf_link_hash_entry *h,
4731 asection *sec, bfd_vma symbol,
4732 bfd_vma *addendp, asection *input_section)
b49e97c9 4733{
947216bf 4734 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4735 asection *sreloc;
4736 bfd *dynobj;
4737 int r_type;
5d41f0b6
RS
4738 long indx;
4739 bfd_boolean defined_p;
0a44bf69 4740 struct mips_elf_link_hash_table *htab;
b49e97c9 4741
0a44bf69 4742 htab = mips_elf_hash_table (info);
b49e97c9
TS
4743 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4744 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4745 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4746 BFD_ASSERT (sreloc != NULL);
4747 BFD_ASSERT (sreloc->contents != NULL);
4748 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4749 < sreloc->size);
b49e97c9 4750
b49e97c9
TS
4751 outrel[0].r_offset =
4752 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4753 outrel[1].r_offset =
4754 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4755 outrel[2].r_offset =
4756 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4757
c5ae1840 4758 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4759 /* The relocation field has been deleted. */
5d41f0b6
RS
4760 return TRUE;
4761
4762 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4763 {
4764 /* The relocation field has been converted into a relative value of
4765 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4766 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4767 *addendp += symbol;
5d41f0b6 4768 return TRUE;
0d591ff7 4769 }
b49e97c9 4770
5d41f0b6
RS
4771 /* We must now calculate the dynamic symbol table index to use
4772 in the relocation. */
4773 if (h != NULL
6ece8836
TS
4774 && (!h->root.def_regular
4775 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4776 {
4777 indx = h->root.dynindx;
4778 if (SGI_COMPAT (output_bfd))
4779 defined_p = h->root.def_regular;
4780 else
4781 /* ??? glibc's ld.so just adds the final GOT entry to the
4782 relocation field. It therefore treats relocs against
4783 defined symbols in the same way as relocs against
4784 undefined symbols. */
4785 defined_p = FALSE;
4786 }
b49e97c9
TS
4787 else
4788 {
5d41f0b6
RS
4789 if (sec != NULL && bfd_is_abs_section (sec))
4790 indx = 0;
4791 else if (sec == NULL || sec->owner == NULL)
fdd07405 4792 {
5d41f0b6
RS
4793 bfd_set_error (bfd_error_bad_value);
4794 return FALSE;
b49e97c9
TS
4795 }
4796 else
4797 {
5d41f0b6
RS
4798 indx = elf_section_data (sec->output_section)->dynindx;
4799 if (indx == 0)
4800 abort ();
b49e97c9
TS
4801 }
4802
5d41f0b6
RS
4803 /* Instead of generating a relocation using the section
4804 symbol, we may as well make it a fully relative
4805 relocation. We want to avoid generating relocations to
4806 local symbols because we used to generate them
4807 incorrectly, without adding the original symbol value,
4808 which is mandated by the ABI for section symbols. In
4809 order to give dynamic loaders and applications time to
4810 phase out the incorrect use, we refrain from emitting
4811 section-relative relocations. It's not like they're
4812 useful, after all. This should be a bit more efficient
4813 as well. */
4814 /* ??? Although this behavior is compatible with glibc's ld.so,
4815 the ABI says that relocations against STN_UNDEF should have
4816 a symbol value of 0. Irix rld honors this, so relocations
4817 against STN_UNDEF have no effect. */
4818 if (!SGI_COMPAT (output_bfd))
4819 indx = 0;
4820 defined_p = TRUE;
b49e97c9
TS
4821 }
4822
5d41f0b6
RS
4823 /* If the relocation was previously an absolute relocation and
4824 this symbol will not be referred to by the relocation, we must
4825 adjust it by the value we give it in the dynamic symbol table.
4826 Otherwise leave the job up to the dynamic linker. */
4827 if (defined_p && r_type != R_MIPS_REL32)
4828 *addendp += symbol;
4829
0a44bf69
RS
4830 if (htab->is_vxworks)
4831 /* VxWorks uses non-relative relocations for this. */
4832 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4833 else
4834 /* The relocation is always an REL32 relocation because we don't
4835 know where the shared library will wind up at load-time. */
4836 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4837 R_MIPS_REL32);
4838
5d41f0b6
RS
4839 /* For strict adherence to the ABI specification, we should
4840 generate a R_MIPS_64 relocation record by itself before the
4841 _REL32/_64 record as well, such that the addend is read in as
4842 a 64-bit value (REL32 is a 32-bit relocation, after all).
4843 However, since none of the existing ELF64 MIPS dynamic
4844 loaders seems to care, we don't waste space with these
4845 artificial relocations. If this turns out to not be true,
4846 mips_elf_allocate_dynamic_relocation() should be tweaked so
4847 as to make room for a pair of dynamic relocations per
4848 invocation if ABI_64_P, and here we should generate an
4849 additional relocation record with R_MIPS_64 by itself for a
4850 NULL symbol before this relocation record. */
4851 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4852 ABI_64_P (output_bfd)
4853 ? R_MIPS_64
4854 : R_MIPS_NONE);
4855 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4856
4857 /* Adjust the output offset of the relocation to reference the
4858 correct location in the output file. */
4859 outrel[0].r_offset += (input_section->output_section->vma
4860 + input_section->output_offset);
4861 outrel[1].r_offset += (input_section->output_section->vma
4862 + input_section->output_offset);
4863 outrel[2].r_offset += (input_section->output_section->vma
4864 + input_section->output_offset);
4865
b49e97c9
TS
4866 /* Put the relocation back out. We have to use the special
4867 relocation outputter in the 64-bit case since the 64-bit
4868 relocation format is non-standard. */
4869 if (ABI_64_P (output_bfd))
4870 {
4871 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4872 (output_bfd, &outrel[0],
4873 (sreloc->contents
4874 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4875 }
0a44bf69
RS
4876 else if (htab->is_vxworks)
4877 {
4878 /* VxWorks uses RELA rather than REL dynamic relocations. */
4879 outrel[0].r_addend = *addendp;
4880 bfd_elf32_swap_reloca_out
4881 (output_bfd, &outrel[0],
4882 (sreloc->contents
4883 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4884 }
b49e97c9 4885 else
947216bf
AM
4886 bfd_elf32_swap_reloc_out
4887 (output_bfd, &outrel[0],
4888 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4889
b49e97c9
TS
4890 /* We've now added another relocation. */
4891 ++sreloc->reloc_count;
4892
4893 /* Make sure the output section is writable. The dynamic linker
4894 will be writing to it. */
4895 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4896 |= SHF_WRITE;
4897
4898 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4899 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4900 {
4901 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4902 bfd_byte *cr;
4903
4904 if (scpt)
4905 {
4906 Elf32_crinfo cptrel;
4907
4908 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4909 cptrel.vaddr = (rel->r_offset
4910 + input_section->output_section->vma
4911 + input_section->output_offset);
4912 if (r_type == R_MIPS_REL32)
4913 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4914 else
4915 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4916 mips_elf_set_cr_dist2to (cptrel, 0);
4917 cptrel.konst = *addendp;
4918
4919 cr = (scpt->contents
4920 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4921 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4922 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4923 ((Elf32_External_crinfo *) cr
4924 + scpt->reloc_count));
4925 ++scpt->reloc_count;
4926 }
4927 }
4928
943284cc
DJ
4929 /* If we've written this relocation for a readonly section,
4930 we need to set DF_TEXTREL again, so that we do not delete the
4931 DT_TEXTREL tag. */
4932 if (MIPS_ELF_READONLY_SECTION (input_section))
4933 info->flags |= DF_TEXTREL;
4934
b34976b6 4935 return TRUE;
b49e97c9
TS
4936}
4937\f
b49e97c9
TS
4938/* Return the MACH for a MIPS e_flags value. */
4939
4940unsigned long
9719ad41 4941_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4942{
4943 switch (flags & EF_MIPS_MACH)
4944 {
4945 case E_MIPS_MACH_3900:
4946 return bfd_mach_mips3900;
4947
4948 case E_MIPS_MACH_4010:
4949 return bfd_mach_mips4010;
4950
4951 case E_MIPS_MACH_4100:
4952 return bfd_mach_mips4100;
4953
4954 case E_MIPS_MACH_4111:
4955 return bfd_mach_mips4111;
4956
00707a0e
RS
4957 case E_MIPS_MACH_4120:
4958 return bfd_mach_mips4120;
4959
b49e97c9
TS
4960 case E_MIPS_MACH_4650:
4961 return bfd_mach_mips4650;
4962
00707a0e
RS
4963 case E_MIPS_MACH_5400:
4964 return bfd_mach_mips5400;
4965
4966 case E_MIPS_MACH_5500:
4967 return bfd_mach_mips5500;
4968
0d2e43ed
ILT
4969 case E_MIPS_MACH_9000:
4970 return bfd_mach_mips9000;
4971
b49e97c9
TS
4972 case E_MIPS_MACH_SB1:
4973 return bfd_mach_mips_sb1;
4974
4975 default:
4976 switch (flags & EF_MIPS_ARCH)
4977 {
4978 default:
4979 case E_MIPS_ARCH_1:
4980 return bfd_mach_mips3000;
b49e97c9
TS
4981
4982 case E_MIPS_ARCH_2:
4983 return bfd_mach_mips6000;
b49e97c9
TS
4984
4985 case E_MIPS_ARCH_3:
4986 return bfd_mach_mips4000;
b49e97c9
TS
4987
4988 case E_MIPS_ARCH_4:
4989 return bfd_mach_mips8000;
b49e97c9
TS
4990
4991 case E_MIPS_ARCH_5:
4992 return bfd_mach_mips5;
b49e97c9
TS
4993
4994 case E_MIPS_ARCH_32:
4995 return bfd_mach_mipsisa32;
b49e97c9
TS
4996
4997 case E_MIPS_ARCH_64:
4998 return bfd_mach_mipsisa64;
af7ee8bf
CD
4999
5000 case E_MIPS_ARCH_32R2:
5001 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5002
5003 case E_MIPS_ARCH_64R2:
5004 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5005 }
5006 }
5007
5008 return 0;
5009}
5010
5011/* Return printable name for ABI. */
5012
5013static INLINE char *
9719ad41 5014elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5015{
5016 flagword flags;
5017
5018 flags = elf_elfheader (abfd)->e_flags;
5019 switch (flags & EF_MIPS_ABI)
5020 {
5021 case 0:
5022 if (ABI_N32_P (abfd))
5023 return "N32";
5024 else if (ABI_64_P (abfd))
5025 return "64";
5026 else
5027 return "none";
5028 case E_MIPS_ABI_O32:
5029 return "O32";
5030 case E_MIPS_ABI_O64:
5031 return "O64";
5032 case E_MIPS_ABI_EABI32:
5033 return "EABI32";
5034 case E_MIPS_ABI_EABI64:
5035 return "EABI64";
5036 default:
5037 return "unknown abi";
5038 }
5039}
5040\f
5041/* MIPS ELF uses two common sections. One is the usual one, and the
5042 other is for small objects. All the small objects are kept
5043 together, and then referenced via the gp pointer, which yields
5044 faster assembler code. This is what we use for the small common
5045 section. This approach is copied from ecoff.c. */
5046static asection mips_elf_scom_section;
5047static asymbol mips_elf_scom_symbol;
5048static asymbol *mips_elf_scom_symbol_ptr;
5049
5050/* MIPS ELF also uses an acommon section, which represents an
5051 allocated common symbol which may be overridden by a
5052 definition in a shared library. */
5053static asection mips_elf_acom_section;
5054static asymbol mips_elf_acom_symbol;
5055static asymbol *mips_elf_acom_symbol_ptr;
5056
5057/* Handle the special MIPS section numbers that a symbol may use.
5058 This is used for both the 32-bit and the 64-bit ABI. */
5059
5060void
9719ad41 5061_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5062{
5063 elf_symbol_type *elfsym;
5064
5065 elfsym = (elf_symbol_type *) asym;
5066 switch (elfsym->internal_elf_sym.st_shndx)
5067 {
5068 case SHN_MIPS_ACOMMON:
5069 /* This section is used in a dynamically linked executable file.
5070 It is an allocated common section. The dynamic linker can
5071 either resolve these symbols to something in a shared
5072 library, or it can just leave them here. For our purposes,
5073 we can consider these symbols to be in a new section. */
5074 if (mips_elf_acom_section.name == NULL)
5075 {
5076 /* Initialize the acommon section. */
5077 mips_elf_acom_section.name = ".acommon";
5078 mips_elf_acom_section.flags = SEC_ALLOC;
5079 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5080 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5081 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5082 mips_elf_acom_symbol.name = ".acommon";
5083 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5084 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5085 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5086 }
5087 asym->section = &mips_elf_acom_section;
5088 break;
5089
5090 case SHN_COMMON:
5091 /* Common symbols less than the GP size are automatically
5092 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5093 if (asym->value > elf_gp_size (abfd)
5094 || IRIX_COMPAT (abfd) == ict_irix6)
5095 break;
5096 /* Fall through. */
5097 case SHN_MIPS_SCOMMON:
5098 if (mips_elf_scom_section.name == NULL)
5099 {
5100 /* Initialize the small common section. */
5101 mips_elf_scom_section.name = ".scommon";
5102 mips_elf_scom_section.flags = SEC_IS_COMMON;
5103 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5104 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5105 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5106 mips_elf_scom_symbol.name = ".scommon";
5107 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5108 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5109 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5110 }
5111 asym->section = &mips_elf_scom_section;
5112 asym->value = elfsym->internal_elf_sym.st_size;
5113 break;
5114
5115 case SHN_MIPS_SUNDEFINED:
5116 asym->section = bfd_und_section_ptr;
5117 break;
5118
b49e97c9 5119 case SHN_MIPS_TEXT:
00b4930b
TS
5120 {
5121 asection *section = bfd_get_section_by_name (abfd, ".text");
5122
5123 BFD_ASSERT (SGI_COMPAT (abfd));
5124 if (section != NULL)
5125 {
5126 asym->section = section;
5127 /* MIPS_TEXT is a bit special, the address is not an offset
5128 to the base of the .text section. So substract the section
5129 base address to make it an offset. */
5130 asym->value -= section->vma;
5131 }
5132 }
b49e97c9
TS
5133 break;
5134
5135 case SHN_MIPS_DATA:
00b4930b
TS
5136 {
5137 asection *section = bfd_get_section_by_name (abfd, ".data");
5138
5139 BFD_ASSERT (SGI_COMPAT (abfd));
5140 if (section != NULL)
5141 {
5142 asym->section = section;
5143 /* MIPS_DATA is a bit special, the address is not an offset
5144 to the base of the .data section. So substract the section
5145 base address to make it an offset. */
5146 asym->value -= section->vma;
5147 }
5148 }
b49e97c9 5149 break;
b49e97c9
TS
5150 }
5151}
5152\f
8c946ed5
RS
5153/* Implement elf_backend_eh_frame_address_size. This differs from
5154 the default in the way it handles EABI64.
5155
5156 EABI64 was originally specified as an LP64 ABI, and that is what
5157 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5158 historically accepted the combination of -mabi=eabi and -mlong32,
5159 and this ILP32 variation has become semi-official over time.
5160 Both forms use elf32 and have pointer-sized FDE addresses.
5161
5162 If an EABI object was generated by GCC 4.0 or above, it will have
5163 an empty .gcc_compiled_longXX section, where XX is the size of longs
5164 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5165 have no special marking to distinguish them from LP64 objects.
5166
5167 We don't want users of the official LP64 ABI to be punished for the
5168 existence of the ILP32 variant, but at the same time, we don't want
5169 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5170 We therefore take the following approach:
5171
5172 - If ABFD contains a .gcc_compiled_longXX section, use it to
5173 determine the pointer size.
5174
5175 - Otherwise check the type of the first relocation. Assume that
5176 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5177
5178 - Otherwise punt.
5179
5180 The second check is enough to detect LP64 objects generated by pre-4.0
5181 compilers because, in the kind of output generated by those compilers,
5182 the first relocation will be associated with either a CIE personality
5183 routine or an FDE start address. Furthermore, the compilers never
5184 used a special (non-pointer) encoding for this ABI.
5185
5186 Checking the relocation type should also be safe because there is no
5187 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5188 did so. */
5189
5190unsigned int
5191_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5192{
5193 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5194 return 8;
5195 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5196 {
5197 bfd_boolean long32_p, long64_p;
5198
5199 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5200 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5201 if (long32_p && long64_p)
5202 return 0;
5203 if (long32_p)
5204 return 4;
5205 if (long64_p)
5206 return 8;
5207
5208 if (sec->reloc_count > 0
5209 && elf_section_data (sec)->relocs != NULL
5210 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5211 == R_MIPS_64))
5212 return 8;
5213
5214 return 0;
5215 }
5216 return 4;
5217}
5218\f
174fd7f9
RS
5219/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5220 relocations against two unnamed section symbols to resolve to the
5221 same address. For example, if we have code like:
5222
5223 lw $4,%got_disp(.data)($gp)
5224 lw $25,%got_disp(.text)($gp)
5225 jalr $25
5226
5227 then the linker will resolve both relocations to .data and the program
5228 will jump there rather than to .text.
5229
5230 We can work around this problem by giving names to local section symbols.
5231 This is also what the MIPSpro tools do. */
5232
5233bfd_boolean
5234_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5235{
5236 return SGI_COMPAT (abfd);
5237}
5238\f
b49e97c9
TS
5239/* Work over a section just before writing it out. This routine is
5240 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5241 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5242 a better way. */
5243
b34976b6 5244bfd_boolean
9719ad41 5245_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5246{
5247 if (hdr->sh_type == SHT_MIPS_REGINFO
5248 && hdr->sh_size > 0)
5249 {
5250 bfd_byte buf[4];
5251
5252 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5253 BFD_ASSERT (hdr->contents == NULL);
5254
5255 if (bfd_seek (abfd,
5256 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5257 SEEK_SET) != 0)
b34976b6 5258 return FALSE;
b49e97c9 5259 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5260 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5261 return FALSE;
b49e97c9
TS
5262 }
5263
5264 if (hdr->sh_type == SHT_MIPS_OPTIONS
5265 && hdr->bfd_section != NULL
f0abc2a1
AM
5266 && mips_elf_section_data (hdr->bfd_section) != NULL
5267 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5268 {
5269 bfd_byte *contents, *l, *lend;
5270
f0abc2a1
AM
5271 /* We stored the section contents in the tdata field in the
5272 set_section_contents routine. We save the section contents
5273 so that we don't have to read them again.
b49e97c9
TS
5274 At this point we know that elf_gp is set, so we can look
5275 through the section contents to see if there is an
5276 ODK_REGINFO structure. */
5277
f0abc2a1 5278 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5279 l = contents;
5280 lend = contents + hdr->sh_size;
5281 while (l + sizeof (Elf_External_Options) <= lend)
5282 {
5283 Elf_Internal_Options intopt;
5284
5285 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5286 &intopt);
1bc8074d
MR
5287 if (intopt.size < sizeof (Elf_External_Options))
5288 {
5289 (*_bfd_error_handler)
5290 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5291 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5292 break;
5293 }
b49e97c9
TS
5294 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5295 {
5296 bfd_byte buf[8];
5297
5298 if (bfd_seek (abfd,
5299 (hdr->sh_offset
5300 + (l - contents)
5301 + sizeof (Elf_External_Options)
5302 + (sizeof (Elf64_External_RegInfo) - 8)),
5303 SEEK_SET) != 0)
b34976b6 5304 return FALSE;
b49e97c9 5305 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5306 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5307 return FALSE;
b49e97c9
TS
5308 }
5309 else if (intopt.kind == ODK_REGINFO)
5310 {
5311 bfd_byte buf[4];
5312
5313 if (bfd_seek (abfd,
5314 (hdr->sh_offset
5315 + (l - contents)
5316 + sizeof (Elf_External_Options)
5317 + (sizeof (Elf32_External_RegInfo) - 4)),
5318 SEEK_SET) != 0)
b34976b6 5319 return FALSE;
b49e97c9 5320 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5321 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5322 return FALSE;
b49e97c9
TS
5323 }
5324 l += intopt.size;
5325 }
5326 }
5327
5328 if (hdr->bfd_section != NULL)
5329 {
5330 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5331
5332 if (strcmp (name, ".sdata") == 0
5333 || strcmp (name, ".lit8") == 0
5334 || strcmp (name, ".lit4") == 0)
5335 {
5336 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5337 hdr->sh_type = SHT_PROGBITS;
5338 }
5339 else if (strcmp (name, ".sbss") == 0)
5340 {
5341 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5342 hdr->sh_type = SHT_NOBITS;
5343 }
5344 else if (strcmp (name, ".srdata") == 0)
5345 {
5346 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5347 hdr->sh_type = SHT_PROGBITS;
5348 }
5349 else if (strcmp (name, ".compact_rel") == 0)
5350 {
5351 hdr->sh_flags = 0;
5352 hdr->sh_type = SHT_PROGBITS;
5353 }
5354 else if (strcmp (name, ".rtproc") == 0)
5355 {
5356 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5357 {
5358 unsigned int adjust;
5359
5360 adjust = hdr->sh_size % hdr->sh_addralign;
5361 if (adjust != 0)
5362 hdr->sh_size += hdr->sh_addralign - adjust;
5363 }
5364 }
5365 }
5366
b34976b6 5367 return TRUE;
b49e97c9
TS
5368}
5369
5370/* Handle a MIPS specific section when reading an object file. This
5371 is called when elfcode.h finds a section with an unknown type.
5372 This routine supports both the 32-bit and 64-bit ELF ABI.
5373
5374 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5375 how to. */
5376
b34976b6 5377bfd_boolean
6dc132d9
L
5378_bfd_mips_elf_section_from_shdr (bfd *abfd,
5379 Elf_Internal_Shdr *hdr,
5380 const char *name,
5381 int shindex)
b49e97c9
TS
5382{
5383 flagword flags = 0;
5384
5385 /* There ought to be a place to keep ELF backend specific flags, but
5386 at the moment there isn't one. We just keep track of the
5387 sections by their name, instead. Fortunately, the ABI gives
5388 suggested names for all the MIPS specific sections, so we will
5389 probably get away with this. */
5390 switch (hdr->sh_type)
5391 {
5392 case SHT_MIPS_LIBLIST:
5393 if (strcmp (name, ".liblist") != 0)
b34976b6 5394 return FALSE;
b49e97c9
TS
5395 break;
5396 case SHT_MIPS_MSYM:
5397 if (strcmp (name, ".msym") != 0)
b34976b6 5398 return FALSE;
b49e97c9
TS
5399 break;
5400 case SHT_MIPS_CONFLICT:
5401 if (strcmp (name, ".conflict") != 0)
b34976b6 5402 return FALSE;
b49e97c9
TS
5403 break;
5404 case SHT_MIPS_GPTAB:
5405 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 5406 return FALSE;
b49e97c9
TS
5407 break;
5408 case SHT_MIPS_UCODE:
5409 if (strcmp (name, ".ucode") != 0)
b34976b6 5410 return FALSE;
b49e97c9
TS
5411 break;
5412 case SHT_MIPS_DEBUG:
5413 if (strcmp (name, ".mdebug") != 0)
b34976b6 5414 return FALSE;
b49e97c9
TS
5415 flags = SEC_DEBUGGING;
5416 break;
5417 case SHT_MIPS_REGINFO:
5418 if (strcmp (name, ".reginfo") != 0
5419 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5420 return FALSE;
b49e97c9
TS
5421 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5422 break;
5423 case SHT_MIPS_IFACE:
5424 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5425 return FALSE;
b49e97c9
TS
5426 break;
5427 case SHT_MIPS_CONTENT:
5428 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 5429 return FALSE;
b49e97c9
TS
5430 break;
5431 case SHT_MIPS_OPTIONS:
cc2e31b9 5432 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5433 return FALSE;
b49e97c9
TS
5434 break;
5435 case SHT_MIPS_DWARF:
5436 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 5437 return FALSE;
b49e97c9
TS
5438 break;
5439 case SHT_MIPS_SYMBOL_LIB:
5440 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5441 return FALSE;
b49e97c9
TS
5442 break;
5443 case SHT_MIPS_EVENTS:
5444 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5445 && strncmp (name, ".MIPS.post_rel",
5446 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 5447 return FALSE;
b49e97c9
TS
5448 break;
5449 default:
cc2e31b9 5450 break;
b49e97c9
TS
5451 }
5452
6dc132d9 5453 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5454 return FALSE;
b49e97c9
TS
5455
5456 if (flags)
5457 {
5458 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5459 (bfd_get_section_flags (abfd,
5460 hdr->bfd_section)
5461 | flags)))
b34976b6 5462 return FALSE;
b49e97c9
TS
5463 }
5464
5465 /* FIXME: We should record sh_info for a .gptab section. */
5466
5467 /* For a .reginfo section, set the gp value in the tdata information
5468 from the contents of this section. We need the gp value while
5469 processing relocs, so we just get it now. The .reginfo section
5470 is not used in the 64-bit MIPS ELF ABI. */
5471 if (hdr->sh_type == SHT_MIPS_REGINFO)
5472 {
5473 Elf32_External_RegInfo ext;
5474 Elf32_RegInfo s;
5475
9719ad41
RS
5476 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5477 &ext, 0, sizeof ext))
b34976b6 5478 return FALSE;
b49e97c9
TS
5479 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5480 elf_gp (abfd) = s.ri_gp_value;
5481 }
5482
5483 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5484 set the gp value based on what we find. We may see both
5485 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5486 they should agree. */
5487 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5488 {
5489 bfd_byte *contents, *l, *lend;
5490
9719ad41 5491 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5492 if (contents == NULL)
b34976b6 5493 return FALSE;
b49e97c9 5494 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5495 0, hdr->sh_size))
b49e97c9
TS
5496 {
5497 free (contents);
b34976b6 5498 return FALSE;
b49e97c9
TS
5499 }
5500 l = contents;
5501 lend = contents + hdr->sh_size;
5502 while (l + sizeof (Elf_External_Options) <= lend)
5503 {
5504 Elf_Internal_Options intopt;
5505
5506 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5507 &intopt);
1bc8074d
MR
5508 if (intopt.size < sizeof (Elf_External_Options))
5509 {
5510 (*_bfd_error_handler)
5511 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5512 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5513 break;
5514 }
b49e97c9
TS
5515 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5516 {
5517 Elf64_Internal_RegInfo intreg;
5518
5519 bfd_mips_elf64_swap_reginfo_in
5520 (abfd,
5521 ((Elf64_External_RegInfo *)
5522 (l + sizeof (Elf_External_Options))),
5523 &intreg);
5524 elf_gp (abfd) = intreg.ri_gp_value;
5525 }
5526 else if (intopt.kind == ODK_REGINFO)
5527 {
5528 Elf32_RegInfo intreg;
5529
5530 bfd_mips_elf32_swap_reginfo_in
5531 (abfd,
5532 ((Elf32_External_RegInfo *)
5533 (l + sizeof (Elf_External_Options))),
5534 &intreg);
5535 elf_gp (abfd) = intreg.ri_gp_value;
5536 }
5537 l += intopt.size;
5538 }
5539 free (contents);
5540 }
5541
b34976b6 5542 return TRUE;
b49e97c9
TS
5543}
5544
5545/* Set the correct type for a MIPS ELF section. We do this by the
5546 section name, which is a hack, but ought to work. This routine is
5547 used by both the 32-bit and the 64-bit ABI. */
5548
b34976b6 5549bfd_boolean
9719ad41 5550_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5551{
5552 register const char *name;
1bc8074d 5553 unsigned int sh_type;
b49e97c9
TS
5554
5555 name = bfd_get_section_name (abfd, sec);
1bc8074d 5556 sh_type = hdr->sh_type;
b49e97c9
TS
5557
5558 if (strcmp (name, ".liblist") == 0)
5559 {
5560 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5561 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5562 /* The sh_link field is set in final_write_processing. */
5563 }
5564 else if (strcmp (name, ".conflict") == 0)
5565 hdr->sh_type = SHT_MIPS_CONFLICT;
5566 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5567 {
5568 hdr->sh_type = SHT_MIPS_GPTAB;
5569 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5570 /* The sh_info field is set in final_write_processing. */
5571 }
5572 else if (strcmp (name, ".ucode") == 0)
5573 hdr->sh_type = SHT_MIPS_UCODE;
5574 else if (strcmp (name, ".mdebug") == 0)
5575 {
5576 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5577 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5578 entsize of 0. FIXME: Does this matter? */
5579 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5580 hdr->sh_entsize = 0;
5581 else
5582 hdr->sh_entsize = 1;
5583 }
5584 else if (strcmp (name, ".reginfo") == 0)
5585 {
5586 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5587 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5588 entsize of 0x18. FIXME: Does this matter? */
5589 if (SGI_COMPAT (abfd))
5590 {
5591 if ((abfd->flags & DYNAMIC) != 0)
5592 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5593 else
5594 hdr->sh_entsize = 1;
5595 }
5596 else
5597 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5598 }
5599 else if (SGI_COMPAT (abfd)
5600 && (strcmp (name, ".hash") == 0
5601 || strcmp (name, ".dynamic") == 0
5602 || strcmp (name, ".dynstr") == 0))
5603 {
5604 if (SGI_COMPAT (abfd))
5605 hdr->sh_entsize = 0;
5606#if 0
8dc1a139 5607 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5608 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5609#endif
5610 }
5611 else if (strcmp (name, ".got") == 0
5612 || strcmp (name, ".srdata") == 0
5613 || strcmp (name, ".sdata") == 0
5614 || strcmp (name, ".sbss") == 0
5615 || strcmp (name, ".lit4") == 0
5616 || strcmp (name, ".lit8") == 0)
5617 hdr->sh_flags |= SHF_MIPS_GPREL;
5618 else if (strcmp (name, ".MIPS.interfaces") == 0)
5619 {
5620 hdr->sh_type = SHT_MIPS_IFACE;
5621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5622 }
5623 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5624 {
5625 hdr->sh_type = SHT_MIPS_CONTENT;
5626 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5627 /* The sh_info field is set in final_write_processing. */
5628 }
cc2e31b9 5629 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5630 {
5631 hdr->sh_type = SHT_MIPS_OPTIONS;
5632 hdr->sh_entsize = 1;
5633 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5634 }
5635 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5636 hdr->sh_type = SHT_MIPS_DWARF;
5637 else if (strcmp (name, ".MIPS.symlib") == 0)
5638 {
5639 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5640 /* The sh_link and sh_info fields are set in
5641 final_write_processing. */
5642 }
5643 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5644 || strncmp (name, ".MIPS.post_rel",
5645 sizeof ".MIPS.post_rel" - 1) == 0)
5646 {
5647 hdr->sh_type = SHT_MIPS_EVENTS;
5648 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5649 /* The sh_link field is set in final_write_processing. */
5650 }
5651 else if (strcmp (name, ".msym") == 0)
5652 {
5653 hdr->sh_type = SHT_MIPS_MSYM;
5654 hdr->sh_flags |= SHF_ALLOC;
5655 hdr->sh_entsize = 8;
5656 }
5657
1bc8074d
MR
5658 /* In the unlikely event a special section is empty it has to lose its
5659 special meaning. This may happen e.g. when using `strip' with the
5660 "--only-keep-debug" option. */
5661 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5662 hdr->sh_type = sh_type;
5663
7a79a000
TS
5664 /* The generic elf_fake_sections will set up REL_HDR using the default
5665 kind of relocations. We used to set up a second header for the
5666 non-default kind of relocations here, but only NewABI would use
5667 these, and the IRIX ld doesn't like resulting empty RELA sections.
5668 Thus we create those header only on demand now. */
b49e97c9 5669
b34976b6 5670 return TRUE;
b49e97c9
TS
5671}
5672
5673/* Given a BFD section, try to locate the corresponding ELF section
5674 index. This is used by both the 32-bit and the 64-bit ABI.
5675 Actually, it's not clear to me that the 64-bit ABI supports these,
5676 but for non-PIC objects we will certainly want support for at least
5677 the .scommon section. */
5678
b34976b6 5679bfd_boolean
9719ad41
RS
5680_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5681 asection *sec, int *retval)
b49e97c9
TS
5682{
5683 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5684 {
5685 *retval = SHN_MIPS_SCOMMON;
b34976b6 5686 return TRUE;
b49e97c9
TS
5687 }
5688 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5689 {
5690 *retval = SHN_MIPS_ACOMMON;
b34976b6 5691 return TRUE;
b49e97c9 5692 }
b34976b6 5693 return FALSE;
b49e97c9
TS
5694}
5695\f
5696/* Hook called by the linker routine which adds symbols from an object
5697 file. We must handle the special MIPS section numbers here. */
5698
b34976b6 5699bfd_boolean
9719ad41 5700_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5701 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5702 flagword *flagsp ATTRIBUTE_UNUSED,
5703 asection **secp, bfd_vma *valp)
b49e97c9
TS
5704{
5705 if (SGI_COMPAT (abfd)
5706 && (abfd->flags & DYNAMIC) != 0
5707 && strcmp (*namep, "_rld_new_interface") == 0)
5708 {
8dc1a139 5709 /* Skip IRIX5 rld entry name. */
b49e97c9 5710 *namep = NULL;
b34976b6 5711 return TRUE;
b49e97c9
TS
5712 }
5713
eedecc07
DD
5714 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5715 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5716 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5717 a magic symbol resolved by the linker, we ignore this bogus definition
5718 of _gp_disp. New ABI objects do not suffer from this problem so this
5719 is not done for them. */
5720 if (!NEWABI_P(abfd)
5721 && (sym->st_shndx == SHN_ABS)
5722 && (strcmp (*namep, "_gp_disp") == 0))
5723 {
5724 *namep = NULL;
5725 return TRUE;
5726 }
5727
b49e97c9
TS
5728 switch (sym->st_shndx)
5729 {
5730 case SHN_COMMON:
5731 /* Common symbols less than the GP size are automatically
5732 treated as SHN_MIPS_SCOMMON symbols. */
5733 if (sym->st_size > elf_gp_size (abfd)
5734 || IRIX_COMPAT (abfd) == ict_irix6)
5735 break;
5736 /* Fall through. */
5737 case SHN_MIPS_SCOMMON:
5738 *secp = bfd_make_section_old_way (abfd, ".scommon");
5739 (*secp)->flags |= SEC_IS_COMMON;
5740 *valp = sym->st_size;
5741 break;
5742
5743 case SHN_MIPS_TEXT:
5744 /* This section is used in a shared object. */
5745 if (elf_tdata (abfd)->elf_text_section == NULL)
5746 {
5747 asymbol *elf_text_symbol;
5748 asection *elf_text_section;
5749 bfd_size_type amt = sizeof (asection);
5750
5751 elf_text_section = bfd_zalloc (abfd, amt);
5752 if (elf_text_section == NULL)
b34976b6 5753 return FALSE;
b49e97c9
TS
5754
5755 amt = sizeof (asymbol);
5756 elf_text_symbol = bfd_zalloc (abfd, amt);
5757 if (elf_text_symbol == NULL)
b34976b6 5758 return FALSE;
b49e97c9
TS
5759
5760 /* Initialize the section. */
5761
5762 elf_tdata (abfd)->elf_text_section = elf_text_section;
5763 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5764
5765 elf_text_section->symbol = elf_text_symbol;
5766 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5767
5768 elf_text_section->name = ".text";
5769 elf_text_section->flags = SEC_NO_FLAGS;
5770 elf_text_section->output_section = NULL;
5771 elf_text_section->owner = abfd;
5772 elf_text_symbol->name = ".text";
5773 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5774 elf_text_symbol->section = elf_text_section;
5775 }
5776 /* This code used to do *secp = bfd_und_section_ptr if
5777 info->shared. I don't know why, and that doesn't make sense,
5778 so I took it out. */
5779 *secp = elf_tdata (abfd)->elf_text_section;
5780 break;
5781
5782 case SHN_MIPS_ACOMMON:
5783 /* Fall through. XXX Can we treat this as allocated data? */
5784 case SHN_MIPS_DATA:
5785 /* This section is used in a shared object. */
5786 if (elf_tdata (abfd)->elf_data_section == NULL)
5787 {
5788 asymbol *elf_data_symbol;
5789 asection *elf_data_section;
5790 bfd_size_type amt = sizeof (asection);
5791
5792 elf_data_section = bfd_zalloc (abfd, amt);
5793 if (elf_data_section == NULL)
b34976b6 5794 return FALSE;
b49e97c9
TS
5795
5796 amt = sizeof (asymbol);
5797 elf_data_symbol = bfd_zalloc (abfd, amt);
5798 if (elf_data_symbol == NULL)
b34976b6 5799 return FALSE;
b49e97c9
TS
5800
5801 /* Initialize the section. */
5802
5803 elf_tdata (abfd)->elf_data_section = elf_data_section;
5804 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5805
5806 elf_data_section->symbol = elf_data_symbol;
5807 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5808
5809 elf_data_section->name = ".data";
5810 elf_data_section->flags = SEC_NO_FLAGS;
5811 elf_data_section->output_section = NULL;
5812 elf_data_section->owner = abfd;
5813 elf_data_symbol->name = ".data";
5814 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5815 elf_data_symbol->section = elf_data_section;
5816 }
5817 /* This code used to do *secp = bfd_und_section_ptr if
5818 info->shared. I don't know why, and that doesn't make sense,
5819 so I took it out. */
5820 *secp = elf_tdata (abfd)->elf_data_section;
5821 break;
5822
5823 case SHN_MIPS_SUNDEFINED:
5824 *secp = bfd_und_section_ptr;
5825 break;
5826 }
5827
5828 if (SGI_COMPAT (abfd)
5829 && ! info->shared
5830 && info->hash->creator == abfd->xvec
5831 && strcmp (*namep, "__rld_obj_head") == 0)
5832 {
5833 struct elf_link_hash_entry *h;
14a793b2 5834 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5835
5836 /* Mark __rld_obj_head as dynamic. */
14a793b2 5837 bh = NULL;
b49e97c9 5838 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5839 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5840 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5841 return FALSE;
14a793b2
AM
5842
5843 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5844 h->non_elf = 0;
5845 h->def_regular = 1;
b49e97c9
TS
5846 h->type = STT_OBJECT;
5847
c152c796 5848 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5849 return FALSE;
b49e97c9 5850
b34976b6 5851 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5852 }
5853
5854 /* If this is a mips16 text symbol, add 1 to the value to make it
5855 odd. This will cause something like .word SYM to come up with
5856 the right value when it is loaded into the PC. */
5857 if (sym->st_other == STO_MIPS16)
5858 ++*valp;
5859
b34976b6 5860 return TRUE;
b49e97c9
TS
5861}
5862
5863/* This hook function is called before the linker writes out a global
5864 symbol. We mark symbols as small common if appropriate. This is
5865 also where we undo the increment of the value for a mips16 symbol. */
5866
b34976b6 5867bfd_boolean
9719ad41
RS
5868_bfd_mips_elf_link_output_symbol_hook
5869 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5870 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5871 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5872{
5873 /* If we see a common symbol, which implies a relocatable link, then
5874 if a symbol was small common in an input file, mark it as small
5875 common in the output file. */
5876 if (sym->st_shndx == SHN_COMMON
5877 && strcmp (input_sec->name, ".scommon") == 0)
5878 sym->st_shndx = SHN_MIPS_SCOMMON;
5879
79cda7cf
FF
5880 if (sym->st_other == STO_MIPS16)
5881 sym->st_value &= ~1;
b49e97c9 5882
b34976b6 5883 return TRUE;
b49e97c9
TS
5884}
5885\f
5886/* Functions for the dynamic linker. */
5887
5888/* Create dynamic sections when linking against a dynamic object. */
5889
b34976b6 5890bfd_boolean
9719ad41 5891_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5892{
5893 struct elf_link_hash_entry *h;
14a793b2 5894 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5895 flagword flags;
5896 register asection *s;
5897 const char * const *namep;
0a44bf69 5898 struct mips_elf_link_hash_table *htab;
b49e97c9 5899
0a44bf69 5900 htab = mips_elf_hash_table (info);
b49e97c9
TS
5901 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5902 | SEC_LINKER_CREATED | SEC_READONLY);
5903
0a44bf69
RS
5904 /* The psABI requires a read-only .dynamic section, but the VxWorks
5905 EABI doesn't. */
5906 if (!htab->is_vxworks)
b49e97c9 5907 {
0a44bf69
RS
5908 s = bfd_get_section_by_name (abfd, ".dynamic");
5909 if (s != NULL)
5910 {
5911 if (! bfd_set_section_flags (abfd, s, flags))
5912 return FALSE;
5913 }
b49e97c9
TS
5914 }
5915
5916 /* We need to create .got section. */
f4416af6
AO
5917 if (! mips_elf_create_got_section (abfd, info, FALSE))
5918 return FALSE;
5919
0a44bf69 5920 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5921 return FALSE;
b49e97c9 5922
b49e97c9
TS
5923 /* Create .stub section. */
5924 if (bfd_get_section_by_name (abfd,
5925 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5926 {
3496cb2a
L
5927 s = bfd_make_section_with_flags (abfd,
5928 MIPS_ELF_STUB_SECTION_NAME (abfd),
5929 flags | SEC_CODE);
b49e97c9 5930 if (s == NULL
b49e97c9
TS
5931 || ! bfd_set_section_alignment (abfd, s,
5932 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5933 return FALSE;
b49e97c9
TS
5934 }
5935
5936 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5937 && !info->shared
5938 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5939 {
3496cb2a
L
5940 s = bfd_make_section_with_flags (abfd, ".rld_map",
5941 flags &~ (flagword) SEC_READONLY);
b49e97c9 5942 if (s == NULL
b49e97c9
TS
5943 || ! bfd_set_section_alignment (abfd, s,
5944 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5945 return FALSE;
b49e97c9
TS
5946 }
5947
5948 /* On IRIX5, we adjust add some additional symbols and change the
5949 alignments of several sections. There is no ABI documentation
5950 indicating that this is necessary on IRIX6, nor any evidence that
5951 the linker takes such action. */
5952 if (IRIX_COMPAT (abfd) == ict_irix5)
5953 {
5954 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5955 {
14a793b2 5956 bh = NULL;
b49e97c9 5957 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5958 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5959 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5960 return FALSE;
14a793b2
AM
5961
5962 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5963 h->non_elf = 0;
5964 h->def_regular = 1;
b49e97c9
TS
5965 h->type = STT_SECTION;
5966
c152c796 5967 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5968 return FALSE;
b49e97c9
TS
5969 }
5970
5971 /* We need to create a .compact_rel section. */
5972 if (SGI_COMPAT (abfd))
5973 {
5974 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5975 return FALSE;
b49e97c9
TS
5976 }
5977
44c410de 5978 /* Change alignments of some sections. */
b49e97c9
TS
5979 s = bfd_get_section_by_name (abfd, ".hash");
5980 if (s != NULL)
d80dcc6a 5981 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5982 s = bfd_get_section_by_name (abfd, ".dynsym");
5983 if (s != NULL)
d80dcc6a 5984 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5985 s = bfd_get_section_by_name (abfd, ".dynstr");
5986 if (s != NULL)
d80dcc6a 5987 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5988 s = bfd_get_section_by_name (abfd, ".reginfo");
5989 if (s != NULL)
d80dcc6a 5990 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5991 s = bfd_get_section_by_name (abfd, ".dynamic");
5992 if (s != NULL)
d80dcc6a 5993 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5994 }
5995
5996 if (!info->shared)
5997 {
14a793b2
AM
5998 const char *name;
5999
6000 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6001 bh = NULL;
6002 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6003 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6004 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6005 return FALSE;
14a793b2
AM
6006
6007 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6008 h->non_elf = 0;
6009 h->def_regular = 1;
b49e97c9
TS
6010 h->type = STT_SECTION;
6011
c152c796 6012 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6013 return FALSE;
b49e97c9
TS
6014
6015 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6016 {
6017 /* __rld_map is a four byte word located in the .data section
6018 and is filled in by the rtld to contain a pointer to
6019 the _r_debug structure. Its symbol value will be set in
6020 _bfd_mips_elf_finish_dynamic_symbol. */
6021 s = bfd_get_section_by_name (abfd, ".rld_map");
6022 BFD_ASSERT (s != NULL);
6023
14a793b2
AM
6024 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6025 bh = NULL;
6026 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6027 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6028 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6029 return FALSE;
14a793b2
AM
6030
6031 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6032 h->non_elf = 0;
6033 h->def_regular = 1;
b49e97c9
TS
6034 h->type = STT_OBJECT;
6035
c152c796 6036 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6037 return FALSE;
b49e97c9
TS
6038 }
6039 }
6040
0a44bf69
RS
6041 if (htab->is_vxworks)
6042 {
6043 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6044 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6045 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6046 return FALSE;
6047
6048 /* Cache the sections created above. */
6049 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6050 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6051 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6052 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6053 if (!htab->sdynbss
6054 || (!htab->srelbss && !info->shared)
6055 || !htab->srelplt
6056 || !htab->splt)
6057 abort ();
6058
6059 /* Do the usual VxWorks handling. */
6060 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6061 return FALSE;
6062
6063 /* Work out the PLT sizes. */
6064 if (info->shared)
6065 {
6066 htab->plt_header_size
6067 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6068 htab->plt_entry_size
6069 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6070 }
6071 else
6072 {
6073 htab->plt_header_size
6074 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6075 htab->plt_entry_size
6076 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6077 }
6078 }
6079
b34976b6 6080 return TRUE;
b49e97c9
TS
6081}
6082\f
6083/* Look through the relocs for a section during the first phase, and
6084 allocate space in the global offset table. */
6085
b34976b6 6086bfd_boolean
9719ad41
RS
6087_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6088 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6089{
6090 const char *name;
6091 bfd *dynobj;
6092 Elf_Internal_Shdr *symtab_hdr;
6093 struct elf_link_hash_entry **sym_hashes;
6094 struct mips_got_info *g;
6095 size_t extsymoff;
6096 const Elf_Internal_Rela *rel;
6097 const Elf_Internal_Rela *rel_end;
6098 asection *sgot;
6099 asection *sreloc;
9c5bfbb7 6100 const struct elf_backend_data *bed;
0a44bf69 6101 struct mips_elf_link_hash_table *htab;
b49e97c9 6102
1049f94e 6103 if (info->relocatable)
b34976b6 6104 return TRUE;
b49e97c9 6105
0a44bf69 6106 htab = mips_elf_hash_table (info);
b49e97c9
TS
6107 dynobj = elf_hash_table (info)->dynobj;
6108 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6109 sym_hashes = elf_sym_hashes (abfd);
6110 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6111
6112 /* Check for the mips16 stub sections. */
6113
6114 name = bfd_get_section_name (abfd, sec);
6115 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6116 {
6117 unsigned long r_symndx;
6118
6119 /* Look at the relocation information to figure out which symbol
6120 this is for. */
6121
6122 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6123
6124 if (r_symndx < extsymoff
6125 || sym_hashes[r_symndx - extsymoff] == NULL)
6126 {
6127 asection *o;
6128
6129 /* This stub is for a local symbol. This stub will only be
6130 needed if there is some relocation in this BFD, other
6131 than a 16 bit function call, which refers to this symbol. */
6132 for (o = abfd->sections; o != NULL; o = o->next)
6133 {
6134 Elf_Internal_Rela *sec_relocs;
6135 const Elf_Internal_Rela *r, *rend;
6136
6137 /* We can ignore stub sections when looking for relocs. */
6138 if ((o->flags & SEC_RELOC) == 0
6139 || o->reloc_count == 0
6140 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6141 sizeof FN_STUB - 1) == 0
6142 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6143 sizeof CALL_STUB - 1) == 0
6144 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6145 sizeof CALL_FP_STUB - 1) == 0)
6146 continue;
6147
45d6a902 6148 sec_relocs
9719ad41 6149 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6150 info->keep_memory);
b49e97c9 6151 if (sec_relocs == NULL)
b34976b6 6152 return FALSE;
b49e97c9
TS
6153
6154 rend = sec_relocs + o->reloc_count;
6155 for (r = sec_relocs; r < rend; r++)
6156 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6157 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6158 break;
6159
6cdc0ccc 6160 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6161 free (sec_relocs);
6162
6163 if (r < rend)
6164 break;
6165 }
6166
6167 if (o == NULL)
6168 {
6169 /* There is no non-call reloc for this stub, so we do
6170 not need it. Since this function is called before
6171 the linker maps input sections to output sections, we
6172 can easily discard it by setting the SEC_EXCLUDE
6173 flag. */
6174 sec->flags |= SEC_EXCLUDE;
b34976b6 6175 return TRUE;
b49e97c9
TS
6176 }
6177
6178 /* Record this stub in an array of local symbol stubs for
6179 this BFD. */
6180 if (elf_tdata (abfd)->local_stubs == NULL)
6181 {
6182 unsigned long symcount;
6183 asection **n;
6184 bfd_size_type amt;
6185
6186 if (elf_bad_symtab (abfd))
6187 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6188 else
6189 symcount = symtab_hdr->sh_info;
6190 amt = symcount * sizeof (asection *);
9719ad41 6191 n = bfd_zalloc (abfd, amt);
b49e97c9 6192 if (n == NULL)
b34976b6 6193 return FALSE;
b49e97c9
TS
6194 elf_tdata (abfd)->local_stubs = n;
6195 }
6196
6197 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6198
6199 /* We don't need to set mips16_stubs_seen in this case.
6200 That flag is used to see whether we need to look through
6201 the global symbol table for stubs. We don't need to set
6202 it here, because we just have a local stub. */
6203 }
6204 else
6205 {
6206 struct mips_elf_link_hash_entry *h;
6207
6208 h = ((struct mips_elf_link_hash_entry *)
6209 sym_hashes[r_symndx - extsymoff]);
6210
973a3492
L
6211 while (h->root.root.type == bfd_link_hash_indirect
6212 || h->root.root.type == bfd_link_hash_warning)
6213 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6214
b49e97c9
TS
6215 /* H is the symbol this stub is for. */
6216
6217 h->fn_stub = sec;
b34976b6 6218 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6219 }
6220 }
6221 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6222 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6223 {
6224 unsigned long r_symndx;
6225 struct mips_elf_link_hash_entry *h;
6226 asection **loc;
6227
6228 /* Look at the relocation information to figure out which symbol
6229 this is for. */
6230
6231 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6232
6233 if (r_symndx < extsymoff
6234 || sym_hashes[r_symndx - extsymoff] == NULL)
6235 {
6236 /* This stub was actually built for a static symbol defined
6237 in the same file. We assume that all static symbols in
6238 mips16 code are themselves mips16, so we can simply
6239 discard this stub. Since this function is called before
6240 the linker maps input sections to output sections, we can
6241 easily discard it by setting the SEC_EXCLUDE flag. */
6242 sec->flags |= SEC_EXCLUDE;
b34976b6 6243 return TRUE;
b49e97c9
TS
6244 }
6245
6246 h = ((struct mips_elf_link_hash_entry *)
6247 sym_hashes[r_symndx - extsymoff]);
6248
6249 /* H is the symbol this stub is for. */
6250
6251 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6252 loc = &h->call_fp_stub;
6253 else
6254 loc = &h->call_stub;
6255
6256 /* If we already have an appropriate stub for this function, we
6257 don't need another one, so we can discard this one. Since
6258 this function is called before the linker maps input sections
6259 to output sections, we can easily discard it by setting the
6260 SEC_EXCLUDE flag. We can also discard this section if we
6261 happen to already know that this is a mips16 function; it is
6262 not necessary to check this here, as it is checked later, but
6263 it is slightly faster to check now. */
6264 if (*loc != NULL || h->root.other == STO_MIPS16)
6265 {
6266 sec->flags |= SEC_EXCLUDE;
b34976b6 6267 return TRUE;
b49e97c9
TS
6268 }
6269
6270 *loc = sec;
b34976b6 6271 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6272 }
6273
6274 if (dynobj == NULL)
6275 {
6276 sgot = NULL;
6277 g = NULL;
6278 }
6279 else
6280 {
f4416af6 6281 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6282 if (sgot == NULL)
6283 g = NULL;
6284 else
6285 {
f0abc2a1
AM
6286 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6287 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6288 BFD_ASSERT (g != NULL);
6289 }
6290 }
6291
6292 sreloc = NULL;
6293 bed = get_elf_backend_data (abfd);
6294 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6295 for (rel = relocs; rel < rel_end; ++rel)
6296 {
6297 unsigned long r_symndx;
6298 unsigned int r_type;
6299 struct elf_link_hash_entry *h;
6300
6301 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6302 r_type = ELF_R_TYPE (abfd, rel->r_info);
6303
6304 if (r_symndx < extsymoff)
6305 h = NULL;
6306 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6307 {
6308 (*_bfd_error_handler)
d003868e
AM
6309 (_("%B: Malformed reloc detected for section %s"),
6310 abfd, name);
b49e97c9 6311 bfd_set_error (bfd_error_bad_value);
b34976b6 6312 return FALSE;
b49e97c9
TS
6313 }
6314 else
6315 {
6316 h = sym_hashes[r_symndx - extsymoff];
6317
6318 /* This may be an indirect symbol created because of a version. */
6319 if (h != NULL)
6320 {
6321 while (h->root.type == bfd_link_hash_indirect)
6322 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6323 }
6324 }
6325
6326 /* Some relocs require a global offset table. */
6327 if (dynobj == NULL || sgot == NULL)
6328 {
6329 switch (r_type)
6330 {
6331 case R_MIPS_GOT16:
6332 case R_MIPS_CALL16:
6333 case R_MIPS_CALL_HI16:
6334 case R_MIPS_CALL_LO16:
6335 case R_MIPS_GOT_HI16:
6336 case R_MIPS_GOT_LO16:
6337 case R_MIPS_GOT_PAGE:
6338 case R_MIPS_GOT_OFST:
6339 case R_MIPS_GOT_DISP:
86324f90 6340 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6341 case R_MIPS_TLS_GD:
6342 case R_MIPS_TLS_LDM:
b49e97c9
TS
6343 if (dynobj == NULL)
6344 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6345 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6346 return FALSE;
b49e97c9 6347 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6348 if (htab->is_vxworks && !info->shared)
6349 {
6350 (*_bfd_error_handler)
6351 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6352 abfd, (unsigned long) rel->r_offset);
6353 bfd_set_error (bfd_error_bad_value);
6354 return FALSE;
6355 }
b49e97c9
TS
6356 break;
6357
6358 case R_MIPS_32:
6359 case R_MIPS_REL32:
6360 case R_MIPS_64:
0a44bf69
RS
6361 /* In VxWorks executables, references to external symbols
6362 are handled using copy relocs or PLT stubs, so there's
6363 no need to add a dynamic relocation here. */
b49e97c9 6364 if (dynobj == NULL
0a44bf69 6365 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6366 && (sec->flags & SEC_ALLOC) != 0)
6367 elf_hash_table (info)->dynobj = dynobj = abfd;
6368 break;
6369
6370 default:
6371 break;
6372 }
6373 }
6374
0a44bf69
RS
6375 if (h)
6376 {
6377 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6378
6379 /* Relocations against the special VxWorks __GOTT_BASE__ and
6380 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6381 room for them in .rela.dyn. */
6382 if (is_gott_symbol (info, h))
6383 {
6384 if (sreloc == NULL)
6385 {
6386 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6387 if (sreloc == NULL)
6388 return FALSE;
6389 }
6390 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6391 }
6392 }
6393 else if (r_type == R_MIPS_CALL_LO16
6394 || r_type == R_MIPS_GOT_LO16
6395 || r_type == R_MIPS_GOT_DISP
6396 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6397 {
6398 /* We may need a local GOT entry for this relocation. We
6399 don't count R_MIPS_GOT_PAGE because we can estimate the
6400 maximum number of pages needed by looking at the size of
6401 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6402 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6403 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6404 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6405 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6406 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6407 rel->r_addend, g, 0))
f4416af6 6408 return FALSE;
b49e97c9
TS
6409 }
6410
6411 switch (r_type)
6412 {
6413 case R_MIPS_CALL16:
6414 if (h == NULL)
6415 {
6416 (*_bfd_error_handler)
d003868e
AM
6417 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6418 abfd, (unsigned long) rel->r_offset);
b49e97c9 6419 bfd_set_error (bfd_error_bad_value);
b34976b6 6420 return FALSE;
b49e97c9
TS
6421 }
6422 /* Fall through. */
6423
6424 case R_MIPS_CALL_HI16:
6425 case R_MIPS_CALL_LO16:
6426 if (h != NULL)
6427 {
0a44bf69
RS
6428 /* VxWorks call relocations point the function's .got.plt
6429 entry, which will be allocated by adjust_dynamic_symbol.
6430 Otherwise, this symbol requires a global GOT entry. */
6431 if (!htab->is_vxworks
6432 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6433 return FALSE;
b49e97c9
TS
6434
6435 /* We need a stub, not a plt entry for the undefined
6436 function. But we record it as if it needs plt. See
c152c796 6437 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6438 h->needs_plt = 1;
b49e97c9
TS
6439 h->type = STT_FUNC;
6440 }
6441 break;
6442
0fdc1bf1
AO
6443 case R_MIPS_GOT_PAGE:
6444 /* If this is a global, overridable symbol, GOT_PAGE will
6445 decay to GOT_DISP, so we'll need a GOT entry for it. */
6446 if (h == NULL)
6447 break;
6448 else
6449 {
6450 struct mips_elf_link_hash_entry *hmips =
6451 (struct mips_elf_link_hash_entry *) h;
143d77c5 6452
0fdc1bf1
AO
6453 while (hmips->root.root.type == bfd_link_hash_indirect
6454 || hmips->root.root.type == bfd_link_hash_warning)
6455 hmips = (struct mips_elf_link_hash_entry *)
6456 hmips->root.root.u.i.link;
143d77c5 6457
f5385ebf 6458 if (hmips->root.def_regular
0fdc1bf1 6459 && ! (info->shared && ! info->symbolic
f5385ebf 6460 && ! hmips->root.forced_local))
0fdc1bf1
AO
6461 break;
6462 }
6463 /* Fall through. */
6464
b49e97c9
TS
6465 case R_MIPS_GOT16:
6466 case R_MIPS_GOT_HI16:
6467 case R_MIPS_GOT_LO16:
6468 case R_MIPS_GOT_DISP:
0f20cc35 6469 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6470 return FALSE;
b49e97c9
TS
6471 break;
6472
0f20cc35
DJ
6473 case R_MIPS_TLS_GOTTPREL:
6474 if (info->shared)
6475 info->flags |= DF_STATIC_TLS;
6476 /* Fall through */
6477
6478 case R_MIPS_TLS_LDM:
6479 if (r_type == R_MIPS_TLS_LDM)
6480 {
6481 r_symndx = 0;
6482 h = NULL;
6483 }
6484 /* Fall through */
6485
6486 case R_MIPS_TLS_GD:
6487 /* This symbol requires a global offset table entry, or two
6488 for TLS GD relocations. */
6489 {
6490 unsigned char flag = (r_type == R_MIPS_TLS_GD
6491 ? GOT_TLS_GD
6492 : r_type == R_MIPS_TLS_LDM
6493 ? GOT_TLS_LDM
6494 : GOT_TLS_IE);
6495 if (h != NULL)
6496 {
6497 struct mips_elf_link_hash_entry *hmips =
6498 (struct mips_elf_link_hash_entry *) h;
6499 hmips->tls_type |= flag;
6500
6501 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6502 return FALSE;
6503 }
6504 else
6505 {
6506 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6507
6508 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6509 rel->r_addend, g, flag))
6510 return FALSE;
6511 }
6512 }
6513 break;
6514
b49e97c9
TS
6515 case R_MIPS_32:
6516 case R_MIPS_REL32:
6517 case R_MIPS_64:
0a44bf69
RS
6518 /* In VxWorks executables, references to external symbols
6519 are handled using copy relocs or PLT stubs, so there's
6520 no need to add a .rela.dyn entry for this relocation. */
6521 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6522 && (sec->flags & SEC_ALLOC) != 0)
6523 {
6524 if (sreloc == NULL)
6525 {
0a44bf69 6526 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6527 if (sreloc == NULL)
f4416af6 6528 return FALSE;
b49e97c9 6529 }
b49e97c9 6530 if (info->shared)
82f0cfbd
EC
6531 {
6532 /* When creating a shared object, we must copy these
6533 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6534 relocs. Make room for this reloc in .rel(a).dyn. */
6535 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6536 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6537 /* We tell the dynamic linker that there are
6538 relocations against the text segment. */
6539 info->flags |= DF_TEXTREL;
6540 }
b49e97c9
TS
6541 else
6542 {
6543 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6544
b49e97c9
TS
6545 /* We only need to copy this reloc if the symbol is
6546 defined in a dynamic object. */
6547 hmips = (struct mips_elf_link_hash_entry *) h;
6548 ++hmips->possibly_dynamic_relocs;
943284cc 6549 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6550 /* We need it to tell the dynamic linker if there
6551 are relocations against the text segment. */
6552 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6553 }
6554
6555 /* Even though we don't directly need a GOT entry for
6556 this symbol, a symbol must have a dynamic symbol
6557 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6558 dynamic relocations against it. This does not apply
6559 to VxWorks, which does not have the usual coupling
6560 between global GOT entries and .dynsym entries. */
6561 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6562 {
6563 if (dynobj == NULL)
6564 elf_hash_table (info)->dynobj = dynobj = abfd;
6565 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6566 return FALSE;
6567 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6568 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6569 return FALSE;
6570 }
b49e97c9
TS
6571 }
6572
6573 if (SGI_COMPAT (abfd))
6574 mips_elf_hash_table (info)->compact_rel_size +=
6575 sizeof (Elf32_External_crinfo);
6576 break;
6577
0a44bf69
RS
6578 case R_MIPS_PC16:
6579 if (h)
6580 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6581 break;
6582
b49e97c9 6583 case R_MIPS_26:
0a44bf69
RS
6584 if (h)
6585 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6586 /* Fall through. */
6587
b49e97c9
TS
6588 case R_MIPS_GPREL16:
6589 case R_MIPS_LITERAL:
6590 case R_MIPS_GPREL32:
6591 if (SGI_COMPAT (abfd))
6592 mips_elf_hash_table (info)->compact_rel_size +=
6593 sizeof (Elf32_External_crinfo);
6594 break;
6595
6596 /* This relocation describes the C++ object vtable hierarchy.
6597 Reconstruct it for later use during GC. */
6598 case R_MIPS_GNU_VTINHERIT:
c152c796 6599 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6600 return FALSE;
b49e97c9
TS
6601 break;
6602
6603 /* This relocation describes which C++ vtable entries are actually
6604 used. Record for later use during GC. */
6605 case R_MIPS_GNU_VTENTRY:
c152c796 6606 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6607 return FALSE;
b49e97c9
TS
6608 break;
6609
6610 default:
6611 break;
6612 }
6613
6614 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6615 related to taking the function's address. This doesn't apply to
6616 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6617 a normal .got entry. */
6618 if (!htab->is_vxworks && h != NULL)
6619 switch (r_type)
6620 {
6621 default:
6622 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6623 break;
6624 case R_MIPS_CALL16:
6625 case R_MIPS_CALL_HI16:
6626 case R_MIPS_CALL_LO16:
6627 case R_MIPS_JALR:
6628 break;
6629 }
b49e97c9
TS
6630
6631 /* If this reloc is not a 16 bit call, and it has a global
6632 symbol, then we will need the fn_stub if there is one.
6633 References from a stub section do not count. */
6634 if (h != NULL
6635 && r_type != R_MIPS16_26
6636 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6637 sizeof FN_STUB - 1) != 0
6638 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6639 sizeof CALL_STUB - 1) != 0
6640 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6641 sizeof CALL_FP_STUB - 1) != 0)
6642 {
6643 struct mips_elf_link_hash_entry *mh;
6644
6645 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6646 mh->need_fn_stub = TRUE;
b49e97c9
TS
6647 }
6648 }
6649
b34976b6 6650 return TRUE;
b49e97c9
TS
6651}
6652\f
d0647110 6653bfd_boolean
9719ad41
RS
6654_bfd_mips_relax_section (bfd *abfd, asection *sec,
6655 struct bfd_link_info *link_info,
6656 bfd_boolean *again)
d0647110
AO
6657{
6658 Elf_Internal_Rela *internal_relocs;
6659 Elf_Internal_Rela *irel, *irelend;
6660 Elf_Internal_Shdr *symtab_hdr;
6661 bfd_byte *contents = NULL;
d0647110
AO
6662 size_t extsymoff;
6663 bfd_boolean changed_contents = FALSE;
6664 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6665 Elf_Internal_Sym *isymbuf = NULL;
6666
6667 /* We are not currently changing any sizes, so only one pass. */
6668 *again = FALSE;
6669
1049f94e 6670 if (link_info->relocatable)
d0647110
AO
6671 return TRUE;
6672
9719ad41 6673 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6674 link_info->keep_memory);
d0647110
AO
6675 if (internal_relocs == NULL)
6676 return TRUE;
6677
6678 irelend = internal_relocs + sec->reloc_count
6679 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6680 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6681 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6682
6683 for (irel = internal_relocs; irel < irelend; irel++)
6684 {
6685 bfd_vma symval;
6686 bfd_signed_vma sym_offset;
6687 unsigned int r_type;
6688 unsigned long r_symndx;
6689 asection *sym_sec;
6690 unsigned long instruction;
6691
6692 /* Turn jalr into bgezal, and jr into beq, if they're marked
6693 with a JALR relocation, that indicate where they jump to.
6694 This saves some pipeline bubbles. */
6695 r_type = ELF_R_TYPE (abfd, irel->r_info);
6696 if (r_type != R_MIPS_JALR)
6697 continue;
6698
6699 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6700 /* Compute the address of the jump target. */
6701 if (r_symndx >= extsymoff)
6702 {
6703 struct mips_elf_link_hash_entry *h
6704 = ((struct mips_elf_link_hash_entry *)
6705 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6706
6707 while (h->root.root.type == bfd_link_hash_indirect
6708 || h->root.root.type == bfd_link_hash_warning)
6709 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6710
d0647110
AO
6711 /* If a symbol is undefined, or if it may be overridden,
6712 skip it. */
6713 if (! ((h->root.root.type == bfd_link_hash_defined
6714 || h->root.root.type == bfd_link_hash_defweak)
6715 && h->root.root.u.def.section)
6716 || (link_info->shared && ! link_info->symbolic
f5385ebf 6717 && !h->root.forced_local))
d0647110
AO
6718 continue;
6719
6720 sym_sec = h->root.root.u.def.section;
6721 if (sym_sec->output_section)
6722 symval = (h->root.root.u.def.value
6723 + sym_sec->output_section->vma
6724 + sym_sec->output_offset);
6725 else
6726 symval = h->root.root.u.def.value;
6727 }
6728 else
6729 {
6730 Elf_Internal_Sym *isym;
6731
6732 /* Read this BFD's symbols if we haven't done so already. */
6733 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6734 {
6735 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6736 if (isymbuf == NULL)
6737 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6738 symtab_hdr->sh_info, 0,
6739 NULL, NULL, NULL);
6740 if (isymbuf == NULL)
6741 goto relax_return;
6742 }
6743
6744 isym = isymbuf + r_symndx;
6745 if (isym->st_shndx == SHN_UNDEF)
6746 continue;
6747 else if (isym->st_shndx == SHN_ABS)
6748 sym_sec = bfd_abs_section_ptr;
6749 else if (isym->st_shndx == SHN_COMMON)
6750 sym_sec = bfd_com_section_ptr;
6751 else
6752 sym_sec
6753 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6754 symval = isym->st_value
6755 + sym_sec->output_section->vma
6756 + sym_sec->output_offset;
6757 }
6758
6759 /* Compute branch offset, from delay slot of the jump to the
6760 branch target. */
6761 sym_offset = (symval + irel->r_addend)
6762 - (sec_start + irel->r_offset + 4);
6763
6764 /* Branch offset must be properly aligned. */
6765 if ((sym_offset & 3) != 0)
6766 continue;
6767
6768 sym_offset >>= 2;
6769
6770 /* Check that it's in range. */
6771 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6772 continue;
143d77c5 6773
d0647110
AO
6774 /* Get the section contents if we haven't done so already. */
6775 if (contents == NULL)
6776 {
6777 /* Get cached copy if it exists. */
6778 if (elf_section_data (sec)->this_hdr.contents != NULL)
6779 contents = elf_section_data (sec)->this_hdr.contents;
6780 else
6781 {
eea6121a 6782 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6783 goto relax_return;
6784 }
6785 }
6786
6787 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6788
6789 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6790 if ((instruction & 0xfc1fffff) == 0x0000f809)
6791 instruction = 0x04110000;
6792 /* If it was jr <reg>, turn it into b <target>. */
6793 else if ((instruction & 0xfc1fffff) == 0x00000008)
6794 instruction = 0x10000000;
6795 else
6796 continue;
6797
6798 instruction |= (sym_offset & 0xffff);
6799 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6800 changed_contents = TRUE;
6801 }
6802
6803 if (contents != NULL
6804 && elf_section_data (sec)->this_hdr.contents != contents)
6805 {
6806 if (!changed_contents && !link_info->keep_memory)
6807 free (contents);
6808 else
6809 {
6810 /* Cache the section contents for elf_link_input_bfd. */
6811 elf_section_data (sec)->this_hdr.contents = contents;
6812 }
6813 }
6814 return TRUE;
6815
143d77c5 6816 relax_return:
eea6121a
AM
6817 if (contents != NULL
6818 && elf_section_data (sec)->this_hdr.contents != contents)
6819 free (contents);
d0647110
AO
6820 return FALSE;
6821}
6822\f
b49e97c9
TS
6823/* Adjust a symbol defined by a dynamic object and referenced by a
6824 regular object. The current definition is in some section of the
6825 dynamic object, but we're not including those sections. We have to
6826 change the definition to something the rest of the link can
6827 understand. */
6828
b34976b6 6829bfd_boolean
9719ad41
RS
6830_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6831 struct elf_link_hash_entry *h)
b49e97c9
TS
6832{
6833 bfd *dynobj;
6834 struct mips_elf_link_hash_entry *hmips;
6835 asection *s;
5108fc1b 6836 struct mips_elf_link_hash_table *htab;
b49e97c9 6837
5108fc1b 6838 htab = mips_elf_hash_table (info);
b49e97c9
TS
6839 dynobj = elf_hash_table (info)->dynobj;
6840
6841 /* Make sure we know what is going on here. */
6842 BFD_ASSERT (dynobj != NULL
f5385ebf 6843 && (h->needs_plt
f6e332e6 6844 || h->u.weakdef != NULL
f5385ebf
AM
6845 || (h->def_dynamic
6846 && h->ref_regular
6847 && !h->def_regular)));
b49e97c9
TS
6848
6849 /* If this symbol is defined in a dynamic object, we need to copy
6850 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6851 file. */
6852 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6853 if (! info->relocatable
b49e97c9
TS
6854 && hmips->possibly_dynamic_relocs != 0
6855 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6856 || !h->def_regular))
b49e97c9 6857 {
0a44bf69
RS
6858 mips_elf_allocate_dynamic_relocations
6859 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6860 if (hmips->readonly_reloc)
b49e97c9
TS
6861 /* We tell the dynamic linker that there are relocations
6862 against the text segment. */
6863 info->flags |= DF_TEXTREL;
6864 }
6865
6866 /* For a function, create a stub, if allowed. */
6867 if (! hmips->no_fn_stub
f5385ebf 6868 && h->needs_plt)
b49e97c9
TS
6869 {
6870 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6871 return TRUE;
b49e97c9
TS
6872
6873 /* If this symbol is not defined in a regular file, then set
6874 the symbol to the stub location. This is required to make
6875 function pointers compare as equal between the normal
6876 executable and the shared library. */
f5385ebf 6877 if (!h->def_regular)
b49e97c9
TS
6878 {
6879 /* We need .stub section. */
6880 s = bfd_get_section_by_name (dynobj,
6881 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6882 BFD_ASSERT (s != NULL);
6883
6884 h->root.u.def.section = s;
eea6121a 6885 h->root.u.def.value = s->size;
b49e97c9
TS
6886
6887 /* XXX Write this stub address somewhere. */
eea6121a 6888 h->plt.offset = s->size;
b49e97c9
TS
6889
6890 /* Make room for this stub code. */
5108fc1b 6891 s->size += htab->function_stub_size;
b49e97c9
TS
6892
6893 /* The last half word of the stub will be filled with the index
6894 of this symbol in .dynsym section. */
b34976b6 6895 return TRUE;
b49e97c9
TS
6896 }
6897 }
6898 else if ((h->type == STT_FUNC)
f5385ebf 6899 && !h->needs_plt)
b49e97c9
TS
6900 {
6901 /* This will set the entry for this symbol in the GOT to 0, and
6902 the dynamic linker will take care of this. */
6903 h->root.u.def.value = 0;
b34976b6 6904 return TRUE;
b49e97c9
TS
6905 }
6906
6907 /* If this is a weak symbol, and there is a real definition, the
6908 processor independent code will have arranged for us to see the
6909 real definition first, and we can just use the same value. */
f6e332e6 6910 if (h->u.weakdef != NULL)
b49e97c9 6911 {
f6e332e6
AM
6912 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6913 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6914 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6915 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6916 return TRUE;
b49e97c9
TS
6917 }
6918
6919 /* This is a reference to a symbol defined by a dynamic object which
6920 is not a function. */
6921
b34976b6 6922 return TRUE;
b49e97c9 6923}
0a44bf69
RS
6924
6925/* Likewise, for VxWorks. */
6926
6927bfd_boolean
6928_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6929 struct elf_link_hash_entry *h)
6930{
6931 bfd *dynobj;
6932 struct mips_elf_link_hash_entry *hmips;
6933 struct mips_elf_link_hash_table *htab;
6934 unsigned int power_of_two;
6935
6936 htab = mips_elf_hash_table (info);
6937 dynobj = elf_hash_table (info)->dynobj;
6938 hmips = (struct mips_elf_link_hash_entry *) h;
6939
6940 /* Make sure we know what is going on here. */
6941 BFD_ASSERT (dynobj != NULL
6942 && (h->needs_plt
6943 || h->needs_copy
6944 || h->u.weakdef != NULL
6945 || (h->def_dynamic
6946 && h->ref_regular
6947 && !h->def_regular)));
6948
6949 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6950 either (a) we want to branch to the symbol or (b) we're linking an
6951 executable that needs a canonical function address. In the latter
6952 case, the canonical address will be the address of the executable's
6953 load stub. */
6954 if ((hmips->is_branch_target
6955 || (!info->shared
6956 && h->type == STT_FUNC
6957 && hmips->is_relocation_target))
6958 && h->def_dynamic
6959 && h->ref_regular
6960 && !h->def_regular
6961 && !h->forced_local)
6962 h->needs_plt = 1;
6963
6964 /* Locally-binding symbols do not need a PLT stub; we can refer to
6965 the functions directly. */
6966 else if (h->needs_plt
6967 && (SYMBOL_CALLS_LOCAL (info, h)
6968 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6969 && h->root.type == bfd_link_hash_undefweak)))
6970 {
6971 h->needs_plt = 0;
6972 return TRUE;
6973 }
6974
6975 if (h->needs_plt)
6976 {
6977 /* If this is the first symbol to need a PLT entry, allocate room
6978 for the header, and for the header's .rela.plt.unloaded entries. */
6979 if (htab->splt->size == 0)
6980 {
6981 htab->splt->size += htab->plt_header_size;
6982 if (!info->shared)
6983 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6984 }
6985
6986 /* Assign the next .plt entry to this symbol. */
6987 h->plt.offset = htab->splt->size;
6988 htab->splt->size += htab->plt_entry_size;
6989
6990 /* If the output file has no definition of the symbol, set the
6991 symbol's value to the address of the stub. For executables,
6992 point at the PLT load stub rather than the lazy resolution stub;
6993 this stub will become the canonical function address. */
6994 if (!h->def_regular)
6995 {
6996 h->root.u.def.section = htab->splt;
6997 h->root.u.def.value = h->plt.offset;
6998 if (!info->shared)
6999 h->root.u.def.value += 8;
7000 }
7001
7002 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7003 htab->sgotplt->size += 4;
7004 htab->srelplt->size += sizeof (Elf32_External_Rela);
7005
7006 /* Make room for the .rela.plt.unloaded relocations. */
7007 if (!info->shared)
7008 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7009
7010 return TRUE;
7011 }
7012
7013 /* If a function symbol is defined by a dynamic object, and we do not
7014 need a PLT stub for it, the symbol's value should be zero. */
7015 if (h->type == STT_FUNC
7016 && h->def_dynamic
7017 && h->ref_regular
7018 && !h->def_regular)
7019 {
7020 h->root.u.def.value = 0;
7021 return TRUE;
7022 }
7023
7024 /* If this is a weak symbol, and there is a real definition, the
7025 processor independent code will have arranged for us to see the
7026 real definition first, and we can just use the same value. */
7027 if (h->u.weakdef != NULL)
7028 {
7029 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7030 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7031 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7032 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7033 return TRUE;
7034 }
7035
7036 /* This is a reference to a symbol defined by a dynamic object which
7037 is not a function. */
7038 if (info->shared)
7039 return TRUE;
7040
7041 /* We must allocate the symbol in our .dynbss section, which will
7042 become part of the .bss section of the executable. There will be
7043 an entry for this symbol in the .dynsym section. The dynamic
7044 object will contain position independent code, so all references
7045 from the dynamic object to this symbol will go through the global
7046 offset table. The dynamic linker will use the .dynsym entry to
7047 determine the address it must put in the global offset table, so
7048 both the dynamic object and the regular object will refer to the
7049 same memory location for the variable. */
7050
7051 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7052 {
7053 htab->srelbss->size += sizeof (Elf32_External_Rela);
7054 h->needs_copy = 1;
7055 }
7056
7057 /* We need to figure out the alignment required for this symbol. */
7058 power_of_two = bfd_log2 (h->size);
7059 if (power_of_two > 4)
7060 power_of_two = 4;
7061
7062 /* Apply the required alignment. */
7063 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7064 (bfd_size_type) 1 << power_of_two);
7065 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7066 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7067 return FALSE;
7068
7069 /* Define the symbol as being at this point in the section. */
7070 h->root.u.def.section = htab->sdynbss;
7071 h->root.u.def.value = htab->sdynbss->size;
7072
7073 /* Increment the section size to make room for the symbol. */
7074 htab->sdynbss->size += h->size;
7075
7076 return TRUE;
7077}
b49e97c9 7078\f
5108fc1b
RS
7079/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7080 The number might be exact or a worst-case estimate, depending on how
7081 much information is available to elf_backend_omit_section_dynsym at
7082 the current linking stage. */
7083
7084static bfd_size_type
7085count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7086{
7087 bfd_size_type count;
7088
7089 count = 0;
7090 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7091 {
7092 asection *p;
7093 const struct elf_backend_data *bed;
7094
7095 bed = get_elf_backend_data (output_bfd);
7096 for (p = output_bfd->sections; p ; p = p->next)
7097 if ((p->flags & SEC_EXCLUDE) == 0
7098 && (p->flags & SEC_ALLOC) != 0
7099 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7100 ++count;
7101 }
7102 return count;
7103}
7104
b49e97c9
TS
7105/* This function is called after all the input files have been read,
7106 and the input sections have been assigned to output sections. We
7107 check for any mips16 stub sections that we can discard. */
7108
b34976b6 7109bfd_boolean
9719ad41
RS
7110_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7111 struct bfd_link_info *info)
b49e97c9
TS
7112{
7113 asection *ri;
7114
f4416af6
AO
7115 bfd *dynobj;
7116 asection *s;
7117 struct mips_got_info *g;
7118 int i;
7119 bfd_size_type loadable_size = 0;
7120 bfd_size_type local_gotno;
5108fc1b 7121 bfd_size_type dynsymcount;
f4416af6 7122 bfd *sub;
0f20cc35 7123 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7124 struct mips_elf_link_hash_table *htab;
7125
7126 htab = mips_elf_hash_table (info);
f4416af6 7127
b49e97c9
TS
7128 /* The .reginfo section has a fixed size. */
7129 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7130 if (ri != NULL)
9719ad41 7131 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7132
1049f94e 7133 if (! (info->relocatable
f4416af6
AO
7134 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7135 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7136 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7137
7138 dynobj = elf_hash_table (info)->dynobj;
7139 if (dynobj == NULL)
7140 /* Relocatable links don't have it. */
7141 return TRUE;
143d77c5 7142
f4416af6
AO
7143 g = mips_elf_got_info (dynobj, &s);
7144 if (s == NULL)
b34976b6 7145 return TRUE;
b49e97c9 7146
f4416af6
AO
7147 /* Calculate the total loadable size of the output. That
7148 will give us the maximum number of GOT_PAGE entries
7149 required. */
7150 for (sub = info->input_bfds; sub; sub = sub->link_next)
7151 {
7152 asection *subsection;
7153
7154 for (subsection = sub->sections;
7155 subsection;
7156 subsection = subsection->next)
7157 {
7158 if ((subsection->flags & SEC_ALLOC) == 0)
7159 continue;
eea6121a 7160 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7161 &~ (bfd_size_type) 0xf);
7162 }
7163 }
7164
7165 /* There has to be a global GOT entry for every symbol with
7166 a dynamic symbol table index of DT_MIPS_GOTSYM or
7167 higher. Therefore, it make sense to put those symbols
7168 that need GOT entries at the end of the symbol table. We
7169 do that here. */
7170 if (! mips_elf_sort_hash_table (info, 1))
7171 return FALSE;
7172
7173 if (g->global_gotsym != NULL)
7174 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7175 else
7176 /* If there are no global symbols, or none requiring
7177 relocations, then GLOBAL_GOTSYM will be NULL. */
7178 i = 0;
7179
5108fc1b
RS
7180 /* Get a worst-case estimate of the number of dynamic symbols needed.
7181 At this point, dynsymcount does not account for section symbols
7182 and count_section_dynsyms may overestimate the number that will
7183 be needed. */
7184 dynsymcount = (elf_hash_table (info)->dynsymcount
7185 + count_section_dynsyms (output_bfd, info));
7186
7187 /* Determine the size of one stub entry. */
7188 htab->function_stub_size = (dynsymcount > 0x10000
7189 ? MIPS_FUNCTION_STUB_BIG_SIZE
7190 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7191
f4416af6
AO
7192 /* In the worst case, we'll get one stub per dynamic symbol, plus
7193 one to account for the dummy entry at the end required by IRIX
7194 rld. */
5108fc1b 7195 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7196
0a44bf69
RS
7197 if (htab->is_vxworks)
7198 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7199 relocations against local symbols evaluate to "G", and the EABI does
7200 not include R_MIPS_GOT_PAGE. */
7201 local_gotno = 0;
7202 else
7203 /* Assume there are two loadable segments consisting of contiguous
7204 sections. Is 5 enough? */
7205 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7206
7207 g->local_gotno += local_gotno;
eea6121a 7208 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7209
7210 g->global_gotno = i;
eea6121a 7211 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7212
0f20cc35
DJ
7213 /* We need to calculate tls_gotno for global symbols at this point
7214 instead of building it up earlier, to avoid doublecounting
7215 entries for one global symbol from multiple input files. */
7216 count_tls_arg.info = info;
7217 count_tls_arg.needed = 0;
7218 elf_link_hash_traverse (elf_hash_table (info),
7219 mips_elf_count_global_tls_entries,
7220 &count_tls_arg);
7221 g->tls_gotno += count_tls_arg.needed;
7222 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7223
7224 mips_elf_resolve_final_got_entries (g);
7225
0a44bf69
RS
7226 /* VxWorks does not support multiple GOTs. It initializes $gp to
7227 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7228 dynamic loader. */
7229 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7230 {
7231 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7232 return FALSE;
7233 }
7234 else
7235 {
7236 /* Set up TLS entries for the first GOT. */
7237 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7238 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7239 }
b49e97c9 7240
b34976b6 7241 return TRUE;
b49e97c9
TS
7242}
7243
7244/* Set the sizes of the dynamic sections. */
7245
b34976b6 7246bfd_boolean
9719ad41
RS
7247_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7248 struct bfd_link_info *info)
b49e97c9
TS
7249{
7250 bfd *dynobj;
0a44bf69 7251 asection *s, *sreldyn;
b34976b6 7252 bfd_boolean reltext;
0a44bf69 7253 struct mips_elf_link_hash_table *htab;
b49e97c9 7254
0a44bf69 7255 htab = mips_elf_hash_table (info);
b49e97c9
TS
7256 dynobj = elf_hash_table (info)->dynobj;
7257 BFD_ASSERT (dynobj != NULL);
7258
7259 if (elf_hash_table (info)->dynamic_sections_created)
7260 {
7261 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7262 if (info->executable)
b49e97c9
TS
7263 {
7264 s = bfd_get_section_by_name (dynobj, ".interp");
7265 BFD_ASSERT (s != NULL);
eea6121a 7266 s->size
b49e97c9
TS
7267 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7268 s->contents
7269 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7270 }
7271 }
7272
7273 /* The check_relocs and adjust_dynamic_symbol entry points have
7274 determined the sizes of the various dynamic sections. Allocate
7275 memory for them. */
b34976b6 7276 reltext = FALSE;
0a44bf69 7277 sreldyn = NULL;
b49e97c9
TS
7278 for (s = dynobj->sections; s != NULL; s = s->next)
7279 {
7280 const char *name;
b49e97c9
TS
7281
7282 /* It's OK to base decisions on the section name, because none
7283 of the dynobj section names depend upon the input files. */
7284 name = bfd_get_section_name (dynobj, s);
7285
7286 if ((s->flags & SEC_LINKER_CREATED) == 0)
7287 continue;
7288
b49e97c9
TS
7289 if (strncmp (name, ".rel", 4) == 0)
7290 {
c456f082 7291 if (s->size != 0)
b49e97c9
TS
7292 {
7293 const char *outname;
7294 asection *target;
7295
7296 /* If this relocation section applies to a read only
7297 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7298 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7299 assert a DT_TEXTREL entry rather than testing whether
7300 there exists a relocation to a read only section or
7301 not. */
7302 outname = bfd_get_section_name (output_bfd,
7303 s->output_section);
7304 target = bfd_get_section_by_name (output_bfd, outname + 4);
7305 if ((target != NULL
7306 && (target->flags & SEC_READONLY) != 0
7307 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7308 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7309 reltext = TRUE;
b49e97c9
TS
7310
7311 /* We use the reloc_count field as a counter if we need
7312 to copy relocs into the output file. */
0a44bf69 7313 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7314 s->reloc_count = 0;
f4416af6
AO
7315
7316 /* If combreloc is enabled, elf_link_sort_relocs() will
7317 sort relocations, but in a different way than we do,
7318 and before we're done creating relocations. Also, it
7319 will move them around between input sections'
7320 relocation's contents, so our sorting would be
7321 broken, so don't let it run. */
7322 info->combreloc = 0;
b49e97c9
TS
7323 }
7324 }
0a44bf69
RS
7325 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7326 {
7327 /* Executables do not need a GOT. */
7328 if (info->shared)
7329 {
7330 /* Allocate relocations for all but the reserved entries. */
7331 struct mips_got_info *g;
7332 unsigned int count;
7333
7334 g = mips_elf_got_info (dynobj, NULL);
7335 count = (g->global_gotno
7336 + g->local_gotno
7337 - MIPS_RESERVED_GOTNO (info));
7338 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7339 }
7340 }
7341 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
b49e97c9 7342 {
f4416af6
AO
7343 /* _bfd_mips_elf_always_size_sections() has already done
7344 most of the work, but some symbols may have been mapped
7345 to versions that we must now resolve in the got_entries
7346 hash tables. */
7347 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7348 struct mips_got_info *g = gg;
7349 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7350 unsigned int needed_relocs = 0;
143d77c5 7351
f4416af6 7352 if (gg->next)
b49e97c9 7353 {
f4416af6
AO
7354 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7355 set_got_offset_arg.info = info;
b49e97c9 7356
0f20cc35
DJ
7357 /* NOTE 2005-02-03: How can this call, or the next, ever
7358 find any indirect entries to resolve? They were all
7359 resolved in mips_elf_multi_got. */
f4416af6
AO
7360 mips_elf_resolve_final_got_entries (gg);
7361 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7362 {
f4416af6
AO
7363 unsigned int save_assign;
7364
7365 mips_elf_resolve_final_got_entries (g);
7366
7367 /* Assign offsets to global GOT entries. */
7368 save_assign = g->assigned_gotno;
7369 g->assigned_gotno = g->local_gotno;
7370 set_got_offset_arg.g = g;
7371 set_got_offset_arg.needed_relocs = 0;
7372 htab_traverse (g->got_entries,
7373 mips_elf_set_global_got_offset,
7374 &set_got_offset_arg);
7375 needed_relocs += set_got_offset_arg.needed_relocs;
7376 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7377 <= g->global_gotno);
7378
7379 g->assigned_gotno = save_assign;
7380 if (info->shared)
7381 {
7382 needed_relocs += g->local_gotno - g->assigned_gotno;
7383 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7384 + g->next->global_gotno
0f20cc35 7385 + g->next->tls_gotno
0a44bf69 7386 + MIPS_RESERVED_GOTNO (info));
f4416af6 7387 }
b49e97c9 7388 }
0f20cc35
DJ
7389 }
7390 else
7391 {
7392 struct mips_elf_count_tls_arg arg;
7393 arg.info = info;
7394 arg.needed = 0;
b49e97c9 7395
0f20cc35
DJ
7396 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7397 &arg);
7398 elf_link_hash_traverse (elf_hash_table (info),
7399 mips_elf_count_global_tls_relocs,
7400 &arg);
7401
7402 needed_relocs += arg.needed;
f4416af6 7403 }
0f20cc35
DJ
7404
7405 if (needed_relocs)
0a44bf69
RS
7406 mips_elf_allocate_dynamic_relocations (dynobj, info,
7407 needed_relocs);
b49e97c9
TS
7408 }
7409 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7410 {
8dc1a139 7411 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7412 of .text section. So put a dummy. XXX */
7413 s->size += htab->function_stub_size;
b49e97c9
TS
7414 }
7415 else if (! info->shared
7416 && ! mips_elf_hash_table (info)->use_rld_obj_head
7417 && strncmp (name, ".rld_map", 8) == 0)
7418 {
5108fc1b 7419 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7420 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7421 s->size += 4;
b49e97c9
TS
7422 }
7423 else if (SGI_COMPAT (output_bfd)
7424 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 7425 s->size += mips_elf_hash_table (info)->compact_rel_size;
0a44bf69
RS
7426 else if (strncmp (name, ".init", 5) != 0
7427 && s != htab->sgotplt
7428 && s != htab->splt)
b49e97c9
TS
7429 {
7430 /* It's not one of our sections, so don't allocate space. */
7431 continue;
7432 }
7433
c456f082 7434 if (s->size == 0)
b49e97c9 7435 {
8423293d 7436 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7437 continue;
7438 }
7439
c456f082
AM
7440 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7441 continue;
7442
0a44bf69
RS
7443 /* Allocate memory for this section last, since we may increase its
7444 size above. */
7445 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7446 {
7447 sreldyn = s;
7448 continue;
7449 }
7450
b49e97c9 7451 /* Allocate memory for the section contents. */
eea6121a 7452 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7453 if (s->contents == NULL)
b49e97c9
TS
7454 {
7455 bfd_set_error (bfd_error_no_memory);
b34976b6 7456 return FALSE;
b49e97c9
TS
7457 }
7458 }
7459
0a44bf69
RS
7460 /* Allocate memory for the .rel(a).dyn section. */
7461 if (sreldyn != NULL)
7462 {
7463 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7464 if (sreldyn->contents == NULL)
7465 {
7466 bfd_set_error (bfd_error_no_memory);
7467 return FALSE;
7468 }
7469 }
7470
b49e97c9
TS
7471 if (elf_hash_table (info)->dynamic_sections_created)
7472 {
7473 /* Add some entries to the .dynamic section. We fill in the
7474 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7475 must add the entries now so that we get the correct size for
7476 the .dynamic section. The DT_DEBUG entry is filled in by the
7477 dynamic linker and used by the debugger. */
7478 if (! info->shared)
7479 {
7480 /* SGI object has the equivalence of DT_DEBUG in the
7481 DT_MIPS_RLD_MAP entry. */
7482 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 7483 return FALSE;
b49e97c9
TS
7484 if (!SGI_COMPAT (output_bfd))
7485 {
7486 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7487 return FALSE;
b49e97c9
TS
7488 }
7489 }
7490 else
7491 {
7492 /* Shared libraries on traditional mips have DT_DEBUG. */
7493 if (!SGI_COMPAT (output_bfd))
7494 {
7495 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7496 return FALSE;
b49e97c9
TS
7497 }
7498 }
7499
0a44bf69 7500 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7501 info->flags |= DF_TEXTREL;
7502
7503 if ((info->flags & DF_TEXTREL) != 0)
7504 {
7505 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7506 return FALSE;
943284cc
DJ
7507
7508 /* Clear the DF_TEXTREL flag. It will be set again if we
7509 write out an actual text relocation; we may not, because
7510 at this point we do not know whether e.g. any .eh_frame
7511 absolute relocations have been converted to PC-relative. */
7512 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7513 }
7514
7515 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7516 return FALSE;
b49e97c9 7517
0a44bf69 7518 if (htab->is_vxworks)
b49e97c9 7519 {
0a44bf69
RS
7520 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7521 use any of the DT_MIPS_* tags. */
7522 if (mips_elf_rel_dyn_section (info, FALSE))
7523 {
7524 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7525 return FALSE;
b49e97c9 7526
0a44bf69
RS
7527 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7528 return FALSE;
b49e97c9 7529
0a44bf69
RS
7530 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7531 return FALSE;
7532 }
7533 if (htab->splt->size > 0)
7534 {
7535 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7536 return FALSE;
7537
7538 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7539 return FALSE;
7540
7541 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7542 return FALSE;
7543 }
b49e97c9 7544 }
0a44bf69
RS
7545 else
7546 {
7547 if (mips_elf_rel_dyn_section (info, FALSE))
7548 {
7549 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7550 return FALSE;
b49e97c9 7551
0a44bf69
RS
7552 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7553 return FALSE;
b49e97c9 7554
0a44bf69
RS
7555 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7556 return FALSE;
7557 }
b49e97c9 7558
0a44bf69
RS
7559 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7560 return FALSE;
b49e97c9 7561
0a44bf69
RS
7562 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7563 return FALSE;
b49e97c9 7564
0a44bf69
RS
7565 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7566 return FALSE;
b49e97c9 7567
0a44bf69
RS
7568 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7569 return FALSE;
b49e97c9 7570
0a44bf69
RS
7571 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7572 return FALSE;
b49e97c9 7573
0a44bf69
RS
7574 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7575 return FALSE;
b49e97c9 7576
0a44bf69
RS
7577 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7578 return FALSE;
7579
7580 if (IRIX_COMPAT (dynobj) == ict_irix5
7581 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7582 return FALSE;
7583
7584 if (IRIX_COMPAT (dynobj) == ict_irix6
7585 && (bfd_get_section_by_name
7586 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7587 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7588 return FALSE;
7589 }
b49e97c9
TS
7590 }
7591
b34976b6 7592 return TRUE;
b49e97c9
TS
7593}
7594\f
81d43bff
RS
7595/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7596 Adjust its R_ADDEND field so that it is correct for the output file.
7597 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7598 and sections respectively; both use symbol indexes. */
7599
7600static void
7601mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7602 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7603 asection **local_sections, Elf_Internal_Rela *rel)
7604{
7605 unsigned int r_type, r_symndx;
7606 Elf_Internal_Sym *sym;
7607 asection *sec;
7608
7609 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7610 {
7611 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7612 if (r_type == R_MIPS16_GPREL
7613 || r_type == R_MIPS_GPREL16
7614 || r_type == R_MIPS_GPREL32
7615 || r_type == R_MIPS_LITERAL)
7616 {
7617 rel->r_addend += _bfd_get_gp_value (input_bfd);
7618 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7619 }
7620
7621 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7622 sym = local_syms + r_symndx;
7623
7624 /* Adjust REL's addend to account for section merging. */
7625 if (!info->relocatable)
7626 {
7627 sec = local_sections[r_symndx];
7628 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7629 }
7630
7631 /* This would normally be done by the rela_normal code in elflink.c. */
7632 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7633 rel->r_addend += local_sections[r_symndx]->output_offset;
7634 }
7635}
7636
b49e97c9
TS
7637/* Relocate a MIPS ELF section. */
7638
b34976b6 7639bfd_boolean
9719ad41
RS
7640_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7641 bfd *input_bfd, asection *input_section,
7642 bfd_byte *contents, Elf_Internal_Rela *relocs,
7643 Elf_Internal_Sym *local_syms,
7644 asection **local_sections)
b49e97c9
TS
7645{
7646 Elf_Internal_Rela *rel;
7647 const Elf_Internal_Rela *relend;
7648 bfd_vma addend = 0;
b34976b6 7649 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7650 const struct elf_backend_data *bed;
b49e97c9
TS
7651
7652 bed = get_elf_backend_data (output_bfd);
7653 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7654 for (rel = relocs; rel < relend; ++rel)
7655 {
7656 const char *name;
c9adbffe 7657 bfd_vma value = 0;
b49e97c9 7658 reloc_howto_type *howto;
b34976b6
AM
7659 bfd_boolean require_jalx;
7660 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7661 REL relocation. */
b34976b6 7662 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7663 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7664 const char *msg;
b49e97c9
TS
7665
7666 /* Find the relocation howto for this relocation. */
4a14403c 7667 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7668 {
7669 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7670 64-bit code, but make sure all their addresses are in the
7671 lowermost or uppermost 32-bit section of the 64-bit address
7672 space. Thus, when they use an R_MIPS_64 they mean what is
7673 usually meant by R_MIPS_32, with the exception that the
7674 stored value is sign-extended to 64 bits. */
b34976b6 7675 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7676
7677 /* On big-endian systems, we need to lie about the position
7678 of the reloc. */
7679 if (bfd_big_endian (input_bfd))
7680 rel->r_offset += 4;
7681 }
7682 else
7683 /* NewABI defaults to RELA relocations. */
7684 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
7685 NEWABI_P (input_bfd)
7686 && (MIPS_RELOC_RELA_P
7687 (input_bfd, input_section,
7688 rel - relocs)));
b49e97c9
TS
7689
7690 if (!use_saved_addend_p)
7691 {
7692 Elf_Internal_Shdr *rel_hdr;
7693
7694 /* If these relocations were originally of the REL variety,
7695 we must pull the addend out of the field that will be
7696 relocated. Otherwise, we simply use the contents of the
7697 RELA relocation. To determine which flavor or relocation
7698 this is, we depend on the fact that the INPUT_SECTION's
7699 REL_HDR is read before its REL_HDR2. */
7700 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7701 if ((size_t) (rel - relocs)
7702 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7703 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7704 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7705 {
d6f16593
MR
7706 bfd_byte *location = contents + rel->r_offset;
7707
b49e97c9 7708 /* Note that this is a REL relocation. */
b34976b6 7709 rela_relocation_p = FALSE;
b49e97c9
TS
7710
7711 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7712 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7713 location);
b49e97c9
TS
7714 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7715 contents);
d6f16593
MR
7716 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7717 location);
7718
b49e97c9
TS
7719 addend &= howto->src_mask;
7720
7721 /* For some kinds of relocations, the ADDEND is a
7722 combination of the addend stored in two different
7723 relocations. */
d6f16593 7724 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7725 || (r_type == R_MIPS_GOT16
7726 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7727 local_sections, FALSE)))
b49e97c9
TS
7728 {
7729 bfd_vma l;
7730 const Elf_Internal_Rela *lo16_relocation;
7731 reloc_howto_type *lo16_howto;
d6f16593
MR
7732 bfd_byte *lo16_location;
7733 int lo16_type;
7734
7735 if (r_type == R_MIPS16_HI16)
7736 lo16_type = R_MIPS16_LO16;
7737 else
7738 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7739
7740 /* The combined value is the sum of the HI16 addend,
7741 left-shifted by sixteen bits, and the LO16
7742 addend, sign extended. (Usually, the code does
7743 a `lui' of the HI16 value, and then an `addiu' of
7744 the LO16 value.)
7745
4030e8f6
CD
7746 Scan ahead to find a matching LO16 relocation.
7747
7748 According to the MIPS ELF ABI, the R_MIPS_LO16
7749 relocation must be immediately following.
7750 However, for the IRIX6 ABI, the next relocation
7751 may be a composed relocation consisting of
7752 several relocations for the same address. In
7753 that case, the R_MIPS_LO16 relocation may occur
7754 as one of these. We permit a similar extension
7755 in general, as that is useful for GCC. */
7756 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7757 lo16_type,
b49e97c9
TS
7758 rel, relend);
7759 if (lo16_relocation == NULL)
b34976b6 7760 return FALSE;
b49e97c9 7761
d6f16593
MR
7762 lo16_location = contents + lo16_relocation->r_offset;
7763
b49e97c9 7764 /* Obtain the addend kept there. */
4030e8f6 7765 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7766 lo16_type, FALSE);
7767 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7768 lo16_location);
b49e97c9
TS
7769 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7770 input_bfd, contents);
d6f16593
MR
7771 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7772 lo16_location);
b49e97c9 7773 l &= lo16_howto->src_mask;
5a659663 7774 l <<= lo16_howto->rightshift;
a7ebbfdf 7775 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7776
7777 addend <<= 16;
7778
7779 /* Compute the combined addend. */
7780 addend += l;
b49e97c9 7781 }
30ac9238
RS
7782 else
7783 addend <<= howto->rightshift;
b49e97c9
TS
7784 }
7785 else
7786 addend = rel->r_addend;
81d43bff
RS
7787 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7788 local_syms, local_sections, rel);
b49e97c9
TS
7789 }
7790
1049f94e 7791 if (info->relocatable)
b49e97c9 7792 {
4a14403c 7793 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7794 && bfd_big_endian (input_bfd))
7795 rel->r_offset -= 4;
7796
81d43bff 7797 if (!rela_relocation_p && rel->r_addend)
5a659663 7798 {
81d43bff 7799 addend += rel->r_addend;
30ac9238 7800 if (r_type == R_MIPS_HI16
4030e8f6 7801 || r_type == R_MIPS_GOT16)
5a659663
TS
7802 addend = mips_elf_high (addend);
7803 else if (r_type == R_MIPS_HIGHER)
7804 addend = mips_elf_higher (addend);
7805 else if (r_type == R_MIPS_HIGHEST)
7806 addend = mips_elf_highest (addend);
30ac9238
RS
7807 else
7808 addend >>= howto->rightshift;
b49e97c9 7809
30ac9238
RS
7810 /* We use the source mask, rather than the destination
7811 mask because the place to which we are writing will be
7812 source of the addend in the final link. */
b49e97c9
TS
7813 addend &= howto->src_mask;
7814
5a659663 7815 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7816 /* See the comment above about using R_MIPS_64 in the 32-bit
7817 ABI. Here, we need to update the addend. It would be
7818 possible to get away with just using the R_MIPS_32 reloc
7819 but for endianness. */
7820 {
7821 bfd_vma sign_bits;
7822 bfd_vma low_bits;
7823 bfd_vma high_bits;
7824
7825 if (addend & ((bfd_vma) 1 << 31))
7826#ifdef BFD64
7827 sign_bits = ((bfd_vma) 1 << 32) - 1;
7828#else
7829 sign_bits = -1;
7830#endif
7831 else
7832 sign_bits = 0;
7833
7834 /* If we don't know that we have a 64-bit type,
7835 do two separate stores. */
7836 if (bfd_big_endian (input_bfd))
7837 {
7838 /* Store the sign-bits (which are most significant)
7839 first. */
7840 low_bits = sign_bits;
7841 high_bits = addend;
7842 }
7843 else
7844 {
7845 low_bits = addend;
7846 high_bits = sign_bits;
7847 }
7848 bfd_put_32 (input_bfd, low_bits,
7849 contents + rel->r_offset);
7850 bfd_put_32 (input_bfd, high_bits,
7851 contents + rel->r_offset + 4);
7852 continue;
7853 }
7854
7855 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7856 input_bfd, input_section,
b34976b6
AM
7857 contents, FALSE))
7858 return FALSE;
b49e97c9
TS
7859 }
7860
7861 /* Go on to the next relocation. */
7862 continue;
7863 }
7864
7865 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7866 relocations for the same offset. In that case we are
7867 supposed to treat the output of each relocation as the addend
7868 for the next. */
7869 if (rel + 1 < relend
7870 && rel->r_offset == rel[1].r_offset
7871 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7872 use_saved_addend_p = TRUE;
b49e97c9 7873 else
b34976b6 7874 use_saved_addend_p = FALSE;
b49e97c9
TS
7875
7876 /* Figure out what value we are supposed to relocate. */
7877 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7878 input_section, info, rel,
7879 addend, howto, local_syms,
7880 local_sections, &value,
bce03d3d
AO
7881 &name, &require_jalx,
7882 use_saved_addend_p))
b49e97c9
TS
7883 {
7884 case bfd_reloc_continue:
7885 /* There's nothing to do. */
7886 continue;
7887
7888 case bfd_reloc_undefined:
7889 /* mips_elf_calculate_relocation already called the
7890 undefined_symbol callback. There's no real point in
7891 trying to perform the relocation at this point, so we
7892 just skip ahead to the next relocation. */
7893 continue;
7894
7895 case bfd_reloc_notsupported:
7896 msg = _("internal error: unsupported relocation error");
7897 info->callbacks->warning
7898 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7899 return FALSE;
b49e97c9
TS
7900
7901 case bfd_reloc_overflow:
7902 if (use_saved_addend_p)
7903 /* Ignore overflow until we reach the last relocation for
7904 a given location. */
7905 ;
7906 else
7907 {
7908 BFD_ASSERT (name != NULL);
7909 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7910 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7911 input_bfd, input_section, rel->r_offset)))
b34976b6 7912 return FALSE;
b49e97c9
TS
7913 }
7914 break;
7915
7916 case bfd_reloc_ok:
7917 break;
7918
7919 default:
7920 abort ();
7921 break;
7922 }
7923
7924 /* If we've got another relocation for the address, keep going
7925 until we reach the last one. */
7926 if (use_saved_addend_p)
7927 {
7928 addend = value;
7929 continue;
7930 }
7931
4a14403c 7932 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7933 /* See the comment above about using R_MIPS_64 in the 32-bit
7934 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7935 that calculated the right value. Now, however, we
7936 sign-extend the 32-bit result to 64-bits, and store it as a
7937 64-bit value. We are especially generous here in that we
7938 go to extreme lengths to support this usage on systems with
7939 only a 32-bit VMA. */
7940 {
7941 bfd_vma sign_bits;
7942 bfd_vma low_bits;
7943 bfd_vma high_bits;
7944
7945 if (value & ((bfd_vma) 1 << 31))
7946#ifdef BFD64
7947 sign_bits = ((bfd_vma) 1 << 32) - 1;
7948#else
7949 sign_bits = -1;
7950#endif
7951 else
7952 sign_bits = 0;
7953
7954 /* If we don't know that we have a 64-bit type,
7955 do two separate stores. */
7956 if (bfd_big_endian (input_bfd))
7957 {
7958 /* Undo what we did above. */
7959 rel->r_offset -= 4;
7960 /* Store the sign-bits (which are most significant)
7961 first. */
7962 low_bits = sign_bits;
7963 high_bits = value;
7964 }
7965 else
7966 {
7967 low_bits = value;
7968 high_bits = sign_bits;
7969 }
7970 bfd_put_32 (input_bfd, low_bits,
7971 contents + rel->r_offset);
7972 bfd_put_32 (input_bfd, high_bits,
7973 contents + rel->r_offset + 4);
7974 continue;
7975 }
7976
7977 /* Actually perform the relocation. */
7978 if (! mips_elf_perform_relocation (info, howto, rel, value,
7979 input_bfd, input_section,
7980 contents, require_jalx))
b34976b6 7981 return FALSE;
b49e97c9
TS
7982 }
7983
b34976b6 7984 return TRUE;
b49e97c9
TS
7985}
7986\f
7987/* If NAME is one of the special IRIX6 symbols defined by the linker,
7988 adjust it appropriately now. */
7989
7990static void
9719ad41
RS
7991mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7992 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7993{
7994 /* The linker script takes care of providing names and values for
7995 these, but we must place them into the right sections. */
7996 static const char* const text_section_symbols[] = {
7997 "_ftext",
7998 "_etext",
7999 "__dso_displacement",
8000 "__elf_header",
8001 "__program_header_table",
8002 NULL
8003 };
8004
8005 static const char* const data_section_symbols[] = {
8006 "_fdata",
8007 "_edata",
8008 "_end",
8009 "_fbss",
8010 NULL
8011 };
8012
8013 const char* const *p;
8014 int i;
8015
8016 for (i = 0; i < 2; ++i)
8017 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8018 *p;
8019 ++p)
8020 if (strcmp (*p, name) == 0)
8021 {
8022 /* All of these symbols are given type STT_SECTION by the
8023 IRIX6 linker. */
8024 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8025 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8026
8027 /* The IRIX linker puts these symbols in special sections. */
8028 if (i == 0)
8029 sym->st_shndx = SHN_MIPS_TEXT;
8030 else
8031 sym->st_shndx = SHN_MIPS_DATA;
8032
8033 break;
8034 }
8035}
8036
8037/* Finish up dynamic symbol handling. We set the contents of various
8038 dynamic sections here. */
8039
b34976b6 8040bfd_boolean
9719ad41
RS
8041_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8042 struct bfd_link_info *info,
8043 struct elf_link_hash_entry *h,
8044 Elf_Internal_Sym *sym)
b49e97c9
TS
8045{
8046 bfd *dynobj;
b49e97c9 8047 asection *sgot;
f4416af6 8048 struct mips_got_info *g, *gg;
b49e97c9 8049 const char *name;
3d6746ca 8050 int idx;
5108fc1b 8051 struct mips_elf_link_hash_table *htab;
b49e97c9 8052
5108fc1b 8053 htab = mips_elf_hash_table (info);
b49e97c9 8054 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8055
c5ae1840 8056 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8057 {
8058 asection *s;
5108fc1b 8059 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8060
8061 /* This symbol has a stub. Set it up. */
8062
8063 BFD_ASSERT (h->dynindx != -1);
8064
8065 s = bfd_get_section_by_name (dynobj,
8066 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8067 BFD_ASSERT (s != NULL);
8068
5108fc1b
RS
8069 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8070 || (h->dynindx <= 0xffff));
3d6746ca
DD
8071
8072 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8073 sign extension at runtime in the stub, resulting in a negative
8074 index value. */
8075 if (h->dynindx & ~0x7fffffff)
b34976b6 8076 return FALSE;
b49e97c9
TS
8077
8078 /* Fill the stub. */
3d6746ca
DD
8079 idx = 0;
8080 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8081 idx += 4;
8082 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8083 idx += 4;
5108fc1b 8084 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8085 {
5108fc1b 8086 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8087 stub + idx);
8088 idx += 4;
8089 }
8090 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8091 idx += 4;
b49e97c9 8092
3d6746ca
DD
8093 /* If a large stub is not required and sign extension is not a
8094 problem, then use legacy code in the stub. */
5108fc1b
RS
8095 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8096 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8097 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8098 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8099 else
5108fc1b
RS
8100 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8101 stub + idx);
8102
eea6121a 8103 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8104 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8105
8106 /* Mark the symbol as undefined. plt.offset != -1 occurs
8107 only for the referenced symbol. */
8108 sym->st_shndx = SHN_UNDEF;
8109
8110 /* The run-time linker uses the st_value field of the symbol
8111 to reset the global offset table entry for this external
8112 to its stub address when unlinking a shared object. */
c5ae1840
TS
8113 sym->st_value = (s->output_section->vma + s->output_offset
8114 + h->plt.offset);
b49e97c9
TS
8115 }
8116
8117 BFD_ASSERT (h->dynindx != -1
f5385ebf 8118 || h->forced_local);
b49e97c9 8119
f4416af6 8120 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8121 BFD_ASSERT (sgot != NULL);
f4416af6 8122 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8123 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8124 BFD_ASSERT (g != NULL);
8125
8126 /* Run through the global symbol table, creating GOT entries for all
8127 the symbols that need them. */
8128 if (g->global_gotsym != NULL
8129 && h->dynindx >= g->global_gotsym->dynindx)
8130 {
8131 bfd_vma offset;
8132 bfd_vma value;
8133
6eaa6adc 8134 value = sym->st_value;
0f20cc35 8135 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8136 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8137 }
8138
0f20cc35 8139 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8140 {
8141 struct mips_got_entry e, *p;
0626d451 8142 bfd_vma entry;
f4416af6 8143 bfd_vma offset;
f4416af6
AO
8144
8145 gg = g;
8146
8147 e.abfd = output_bfd;
8148 e.symndx = -1;
8149 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8150 e.tls_type = 0;
143d77c5 8151
f4416af6
AO
8152 for (g = g->next; g->next != gg; g = g->next)
8153 {
8154 if (g->got_entries
8155 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8156 &e)))
8157 {
8158 offset = p->gotidx;
0626d451
RS
8159 if (info->shared
8160 || (elf_hash_table (info)->dynamic_sections_created
8161 && p->d.h != NULL
f5385ebf
AM
8162 && p->d.h->root.def_dynamic
8163 && !p->d.h->root.def_regular))
0626d451
RS
8164 {
8165 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8166 the various compatibility problems, it's easier to mock
8167 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8168 mips_elf_create_dynamic_relocation to calculate the
8169 appropriate addend. */
8170 Elf_Internal_Rela rel[3];
8171
8172 memset (rel, 0, sizeof (rel));
8173 if (ABI_64_P (output_bfd))
8174 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8175 else
8176 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8177 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8178
8179 entry = 0;
8180 if (! (mips_elf_create_dynamic_relocation
8181 (output_bfd, info, rel,
8182 e.d.h, NULL, sym->st_value, &entry, sgot)))
8183 return FALSE;
8184 }
8185 else
8186 entry = sym->st_value;
8187 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8188 }
8189 }
8190 }
8191
b49e97c9
TS
8192 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8193 name = h->root.root.string;
8194 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8195 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8196 sym->st_shndx = SHN_ABS;
8197 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8198 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8199 {
8200 sym->st_shndx = SHN_ABS;
8201 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8202 sym->st_value = 1;
8203 }
4a14403c 8204 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8205 {
8206 sym->st_shndx = SHN_ABS;
8207 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8208 sym->st_value = elf_gp (output_bfd);
8209 }
8210 else if (SGI_COMPAT (output_bfd))
8211 {
8212 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8213 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8214 {
8215 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8216 sym->st_other = STO_PROTECTED;
8217 sym->st_value = 0;
8218 sym->st_shndx = SHN_MIPS_DATA;
8219 }
8220 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8221 {
8222 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8223 sym->st_other = STO_PROTECTED;
8224 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8225 sym->st_shndx = SHN_ABS;
8226 }
8227 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8228 {
8229 if (h->type == STT_FUNC)
8230 sym->st_shndx = SHN_MIPS_TEXT;
8231 else if (h->type == STT_OBJECT)
8232 sym->st_shndx = SHN_MIPS_DATA;
8233 }
8234 }
8235
8236 /* Handle the IRIX6-specific symbols. */
8237 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8238 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8239
8240 if (! info->shared)
8241 {
8242 if (! mips_elf_hash_table (info)->use_rld_obj_head
8243 && (strcmp (name, "__rld_map") == 0
8244 || strcmp (name, "__RLD_MAP") == 0))
8245 {
8246 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8247 BFD_ASSERT (s != NULL);
8248 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8249 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8250 if (mips_elf_hash_table (info)->rld_value == 0)
8251 mips_elf_hash_table (info)->rld_value = sym->st_value;
8252 }
8253 else if (mips_elf_hash_table (info)->use_rld_obj_head
8254 && strcmp (name, "__rld_obj_head") == 0)
8255 {
8256 /* IRIX6 does not use a .rld_map section. */
8257 if (IRIX_COMPAT (output_bfd) == ict_irix5
8258 || IRIX_COMPAT (output_bfd) == ict_none)
8259 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8260 != NULL);
8261 mips_elf_hash_table (info)->rld_value = sym->st_value;
8262 }
8263 }
8264
8265 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8266 if (sym->st_other == STO_MIPS16)
8267 sym->st_value &= ~1;
b49e97c9 8268
b34976b6 8269 return TRUE;
b49e97c9
TS
8270}
8271
0a44bf69
RS
8272/* Likewise, for VxWorks. */
8273
8274bfd_boolean
8275_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8276 struct bfd_link_info *info,
8277 struct elf_link_hash_entry *h,
8278 Elf_Internal_Sym *sym)
8279{
8280 bfd *dynobj;
8281 asection *sgot;
8282 struct mips_got_info *g;
8283 struct mips_elf_link_hash_table *htab;
8284
8285 htab = mips_elf_hash_table (info);
8286 dynobj = elf_hash_table (info)->dynobj;
8287
8288 if (h->plt.offset != (bfd_vma) -1)
8289 {
6d79d2ed 8290 bfd_byte *loc;
0a44bf69
RS
8291 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8292 Elf_Internal_Rela rel;
8293 static const bfd_vma *plt_entry;
8294
8295 BFD_ASSERT (h->dynindx != -1);
8296 BFD_ASSERT (htab->splt != NULL);
8297 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8298
8299 /* Calculate the address of the .plt entry. */
8300 plt_address = (htab->splt->output_section->vma
8301 + htab->splt->output_offset
8302 + h->plt.offset);
8303
8304 /* Calculate the index of the entry. */
8305 plt_index = ((h->plt.offset - htab->plt_header_size)
8306 / htab->plt_entry_size);
8307
8308 /* Calculate the address of the .got.plt entry. */
8309 got_address = (htab->sgotplt->output_section->vma
8310 + htab->sgotplt->output_offset
8311 + plt_index * 4);
8312
8313 /* Calculate the offset of the .got.plt entry from
8314 _GLOBAL_OFFSET_TABLE_. */
8315 got_offset = mips_elf_gotplt_index (info, h);
8316
8317 /* Calculate the offset for the branch at the start of the PLT
8318 entry. The branch jumps to the beginning of .plt. */
8319 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8320
8321 /* Fill in the initial value of the .got.plt entry. */
8322 bfd_put_32 (output_bfd, plt_address,
8323 htab->sgotplt->contents + plt_index * 4);
8324
8325 /* Find out where the .plt entry should go. */
8326 loc = htab->splt->contents + h->plt.offset;
8327
8328 if (info->shared)
8329 {
8330 plt_entry = mips_vxworks_shared_plt_entry;
8331 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8332 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8333 }
8334 else
8335 {
8336 bfd_vma got_address_high, got_address_low;
8337
8338 plt_entry = mips_vxworks_exec_plt_entry;
8339 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8340 got_address_low = got_address & 0xffff;
8341
8342 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8343 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8344 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8345 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8346 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8347 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8348 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8349 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8350
8351 loc = (htab->srelplt2->contents
8352 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8353
8354 /* Emit a relocation for the .got.plt entry. */
8355 rel.r_offset = got_address;
8356 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8357 rel.r_addend = h->plt.offset;
8358 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8359
8360 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8361 loc += sizeof (Elf32_External_Rela);
8362 rel.r_offset = plt_address + 8;
8363 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8364 rel.r_addend = got_offset;
8365 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8366
8367 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8368 loc += sizeof (Elf32_External_Rela);
8369 rel.r_offset += 4;
8370 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8371 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8372 }
8373
8374 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8375 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8376 rel.r_offset = got_address;
8377 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8378 rel.r_addend = 0;
8379 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8380
8381 if (!h->def_regular)
8382 sym->st_shndx = SHN_UNDEF;
8383 }
8384
8385 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8386
8387 sgot = mips_elf_got_section (dynobj, FALSE);
8388 BFD_ASSERT (sgot != NULL);
8389 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8390 g = mips_elf_section_data (sgot)->u.got_info;
8391 BFD_ASSERT (g != NULL);
8392
8393 /* See if this symbol has an entry in the GOT. */
8394 if (g->global_gotsym != NULL
8395 && h->dynindx >= g->global_gotsym->dynindx)
8396 {
8397 bfd_vma offset;
8398 Elf_Internal_Rela outrel;
8399 bfd_byte *loc;
8400 asection *s;
8401
8402 /* Install the symbol value in the GOT. */
8403 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8404 R_MIPS_GOT16, info);
8405 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8406
8407 /* Add a dynamic relocation for it. */
8408 s = mips_elf_rel_dyn_section (info, FALSE);
8409 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8410 outrel.r_offset = (sgot->output_section->vma
8411 + sgot->output_offset
8412 + offset);
8413 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8414 outrel.r_addend = 0;
8415 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8416 }
8417
8418 /* Emit a copy reloc, if needed. */
8419 if (h->needs_copy)
8420 {
8421 Elf_Internal_Rela rel;
8422
8423 BFD_ASSERT (h->dynindx != -1);
8424
8425 rel.r_offset = (h->root.u.def.section->output_section->vma
8426 + h->root.u.def.section->output_offset
8427 + h->root.u.def.value);
8428 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8429 rel.r_addend = 0;
8430 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8431 htab->srelbss->contents
8432 + (htab->srelbss->reloc_count
8433 * sizeof (Elf32_External_Rela)));
8434 ++htab->srelbss->reloc_count;
8435 }
8436
8437 /* If this is a mips16 symbol, force the value to be even. */
8438 if (sym->st_other == STO_MIPS16)
8439 sym->st_value &= ~1;
8440
8441 return TRUE;
8442}
8443
8444/* Install the PLT header for a VxWorks executable and finalize the
8445 contents of .rela.plt.unloaded. */
8446
8447static void
8448mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8449{
8450 Elf_Internal_Rela rela;
8451 bfd_byte *loc;
8452 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8453 static const bfd_vma *plt_entry;
8454 struct mips_elf_link_hash_table *htab;
8455
8456 htab = mips_elf_hash_table (info);
8457 plt_entry = mips_vxworks_exec_plt0_entry;
8458
8459 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8460 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8461 + htab->root.hgot->root.u.def.section->output_offset
8462 + htab->root.hgot->root.u.def.value);
8463
8464 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8465 got_value_low = got_value & 0xffff;
8466
8467 /* Calculate the address of the PLT header. */
8468 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8469
8470 /* Install the PLT header. */
8471 loc = htab->splt->contents;
8472 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8473 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8474 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8475 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8476 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8477 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8478
8479 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8480 loc = htab->srelplt2->contents;
8481 rela.r_offset = plt_address;
8482 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8483 rela.r_addend = 0;
8484 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8485 loc += sizeof (Elf32_External_Rela);
8486
8487 /* Output the relocation for the following addiu of
8488 %lo(_GLOBAL_OFFSET_TABLE_). */
8489 rela.r_offset += 4;
8490 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8491 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8492 loc += sizeof (Elf32_External_Rela);
8493
8494 /* Fix up the remaining relocations. They may have the wrong
8495 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8496 in which symbols were output. */
8497 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8498 {
8499 Elf_Internal_Rela rel;
8500
8501 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8502 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8503 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8504 loc += sizeof (Elf32_External_Rela);
8505
8506 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8507 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8508 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8509 loc += sizeof (Elf32_External_Rela);
8510
8511 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8512 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8513 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8514 loc += sizeof (Elf32_External_Rela);
8515 }
8516}
8517
8518/* Install the PLT header for a VxWorks shared library. */
8519
8520static void
8521mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8522{
8523 unsigned int i;
8524 struct mips_elf_link_hash_table *htab;
8525
8526 htab = mips_elf_hash_table (info);
8527
8528 /* We just need to copy the entry byte-by-byte. */
8529 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8530 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8531 htab->splt->contents + i * 4);
8532}
8533
b49e97c9
TS
8534/* Finish up the dynamic sections. */
8535
b34976b6 8536bfd_boolean
9719ad41
RS
8537_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8538 struct bfd_link_info *info)
b49e97c9
TS
8539{
8540 bfd *dynobj;
8541 asection *sdyn;
8542 asection *sgot;
f4416af6 8543 struct mips_got_info *gg, *g;
0a44bf69 8544 struct mips_elf_link_hash_table *htab;
b49e97c9 8545
0a44bf69 8546 htab = mips_elf_hash_table (info);
b49e97c9
TS
8547 dynobj = elf_hash_table (info)->dynobj;
8548
8549 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8550
f4416af6 8551 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8552 if (sgot == NULL)
f4416af6 8553 gg = g = NULL;
b49e97c9
TS
8554 else
8555 {
f4416af6
AO
8556 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8557 gg = mips_elf_section_data (sgot)->u.got_info;
8558 BFD_ASSERT (gg != NULL);
8559 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8560 BFD_ASSERT (g != NULL);
8561 }
8562
8563 if (elf_hash_table (info)->dynamic_sections_created)
8564 {
8565 bfd_byte *b;
943284cc 8566 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8567
8568 BFD_ASSERT (sdyn != NULL);
8569 BFD_ASSERT (g != NULL);
8570
8571 for (b = sdyn->contents;
eea6121a 8572 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8573 b += MIPS_ELF_DYN_SIZE (dynobj))
8574 {
8575 Elf_Internal_Dyn dyn;
8576 const char *name;
8577 size_t elemsize;
8578 asection *s;
b34976b6 8579 bfd_boolean swap_out_p;
b49e97c9
TS
8580
8581 /* Read in the current dynamic entry. */
8582 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8583
8584 /* Assume that we're going to modify it and write it out. */
b34976b6 8585 swap_out_p = TRUE;
b49e97c9
TS
8586
8587 switch (dyn.d_tag)
8588 {
8589 case DT_RELENT:
b49e97c9
TS
8590 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8591 break;
8592
0a44bf69
RS
8593 case DT_RELAENT:
8594 BFD_ASSERT (htab->is_vxworks);
8595 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8596 break;
8597
b49e97c9
TS
8598 case DT_STRSZ:
8599 /* Rewrite DT_STRSZ. */
8600 dyn.d_un.d_val =
8601 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8602 break;
8603
8604 case DT_PLTGOT:
8605 name = ".got";
0a44bf69
RS
8606 if (htab->is_vxworks)
8607 {
8608 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8609 of the ".got" section in DYNOBJ. */
8610 s = bfd_get_section_by_name (dynobj, name);
8611 BFD_ASSERT (s != NULL);
8612 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8613 }
8614 else
8615 {
8616 s = bfd_get_section_by_name (output_bfd, name);
8617 BFD_ASSERT (s != NULL);
8618 dyn.d_un.d_ptr = s->vma;
8619 }
b49e97c9
TS
8620 break;
8621
8622 case DT_MIPS_RLD_VERSION:
8623 dyn.d_un.d_val = 1; /* XXX */
8624 break;
8625
8626 case DT_MIPS_FLAGS:
8627 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8628 break;
8629
b49e97c9 8630 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8631 {
8632 time_t t;
8633 time (&t);
8634 dyn.d_un.d_val = t;
8635 }
b49e97c9
TS
8636 break;
8637
8638 case DT_MIPS_ICHECKSUM:
8639 /* XXX FIXME: */
b34976b6 8640 swap_out_p = FALSE;
b49e97c9
TS
8641 break;
8642
8643 case DT_MIPS_IVERSION:
8644 /* XXX FIXME: */
b34976b6 8645 swap_out_p = FALSE;
b49e97c9
TS
8646 break;
8647
8648 case DT_MIPS_BASE_ADDRESS:
8649 s = output_bfd->sections;
8650 BFD_ASSERT (s != NULL);
8651 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8652 break;
8653
8654 case DT_MIPS_LOCAL_GOTNO:
8655 dyn.d_un.d_val = g->local_gotno;
8656 break;
8657
8658 case DT_MIPS_UNREFEXTNO:
8659 /* The index into the dynamic symbol table which is the
8660 entry of the first external symbol that is not
8661 referenced within the same object. */
8662 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8663 break;
8664
8665 case DT_MIPS_GOTSYM:
f4416af6 8666 if (gg->global_gotsym)
b49e97c9 8667 {
f4416af6 8668 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8669 break;
8670 }
8671 /* In case if we don't have global got symbols we default
8672 to setting DT_MIPS_GOTSYM to the same value as
8673 DT_MIPS_SYMTABNO, so we just fall through. */
8674
8675 case DT_MIPS_SYMTABNO:
8676 name = ".dynsym";
8677 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8678 s = bfd_get_section_by_name (output_bfd, name);
8679 BFD_ASSERT (s != NULL);
8680
eea6121a 8681 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8682 break;
8683
8684 case DT_MIPS_HIPAGENO:
0a44bf69 8685 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8686 break;
8687
8688 case DT_MIPS_RLD_MAP:
8689 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8690 break;
8691
8692 case DT_MIPS_OPTIONS:
8693 s = (bfd_get_section_by_name
8694 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8695 dyn.d_un.d_ptr = s->vma;
8696 break;
8697
0a44bf69
RS
8698 case DT_RELASZ:
8699 BFD_ASSERT (htab->is_vxworks);
8700 /* The count does not include the JUMP_SLOT relocations. */
8701 if (htab->srelplt)
8702 dyn.d_un.d_val -= htab->srelplt->size;
8703 break;
8704
8705 case DT_PLTREL:
8706 BFD_ASSERT (htab->is_vxworks);
8707 dyn.d_un.d_val = DT_RELA;
8708 break;
8709
8710 case DT_PLTRELSZ:
8711 BFD_ASSERT (htab->is_vxworks);
8712 dyn.d_un.d_val = htab->srelplt->size;
8713 break;
8714
8715 case DT_JMPREL:
8716 BFD_ASSERT (htab->is_vxworks);
8717 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8718 + htab->srelplt->output_offset);
8719 break;
8720
943284cc
DJ
8721 case DT_TEXTREL:
8722 /* If we didn't need any text relocations after all, delete
8723 the dynamic tag. */
8724 if (!(info->flags & DF_TEXTREL))
8725 {
8726 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8727 swap_out_p = FALSE;
8728 }
8729 break;
8730
8731 case DT_FLAGS:
8732 /* If we didn't need any text relocations after all, clear
8733 DF_TEXTREL from DT_FLAGS. */
8734 if (!(info->flags & DF_TEXTREL))
8735 dyn.d_un.d_val &= ~DF_TEXTREL;
8736 else
8737 swap_out_p = FALSE;
8738 break;
8739
b49e97c9 8740 default:
b34976b6 8741 swap_out_p = FALSE;
b49e97c9
TS
8742 break;
8743 }
8744
943284cc 8745 if (swap_out_p || dyn_skipped)
b49e97c9 8746 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8747 (dynobj, &dyn, b - dyn_skipped);
8748
8749 if (dyn_to_skip)
8750 {
8751 dyn_skipped += dyn_to_skip;
8752 dyn_to_skip = 0;
8753 }
b49e97c9 8754 }
943284cc
DJ
8755
8756 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8757 if (dyn_skipped > 0)
8758 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8759 }
8760
eea6121a 8761 if (sgot != NULL && sgot->size > 0)
b49e97c9 8762 {
0a44bf69
RS
8763 if (htab->is_vxworks)
8764 {
8765 /* The first entry of the global offset table points to the
8766 ".dynamic" section. The second is initialized by the
8767 loader and contains the shared library identifier.
8768 The third is also initialized by the loader and points
8769 to the lazy resolution stub. */
8770 MIPS_ELF_PUT_WORD (output_bfd,
8771 sdyn->output_offset + sdyn->output_section->vma,
8772 sgot->contents);
8773 MIPS_ELF_PUT_WORD (output_bfd, 0,
8774 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8775 MIPS_ELF_PUT_WORD (output_bfd, 0,
8776 sgot->contents
8777 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8778 }
8779 else
8780 {
8781 /* The first entry of the global offset table will be filled at
8782 runtime. The second entry will be used by some runtime loaders.
8783 This isn't the case of IRIX rld. */
8784 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8785 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8786 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8787 }
b49e97c9
TS
8788 }
8789
8790 if (sgot != NULL)
8791 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8792 = MIPS_ELF_GOT_SIZE (output_bfd);
8793
f4416af6
AO
8794 /* Generate dynamic relocations for the non-primary gots. */
8795 if (gg != NULL && gg->next)
8796 {
8797 Elf_Internal_Rela rel[3];
8798 bfd_vma addend = 0;
8799
8800 memset (rel, 0, sizeof (rel));
8801 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8802
8803 for (g = gg->next; g->next != gg; g = g->next)
8804 {
0f20cc35
DJ
8805 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8806 + g->next->tls_gotno;
f4416af6 8807
9719ad41 8808 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8809 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8810 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8811 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8812
8813 if (! info->shared)
8814 continue;
8815
8816 while (index < g->assigned_gotno)
8817 {
8818 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8819 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8820 if (!(mips_elf_create_dynamic_relocation
8821 (output_bfd, info, rel, NULL,
8822 bfd_abs_section_ptr,
8823 0, &addend, sgot)))
8824 return FALSE;
8825 BFD_ASSERT (addend == 0);
8826 }
8827 }
8828 }
8829
3133ddbf
DJ
8830 /* The generation of dynamic relocations for the non-primary gots
8831 adds more dynamic relocations. We cannot count them until
8832 here. */
8833
8834 if (elf_hash_table (info)->dynamic_sections_created)
8835 {
8836 bfd_byte *b;
8837 bfd_boolean swap_out_p;
8838
8839 BFD_ASSERT (sdyn != NULL);
8840
8841 for (b = sdyn->contents;
8842 b < sdyn->contents + sdyn->size;
8843 b += MIPS_ELF_DYN_SIZE (dynobj))
8844 {
8845 Elf_Internal_Dyn dyn;
8846 asection *s;
8847
8848 /* Read in the current dynamic entry. */
8849 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8850
8851 /* Assume that we're going to modify it and write it out. */
8852 swap_out_p = TRUE;
8853
8854 switch (dyn.d_tag)
8855 {
8856 case DT_RELSZ:
8857 /* Reduce DT_RELSZ to account for any relocations we
8858 decided not to make. This is for the n64 irix rld,
8859 which doesn't seem to apply any relocations if there
8860 are trailing null entries. */
0a44bf69 8861 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8862 dyn.d_un.d_val = (s->reloc_count
8863 * (ABI_64_P (output_bfd)
8864 ? sizeof (Elf64_Mips_External_Rel)
8865 : sizeof (Elf32_External_Rel)));
8866 break;
8867
8868 default:
8869 swap_out_p = FALSE;
8870 break;
8871 }
8872
8873 if (swap_out_p)
8874 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8875 (dynobj, &dyn, b);
8876 }
8877 }
8878
b49e97c9 8879 {
b49e97c9
TS
8880 asection *s;
8881 Elf32_compact_rel cpt;
8882
b49e97c9
TS
8883 if (SGI_COMPAT (output_bfd))
8884 {
8885 /* Write .compact_rel section out. */
8886 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8887 if (s != NULL)
8888 {
8889 cpt.id1 = 1;
8890 cpt.num = s->reloc_count;
8891 cpt.id2 = 2;
8892 cpt.offset = (s->output_section->filepos
8893 + sizeof (Elf32_External_compact_rel));
8894 cpt.reserved0 = 0;
8895 cpt.reserved1 = 0;
8896 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8897 ((Elf32_External_compact_rel *)
8898 s->contents));
8899
8900 /* Clean up a dummy stub function entry in .text. */
8901 s = bfd_get_section_by_name (dynobj,
8902 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8903 if (s != NULL)
8904 {
8905 file_ptr dummy_offset;
8906
5108fc1b
RS
8907 BFD_ASSERT (s->size >= htab->function_stub_size);
8908 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 8909 memset (s->contents + dummy_offset, 0,
5108fc1b 8910 htab->function_stub_size);
b49e97c9
TS
8911 }
8912 }
8913 }
8914
0a44bf69
RS
8915 /* The psABI says that the dynamic relocations must be sorted in
8916 increasing order of r_symndx. The VxWorks EABI doesn't require
8917 this, and because the code below handles REL rather than RELA
8918 relocations, using it for VxWorks would be outright harmful. */
8919 if (!htab->is_vxworks)
b49e97c9 8920 {
0a44bf69
RS
8921 s = mips_elf_rel_dyn_section (info, FALSE);
8922 if (s != NULL
8923 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8924 {
8925 reldyn_sorting_bfd = output_bfd;
b49e97c9 8926
0a44bf69
RS
8927 if (ABI_64_P (output_bfd))
8928 qsort ((Elf64_External_Rel *) s->contents + 1,
8929 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8930 sort_dynamic_relocs_64);
8931 else
8932 qsort ((Elf32_External_Rel *) s->contents + 1,
8933 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8934 sort_dynamic_relocs);
8935 }
b49e97c9 8936 }
b49e97c9
TS
8937 }
8938
0a44bf69
RS
8939 if (htab->is_vxworks && htab->splt->size > 0)
8940 {
8941 if (info->shared)
8942 mips_vxworks_finish_shared_plt (output_bfd, info);
8943 else
8944 mips_vxworks_finish_exec_plt (output_bfd, info);
8945 }
b34976b6 8946 return TRUE;
b49e97c9
TS
8947}
8948
b49e97c9 8949
64543e1a
RS
8950/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8951
8952static void
9719ad41 8953mips_set_isa_flags (bfd *abfd)
b49e97c9 8954{
64543e1a 8955 flagword val;
b49e97c9
TS
8956
8957 switch (bfd_get_mach (abfd))
8958 {
8959 default:
8960 case bfd_mach_mips3000:
8961 val = E_MIPS_ARCH_1;
8962 break;
8963
8964 case bfd_mach_mips3900:
8965 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8966 break;
8967
8968 case bfd_mach_mips6000:
8969 val = E_MIPS_ARCH_2;
8970 break;
8971
8972 case bfd_mach_mips4000:
8973 case bfd_mach_mips4300:
8974 case bfd_mach_mips4400:
8975 case bfd_mach_mips4600:
8976 val = E_MIPS_ARCH_3;
8977 break;
8978
8979 case bfd_mach_mips4010:
8980 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8981 break;
8982
8983 case bfd_mach_mips4100:
8984 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8985 break;
8986
8987 case bfd_mach_mips4111:
8988 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8989 break;
8990
00707a0e
RS
8991 case bfd_mach_mips4120:
8992 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8993 break;
8994
b49e97c9
TS
8995 case bfd_mach_mips4650:
8996 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8997 break;
8998
00707a0e
RS
8999 case bfd_mach_mips5400:
9000 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9001 break;
9002
9003 case bfd_mach_mips5500:
9004 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9005 break;
9006
0d2e43ed
ILT
9007 case bfd_mach_mips9000:
9008 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9009 break;
9010
b49e97c9 9011 case bfd_mach_mips5000:
5a7ea749 9012 case bfd_mach_mips7000:
b49e97c9
TS
9013 case bfd_mach_mips8000:
9014 case bfd_mach_mips10000:
9015 case bfd_mach_mips12000:
9016 val = E_MIPS_ARCH_4;
9017 break;
9018
9019 case bfd_mach_mips5:
9020 val = E_MIPS_ARCH_5;
9021 break;
9022
9023 case bfd_mach_mips_sb1:
9024 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9025 break;
9026
9027 case bfd_mach_mipsisa32:
9028 val = E_MIPS_ARCH_32;
9029 break;
9030
9031 case bfd_mach_mipsisa64:
9032 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9033 break;
9034
9035 case bfd_mach_mipsisa32r2:
9036 val = E_MIPS_ARCH_32R2;
9037 break;
5f74bc13
CD
9038
9039 case bfd_mach_mipsisa64r2:
9040 val = E_MIPS_ARCH_64R2;
9041 break;
b49e97c9 9042 }
b49e97c9
TS
9043 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9044 elf_elfheader (abfd)->e_flags |= val;
9045
64543e1a
RS
9046}
9047
9048
9049/* The final processing done just before writing out a MIPS ELF object
9050 file. This gets the MIPS architecture right based on the machine
9051 number. This is used by both the 32-bit and the 64-bit ABI. */
9052
9053void
9719ad41
RS
9054_bfd_mips_elf_final_write_processing (bfd *abfd,
9055 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9056{
9057 unsigned int i;
9058 Elf_Internal_Shdr **hdrpp;
9059 const char *name;
9060 asection *sec;
9061
9062 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9063 is nonzero. This is for compatibility with old objects, which used
9064 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9065 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9066 mips_set_isa_flags (abfd);
9067
b49e97c9
TS
9068 /* Set the sh_info field for .gptab sections and other appropriate
9069 info for each special section. */
9070 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9071 i < elf_numsections (abfd);
9072 i++, hdrpp++)
9073 {
9074 switch ((*hdrpp)->sh_type)
9075 {
9076 case SHT_MIPS_MSYM:
9077 case SHT_MIPS_LIBLIST:
9078 sec = bfd_get_section_by_name (abfd, ".dynstr");
9079 if (sec != NULL)
9080 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9081 break;
9082
9083 case SHT_MIPS_GPTAB:
9084 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9085 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9086 BFD_ASSERT (name != NULL
9087 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
9088 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9089 BFD_ASSERT (sec != NULL);
9090 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9091 break;
9092
9093 case SHT_MIPS_CONTENT:
9094 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9095 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9096 BFD_ASSERT (name != NULL
9097 && strncmp (name, ".MIPS.content",
9098 sizeof ".MIPS.content" - 1) == 0);
9099 sec = bfd_get_section_by_name (abfd,
9100 name + sizeof ".MIPS.content" - 1);
9101 BFD_ASSERT (sec != NULL);
9102 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9103 break;
9104
9105 case SHT_MIPS_SYMBOL_LIB:
9106 sec = bfd_get_section_by_name (abfd, ".dynsym");
9107 if (sec != NULL)
9108 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9109 sec = bfd_get_section_by_name (abfd, ".liblist");
9110 if (sec != NULL)
9111 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9112 break;
9113
9114 case SHT_MIPS_EVENTS:
9115 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9116 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9117 BFD_ASSERT (name != NULL);
9118 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9119 sec = bfd_get_section_by_name (abfd,
9120 name + sizeof ".MIPS.events" - 1);
9121 else
9122 {
9123 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9124 sizeof ".MIPS.post_rel" - 1) == 0);
9125 sec = bfd_get_section_by_name (abfd,
9126 (name
9127 + sizeof ".MIPS.post_rel" - 1));
9128 }
9129 BFD_ASSERT (sec != NULL);
9130 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9131 break;
9132
9133 }
9134 }
9135}
9136\f
8dc1a139 9137/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9138 segments. */
9139
9140int
a6b96beb
AM
9141_bfd_mips_elf_additional_program_headers (bfd *abfd,
9142 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9143{
9144 asection *s;
9145 int ret = 0;
9146
9147 /* See if we need a PT_MIPS_REGINFO segment. */
9148 s = bfd_get_section_by_name (abfd, ".reginfo");
9149 if (s && (s->flags & SEC_LOAD))
9150 ++ret;
9151
9152 /* See if we need a PT_MIPS_OPTIONS segment. */
9153 if (IRIX_COMPAT (abfd) == ict_irix6
9154 && bfd_get_section_by_name (abfd,
9155 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9156 ++ret;
9157
9158 /* See if we need a PT_MIPS_RTPROC segment. */
9159 if (IRIX_COMPAT (abfd) == ict_irix5
9160 && bfd_get_section_by_name (abfd, ".dynamic")
9161 && bfd_get_section_by_name (abfd, ".mdebug"))
9162 ++ret;
9163
9164 return ret;
9165}
9166
8dc1a139 9167/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9168
b34976b6 9169bfd_boolean
9719ad41
RS
9170_bfd_mips_elf_modify_segment_map (bfd *abfd,
9171 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9172{
9173 asection *s;
9174 struct elf_segment_map *m, **pm;
9175 bfd_size_type amt;
9176
9177 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9178 segment. */
9179 s = bfd_get_section_by_name (abfd, ".reginfo");
9180 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9181 {
9182 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9183 if (m->p_type == PT_MIPS_REGINFO)
9184 break;
9185 if (m == NULL)
9186 {
9187 amt = sizeof *m;
9719ad41 9188 m = bfd_zalloc (abfd, amt);
b49e97c9 9189 if (m == NULL)
b34976b6 9190 return FALSE;
b49e97c9
TS
9191
9192 m->p_type = PT_MIPS_REGINFO;
9193 m->count = 1;
9194 m->sections[0] = s;
9195
9196 /* We want to put it after the PHDR and INTERP segments. */
9197 pm = &elf_tdata (abfd)->segment_map;
9198 while (*pm != NULL
9199 && ((*pm)->p_type == PT_PHDR
9200 || (*pm)->p_type == PT_INTERP))
9201 pm = &(*pm)->next;
9202
9203 m->next = *pm;
9204 *pm = m;
9205 }
9206 }
9207
9208 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9209 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9210 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9211 table. */
c1fd6598
AO
9212 if (NEWABI_P (abfd)
9213 /* On non-IRIX6 new abi, we'll have already created a segment
9214 for this section, so don't create another. I'm not sure this
9215 is not also the case for IRIX 6, but I can't test it right
9216 now. */
9217 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9218 {
9219 for (s = abfd->sections; s; s = s->next)
9220 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9221 break;
9222
9223 if (s)
9224 {
9225 struct elf_segment_map *options_segment;
9226
98a8deaf
RS
9227 pm = &elf_tdata (abfd)->segment_map;
9228 while (*pm != NULL
9229 && ((*pm)->p_type == PT_PHDR
9230 || (*pm)->p_type == PT_INTERP))
9231 pm = &(*pm)->next;
b49e97c9 9232
8ded5a0f
AM
9233 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9234 {
9235 amt = sizeof (struct elf_segment_map);
9236 options_segment = bfd_zalloc (abfd, amt);
9237 options_segment->next = *pm;
9238 options_segment->p_type = PT_MIPS_OPTIONS;
9239 options_segment->p_flags = PF_R;
9240 options_segment->p_flags_valid = TRUE;
9241 options_segment->count = 1;
9242 options_segment->sections[0] = s;
9243 *pm = options_segment;
9244 }
b49e97c9
TS
9245 }
9246 }
9247 else
9248 {
9249 if (IRIX_COMPAT (abfd) == ict_irix5)
9250 {
9251 /* If there are .dynamic and .mdebug sections, we make a room
9252 for the RTPROC header. FIXME: Rewrite without section names. */
9253 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9254 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9255 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9256 {
9257 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9258 if (m->p_type == PT_MIPS_RTPROC)
9259 break;
9260 if (m == NULL)
9261 {
9262 amt = sizeof *m;
9719ad41 9263 m = bfd_zalloc (abfd, amt);
b49e97c9 9264 if (m == NULL)
b34976b6 9265 return FALSE;
b49e97c9
TS
9266
9267 m->p_type = PT_MIPS_RTPROC;
9268
9269 s = bfd_get_section_by_name (abfd, ".rtproc");
9270 if (s == NULL)
9271 {
9272 m->count = 0;
9273 m->p_flags = 0;
9274 m->p_flags_valid = 1;
9275 }
9276 else
9277 {
9278 m->count = 1;
9279 m->sections[0] = s;
9280 }
9281
9282 /* We want to put it after the DYNAMIC segment. */
9283 pm = &elf_tdata (abfd)->segment_map;
9284 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9285 pm = &(*pm)->next;
9286 if (*pm != NULL)
9287 pm = &(*pm)->next;
9288
9289 m->next = *pm;
9290 *pm = m;
9291 }
9292 }
9293 }
8dc1a139 9294 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9295 .dynstr, .dynsym, and .hash sections, and everything in
9296 between. */
9297 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9298 pm = &(*pm)->next)
9299 if ((*pm)->p_type == PT_DYNAMIC)
9300 break;
9301 m = *pm;
9302 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9303 {
9304 /* For a normal mips executable the permissions for the PT_DYNAMIC
9305 segment are read, write and execute. We do that here since
9306 the code in elf.c sets only the read permission. This matters
9307 sometimes for the dynamic linker. */
9308 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9309 {
9310 m->p_flags = PF_R | PF_W | PF_X;
9311 m->p_flags_valid = 1;
9312 }
9313 }
9314 if (m != NULL
9315 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9316 {
9317 static const char *sec_names[] =
9318 {
9319 ".dynamic", ".dynstr", ".dynsym", ".hash"
9320 };
9321 bfd_vma low, high;
9322 unsigned int i, c;
9323 struct elf_segment_map *n;
9324
792b4a53 9325 low = ~(bfd_vma) 0;
b49e97c9
TS
9326 high = 0;
9327 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9328 {
9329 s = bfd_get_section_by_name (abfd, sec_names[i]);
9330 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9331 {
9332 bfd_size_type sz;
9333
9334 if (low > s->vma)
9335 low = s->vma;
eea6121a 9336 sz = s->size;
b49e97c9
TS
9337 if (high < s->vma + sz)
9338 high = s->vma + sz;
9339 }
9340 }
9341
9342 c = 0;
9343 for (s = abfd->sections; s != NULL; s = s->next)
9344 if ((s->flags & SEC_LOAD) != 0
9345 && s->vma >= low
eea6121a 9346 && s->vma + s->size <= high)
b49e97c9
TS
9347 ++c;
9348
9349 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9350 n = bfd_zalloc (abfd, amt);
b49e97c9 9351 if (n == NULL)
b34976b6 9352 return FALSE;
b49e97c9
TS
9353 *n = *m;
9354 n->count = c;
9355
9356 i = 0;
9357 for (s = abfd->sections; s != NULL; s = s->next)
9358 {
9359 if ((s->flags & SEC_LOAD) != 0
9360 && s->vma >= low
eea6121a 9361 && s->vma + s->size <= high)
b49e97c9
TS
9362 {
9363 n->sections[i] = s;
9364 ++i;
9365 }
9366 }
9367
9368 *pm = n;
9369 }
9370 }
9371
b34976b6 9372 return TRUE;
b49e97c9
TS
9373}
9374\f
9375/* Return the section that should be marked against GC for a given
9376 relocation. */
9377
9378asection *
9719ad41
RS
9379_bfd_mips_elf_gc_mark_hook (asection *sec,
9380 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9381 Elf_Internal_Rela *rel,
9382 struct elf_link_hash_entry *h,
9383 Elf_Internal_Sym *sym)
b49e97c9
TS
9384{
9385 /* ??? Do mips16 stub sections need to be handled special? */
9386
9387 if (h != NULL)
9388 {
1e2f5b6e 9389 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
9390 {
9391 case R_MIPS_GNU_VTINHERIT:
9392 case R_MIPS_GNU_VTENTRY:
9393 break;
9394
9395 default:
9396 switch (h->root.type)
9397 {
9398 case bfd_link_hash_defined:
9399 case bfd_link_hash_defweak:
9400 return h->root.u.def.section;
9401
9402 case bfd_link_hash_common:
9403 return h->root.u.c.p->section;
9404
9405 default:
9406 break;
9407 }
9408 }
9409 }
9410 else
1e2f5b6e 9411 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
9412
9413 return NULL;
9414}
9415
9416/* Update the got entry reference counts for the section being removed. */
9417
b34976b6 9418bfd_boolean
9719ad41
RS
9419_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9420 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9421 asection *sec ATTRIBUTE_UNUSED,
9422 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9423{
9424#if 0
9425 Elf_Internal_Shdr *symtab_hdr;
9426 struct elf_link_hash_entry **sym_hashes;
9427 bfd_signed_vma *local_got_refcounts;
9428 const Elf_Internal_Rela *rel, *relend;
9429 unsigned long r_symndx;
9430 struct elf_link_hash_entry *h;
9431
9432 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9433 sym_hashes = elf_sym_hashes (abfd);
9434 local_got_refcounts = elf_local_got_refcounts (abfd);
9435
9436 relend = relocs + sec->reloc_count;
9437 for (rel = relocs; rel < relend; rel++)
9438 switch (ELF_R_TYPE (abfd, rel->r_info))
9439 {
9440 case R_MIPS_GOT16:
9441 case R_MIPS_CALL16:
9442 case R_MIPS_CALL_HI16:
9443 case R_MIPS_CALL_LO16:
9444 case R_MIPS_GOT_HI16:
9445 case R_MIPS_GOT_LO16:
4a14403c
TS
9446 case R_MIPS_GOT_DISP:
9447 case R_MIPS_GOT_PAGE:
9448 case R_MIPS_GOT_OFST:
b49e97c9
TS
9449 /* ??? It would seem that the existing MIPS code does no sort
9450 of reference counting or whatnot on its GOT and PLT entries,
9451 so it is not possible to garbage collect them at this time. */
9452 break;
9453
9454 default:
9455 break;
9456 }
9457#endif
9458
b34976b6 9459 return TRUE;
b49e97c9
TS
9460}
9461\f
9462/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9463 hiding the old indirect symbol. Process additional relocation
9464 information. Also called for weakdefs, in which case we just let
9465 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9466
9467void
fcfa13d2 9468_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9469 struct elf_link_hash_entry *dir,
9470 struct elf_link_hash_entry *ind)
b49e97c9
TS
9471{
9472 struct mips_elf_link_hash_entry *dirmips, *indmips;
9473
fcfa13d2 9474 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9475
9476 if (ind->root.type != bfd_link_hash_indirect)
9477 return;
9478
9479 dirmips = (struct mips_elf_link_hash_entry *) dir;
9480 indmips = (struct mips_elf_link_hash_entry *) ind;
9481 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9482 if (indmips->readonly_reloc)
b34976b6 9483 dirmips->readonly_reloc = TRUE;
b49e97c9 9484 if (indmips->no_fn_stub)
b34976b6 9485 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9486
9487 if (dirmips->tls_type == 0)
9488 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9489}
9490
9491void
9719ad41
RS
9492_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9493 struct elf_link_hash_entry *entry,
9494 bfd_boolean force_local)
b49e97c9
TS
9495{
9496 bfd *dynobj;
9497 asection *got;
9498 struct mips_got_info *g;
9499 struct mips_elf_link_hash_entry *h;
7c5fcef7 9500
b49e97c9 9501 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9502 if (h->forced_local)
9503 return;
4b555070 9504 h->forced_local = force_local;
7c5fcef7 9505
b49e97c9 9506 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9507 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9508 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9509 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9510 {
c45a316a
AM
9511 if (g->next)
9512 {
9513 struct mips_got_entry e;
9514 struct mips_got_info *gg = g;
9515
9516 /* Since we're turning what used to be a global symbol into a
9517 local one, bump up the number of local entries of each GOT
9518 that had an entry for it. This will automatically decrease
9519 the number of global entries, since global_gotno is actually
9520 the upper limit of global entries. */
9521 e.abfd = dynobj;
9522 e.symndx = -1;
9523 e.d.h = h;
0f20cc35 9524 e.tls_type = 0;
c45a316a
AM
9525
9526 for (g = g->next; g != gg; g = g->next)
9527 if (htab_find (g->got_entries, &e))
9528 {
9529 BFD_ASSERT (g->global_gotno > 0);
9530 g->local_gotno++;
9531 g->global_gotno--;
9532 }
b49e97c9 9533
c45a316a
AM
9534 /* If this was a global symbol forced into the primary GOT, we
9535 no longer need an entry for it. We can't release the entry
9536 at this point, but we must at least stop counting it as one
9537 of the symbols that required a forced got entry. */
9538 if (h->root.got.offset == 2)
9539 {
9540 BFD_ASSERT (gg->assigned_gotno > 0);
9541 gg->assigned_gotno--;
9542 }
9543 }
9544 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9545 /* If we haven't got through GOT allocation yet, just bump up the
9546 number of local entries, as this symbol won't be counted as
9547 global. */
9548 g->local_gotno++;
9549 else if (h->root.got.offset == 1)
f4416af6 9550 {
c45a316a
AM
9551 /* If we're past non-multi-GOT allocation and this symbol had
9552 been marked for a global got entry, give it a local entry
9553 instead. */
9554 BFD_ASSERT (g->global_gotno > 0);
9555 g->local_gotno++;
9556 g->global_gotno--;
f4416af6
AO
9557 }
9558 }
f4416af6
AO
9559
9560 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9561}
9562\f
d01414a5
TS
9563#define PDR_SIZE 32
9564
b34976b6 9565bfd_boolean
9719ad41
RS
9566_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9567 struct bfd_link_info *info)
d01414a5
TS
9568{
9569 asection *o;
b34976b6 9570 bfd_boolean ret = FALSE;
d01414a5
TS
9571 unsigned char *tdata;
9572 size_t i, skip;
9573
9574 o = bfd_get_section_by_name (abfd, ".pdr");
9575 if (! o)
b34976b6 9576 return FALSE;
eea6121a 9577 if (o->size == 0)
b34976b6 9578 return FALSE;
eea6121a 9579 if (o->size % PDR_SIZE != 0)
b34976b6 9580 return FALSE;
d01414a5
TS
9581 if (o->output_section != NULL
9582 && bfd_is_abs_section (o->output_section))
b34976b6 9583 return FALSE;
d01414a5 9584
eea6121a 9585 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9586 if (! tdata)
b34976b6 9587 return FALSE;
d01414a5 9588
9719ad41 9589 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9590 info->keep_memory);
d01414a5
TS
9591 if (!cookie->rels)
9592 {
9593 free (tdata);
b34976b6 9594 return FALSE;
d01414a5
TS
9595 }
9596
9597 cookie->rel = cookie->rels;
9598 cookie->relend = cookie->rels + o->reloc_count;
9599
eea6121a 9600 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9601 {
c152c796 9602 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9603 {
9604 tdata[i] = 1;
9605 skip ++;
9606 }
9607 }
9608
9609 if (skip != 0)
9610 {
f0abc2a1 9611 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9612 o->size -= skip * PDR_SIZE;
b34976b6 9613 ret = TRUE;
d01414a5
TS
9614 }
9615 else
9616 free (tdata);
9617
9618 if (! info->keep_memory)
9619 free (cookie->rels);
9620
9621 return ret;
9622}
9623
b34976b6 9624bfd_boolean
9719ad41 9625_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9626{
9627 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9628 return TRUE;
9629 return FALSE;
53bfd6b4 9630}
d01414a5 9631
b34976b6 9632bfd_boolean
9719ad41
RS
9633_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9634 bfd_byte *contents)
d01414a5
TS
9635{
9636 bfd_byte *to, *from, *end;
9637 int i;
9638
9639 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9640 return FALSE;
d01414a5 9641
f0abc2a1 9642 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9643 return FALSE;
d01414a5
TS
9644
9645 to = contents;
eea6121a 9646 end = contents + sec->size;
d01414a5
TS
9647 for (from = contents, i = 0;
9648 from < end;
9649 from += PDR_SIZE, i++)
9650 {
f0abc2a1 9651 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9652 continue;
9653 if (to != from)
9654 memcpy (to, from, PDR_SIZE);
9655 to += PDR_SIZE;
9656 }
9657 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9658 sec->output_offset, sec->size);
b34976b6 9659 return TRUE;
d01414a5 9660}
53bfd6b4 9661\f
b49e97c9
TS
9662/* MIPS ELF uses a special find_nearest_line routine in order the
9663 handle the ECOFF debugging information. */
9664
9665struct mips_elf_find_line
9666{
9667 struct ecoff_debug_info d;
9668 struct ecoff_find_line i;
9669};
9670
b34976b6 9671bfd_boolean
9719ad41
RS
9672_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9673 asymbol **symbols, bfd_vma offset,
9674 const char **filename_ptr,
9675 const char **functionname_ptr,
9676 unsigned int *line_ptr)
b49e97c9
TS
9677{
9678 asection *msec;
9679
9680 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9681 filename_ptr, functionname_ptr,
9682 line_ptr))
b34976b6 9683 return TRUE;
b49e97c9
TS
9684
9685 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9686 filename_ptr, functionname_ptr,
9719ad41 9687 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9688 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9689 return TRUE;
b49e97c9
TS
9690
9691 msec = bfd_get_section_by_name (abfd, ".mdebug");
9692 if (msec != NULL)
9693 {
9694 flagword origflags;
9695 struct mips_elf_find_line *fi;
9696 const struct ecoff_debug_swap * const swap =
9697 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9698
9699 /* If we are called during a link, mips_elf_final_link may have
9700 cleared the SEC_HAS_CONTENTS field. We force it back on here
9701 if appropriate (which it normally will be). */
9702 origflags = msec->flags;
9703 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9704 msec->flags |= SEC_HAS_CONTENTS;
9705
9706 fi = elf_tdata (abfd)->find_line_info;
9707 if (fi == NULL)
9708 {
9709 bfd_size_type external_fdr_size;
9710 char *fraw_src;
9711 char *fraw_end;
9712 struct fdr *fdr_ptr;
9713 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9714
9719ad41 9715 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9716 if (fi == NULL)
9717 {
9718 msec->flags = origflags;
b34976b6 9719 return FALSE;
b49e97c9
TS
9720 }
9721
9722 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9723 {
9724 msec->flags = origflags;
b34976b6 9725 return FALSE;
b49e97c9
TS
9726 }
9727
9728 /* Swap in the FDR information. */
9729 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9730 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9731 if (fi->d.fdr == NULL)
9732 {
9733 msec->flags = origflags;
b34976b6 9734 return FALSE;
b49e97c9
TS
9735 }
9736 external_fdr_size = swap->external_fdr_size;
9737 fdr_ptr = fi->d.fdr;
9738 fraw_src = (char *) fi->d.external_fdr;
9739 fraw_end = (fraw_src
9740 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9741 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9742 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9743
9744 elf_tdata (abfd)->find_line_info = fi;
9745
9746 /* Note that we don't bother to ever free this information.
9747 find_nearest_line is either called all the time, as in
9748 objdump -l, so the information should be saved, or it is
9749 rarely called, as in ld error messages, so the memory
9750 wasted is unimportant. Still, it would probably be a
9751 good idea for free_cached_info to throw it away. */
9752 }
9753
9754 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9755 &fi->i, filename_ptr, functionname_ptr,
9756 line_ptr))
9757 {
9758 msec->flags = origflags;
b34976b6 9759 return TRUE;
b49e97c9
TS
9760 }
9761
9762 msec->flags = origflags;
9763 }
9764
9765 /* Fall back on the generic ELF find_nearest_line routine. */
9766
9767 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9768 filename_ptr, functionname_ptr,
9769 line_ptr);
9770}
4ab527b0
FF
9771
9772bfd_boolean
9773_bfd_mips_elf_find_inliner_info (bfd *abfd,
9774 const char **filename_ptr,
9775 const char **functionname_ptr,
9776 unsigned int *line_ptr)
9777{
9778 bfd_boolean found;
9779 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9780 functionname_ptr, line_ptr,
9781 & elf_tdata (abfd)->dwarf2_find_line_info);
9782 return found;
9783}
9784
b49e97c9
TS
9785\f
9786/* When are writing out the .options or .MIPS.options section,
9787 remember the bytes we are writing out, so that we can install the
9788 GP value in the section_processing routine. */
9789
b34976b6 9790bfd_boolean
9719ad41
RS
9791_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9792 const void *location,
9793 file_ptr offset, bfd_size_type count)
b49e97c9 9794{
cc2e31b9 9795 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9796 {
9797 bfd_byte *c;
9798
9799 if (elf_section_data (section) == NULL)
9800 {
9801 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9802 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9803 if (elf_section_data (section) == NULL)
b34976b6 9804 return FALSE;
b49e97c9 9805 }
f0abc2a1 9806 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9807 if (c == NULL)
9808 {
eea6121a 9809 c = bfd_zalloc (abfd, section->size);
b49e97c9 9810 if (c == NULL)
b34976b6 9811 return FALSE;
f0abc2a1 9812 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9813 }
9814
9719ad41 9815 memcpy (c + offset, location, count);
b49e97c9
TS
9816 }
9817
9818 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9819 count);
9820}
9821
9822/* This is almost identical to bfd_generic_get_... except that some
9823 MIPS relocations need to be handled specially. Sigh. */
9824
9825bfd_byte *
9719ad41
RS
9826_bfd_elf_mips_get_relocated_section_contents
9827 (bfd *abfd,
9828 struct bfd_link_info *link_info,
9829 struct bfd_link_order *link_order,
9830 bfd_byte *data,
9831 bfd_boolean relocatable,
9832 asymbol **symbols)
b49e97c9
TS
9833{
9834 /* Get enough memory to hold the stuff */
9835 bfd *input_bfd = link_order->u.indirect.section->owner;
9836 asection *input_section = link_order->u.indirect.section;
eea6121a 9837 bfd_size_type sz;
b49e97c9
TS
9838
9839 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9840 arelent **reloc_vector = NULL;
9841 long reloc_count;
9842
9843 if (reloc_size < 0)
9844 goto error_return;
9845
9719ad41 9846 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
9847 if (reloc_vector == NULL && reloc_size != 0)
9848 goto error_return;
9849
9850 /* read in the section */
eea6121a
AM
9851 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9852 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
9853 goto error_return;
9854
b49e97c9
TS
9855 reloc_count = bfd_canonicalize_reloc (input_bfd,
9856 input_section,
9857 reloc_vector,
9858 symbols);
9859 if (reloc_count < 0)
9860 goto error_return;
9861
9862 if (reloc_count > 0)
9863 {
9864 arelent **parent;
9865 /* for mips */
9866 int gp_found;
9867 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9868
9869 {
9870 struct bfd_hash_entry *h;
9871 struct bfd_link_hash_entry *lh;
9872 /* Skip all this stuff if we aren't mixing formats. */
9873 if (abfd && input_bfd
9874 && abfd->xvec == input_bfd->xvec)
9875 lh = 0;
9876 else
9877 {
b34976b6 9878 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
9879 lh = (struct bfd_link_hash_entry *) h;
9880 }
9881 lookup:
9882 if (lh)
9883 {
9884 switch (lh->type)
9885 {
9886 case bfd_link_hash_undefined:
9887 case bfd_link_hash_undefweak:
9888 case bfd_link_hash_common:
9889 gp_found = 0;
9890 break;
9891 case bfd_link_hash_defined:
9892 case bfd_link_hash_defweak:
9893 gp_found = 1;
9894 gp = lh->u.def.value;
9895 break;
9896 case bfd_link_hash_indirect:
9897 case bfd_link_hash_warning:
9898 lh = lh->u.i.link;
9899 /* @@FIXME ignoring warning for now */
9900 goto lookup;
9901 case bfd_link_hash_new:
9902 default:
9903 abort ();
9904 }
9905 }
9906 else
9907 gp_found = 0;
9908 }
9909 /* end mips */
9719ad41 9910 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 9911 {
9719ad41 9912 char *error_message = NULL;
b49e97c9
TS
9913 bfd_reloc_status_type r;
9914
9915 /* Specific to MIPS: Deal with relocation types that require
9916 knowing the gp of the output bfd. */
9917 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 9918
8236346f
EC
9919 /* If we've managed to find the gp and have a special
9920 function for the relocation then go ahead, else default
9921 to the generic handling. */
9922 if (gp_found
9923 && (*parent)->howto->special_function
9924 == _bfd_mips_elf32_gprel16_reloc)
9925 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9926 input_section, relocatable,
9927 data, gp);
9928 else
86324f90 9929 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
9930 input_section,
9931 relocatable ? abfd : NULL,
9932 &error_message);
b49e97c9 9933
1049f94e 9934 if (relocatable)
b49e97c9
TS
9935 {
9936 asection *os = input_section->output_section;
9937
9938 /* A partial link, so keep the relocs */
9939 os->orelocation[os->reloc_count] = *parent;
9940 os->reloc_count++;
9941 }
9942
9943 if (r != bfd_reloc_ok)
9944 {
9945 switch (r)
9946 {
9947 case bfd_reloc_undefined:
9948 if (!((*link_info->callbacks->undefined_symbol)
9949 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 9950 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
9951 goto error_return;
9952 break;
9953 case bfd_reloc_dangerous:
9719ad41 9954 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
9955 if (!((*link_info->callbacks->reloc_dangerous)
9956 (link_info, error_message, input_bfd, input_section,
9957 (*parent)->address)))
9958 goto error_return;
9959 break;
9960 case bfd_reloc_overflow:
9961 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
9962 (link_info, NULL,
9963 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
9964 (*parent)->howto->name, (*parent)->addend,
9965 input_bfd, input_section, (*parent)->address)))
9966 goto error_return;
9967 break;
9968 case bfd_reloc_outofrange:
9969 default:
9970 abort ();
9971 break;
9972 }
9973
9974 }
9975 }
9976 }
9977 if (reloc_vector != NULL)
9978 free (reloc_vector);
9979 return data;
9980
9981error_return:
9982 if (reloc_vector != NULL)
9983 free (reloc_vector);
9984 return NULL;
9985}
9986\f
9987/* Create a MIPS ELF linker hash table. */
9988
9989struct bfd_link_hash_table *
9719ad41 9990_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
9991{
9992 struct mips_elf_link_hash_table *ret;
9993 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9994
9719ad41
RS
9995 ret = bfd_malloc (amt);
9996 if (ret == NULL)
b49e97c9
TS
9997 return NULL;
9998
66eb6687
AM
9999 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10000 mips_elf_link_hash_newfunc,
10001 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10002 {
e2d34d7d 10003 free (ret);
b49e97c9
TS
10004 return NULL;
10005 }
10006
10007#if 0
10008 /* We no longer use this. */
10009 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10010 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10011#endif
10012 ret->procedure_count = 0;
10013 ret->compact_rel_size = 0;
b34976b6 10014 ret->use_rld_obj_head = FALSE;
b49e97c9 10015 ret->rld_value = 0;
b34976b6 10016 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
10017 ret->is_vxworks = FALSE;
10018 ret->srelbss = NULL;
10019 ret->sdynbss = NULL;
10020 ret->srelplt = NULL;
10021 ret->srelplt2 = NULL;
10022 ret->sgotplt = NULL;
10023 ret->splt = NULL;
10024 ret->plt_header_size = 0;
10025 ret->plt_entry_size = 0;
5108fc1b 10026 ret->function_stub_size = 0;
b49e97c9
TS
10027
10028 return &ret->root.root;
10029}
0a44bf69
RS
10030
10031/* Likewise, but indicate that the target is VxWorks. */
10032
10033struct bfd_link_hash_table *
10034_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10035{
10036 struct bfd_link_hash_table *ret;
10037
10038 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10039 if (ret)
10040 {
10041 struct mips_elf_link_hash_table *htab;
10042
10043 htab = (struct mips_elf_link_hash_table *) ret;
10044 htab->is_vxworks = 1;
10045 }
10046 return ret;
10047}
b49e97c9
TS
10048\f
10049/* We need to use a special link routine to handle the .reginfo and
10050 the .mdebug sections. We need to merge all instances of these
10051 sections together, not write them all out sequentially. */
10052
b34976b6 10053bfd_boolean
9719ad41 10054_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10055{
b49e97c9
TS
10056 asection *o;
10057 struct bfd_link_order *p;
10058 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10059 asection *rtproc_sec;
10060 Elf32_RegInfo reginfo;
10061 struct ecoff_debug_info debug;
7a2a6943
NC
10062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10063 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10064 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10065 void *mdebug_handle = NULL;
b49e97c9
TS
10066 asection *s;
10067 EXTR esym;
10068 unsigned int i;
10069 bfd_size_type amt;
0a44bf69 10070 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10071
10072 static const char * const secname[] =
10073 {
10074 ".text", ".init", ".fini", ".data",
10075 ".rodata", ".sdata", ".sbss", ".bss"
10076 };
10077 static const int sc[] =
10078 {
10079 scText, scInit, scFini, scData,
10080 scRData, scSData, scSBss, scBss
10081 };
10082
b49e97c9
TS
10083 /* We'd carefully arranged the dynamic symbol indices, and then the
10084 generic size_dynamic_sections renumbered them out from under us.
10085 Rather than trying somehow to prevent the renumbering, just do
10086 the sort again. */
0a44bf69 10087 htab = mips_elf_hash_table (info);
b49e97c9
TS
10088 if (elf_hash_table (info)->dynamic_sections_created)
10089 {
10090 bfd *dynobj;
10091 asection *got;
10092 struct mips_got_info *g;
7a2a6943 10093 bfd_size_type dynsecsymcount;
b49e97c9
TS
10094
10095 /* When we resort, we must tell mips_elf_sort_hash_table what
10096 the lowest index it may use is. That's the number of section
10097 symbols we're going to add. The generic ELF linker only
10098 adds these symbols when building a shared object. Note that
10099 we count the sections after (possibly) removing the .options
10100 section above. */
7a2a6943 10101
5108fc1b 10102 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10103 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10104 return FALSE;
b49e97c9
TS
10105
10106 /* Make sure we didn't grow the global .got region. */
10107 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10108 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10109 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10110
10111 if (g->global_gotsym != NULL)
10112 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10113 - g->global_gotsym->dynindx)
10114 <= g->global_gotno);
10115 }
10116
b49e97c9
TS
10117 /* Get a value for the GP register. */
10118 if (elf_gp (abfd) == 0)
10119 {
10120 struct bfd_link_hash_entry *h;
10121
b34976b6 10122 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10123 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10124 elf_gp (abfd) = (h->u.def.value
10125 + h->u.def.section->output_section->vma
10126 + h->u.def.section->output_offset);
0a44bf69
RS
10127 else if (htab->is_vxworks
10128 && (h = bfd_link_hash_lookup (info->hash,
10129 "_GLOBAL_OFFSET_TABLE_",
10130 FALSE, FALSE, TRUE))
10131 && h->type == bfd_link_hash_defined)
10132 elf_gp (abfd) = (h->u.def.section->output_section->vma
10133 + h->u.def.section->output_offset
10134 + h->u.def.value);
1049f94e 10135 else if (info->relocatable)
b49e97c9
TS
10136 {
10137 bfd_vma lo = MINUS_ONE;
10138
10139 /* Find the GP-relative section with the lowest offset. */
9719ad41 10140 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10141 if (o->vma < lo
10142 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10143 lo = o->vma;
10144
10145 /* And calculate GP relative to that. */
0a44bf69 10146 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10147 }
10148 else
10149 {
10150 /* If the relocate_section function needs to do a reloc
10151 involving the GP value, it should make a reloc_dangerous
10152 callback to warn that GP is not defined. */
10153 }
10154 }
10155
10156 /* Go through the sections and collect the .reginfo and .mdebug
10157 information. */
10158 reginfo_sec = NULL;
10159 mdebug_sec = NULL;
10160 gptab_data_sec = NULL;
10161 gptab_bss_sec = NULL;
9719ad41 10162 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10163 {
10164 if (strcmp (o->name, ".reginfo") == 0)
10165 {
10166 memset (&reginfo, 0, sizeof reginfo);
10167
10168 /* We have found the .reginfo section in the output file.
10169 Look through all the link_orders comprising it and merge
10170 the information together. */
8423293d 10171 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10172 {
10173 asection *input_section;
10174 bfd *input_bfd;
10175 Elf32_External_RegInfo ext;
10176 Elf32_RegInfo sub;
10177
10178 if (p->type != bfd_indirect_link_order)
10179 {
10180 if (p->type == bfd_data_link_order)
10181 continue;
10182 abort ();
10183 }
10184
10185 input_section = p->u.indirect.section;
10186 input_bfd = input_section->owner;
10187
b49e97c9 10188 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10189 &ext, 0, sizeof ext))
b34976b6 10190 return FALSE;
b49e97c9
TS
10191
10192 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10193
10194 reginfo.ri_gprmask |= sub.ri_gprmask;
10195 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10196 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10197 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10198 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10199
10200 /* ri_gp_value is set by the function
10201 mips_elf32_section_processing when the section is
10202 finally written out. */
10203
10204 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10205 elf_link_input_bfd ignores this section. */
10206 input_section->flags &= ~SEC_HAS_CONTENTS;
10207 }
10208
10209 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10210 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10211
10212 /* Skip this section later on (I don't think this currently
10213 matters, but someday it might). */
8423293d 10214 o->map_head.link_order = NULL;
b49e97c9
TS
10215
10216 reginfo_sec = o;
10217 }
10218
10219 if (strcmp (o->name, ".mdebug") == 0)
10220 {
10221 struct extsym_info einfo;
10222 bfd_vma last;
10223
10224 /* We have found the .mdebug section in the output file.
10225 Look through all the link_orders comprising it and merge
10226 the information together. */
10227 symhdr->magic = swap->sym_magic;
10228 /* FIXME: What should the version stamp be? */
10229 symhdr->vstamp = 0;
10230 symhdr->ilineMax = 0;
10231 symhdr->cbLine = 0;
10232 symhdr->idnMax = 0;
10233 symhdr->ipdMax = 0;
10234 symhdr->isymMax = 0;
10235 symhdr->ioptMax = 0;
10236 symhdr->iauxMax = 0;
10237 symhdr->issMax = 0;
10238 symhdr->issExtMax = 0;
10239 symhdr->ifdMax = 0;
10240 symhdr->crfd = 0;
10241 symhdr->iextMax = 0;
10242
10243 /* We accumulate the debugging information itself in the
10244 debug_info structure. */
10245 debug.line = NULL;
10246 debug.external_dnr = NULL;
10247 debug.external_pdr = NULL;
10248 debug.external_sym = NULL;
10249 debug.external_opt = NULL;
10250 debug.external_aux = NULL;
10251 debug.ss = NULL;
10252 debug.ssext = debug.ssext_end = NULL;
10253 debug.external_fdr = NULL;
10254 debug.external_rfd = NULL;
10255 debug.external_ext = debug.external_ext_end = NULL;
10256
10257 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10258 if (mdebug_handle == NULL)
b34976b6 10259 return FALSE;
b49e97c9
TS
10260
10261 esym.jmptbl = 0;
10262 esym.cobol_main = 0;
10263 esym.weakext = 0;
10264 esym.reserved = 0;
10265 esym.ifd = ifdNil;
10266 esym.asym.iss = issNil;
10267 esym.asym.st = stLocal;
10268 esym.asym.reserved = 0;
10269 esym.asym.index = indexNil;
10270 last = 0;
10271 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10272 {
10273 esym.asym.sc = sc[i];
10274 s = bfd_get_section_by_name (abfd, secname[i]);
10275 if (s != NULL)
10276 {
10277 esym.asym.value = s->vma;
eea6121a 10278 last = s->vma + s->size;
b49e97c9
TS
10279 }
10280 else
10281 esym.asym.value = last;
10282 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10283 secname[i], &esym))
b34976b6 10284 return FALSE;
b49e97c9
TS
10285 }
10286
8423293d 10287 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10288 {
10289 asection *input_section;
10290 bfd *input_bfd;
10291 const struct ecoff_debug_swap *input_swap;
10292 struct ecoff_debug_info input_debug;
10293 char *eraw_src;
10294 char *eraw_end;
10295
10296 if (p->type != bfd_indirect_link_order)
10297 {
10298 if (p->type == bfd_data_link_order)
10299 continue;
10300 abort ();
10301 }
10302
10303 input_section = p->u.indirect.section;
10304 input_bfd = input_section->owner;
10305
10306 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10307 || (get_elf_backend_data (input_bfd)
10308 ->elf_backend_ecoff_debug_swap) == NULL)
10309 {
10310 /* I don't know what a non MIPS ELF bfd would be
10311 doing with a .mdebug section, but I don't really
10312 want to deal with it. */
10313 continue;
10314 }
10315
10316 input_swap = (get_elf_backend_data (input_bfd)
10317 ->elf_backend_ecoff_debug_swap);
10318
eea6121a 10319 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10320
10321 /* The ECOFF linking code expects that we have already
10322 read in the debugging information and set up an
10323 ecoff_debug_info structure, so we do that now. */
10324 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10325 &input_debug))
b34976b6 10326 return FALSE;
b49e97c9
TS
10327
10328 if (! (bfd_ecoff_debug_accumulate
10329 (mdebug_handle, abfd, &debug, swap, input_bfd,
10330 &input_debug, input_swap, info)))
b34976b6 10331 return FALSE;
b49e97c9
TS
10332
10333 /* Loop through the external symbols. For each one with
10334 interesting information, try to find the symbol in
10335 the linker global hash table and save the information
10336 for the output external symbols. */
10337 eraw_src = input_debug.external_ext;
10338 eraw_end = (eraw_src
10339 + (input_debug.symbolic_header.iextMax
10340 * input_swap->external_ext_size));
10341 for (;
10342 eraw_src < eraw_end;
10343 eraw_src += input_swap->external_ext_size)
10344 {
10345 EXTR ext;
10346 const char *name;
10347 struct mips_elf_link_hash_entry *h;
10348
9719ad41 10349 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10350 if (ext.asym.sc == scNil
10351 || ext.asym.sc == scUndefined
10352 || ext.asym.sc == scSUndefined)
10353 continue;
10354
10355 name = input_debug.ssext + ext.asym.iss;
10356 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10357 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10358 if (h == NULL || h->esym.ifd != -2)
10359 continue;
10360
10361 if (ext.ifd != -1)
10362 {
10363 BFD_ASSERT (ext.ifd
10364 < input_debug.symbolic_header.ifdMax);
10365 ext.ifd = input_debug.ifdmap[ext.ifd];
10366 }
10367
10368 h->esym = ext;
10369 }
10370
10371 /* Free up the information we just read. */
10372 free (input_debug.line);
10373 free (input_debug.external_dnr);
10374 free (input_debug.external_pdr);
10375 free (input_debug.external_sym);
10376 free (input_debug.external_opt);
10377 free (input_debug.external_aux);
10378 free (input_debug.ss);
10379 free (input_debug.ssext);
10380 free (input_debug.external_fdr);
10381 free (input_debug.external_rfd);
10382 free (input_debug.external_ext);
10383
10384 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10385 elf_link_input_bfd ignores this section. */
10386 input_section->flags &= ~SEC_HAS_CONTENTS;
10387 }
10388
10389 if (SGI_COMPAT (abfd) && info->shared)
10390 {
10391 /* Create .rtproc section. */
10392 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10393 if (rtproc_sec == NULL)
10394 {
10395 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10396 | SEC_LINKER_CREATED | SEC_READONLY);
10397
3496cb2a
L
10398 rtproc_sec = bfd_make_section_with_flags (abfd,
10399 ".rtproc",
10400 flags);
b49e97c9 10401 if (rtproc_sec == NULL
b49e97c9 10402 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10403 return FALSE;
b49e97c9
TS
10404 }
10405
10406 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10407 info, rtproc_sec,
10408 &debug))
b34976b6 10409 return FALSE;
b49e97c9
TS
10410 }
10411
10412 /* Build the external symbol information. */
10413 einfo.abfd = abfd;
10414 einfo.info = info;
10415 einfo.debug = &debug;
10416 einfo.swap = swap;
b34976b6 10417 einfo.failed = FALSE;
b49e97c9 10418 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10419 mips_elf_output_extsym, &einfo);
b49e97c9 10420 if (einfo.failed)
b34976b6 10421 return FALSE;
b49e97c9
TS
10422
10423 /* Set the size of the .mdebug section. */
eea6121a 10424 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10425
10426 /* Skip this section later on (I don't think this currently
10427 matters, but someday it might). */
8423293d 10428 o->map_head.link_order = NULL;
b49e97c9
TS
10429
10430 mdebug_sec = o;
10431 }
10432
10433 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10434 {
10435 const char *subname;
10436 unsigned int c;
10437 Elf32_gptab *tab;
10438 Elf32_External_gptab *ext_tab;
10439 unsigned int j;
10440
10441 /* The .gptab.sdata and .gptab.sbss sections hold
10442 information describing how the small data area would
10443 change depending upon the -G switch. These sections
10444 not used in executables files. */
1049f94e 10445 if (! info->relocatable)
b49e97c9 10446 {
8423293d 10447 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10448 {
10449 asection *input_section;
10450
10451 if (p->type != bfd_indirect_link_order)
10452 {
10453 if (p->type == bfd_data_link_order)
10454 continue;
10455 abort ();
10456 }
10457
10458 input_section = p->u.indirect.section;
10459
10460 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10461 elf_link_input_bfd ignores this section. */
10462 input_section->flags &= ~SEC_HAS_CONTENTS;
10463 }
10464
10465 /* Skip this section later on (I don't think this
10466 currently matters, but someday it might). */
8423293d 10467 o->map_head.link_order = NULL;
b49e97c9
TS
10468
10469 /* Really remove the section. */
5daa8fe7 10470 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10471 --abfd->section_count;
10472
10473 continue;
10474 }
10475
10476 /* There is one gptab for initialized data, and one for
10477 uninitialized data. */
10478 if (strcmp (o->name, ".gptab.sdata") == 0)
10479 gptab_data_sec = o;
10480 else if (strcmp (o->name, ".gptab.sbss") == 0)
10481 gptab_bss_sec = o;
10482 else
10483 {
10484 (*_bfd_error_handler)
10485 (_("%s: illegal section name `%s'"),
10486 bfd_get_filename (abfd), o->name);
10487 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10488 return FALSE;
b49e97c9
TS
10489 }
10490
10491 /* The linker script always combines .gptab.data and
10492 .gptab.sdata into .gptab.sdata, and likewise for
10493 .gptab.bss and .gptab.sbss. It is possible that there is
10494 no .sdata or .sbss section in the output file, in which
10495 case we must change the name of the output section. */
10496 subname = o->name + sizeof ".gptab" - 1;
10497 if (bfd_get_section_by_name (abfd, subname) == NULL)
10498 {
10499 if (o == gptab_data_sec)
10500 o->name = ".gptab.data";
10501 else
10502 o->name = ".gptab.bss";
10503 subname = o->name + sizeof ".gptab" - 1;
10504 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10505 }
10506
10507 /* Set up the first entry. */
10508 c = 1;
10509 amt = c * sizeof (Elf32_gptab);
9719ad41 10510 tab = bfd_malloc (amt);
b49e97c9 10511 if (tab == NULL)
b34976b6 10512 return FALSE;
b49e97c9
TS
10513 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10514 tab[0].gt_header.gt_unused = 0;
10515
10516 /* Combine the input sections. */
8423293d 10517 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10518 {
10519 asection *input_section;
10520 bfd *input_bfd;
10521 bfd_size_type size;
10522 unsigned long last;
10523 bfd_size_type gpentry;
10524
10525 if (p->type != bfd_indirect_link_order)
10526 {
10527 if (p->type == bfd_data_link_order)
10528 continue;
10529 abort ();
10530 }
10531
10532 input_section = p->u.indirect.section;
10533 input_bfd = input_section->owner;
10534
10535 /* Combine the gptab entries for this input section one
10536 by one. We know that the input gptab entries are
10537 sorted by ascending -G value. */
eea6121a 10538 size = input_section->size;
b49e97c9
TS
10539 last = 0;
10540 for (gpentry = sizeof (Elf32_External_gptab);
10541 gpentry < size;
10542 gpentry += sizeof (Elf32_External_gptab))
10543 {
10544 Elf32_External_gptab ext_gptab;
10545 Elf32_gptab int_gptab;
10546 unsigned long val;
10547 unsigned long add;
b34976b6 10548 bfd_boolean exact;
b49e97c9
TS
10549 unsigned int look;
10550
10551 if (! (bfd_get_section_contents
9719ad41
RS
10552 (input_bfd, input_section, &ext_gptab, gpentry,
10553 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10554 {
10555 free (tab);
b34976b6 10556 return FALSE;
b49e97c9
TS
10557 }
10558
10559 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10560 &int_gptab);
10561 val = int_gptab.gt_entry.gt_g_value;
10562 add = int_gptab.gt_entry.gt_bytes - last;
10563
b34976b6 10564 exact = FALSE;
b49e97c9
TS
10565 for (look = 1; look < c; look++)
10566 {
10567 if (tab[look].gt_entry.gt_g_value >= val)
10568 tab[look].gt_entry.gt_bytes += add;
10569
10570 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10571 exact = TRUE;
b49e97c9
TS
10572 }
10573
10574 if (! exact)
10575 {
10576 Elf32_gptab *new_tab;
10577 unsigned int max;
10578
10579 /* We need a new table entry. */
10580 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10581 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10582 if (new_tab == NULL)
10583 {
10584 free (tab);
b34976b6 10585 return FALSE;
b49e97c9
TS
10586 }
10587 tab = new_tab;
10588 tab[c].gt_entry.gt_g_value = val;
10589 tab[c].gt_entry.gt_bytes = add;
10590
10591 /* Merge in the size for the next smallest -G
10592 value, since that will be implied by this new
10593 value. */
10594 max = 0;
10595 for (look = 1; look < c; look++)
10596 {
10597 if (tab[look].gt_entry.gt_g_value < val
10598 && (max == 0
10599 || (tab[look].gt_entry.gt_g_value
10600 > tab[max].gt_entry.gt_g_value)))
10601 max = look;
10602 }
10603 if (max != 0)
10604 tab[c].gt_entry.gt_bytes +=
10605 tab[max].gt_entry.gt_bytes;
10606
10607 ++c;
10608 }
10609
10610 last = int_gptab.gt_entry.gt_bytes;
10611 }
10612
10613 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10614 elf_link_input_bfd ignores this section. */
10615 input_section->flags &= ~SEC_HAS_CONTENTS;
10616 }
10617
10618 /* The table must be sorted by -G value. */
10619 if (c > 2)
10620 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10621
10622 /* Swap out the table. */
10623 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10624 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10625 if (ext_tab == NULL)
10626 {
10627 free (tab);
b34976b6 10628 return FALSE;
b49e97c9
TS
10629 }
10630
10631 for (j = 0; j < c; j++)
10632 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10633 free (tab);
10634
eea6121a 10635 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10636 o->contents = (bfd_byte *) ext_tab;
10637
10638 /* Skip this section later on (I don't think this currently
10639 matters, but someday it might). */
8423293d 10640 o->map_head.link_order = NULL;
b49e97c9
TS
10641 }
10642 }
10643
10644 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10645 if (!bfd_elf_final_link (abfd, info))
b34976b6 10646 return FALSE;
b49e97c9
TS
10647
10648 /* Now write out the computed sections. */
10649
9719ad41 10650 if (reginfo_sec != NULL)
b49e97c9
TS
10651 {
10652 Elf32_External_RegInfo ext;
10653
10654 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10655 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10656 return FALSE;
b49e97c9
TS
10657 }
10658
9719ad41 10659 if (mdebug_sec != NULL)
b49e97c9
TS
10660 {
10661 BFD_ASSERT (abfd->output_has_begun);
10662 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10663 swap, info,
10664 mdebug_sec->filepos))
b34976b6 10665 return FALSE;
b49e97c9
TS
10666
10667 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10668 }
10669
9719ad41 10670 if (gptab_data_sec != NULL)
b49e97c9
TS
10671 {
10672 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10673 gptab_data_sec->contents,
eea6121a 10674 0, gptab_data_sec->size))
b34976b6 10675 return FALSE;
b49e97c9
TS
10676 }
10677
9719ad41 10678 if (gptab_bss_sec != NULL)
b49e97c9
TS
10679 {
10680 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10681 gptab_bss_sec->contents,
eea6121a 10682 0, gptab_bss_sec->size))
b34976b6 10683 return FALSE;
b49e97c9
TS
10684 }
10685
10686 if (SGI_COMPAT (abfd))
10687 {
10688 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10689 if (rtproc_sec != NULL)
10690 {
10691 if (! bfd_set_section_contents (abfd, rtproc_sec,
10692 rtproc_sec->contents,
eea6121a 10693 0, rtproc_sec->size))
b34976b6 10694 return FALSE;
b49e97c9
TS
10695 }
10696 }
10697
b34976b6 10698 return TRUE;
b49e97c9
TS
10699}
10700\f
64543e1a
RS
10701/* Structure for saying that BFD machine EXTENSION extends BASE. */
10702
10703struct mips_mach_extension {
10704 unsigned long extension, base;
10705};
10706
10707
10708/* An array describing how BFD machines relate to one another. The entries
10709 are ordered topologically with MIPS I extensions listed last. */
10710
10711static const struct mips_mach_extension mips_mach_extensions[] = {
10712 /* MIPS64 extensions. */
5f74bc13 10713 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10714 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10715
10716 /* MIPS V extensions. */
10717 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10718
10719 /* R10000 extensions. */
10720 { bfd_mach_mips12000, bfd_mach_mips10000 },
10721
10722 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10723 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10724 better to allow vr5400 and vr5500 code to be merged anyway, since
10725 many libraries will just use the core ISA. Perhaps we could add
10726 some sort of ASE flag if this ever proves a problem. */
10727 { bfd_mach_mips5500, bfd_mach_mips5400 },
10728 { bfd_mach_mips5400, bfd_mach_mips5000 },
10729
10730 /* MIPS IV extensions. */
10731 { bfd_mach_mips5, bfd_mach_mips8000 },
10732 { bfd_mach_mips10000, bfd_mach_mips8000 },
10733 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10734 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10735 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10736
10737 /* VR4100 extensions. */
10738 { bfd_mach_mips4120, bfd_mach_mips4100 },
10739 { bfd_mach_mips4111, bfd_mach_mips4100 },
10740
10741 /* MIPS III extensions. */
10742 { bfd_mach_mips8000, bfd_mach_mips4000 },
10743 { bfd_mach_mips4650, bfd_mach_mips4000 },
10744 { bfd_mach_mips4600, bfd_mach_mips4000 },
10745 { bfd_mach_mips4400, bfd_mach_mips4000 },
10746 { bfd_mach_mips4300, bfd_mach_mips4000 },
10747 { bfd_mach_mips4100, bfd_mach_mips4000 },
10748 { bfd_mach_mips4010, bfd_mach_mips4000 },
10749
10750 /* MIPS32 extensions. */
10751 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10752
10753 /* MIPS II extensions. */
10754 { bfd_mach_mips4000, bfd_mach_mips6000 },
10755 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10756
10757 /* MIPS I extensions. */
10758 { bfd_mach_mips6000, bfd_mach_mips3000 },
10759 { bfd_mach_mips3900, bfd_mach_mips3000 }
10760};
10761
10762
10763/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10764
10765static bfd_boolean
9719ad41 10766mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10767{
10768 size_t i;
10769
c5211a54
RS
10770 if (extension == base)
10771 return TRUE;
10772
10773 if (base == bfd_mach_mipsisa32
10774 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10775 return TRUE;
10776
10777 if (base == bfd_mach_mipsisa32r2
10778 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10779 return TRUE;
10780
10781 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10782 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10783 {
10784 extension = mips_mach_extensions[i].base;
10785 if (extension == base)
10786 return TRUE;
10787 }
64543e1a 10788
c5211a54 10789 return FALSE;
64543e1a
RS
10790}
10791
10792
10793/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10794
b34976b6 10795static bfd_boolean
9719ad41 10796mips_32bit_flags_p (flagword flags)
00707a0e 10797{
64543e1a
RS
10798 return ((flags & EF_MIPS_32BITMODE) != 0
10799 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10800 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10801 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10802 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10803 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10804 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10805}
10806
64543e1a 10807
b49e97c9
TS
10808/* Merge backend specific data from an object file to the output
10809 object file when linking. */
10810
b34976b6 10811bfd_boolean
9719ad41 10812_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
10813{
10814 flagword old_flags;
10815 flagword new_flags;
b34976b6
AM
10816 bfd_boolean ok;
10817 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
10818 asection *sec;
10819
10820 /* Check if we have the same endianess */
82e51918 10821 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
10822 {
10823 (*_bfd_error_handler)
d003868e
AM
10824 (_("%B: endianness incompatible with that of the selected emulation"),
10825 ibfd);
aa701218
AO
10826 return FALSE;
10827 }
b49e97c9
TS
10828
10829 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10830 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 10831 return TRUE;
b49e97c9 10832
aa701218
AO
10833 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10834 {
10835 (*_bfd_error_handler)
d003868e
AM
10836 (_("%B: ABI is incompatible with that of the selected emulation"),
10837 ibfd);
aa701218
AO
10838 return FALSE;
10839 }
10840
b49e97c9
TS
10841 new_flags = elf_elfheader (ibfd)->e_flags;
10842 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10843 old_flags = elf_elfheader (obfd)->e_flags;
10844
10845 if (! elf_flags_init (obfd))
10846 {
b34976b6 10847 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
10848 elf_elfheader (obfd)->e_flags = new_flags;
10849 elf_elfheader (obfd)->e_ident[EI_CLASS]
10850 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10851
10852 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10853 && bfd_get_arch_info (obfd)->the_default)
10854 {
10855 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10856 bfd_get_mach (ibfd)))
b34976b6 10857 return FALSE;
b49e97c9
TS
10858 }
10859
b34976b6 10860 return TRUE;
b49e97c9
TS
10861 }
10862
10863 /* Check flag compatibility. */
10864
10865 new_flags &= ~EF_MIPS_NOREORDER;
10866 old_flags &= ~EF_MIPS_NOREORDER;
10867
f4416af6
AO
10868 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10869 doesn't seem to matter. */
10870 new_flags &= ~EF_MIPS_XGOT;
10871 old_flags &= ~EF_MIPS_XGOT;
10872
98a8deaf
RS
10873 /* MIPSpro generates ucode info in n64 objects. Again, we should
10874 just be able to ignore this. */
10875 new_flags &= ~EF_MIPS_UCODE;
10876 old_flags &= ~EF_MIPS_UCODE;
10877
0a44bf69
RS
10878 /* Don't care about the PIC flags from dynamic objects; they are
10879 PIC by design. */
10880 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10881 && (ibfd->flags & DYNAMIC) != 0)
10882 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10883
b49e97c9 10884 if (new_flags == old_flags)
b34976b6 10885 return TRUE;
b49e97c9
TS
10886
10887 /* Check to see if the input BFD actually contains any sections.
10888 If not, its flags may not have been initialised either, but it cannot
10889 actually cause any incompatibility. */
10890 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10891 {
10892 /* Ignore synthetic sections and empty .text, .data and .bss sections
10893 which are automatically generated by gas. */
10894 if (strcmp (sec->name, ".reginfo")
10895 && strcmp (sec->name, ".mdebug")
eea6121a 10896 && (sec->size != 0
d13d89fa
NS
10897 || (strcmp (sec->name, ".text")
10898 && strcmp (sec->name, ".data")
10899 && strcmp (sec->name, ".bss"))))
b49e97c9 10900 {
b34976b6 10901 null_input_bfd = FALSE;
b49e97c9
TS
10902 break;
10903 }
10904 }
10905 if (null_input_bfd)
b34976b6 10906 return TRUE;
b49e97c9 10907
b34976b6 10908 ok = TRUE;
b49e97c9 10909
143d77c5
EC
10910 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10911 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 10912 {
b49e97c9 10913 (*_bfd_error_handler)
d003868e
AM
10914 (_("%B: warning: linking PIC files with non-PIC files"),
10915 ibfd);
143d77c5 10916 ok = TRUE;
b49e97c9
TS
10917 }
10918
143d77c5
EC
10919 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10920 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10921 if (! (new_flags & EF_MIPS_PIC))
10922 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10923
10924 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10925 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 10926
64543e1a
RS
10927 /* Compare the ISAs. */
10928 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 10929 {
64543e1a 10930 (*_bfd_error_handler)
d003868e
AM
10931 (_("%B: linking 32-bit code with 64-bit code"),
10932 ibfd);
64543e1a
RS
10933 ok = FALSE;
10934 }
10935 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10936 {
10937 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10938 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 10939 {
64543e1a
RS
10940 /* Copy the architecture info from IBFD to OBFD. Also copy
10941 the 32-bit flag (if set) so that we continue to recognise
10942 OBFD as a 32-bit binary. */
10943 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10944 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10945 elf_elfheader (obfd)->e_flags
10946 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10947
10948 /* Copy across the ABI flags if OBFD doesn't use them
10949 and if that was what caused us to treat IBFD as 32-bit. */
10950 if ((old_flags & EF_MIPS_ABI) == 0
10951 && mips_32bit_flags_p (new_flags)
10952 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10953 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
10954 }
10955 else
10956 {
64543e1a 10957 /* The ISAs aren't compatible. */
b49e97c9 10958 (*_bfd_error_handler)
d003868e
AM
10959 (_("%B: linking %s module with previous %s modules"),
10960 ibfd,
64543e1a
RS
10961 bfd_printable_name (ibfd),
10962 bfd_printable_name (obfd));
b34976b6 10963 ok = FALSE;
b49e97c9 10964 }
b49e97c9
TS
10965 }
10966
64543e1a
RS
10967 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10968 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10969
10970 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
10971 does set EI_CLASS differently from any 32-bit ABI. */
10972 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10973 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10974 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10975 {
10976 /* Only error if both are set (to different values). */
10977 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10978 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10979 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10980 {
10981 (*_bfd_error_handler)
d003868e
AM
10982 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10983 ibfd,
b49e97c9
TS
10984 elf_mips_abi_name (ibfd),
10985 elf_mips_abi_name (obfd));
b34976b6 10986 ok = FALSE;
b49e97c9
TS
10987 }
10988 new_flags &= ~EF_MIPS_ABI;
10989 old_flags &= ~EF_MIPS_ABI;
10990 }
10991
fb39dac1
RS
10992 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10993 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10994 {
10995 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10996
10997 new_flags &= ~ EF_MIPS_ARCH_ASE;
10998 old_flags &= ~ EF_MIPS_ARCH_ASE;
10999 }
11000
b49e97c9
TS
11001 /* Warn about any other mismatches */
11002 if (new_flags != old_flags)
11003 {
11004 (*_bfd_error_handler)
d003868e
AM
11005 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11006 ibfd, (unsigned long) new_flags,
b49e97c9 11007 (unsigned long) old_flags);
b34976b6 11008 ok = FALSE;
b49e97c9
TS
11009 }
11010
11011 if (! ok)
11012 {
11013 bfd_set_error (bfd_error_bad_value);
b34976b6 11014 return FALSE;
b49e97c9
TS
11015 }
11016
b34976b6 11017 return TRUE;
b49e97c9
TS
11018}
11019
11020/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11021
b34976b6 11022bfd_boolean
9719ad41 11023_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11024{
11025 BFD_ASSERT (!elf_flags_init (abfd)
11026 || elf_elfheader (abfd)->e_flags == flags);
11027
11028 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11029 elf_flags_init (abfd) = TRUE;
11030 return TRUE;
b49e97c9
TS
11031}
11032
b34976b6 11033bfd_boolean
9719ad41 11034_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11035{
9719ad41 11036 FILE *file = ptr;
b49e97c9
TS
11037
11038 BFD_ASSERT (abfd != NULL && ptr != NULL);
11039
11040 /* Print normal ELF private data. */
11041 _bfd_elf_print_private_bfd_data (abfd, ptr);
11042
11043 /* xgettext:c-format */
11044 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11045
11046 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11047 fprintf (file, _(" [abi=O32]"));
11048 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11049 fprintf (file, _(" [abi=O64]"));
11050 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11051 fprintf (file, _(" [abi=EABI32]"));
11052 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11053 fprintf (file, _(" [abi=EABI64]"));
11054 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11055 fprintf (file, _(" [abi unknown]"));
11056 else if (ABI_N32_P (abfd))
11057 fprintf (file, _(" [abi=N32]"));
11058 else if (ABI_64_P (abfd))
11059 fprintf (file, _(" [abi=64]"));
11060 else
11061 fprintf (file, _(" [no abi set]"));
11062
11063 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11064 fprintf (file, _(" [mips1]"));
11065 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11066 fprintf (file, _(" [mips2]"));
11067 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11068 fprintf (file, _(" [mips3]"));
11069 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11070 fprintf (file, _(" [mips4]"));
11071 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11072 fprintf (file, _(" [mips5]"));
11073 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11074 fprintf (file, _(" [mips32]"));
11075 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11076 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
11077 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11078 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
11079 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11080 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
11081 else
11082 fprintf (file, _(" [unknown ISA]"));
11083
40d32fc6
CD
11084 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11085 fprintf (file, _(" [mdmx]"));
11086
11087 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11088 fprintf (file, _(" [mips16]"));
11089
b49e97c9
TS
11090 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11091 fprintf (file, _(" [32bitmode]"));
11092 else
11093 fprintf (file, _(" [not 32bitmode]"));
11094
11095 fputc ('\n', file);
11096
b34976b6 11097 return TRUE;
b49e97c9 11098}
2f89ff8d 11099
b35d266b 11100const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11101{
7dcb9820
AM
11102 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11103 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
7dcb9820 11104 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
551b43fd
AM
11105 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11106 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11107 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
7dcb9820 11108 { NULL, 0, 0, 0, 0 }
2f89ff8d 11109};
5e2b0d47
NC
11110
11111/* Ensure that the STO_OPTIONAL flag is copied into h->other,
11112 even if this is not a defintion of the symbol. */
11113void
11114_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11115 const Elf_Internal_Sym *isym,
11116 bfd_boolean definition,
11117 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11118{
11119 if (! definition
11120 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11121 h->other |= STO_OPTIONAL;
11122}
12ac1cf5
NC
11123
11124/* Decide whether an undefined symbol is special and can be ignored.
11125 This is the case for OPTIONAL symbols on IRIX. */
11126bfd_boolean
11127_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11128{
11129 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11130}
e0764319
NC
11131
11132bfd_boolean
11133_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11134{
11135 return (sym->st_shndx == SHN_COMMON
11136 || sym->st_shndx == SHN_MIPS_ACOMMON
11137 || sym->st_shndx == SHN_MIPS_SCOMMON);
11138}
This page took 0.908313 seconds and 4 git commands to generate.