* gas/mips/mips32.s: Added cop2 branches with explicit condition
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
66eb6687 3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
b49e97c9
TS
338};
339
0f20cc35
DJ
340#define TLS_RELOC_P(r_type) \
341 (r_type == R_MIPS_TLS_DTPMOD32 \
342 || r_type == R_MIPS_TLS_DTPMOD64 \
343 || r_type == R_MIPS_TLS_DTPREL32 \
344 || r_type == R_MIPS_TLS_DTPREL64 \
345 || r_type == R_MIPS_TLS_GD \
346 || r_type == R_MIPS_TLS_LDM \
347 || r_type == R_MIPS_TLS_DTPREL_HI16 \
348 || r_type == R_MIPS_TLS_DTPREL_LO16 \
349 || r_type == R_MIPS_TLS_GOTTPREL \
350 || r_type == R_MIPS_TLS_TPREL32 \
351 || r_type == R_MIPS_TLS_TPREL64 \
352 || r_type == R_MIPS_TLS_TPREL_HI16 \
353 || r_type == R_MIPS_TLS_TPREL_LO16)
354
b49e97c9
TS
355/* Structure used to pass information to mips_elf_output_extsym. */
356
357struct extsym_info
358{
9e4aeb93
RS
359 bfd *abfd;
360 struct bfd_link_info *info;
b49e97c9
TS
361 struct ecoff_debug_info *debug;
362 const struct ecoff_debug_swap *swap;
b34976b6 363 bfd_boolean failed;
b49e97c9
TS
364};
365
8dc1a139 366/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
367
368static const char * const mips_elf_dynsym_rtproc_names[] =
369{
370 "_procedure_table",
371 "_procedure_string_table",
372 "_procedure_table_size",
373 NULL
374};
375
376/* These structures are used to generate the .compact_rel section on
8dc1a139 377 IRIX5. */
b49e97c9
TS
378
379typedef struct
380{
381 unsigned long id1; /* Always one? */
382 unsigned long num; /* Number of compact relocation entries. */
383 unsigned long id2; /* Always two? */
384 unsigned long offset; /* The file offset of the first relocation. */
385 unsigned long reserved0; /* Zero? */
386 unsigned long reserved1; /* Zero? */
387} Elf32_compact_rel;
388
389typedef struct
390{
391 bfd_byte id1[4];
392 bfd_byte num[4];
393 bfd_byte id2[4];
394 bfd_byte offset[4];
395 bfd_byte reserved0[4];
396 bfd_byte reserved1[4];
397} Elf32_External_compact_rel;
398
399typedef struct
400{
401 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
402 unsigned int rtype : 4; /* Relocation types. See below. */
403 unsigned int dist2to : 8;
404 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
405 unsigned long konst; /* KONST field. See below. */
406 unsigned long vaddr; /* VADDR to be relocated. */
407} Elf32_crinfo;
408
409typedef struct
410{
411 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
412 unsigned int rtype : 4; /* Relocation types. See below. */
413 unsigned int dist2to : 8;
414 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
415 unsigned long konst; /* KONST field. See below. */
416} Elf32_crinfo2;
417
418typedef struct
419{
420 bfd_byte info[4];
421 bfd_byte konst[4];
422 bfd_byte vaddr[4];
423} Elf32_External_crinfo;
424
425typedef struct
426{
427 bfd_byte info[4];
428 bfd_byte konst[4];
429} Elf32_External_crinfo2;
430
431/* These are the constants used to swap the bitfields in a crinfo. */
432
433#define CRINFO_CTYPE (0x1)
434#define CRINFO_CTYPE_SH (31)
435#define CRINFO_RTYPE (0xf)
436#define CRINFO_RTYPE_SH (27)
437#define CRINFO_DIST2TO (0xff)
438#define CRINFO_DIST2TO_SH (19)
439#define CRINFO_RELVADDR (0x7ffff)
440#define CRINFO_RELVADDR_SH (0)
441
442/* A compact relocation info has long (3 words) or short (2 words)
443 formats. A short format doesn't have VADDR field and relvaddr
444 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
445#define CRF_MIPS_LONG 1
446#define CRF_MIPS_SHORT 0
447
448/* There are 4 types of compact relocation at least. The value KONST
449 has different meaning for each type:
450
451 (type) (konst)
452 CT_MIPS_REL32 Address in data
453 CT_MIPS_WORD Address in word (XXX)
454 CT_MIPS_GPHI_LO GP - vaddr
455 CT_MIPS_JMPAD Address to jump
456 */
457
458#define CRT_MIPS_REL32 0xa
459#define CRT_MIPS_WORD 0xb
460#define CRT_MIPS_GPHI_LO 0xc
461#define CRT_MIPS_JMPAD 0xd
462
463#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
464#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
465#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
466#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
467\f
468/* The structure of the runtime procedure descriptor created by the
469 loader for use by the static exception system. */
470
471typedef struct runtime_pdr {
ae9a127f
NC
472 bfd_vma adr; /* Memory address of start of procedure. */
473 long regmask; /* Save register mask. */
474 long regoffset; /* Save register offset. */
475 long fregmask; /* Save floating point register mask. */
476 long fregoffset; /* Save floating point register offset. */
477 long frameoffset; /* Frame size. */
478 short framereg; /* Frame pointer register. */
479 short pcreg; /* Offset or reg of return pc. */
480 long irpss; /* Index into the runtime string table. */
b49e97c9 481 long reserved;
ae9a127f 482 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
483} RPDR, *pRPDR;
484#define cbRPDR sizeof (RPDR)
485#define rpdNil ((pRPDR) 0)
486\f
b15e6682 487static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69
RS
488 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
489 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 490static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 491 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
492static bfd_vma mips_elf_high
493 (bfd_vma);
b34976b6 494static bfd_boolean mips_elf_stub_section_p
9719ad41 495 (bfd *, asection *);
b34976b6 496static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
497 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
498 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
499 bfd_vma *, asection *);
9719ad41
RS
500static hashval_t mips_elf_got_entry_hash
501 (const void *);
f4416af6 502static bfd_vma mips_elf_adjust_gp
9719ad41 503 (bfd *, struct mips_got_info *, bfd *);
f4416af6 504static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 505 (struct mips_got_info *, bfd *);
f4416af6 506
b49e97c9
TS
507/* This will be used when we sort the dynamic relocation records. */
508static bfd *reldyn_sorting_bfd;
509
510/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
511#define ABI_N32_P(abfd) \
512 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
513
4a14403c 514/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 515#define ABI_64_P(abfd) \
141ff970 516 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 517
4a14403c
TS
518/* Nonzero if ABFD is using NewABI conventions. */
519#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
520
521/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
522#define IRIX_COMPAT(abfd) \
523 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
524
b49e97c9
TS
525/* Whether we are trying to be compatible with IRIX at all. */
526#define SGI_COMPAT(abfd) \
527 (IRIX_COMPAT (abfd) != ict_none)
528
529/* The name of the options section. */
530#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 531 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 532
cc2e31b9
RS
533/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
534 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
535#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
536 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
537
943284cc
DJ
538/* Whether the section is readonly. */
539#define MIPS_ELF_READONLY_SECTION(sec) \
540 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
541 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
542
b49e97c9 543/* The name of the stub section. */
ca07892d 544#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
545
546/* The size of an external REL relocation. */
547#define MIPS_ELF_REL_SIZE(abfd) \
548 (get_elf_backend_data (abfd)->s->sizeof_rel)
549
0a44bf69
RS
550/* The size of an external RELA relocation. */
551#define MIPS_ELF_RELA_SIZE(abfd) \
552 (get_elf_backend_data (abfd)->s->sizeof_rela)
553
b49e97c9
TS
554/* The size of an external dynamic table entry. */
555#define MIPS_ELF_DYN_SIZE(abfd) \
556 (get_elf_backend_data (abfd)->s->sizeof_dyn)
557
558/* The size of a GOT entry. */
559#define MIPS_ELF_GOT_SIZE(abfd) \
560 (get_elf_backend_data (abfd)->s->arch_size / 8)
561
562/* The size of a symbol-table entry. */
563#define MIPS_ELF_SYM_SIZE(abfd) \
564 (get_elf_backend_data (abfd)->s->sizeof_sym)
565
566/* The default alignment for sections, as a power of two. */
567#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 568 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
569
570/* Get word-sized data. */
571#define MIPS_ELF_GET_WORD(abfd, ptr) \
572 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
573
574/* Put out word-sized data. */
575#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
576 (ABI_64_P (abfd) \
577 ? bfd_put_64 (abfd, val, ptr) \
578 : bfd_put_32 (abfd, val, ptr))
579
580/* Add a dynamic symbol table-entry. */
9719ad41 581#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 582 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
583
584#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
585 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
586
4ffba85c
AO
587/* Determine whether the internal relocation of index REL_IDX is REL
588 (zero) or RELA (non-zero). The assumption is that, if there are
589 two relocation sections for this section, one of them is REL and
590 the other is RELA. If the index of the relocation we're testing is
591 in range for the first relocation section, check that the external
592 relocation size is that for RELA. It is also assumed that, if
593 rel_idx is not in range for the first section, and this first
594 section contains REL relocs, then the relocation is in the second
595 section, that is RELA. */
596#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
597 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
598 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
599 > (bfd_vma)(rel_idx)) \
600 == (elf_section_data (sec)->rel_hdr.sh_entsize \
601 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
602 : sizeof (Elf32_External_Rela))))
603
0a44bf69
RS
604/* The name of the dynamic relocation section. */
605#define MIPS_ELF_REL_DYN_NAME(INFO) \
606 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
607
b49e97c9
TS
608/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
609 from smaller values. Start with zero, widen, *then* decrement. */
610#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 611#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
612
613/* The number of local .got entries we reserve. */
0a44bf69
RS
614#define MIPS_RESERVED_GOTNO(INFO) \
615 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 616
f4416af6 617/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
618#define ELF_MIPS_GP_OFFSET(INFO) \
619 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
620
621/* The maximum size of the GOT for it to be addressable using 16-bit
622 offsets from $gp. */
0a44bf69 623#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 624
6a691779 625/* Instructions which appear in a stub. */
b49e97c9 626#define STUB_LW(abfd) \
f4416af6
AO
627 ((ABI_64_P (abfd) \
628 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
629 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 630#define STUB_MOVE(abfd) \
6a691779
TS
631 ((ABI_64_P (abfd) \
632 ? 0x03e0782d /* daddu t7,ra */ \
633 : 0x03e07821)) /* addu t7,ra */
634#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 635#define STUB_LI16(abfd) \
6a691779
TS
636 ((ABI_64_P (abfd) \
637 ? 0x64180000 /* daddiu t8,zero,0 */ \
638 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
639#define MIPS_FUNCTION_STUB_SIZE (16)
640
641/* The name of the dynamic interpreter. This is put in the .interp
642 section. */
643
644#define ELF_DYNAMIC_INTERPRETER(abfd) \
645 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
646 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
647 : "/usr/lib/libc.so.1")
648
649#ifdef BFD64
ee6423ed
AO
650#define MNAME(bfd,pre,pos) \
651 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
652#define ELF_R_SYM(bfd, i) \
653 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
654#define ELF_R_TYPE(bfd, i) \
655 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
656#define ELF_R_INFO(bfd, s, t) \
657 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
658#else
ee6423ed 659#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
660#define ELF_R_SYM(bfd, i) \
661 (ELF32_R_SYM (i))
662#define ELF_R_TYPE(bfd, i) \
663 (ELF32_R_TYPE (i))
664#define ELF_R_INFO(bfd, s, t) \
665 (ELF32_R_INFO (s, t))
666#endif
667\f
668 /* The mips16 compiler uses a couple of special sections to handle
669 floating point arguments.
670
671 Section names that look like .mips16.fn.FNNAME contain stubs that
672 copy floating point arguments from the fp regs to the gp regs and
673 then jump to FNNAME. If any 32 bit function calls FNNAME, the
674 call should be redirected to the stub instead. If no 32 bit
675 function calls FNNAME, the stub should be discarded. We need to
676 consider any reference to the function, not just a call, because
677 if the address of the function is taken we will need the stub,
678 since the address might be passed to a 32 bit function.
679
680 Section names that look like .mips16.call.FNNAME contain stubs
681 that copy floating point arguments from the gp regs to the fp
682 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
683 then any 16 bit function that calls FNNAME should be redirected
684 to the stub instead. If FNNAME is not a 32 bit function, the
685 stub should be discarded.
686
687 .mips16.call.fp.FNNAME sections are similar, but contain stubs
688 which call FNNAME and then copy the return value from the fp regs
689 to the gp regs. These stubs store the return value in $18 while
690 calling FNNAME; any function which might call one of these stubs
691 must arrange to save $18 around the call. (This case is not
692 needed for 32 bit functions that call 16 bit functions, because
693 16 bit functions always return floating point values in both
694 $f0/$f1 and $2/$3.)
695
696 Note that in all cases FNNAME might be defined statically.
697 Therefore, FNNAME is not used literally. Instead, the relocation
698 information will indicate which symbol the section is for.
699
700 We record any stubs that we find in the symbol table. */
701
702#define FN_STUB ".mips16.fn."
703#define CALL_STUB ".mips16.call."
704#define CALL_FP_STUB ".mips16.call.fp."
705\f
0a44bf69
RS
706/* The format of the first PLT entry in a VxWorks executable. */
707static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
708 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
709 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
710 0x8f390008, /* lw t9, 8(t9) */
711 0x00000000, /* nop */
712 0x03200008, /* jr t9 */
713 0x00000000 /* nop */
714};
715
716/* The format of subsequent PLT entries. */
717static const bfd_vma mips_vxworks_exec_plt_entry[] = {
718 0x10000000, /* b .PLT_resolver */
719 0x24180000, /* li t8, <pltindex> */
720 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
721 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
722 0x8f390000, /* lw t9, 0(t9) */
723 0x00000000, /* nop */
724 0x03200008, /* jr t9 */
725 0x00000000 /* nop */
726};
727
728/* The format of the first PLT entry in a VxWorks shared object. */
729static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
730 0x8f990008, /* lw t9, 8(gp) */
731 0x00000000, /* nop */
732 0x03200008, /* jr t9 */
733 0x00000000, /* nop */
734 0x00000000, /* nop */
735 0x00000000 /* nop */
736};
737
738/* The format of subsequent PLT entries. */
739static const bfd_vma mips_vxworks_shared_plt_entry[] = {
740 0x10000000, /* b .PLT_resolver */
741 0x24180000 /* li t8, <pltindex> */
742};
743\f
b49e97c9
TS
744/* Look up an entry in a MIPS ELF linker hash table. */
745
746#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
747 ((struct mips_elf_link_hash_entry *) \
748 elf_link_hash_lookup (&(table)->root, (string), (create), \
749 (copy), (follow)))
750
751/* Traverse a MIPS ELF linker hash table. */
752
753#define mips_elf_link_hash_traverse(table, func, info) \
754 (elf_link_hash_traverse \
755 (&(table)->root, \
9719ad41 756 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
757 (info)))
758
759/* Get the MIPS ELF linker hash table from a link_info structure. */
760
761#define mips_elf_hash_table(p) \
762 ((struct mips_elf_link_hash_table *) ((p)->hash))
763
0f20cc35
DJ
764/* Find the base offsets for thread-local storage in this object,
765 for GD/LD and IE/LE respectively. */
766
767#define TP_OFFSET 0x7000
768#define DTP_OFFSET 0x8000
769
770static bfd_vma
771dtprel_base (struct bfd_link_info *info)
772{
773 /* If tls_sec is NULL, we should have signalled an error already. */
774 if (elf_hash_table (info)->tls_sec == NULL)
775 return 0;
776 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
777}
778
779static bfd_vma
780tprel_base (struct bfd_link_info *info)
781{
782 /* If tls_sec is NULL, we should have signalled an error already. */
783 if (elf_hash_table (info)->tls_sec == NULL)
784 return 0;
785 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
786}
787
b49e97c9
TS
788/* Create an entry in a MIPS ELF linker hash table. */
789
790static struct bfd_hash_entry *
9719ad41
RS
791mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
792 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
793{
794 struct mips_elf_link_hash_entry *ret =
795 (struct mips_elf_link_hash_entry *) entry;
796
797 /* Allocate the structure if it has not already been allocated by a
798 subclass. */
9719ad41
RS
799 if (ret == NULL)
800 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
801 if (ret == NULL)
b49e97c9
TS
802 return (struct bfd_hash_entry *) ret;
803
804 /* Call the allocation method of the superclass. */
805 ret = ((struct mips_elf_link_hash_entry *)
806 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
807 table, string));
9719ad41 808 if (ret != NULL)
b49e97c9
TS
809 {
810 /* Set local fields. */
811 memset (&ret->esym, 0, sizeof (EXTR));
812 /* We use -2 as a marker to indicate that the information has
813 not been set. -1 means there is no associated ifd. */
814 ret->esym.ifd = -2;
815 ret->possibly_dynamic_relocs = 0;
b34976b6 816 ret->readonly_reloc = FALSE;
b34976b6 817 ret->no_fn_stub = FALSE;
b49e97c9 818 ret->fn_stub = NULL;
b34976b6 819 ret->need_fn_stub = FALSE;
b49e97c9
TS
820 ret->call_stub = NULL;
821 ret->call_fp_stub = NULL;
b34976b6 822 ret->forced_local = FALSE;
0a44bf69
RS
823 ret->is_branch_target = FALSE;
824 ret->is_relocation_target = FALSE;
0f20cc35 825 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
826 }
827
828 return (struct bfd_hash_entry *) ret;
829}
f0abc2a1
AM
830
831bfd_boolean
9719ad41 832_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 833{
f592407e
AM
834 if (!sec->used_by_bfd)
835 {
836 struct _mips_elf_section_data *sdata;
837 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 838
f592407e
AM
839 sdata = bfd_zalloc (abfd, amt);
840 if (sdata == NULL)
841 return FALSE;
842 sec->used_by_bfd = sdata;
843 }
f0abc2a1
AM
844
845 return _bfd_elf_new_section_hook (abfd, sec);
846}
b49e97c9
TS
847\f
848/* Read ECOFF debugging information from a .mdebug section into a
849 ecoff_debug_info structure. */
850
b34976b6 851bfd_boolean
9719ad41
RS
852_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
853 struct ecoff_debug_info *debug)
b49e97c9
TS
854{
855 HDRR *symhdr;
856 const struct ecoff_debug_swap *swap;
9719ad41 857 char *ext_hdr;
b49e97c9
TS
858
859 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
860 memset (debug, 0, sizeof (*debug));
861
9719ad41 862 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
863 if (ext_hdr == NULL && swap->external_hdr_size != 0)
864 goto error_return;
865
9719ad41 866 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 867 swap->external_hdr_size))
b49e97c9
TS
868 goto error_return;
869
870 symhdr = &debug->symbolic_header;
871 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
872
873 /* The symbolic header contains absolute file offsets and sizes to
874 read. */
875#define READ(ptr, offset, count, size, type) \
876 if (symhdr->count == 0) \
877 debug->ptr = NULL; \
878 else \
879 { \
880 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 881 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
882 if (debug->ptr == NULL) \
883 goto error_return; \
9719ad41 884 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
885 || bfd_bread (debug->ptr, amt, abfd) != amt) \
886 goto error_return; \
887 }
888
889 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
890 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
891 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
892 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
893 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
894 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
895 union aux_ext *);
896 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
897 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
898 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
899 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
900 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
901#undef READ
902
903 debug->fdr = NULL;
b49e97c9 904
b34976b6 905 return TRUE;
b49e97c9
TS
906
907 error_return:
908 if (ext_hdr != NULL)
909 free (ext_hdr);
910 if (debug->line != NULL)
911 free (debug->line);
912 if (debug->external_dnr != NULL)
913 free (debug->external_dnr);
914 if (debug->external_pdr != NULL)
915 free (debug->external_pdr);
916 if (debug->external_sym != NULL)
917 free (debug->external_sym);
918 if (debug->external_opt != NULL)
919 free (debug->external_opt);
920 if (debug->external_aux != NULL)
921 free (debug->external_aux);
922 if (debug->ss != NULL)
923 free (debug->ss);
924 if (debug->ssext != NULL)
925 free (debug->ssext);
926 if (debug->external_fdr != NULL)
927 free (debug->external_fdr);
928 if (debug->external_rfd != NULL)
929 free (debug->external_rfd);
930 if (debug->external_ext != NULL)
931 free (debug->external_ext);
b34976b6 932 return FALSE;
b49e97c9
TS
933}
934\f
935/* Swap RPDR (runtime procedure table entry) for output. */
936
937static void
9719ad41 938ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
939{
940 H_PUT_S32 (abfd, in->adr, ex->p_adr);
941 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
942 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
943 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
944 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
945 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
946
947 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
948 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
949
950 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
951}
952
953/* Create a runtime procedure table from the .mdebug section. */
954
b34976b6 955static bfd_boolean
9719ad41
RS
956mips_elf_create_procedure_table (void *handle, bfd *abfd,
957 struct bfd_link_info *info, asection *s,
958 struct ecoff_debug_info *debug)
b49e97c9
TS
959{
960 const struct ecoff_debug_swap *swap;
961 HDRR *hdr = &debug->symbolic_header;
962 RPDR *rpdr, *rp;
963 struct rpdr_ext *erp;
9719ad41 964 void *rtproc;
b49e97c9
TS
965 struct pdr_ext *epdr;
966 struct sym_ext *esym;
967 char *ss, **sv;
968 char *str;
969 bfd_size_type size;
970 bfd_size_type count;
971 unsigned long sindex;
972 unsigned long i;
973 PDR pdr;
974 SYMR sym;
975 const char *no_name_func = _("static procedure (no name)");
976
977 epdr = NULL;
978 rpdr = NULL;
979 esym = NULL;
980 ss = NULL;
981 sv = NULL;
982
983 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
984
985 sindex = strlen (no_name_func) + 1;
986 count = hdr->ipdMax;
987 if (count > 0)
988 {
989 size = swap->external_pdr_size;
990
9719ad41 991 epdr = bfd_malloc (size * count);
b49e97c9
TS
992 if (epdr == NULL)
993 goto error_return;
994
9719ad41 995 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
996 goto error_return;
997
998 size = sizeof (RPDR);
9719ad41 999 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1000 if (rpdr == NULL)
1001 goto error_return;
1002
1003 size = sizeof (char *);
9719ad41 1004 sv = bfd_malloc (size * count);
b49e97c9
TS
1005 if (sv == NULL)
1006 goto error_return;
1007
1008 count = hdr->isymMax;
1009 size = swap->external_sym_size;
9719ad41 1010 esym = bfd_malloc (size * count);
b49e97c9
TS
1011 if (esym == NULL)
1012 goto error_return;
1013
9719ad41 1014 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1015 goto error_return;
1016
1017 count = hdr->issMax;
9719ad41 1018 ss = bfd_malloc (count);
b49e97c9
TS
1019 if (ss == NULL)
1020 goto error_return;
f075ee0c 1021 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1022 goto error_return;
1023
1024 count = hdr->ipdMax;
1025 for (i = 0; i < (unsigned long) count; i++, rp++)
1026 {
9719ad41
RS
1027 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1028 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1029 rp->adr = sym.value;
1030 rp->regmask = pdr.regmask;
1031 rp->regoffset = pdr.regoffset;
1032 rp->fregmask = pdr.fregmask;
1033 rp->fregoffset = pdr.fregoffset;
1034 rp->frameoffset = pdr.frameoffset;
1035 rp->framereg = pdr.framereg;
1036 rp->pcreg = pdr.pcreg;
1037 rp->irpss = sindex;
1038 sv[i] = ss + sym.iss;
1039 sindex += strlen (sv[i]) + 1;
1040 }
1041 }
1042
1043 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1044 size = BFD_ALIGN (size, 16);
9719ad41 1045 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1046 if (rtproc == NULL)
1047 {
1048 mips_elf_hash_table (info)->procedure_count = 0;
1049 goto error_return;
1050 }
1051
1052 mips_elf_hash_table (info)->procedure_count = count + 2;
1053
9719ad41 1054 erp = rtproc;
b49e97c9
TS
1055 memset (erp, 0, sizeof (struct rpdr_ext));
1056 erp++;
1057 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1058 strcpy (str, no_name_func);
1059 str += strlen (no_name_func) + 1;
1060 for (i = 0; i < count; i++)
1061 {
1062 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1063 strcpy (str, sv[i]);
1064 str += strlen (sv[i]) + 1;
1065 }
1066 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1067
1068 /* Set the size and contents of .rtproc section. */
eea6121a 1069 s->size = size;
9719ad41 1070 s->contents = rtproc;
b49e97c9
TS
1071
1072 /* Skip this section later on (I don't think this currently
1073 matters, but someday it might). */
8423293d 1074 s->map_head.link_order = NULL;
b49e97c9
TS
1075
1076 if (epdr != NULL)
1077 free (epdr);
1078 if (rpdr != NULL)
1079 free (rpdr);
1080 if (esym != NULL)
1081 free (esym);
1082 if (ss != NULL)
1083 free (ss);
1084 if (sv != NULL)
1085 free (sv);
1086
b34976b6 1087 return TRUE;
b49e97c9
TS
1088
1089 error_return:
1090 if (epdr != NULL)
1091 free (epdr);
1092 if (rpdr != NULL)
1093 free (rpdr);
1094 if (esym != NULL)
1095 free (esym);
1096 if (ss != NULL)
1097 free (ss);
1098 if (sv != NULL)
1099 free (sv);
b34976b6 1100 return FALSE;
b49e97c9
TS
1101}
1102
1103/* Check the mips16 stubs for a particular symbol, and see if we can
1104 discard them. */
1105
b34976b6 1106static bfd_boolean
9719ad41
RS
1107mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1108 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1109{
1110 if (h->root.root.type == bfd_link_hash_warning)
1111 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1112
1113 if (h->fn_stub != NULL
1114 && ! h->need_fn_stub)
1115 {
1116 /* We don't need the fn_stub; the only references to this symbol
1117 are 16 bit calls. Clobber the size to 0 to prevent it from
1118 being included in the link. */
eea6121a 1119 h->fn_stub->size = 0;
b49e97c9
TS
1120 h->fn_stub->flags &= ~SEC_RELOC;
1121 h->fn_stub->reloc_count = 0;
1122 h->fn_stub->flags |= SEC_EXCLUDE;
1123 }
1124
1125 if (h->call_stub != NULL
1126 && h->root.other == STO_MIPS16)
1127 {
1128 /* We don't need the call_stub; this is a 16 bit function, so
1129 calls from other 16 bit functions are OK. Clobber the size
1130 to 0 to prevent it from being included in the link. */
eea6121a 1131 h->call_stub->size = 0;
b49e97c9
TS
1132 h->call_stub->flags &= ~SEC_RELOC;
1133 h->call_stub->reloc_count = 0;
1134 h->call_stub->flags |= SEC_EXCLUDE;
1135 }
1136
1137 if (h->call_fp_stub != NULL
1138 && h->root.other == STO_MIPS16)
1139 {
1140 /* We don't need the call_stub; this is a 16 bit function, so
1141 calls from other 16 bit functions are OK. Clobber the size
1142 to 0 to prevent it from being included in the link. */
eea6121a 1143 h->call_fp_stub->size = 0;
b49e97c9
TS
1144 h->call_fp_stub->flags &= ~SEC_RELOC;
1145 h->call_fp_stub->reloc_count = 0;
1146 h->call_fp_stub->flags |= SEC_EXCLUDE;
1147 }
1148
b34976b6 1149 return TRUE;
b49e97c9
TS
1150}
1151\f
d6f16593
MR
1152/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1153 Most mips16 instructions are 16 bits, but these instructions
1154 are 32 bits.
1155
1156 The format of these instructions is:
1157
1158 +--------------+--------------------------------+
1159 | JALX | X| Imm 20:16 | Imm 25:21 |
1160 +--------------+--------------------------------+
1161 | Immediate 15:0 |
1162 +-----------------------------------------------+
1163
1164 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1165 Note that the immediate value in the first word is swapped.
1166
1167 When producing a relocatable object file, R_MIPS16_26 is
1168 handled mostly like R_MIPS_26. In particular, the addend is
1169 stored as a straight 26-bit value in a 32-bit instruction.
1170 (gas makes life simpler for itself by never adjusting a
1171 R_MIPS16_26 reloc to be against a section, so the addend is
1172 always zero). However, the 32 bit instruction is stored as 2
1173 16-bit values, rather than a single 32-bit value. In a
1174 big-endian file, the result is the same; in a little-endian
1175 file, the two 16-bit halves of the 32 bit value are swapped.
1176 This is so that a disassembler can recognize the jal
1177 instruction.
1178
1179 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1180 instruction stored as two 16-bit values. The addend A is the
1181 contents of the targ26 field. The calculation is the same as
1182 R_MIPS_26. When storing the calculated value, reorder the
1183 immediate value as shown above, and don't forget to store the
1184 value as two 16-bit values.
1185
1186 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1187 defined as
1188
1189 big-endian:
1190 +--------+----------------------+
1191 | | |
1192 | | targ26-16 |
1193 |31 26|25 0|
1194 +--------+----------------------+
1195
1196 little-endian:
1197 +----------+------+-------------+
1198 | | | |
1199 | sub1 | | sub2 |
1200 |0 9|10 15|16 31|
1201 +----------+--------------------+
1202 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1203 ((sub1 << 16) | sub2)).
1204
1205 When producing a relocatable object file, the calculation is
1206 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1207 When producing a fully linked file, the calculation is
1208 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1209 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1210
1211 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1212 mode. A typical instruction will have a format like this:
1213
1214 +--------------+--------------------------------+
1215 | EXTEND | Imm 10:5 | Imm 15:11 |
1216 +--------------+--------------------------------+
1217 | Major | rx | ry | Imm 4:0 |
1218 +--------------+--------------------------------+
1219
1220 EXTEND is the five bit value 11110. Major is the instruction
1221 opcode.
1222
1223 This is handled exactly like R_MIPS_GPREL16, except that the
1224 addend is retrieved and stored as shown in this diagram; that
1225 is, the Imm fields above replace the V-rel16 field.
1226
1227 All we need to do here is shuffle the bits appropriately. As
1228 above, the two 16-bit halves must be swapped on a
1229 little-endian system.
1230
1231 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1232 access data when neither GP-relative nor PC-relative addressing
1233 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1234 except that the addend is retrieved and stored as shown above
1235 for R_MIPS16_GPREL.
1236 */
1237void
1238_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1239 bfd_boolean jal_shuffle, bfd_byte *data)
1240{
1241 bfd_vma extend, insn, val;
1242
1243 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1244 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1245 return;
1246
1247 /* Pick up the mips16 extend instruction and the real instruction. */
1248 extend = bfd_get_16 (abfd, data);
1249 insn = bfd_get_16 (abfd, data + 2);
1250 if (r_type == R_MIPS16_26)
1251 {
1252 if (jal_shuffle)
1253 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1254 | ((extend & 0x1f) << 21) | insn;
1255 else
1256 val = extend << 16 | insn;
1257 }
1258 else
1259 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1260 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1261 bfd_put_32 (abfd, val, data);
1262}
1263
1264void
1265_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1266 bfd_boolean jal_shuffle, bfd_byte *data)
1267{
1268 bfd_vma extend, insn, val;
1269
1270 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1271 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1272 return;
1273
1274 val = bfd_get_32 (abfd, data);
1275 if (r_type == R_MIPS16_26)
1276 {
1277 if (jal_shuffle)
1278 {
1279 insn = val & 0xffff;
1280 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1281 | ((val >> 21) & 0x1f);
1282 }
1283 else
1284 {
1285 insn = val & 0xffff;
1286 extend = val >> 16;
1287 }
1288 }
1289 else
1290 {
1291 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1292 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1293 }
1294 bfd_put_16 (abfd, insn, data + 2);
1295 bfd_put_16 (abfd, extend, data);
1296}
1297
b49e97c9 1298bfd_reloc_status_type
9719ad41
RS
1299_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1300 arelent *reloc_entry, asection *input_section,
1301 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1302{
1303 bfd_vma relocation;
a7ebbfdf 1304 bfd_signed_vma val;
30ac9238 1305 bfd_reloc_status_type status;
b49e97c9
TS
1306
1307 if (bfd_is_com_section (symbol->section))
1308 relocation = 0;
1309 else
1310 relocation = symbol->value;
1311
1312 relocation += symbol->section->output_section->vma;
1313 relocation += symbol->section->output_offset;
1314
07515404 1315 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1316 return bfd_reloc_outofrange;
1317
b49e97c9 1318 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1319 val = reloc_entry->addend;
1320
30ac9238 1321 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1322
b49e97c9 1323 /* Adjust val for the final section location and GP value. If we
1049f94e 1324 are producing relocatable output, we don't want to do this for
b49e97c9 1325 an external symbol. */
1049f94e 1326 if (! relocatable
b49e97c9
TS
1327 || (symbol->flags & BSF_SECTION_SYM) != 0)
1328 val += relocation - gp;
1329
a7ebbfdf
TS
1330 if (reloc_entry->howto->partial_inplace)
1331 {
30ac9238
RS
1332 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1333 (bfd_byte *) data
1334 + reloc_entry->address);
1335 if (status != bfd_reloc_ok)
1336 return status;
a7ebbfdf
TS
1337 }
1338 else
1339 reloc_entry->addend = val;
b49e97c9 1340
1049f94e 1341 if (relocatable)
b49e97c9 1342 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1343
1344 return bfd_reloc_ok;
1345}
1346
1347/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1348 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1349 that contains the relocation field and DATA points to the start of
1350 INPUT_SECTION. */
1351
1352struct mips_hi16
1353{
1354 struct mips_hi16 *next;
1355 bfd_byte *data;
1356 asection *input_section;
1357 arelent rel;
1358};
1359
1360/* FIXME: This should not be a static variable. */
1361
1362static struct mips_hi16 *mips_hi16_list;
1363
1364/* A howto special_function for REL *HI16 relocations. We can only
1365 calculate the correct value once we've seen the partnering
1366 *LO16 relocation, so just save the information for later.
1367
1368 The ABI requires that the *LO16 immediately follow the *HI16.
1369 However, as a GNU extension, we permit an arbitrary number of
1370 *HI16s to be associated with a single *LO16. This significantly
1371 simplies the relocation handling in gcc. */
1372
1373bfd_reloc_status_type
1374_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1375 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1376 asection *input_section, bfd *output_bfd,
1377 char **error_message ATTRIBUTE_UNUSED)
1378{
1379 struct mips_hi16 *n;
1380
07515404 1381 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1382 return bfd_reloc_outofrange;
1383
1384 n = bfd_malloc (sizeof *n);
1385 if (n == NULL)
1386 return bfd_reloc_outofrange;
1387
1388 n->next = mips_hi16_list;
1389 n->data = data;
1390 n->input_section = input_section;
1391 n->rel = *reloc_entry;
1392 mips_hi16_list = n;
1393
1394 if (output_bfd != NULL)
1395 reloc_entry->address += input_section->output_offset;
1396
1397 return bfd_reloc_ok;
1398}
1399
1400/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1401 like any other 16-bit relocation when applied to global symbols, but is
1402 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1403
1404bfd_reloc_status_type
1405_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1406 void *data, asection *input_section,
1407 bfd *output_bfd, char **error_message)
1408{
1409 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1410 || bfd_is_und_section (bfd_get_section (symbol))
1411 || bfd_is_com_section (bfd_get_section (symbol)))
1412 /* The relocation is against a global symbol. */
1413 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1414 input_section, output_bfd,
1415 error_message);
1416
1417 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1418 input_section, output_bfd, error_message);
1419}
1420
1421/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1422 is a straightforward 16 bit inplace relocation, but we must deal with
1423 any partnering high-part relocations as well. */
1424
1425bfd_reloc_status_type
1426_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1427 void *data, asection *input_section,
1428 bfd *output_bfd, char **error_message)
1429{
1430 bfd_vma vallo;
d6f16593 1431 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1432
07515404 1433 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1434 return bfd_reloc_outofrange;
1435
d6f16593
MR
1436 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1437 location);
1438 vallo = bfd_get_32 (abfd, location);
1439 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1440 location);
1441
30ac9238
RS
1442 while (mips_hi16_list != NULL)
1443 {
1444 bfd_reloc_status_type ret;
1445 struct mips_hi16 *hi;
1446
1447 hi = mips_hi16_list;
1448
1449 /* R_MIPS_GOT16 relocations are something of a special case. We
1450 want to install the addend in the same way as for a R_MIPS_HI16
1451 relocation (with a rightshift of 16). However, since GOT16
1452 relocations can also be used with global symbols, their howto
1453 has a rightshift of 0. */
1454 if (hi->rel.howto->type == R_MIPS_GOT16)
1455 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1456
1457 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1458 carry or borrow will induce a change of +1 or -1 in the high part. */
1459 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1460
30ac9238
RS
1461 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1462 hi->input_section, output_bfd,
1463 error_message);
1464 if (ret != bfd_reloc_ok)
1465 return ret;
1466
1467 mips_hi16_list = hi->next;
1468 free (hi);
1469 }
1470
1471 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1472 input_section, output_bfd,
1473 error_message);
1474}
1475
1476/* A generic howto special_function. This calculates and installs the
1477 relocation itself, thus avoiding the oft-discussed problems in
1478 bfd_perform_relocation and bfd_install_relocation. */
1479
1480bfd_reloc_status_type
1481_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1482 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1483 asection *input_section, bfd *output_bfd,
1484 char **error_message ATTRIBUTE_UNUSED)
1485{
1486 bfd_signed_vma val;
1487 bfd_reloc_status_type status;
1488 bfd_boolean relocatable;
1489
1490 relocatable = (output_bfd != NULL);
1491
07515404 1492 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1493 return bfd_reloc_outofrange;
1494
1495 /* Build up the field adjustment in VAL. */
1496 val = 0;
1497 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1498 {
1499 /* Either we're calculating the final field value or we have a
1500 relocation against a section symbol. Add in the section's
1501 offset or address. */
1502 val += symbol->section->output_section->vma;
1503 val += symbol->section->output_offset;
1504 }
1505
1506 if (!relocatable)
1507 {
1508 /* We're calculating the final field value. Add in the symbol's value
1509 and, if pc-relative, subtract the address of the field itself. */
1510 val += symbol->value;
1511 if (reloc_entry->howto->pc_relative)
1512 {
1513 val -= input_section->output_section->vma;
1514 val -= input_section->output_offset;
1515 val -= reloc_entry->address;
1516 }
1517 }
1518
1519 /* VAL is now the final adjustment. If we're keeping this relocation
1520 in the output file, and if the relocation uses a separate addend,
1521 we just need to add VAL to that addend. Otherwise we need to add
1522 VAL to the relocation field itself. */
1523 if (relocatable && !reloc_entry->howto->partial_inplace)
1524 reloc_entry->addend += val;
1525 else
1526 {
d6f16593
MR
1527 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1528
30ac9238
RS
1529 /* Add in the separate addend, if any. */
1530 val += reloc_entry->addend;
1531
1532 /* Add VAL to the relocation field. */
d6f16593
MR
1533 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1534 location);
30ac9238 1535 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1536 location);
1537 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1538 location);
1539
30ac9238
RS
1540 if (status != bfd_reloc_ok)
1541 return status;
1542 }
1543
1544 if (relocatable)
1545 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1546
1547 return bfd_reloc_ok;
1548}
1549\f
1550/* Swap an entry in a .gptab section. Note that these routines rely
1551 on the equivalence of the two elements of the union. */
1552
1553static void
9719ad41
RS
1554bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1555 Elf32_gptab *in)
b49e97c9
TS
1556{
1557 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1558 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1559}
1560
1561static void
9719ad41
RS
1562bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1563 Elf32_External_gptab *ex)
b49e97c9
TS
1564{
1565 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1566 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1567}
1568
1569static void
9719ad41
RS
1570bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1571 Elf32_External_compact_rel *ex)
b49e97c9
TS
1572{
1573 H_PUT_32 (abfd, in->id1, ex->id1);
1574 H_PUT_32 (abfd, in->num, ex->num);
1575 H_PUT_32 (abfd, in->id2, ex->id2);
1576 H_PUT_32 (abfd, in->offset, ex->offset);
1577 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1578 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1579}
1580
1581static void
9719ad41
RS
1582bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1583 Elf32_External_crinfo *ex)
b49e97c9
TS
1584{
1585 unsigned long l;
1586
1587 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1588 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1589 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1590 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1591 H_PUT_32 (abfd, l, ex->info);
1592 H_PUT_32 (abfd, in->konst, ex->konst);
1593 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1594}
b49e97c9
TS
1595\f
1596/* A .reginfo section holds a single Elf32_RegInfo structure. These
1597 routines swap this structure in and out. They are used outside of
1598 BFD, so they are globally visible. */
1599
1600void
9719ad41
RS
1601bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1602 Elf32_RegInfo *in)
b49e97c9
TS
1603{
1604 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1605 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1606 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1607 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1608 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1609 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1610}
1611
1612void
9719ad41
RS
1613bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1614 Elf32_External_RegInfo *ex)
b49e97c9
TS
1615{
1616 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1617 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1618 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1619 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1620 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1621 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1622}
1623
1624/* In the 64 bit ABI, the .MIPS.options section holds register
1625 information in an Elf64_Reginfo structure. These routines swap
1626 them in and out. They are globally visible because they are used
1627 outside of BFD. These routines are here so that gas can call them
1628 without worrying about whether the 64 bit ABI has been included. */
1629
1630void
9719ad41
RS
1631bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1632 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1633{
1634 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1635 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1636 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1637 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1638 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1639 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1640 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1641}
1642
1643void
9719ad41
RS
1644bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1645 Elf64_External_RegInfo *ex)
b49e97c9
TS
1646{
1647 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1648 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1649 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1650 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1651 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1652 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1653 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1654}
1655
1656/* Swap in an options header. */
1657
1658void
9719ad41
RS
1659bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1660 Elf_Internal_Options *in)
b49e97c9
TS
1661{
1662 in->kind = H_GET_8 (abfd, ex->kind);
1663 in->size = H_GET_8 (abfd, ex->size);
1664 in->section = H_GET_16 (abfd, ex->section);
1665 in->info = H_GET_32 (abfd, ex->info);
1666}
1667
1668/* Swap out an options header. */
1669
1670void
9719ad41
RS
1671bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1672 Elf_External_Options *ex)
b49e97c9
TS
1673{
1674 H_PUT_8 (abfd, in->kind, ex->kind);
1675 H_PUT_8 (abfd, in->size, ex->size);
1676 H_PUT_16 (abfd, in->section, ex->section);
1677 H_PUT_32 (abfd, in->info, ex->info);
1678}
1679\f
1680/* This function is called via qsort() to sort the dynamic relocation
1681 entries by increasing r_symndx value. */
1682
1683static int
9719ad41 1684sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1685{
947216bf
AM
1686 Elf_Internal_Rela int_reloc1;
1687 Elf_Internal_Rela int_reloc2;
b49e97c9 1688
947216bf
AM
1689 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1690 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1691
947216bf 1692 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1693}
1694
f4416af6
AO
1695/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1696
1697static int
7e3102a7
AM
1698sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1699 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1700{
7e3102a7 1701#ifdef BFD64
f4416af6
AO
1702 Elf_Internal_Rela int_reloc1[3];
1703 Elf_Internal_Rela int_reloc2[3];
1704
1705 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1706 (reldyn_sorting_bfd, arg1, int_reloc1);
1707 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1708 (reldyn_sorting_bfd, arg2, int_reloc2);
1709
1710 return (ELF64_R_SYM (int_reloc1[0].r_info)
1711 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1712#else
1713 abort ();
1714#endif
f4416af6
AO
1715}
1716
1717
b49e97c9
TS
1718/* This routine is used to write out ECOFF debugging external symbol
1719 information. It is called via mips_elf_link_hash_traverse. The
1720 ECOFF external symbol information must match the ELF external
1721 symbol information. Unfortunately, at this point we don't know
1722 whether a symbol is required by reloc information, so the two
1723 tables may wind up being different. We must sort out the external
1724 symbol information before we can set the final size of the .mdebug
1725 section, and we must set the size of the .mdebug section before we
1726 can relocate any sections, and we can't know which symbols are
1727 required by relocation until we relocate the sections.
1728 Fortunately, it is relatively unlikely that any symbol will be
1729 stripped but required by a reloc. In particular, it can not happen
1730 when generating a final executable. */
1731
b34976b6 1732static bfd_boolean
9719ad41 1733mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1734{
9719ad41 1735 struct extsym_info *einfo = data;
b34976b6 1736 bfd_boolean strip;
b49e97c9
TS
1737 asection *sec, *output_section;
1738
1739 if (h->root.root.type == bfd_link_hash_warning)
1740 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1741
1742 if (h->root.indx == -2)
b34976b6 1743 strip = FALSE;
f5385ebf 1744 else if ((h->root.def_dynamic
77cfaee6
AM
1745 || h->root.ref_dynamic
1746 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1747 && !h->root.def_regular
1748 && !h->root.ref_regular)
b34976b6 1749 strip = TRUE;
b49e97c9
TS
1750 else if (einfo->info->strip == strip_all
1751 || (einfo->info->strip == strip_some
1752 && bfd_hash_lookup (einfo->info->keep_hash,
1753 h->root.root.root.string,
b34976b6
AM
1754 FALSE, FALSE) == NULL))
1755 strip = TRUE;
b49e97c9 1756 else
b34976b6 1757 strip = FALSE;
b49e97c9
TS
1758
1759 if (strip)
b34976b6 1760 return TRUE;
b49e97c9
TS
1761
1762 if (h->esym.ifd == -2)
1763 {
1764 h->esym.jmptbl = 0;
1765 h->esym.cobol_main = 0;
1766 h->esym.weakext = 0;
1767 h->esym.reserved = 0;
1768 h->esym.ifd = ifdNil;
1769 h->esym.asym.value = 0;
1770 h->esym.asym.st = stGlobal;
1771
1772 if (h->root.root.type == bfd_link_hash_undefined
1773 || h->root.root.type == bfd_link_hash_undefweak)
1774 {
1775 const char *name;
1776
1777 /* Use undefined class. Also, set class and type for some
1778 special symbols. */
1779 name = h->root.root.root.string;
1780 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1781 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1782 {
1783 h->esym.asym.sc = scData;
1784 h->esym.asym.st = stLabel;
1785 h->esym.asym.value = 0;
1786 }
1787 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1788 {
1789 h->esym.asym.sc = scAbs;
1790 h->esym.asym.st = stLabel;
1791 h->esym.asym.value =
1792 mips_elf_hash_table (einfo->info)->procedure_count;
1793 }
4a14403c 1794 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1795 {
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value = elf_gp (einfo->abfd);
1799 }
1800 else
1801 h->esym.asym.sc = scUndefined;
1802 }
1803 else if (h->root.root.type != bfd_link_hash_defined
1804 && h->root.root.type != bfd_link_hash_defweak)
1805 h->esym.asym.sc = scAbs;
1806 else
1807 {
1808 const char *name;
1809
1810 sec = h->root.root.u.def.section;
1811 output_section = sec->output_section;
1812
1813 /* When making a shared library and symbol h is the one from
1814 the another shared library, OUTPUT_SECTION may be null. */
1815 if (output_section == NULL)
1816 h->esym.asym.sc = scUndefined;
1817 else
1818 {
1819 name = bfd_section_name (output_section->owner, output_section);
1820
1821 if (strcmp (name, ".text") == 0)
1822 h->esym.asym.sc = scText;
1823 else if (strcmp (name, ".data") == 0)
1824 h->esym.asym.sc = scData;
1825 else if (strcmp (name, ".sdata") == 0)
1826 h->esym.asym.sc = scSData;
1827 else if (strcmp (name, ".rodata") == 0
1828 || strcmp (name, ".rdata") == 0)
1829 h->esym.asym.sc = scRData;
1830 else if (strcmp (name, ".bss") == 0)
1831 h->esym.asym.sc = scBss;
1832 else if (strcmp (name, ".sbss") == 0)
1833 h->esym.asym.sc = scSBss;
1834 else if (strcmp (name, ".init") == 0)
1835 h->esym.asym.sc = scInit;
1836 else if (strcmp (name, ".fini") == 0)
1837 h->esym.asym.sc = scFini;
1838 else
1839 h->esym.asym.sc = scAbs;
1840 }
1841 }
1842
1843 h->esym.asym.reserved = 0;
1844 h->esym.asym.index = indexNil;
1845 }
1846
1847 if (h->root.root.type == bfd_link_hash_common)
1848 h->esym.asym.value = h->root.root.u.c.size;
1849 else if (h->root.root.type == bfd_link_hash_defined
1850 || h->root.root.type == bfd_link_hash_defweak)
1851 {
1852 if (h->esym.asym.sc == scCommon)
1853 h->esym.asym.sc = scBss;
1854 else if (h->esym.asym.sc == scSCommon)
1855 h->esym.asym.sc = scSBss;
1856
1857 sec = h->root.root.u.def.section;
1858 output_section = sec->output_section;
1859 if (output_section != NULL)
1860 h->esym.asym.value = (h->root.root.u.def.value
1861 + sec->output_offset
1862 + output_section->vma);
1863 else
1864 h->esym.asym.value = 0;
1865 }
f5385ebf 1866 else if (h->root.needs_plt)
b49e97c9
TS
1867 {
1868 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1869 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1870
1871 while (hd->root.root.type == bfd_link_hash_indirect)
1872 {
1873 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1874 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1875 }
1876
1877 if (!no_fn_stub)
1878 {
1879 /* Set type and value for a symbol with a function stub. */
1880 h->esym.asym.st = stProc;
1881 sec = hd->root.root.u.def.section;
1882 if (sec == NULL)
1883 h->esym.asym.value = 0;
1884 else
1885 {
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (hd->root.plt.offset
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
b49e97c9
TS
1894 }
1895 }
1896
1897 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1898 h->root.root.root.string,
1899 &h->esym))
1900 {
b34976b6
AM
1901 einfo->failed = TRUE;
1902 return FALSE;
b49e97c9
TS
1903 }
1904
b34976b6 1905 return TRUE;
b49e97c9
TS
1906}
1907
1908/* A comparison routine used to sort .gptab entries. */
1909
1910static int
9719ad41 1911gptab_compare (const void *p1, const void *p2)
b49e97c9 1912{
9719ad41
RS
1913 const Elf32_gptab *a1 = p1;
1914 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1915
1916 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1917}
1918\f
b15e6682 1919/* Functions to manage the got entry hash table. */
f4416af6
AO
1920
1921/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1922 hash number. */
1923
1924static INLINE hashval_t
9719ad41 1925mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1926{
1927#ifdef BFD64
1928 return addr + (addr >> 32);
1929#else
1930 return addr;
1931#endif
1932}
1933
1934/* got_entries only match if they're identical, except for gotidx, so
1935 use all fields to compute the hash, and compare the appropriate
1936 union members. */
1937
b15e6682 1938static hashval_t
9719ad41 1939mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1940{
1941 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1942
38985a1c 1943 return entry->symndx
0f20cc35 1944 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1945 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1946 : entry->abfd->id
1947 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1948 : entry->d.h->root.root.root.hash));
b15e6682
AO
1949}
1950
1951static int
9719ad41 1952mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1953{
1954 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1955 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1956
0f20cc35
DJ
1957 /* An LDM entry can only match another LDM entry. */
1958 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1959 return 0;
1960
b15e6682 1961 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1962 && (! e1->abfd ? e1->d.address == e2->d.address
1963 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1964 : e1->d.h == e2->d.h);
1965}
1966
1967/* multi_got_entries are still a match in the case of global objects,
1968 even if the input bfd in which they're referenced differs, so the
1969 hash computation and compare functions are adjusted
1970 accordingly. */
1971
1972static hashval_t
9719ad41 1973mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1974{
1975 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1976
1977 return entry->symndx
1978 + (! entry->abfd
1979 ? mips_elf_hash_bfd_vma (entry->d.address)
1980 : entry->symndx >= 0
0f20cc35
DJ
1981 ? ((entry->tls_type & GOT_TLS_LDM)
1982 ? (GOT_TLS_LDM << 17)
1983 : (entry->abfd->id
1984 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1985 : entry->d.h->root.root.root.hash);
1986}
1987
1988static int
9719ad41 1989mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1990{
1991 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1992 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1993
0f20cc35
DJ
1994 /* Any two LDM entries match. */
1995 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1996 return 1;
1997
1998 /* Nothing else matches an LDM entry. */
1999 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2000 return 0;
2001
f4416af6
AO
2002 return e1->symndx == e2->symndx
2003 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2004 : e1->abfd == NULL || e2->abfd == NULL
2005 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2006 : e1->d.h == e2->d.h);
b15e6682
AO
2007}
2008\f
0a44bf69
RS
2009/* Return the dynamic relocation section. If it doesn't exist, try to
2010 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2011 if creation fails. */
f4416af6
AO
2012
2013static asection *
0a44bf69 2014mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2015{
0a44bf69 2016 const char *dname;
f4416af6 2017 asection *sreloc;
0a44bf69 2018 bfd *dynobj;
f4416af6 2019
0a44bf69
RS
2020 dname = MIPS_ELF_REL_DYN_NAME (info);
2021 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2022 sreloc = bfd_get_section_by_name (dynobj, dname);
2023 if (sreloc == NULL && create_p)
2024 {
3496cb2a
L
2025 sreloc = bfd_make_section_with_flags (dynobj, dname,
2026 (SEC_ALLOC
2027 | SEC_LOAD
2028 | SEC_HAS_CONTENTS
2029 | SEC_IN_MEMORY
2030 | SEC_LINKER_CREATED
2031 | SEC_READONLY));
f4416af6 2032 if (sreloc == NULL
f4416af6 2033 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2034 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2035 return NULL;
2036 }
2037 return sreloc;
2038}
2039
b49e97c9
TS
2040/* Returns the GOT section for ABFD. */
2041
2042static asection *
9719ad41 2043mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2044{
f4416af6
AO
2045 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2046 if (sgot == NULL
2047 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2048 return NULL;
2049 return sgot;
b49e97c9
TS
2050}
2051
2052/* Returns the GOT information associated with the link indicated by
2053 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2054 section. */
2055
2056static struct mips_got_info *
9719ad41 2057mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2058{
2059 asection *sgot;
2060 struct mips_got_info *g;
2061
f4416af6 2062 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2063 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2064 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2065 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2066 BFD_ASSERT (g != NULL);
2067
2068 if (sgotp)
f4416af6
AO
2069 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2070
b49e97c9
TS
2071 return g;
2072}
2073
0f20cc35
DJ
2074/* Count the number of relocations needed for a TLS GOT entry, with
2075 access types from TLS_TYPE, and symbol H (or a local symbol if H
2076 is NULL). */
2077
2078static int
2079mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2080 struct elf_link_hash_entry *h)
2081{
2082 int indx = 0;
2083 int ret = 0;
2084 bfd_boolean need_relocs = FALSE;
2085 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2086
2087 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2088 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2089 indx = h->dynindx;
2090
2091 if ((info->shared || indx != 0)
2092 && (h == NULL
2093 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2094 || h->root.type != bfd_link_hash_undefweak))
2095 need_relocs = TRUE;
2096
2097 if (!need_relocs)
2098 return FALSE;
2099
2100 if (tls_type & GOT_TLS_GD)
2101 {
2102 ret++;
2103 if (indx != 0)
2104 ret++;
2105 }
2106
2107 if (tls_type & GOT_TLS_IE)
2108 ret++;
2109
2110 if ((tls_type & GOT_TLS_LDM) && info->shared)
2111 ret++;
2112
2113 return ret;
2114}
2115
2116/* Count the number of TLS relocations required for the GOT entry in
2117 ARG1, if it describes a local symbol. */
2118
2119static int
2120mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2121{
2122 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2123 struct mips_elf_count_tls_arg *arg = arg2;
2124
2125 if (entry->abfd != NULL && entry->symndx != -1)
2126 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2127
2128 return 1;
2129}
2130
2131/* Count the number of TLS GOT entries required for the global (or
2132 forced-local) symbol in ARG1. */
2133
2134static int
2135mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2136{
2137 struct mips_elf_link_hash_entry *hm
2138 = (struct mips_elf_link_hash_entry *) arg1;
2139 struct mips_elf_count_tls_arg *arg = arg2;
2140
2141 if (hm->tls_type & GOT_TLS_GD)
2142 arg->needed += 2;
2143 if (hm->tls_type & GOT_TLS_IE)
2144 arg->needed += 1;
2145
2146 return 1;
2147}
2148
2149/* Count the number of TLS relocations required for the global (or
2150 forced-local) symbol in ARG1. */
2151
2152static int
2153mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2154{
2155 struct mips_elf_link_hash_entry *hm
2156 = (struct mips_elf_link_hash_entry *) arg1;
2157 struct mips_elf_count_tls_arg *arg = arg2;
2158
2159 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2160
2161 return 1;
2162}
2163
2164/* Output a simple dynamic relocation into SRELOC. */
2165
2166static void
2167mips_elf_output_dynamic_relocation (bfd *output_bfd,
2168 asection *sreloc,
2169 unsigned long indx,
2170 int r_type,
2171 bfd_vma offset)
2172{
2173 Elf_Internal_Rela rel[3];
2174
2175 memset (rel, 0, sizeof (rel));
2176
2177 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2178 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2179
2180 if (ABI_64_P (output_bfd))
2181 {
2182 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2183 (output_bfd, &rel[0],
2184 (sreloc->contents
2185 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2186 }
2187 else
2188 bfd_elf32_swap_reloc_out
2189 (output_bfd, &rel[0],
2190 (sreloc->contents
2191 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2192 ++sreloc->reloc_count;
2193}
2194
2195/* Initialize a set of TLS GOT entries for one symbol. */
2196
2197static void
2198mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2199 unsigned char *tls_type_p,
2200 struct bfd_link_info *info,
2201 struct mips_elf_link_hash_entry *h,
2202 bfd_vma value)
2203{
2204 int indx;
2205 asection *sreloc, *sgot;
2206 bfd_vma offset, offset2;
2207 bfd *dynobj;
2208 bfd_boolean need_relocs = FALSE;
2209
2210 dynobj = elf_hash_table (info)->dynobj;
2211 sgot = mips_elf_got_section (dynobj, FALSE);
2212
2213 indx = 0;
2214 if (h != NULL)
2215 {
2216 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2217
2218 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2219 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2220 indx = h->root.dynindx;
2221 }
2222
2223 if (*tls_type_p & GOT_TLS_DONE)
2224 return;
2225
2226 if ((info->shared || indx != 0)
2227 && (h == NULL
2228 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2229 || h->root.type != bfd_link_hash_undefweak))
2230 need_relocs = TRUE;
2231
2232 /* MINUS_ONE means the symbol is not defined in this object. It may not
2233 be defined at all; assume that the value doesn't matter in that
2234 case. Otherwise complain if we would use the value. */
2235 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2236 || h->root.root.type == bfd_link_hash_undefweak);
2237
2238 /* Emit necessary relocations. */
0a44bf69 2239 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2240
2241 /* General Dynamic. */
2242 if (*tls_type_p & GOT_TLS_GD)
2243 {
2244 offset = got_offset;
2245 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2246
2247 if (need_relocs)
2248 {
2249 mips_elf_output_dynamic_relocation
2250 (abfd, sreloc, indx,
2251 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2252 sgot->output_offset + sgot->output_section->vma + offset);
2253
2254 if (indx)
2255 mips_elf_output_dynamic_relocation
2256 (abfd, sreloc, indx,
2257 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2258 sgot->output_offset + sgot->output_section->vma + offset2);
2259 else
2260 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2261 sgot->contents + offset2);
2262 }
2263 else
2264 {
2265 MIPS_ELF_PUT_WORD (abfd, 1,
2266 sgot->contents + offset);
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2269 }
2270
2271 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2272 }
2273
2274 /* Initial Exec model. */
2275 if (*tls_type_p & GOT_TLS_IE)
2276 {
2277 offset = got_offset;
2278
2279 if (need_relocs)
2280 {
2281 if (indx == 0)
2282 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2283 sgot->contents + offset);
2284 else
2285 MIPS_ELF_PUT_WORD (abfd, 0,
2286 sgot->contents + offset);
2287
2288 mips_elf_output_dynamic_relocation
2289 (abfd, sreloc, indx,
2290 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2291 sgot->output_offset + sgot->output_section->vma + offset);
2292 }
2293 else
2294 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2295 sgot->contents + offset);
2296 }
2297
2298 if (*tls_type_p & GOT_TLS_LDM)
2299 {
2300 /* The initial offset is zero, and the LD offsets will include the
2301 bias by DTP_OFFSET. */
2302 MIPS_ELF_PUT_WORD (abfd, 0,
2303 sgot->contents + got_offset
2304 + MIPS_ELF_GOT_SIZE (abfd));
2305
2306 if (!info->shared)
2307 MIPS_ELF_PUT_WORD (abfd, 1,
2308 sgot->contents + got_offset);
2309 else
2310 mips_elf_output_dynamic_relocation
2311 (abfd, sreloc, indx,
2312 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2313 sgot->output_offset + sgot->output_section->vma + got_offset);
2314 }
2315
2316 *tls_type_p |= GOT_TLS_DONE;
2317}
2318
2319/* Return the GOT index to use for a relocation of type R_TYPE against
2320 a symbol accessed using TLS_TYPE models. The GOT entries for this
2321 symbol in this GOT start at GOT_INDEX. This function initializes the
2322 GOT entries and corresponding relocations. */
2323
2324static bfd_vma
2325mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2326 int r_type, struct bfd_link_info *info,
2327 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2328{
2329 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2330 || r_type == R_MIPS_TLS_LDM);
2331
2332 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2333
2334 if (r_type == R_MIPS_TLS_GOTTPREL)
2335 {
2336 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2337 if (*tls_type & GOT_TLS_GD)
2338 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2339 else
2340 return got_index;
2341 }
2342
2343 if (r_type == R_MIPS_TLS_GD)
2344 {
2345 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2346 return got_index;
2347 }
2348
2349 if (r_type == R_MIPS_TLS_LDM)
2350 {
2351 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2352 return got_index;
2353 }
2354
2355 return got_index;
2356}
2357
0a44bf69
RS
2358/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2359 for global symbol H. .got.plt comes before the GOT, so the offset
2360 will be negative. */
2361
2362static bfd_vma
2363mips_elf_gotplt_index (struct bfd_link_info *info,
2364 struct elf_link_hash_entry *h)
2365{
2366 bfd_vma plt_index, got_address, got_value;
2367 struct mips_elf_link_hash_table *htab;
2368
2369 htab = mips_elf_hash_table (info);
2370 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2371
2372 /* Calculate the index of the symbol's PLT entry. */
2373 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2374
2375 /* Calculate the address of the associated .got.plt entry. */
2376 got_address = (htab->sgotplt->output_section->vma
2377 + htab->sgotplt->output_offset
2378 + plt_index * 4);
2379
2380 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2381 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2382 + htab->root.hgot->root.u.def.section->output_offset
2383 + htab->root.hgot->root.u.def.value);
2384
2385 return got_address - got_value;
2386}
2387
2388/* Return the GOT offset for address VALUE, which was derived from
2389 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2390 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2391 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2392 offset can be found. */
b49e97c9
TS
2393
2394static bfd_vma
9719ad41 2395mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2396 asection *input_section, bfd_vma value,
2397 unsigned long r_symndx,
0f20cc35 2398 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2399{
2400 asection *sgot;
2401 struct mips_got_info *g;
b15e6682 2402 struct mips_got_entry *entry;
b49e97c9
TS
2403
2404 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2405
0a44bf69
RS
2406 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2407 input_section, value,
0f20cc35
DJ
2408 r_symndx, h, r_type);
2409 if (!entry)
b15e6682 2410 return MINUS_ONE;
0f20cc35
DJ
2411
2412 if (TLS_RELOC_P (r_type))
ead49a57
RS
2413 {
2414 if (entry->symndx == -1 && g->next == NULL)
2415 /* A type (3) entry in the single-GOT case. We use the symbol's
2416 hash table entry to track the index. */
2417 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2418 r_type, info, h, value);
2419 else
2420 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2421 r_type, info, h, value);
2422 }
0f20cc35
DJ
2423 else
2424 return entry->gotidx;
b49e97c9
TS
2425}
2426
2427/* Returns the GOT index for the global symbol indicated by H. */
2428
2429static bfd_vma
0f20cc35
DJ
2430mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2431 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2432{
2433 bfd_vma index;
2434 asection *sgot;
f4416af6 2435 struct mips_got_info *g, *gg;
d0c7ff07 2436 long global_got_dynindx = 0;
b49e97c9 2437
f4416af6
AO
2438 gg = g = mips_elf_got_info (abfd, &sgot);
2439 if (g->bfd2got && ibfd)
2440 {
2441 struct mips_got_entry e, *p;
143d77c5 2442
f4416af6
AO
2443 BFD_ASSERT (h->dynindx >= 0);
2444
2445 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2446 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2447 {
2448 e.abfd = ibfd;
2449 e.symndx = -1;
2450 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2451 e.tls_type = 0;
f4416af6 2452
9719ad41 2453 p = htab_find (g->got_entries, &e);
f4416af6
AO
2454
2455 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2456
2457 if (TLS_RELOC_P (r_type))
2458 {
2459 bfd_vma value = MINUS_ONE;
2460 if ((h->root.type == bfd_link_hash_defined
2461 || h->root.type == bfd_link_hash_defweak)
2462 && h->root.u.def.section->output_section)
2463 value = (h->root.u.def.value
2464 + h->root.u.def.section->output_offset
2465 + h->root.u.def.section->output_section->vma);
2466
2467 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2468 info, e.d.h, value);
2469 }
2470 else
2471 return p->gotidx;
f4416af6
AO
2472 }
2473 }
2474
2475 if (gg->global_gotsym != NULL)
2476 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2477
0f20cc35
DJ
2478 if (TLS_RELOC_P (r_type))
2479 {
2480 struct mips_elf_link_hash_entry *hm
2481 = (struct mips_elf_link_hash_entry *) h;
2482 bfd_vma value = MINUS_ONE;
2483
2484 if ((h->root.type == bfd_link_hash_defined
2485 || h->root.type == bfd_link_hash_defweak)
2486 && h->root.u.def.section->output_section)
2487 value = (h->root.u.def.value
2488 + h->root.u.def.section->output_offset
2489 + h->root.u.def.section->output_section->vma);
2490
2491 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2492 r_type, info, hm, value);
2493 }
2494 else
2495 {
2496 /* Once we determine the global GOT entry with the lowest dynamic
2497 symbol table index, we must put all dynamic symbols with greater
2498 indices into the GOT. That makes it easy to calculate the GOT
2499 offset. */
2500 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2501 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2502 * MIPS_ELF_GOT_SIZE (abfd));
2503 }
eea6121a 2504 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2505
2506 return index;
2507}
2508
0a44bf69
RS
2509/* Find a GOT page entry that points to within 32KB of VALUE, which was
2510 calculated from a symbol belonging to INPUT_SECTION. These entries
2511 are supposed to be placed at small offsets in the GOT, i.e., within
2512 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2513 could be created. If OFFSETP is nonnull, use it to return the
2514 offset of the GOT entry from VALUE. */
b49e97c9
TS
2515
2516static bfd_vma
9719ad41 2517mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69 2518 asection *input_section, bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2519{
2520 asection *sgot;
2521 struct mips_got_info *g;
0a44bf69 2522 bfd_vma page, index;
b15e6682 2523 struct mips_got_entry *entry;
b49e97c9
TS
2524
2525 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2526
0a44bf69
RS
2527 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2528 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2529 input_section, page, 0,
0f20cc35 2530 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2531
b15e6682
AO
2532 if (!entry)
2533 return MINUS_ONE;
143d77c5 2534
b15e6682 2535 index = entry->gotidx;
b49e97c9
TS
2536
2537 if (offsetp)
f4416af6 2538 *offsetp = value - entry->d.address;
b49e97c9
TS
2539
2540 return index;
2541}
2542
0a44bf69
RS
2543/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2544 which was calculated from a symbol belonging to INPUT_SECTION.
2545 EXTERNAL is true if the relocation was against a global symbol
2546 that has been forced local. */
b49e97c9
TS
2547
2548static bfd_vma
9719ad41 2549mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2550 asection *input_section, bfd_vma value,
2551 bfd_boolean external)
b49e97c9
TS
2552{
2553 asection *sgot;
2554 struct mips_got_info *g;
b15e6682 2555 struct mips_got_entry *entry;
b49e97c9 2556
0a44bf69
RS
2557 /* GOT16 relocations against local symbols are followed by a LO16
2558 relocation; those against global symbols are not. Thus if the
2559 symbol was originally local, the GOT16 relocation should load the
2560 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2561 if (! external)
0a44bf69 2562 value = mips_elf_high (value) << 16;
b49e97c9
TS
2563
2564 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2565
0a44bf69
RS
2566 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2567 input_section, value, 0,
2568 NULL, R_MIPS_GOT16);
b15e6682
AO
2569 if (entry)
2570 return entry->gotidx;
2571 else
2572 return MINUS_ONE;
b49e97c9
TS
2573}
2574
2575/* Returns the offset for the entry at the INDEXth position
2576 in the GOT. */
2577
2578static bfd_vma
9719ad41
RS
2579mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2580 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2581{
2582 asection *sgot;
2583 bfd_vma gp;
f4416af6 2584 struct mips_got_info *g;
b49e97c9 2585
f4416af6
AO
2586 g = mips_elf_got_info (dynobj, &sgot);
2587 gp = _bfd_get_gp_value (output_bfd)
2588 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2589
f4416af6 2590 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2591}
2592
0a44bf69
RS
2593/* Create and return a local GOT entry for VALUE, which was calculated
2594 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2595 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2596 instead. */
b49e97c9 2597
b15e6682 2598static struct mips_got_entry *
0a44bf69
RS
2599mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2600 bfd *ibfd, struct mips_got_info *gg,
2601 asection *sgot, asection *input_section,
2602 bfd_vma value, unsigned long r_symndx,
0f20cc35
DJ
2603 struct mips_elf_link_hash_entry *h,
2604 int r_type)
b49e97c9 2605{
b15e6682 2606 struct mips_got_entry entry, **loc;
f4416af6 2607 struct mips_got_info *g;
0a44bf69
RS
2608 struct mips_elf_link_hash_table *htab;
2609
2610 htab = mips_elf_hash_table (info);
b15e6682 2611
f4416af6
AO
2612 entry.abfd = NULL;
2613 entry.symndx = -1;
2614 entry.d.address = value;
0f20cc35 2615 entry.tls_type = 0;
f4416af6
AO
2616
2617 g = mips_elf_got_for_ibfd (gg, ibfd);
2618 if (g == NULL)
2619 {
2620 g = mips_elf_got_for_ibfd (gg, abfd);
2621 BFD_ASSERT (g != NULL);
2622 }
b15e6682 2623
0f20cc35
DJ
2624 /* We might have a symbol, H, if it has been forced local. Use the
2625 global entry then. It doesn't matter whether an entry is local
2626 or global for TLS, since the dynamic linker does not
2627 automatically relocate TLS GOT entries. */
a008ac03 2628 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2629 if (TLS_RELOC_P (r_type))
2630 {
2631 struct mips_got_entry *p;
2632
2633 entry.abfd = ibfd;
2634 if (r_type == R_MIPS_TLS_LDM)
2635 {
2636 entry.tls_type = GOT_TLS_LDM;
2637 entry.symndx = 0;
2638 entry.d.addend = 0;
2639 }
2640 else if (h == NULL)
2641 {
2642 entry.symndx = r_symndx;
2643 entry.d.addend = 0;
2644 }
2645 else
2646 entry.d.h = h;
2647
2648 p = (struct mips_got_entry *)
2649 htab_find (g->got_entries, &entry);
2650
2651 BFD_ASSERT (p);
2652 return p;
2653 }
2654
b15e6682
AO
2655 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2656 INSERT);
2657 if (*loc)
2658 return *loc;
143d77c5 2659
b15e6682 2660 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2661 entry.tls_type = 0;
b15e6682
AO
2662
2663 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2664
2665 if (! *loc)
2666 return NULL;
143d77c5 2667
b15e6682
AO
2668 memcpy (*loc, &entry, sizeof entry);
2669
b49e97c9
TS
2670 if (g->assigned_gotno >= g->local_gotno)
2671 {
f4416af6 2672 (*loc)->gotidx = -1;
b49e97c9
TS
2673 /* We didn't allocate enough space in the GOT. */
2674 (*_bfd_error_handler)
2675 (_("not enough GOT space for local GOT entries"));
2676 bfd_set_error (bfd_error_bad_value);
b15e6682 2677 return NULL;
b49e97c9
TS
2678 }
2679
2680 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2681 (sgot->contents + entry.gotidx));
2682
0a44bf69
RS
2683 /* These GOT entries need a dynamic relocation on VxWorks. Because
2684 the offset between segments is not fixed, the relocation must be
2685 against a symbol in the same segment as the original symbol.
2686 The easiest way to do this is to take INPUT_SECTION's output
2687 section and emit a relocation against its section symbol. */
2688 if (htab->is_vxworks)
2689 {
2690 Elf_Internal_Rela outrel;
2691 asection *s, *output_section;
2692 bfd_byte *loc;
2693 bfd_vma got_address;
2694 int dynindx;
2695
2696 s = mips_elf_rel_dyn_section (info, FALSE);
2697 output_section = input_section->output_section;
2698 dynindx = elf_section_data (output_section)->dynindx;
2699 got_address = (sgot->output_section->vma
2700 + sgot->output_offset
2701 + entry.gotidx);
2702
2703 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2704 outrel.r_offset = got_address;
2705 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2706 outrel.r_addend = value - output_section->vma;
2707 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2708 }
2709
b15e6682 2710 return *loc;
b49e97c9
TS
2711}
2712
2713/* Sort the dynamic symbol table so that symbols that need GOT entries
2714 appear towards the end. This reduces the amount of GOT space
2715 required. MAX_LOCAL is used to set the number of local symbols
2716 known to be in the dynamic symbol table. During
2717 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2718 section symbols are added and the count is higher. */
2719
b34976b6 2720static bfd_boolean
9719ad41 2721mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2722{
2723 struct mips_elf_hash_sort_data hsd;
2724 struct mips_got_info *g;
2725 bfd *dynobj;
2726
2727 dynobj = elf_hash_table (info)->dynobj;
2728
f4416af6
AO
2729 g = mips_elf_got_info (dynobj, NULL);
2730
b49e97c9 2731 hsd.low = NULL;
143d77c5 2732 hsd.max_unref_got_dynindx =
f4416af6
AO
2733 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2734 /* In the multi-got case, assigned_gotno of the master got_info
2735 indicate the number of entries that aren't referenced in the
2736 primary GOT, but that must have entries because there are
2737 dynamic relocations that reference it. Since they aren't
2738 referenced, we move them to the end of the GOT, so that they
2739 don't prevent other entries that are referenced from getting
2740 too large offsets. */
2741 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2742 hsd.max_non_got_dynindx = max_local;
2743 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2744 elf_hash_table (info)),
2745 mips_elf_sort_hash_table_f,
2746 &hsd);
2747
2748 /* There should have been enough room in the symbol table to
44c410de 2749 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2750 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2751 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2752 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2753
2754 /* Now we know which dynamic symbol has the lowest dynamic symbol
2755 table index in the GOT. */
b49e97c9
TS
2756 g->global_gotsym = hsd.low;
2757
b34976b6 2758 return TRUE;
b49e97c9
TS
2759}
2760
2761/* If H needs a GOT entry, assign it the highest available dynamic
2762 index. Otherwise, assign it the lowest available dynamic
2763 index. */
2764
b34976b6 2765static bfd_boolean
9719ad41 2766mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2767{
9719ad41 2768 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2769
2770 if (h->root.root.type == bfd_link_hash_warning)
2771 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2772
2773 /* Symbols without dynamic symbol table entries aren't interesting
2774 at all. */
2775 if (h->root.dynindx == -1)
b34976b6 2776 return TRUE;
b49e97c9 2777
f4416af6
AO
2778 /* Global symbols that need GOT entries that are not explicitly
2779 referenced are marked with got offset 2. Those that are
2780 referenced get a 1, and those that don't need GOT entries get
2781 -1. */
2782 if (h->root.got.offset == 2)
2783 {
0f20cc35
DJ
2784 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2785
f4416af6
AO
2786 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2787 hsd->low = (struct elf_link_hash_entry *) h;
2788 h->root.dynindx = hsd->max_unref_got_dynindx++;
2789 }
2790 else if (h->root.got.offset != 1)
b49e97c9
TS
2791 h->root.dynindx = hsd->max_non_got_dynindx++;
2792 else
2793 {
0f20cc35
DJ
2794 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2795
b49e97c9
TS
2796 h->root.dynindx = --hsd->min_got_dynindx;
2797 hsd->low = (struct elf_link_hash_entry *) h;
2798 }
2799
b34976b6 2800 return TRUE;
b49e97c9
TS
2801}
2802
2803/* If H is a symbol that needs a global GOT entry, but has a dynamic
2804 symbol table index lower than any we've seen to date, record it for
2805 posterity. */
2806
b34976b6 2807static bfd_boolean
9719ad41
RS
2808mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2809 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2810 struct mips_got_info *g,
2811 unsigned char tls_flag)
b49e97c9 2812{
f4416af6
AO
2813 struct mips_got_entry entry, **loc;
2814
b49e97c9
TS
2815 /* A global symbol in the GOT must also be in the dynamic symbol
2816 table. */
7c5fcef7
L
2817 if (h->dynindx == -1)
2818 {
2819 switch (ELF_ST_VISIBILITY (h->other))
2820 {
2821 case STV_INTERNAL:
2822 case STV_HIDDEN:
b34976b6 2823 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2824 break;
2825 }
c152c796 2826 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2827 return FALSE;
7c5fcef7 2828 }
b49e97c9 2829
86324f90
EC
2830 /* Make sure we have a GOT to put this entry into. */
2831 BFD_ASSERT (g != NULL);
2832
f4416af6
AO
2833 entry.abfd = abfd;
2834 entry.symndx = -1;
2835 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2836 entry.tls_type = 0;
f4416af6
AO
2837
2838 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2839 INSERT);
2840
b49e97c9
TS
2841 /* If we've already marked this entry as needing GOT space, we don't
2842 need to do it again. */
f4416af6 2843 if (*loc)
0f20cc35
DJ
2844 {
2845 (*loc)->tls_type |= tls_flag;
2846 return TRUE;
2847 }
f4416af6
AO
2848
2849 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2850
2851 if (! *loc)
2852 return FALSE;
143d77c5 2853
f4416af6 2854 entry.gotidx = -1;
0f20cc35
DJ
2855 entry.tls_type = tls_flag;
2856
f4416af6
AO
2857 memcpy (*loc, &entry, sizeof entry);
2858
b49e97c9 2859 if (h->got.offset != MINUS_ONE)
b34976b6 2860 return TRUE;
b49e97c9
TS
2861
2862 /* By setting this to a value other than -1, we are indicating that
2863 there needs to be a GOT entry for H. Avoid using zero, as the
2864 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2865 if (tls_flag == 0)
2866 h->got.offset = 1;
b49e97c9 2867
b34976b6 2868 return TRUE;
b49e97c9 2869}
f4416af6
AO
2870
2871/* Reserve space in G for a GOT entry containing the value of symbol
2872 SYMNDX in input bfd ABDF, plus ADDEND. */
2873
2874static bfd_boolean
9719ad41 2875mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2876 struct mips_got_info *g,
2877 unsigned char tls_flag)
f4416af6
AO
2878{
2879 struct mips_got_entry entry, **loc;
2880
2881 entry.abfd = abfd;
2882 entry.symndx = symndx;
2883 entry.d.addend = addend;
0f20cc35 2884 entry.tls_type = tls_flag;
f4416af6
AO
2885 loc = (struct mips_got_entry **)
2886 htab_find_slot (g->got_entries, &entry, INSERT);
2887
2888 if (*loc)
0f20cc35
DJ
2889 {
2890 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2891 {
2892 g->tls_gotno += 2;
2893 (*loc)->tls_type |= tls_flag;
2894 }
2895 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2896 {
2897 g->tls_gotno += 1;
2898 (*loc)->tls_type |= tls_flag;
2899 }
2900 return TRUE;
2901 }
f4416af6 2902
0f20cc35
DJ
2903 if (tls_flag != 0)
2904 {
2905 entry.gotidx = -1;
2906 entry.tls_type = tls_flag;
2907 if (tls_flag == GOT_TLS_IE)
2908 g->tls_gotno += 1;
2909 else if (tls_flag == GOT_TLS_GD)
2910 g->tls_gotno += 2;
2911 else if (g->tls_ldm_offset == MINUS_ONE)
2912 {
2913 g->tls_ldm_offset = MINUS_TWO;
2914 g->tls_gotno += 2;
2915 }
2916 }
2917 else
2918 {
2919 entry.gotidx = g->local_gotno++;
2920 entry.tls_type = 0;
2921 }
f4416af6
AO
2922
2923 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2924
2925 if (! *loc)
2926 return FALSE;
143d77c5 2927
f4416af6
AO
2928 memcpy (*loc, &entry, sizeof entry);
2929
2930 return TRUE;
2931}
2932\f
2933/* Compute the hash value of the bfd in a bfd2got hash entry. */
2934
2935static hashval_t
9719ad41 2936mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2937{
2938 const struct mips_elf_bfd2got_hash *entry
2939 = (struct mips_elf_bfd2got_hash *)entry_;
2940
2941 return entry->bfd->id;
2942}
2943
2944/* Check whether two hash entries have the same bfd. */
2945
2946static int
9719ad41 2947mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2948{
2949 const struct mips_elf_bfd2got_hash *e1
2950 = (const struct mips_elf_bfd2got_hash *)entry1;
2951 const struct mips_elf_bfd2got_hash *e2
2952 = (const struct mips_elf_bfd2got_hash *)entry2;
2953
2954 return e1->bfd == e2->bfd;
2955}
2956
bad36eac 2957/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2958 be the master GOT data. */
2959
2960static struct mips_got_info *
9719ad41 2961mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2962{
2963 struct mips_elf_bfd2got_hash e, *p;
2964
2965 if (! g->bfd2got)
2966 return g;
2967
2968 e.bfd = ibfd;
9719ad41 2969 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2970 return p ? p->g : NULL;
2971}
2972
2973/* Create one separate got for each bfd that has entries in the global
2974 got, such that we can tell how many local and global entries each
2975 bfd requires. */
2976
2977static int
9719ad41 2978mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2979{
2980 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2981 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2982 htab_t bfd2got = arg->bfd2got;
2983 struct mips_got_info *g;
2984 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2985 void **bfdgotp;
143d77c5 2986
f4416af6
AO
2987 /* Find the got_info for this GOT entry's input bfd. Create one if
2988 none exists. */
2989 bfdgot_entry.bfd = entry->abfd;
2990 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2991 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2992
2993 if (bfdgot != NULL)
2994 g = bfdgot->g;
2995 else
2996 {
2997 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2998 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2999
3000 if (bfdgot == NULL)
3001 {
3002 arg->obfd = 0;
3003 return 0;
3004 }
3005
3006 *bfdgotp = bfdgot;
3007
3008 bfdgot->bfd = entry->abfd;
3009 bfdgot->g = g = (struct mips_got_info *)
3010 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3011 if (g == NULL)
3012 {
3013 arg->obfd = 0;
3014 return 0;
3015 }
3016
3017 g->global_gotsym = NULL;
3018 g->global_gotno = 0;
3019 g->local_gotno = 0;
3020 g->assigned_gotno = -1;
0f20cc35
DJ
3021 g->tls_gotno = 0;
3022 g->tls_assigned_gotno = 0;
3023 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3024 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3025 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3026 if (g->got_entries == NULL)
3027 {
3028 arg->obfd = 0;
3029 return 0;
3030 }
3031
3032 g->bfd2got = NULL;
3033 g->next = NULL;
3034 }
3035
3036 /* Insert the GOT entry in the bfd's got entry hash table. */
3037 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3038 if (*entryp != NULL)
3039 return 1;
143d77c5 3040
f4416af6
AO
3041 *entryp = entry;
3042
0f20cc35
DJ
3043 if (entry->tls_type)
3044 {
3045 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3046 g->tls_gotno += 2;
3047 if (entry->tls_type & GOT_TLS_IE)
3048 g->tls_gotno += 1;
3049 }
3050 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3051 ++g->local_gotno;
3052 else
3053 ++g->global_gotno;
3054
3055 return 1;
3056}
3057
3058/* Attempt to merge gots of different input bfds. Try to use as much
3059 as possible of the primary got, since it doesn't require explicit
3060 dynamic relocations, but don't use bfds that would reference global
3061 symbols out of the addressable range. Failing the primary got,
3062 attempt to merge with the current got, or finish the current got
3063 and then make make the new got current. */
3064
3065static int
9719ad41 3066mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3067{
3068 struct mips_elf_bfd2got_hash *bfd2got
3069 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3070 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3071 unsigned int lcount = bfd2got->g->local_gotno;
3072 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3073 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3074 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3075 bfd_boolean too_many_for_tls = FALSE;
3076
3077 /* We place TLS GOT entries after both locals and globals. The globals
3078 for the primary GOT may overflow the normal GOT size limit, so be
3079 sure not to merge a GOT which requires TLS with the primary GOT in that
3080 case. This doesn't affect non-primary GOTs. */
3081 if (tcount > 0)
3082 {
3083 unsigned int primary_total = lcount + tcount + arg->global_count;
3084 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
0a44bf69 3085 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
0f20cc35
DJ
3086 too_many_for_tls = TRUE;
3087 }
143d77c5 3088
f4416af6
AO
3089 /* If we don't have a primary GOT and this is not too big, use it as
3090 a starting point for the primary GOT. */
0f20cc35
DJ
3091 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3092 && ! too_many_for_tls)
f4416af6
AO
3093 {
3094 arg->primary = bfd2got->g;
3095 arg->primary_count = lcount + gcount;
3096 }
3097 /* If it looks like we can merge this bfd's entries with those of
3098 the primary, merge them. The heuristics is conservative, but we
3099 don't have to squeeze it too hard. */
0f20cc35
DJ
3100 else if (arg->primary && ! too_many_for_tls
3101 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3102 {
3103 struct mips_got_info *g = bfd2got->g;
3104 int old_lcount = arg->primary->local_gotno;
3105 int old_gcount = arg->primary->global_gotno;
0f20cc35 3106 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3107
3108 bfd2got->g = arg->primary;
3109
3110 htab_traverse (g->got_entries,
3111 mips_elf_make_got_per_bfd,
3112 arg);
3113 if (arg->obfd == NULL)
3114 return 0;
3115
3116 htab_delete (g->got_entries);
3117 /* We don't have to worry about releasing memory of the actual
3118 got entries, since they're all in the master got_entries hash
3119 table anyway. */
3120
caec41ff 3121 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3122 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3123 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3124
3125 arg->primary_count = arg->primary->local_gotno
0f20cc35 3126 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3127 }
3128 /* If we can merge with the last-created got, do it. */
3129 else if (arg->current
0f20cc35 3130 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3131 {
3132 struct mips_got_info *g = bfd2got->g;
3133 int old_lcount = arg->current->local_gotno;
3134 int old_gcount = arg->current->global_gotno;
0f20cc35 3135 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3136
3137 bfd2got->g = arg->current;
3138
3139 htab_traverse (g->got_entries,
3140 mips_elf_make_got_per_bfd,
3141 arg);
3142 if (arg->obfd == NULL)
3143 return 0;
3144
3145 htab_delete (g->got_entries);
3146
caec41ff 3147 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3148 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3149 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3150
3151 arg->current_count = arg->current->local_gotno
0f20cc35 3152 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3153 }
3154 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3155 fits; if it turns out that it doesn't, we'll get relocation
3156 overflows anyway. */
3157 else
3158 {
3159 bfd2got->g->next = arg->current;
3160 arg->current = bfd2got->g;
143d77c5 3161
0f20cc35
DJ
3162 arg->current_count = lcount + gcount + 2 * tcount;
3163 }
3164
3165 return 1;
3166}
3167
ead49a57
RS
3168/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3169 is null iff there is just a single GOT. */
0f20cc35
DJ
3170
3171static int
3172mips_elf_initialize_tls_index (void **entryp, void *p)
3173{
3174 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3175 struct mips_got_info *g = p;
ead49a57 3176 bfd_vma next_index;
0f20cc35
DJ
3177
3178 /* We're only interested in TLS symbols. */
3179 if (entry->tls_type == 0)
3180 return 1;
3181
ead49a57
RS
3182 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3183
3184 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3185 {
ead49a57
RS
3186 /* A type (3) got entry in the single-GOT case. We use the symbol's
3187 hash table entry to track its index. */
3188 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3189 return 1;
3190 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3191 entry->d.h->tls_got_offset = next_index;
3192 }
3193 else
3194 {
3195 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3196 {
ead49a57
RS
3197 /* There are separate mips_got_entry objects for each input bfd
3198 that requires an LDM entry. Make sure that all LDM entries in
3199 a GOT resolve to the same index. */
3200 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3201 {
ead49a57 3202 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3203 return 1;
3204 }
ead49a57 3205 g->tls_ldm_offset = next_index;
0f20cc35 3206 }
ead49a57 3207 entry->gotidx = next_index;
f4416af6
AO
3208 }
3209
ead49a57 3210 /* Account for the entries we've just allocated. */
0f20cc35
DJ
3211 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3212 g->tls_assigned_gotno += 2;
3213 if (entry->tls_type & GOT_TLS_IE)
3214 g->tls_assigned_gotno += 1;
3215
f4416af6
AO
3216 return 1;
3217}
3218
3219/* If passed a NULL mips_got_info in the argument, set the marker used
3220 to tell whether a global symbol needs a got entry (in the primary
3221 got) to the given VALUE.
3222
3223 If passed a pointer G to a mips_got_info in the argument (it must
3224 not be the primary GOT), compute the offset from the beginning of
3225 the (primary) GOT section to the entry in G corresponding to the
3226 global symbol. G's assigned_gotno must contain the index of the
3227 first available global GOT entry in G. VALUE must contain the size
3228 of a GOT entry in bytes. For each global GOT entry that requires a
3229 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3230 marked as not eligible for lazy resolution through a function
f4416af6
AO
3231 stub. */
3232static int
9719ad41 3233mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3234{
3235 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3236 struct mips_elf_set_global_got_offset_arg *arg
3237 = (struct mips_elf_set_global_got_offset_arg *)p;
3238 struct mips_got_info *g = arg->g;
3239
0f20cc35
DJ
3240 if (g && entry->tls_type != GOT_NORMAL)
3241 arg->needed_relocs +=
3242 mips_tls_got_relocs (arg->info, entry->tls_type,
3243 entry->symndx == -1 ? &entry->d.h->root : NULL);
3244
f4416af6 3245 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3246 && entry->d.h->root.dynindx != -1
3247 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3248 {
3249 if (g)
3250 {
3251 BFD_ASSERT (g->global_gotsym == NULL);
3252
3253 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3254 if (arg->info->shared
3255 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3256 && entry->d.h->root.def_dynamic
3257 && !entry->d.h->root.def_regular))
f4416af6
AO
3258 ++arg->needed_relocs;
3259 }
3260 else
3261 entry->d.h->root.got.offset = arg->value;
3262 }
3263
3264 return 1;
3265}
3266
0626d451
RS
3267/* Mark any global symbols referenced in the GOT we are iterating over
3268 as inelligible for lazy resolution stubs. */
3269static int
9719ad41 3270mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3271{
3272 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3273
3274 if (entry->abfd != NULL
3275 && entry->symndx == -1
3276 && entry->d.h->root.dynindx != -1)
3277 entry->d.h->no_fn_stub = TRUE;
3278
3279 return 1;
3280}
3281
f4416af6
AO
3282/* Follow indirect and warning hash entries so that each got entry
3283 points to the final symbol definition. P must point to a pointer
3284 to the hash table we're traversing. Since this traversal may
3285 modify the hash table, we set this pointer to NULL to indicate
3286 we've made a potentially-destructive change to the hash table, so
3287 the traversal must be restarted. */
3288static int
9719ad41 3289mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3290{
3291 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3292 htab_t got_entries = *(htab_t *)p;
3293
3294 if (entry->abfd != NULL && entry->symndx == -1)
3295 {
3296 struct mips_elf_link_hash_entry *h = entry->d.h;
3297
3298 while (h->root.root.type == bfd_link_hash_indirect
3299 || h->root.root.type == bfd_link_hash_warning)
3300 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3301
3302 if (entry->d.h == h)
3303 return 1;
143d77c5 3304
f4416af6
AO
3305 entry->d.h = h;
3306
3307 /* If we can't find this entry with the new bfd hash, re-insert
3308 it, and get the traversal restarted. */
3309 if (! htab_find (got_entries, entry))
3310 {
3311 htab_clear_slot (got_entries, entryp);
3312 entryp = htab_find_slot (got_entries, entry, INSERT);
3313 if (! *entryp)
3314 *entryp = entry;
3315 /* Abort the traversal, since the whole table may have
3316 moved, and leave it up to the parent to restart the
3317 process. */
3318 *(htab_t *)p = NULL;
3319 return 0;
3320 }
3321 /* We might want to decrement the global_gotno count, but it's
3322 either too early or too late for that at this point. */
3323 }
143d77c5 3324
f4416af6
AO
3325 return 1;
3326}
3327
3328/* Turn indirect got entries in a got_entries table into their final
3329 locations. */
3330static void
9719ad41 3331mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3332{
3333 htab_t got_entries;
3334
3335 do
3336 {
3337 got_entries = g->got_entries;
3338
3339 htab_traverse (got_entries,
3340 mips_elf_resolve_final_got_entry,
3341 &got_entries);
3342 }
3343 while (got_entries == NULL);
3344}
3345
3346/* Return the offset of an input bfd IBFD's GOT from the beginning of
3347 the primary GOT. */
3348static bfd_vma
9719ad41 3349mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3350{
3351 if (g->bfd2got == NULL)
3352 return 0;
3353
3354 g = mips_elf_got_for_ibfd (g, ibfd);
3355 if (! g)
3356 return 0;
3357
3358 BFD_ASSERT (g->next);
3359
3360 g = g->next;
143d77c5 3361
0f20cc35
DJ
3362 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3363 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3364}
3365
3366/* Turn a single GOT that is too big for 16-bit addressing into
3367 a sequence of GOTs, each one 16-bit addressable. */
3368
3369static bfd_boolean
9719ad41
RS
3370mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3371 struct mips_got_info *g, asection *got,
3372 bfd_size_type pages)
f4416af6
AO
3373{
3374 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3375 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3376 struct mips_got_info *gg;
3377 unsigned int assign;
3378
3379 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3380 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3381 if (g->bfd2got == NULL)
3382 return FALSE;
3383
3384 got_per_bfd_arg.bfd2got = g->bfd2got;
3385 got_per_bfd_arg.obfd = abfd;
3386 got_per_bfd_arg.info = info;
3387
3388 /* Count how many GOT entries each input bfd requires, creating a
3389 map from bfd to got info while at that. */
f4416af6
AO
3390 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3391 if (got_per_bfd_arg.obfd == NULL)
3392 return FALSE;
3393
3394 got_per_bfd_arg.current = NULL;
3395 got_per_bfd_arg.primary = NULL;
3396 /* Taking out PAGES entries is a worst-case estimate. We could
3397 compute the maximum number of pages that each separate input bfd
3398 uses, but it's probably not worth it. */
0a44bf69 3399 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3400 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3401 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3402 /* The number of globals that will be included in the primary GOT.
3403 See the calls to mips_elf_set_global_got_offset below for more
3404 information. */
3405 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3406
3407 /* Try to merge the GOTs of input bfds together, as long as they
3408 don't seem to exceed the maximum GOT size, choosing one of them
3409 to be the primary GOT. */
3410 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3411 if (got_per_bfd_arg.obfd == NULL)
3412 return FALSE;
3413
0f20cc35 3414 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3415 if (got_per_bfd_arg.primary == NULL)
3416 {
3417 g->next = (struct mips_got_info *)
3418 bfd_alloc (abfd, sizeof (struct mips_got_info));
3419 if (g->next == NULL)
3420 return FALSE;
3421
3422 g->next->global_gotsym = NULL;
3423 g->next->global_gotno = 0;
3424 g->next->local_gotno = 0;
0f20cc35 3425 g->next->tls_gotno = 0;
f4416af6 3426 g->next->assigned_gotno = 0;
0f20cc35
DJ
3427 g->next->tls_assigned_gotno = 0;
3428 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3429 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3430 mips_elf_multi_got_entry_eq,
9719ad41 3431 NULL);
f4416af6
AO
3432 if (g->next->got_entries == NULL)
3433 return FALSE;
3434 g->next->bfd2got = NULL;
3435 }
3436 else
3437 g->next = got_per_bfd_arg.primary;
3438 g->next->next = got_per_bfd_arg.current;
3439
3440 /* GG is now the master GOT, and G is the primary GOT. */
3441 gg = g;
3442 g = g->next;
3443
3444 /* Map the output bfd to the primary got. That's what we're going
3445 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3446 didn't mark in check_relocs, and we want a quick way to find it.
3447 We can't just use gg->next because we're going to reverse the
3448 list. */
3449 {
3450 struct mips_elf_bfd2got_hash *bfdgot;
3451 void **bfdgotp;
143d77c5 3452
f4416af6
AO
3453 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3454 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3455
3456 if (bfdgot == NULL)
3457 return FALSE;
3458
3459 bfdgot->bfd = abfd;
3460 bfdgot->g = g;
3461 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3462
3463 BFD_ASSERT (*bfdgotp == NULL);
3464 *bfdgotp = bfdgot;
3465 }
3466
3467 /* The IRIX dynamic linker requires every symbol that is referenced
3468 in a dynamic relocation to be present in the primary GOT, so
3469 arrange for them to appear after those that are actually
3470 referenced.
3471
3472 GNU/Linux could very well do without it, but it would slow down
3473 the dynamic linker, since it would have to resolve every dynamic
3474 symbol referenced in other GOTs more than once, without help from
3475 the cache. Also, knowing that every external symbol has a GOT
3476 helps speed up the resolution of local symbols too, so GNU/Linux
3477 follows IRIX's practice.
143d77c5 3478
f4416af6
AO
3479 The number 2 is used by mips_elf_sort_hash_table_f to count
3480 global GOT symbols that are unreferenced in the primary GOT, with
3481 an initial dynamic index computed from gg->assigned_gotno, where
3482 the number of unreferenced global entries in the primary GOT is
3483 preserved. */
3484 if (1)
3485 {
3486 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3487 g->global_gotno = gg->global_gotno;
3488 set_got_offset_arg.value = 2;
3489 }
3490 else
3491 {
3492 /* This could be used for dynamic linkers that don't optimize
3493 symbol resolution while applying relocations so as to use
3494 primary GOT entries or assuming the symbol is locally-defined.
3495 With this code, we assign lower dynamic indices to global
3496 symbols that are not referenced in the primary GOT, so that
3497 their entries can be omitted. */
3498 gg->assigned_gotno = 0;
3499 set_got_offset_arg.value = -1;
3500 }
3501
3502 /* Reorder dynamic symbols as described above (which behavior
3503 depends on the setting of VALUE). */
3504 set_got_offset_arg.g = NULL;
3505 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3506 &set_got_offset_arg);
3507 set_got_offset_arg.value = 1;
3508 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3509 &set_got_offset_arg);
3510 if (! mips_elf_sort_hash_table (info, 1))
3511 return FALSE;
3512
3513 /* Now go through the GOTs assigning them offset ranges.
3514 [assigned_gotno, local_gotno[ will be set to the range of local
3515 entries in each GOT. We can then compute the end of a GOT by
3516 adding local_gotno to global_gotno. We reverse the list and make
3517 it circular since then we'll be able to quickly compute the
3518 beginning of a GOT, by computing the end of its predecessor. To
3519 avoid special cases for the primary GOT, while still preserving
3520 assertions that are valid for both single- and multi-got links,
3521 we arrange for the main got struct to have the right number of
3522 global entries, but set its local_gotno such that the initial
3523 offset of the primary GOT is zero. Remember that the primary GOT
3524 will become the last item in the circular linked list, so it
3525 points back to the master GOT. */
3526 gg->local_gotno = -g->global_gotno;
3527 gg->global_gotno = g->global_gotno;
0f20cc35 3528 gg->tls_gotno = 0;
f4416af6
AO
3529 assign = 0;
3530 gg->next = gg;
3531
3532 do
3533 {
3534 struct mips_got_info *gn;
3535
0a44bf69 3536 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3537 g->assigned_gotno = assign;
3538 g->local_gotno += assign + pages;
0f20cc35
DJ
3539 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3540
ead49a57
RS
3541 /* Take g out of the direct list, and push it onto the reversed
3542 list that gg points to. g->next is guaranteed to be nonnull after
3543 this operation, as required by mips_elf_initialize_tls_index. */
3544 gn = g->next;
3545 g->next = gg->next;
3546 gg->next = g;
3547
0f20cc35
DJ
3548 /* Set up any TLS entries. We always place the TLS entries after
3549 all non-TLS entries. */
3550 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3551 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3552
ead49a57 3553 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3554 g = gn;
0626d451
RS
3555
3556 /* Mark global symbols in every non-primary GOT as ineligible for
3557 stubs. */
3558 if (g)
3559 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3560 }
3561 while (g);
3562
eea6121a 3563 got->size = (gg->next->local_gotno
0f20cc35
DJ
3564 + gg->next->global_gotno
3565 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3566
f4416af6
AO
3567 return TRUE;
3568}
143d77c5 3569
b49e97c9
TS
3570\f
3571/* Returns the first relocation of type r_type found, beginning with
3572 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3573
3574static const Elf_Internal_Rela *
9719ad41
RS
3575mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3576 const Elf_Internal_Rela *relocation,
3577 const Elf_Internal_Rela *relend)
b49e97c9 3578{
b49e97c9
TS
3579 while (relocation < relend)
3580 {
3581 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3582 return relocation;
3583
3584 ++relocation;
3585 }
3586
3587 /* We didn't find it. */
3588 bfd_set_error (bfd_error_bad_value);
3589 return NULL;
3590}
3591
3592/* Return whether a relocation is against a local symbol. */
3593
b34976b6 3594static bfd_boolean
9719ad41
RS
3595mips_elf_local_relocation_p (bfd *input_bfd,
3596 const Elf_Internal_Rela *relocation,
3597 asection **local_sections,
3598 bfd_boolean check_forced)
b49e97c9
TS
3599{
3600 unsigned long r_symndx;
3601 Elf_Internal_Shdr *symtab_hdr;
3602 struct mips_elf_link_hash_entry *h;
3603 size_t extsymoff;
3604
3605 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3606 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3607 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3608
3609 if (r_symndx < extsymoff)
b34976b6 3610 return TRUE;
b49e97c9 3611 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3612 return TRUE;
b49e97c9
TS
3613
3614 if (check_forced)
3615 {
3616 /* Look up the hash table to check whether the symbol
3617 was forced local. */
3618 h = (struct mips_elf_link_hash_entry *)
3619 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3620 /* Find the real hash-table entry for this symbol. */
3621 while (h->root.root.type == bfd_link_hash_indirect
3622 || h->root.root.type == bfd_link_hash_warning)
3623 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3624 if (h->root.forced_local)
b34976b6 3625 return TRUE;
b49e97c9
TS
3626 }
3627
b34976b6 3628 return FALSE;
b49e97c9
TS
3629}
3630\f
3631/* Sign-extend VALUE, which has the indicated number of BITS. */
3632
a7ebbfdf 3633bfd_vma
9719ad41 3634_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3635{
3636 if (value & ((bfd_vma) 1 << (bits - 1)))
3637 /* VALUE is negative. */
3638 value |= ((bfd_vma) - 1) << bits;
3639
3640 return value;
3641}
3642
3643/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3644 range expressible by a signed number with the indicated number of
b49e97c9
TS
3645 BITS. */
3646
b34976b6 3647static bfd_boolean
9719ad41 3648mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3649{
3650 bfd_signed_vma svalue = (bfd_signed_vma) value;
3651
3652 if (svalue > (1 << (bits - 1)) - 1)
3653 /* The value is too big. */
b34976b6 3654 return TRUE;
b49e97c9
TS
3655 else if (svalue < -(1 << (bits - 1)))
3656 /* The value is too small. */
b34976b6 3657 return TRUE;
b49e97c9
TS
3658
3659 /* All is well. */
b34976b6 3660 return FALSE;
b49e97c9
TS
3661}
3662
3663/* Calculate the %high function. */
3664
3665static bfd_vma
9719ad41 3666mips_elf_high (bfd_vma value)
b49e97c9
TS
3667{
3668 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3669}
3670
3671/* Calculate the %higher function. */
3672
3673static bfd_vma
9719ad41 3674mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3675{
3676#ifdef BFD64
3677 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3678#else
3679 abort ();
c5ae1840 3680 return MINUS_ONE;
b49e97c9
TS
3681#endif
3682}
3683
3684/* Calculate the %highest function. */
3685
3686static bfd_vma
9719ad41 3687mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3688{
3689#ifdef BFD64
b15e6682 3690 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3691#else
3692 abort ();
c5ae1840 3693 return MINUS_ONE;
b49e97c9
TS
3694#endif
3695}
3696\f
3697/* Create the .compact_rel section. */
3698
b34976b6 3699static bfd_boolean
9719ad41
RS
3700mips_elf_create_compact_rel_section
3701 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3702{
3703 flagword flags;
3704 register asection *s;
3705
3706 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3707 {
3708 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3709 | SEC_READONLY);
3710
3496cb2a 3711 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3712 if (s == NULL
b49e97c9
TS
3713 || ! bfd_set_section_alignment (abfd, s,
3714 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3715 return FALSE;
b49e97c9 3716
eea6121a 3717 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3718 }
3719
b34976b6 3720 return TRUE;
b49e97c9
TS
3721}
3722
3723/* Create the .got section to hold the global offset table. */
3724
b34976b6 3725static bfd_boolean
9719ad41
RS
3726mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3727 bfd_boolean maybe_exclude)
b49e97c9
TS
3728{
3729 flagword flags;
3730 register asection *s;
3731 struct elf_link_hash_entry *h;
14a793b2 3732 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3733 struct mips_got_info *g;
3734 bfd_size_type amt;
0a44bf69
RS
3735 struct mips_elf_link_hash_table *htab;
3736
3737 htab = mips_elf_hash_table (info);
b49e97c9
TS
3738
3739 /* This function may be called more than once. */
f4416af6
AO
3740 s = mips_elf_got_section (abfd, TRUE);
3741 if (s)
3742 {
3743 if (! maybe_exclude)
3744 s->flags &= ~SEC_EXCLUDE;
3745 return TRUE;
3746 }
b49e97c9
TS
3747
3748 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3749 | SEC_LINKER_CREATED);
3750
f4416af6
AO
3751 if (maybe_exclude)
3752 flags |= SEC_EXCLUDE;
3753
72b4917c
TS
3754 /* We have to use an alignment of 2**4 here because this is hardcoded
3755 in the function stub generation and in the linker script. */
3496cb2a 3756 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3757 if (s == NULL
72b4917c 3758 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3759 return FALSE;
b49e97c9
TS
3760
3761 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3762 linker script because we don't want to define the symbol if we
3763 are not creating a global offset table. */
14a793b2 3764 bh = NULL;
b49e97c9
TS
3765 if (! (_bfd_generic_link_add_one_symbol
3766 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3767 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3768 return FALSE;
14a793b2
AM
3769
3770 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3771 h->non_elf = 0;
3772 h->def_regular = 1;
b49e97c9 3773 h->type = STT_OBJECT;
d329bcd1 3774 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3775
3776 if (info->shared
c152c796 3777 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3778 return FALSE;
b49e97c9 3779
b49e97c9 3780 amt = sizeof (struct mips_got_info);
9719ad41 3781 g = bfd_alloc (abfd, amt);
b49e97c9 3782 if (g == NULL)
b34976b6 3783 return FALSE;
b49e97c9 3784 g->global_gotsym = NULL;
e3d54347 3785 g->global_gotno = 0;
0f20cc35 3786 g->tls_gotno = 0;
0a44bf69
RS
3787 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3788 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3789 g->bfd2got = NULL;
3790 g->next = NULL;
0f20cc35 3791 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3792 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3793 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3794 if (g->got_entries == NULL)
3795 return FALSE;
f0abc2a1
AM
3796 mips_elf_section_data (s)->u.got_info = g;
3797 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3798 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3799
0a44bf69
RS
3800 /* VxWorks also needs a .got.plt section. */
3801 if (htab->is_vxworks)
3802 {
3803 s = bfd_make_section_with_flags (abfd, ".got.plt",
3804 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3805 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3806 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3807 return FALSE;
3808
3809 htab->sgotplt = s;
3810 }
b34976b6 3811 return TRUE;
b49e97c9 3812}
b49e97c9 3813\f
0a44bf69
RS
3814/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3815 __GOTT_INDEX__ symbols. These symbols are only special for
3816 shared objects; they are not used in executables. */
3817
3818static bfd_boolean
3819is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3820{
3821 return (mips_elf_hash_table (info)->is_vxworks
3822 && info->shared
3823 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3824 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3825}
3826\f
b49e97c9
TS
3827/* Calculate the value produced by the RELOCATION (which comes from
3828 the INPUT_BFD). The ADDEND is the addend to use for this
3829 RELOCATION; RELOCATION->R_ADDEND is ignored.
3830
3831 The result of the relocation calculation is stored in VALUEP.
3832 REQUIRE_JALXP indicates whether or not the opcode used with this
3833 relocation must be JALX.
3834
3835 This function returns bfd_reloc_continue if the caller need take no
3836 further action regarding this relocation, bfd_reloc_notsupported if
3837 something goes dramatically wrong, bfd_reloc_overflow if an
3838 overflow occurs, and bfd_reloc_ok to indicate success. */
3839
3840static bfd_reloc_status_type
9719ad41
RS
3841mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3842 asection *input_section,
3843 struct bfd_link_info *info,
3844 const Elf_Internal_Rela *relocation,
3845 bfd_vma addend, reloc_howto_type *howto,
3846 Elf_Internal_Sym *local_syms,
3847 asection **local_sections, bfd_vma *valuep,
3848 const char **namep, bfd_boolean *require_jalxp,
3849 bfd_boolean save_addend)
b49e97c9
TS
3850{
3851 /* The eventual value we will return. */
3852 bfd_vma value;
3853 /* The address of the symbol against which the relocation is
3854 occurring. */
3855 bfd_vma symbol = 0;
3856 /* The final GP value to be used for the relocatable, executable, or
3857 shared object file being produced. */
3858 bfd_vma gp = MINUS_ONE;
3859 /* The place (section offset or address) of the storage unit being
3860 relocated. */
3861 bfd_vma p;
3862 /* The value of GP used to create the relocatable object. */
3863 bfd_vma gp0 = MINUS_ONE;
3864 /* The offset into the global offset table at which the address of
3865 the relocation entry symbol, adjusted by the addend, resides
3866 during execution. */
3867 bfd_vma g = MINUS_ONE;
3868 /* The section in which the symbol referenced by the relocation is
3869 located. */
3870 asection *sec = NULL;
3871 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3872 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3873 symbol. */
b34976b6
AM
3874 bfd_boolean local_p, was_local_p;
3875 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3876 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3877 /* TRUE if the symbol referred to by this relocation is
3878 "__gnu_local_gp". */
3879 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3880 Elf_Internal_Shdr *symtab_hdr;
3881 size_t extsymoff;
3882 unsigned long r_symndx;
3883 int r_type;
b34976b6 3884 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3885 relocation value. */
b34976b6
AM
3886 bfd_boolean overflowed_p;
3887 /* TRUE if this relocation refers to a MIPS16 function. */
3888 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3889 struct mips_elf_link_hash_table *htab;
3890 bfd *dynobj;
3891
3892 dynobj = elf_hash_table (info)->dynobj;
3893 htab = mips_elf_hash_table (info);
b49e97c9
TS
3894
3895 /* Parse the relocation. */
3896 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3897 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3898 p = (input_section->output_section->vma
3899 + input_section->output_offset
3900 + relocation->r_offset);
3901
3902 /* Assume that there will be no overflow. */
b34976b6 3903 overflowed_p = FALSE;
b49e97c9
TS
3904
3905 /* Figure out whether or not the symbol is local, and get the offset
3906 used in the array of hash table entries. */
3907 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3908 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3909 local_sections, FALSE);
bce03d3d 3910 was_local_p = local_p;
b49e97c9
TS
3911 if (! elf_bad_symtab (input_bfd))
3912 extsymoff = symtab_hdr->sh_info;
3913 else
3914 {
3915 /* The symbol table does not follow the rule that local symbols
3916 must come before globals. */
3917 extsymoff = 0;
3918 }
3919
3920 /* Figure out the value of the symbol. */
3921 if (local_p)
3922 {
3923 Elf_Internal_Sym *sym;
3924
3925 sym = local_syms + r_symndx;
3926 sec = local_sections[r_symndx];
3927
3928 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3929 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3930 || (sec->flags & SEC_MERGE))
b49e97c9 3931 symbol += sym->st_value;
d4df96e6
L
3932 if ((sec->flags & SEC_MERGE)
3933 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3934 {
3935 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3936 addend -= symbol;
3937 addend += sec->output_section->vma + sec->output_offset;
3938 }
b49e97c9
TS
3939
3940 /* MIPS16 text labels should be treated as odd. */
3941 if (sym->st_other == STO_MIPS16)
3942 ++symbol;
3943
3944 /* Record the name of this symbol, for our caller. */
3945 *namep = bfd_elf_string_from_elf_section (input_bfd,
3946 symtab_hdr->sh_link,
3947 sym->st_name);
3948 if (*namep == '\0')
3949 *namep = bfd_section_name (input_bfd, sec);
3950
3951 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3952 }
3953 else
3954 {
560e09e9
NC
3955 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3956
b49e97c9
TS
3957 /* For global symbols we look up the symbol in the hash-table. */
3958 h = ((struct mips_elf_link_hash_entry *)
3959 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3960 /* Find the real hash-table entry for this symbol. */
3961 while (h->root.root.type == bfd_link_hash_indirect
3962 || h->root.root.type == bfd_link_hash_warning)
3963 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3964
3965 /* Record the name of this symbol, for our caller. */
3966 *namep = h->root.root.root.string;
3967
3968 /* See if this is the special _gp_disp symbol. Note that such a
3969 symbol must always be a global symbol. */
560e09e9 3970 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3971 && ! NEWABI_P (input_bfd))
3972 {
3973 /* Relocations against _gp_disp are permitted only with
3974 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3975 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3976 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3977 return bfd_reloc_notsupported;
3978
b34976b6 3979 gp_disp_p = TRUE;
b49e97c9 3980 }
bbe506e8
TS
3981 /* See if this is the special _gp symbol. Note that such a
3982 symbol must always be a global symbol. */
3983 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3984 gnu_local_gp_p = TRUE;
3985
3986
b49e97c9
TS
3987 /* If this symbol is defined, calculate its address. Note that
3988 _gp_disp is a magic symbol, always implicitly defined by the
3989 linker, so it's inappropriate to check to see whether or not
3990 its defined. */
3991 else if ((h->root.root.type == bfd_link_hash_defined
3992 || h->root.root.type == bfd_link_hash_defweak)
3993 && h->root.root.u.def.section)
3994 {
3995 sec = h->root.root.u.def.section;
3996 if (sec->output_section)
3997 symbol = (h->root.root.u.def.value
3998 + sec->output_section->vma
3999 + sec->output_offset);
4000 else
4001 symbol = h->root.root.u.def.value;
4002 }
4003 else if (h->root.root.type == bfd_link_hash_undefweak)
4004 /* We allow relocations against undefined weak symbols, giving
4005 it the value zero, so that you can undefined weak functions
4006 and check to see if they exist by looking at their
4007 addresses. */
4008 symbol = 0;
59c2e50f 4009 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4010 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4011 symbol = 0;
a4d0f181
TS
4012 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4013 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4014 {
4015 /* If this is a dynamic link, we should have created a
4016 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4017 in in _bfd_mips_elf_create_dynamic_sections.
4018 Otherwise, we should define the symbol with a value of 0.
4019 FIXME: It should probably get into the symbol table
4020 somehow as well. */
4021 BFD_ASSERT (! info->shared);
4022 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4023 symbol = 0;
4024 }
5e2b0d47
NC
4025 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4026 {
4027 /* This is an optional symbol - an Irix specific extension to the
4028 ELF spec. Ignore it for now.
4029 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4030 than simply ignoring them, but we do not handle this for now.
4031 For information see the "64-bit ELF Object File Specification"
4032 which is available from here:
4033 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4034 symbol = 0;
4035 }
b49e97c9
TS
4036 else
4037 {
4038 if (! ((*info->callbacks->undefined_symbol)
4039 (info, h->root.root.root.string, input_bfd,
4040 input_section, relocation->r_offset,
59c2e50f
L
4041 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4042 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4043 return bfd_reloc_undefined;
4044 symbol = 0;
4045 }
4046
4047 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4048 }
4049
4050 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4051 need to redirect the call to the stub, unless we're already *in*
4052 a stub. */
1049f94e 4053 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
4054 && ((h != NULL && h->fn_stub != NULL)
4055 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4056 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4057 && !mips_elf_stub_section_p (input_bfd, input_section))
4058 {
4059 /* This is a 32- or 64-bit call to a 16-bit function. We should
4060 have already noticed that we were going to need the
4061 stub. */
4062 if (local_p)
4063 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4064 else
4065 {
4066 BFD_ASSERT (h->need_fn_stub);
4067 sec = h->fn_stub;
4068 }
4069
4070 symbol = sec->output_section->vma + sec->output_offset;
4071 }
4072 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4073 need to redirect the call to the stub. */
1049f94e 4074 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
4075 && h != NULL
4076 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4077 && !target_is_16_bit_code_p)
4078 {
4079 /* If both call_stub and call_fp_stub are defined, we can figure
4080 out which one to use by seeing which one appears in the input
4081 file. */
4082 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4083 {
4084 asection *o;
4085
4086 sec = NULL;
4087 for (o = input_bfd->sections; o != NULL; o = o->next)
4088 {
4089 if (strncmp (bfd_get_section_name (input_bfd, o),
4090 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4091 {
4092 sec = h->call_fp_stub;
4093 break;
4094 }
4095 }
4096 if (sec == NULL)
4097 sec = h->call_stub;
4098 }
4099 else if (h->call_stub != NULL)
4100 sec = h->call_stub;
4101 else
4102 sec = h->call_fp_stub;
4103
eea6121a 4104 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4105 symbol = sec->output_section->vma + sec->output_offset;
4106 }
4107
4108 /* Calls from 16-bit code to 32-bit code and vice versa require the
4109 special jalx instruction. */
1049f94e 4110 *require_jalxp = (!info->relocatable
b49e97c9
TS
4111 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4112 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4113
4114 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4115 local_sections, TRUE);
b49e97c9
TS
4116
4117 /* If we haven't already determined the GOT offset, or the GP value,
4118 and we're going to need it, get it now. */
4119 switch (r_type)
4120 {
0fdc1bf1 4121 case R_MIPS_GOT_PAGE:
93a2b7ae 4122 case R_MIPS_GOT_OFST:
d25aed71
RS
4123 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4124 bind locally. */
4125 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4126 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4127 break;
4128 /* Fall through. */
4129
b49e97c9
TS
4130 case R_MIPS_CALL16:
4131 case R_MIPS_GOT16:
4132 case R_MIPS_GOT_DISP:
4133 case R_MIPS_GOT_HI16:
4134 case R_MIPS_CALL_HI16:
4135 case R_MIPS_GOT_LO16:
4136 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4137 case R_MIPS_TLS_GD:
4138 case R_MIPS_TLS_GOTTPREL:
4139 case R_MIPS_TLS_LDM:
b49e97c9 4140 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4141 if (r_type == R_MIPS_TLS_LDM)
4142 {
0a44bf69
RS
4143 g = mips_elf_local_got_index (abfd, input_bfd, info,
4144 sec, 0, 0, NULL, r_type);
0f20cc35
DJ
4145 if (g == MINUS_ONE)
4146 return bfd_reloc_outofrange;
4147 }
4148 else if (!local_p)
b49e97c9 4149 {
0a44bf69
RS
4150 /* On VxWorks, CALL relocations should refer to the .got.plt
4151 entry, which is initialized to point at the PLT stub. */
4152 if (htab->is_vxworks
4153 && (r_type == R_MIPS_CALL_HI16
4154 || r_type == R_MIPS_CALL_LO16
4155 || r_type == R_MIPS_CALL16))
4156 {
4157 BFD_ASSERT (addend == 0);
4158 BFD_ASSERT (h->root.needs_plt);
4159 g = mips_elf_gotplt_index (info, &h->root);
4160 }
4161 else
b49e97c9 4162 {
0a44bf69
RS
4163 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4164 GOT_PAGE relocation that decays to GOT_DISP because the
4165 symbol turns out to be global. The addend is then added
4166 as GOT_OFST. */
4167 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4168 g = mips_elf_global_got_index (dynobj, input_bfd,
4169 &h->root, r_type, info);
4170 if (h->tls_type == GOT_NORMAL
4171 && (! elf_hash_table(info)->dynamic_sections_created
4172 || (info->shared
4173 && (info->symbolic || h->root.forced_local)
4174 && h->root.def_regular)))
4175 {
4176 /* This is a static link or a -Bsymbolic link. The
4177 symbol is defined locally, or was forced to be local.
4178 We must initialize this entry in the GOT. */
4179 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4180 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4181 }
b49e97c9
TS
4182 }
4183 }
0a44bf69
RS
4184 else if (!htab->is_vxworks
4185 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4186 /* The calculation below does not involve "g". */
b49e97c9
TS
4187 break;
4188 else
4189 {
0a44bf69
RS
4190 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4191 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4192 if (g == MINUS_ONE)
4193 return bfd_reloc_outofrange;
4194 }
4195
4196 /* Convert GOT indices to actual offsets. */
0a44bf69 4197 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4198 break;
4199
4200 case R_MIPS_HI16:
4201 case R_MIPS_LO16:
b49e97c9
TS
4202 case R_MIPS_GPREL16:
4203 case R_MIPS_GPREL32:
4204 case R_MIPS_LITERAL:
d6f16593
MR
4205 case R_MIPS16_HI16:
4206 case R_MIPS16_LO16:
4207 case R_MIPS16_GPREL:
b49e97c9
TS
4208 gp0 = _bfd_get_gp_value (input_bfd);
4209 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4210 if (dynobj)
4211 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4212 input_bfd);
b49e97c9
TS
4213 break;
4214
4215 default:
4216 break;
4217 }
4218
bbe506e8
TS
4219 if (gnu_local_gp_p)
4220 symbol = gp;
86324f90 4221
0a44bf69
RS
4222 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4223 symbols are resolved by the loader. Add them to .rela.dyn. */
4224 if (h != NULL && is_gott_symbol (info, &h->root))
4225 {
4226 Elf_Internal_Rela outrel;
4227 bfd_byte *loc;
4228 asection *s;
4229
4230 s = mips_elf_rel_dyn_section (info, FALSE);
4231 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4232
4233 outrel.r_offset = (input_section->output_section->vma
4234 + input_section->output_offset
4235 + relocation->r_offset);
4236 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4237 outrel.r_addend = addend;
4238 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4239 *valuep = 0;
4240 return bfd_reloc_ok;
4241 }
4242
b49e97c9
TS
4243 /* Figure out what kind of relocation is being performed. */
4244 switch (r_type)
4245 {
4246 case R_MIPS_NONE:
4247 return bfd_reloc_continue;
4248
4249 case R_MIPS_16:
a7ebbfdf 4250 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4251 overflowed_p = mips_elf_overflow_p (value, 16);
4252 break;
4253
4254 case R_MIPS_32:
4255 case R_MIPS_REL32:
4256 case R_MIPS_64:
4257 if ((info->shared
0a44bf69
RS
4258 || (!htab->is_vxworks
4259 && htab->root.dynamic_sections_created
b49e97c9 4260 && h != NULL
f5385ebf
AM
4261 && h->root.def_dynamic
4262 && !h->root.def_regular))
b49e97c9
TS
4263 && r_symndx != 0
4264 && (input_section->flags & SEC_ALLOC) != 0)
4265 {
4266 /* If we're creating a shared library, or this relocation is
4267 against a symbol in a shared library, then we can't know
4268 where the symbol will end up. So, we create a relocation
4269 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4270 linker.
4271
4272 In VxWorks executables, references to external symbols
4273 are handled using copy relocs or PLT stubs, so there's
4274 no need to add a dynamic relocation here. */
b49e97c9
TS
4275 value = addend;
4276 if (!mips_elf_create_dynamic_relocation (abfd,
4277 info,
4278 relocation,
4279 h,
4280 sec,
4281 symbol,
4282 &value,
4283 input_section))
4284 return bfd_reloc_undefined;
4285 }
4286 else
4287 {
4288 if (r_type != R_MIPS_REL32)
4289 value = symbol + addend;
4290 else
4291 value = addend;
4292 }
4293 value &= howto->dst_mask;
092dcd75
CD
4294 break;
4295
4296 case R_MIPS_PC32:
4297 value = symbol + addend - p;
4298 value &= howto->dst_mask;
b49e97c9
TS
4299 break;
4300
b49e97c9
TS
4301 case R_MIPS16_26:
4302 /* The calculation for R_MIPS16_26 is just the same as for an
4303 R_MIPS_26. It's only the storage of the relocated field into
4304 the output file that's different. That's handled in
4305 mips_elf_perform_relocation. So, we just fall through to the
4306 R_MIPS_26 case here. */
4307 case R_MIPS_26:
4308 if (local_p)
30ac9238 4309 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4310 else
728b2f21
ILT
4311 {
4312 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4313 if (h->root.root.type != bfd_link_hash_undefweak)
4314 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4315 }
b49e97c9
TS
4316 value &= howto->dst_mask;
4317 break;
4318
0f20cc35
DJ
4319 case R_MIPS_TLS_DTPREL_HI16:
4320 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4321 & howto->dst_mask);
4322 break;
4323
4324 case R_MIPS_TLS_DTPREL_LO16:
4325 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4326 break;
4327
4328 case R_MIPS_TLS_TPREL_HI16:
4329 value = (mips_elf_high (addend + symbol - tprel_base (info))
4330 & howto->dst_mask);
4331 break;
4332
4333 case R_MIPS_TLS_TPREL_LO16:
4334 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4335 break;
4336
b49e97c9 4337 case R_MIPS_HI16:
d6f16593 4338 case R_MIPS16_HI16:
b49e97c9
TS
4339 if (!gp_disp_p)
4340 {
4341 value = mips_elf_high (addend + symbol);
4342 value &= howto->dst_mask;
4343 }
4344 else
4345 {
d6f16593
MR
4346 /* For MIPS16 ABI code we generate this sequence
4347 0: li $v0,%hi(_gp_disp)
4348 4: addiupc $v1,%lo(_gp_disp)
4349 8: sll $v0,16
4350 12: addu $v0,$v1
4351 14: move $gp,$v0
4352 So the offsets of hi and lo relocs are the same, but the
4353 $pc is four higher than $t9 would be, so reduce
4354 both reloc addends by 4. */
4355 if (r_type == R_MIPS16_HI16)
4356 value = mips_elf_high (addend + gp - p - 4);
4357 else
4358 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4359 overflowed_p = mips_elf_overflow_p (value, 16);
4360 }
4361 break;
4362
4363 case R_MIPS_LO16:
d6f16593 4364 case R_MIPS16_LO16:
b49e97c9
TS
4365 if (!gp_disp_p)
4366 value = (symbol + addend) & howto->dst_mask;
4367 else
4368 {
d6f16593
MR
4369 /* See the comment for R_MIPS16_HI16 above for the reason
4370 for this conditional. */
4371 if (r_type == R_MIPS16_LO16)
4372 value = addend + gp - p;
4373 else
4374 value = addend + gp - p + 4;
b49e97c9 4375 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4376 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4377 _gp_disp are normally generated from the .cpload
4378 pseudo-op. It generates code that normally looks like
4379 this:
4380
4381 lui $gp,%hi(_gp_disp)
4382 addiu $gp,$gp,%lo(_gp_disp)
4383 addu $gp,$gp,$t9
4384
4385 Here $t9 holds the address of the function being called,
4386 as required by the MIPS ELF ABI. The R_MIPS_LO16
4387 relocation can easily overflow in this situation, but the
4388 R_MIPS_HI16 relocation will handle the overflow.
4389 Therefore, we consider this a bug in the MIPS ABI, and do
4390 not check for overflow here. */
4391 }
4392 break;
4393
4394 case R_MIPS_LITERAL:
4395 /* Because we don't merge literal sections, we can handle this
4396 just like R_MIPS_GPREL16. In the long run, we should merge
4397 shared literals, and then we will need to additional work
4398 here. */
4399
4400 /* Fall through. */
4401
4402 case R_MIPS16_GPREL:
4403 /* The R_MIPS16_GPREL performs the same calculation as
4404 R_MIPS_GPREL16, but stores the relocated bits in a different
4405 order. We don't need to do anything special here; the
4406 differences are handled in mips_elf_perform_relocation. */
4407 case R_MIPS_GPREL16:
bce03d3d
AO
4408 /* Only sign-extend the addend if it was extracted from the
4409 instruction. If the addend was separate, leave it alone,
4410 otherwise we may lose significant bits. */
4411 if (howto->partial_inplace)
a7ebbfdf 4412 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4413 value = symbol + addend - gp;
4414 /* If the symbol was local, any earlier relocatable links will
4415 have adjusted its addend with the gp offset, so compensate
4416 for that now. Don't do it for symbols forced local in this
4417 link, though, since they won't have had the gp offset applied
4418 to them before. */
4419 if (was_local_p)
4420 value += gp0;
b49e97c9
TS
4421 overflowed_p = mips_elf_overflow_p (value, 16);
4422 break;
4423
4424 case R_MIPS_GOT16:
4425 case R_MIPS_CALL16:
0a44bf69
RS
4426 /* VxWorks does not have separate local and global semantics for
4427 R_MIPS_GOT16; every relocation evaluates to "G". */
4428 if (!htab->is_vxworks && local_p)
b49e97c9 4429 {
b34976b6 4430 bfd_boolean forced;
b49e97c9 4431
b49e97c9 4432 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4433 local_sections, FALSE);
0a44bf69 4434 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
f4416af6 4435 symbol + addend, forced);
b49e97c9
TS
4436 if (value == MINUS_ONE)
4437 return bfd_reloc_outofrange;
4438 value
0a44bf69 4439 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4440 overflowed_p = mips_elf_overflow_p (value, 16);
4441 break;
4442 }
4443
4444 /* Fall through. */
4445
0f20cc35
DJ
4446 case R_MIPS_TLS_GD:
4447 case R_MIPS_TLS_GOTTPREL:
4448 case R_MIPS_TLS_LDM:
b49e97c9 4449 case R_MIPS_GOT_DISP:
0fdc1bf1 4450 got_disp:
b49e97c9
TS
4451 value = g;
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4454
4455 case R_MIPS_GPREL32:
bce03d3d
AO
4456 value = (addend + symbol + gp0 - gp);
4457 if (!save_addend)
4458 value &= howto->dst_mask;
b49e97c9
TS
4459 break;
4460
4461 case R_MIPS_PC16:
bad36eac
DJ
4462 case R_MIPS_GNU_REL16_S2:
4463 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4464 overflowed_p = mips_elf_overflow_p (value, 18);
4465 value = (value >> 2) & howto->dst_mask;
b49e97c9
TS
4466 break;
4467
4468 case R_MIPS_GOT_HI16:
4469 case R_MIPS_CALL_HI16:
4470 /* We're allowed to handle these two relocations identically.
4471 The dynamic linker is allowed to handle the CALL relocations
4472 differently by creating a lazy evaluation stub. */
4473 value = g;
4474 value = mips_elf_high (value);
4475 value &= howto->dst_mask;
4476 break;
4477
4478 case R_MIPS_GOT_LO16:
4479 case R_MIPS_CALL_LO16:
4480 value = g & howto->dst_mask;
4481 break;
4482
4483 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4484 /* GOT_PAGE relocations that reference non-local symbols decay
4485 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4486 0. */
93a2b7ae 4487 if (! local_p)
0fdc1bf1 4488 goto got_disp;
0a44bf69
RS
4489 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4490 symbol + addend, NULL);
b49e97c9
TS
4491 if (value == MINUS_ONE)
4492 return bfd_reloc_outofrange;
0a44bf69 4493 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4494 overflowed_p = mips_elf_overflow_p (value, 16);
4495 break;
4496
4497 case R_MIPS_GOT_OFST:
93a2b7ae 4498 if (local_p)
0a44bf69
RS
4499 mips_elf_got_page (abfd, input_bfd, info, sec,
4500 symbol + addend, &value);
0fdc1bf1
AO
4501 else
4502 value = addend;
b49e97c9
TS
4503 overflowed_p = mips_elf_overflow_p (value, 16);
4504 break;
4505
4506 case R_MIPS_SUB:
4507 value = symbol - addend;
4508 value &= howto->dst_mask;
4509 break;
4510
4511 case R_MIPS_HIGHER:
4512 value = mips_elf_higher (addend + symbol);
4513 value &= howto->dst_mask;
4514 break;
4515
4516 case R_MIPS_HIGHEST:
4517 value = mips_elf_highest (addend + symbol);
4518 value &= howto->dst_mask;
4519 break;
4520
4521 case R_MIPS_SCN_DISP:
4522 value = symbol + addend - sec->output_offset;
4523 value &= howto->dst_mask;
4524 break;
4525
b49e97c9 4526 case R_MIPS_JALR:
1367d393
ILT
4527 /* This relocation is only a hint. In some cases, we optimize
4528 it into a bal instruction. But we don't try to optimize
4529 branches to the PLT; that will wind up wasting time. */
4530 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4531 return bfd_reloc_continue;
4532 value = symbol + addend;
4533 break;
b49e97c9 4534
1367d393 4535 case R_MIPS_PJUMP:
b49e97c9
TS
4536 case R_MIPS_GNU_VTINHERIT:
4537 case R_MIPS_GNU_VTENTRY:
4538 /* We don't do anything with these at present. */
4539 return bfd_reloc_continue;
4540
4541 default:
4542 /* An unrecognized relocation type. */
4543 return bfd_reloc_notsupported;
4544 }
4545
4546 /* Store the VALUE for our caller. */
4547 *valuep = value;
4548 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4549}
4550
4551/* Obtain the field relocated by RELOCATION. */
4552
4553static bfd_vma
9719ad41
RS
4554mips_elf_obtain_contents (reloc_howto_type *howto,
4555 const Elf_Internal_Rela *relocation,
4556 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4557{
4558 bfd_vma x;
4559 bfd_byte *location = contents + relocation->r_offset;
4560
4561 /* Obtain the bytes. */
4562 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4563
b49e97c9
TS
4564 return x;
4565}
4566
4567/* It has been determined that the result of the RELOCATION is the
4568 VALUE. Use HOWTO to place VALUE into the output file at the
4569 appropriate position. The SECTION is the section to which the
b34976b6 4570 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4571 for the relocation must be either JAL or JALX, and it is
4572 unconditionally converted to JALX.
4573
b34976b6 4574 Returns FALSE if anything goes wrong. */
b49e97c9 4575
b34976b6 4576static bfd_boolean
9719ad41
RS
4577mips_elf_perform_relocation (struct bfd_link_info *info,
4578 reloc_howto_type *howto,
4579 const Elf_Internal_Rela *relocation,
4580 bfd_vma value, bfd *input_bfd,
4581 asection *input_section, bfd_byte *contents,
4582 bfd_boolean require_jalx)
b49e97c9
TS
4583{
4584 bfd_vma x;
4585 bfd_byte *location;
4586 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4587
4588 /* Figure out where the relocation is occurring. */
4589 location = contents + relocation->r_offset;
4590
d6f16593
MR
4591 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4592
b49e97c9
TS
4593 /* Obtain the current value. */
4594 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4595
4596 /* Clear the field we are setting. */
4597 x &= ~howto->dst_mask;
4598
b49e97c9
TS
4599 /* Set the field. */
4600 x |= (value & howto->dst_mask);
4601
4602 /* If required, turn JAL into JALX. */
4603 if (require_jalx)
4604 {
b34976b6 4605 bfd_boolean ok;
b49e97c9
TS
4606 bfd_vma opcode = x >> 26;
4607 bfd_vma jalx_opcode;
4608
4609 /* Check to see if the opcode is already JAL or JALX. */
4610 if (r_type == R_MIPS16_26)
4611 {
4612 ok = ((opcode == 0x6) || (opcode == 0x7));
4613 jalx_opcode = 0x7;
4614 }
4615 else
4616 {
4617 ok = ((opcode == 0x3) || (opcode == 0x1d));
4618 jalx_opcode = 0x1d;
4619 }
4620
4621 /* If the opcode is not JAL or JALX, there's a problem. */
4622 if (!ok)
4623 {
4624 (*_bfd_error_handler)
d003868e
AM
4625 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4626 input_bfd,
4627 input_section,
b49e97c9
TS
4628 (unsigned long) relocation->r_offset);
4629 bfd_set_error (bfd_error_bad_value);
b34976b6 4630 return FALSE;
b49e97c9
TS
4631 }
4632
4633 /* Make this the JALX opcode. */
4634 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4635 }
4636
1367d393
ILT
4637 /* On the RM9000, bal is faster than jal, because bal uses branch
4638 prediction hardware. If we are linking for the RM9000, and we
4639 see jal, and bal fits, use it instead. Note that this
4640 transformation should be safe for all architectures. */
4641 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4642 && !info->relocatable
4643 && !require_jalx
4644 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4645 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4646 {
4647 bfd_vma addr;
4648 bfd_vma dest;
4649 bfd_signed_vma off;
4650
4651 addr = (input_section->output_section->vma
4652 + input_section->output_offset
4653 + relocation->r_offset
4654 + 4);
4655 if (r_type == R_MIPS_26)
4656 dest = (value << 2) | ((addr >> 28) << 28);
4657 else
4658 dest = value;
4659 off = dest - addr;
4660 if (off <= 0x1ffff && off >= -0x20000)
4661 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4662 }
4663
b49e97c9
TS
4664 /* Put the value into the output. */
4665 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4666
4667 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4668 location);
4669
b34976b6 4670 return TRUE;
b49e97c9
TS
4671}
4672
b34976b6 4673/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4674
b34976b6 4675static bfd_boolean
9719ad41 4676mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4677{
4678 const char *name = bfd_get_section_name (abfd, section);
4679
4680 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4681 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4682 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4683}
4684\f
0a44bf69 4685/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4686
4687static void
0a44bf69
RS
4688mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4689 unsigned int n)
b49e97c9
TS
4690{
4691 asection *s;
0a44bf69 4692 struct mips_elf_link_hash_table *htab;
b49e97c9 4693
0a44bf69
RS
4694 htab = mips_elf_hash_table (info);
4695 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4696 BFD_ASSERT (s != NULL);
4697
0a44bf69
RS
4698 if (htab->is_vxworks)
4699 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4700 else
b49e97c9 4701 {
0a44bf69
RS
4702 if (s->size == 0)
4703 {
4704 /* Make room for a null element. */
4705 s->size += MIPS_ELF_REL_SIZE (abfd);
4706 ++s->reloc_count;
4707 }
4708 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4709 }
b49e97c9
TS
4710}
4711
4712/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4713 is the original relocation, which is now being transformed into a
4714 dynamic relocation. The ADDENDP is adjusted if necessary; the
4715 caller should store the result in place of the original addend. */
4716
b34976b6 4717static bfd_boolean
9719ad41
RS
4718mips_elf_create_dynamic_relocation (bfd *output_bfd,
4719 struct bfd_link_info *info,
4720 const Elf_Internal_Rela *rel,
4721 struct mips_elf_link_hash_entry *h,
4722 asection *sec, bfd_vma symbol,
4723 bfd_vma *addendp, asection *input_section)
b49e97c9 4724{
947216bf 4725 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4726 asection *sreloc;
4727 bfd *dynobj;
4728 int r_type;
5d41f0b6
RS
4729 long indx;
4730 bfd_boolean defined_p;
0a44bf69 4731 struct mips_elf_link_hash_table *htab;
b49e97c9 4732
0a44bf69 4733 htab = mips_elf_hash_table (info);
b49e97c9
TS
4734 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4735 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4736 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4737 BFD_ASSERT (sreloc != NULL);
4738 BFD_ASSERT (sreloc->contents != NULL);
4739 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4740 < sreloc->size);
b49e97c9 4741
b49e97c9
TS
4742 outrel[0].r_offset =
4743 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4744 outrel[1].r_offset =
4745 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4746 outrel[2].r_offset =
4747 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4748
c5ae1840 4749 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4750 /* The relocation field has been deleted. */
5d41f0b6
RS
4751 return TRUE;
4752
4753 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4754 {
4755 /* The relocation field has been converted into a relative value of
4756 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4757 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4758 *addendp += symbol;
5d41f0b6 4759 return TRUE;
0d591ff7 4760 }
b49e97c9 4761
5d41f0b6
RS
4762 /* We must now calculate the dynamic symbol table index to use
4763 in the relocation. */
4764 if (h != NULL
6ece8836
TS
4765 && (!h->root.def_regular
4766 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4767 {
4768 indx = h->root.dynindx;
4769 if (SGI_COMPAT (output_bfd))
4770 defined_p = h->root.def_regular;
4771 else
4772 /* ??? glibc's ld.so just adds the final GOT entry to the
4773 relocation field. It therefore treats relocs against
4774 defined symbols in the same way as relocs against
4775 undefined symbols. */
4776 defined_p = FALSE;
4777 }
b49e97c9
TS
4778 else
4779 {
5d41f0b6
RS
4780 if (sec != NULL && bfd_is_abs_section (sec))
4781 indx = 0;
4782 else if (sec == NULL || sec->owner == NULL)
fdd07405 4783 {
5d41f0b6
RS
4784 bfd_set_error (bfd_error_bad_value);
4785 return FALSE;
b49e97c9
TS
4786 }
4787 else
4788 {
5d41f0b6
RS
4789 indx = elf_section_data (sec->output_section)->dynindx;
4790 if (indx == 0)
4791 abort ();
b49e97c9
TS
4792 }
4793
5d41f0b6
RS
4794 /* Instead of generating a relocation using the section
4795 symbol, we may as well make it a fully relative
4796 relocation. We want to avoid generating relocations to
4797 local symbols because we used to generate them
4798 incorrectly, without adding the original symbol value,
4799 which is mandated by the ABI for section symbols. In
4800 order to give dynamic loaders and applications time to
4801 phase out the incorrect use, we refrain from emitting
4802 section-relative relocations. It's not like they're
4803 useful, after all. This should be a bit more efficient
4804 as well. */
4805 /* ??? Although this behavior is compatible with glibc's ld.so,
4806 the ABI says that relocations against STN_UNDEF should have
4807 a symbol value of 0. Irix rld honors this, so relocations
4808 against STN_UNDEF have no effect. */
4809 if (!SGI_COMPAT (output_bfd))
4810 indx = 0;
4811 defined_p = TRUE;
b49e97c9
TS
4812 }
4813
5d41f0b6
RS
4814 /* If the relocation was previously an absolute relocation and
4815 this symbol will not be referred to by the relocation, we must
4816 adjust it by the value we give it in the dynamic symbol table.
4817 Otherwise leave the job up to the dynamic linker. */
4818 if (defined_p && r_type != R_MIPS_REL32)
4819 *addendp += symbol;
4820
0a44bf69
RS
4821 if (htab->is_vxworks)
4822 /* VxWorks uses non-relative relocations for this. */
4823 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4824 else
4825 /* The relocation is always an REL32 relocation because we don't
4826 know where the shared library will wind up at load-time. */
4827 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4828 R_MIPS_REL32);
4829
5d41f0b6
RS
4830 /* For strict adherence to the ABI specification, we should
4831 generate a R_MIPS_64 relocation record by itself before the
4832 _REL32/_64 record as well, such that the addend is read in as
4833 a 64-bit value (REL32 is a 32-bit relocation, after all).
4834 However, since none of the existing ELF64 MIPS dynamic
4835 loaders seems to care, we don't waste space with these
4836 artificial relocations. If this turns out to not be true,
4837 mips_elf_allocate_dynamic_relocation() should be tweaked so
4838 as to make room for a pair of dynamic relocations per
4839 invocation if ABI_64_P, and here we should generate an
4840 additional relocation record with R_MIPS_64 by itself for a
4841 NULL symbol before this relocation record. */
4842 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4843 ABI_64_P (output_bfd)
4844 ? R_MIPS_64
4845 : R_MIPS_NONE);
4846 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4847
4848 /* Adjust the output offset of the relocation to reference the
4849 correct location in the output file. */
4850 outrel[0].r_offset += (input_section->output_section->vma
4851 + input_section->output_offset);
4852 outrel[1].r_offset += (input_section->output_section->vma
4853 + input_section->output_offset);
4854 outrel[2].r_offset += (input_section->output_section->vma
4855 + input_section->output_offset);
4856
b49e97c9
TS
4857 /* Put the relocation back out. We have to use the special
4858 relocation outputter in the 64-bit case since the 64-bit
4859 relocation format is non-standard. */
4860 if (ABI_64_P (output_bfd))
4861 {
4862 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4863 (output_bfd, &outrel[0],
4864 (sreloc->contents
4865 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4866 }
0a44bf69
RS
4867 else if (htab->is_vxworks)
4868 {
4869 /* VxWorks uses RELA rather than REL dynamic relocations. */
4870 outrel[0].r_addend = *addendp;
4871 bfd_elf32_swap_reloca_out
4872 (output_bfd, &outrel[0],
4873 (sreloc->contents
4874 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4875 }
b49e97c9 4876 else
947216bf
AM
4877 bfd_elf32_swap_reloc_out
4878 (output_bfd, &outrel[0],
4879 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4880
b49e97c9
TS
4881 /* We've now added another relocation. */
4882 ++sreloc->reloc_count;
4883
4884 /* Make sure the output section is writable. The dynamic linker
4885 will be writing to it. */
4886 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4887 |= SHF_WRITE;
4888
4889 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4890 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4891 {
4892 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4893 bfd_byte *cr;
4894
4895 if (scpt)
4896 {
4897 Elf32_crinfo cptrel;
4898
4899 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4900 cptrel.vaddr = (rel->r_offset
4901 + input_section->output_section->vma
4902 + input_section->output_offset);
4903 if (r_type == R_MIPS_REL32)
4904 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4905 else
4906 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4907 mips_elf_set_cr_dist2to (cptrel, 0);
4908 cptrel.konst = *addendp;
4909
4910 cr = (scpt->contents
4911 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4912 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4913 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4914 ((Elf32_External_crinfo *) cr
4915 + scpt->reloc_count));
4916 ++scpt->reloc_count;
4917 }
4918 }
4919
943284cc
DJ
4920 /* If we've written this relocation for a readonly section,
4921 we need to set DF_TEXTREL again, so that we do not delete the
4922 DT_TEXTREL tag. */
4923 if (MIPS_ELF_READONLY_SECTION (input_section))
4924 info->flags |= DF_TEXTREL;
4925
b34976b6 4926 return TRUE;
b49e97c9
TS
4927}
4928\f
b49e97c9
TS
4929/* Return the MACH for a MIPS e_flags value. */
4930
4931unsigned long
9719ad41 4932_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4933{
4934 switch (flags & EF_MIPS_MACH)
4935 {
4936 case E_MIPS_MACH_3900:
4937 return bfd_mach_mips3900;
4938
4939 case E_MIPS_MACH_4010:
4940 return bfd_mach_mips4010;
4941
4942 case E_MIPS_MACH_4100:
4943 return bfd_mach_mips4100;
4944
4945 case E_MIPS_MACH_4111:
4946 return bfd_mach_mips4111;
4947
00707a0e
RS
4948 case E_MIPS_MACH_4120:
4949 return bfd_mach_mips4120;
4950
b49e97c9
TS
4951 case E_MIPS_MACH_4650:
4952 return bfd_mach_mips4650;
4953
00707a0e
RS
4954 case E_MIPS_MACH_5400:
4955 return bfd_mach_mips5400;
4956
4957 case E_MIPS_MACH_5500:
4958 return bfd_mach_mips5500;
4959
0d2e43ed
ILT
4960 case E_MIPS_MACH_9000:
4961 return bfd_mach_mips9000;
4962
b49e97c9
TS
4963 case E_MIPS_MACH_SB1:
4964 return bfd_mach_mips_sb1;
4965
4966 default:
4967 switch (flags & EF_MIPS_ARCH)
4968 {
4969 default:
4970 case E_MIPS_ARCH_1:
4971 return bfd_mach_mips3000;
b49e97c9
TS
4972
4973 case E_MIPS_ARCH_2:
4974 return bfd_mach_mips6000;
b49e97c9
TS
4975
4976 case E_MIPS_ARCH_3:
4977 return bfd_mach_mips4000;
b49e97c9
TS
4978
4979 case E_MIPS_ARCH_4:
4980 return bfd_mach_mips8000;
b49e97c9
TS
4981
4982 case E_MIPS_ARCH_5:
4983 return bfd_mach_mips5;
b49e97c9
TS
4984
4985 case E_MIPS_ARCH_32:
4986 return bfd_mach_mipsisa32;
b49e97c9
TS
4987
4988 case E_MIPS_ARCH_64:
4989 return bfd_mach_mipsisa64;
af7ee8bf
CD
4990
4991 case E_MIPS_ARCH_32R2:
4992 return bfd_mach_mipsisa32r2;
5f74bc13
CD
4993
4994 case E_MIPS_ARCH_64R2:
4995 return bfd_mach_mipsisa64r2;
b49e97c9
TS
4996 }
4997 }
4998
4999 return 0;
5000}
5001
5002/* Return printable name for ABI. */
5003
5004static INLINE char *
9719ad41 5005elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5006{
5007 flagword flags;
5008
5009 flags = elf_elfheader (abfd)->e_flags;
5010 switch (flags & EF_MIPS_ABI)
5011 {
5012 case 0:
5013 if (ABI_N32_P (abfd))
5014 return "N32";
5015 else if (ABI_64_P (abfd))
5016 return "64";
5017 else
5018 return "none";
5019 case E_MIPS_ABI_O32:
5020 return "O32";
5021 case E_MIPS_ABI_O64:
5022 return "O64";
5023 case E_MIPS_ABI_EABI32:
5024 return "EABI32";
5025 case E_MIPS_ABI_EABI64:
5026 return "EABI64";
5027 default:
5028 return "unknown abi";
5029 }
5030}
5031\f
5032/* MIPS ELF uses two common sections. One is the usual one, and the
5033 other is for small objects. All the small objects are kept
5034 together, and then referenced via the gp pointer, which yields
5035 faster assembler code. This is what we use for the small common
5036 section. This approach is copied from ecoff.c. */
5037static asection mips_elf_scom_section;
5038static asymbol mips_elf_scom_symbol;
5039static asymbol *mips_elf_scom_symbol_ptr;
5040
5041/* MIPS ELF also uses an acommon section, which represents an
5042 allocated common symbol which may be overridden by a
5043 definition in a shared library. */
5044static asection mips_elf_acom_section;
5045static asymbol mips_elf_acom_symbol;
5046static asymbol *mips_elf_acom_symbol_ptr;
5047
5048/* Handle the special MIPS section numbers that a symbol may use.
5049 This is used for both the 32-bit and the 64-bit ABI. */
5050
5051void
9719ad41 5052_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5053{
5054 elf_symbol_type *elfsym;
5055
5056 elfsym = (elf_symbol_type *) asym;
5057 switch (elfsym->internal_elf_sym.st_shndx)
5058 {
5059 case SHN_MIPS_ACOMMON:
5060 /* This section is used in a dynamically linked executable file.
5061 It is an allocated common section. The dynamic linker can
5062 either resolve these symbols to something in a shared
5063 library, or it can just leave them here. For our purposes,
5064 we can consider these symbols to be in a new section. */
5065 if (mips_elf_acom_section.name == NULL)
5066 {
5067 /* Initialize the acommon section. */
5068 mips_elf_acom_section.name = ".acommon";
5069 mips_elf_acom_section.flags = SEC_ALLOC;
5070 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5071 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5072 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5073 mips_elf_acom_symbol.name = ".acommon";
5074 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5075 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5076 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5077 }
5078 asym->section = &mips_elf_acom_section;
5079 break;
5080
5081 case SHN_COMMON:
5082 /* Common symbols less than the GP size are automatically
5083 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5084 if (asym->value > elf_gp_size (abfd)
5085 || IRIX_COMPAT (abfd) == ict_irix6)
5086 break;
5087 /* Fall through. */
5088 case SHN_MIPS_SCOMMON:
5089 if (mips_elf_scom_section.name == NULL)
5090 {
5091 /* Initialize the small common section. */
5092 mips_elf_scom_section.name = ".scommon";
5093 mips_elf_scom_section.flags = SEC_IS_COMMON;
5094 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5095 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5096 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5097 mips_elf_scom_symbol.name = ".scommon";
5098 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5099 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5100 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5101 }
5102 asym->section = &mips_elf_scom_section;
5103 asym->value = elfsym->internal_elf_sym.st_size;
5104 break;
5105
5106 case SHN_MIPS_SUNDEFINED:
5107 asym->section = bfd_und_section_ptr;
5108 break;
5109
b49e97c9 5110 case SHN_MIPS_TEXT:
00b4930b
TS
5111 {
5112 asection *section = bfd_get_section_by_name (abfd, ".text");
5113
5114 BFD_ASSERT (SGI_COMPAT (abfd));
5115 if (section != NULL)
5116 {
5117 asym->section = section;
5118 /* MIPS_TEXT is a bit special, the address is not an offset
5119 to the base of the .text section. So substract the section
5120 base address to make it an offset. */
5121 asym->value -= section->vma;
5122 }
5123 }
b49e97c9
TS
5124 break;
5125
5126 case SHN_MIPS_DATA:
00b4930b
TS
5127 {
5128 asection *section = bfd_get_section_by_name (abfd, ".data");
5129
5130 BFD_ASSERT (SGI_COMPAT (abfd));
5131 if (section != NULL)
5132 {
5133 asym->section = section;
5134 /* MIPS_DATA is a bit special, the address is not an offset
5135 to the base of the .data section. So substract the section
5136 base address to make it an offset. */
5137 asym->value -= section->vma;
5138 }
5139 }
b49e97c9 5140 break;
b49e97c9
TS
5141 }
5142}
5143\f
8c946ed5
RS
5144/* Implement elf_backend_eh_frame_address_size. This differs from
5145 the default in the way it handles EABI64.
5146
5147 EABI64 was originally specified as an LP64 ABI, and that is what
5148 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5149 historically accepted the combination of -mabi=eabi and -mlong32,
5150 and this ILP32 variation has become semi-official over time.
5151 Both forms use elf32 and have pointer-sized FDE addresses.
5152
5153 If an EABI object was generated by GCC 4.0 or above, it will have
5154 an empty .gcc_compiled_longXX section, where XX is the size of longs
5155 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5156 have no special marking to distinguish them from LP64 objects.
5157
5158 We don't want users of the official LP64 ABI to be punished for the
5159 existence of the ILP32 variant, but at the same time, we don't want
5160 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5161 We therefore take the following approach:
5162
5163 - If ABFD contains a .gcc_compiled_longXX section, use it to
5164 determine the pointer size.
5165
5166 - Otherwise check the type of the first relocation. Assume that
5167 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5168
5169 - Otherwise punt.
5170
5171 The second check is enough to detect LP64 objects generated by pre-4.0
5172 compilers because, in the kind of output generated by those compilers,
5173 the first relocation will be associated with either a CIE personality
5174 routine or an FDE start address. Furthermore, the compilers never
5175 used a special (non-pointer) encoding for this ABI.
5176
5177 Checking the relocation type should also be safe because there is no
5178 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5179 did so. */
5180
5181unsigned int
5182_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5183{
5184 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5185 return 8;
5186 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5187 {
5188 bfd_boolean long32_p, long64_p;
5189
5190 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5191 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5192 if (long32_p && long64_p)
5193 return 0;
5194 if (long32_p)
5195 return 4;
5196 if (long64_p)
5197 return 8;
5198
5199 if (sec->reloc_count > 0
5200 && elf_section_data (sec)->relocs != NULL
5201 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5202 == R_MIPS_64))
5203 return 8;
5204
5205 return 0;
5206 }
5207 return 4;
5208}
5209\f
174fd7f9
RS
5210/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5211 relocations against two unnamed section symbols to resolve to the
5212 same address. For example, if we have code like:
5213
5214 lw $4,%got_disp(.data)($gp)
5215 lw $25,%got_disp(.text)($gp)
5216 jalr $25
5217
5218 then the linker will resolve both relocations to .data and the program
5219 will jump there rather than to .text.
5220
5221 We can work around this problem by giving names to local section symbols.
5222 This is also what the MIPSpro tools do. */
5223
5224bfd_boolean
5225_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5226{
5227 return SGI_COMPAT (abfd);
5228}
5229\f
b49e97c9
TS
5230/* Work over a section just before writing it out. This routine is
5231 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5232 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5233 a better way. */
5234
b34976b6 5235bfd_boolean
9719ad41 5236_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5237{
5238 if (hdr->sh_type == SHT_MIPS_REGINFO
5239 && hdr->sh_size > 0)
5240 {
5241 bfd_byte buf[4];
5242
5243 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5244 BFD_ASSERT (hdr->contents == NULL);
5245
5246 if (bfd_seek (abfd,
5247 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5248 SEEK_SET) != 0)
b34976b6 5249 return FALSE;
b49e97c9 5250 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5251 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5252 return FALSE;
b49e97c9
TS
5253 }
5254
5255 if (hdr->sh_type == SHT_MIPS_OPTIONS
5256 && hdr->bfd_section != NULL
f0abc2a1
AM
5257 && mips_elf_section_data (hdr->bfd_section) != NULL
5258 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5259 {
5260 bfd_byte *contents, *l, *lend;
5261
f0abc2a1
AM
5262 /* We stored the section contents in the tdata field in the
5263 set_section_contents routine. We save the section contents
5264 so that we don't have to read them again.
b49e97c9
TS
5265 At this point we know that elf_gp is set, so we can look
5266 through the section contents to see if there is an
5267 ODK_REGINFO structure. */
5268
f0abc2a1 5269 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5270 l = contents;
5271 lend = contents + hdr->sh_size;
5272 while (l + sizeof (Elf_External_Options) <= lend)
5273 {
5274 Elf_Internal_Options intopt;
5275
5276 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5277 &intopt);
1bc8074d
MR
5278 if (intopt.size < sizeof (Elf_External_Options))
5279 {
5280 (*_bfd_error_handler)
5281 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5282 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5283 break;
5284 }
b49e97c9
TS
5285 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5286 {
5287 bfd_byte buf[8];
5288
5289 if (bfd_seek (abfd,
5290 (hdr->sh_offset
5291 + (l - contents)
5292 + sizeof (Elf_External_Options)
5293 + (sizeof (Elf64_External_RegInfo) - 8)),
5294 SEEK_SET) != 0)
b34976b6 5295 return FALSE;
b49e97c9 5296 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5297 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5298 return FALSE;
b49e97c9
TS
5299 }
5300 else if (intopt.kind == ODK_REGINFO)
5301 {
5302 bfd_byte buf[4];
5303
5304 if (bfd_seek (abfd,
5305 (hdr->sh_offset
5306 + (l - contents)
5307 + sizeof (Elf_External_Options)
5308 + (sizeof (Elf32_External_RegInfo) - 4)),
5309 SEEK_SET) != 0)
b34976b6 5310 return FALSE;
b49e97c9 5311 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5312 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5313 return FALSE;
b49e97c9
TS
5314 }
5315 l += intopt.size;
5316 }
5317 }
5318
5319 if (hdr->bfd_section != NULL)
5320 {
5321 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5322
5323 if (strcmp (name, ".sdata") == 0
5324 || strcmp (name, ".lit8") == 0
5325 || strcmp (name, ".lit4") == 0)
5326 {
5327 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5328 hdr->sh_type = SHT_PROGBITS;
5329 }
5330 else if (strcmp (name, ".sbss") == 0)
5331 {
5332 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5333 hdr->sh_type = SHT_NOBITS;
5334 }
5335 else if (strcmp (name, ".srdata") == 0)
5336 {
5337 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5338 hdr->sh_type = SHT_PROGBITS;
5339 }
5340 else if (strcmp (name, ".compact_rel") == 0)
5341 {
5342 hdr->sh_flags = 0;
5343 hdr->sh_type = SHT_PROGBITS;
5344 }
5345 else if (strcmp (name, ".rtproc") == 0)
5346 {
5347 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5348 {
5349 unsigned int adjust;
5350
5351 adjust = hdr->sh_size % hdr->sh_addralign;
5352 if (adjust != 0)
5353 hdr->sh_size += hdr->sh_addralign - adjust;
5354 }
5355 }
5356 }
5357
b34976b6 5358 return TRUE;
b49e97c9
TS
5359}
5360
5361/* Handle a MIPS specific section when reading an object file. This
5362 is called when elfcode.h finds a section with an unknown type.
5363 This routine supports both the 32-bit and 64-bit ELF ABI.
5364
5365 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5366 how to. */
5367
b34976b6 5368bfd_boolean
6dc132d9
L
5369_bfd_mips_elf_section_from_shdr (bfd *abfd,
5370 Elf_Internal_Shdr *hdr,
5371 const char *name,
5372 int shindex)
b49e97c9
TS
5373{
5374 flagword flags = 0;
5375
5376 /* There ought to be a place to keep ELF backend specific flags, but
5377 at the moment there isn't one. We just keep track of the
5378 sections by their name, instead. Fortunately, the ABI gives
5379 suggested names for all the MIPS specific sections, so we will
5380 probably get away with this. */
5381 switch (hdr->sh_type)
5382 {
5383 case SHT_MIPS_LIBLIST:
5384 if (strcmp (name, ".liblist") != 0)
b34976b6 5385 return FALSE;
b49e97c9
TS
5386 break;
5387 case SHT_MIPS_MSYM:
5388 if (strcmp (name, ".msym") != 0)
b34976b6 5389 return FALSE;
b49e97c9
TS
5390 break;
5391 case SHT_MIPS_CONFLICT:
5392 if (strcmp (name, ".conflict") != 0)
b34976b6 5393 return FALSE;
b49e97c9
TS
5394 break;
5395 case SHT_MIPS_GPTAB:
5396 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 5397 return FALSE;
b49e97c9
TS
5398 break;
5399 case SHT_MIPS_UCODE:
5400 if (strcmp (name, ".ucode") != 0)
b34976b6 5401 return FALSE;
b49e97c9
TS
5402 break;
5403 case SHT_MIPS_DEBUG:
5404 if (strcmp (name, ".mdebug") != 0)
b34976b6 5405 return FALSE;
b49e97c9
TS
5406 flags = SEC_DEBUGGING;
5407 break;
5408 case SHT_MIPS_REGINFO:
5409 if (strcmp (name, ".reginfo") != 0
5410 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5411 return FALSE;
b49e97c9
TS
5412 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5413 break;
5414 case SHT_MIPS_IFACE:
5415 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5416 return FALSE;
b49e97c9
TS
5417 break;
5418 case SHT_MIPS_CONTENT:
5419 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 5420 return FALSE;
b49e97c9
TS
5421 break;
5422 case SHT_MIPS_OPTIONS:
cc2e31b9 5423 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5424 return FALSE;
b49e97c9
TS
5425 break;
5426 case SHT_MIPS_DWARF:
5427 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 5428 return FALSE;
b49e97c9
TS
5429 break;
5430 case SHT_MIPS_SYMBOL_LIB:
5431 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5432 return FALSE;
b49e97c9
TS
5433 break;
5434 case SHT_MIPS_EVENTS:
5435 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5436 && strncmp (name, ".MIPS.post_rel",
5437 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 5438 return FALSE;
b49e97c9
TS
5439 break;
5440 default:
cc2e31b9 5441 break;
b49e97c9
TS
5442 }
5443
6dc132d9 5444 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5445 return FALSE;
b49e97c9
TS
5446
5447 if (flags)
5448 {
5449 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5450 (bfd_get_section_flags (abfd,
5451 hdr->bfd_section)
5452 | flags)))
b34976b6 5453 return FALSE;
b49e97c9
TS
5454 }
5455
5456 /* FIXME: We should record sh_info for a .gptab section. */
5457
5458 /* For a .reginfo section, set the gp value in the tdata information
5459 from the contents of this section. We need the gp value while
5460 processing relocs, so we just get it now. The .reginfo section
5461 is not used in the 64-bit MIPS ELF ABI. */
5462 if (hdr->sh_type == SHT_MIPS_REGINFO)
5463 {
5464 Elf32_External_RegInfo ext;
5465 Elf32_RegInfo s;
5466
9719ad41
RS
5467 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5468 &ext, 0, sizeof ext))
b34976b6 5469 return FALSE;
b49e97c9
TS
5470 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5471 elf_gp (abfd) = s.ri_gp_value;
5472 }
5473
5474 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5475 set the gp value based on what we find. We may see both
5476 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5477 they should agree. */
5478 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5479 {
5480 bfd_byte *contents, *l, *lend;
5481
9719ad41 5482 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5483 if (contents == NULL)
b34976b6 5484 return FALSE;
b49e97c9 5485 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5486 0, hdr->sh_size))
b49e97c9
TS
5487 {
5488 free (contents);
b34976b6 5489 return FALSE;
b49e97c9
TS
5490 }
5491 l = contents;
5492 lend = contents + hdr->sh_size;
5493 while (l + sizeof (Elf_External_Options) <= lend)
5494 {
5495 Elf_Internal_Options intopt;
5496
5497 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5498 &intopt);
1bc8074d
MR
5499 if (intopt.size < sizeof (Elf_External_Options))
5500 {
5501 (*_bfd_error_handler)
5502 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5503 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5504 break;
5505 }
b49e97c9
TS
5506 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5507 {
5508 Elf64_Internal_RegInfo intreg;
5509
5510 bfd_mips_elf64_swap_reginfo_in
5511 (abfd,
5512 ((Elf64_External_RegInfo *)
5513 (l + sizeof (Elf_External_Options))),
5514 &intreg);
5515 elf_gp (abfd) = intreg.ri_gp_value;
5516 }
5517 else if (intopt.kind == ODK_REGINFO)
5518 {
5519 Elf32_RegInfo intreg;
5520
5521 bfd_mips_elf32_swap_reginfo_in
5522 (abfd,
5523 ((Elf32_External_RegInfo *)
5524 (l + sizeof (Elf_External_Options))),
5525 &intreg);
5526 elf_gp (abfd) = intreg.ri_gp_value;
5527 }
5528 l += intopt.size;
5529 }
5530 free (contents);
5531 }
5532
b34976b6 5533 return TRUE;
b49e97c9
TS
5534}
5535
5536/* Set the correct type for a MIPS ELF section. We do this by the
5537 section name, which is a hack, but ought to work. This routine is
5538 used by both the 32-bit and the 64-bit ABI. */
5539
b34976b6 5540bfd_boolean
9719ad41 5541_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5542{
5543 register const char *name;
1bc8074d 5544 unsigned int sh_type;
b49e97c9
TS
5545
5546 name = bfd_get_section_name (abfd, sec);
1bc8074d 5547 sh_type = hdr->sh_type;
b49e97c9
TS
5548
5549 if (strcmp (name, ".liblist") == 0)
5550 {
5551 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5552 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5553 /* The sh_link field is set in final_write_processing. */
5554 }
5555 else if (strcmp (name, ".conflict") == 0)
5556 hdr->sh_type = SHT_MIPS_CONFLICT;
5557 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5558 {
5559 hdr->sh_type = SHT_MIPS_GPTAB;
5560 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5561 /* The sh_info field is set in final_write_processing. */
5562 }
5563 else if (strcmp (name, ".ucode") == 0)
5564 hdr->sh_type = SHT_MIPS_UCODE;
5565 else if (strcmp (name, ".mdebug") == 0)
5566 {
5567 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5568 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5569 entsize of 0. FIXME: Does this matter? */
5570 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5571 hdr->sh_entsize = 0;
5572 else
5573 hdr->sh_entsize = 1;
5574 }
5575 else if (strcmp (name, ".reginfo") == 0)
5576 {
5577 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5578 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5579 entsize of 0x18. FIXME: Does this matter? */
5580 if (SGI_COMPAT (abfd))
5581 {
5582 if ((abfd->flags & DYNAMIC) != 0)
5583 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5584 else
5585 hdr->sh_entsize = 1;
5586 }
5587 else
5588 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5589 }
5590 else if (SGI_COMPAT (abfd)
5591 && (strcmp (name, ".hash") == 0
5592 || strcmp (name, ".dynamic") == 0
5593 || strcmp (name, ".dynstr") == 0))
5594 {
5595 if (SGI_COMPAT (abfd))
5596 hdr->sh_entsize = 0;
5597#if 0
8dc1a139 5598 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5599 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5600#endif
5601 }
5602 else if (strcmp (name, ".got") == 0
5603 || strcmp (name, ".srdata") == 0
5604 || strcmp (name, ".sdata") == 0
5605 || strcmp (name, ".sbss") == 0
5606 || strcmp (name, ".lit4") == 0
5607 || strcmp (name, ".lit8") == 0)
5608 hdr->sh_flags |= SHF_MIPS_GPREL;
5609 else if (strcmp (name, ".MIPS.interfaces") == 0)
5610 {
5611 hdr->sh_type = SHT_MIPS_IFACE;
5612 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5613 }
5614 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5615 {
5616 hdr->sh_type = SHT_MIPS_CONTENT;
5617 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5618 /* The sh_info field is set in final_write_processing. */
5619 }
cc2e31b9 5620 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5621 {
5622 hdr->sh_type = SHT_MIPS_OPTIONS;
5623 hdr->sh_entsize = 1;
5624 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5625 }
5626 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5627 hdr->sh_type = SHT_MIPS_DWARF;
5628 else if (strcmp (name, ".MIPS.symlib") == 0)
5629 {
5630 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5631 /* The sh_link and sh_info fields are set in
5632 final_write_processing. */
5633 }
5634 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5635 || strncmp (name, ".MIPS.post_rel",
5636 sizeof ".MIPS.post_rel" - 1) == 0)
5637 {
5638 hdr->sh_type = SHT_MIPS_EVENTS;
5639 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5640 /* The sh_link field is set in final_write_processing. */
5641 }
5642 else if (strcmp (name, ".msym") == 0)
5643 {
5644 hdr->sh_type = SHT_MIPS_MSYM;
5645 hdr->sh_flags |= SHF_ALLOC;
5646 hdr->sh_entsize = 8;
5647 }
5648
1bc8074d
MR
5649 /* In the unlikely event a special section is empty it has to lose its
5650 special meaning. This may happen e.g. when using `strip' with the
5651 "--only-keep-debug" option. */
5652 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5653 hdr->sh_type = sh_type;
5654
7a79a000
TS
5655 /* The generic elf_fake_sections will set up REL_HDR using the default
5656 kind of relocations. We used to set up a second header for the
5657 non-default kind of relocations here, but only NewABI would use
5658 these, and the IRIX ld doesn't like resulting empty RELA sections.
5659 Thus we create those header only on demand now. */
b49e97c9 5660
b34976b6 5661 return TRUE;
b49e97c9
TS
5662}
5663
5664/* Given a BFD section, try to locate the corresponding ELF section
5665 index. This is used by both the 32-bit and the 64-bit ABI.
5666 Actually, it's not clear to me that the 64-bit ABI supports these,
5667 but for non-PIC objects we will certainly want support for at least
5668 the .scommon section. */
5669
b34976b6 5670bfd_boolean
9719ad41
RS
5671_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5672 asection *sec, int *retval)
b49e97c9
TS
5673{
5674 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5675 {
5676 *retval = SHN_MIPS_SCOMMON;
b34976b6 5677 return TRUE;
b49e97c9
TS
5678 }
5679 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5680 {
5681 *retval = SHN_MIPS_ACOMMON;
b34976b6 5682 return TRUE;
b49e97c9 5683 }
b34976b6 5684 return FALSE;
b49e97c9
TS
5685}
5686\f
5687/* Hook called by the linker routine which adds symbols from an object
5688 file. We must handle the special MIPS section numbers here. */
5689
b34976b6 5690bfd_boolean
9719ad41 5691_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5692 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5693 flagword *flagsp ATTRIBUTE_UNUSED,
5694 asection **secp, bfd_vma *valp)
b49e97c9
TS
5695{
5696 if (SGI_COMPAT (abfd)
5697 && (abfd->flags & DYNAMIC) != 0
5698 && strcmp (*namep, "_rld_new_interface") == 0)
5699 {
8dc1a139 5700 /* Skip IRIX5 rld entry name. */
b49e97c9 5701 *namep = NULL;
b34976b6 5702 return TRUE;
b49e97c9
TS
5703 }
5704
eedecc07
DD
5705 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5706 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5707 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5708 a magic symbol resolved by the linker, we ignore this bogus definition
5709 of _gp_disp. New ABI objects do not suffer from this problem so this
5710 is not done for them. */
5711 if (!NEWABI_P(abfd)
5712 && (sym->st_shndx == SHN_ABS)
5713 && (strcmp (*namep, "_gp_disp") == 0))
5714 {
5715 *namep = NULL;
5716 return TRUE;
5717 }
5718
b49e97c9
TS
5719 switch (sym->st_shndx)
5720 {
5721 case SHN_COMMON:
5722 /* Common symbols less than the GP size are automatically
5723 treated as SHN_MIPS_SCOMMON symbols. */
5724 if (sym->st_size > elf_gp_size (abfd)
5725 || IRIX_COMPAT (abfd) == ict_irix6)
5726 break;
5727 /* Fall through. */
5728 case SHN_MIPS_SCOMMON:
5729 *secp = bfd_make_section_old_way (abfd, ".scommon");
5730 (*secp)->flags |= SEC_IS_COMMON;
5731 *valp = sym->st_size;
5732 break;
5733
5734 case SHN_MIPS_TEXT:
5735 /* This section is used in a shared object. */
5736 if (elf_tdata (abfd)->elf_text_section == NULL)
5737 {
5738 asymbol *elf_text_symbol;
5739 asection *elf_text_section;
5740 bfd_size_type amt = sizeof (asection);
5741
5742 elf_text_section = bfd_zalloc (abfd, amt);
5743 if (elf_text_section == NULL)
b34976b6 5744 return FALSE;
b49e97c9
TS
5745
5746 amt = sizeof (asymbol);
5747 elf_text_symbol = bfd_zalloc (abfd, amt);
5748 if (elf_text_symbol == NULL)
b34976b6 5749 return FALSE;
b49e97c9
TS
5750
5751 /* Initialize the section. */
5752
5753 elf_tdata (abfd)->elf_text_section = elf_text_section;
5754 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5755
5756 elf_text_section->symbol = elf_text_symbol;
5757 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5758
5759 elf_text_section->name = ".text";
5760 elf_text_section->flags = SEC_NO_FLAGS;
5761 elf_text_section->output_section = NULL;
5762 elf_text_section->owner = abfd;
5763 elf_text_symbol->name = ".text";
5764 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5765 elf_text_symbol->section = elf_text_section;
5766 }
5767 /* This code used to do *secp = bfd_und_section_ptr if
5768 info->shared. I don't know why, and that doesn't make sense,
5769 so I took it out. */
5770 *secp = elf_tdata (abfd)->elf_text_section;
5771 break;
5772
5773 case SHN_MIPS_ACOMMON:
5774 /* Fall through. XXX Can we treat this as allocated data? */
5775 case SHN_MIPS_DATA:
5776 /* This section is used in a shared object. */
5777 if (elf_tdata (abfd)->elf_data_section == NULL)
5778 {
5779 asymbol *elf_data_symbol;
5780 asection *elf_data_section;
5781 bfd_size_type amt = sizeof (asection);
5782
5783 elf_data_section = bfd_zalloc (abfd, amt);
5784 if (elf_data_section == NULL)
b34976b6 5785 return FALSE;
b49e97c9
TS
5786
5787 amt = sizeof (asymbol);
5788 elf_data_symbol = bfd_zalloc (abfd, amt);
5789 if (elf_data_symbol == NULL)
b34976b6 5790 return FALSE;
b49e97c9
TS
5791
5792 /* Initialize the section. */
5793
5794 elf_tdata (abfd)->elf_data_section = elf_data_section;
5795 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5796
5797 elf_data_section->symbol = elf_data_symbol;
5798 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5799
5800 elf_data_section->name = ".data";
5801 elf_data_section->flags = SEC_NO_FLAGS;
5802 elf_data_section->output_section = NULL;
5803 elf_data_section->owner = abfd;
5804 elf_data_symbol->name = ".data";
5805 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5806 elf_data_symbol->section = elf_data_section;
5807 }
5808 /* This code used to do *secp = bfd_und_section_ptr if
5809 info->shared. I don't know why, and that doesn't make sense,
5810 so I took it out. */
5811 *secp = elf_tdata (abfd)->elf_data_section;
5812 break;
5813
5814 case SHN_MIPS_SUNDEFINED:
5815 *secp = bfd_und_section_ptr;
5816 break;
5817 }
5818
5819 if (SGI_COMPAT (abfd)
5820 && ! info->shared
5821 && info->hash->creator == abfd->xvec
5822 && strcmp (*namep, "__rld_obj_head") == 0)
5823 {
5824 struct elf_link_hash_entry *h;
14a793b2 5825 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5826
5827 /* Mark __rld_obj_head as dynamic. */
14a793b2 5828 bh = NULL;
b49e97c9 5829 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5830 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5831 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5832 return FALSE;
14a793b2
AM
5833
5834 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5835 h->non_elf = 0;
5836 h->def_regular = 1;
b49e97c9
TS
5837 h->type = STT_OBJECT;
5838
c152c796 5839 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5840 return FALSE;
b49e97c9 5841
b34976b6 5842 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5843 }
5844
5845 /* If this is a mips16 text symbol, add 1 to the value to make it
5846 odd. This will cause something like .word SYM to come up with
5847 the right value when it is loaded into the PC. */
5848 if (sym->st_other == STO_MIPS16)
5849 ++*valp;
5850
b34976b6 5851 return TRUE;
b49e97c9
TS
5852}
5853
5854/* This hook function is called before the linker writes out a global
5855 symbol. We mark symbols as small common if appropriate. This is
5856 also where we undo the increment of the value for a mips16 symbol. */
5857
b34976b6 5858bfd_boolean
9719ad41
RS
5859_bfd_mips_elf_link_output_symbol_hook
5860 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5861 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5862 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5863{
5864 /* If we see a common symbol, which implies a relocatable link, then
5865 if a symbol was small common in an input file, mark it as small
5866 common in the output file. */
5867 if (sym->st_shndx == SHN_COMMON
5868 && strcmp (input_sec->name, ".scommon") == 0)
5869 sym->st_shndx = SHN_MIPS_SCOMMON;
5870
79cda7cf
FF
5871 if (sym->st_other == STO_MIPS16)
5872 sym->st_value &= ~1;
b49e97c9 5873
b34976b6 5874 return TRUE;
b49e97c9
TS
5875}
5876\f
5877/* Functions for the dynamic linker. */
5878
5879/* Create dynamic sections when linking against a dynamic object. */
5880
b34976b6 5881bfd_boolean
9719ad41 5882_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5883{
5884 struct elf_link_hash_entry *h;
14a793b2 5885 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5886 flagword flags;
5887 register asection *s;
5888 const char * const *namep;
0a44bf69 5889 struct mips_elf_link_hash_table *htab;
b49e97c9 5890
0a44bf69 5891 htab = mips_elf_hash_table (info);
b49e97c9
TS
5892 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5893 | SEC_LINKER_CREATED | SEC_READONLY);
5894
0a44bf69
RS
5895 /* The psABI requires a read-only .dynamic section, but the VxWorks
5896 EABI doesn't. */
5897 if (!htab->is_vxworks)
b49e97c9 5898 {
0a44bf69
RS
5899 s = bfd_get_section_by_name (abfd, ".dynamic");
5900 if (s != NULL)
5901 {
5902 if (! bfd_set_section_flags (abfd, s, flags))
5903 return FALSE;
5904 }
b49e97c9
TS
5905 }
5906
5907 /* We need to create .got section. */
f4416af6
AO
5908 if (! mips_elf_create_got_section (abfd, info, FALSE))
5909 return FALSE;
5910
0a44bf69 5911 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5912 return FALSE;
b49e97c9 5913
b49e97c9
TS
5914 /* Create .stub section. */
5915 if (bfd_get_section_by_name (abfd,
5916 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5917 {
3496cb2a
L
5918 s = bfd_make_section_with_flags (abfd,
5919 MIPS_ELF_STUB_SECTION_NAME (abfd),
5920 flags | SEC_CODE);
b49e97c9 5921 if (s == NULL
b49e97c9
TS
5922 || ! bfd_set_section_alignment (abfd, s,
5923 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5924 return FALSE;
b49e97c9
TS
5925 }
5926
5927 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5928 && !info->shared
5929 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5930 {
3496cb2a
L
5931 s = bfd_make_section_with_flags (abfd, ".rld_map",
5932 flags &~ (flagword) SEC_READONLY);
b49e97c9 5933 if (s == NULL
b49e97c9
TS
5934 || ! bfd_set_section_alignment (abfd, s,
5935 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5936 return FALSE;
b49e97c9
TS
5937 }
5938
5939 /* On IRIX5, we adjust add some additional symbols and change the
5940 alignments of several sections. There is no ABI documentation
5941 indicating that this is necessary on IRIX6, nor any evidence that
5942 the linker takes such action. */
5943 if (IRIX_COMPAT (abfd) == ict_irix5)
5944 {
5945 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5946 {
14a793b2 5947 bh = NULL;
b49e97c9 5948 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5949 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5950 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5951 return FALSE;
14a793b2
AM
5952
5953 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5954 h->non_elf = 0;
5955 h->def_regular = 1;
b49e97c9
TS
5956 h->type = STT_SECTION;
5957
c152c796 5958 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5959 return FALSE;
b49e97c9
TS
5960 }
5961
5962 /* We need to create a .compact_rel section. */
5963 if (SGI_COMPAT (abfd))
5964 {
5965 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5966 return FALSE;
b49e97c9
TS
5967 }
5968
44c410de 5969 /* Change alignments of some sections. */
b49e97c9
TS
5970 s = bfd_get_section_by_name (abfd, ".hash");
5971 if (s != NULL)
d80dcc6a 5972 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5973 s = bfd_get_section_by_name (abfd, ".dynsym");
5974 if (s != NULL)
d80dcc6a 5975 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5976 s = bfd_get_section_by_name (abfd, ".dynstr");
5977 if (s != NULL)
d80dcc6a 5978 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5979 s = bfd_get_section_by_name (abfd, ".reginfo");
5980 if (s != NULL)
d80dcc6a 5981 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5982 s = bfd_get_section_by_name (abfd, ".dynamic");
5983 if (s != NULL)
d80dcc6a 5984 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5985 }
5986
5987 if (!info->shared)
5988 {
14a793b2
AM
5989 const char *name;
5990
5991 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5992 bh = NULL;
5993 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
5994 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5995 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5996 return FALSE;
14a793b2
AM
5997
5998 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5999 h->non_elf = 0;
6000 h->def_regular = 1;
b49e97c9
TS
6001 h->type = STT_SECTION;
6002
c152c796 6003 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6004 return FALSE;
b49e97c9
TS
6005
6006 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6007 {
6008 /* __rld_map is a four byte word located in the .data section
6009 and is filled in by the rtld to contain a pointer to
6010 the _r_debug structure. Its symbol value will be set in
6011 _bfd_mips_elf_finish_dynamic_symbol. */
6012 s = bfd_get_section_by_name (abfd, ".rld_map");
6013 BFD_ASSERT (s != NULL);
6014
14a793b2
AM
6015 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6016 bh = NULL;
6017 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6018 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6019 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6020 return FALSE;
14a793b2
AM
6021
6022 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6023 h->non_elf = 0;
6024 h->def_regular = 1;
b49e97c9
TS
6025 h->type = STT_OBJECT;
6026
c152c796 6027 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6028 return FALSE;
b49e97c9
TS
6029 }
6030 }
6031
0a44bf69
RS
6032 if (htab->is_vxworks)
6033 {
6034 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6035 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6036 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6037 return FALSE;
6038
6039 /* Cache the sections created above. */
6040 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6041 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6042 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6043 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6044 if (!htab->sdynbss
6045 || (!htab->srelbss && !info->shared)
6046 || !htab->srelplt
6047 || !htab->splt)
6048 abort ();
6049
6050 /* Do the usual VxWorks handling. */
6051 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6052 return FALSE;
6053
6054 /* Work out the PLT sizes. */
6055 if (info->shared)
6056 {
6057 htab->plt_header_size
6058 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6059 htab->plt_entry_size
6060 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6061 }
6062 else
6063 {
6064 htab->plt_header_size
6065 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6066 htab->plt_entry_size
6067 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6068 }
6069 }
6070
b34976b6 6071 return TRUE;
b49e97c9
TS
6072}
6073\f
6074/* Look through the relocs for a section during the first phase, and
6075 allocate space in the global offset table. */
6076
b34976b6 6077bfd_boolean
9719ad41
RS
6078_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6079 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6080{
6081 const char *name;
6082 bfd *dynobj;
6083 Elf_Internal_Shdr *symtab_hdr;
6084 struct elf_link_hash_entry **sym_hashes;
6085 struct mips_got_info *g;
6086 size_t extsymoff;
6087 const Elf_Internal_Rela *rel;
6088 const Elf_Internal_Rela *rel_end;
6089 asection *sgot;
6090 asection *sreloc;
9c5bfbb7 6091 const struct elf_backend_data *bed;
0a44bf69 6092 struct mips_elf_link_hash_table *htab;
b49e97c9 6093
1049f94e 6094 if (info->relocatable)
b34976b6 6095 return TRUE;
b49e97c9 6096
0a44bf69 6097 htab = mips_elf_hash_table (info);
b49e97c9
TS
6098 dynobj = elf_hash_table (info)->dynobj;
6099 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6100 sym_hashes = elf_sym_hashes (abfd);
6101 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6102
6103 /* Check for the mips16 stub sections. */
6104
6105 name = bfd_get_section_name (abfd, sec);
6106 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6107 {
6108 unsigned long r_symndx;
6109
6110 /* Look at the relocation information to figure out which symbol
6111 this is for. */
6112
6113 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6114
6115 if (r_symndx < extsymoff
6116 || sym_hashes[r_symndx - extsymoff] == NULL)
6117 {
6118 asection *o;
6119
6120 /* This stub is for a local symbol. This stub will only be
6121 needed if there is some relocation in this BFD, other
6122 than a 16 bit function call, which refers to this symbol. */
6123 for (o = abfd->sections; o != NULL; o = o->next)
6124 {
6125 Elf_Internal_Rela *sec_relocs;
6126 const Elf_Internal_Rela *r, *rend;
6127
6128 /* We can ignore stub sections when looking for relocs. */
6129 if ((o->flags & SEC_RELOC) == 0
6130 || o->reloc_count == 0
6131 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6132 sizeof FN_STUB - 1) == 0
6133 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6134 sizeof CALL_STUB - 1) == 0
6135 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6136 sizeof CALL_FP_STUB - 1) == 0)
6137 continue;
6138
45d6a902 6139 sec_relocs
9719ad41 6140 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6141 info->keep_memory);
b49e97c9 6142 if (sec_relocs == NULL)
b34976b6 6143 return FALSE;
b49e97c9
TS
6144
6145 rend = sec_relocs + o->reloc_count;
6146 for (r = sec_relocs; r < rend; r++)
6147 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6148 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6149 break;
6150
6cdc0ccc 6151 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6152 free (sec_relocs);
6153
6154 if (r < rend)
6155 break;
6156 }
6157
6158 if (o == NULL)
6159 {
6160 /* There is no non-call reloc for this stub, so we do
6161 not need it. Since this function is called before
6162 the linker maps input sections to output sections, we
6163 can easily discard it by setting the SEC_EXCLUDE
6164 flag. */
6165 sec->flags |= SEC_EXCLUDE;
b34976b6 6166 return TRUE;
b49e97c9
TS
6167 }
6168
6169 /* Record this stub in an array of local symbol stubs for
6170 this BFD. */
6171 if (elf_tdata (abfd)->local_stubs == NULL)
6172 {
6173 unsigned long symcount;
6174 asection **n;
6175 bfd_size_type amt;
6176
6177 if (elf_bad_symtab (abfd))
6178 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6179 else
6180 symcount = symtab_hdr->sh_info;
6181 amt = symcount * sizeof (asection *);
9719ad41 6182 n = bfd_zalloc (abfd, amt);
b49e97c9 6183 if (n == NULL)
b34976b6 6184 return FALSE;
b49e97c9
TS
6185 elf_tdata (abfd)->local_stubs = n;
6186 }
6187
6188 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6189
6190 /* We don't need to set mips16_stubs_seen in this case.
6191 That flag is used to see whether we need to look through
6192 the global symbol table for stubs. We don't need to set
6193 it here, because we just have a local stub. */
6194 }
6195 else
6196 {
6197 struct mips_elf_link_hash_entry *h;
6198
6199 h = ((struct mips_elf_link_hash_entry *)
6200 sym_hashes[r_symndx - extsymoff]);
6201
973a3492
L
6202 while (h->root.root.type == bfd_link_hash_indirect
6203 || h->root.root.type == bfd_link_hash_warning)
6204 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6205
b49e97c9
TS
6206 /* H is the symbol this stub is for. */
6207
6208 h->fn_stub = sec;
b34976b6 6209 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6210 }
6211 }
6212 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6213 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6214 {
6215 unsigned long r_symndx;
6216 struct mips_elf_link_hash_entry *h;
6217 asection **loc;
6218
6219 /* Look at the relocation information to figure out which symbol
6220 this is for. */
6221
6222 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6223
6224 if (r_symndx < extsymoff
6225 || sym_hashes[r_symndx - extsymoff] == NULL)
6226 {
6227 /* This stub was actually built for a static symbol defined
6228 in the same file. We assume that all static symbols in
6229 mips16 code are themselves mips16, so we can simply
6230 discard this stub. Since this function is called before
6231 the linker maps input sections to output sections, we can
6232 easily discard it by setting the SEC_EXCLUDE flag. */
6233 sec->flags |= SEC_EXCLUDE;
b34976b6 6234 return TRUE;
b49e97c9
TS
6235 }
6236
6237 h = ((struct mips_elf_link_hash_entry *)
6238 sym_hashes[r_symndx - extsymoff]);
6239
6240 /* H is the symbol this stub is for. */
6241
6242 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6243 loc = &h->call_fp_stub;
6244 else
6245 loc = &h->call_stub;
6246
6247 /* If we already have an appropriate stub for this function, we
6248 don't need another one, so we can discard this one. Since
6249 this function is called before the linker maps input sections
6250 to output sections, we can easily discard it by setting the
6251 SEC_EXCLUDE flag. We can also discard this section if we
6252 happen to already know that this is a mips16 function; it is
6253 not necessary to check this here, as it is checked later, but
6254 it is slightly faster to check now. */
6255 if (*loc != NULL || h->root.other == STO_MIPS16)
6256 {
6257 sec->flags |= SEC_EXCLUDE;
b34976b6 6258 return TRUE;
b49e97c9
TS
6259 }
6260
6261 *loc = sec;
b34976b6 6262 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6263 }
6264
6265 if (dynobj == NULL)
6266 {
6267 sgot = NULL;
6268 g = NULL;
6269 }
6270 else
6271 {
f4416af6 6272 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6273 if (sgot == NULL)
6274 g = NULL;
6275 else
6276 {
f0abc2a1
AM
6277 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6278 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6279 BFD_ASSERT (g != NULL);
6280 }
6281 }
6282
6283 sreloc = NULL;
6284 bed = get_elf_backend_data (abfd);
6285 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6286 for (rel = relocs; rel < rel_end; ++rel)
6287 {
6288 unsigned long r_symndx;
6289 unsigned int r_type;
6290 struct elf_link_hash_entry *h;
6291
6292 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6293 r_type = ELF_R_TYPE (abfd, rel->r_info);
6294
6295 if (r_symndx < extsymoff)
6296 h = NULL;
6297 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6298 {
6299 (*_bfd_error_handler)
d003868e
AM
6300 (_("%B: Malformed reloc detected for section %s"),
6301 abfd, name);
b49e97c9 6302 bfd_set_error (bfd_error_bad_value);
b34976b6 6303 return FALSE;
b49e97c9
TS
6304 }
6305 else
6306 {
6307 h = sym_hashes[r_symndx - extsymoff];
6308
6309 /* This may be an indirect symbol created because of a version. */
6310 if (h != NULL)
6311 {
6312 while (h->root.type == bfd_link_hash_indirect)
6313 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6314 }
6315 }
6316
6317 /* Some relocs require a global offset table. */
6318 if (dynobj == NULL || sgot == NULL)
6319 {
6320 switch (r_type)
6321 {
6322 case R_MIPS_GOT16:
6323 case R_MIPS_CALL16:
6324 case R_MIPS_CALL_HI16:
6325 case R_MIPS_CALL_LO16:
6326 case R_MIPS_GOT_HI16:
6327 case R_MIPS_GOT_LO16:
6328 case R_MIPS_GOT_PAGE:
6329 case R_MIPS_GOT_OFST:
6330 case R_MIPS_GOT_DISP:
86324f90 6331 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6332 case R_MIPS_TLS_GD:
6333 case R_MIPS_TLS_LDM:
b49e97c9
TS
6334 if (dynobj == NULL)
6335 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6336 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6337 return FALSE;
b49e97c9 6338 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6339 if (htab->is_vxworks && !info->shared)
6340 {
6341 (*_bfd_error_handler)
6342 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6343 abfd, (unsigned long) rel->r_offset);
6344 bfd_set_error (bfd_error_bad_value);
6345 return FALSE;
6346 }
b49e97c9
TS
6347 break;
6348
6349 case R_MIPS_32:
6350 case R_MIPS_REL32:
6351 case R_MIPS_64:
0a44bf69
RS
6352 /* In VxWorks executables, references to external symbols
6353 are handled using copy relocs or PLT stubs, so there's
6354 no need to add a dynamic relocation here. */
b49e97c9 6355 if (dynobj == NULL
0a44bf69 6356 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6357 && (sec->flags & SEC_ALLOC) != 0)
6358 elf_hash_table (info)->dynobj = dynobj = abfd;
6359 break;
6360
6361 default:
6362 break;
6363 }
6364 }
6365
0a44bf69
RS
6366 if (h)
6367 {
6368 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6369
6370 /* Relocations against the special VxWorks __GOTT_BASE__ and
6371 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6372 room for them in .rela.dyn. */
6373 if (is_gott_symbol (info, h))
6374 {
6375 if (sreloc == NULL)
6376 {
6377 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6378 if (sreloc == NULL)
6379 return FALSE;
6380 }
6381 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6382 }
6383 }
6384 else if (r_type == R_MIPS_CALL_LO16
6385 || r_type == R_MIPS_GOT_LO16
6386 || r_type == R_MIPS_GOT_DISP
6387 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6388 {
6389 /* We may need a local GOT entry for this relocation. We
6390 don't count R_MIPS_GOT_PAGE because we can estimate the
6391 maximum number of pages needed by looking at the size of
6392 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6393 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6394 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6395 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6396 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6397 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6398 rel->r_addend, g, 0))
f4416af6 6399 return FALSE;
b49e97c9
TS
6400 }
6401
6402 switch (r_type)
6403 {
6404 case R_MIPS_CALL16:
6405 if (h == NULL)
6406 {
6407 (*_bfd_error_handler)
d003868e
AM
6408 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6409 abfd, (unsigned long) rel->r_offset);
b49e97c9 6410 bfd_set_error (bfd_error_bad_value);
b34976b6 6411 return FALSE;
b49e97c9
TS
6412 }
6413 /* Fall through. */
6414
6415 case R_MIPS_CALL_HI16:
6416 case R_MIPS_CALL_LO16:
6417 if (h != NULL)
6418 {
0a44bf69
RS
6419 /* VxWorks call relocations point the function's .got.plt
6420 entry, which will be allocated by adjust_dynamic_symbol.
6421 Otherwise, this symbol requires a global GOT entry. */
6422 if (!htab->is_vxworks
6423 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6424 return FALSE;
b49e97c9
TS
6425
6426 /* We need a stub, not a plt entry for the undefined
6427 function. But we record it as if it needs plt. See
c152c796 6428 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6429 h->needs_plt = 1;
b49e97c9
TS
6430 h->type = STT_FUNC;
6431 }
6432 break;
6433
0fdc1bf1
AO
6434 case R_MIPS_GOT_PAGE:
6435 /* If this is a global, overridable symbol, GOT_PAGE will
6436 decay to GOT_DISP, so we'll need a GOT entry for it. */
6437 if (h == NULL)
6438 break;
6439 else
6440 {
6441 struct mips_elf_link_hash_entry *hmips =
6442 (struct mips_elf_link_hash_entry *) h;
143d77c5 6443
0fdc1bf1
AO
6444 while (hmips->root.root.type == bfd_link_hash_indirect
6445 || hmips->root.root.type == bfd_link_hash_warning)
6446 hmips = (struct mips_elf_link_hash_entry *)
6447 hmips->root.root.u.i.link;
143d77c5 6448
f5385ebf 6449 if (hmips->root.def_regular
0fdc1bf1 6450 && ! (info->shared && ! info->symbolic
f5385ebf 6451 && ! hmips->root.forced_local))
0fdc1bf1
AO
6452 break;
6453 }
6454 /* Fall through. */
6455
b49e97c9
TS
6456 case R_MIPS_GOT16:
6457 case R_MIPS_GOT_HI16:
6458 case R_MIPS_GOT_LO16:
6459 case R_MIPS_GOT_DISP:
0f20cc35 6460 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6461 return FALSE;
b49e97c9
TS
6462 break;
6463
0f20cc35
DJ
6464 case R_MIPS_TLS_GOTTPREL:
6465 if (info->shared)
6466 info->flags |= DF_STATIC_TLS;
6467 /* Fall through */
6468
6469 case R_MIPS_TLS_LDM:
6470 if (r_type == R_MIPS_TLS_LDM)
6471 {
6472 r_symndx = 0;
6473 h = NULL;
6474 }
6475 /* Fall through */
6476
6477 case R_MIPS_TLS_GD:
6478 /* This symbol requires a global offset table entry, or two
6479 for TLS GD relocations. */
6480 {
6481 unsigned char flag = (r_type == R_MIPS_TLS_GD
6482 ? GOT_TLS_GD
6483 : r_type == R_MIPS_TLS_LDM
6484 ? GOT_TLS_LDM
6485 : GOT_TLS_IE);
6486 if (h != NULL)
6487 {
6488 struct mips_elf_link_hash_entry *hmips =
6489 (struct mips_elf_link_hash_entry *) h;
6490 hmips->tls_type |= flag;
6491
6492 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6493 return FALSE;
6494 }
6495 else
6496 {
6497 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6498
6499 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6500 rel->r_addend, g, flag))
6501 return FALSE;
6502 }
6503 }
6504 break;
6505
b49e97c9
TS
6506 case R_MIPS_32:
6507 case R_MIPS_REL32:
6508 case R_MIPS_64:
0a44bf69
RS
6509 /* In VxWorks executables, references to external symbols
6510 are handled using copy relocs or PLT stubs, so there's
6511 no need to add a .rela.dyn entry for this relocation. */
6512 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6513 && (sec->flags & SEC_ALLOC) != 0)
6514 {
6515 if (sreloc == NULL)
6516 {
0a44bf69 6517 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6518 if (sreloc == NULL)
f4416af6 6519 return FALSE;
b49e97c9 6520 }
b49e97c9 6521 if (info->shared)
82f0cfbd
EC
6522 {
6523 /* When creating a shared object, we must copy these
6524 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6525 relocs. Make room for this reloc in .rel(a).dyn. */
6526 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6527 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6528 /* We tell the dynamic linker that there are
6529 relocations against the text segment. */
6530 info->flags |= DF_TEXTREL;
6531 }
b49e97c9
TS
6532 else
6533 {
6534 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6535
b49e97c9
TS
6536 /* We only need to copy this reloc if the symbol is
6537 defined in a dynamic object. */
6538 hmips = (struct mips_elf_link_hash_entry *) h;
6539 ++hmips->possibly_dynamic_relocs;
943284cc 6540 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6541 /* We need it to tell the dynamic linker if there
6542 are relocations against the text segment. */
6543 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6544 }
6545
6546 /* Even though we don't directly need a GOT entry for
6547 this symbol, a symbol must have a dynamic symbol
6548 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6549 dynamic relocations against it. This does not apply
6550 to VxWorks, which does not have the usual coupling
6551 between global GOT entries and .dynsym entries. */
6552 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6553 {
6554 if (dynobj == NULL)
6555 elf_hash_table (info)->dynobj = dynobj = abfd;
6556 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6557 return FALSE;
6558 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6559 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6560 return FALSE;
6561 }
b49e97c9
TS
6562 }
6563
6564 if (SGI_COMPAT (abfd))
6565 mips_elf_hash_table (info)->compact_rel_size +=
6566 sizeof (Elf32_External_crinfo);
6567 break;
6568
0a44bf69
RS
6569 case R_MIPS_PC16:
6570 if (h)
6571 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6572 break;
6573
b49e97c9 6574 case R_MIPS_26:
0a44bf69
RS
6575 if (h)
6576 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6577 /* Fall through. */
6578
b49e97c9
TS
6579 case R_MIPS_GPREL16:
6580 case R_MIPS_LITERAL:
6581 case R_MIPS_GPREL32:
6582 if (SGI_COMPAT (abfd))
6583 mips_elf_hash_table (info)->compact_rel_size +=
6584 sizeof (Elf32_External_crinfo);
6585 break;
6586
6587 /* This relocation describes the C++ object vtable hierarchy.
6588 Reconstruct it for later use during GC. */
6589 case R_MIPS_GNU_VTINHERIT:
c152c796 6590 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6591 return FALSE;
b49e97c9
TS
6592 break;
6593
6594 /* This relocation describes which C++ vtable entries are actually
6595 used. Record for later use during GC. */
6596 case R_MIPS_GNU_VTENTRY:
c152c796 6597 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6598 return FALSE;
b49e97c9
TS
6599 break;
6600
6601 default:
6602 break;
6603 }
6604
6605 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6606 related to taking the function's address. This doesn't apply to
6607 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6608 a normal .got entry. */
6609 if (!htab->is_vxworks && h != NULL)
6610 switch (r_type)
6611 {
6612 default:
6613 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6614 break;
6615 case R_MIPS_CALL16:
6616 case R_MIPS_CALL_HI16:
6617 case R_MIPS_CALL_LO16:
6618 case R_MIPS_JALR:
6619 break;
6620 }
b49e97c9
TS
6621
6622 /* If this reloc is not a 16 bit call, and it has a global
6623 symbol, then we will need the fn_stub if there is one.
6624 References from a stub section do not count. */
6625 if (h != NULL
6626 && r_type != R_MIPS16_26
6627 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6628 sizeof FN_STUB - 1) != 0
6629 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6630 sizeof CALL_STUB - 1) != 0
6631 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6632 sizeof CALL_FP_STUB - 1) != 0)
6633 {
6634 struct mips_elf_link_hash_entry *mh;
6635
6636 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6637 mh->need_fn_stub = TRUE;
b49e97c9
TS
6638 }
6639 }
6640
b34976b6 6641 return TRUE;
b49e97c9
TS
6642}
6643\f
d0647110 6644bfd_boolean
9719ad41
RS
6645_bfd_mips_relax_section (bfd *abfd, asection *sec,
6646 struct bfd_link_info *link_info,
6647 bfd_boolean *again)
d0647110
AO
6648{
6649 Elf_Internal_Rela *internal_relocs;
6650 Elf_Internal_Rela *irel, *irelend;
6651 Elf_Internal_Shdr *symtab_hdr;
6652 bfd_byte *contents = NULL;
d0647110
AO
6653 size_t extsymoff;
6654 bfd_boolean changed_contents = FALSE;
6655 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6656 Elf_Internal_Sym *isymbuf = NULL;
6657
6658 /* We are not currently changing any sizes, so only one pass. */
6659 *again = FALSE;
6660
1049f94e 6661 if (link_info->relocatable)
d0647110
AO
6662 return TRUE;
6663
9719ad41 6664 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6665 link_info->keep_memory);
d0647110
AO
6666 if (internal_relocs == NULL)
6667 return TRUE;
6668
6669 irelend = internal_relocs + sec->reloc_count
6670 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6671 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6672 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6673
6674 for (irel = internal_relocs; irel < irelend; irel++)
6675 {
6676 bfd_vma symval;
6677 bfd_signed_vma sym_offset;
6678 unsigned int r_type;
6679 unsigned long r_symndx;
6680 asection *sym_sec;
6681 unsigned long instruction;
6682
6683 /* Turn jalr into bgezal, and jr into beq, if they're marked
6684 with a JALR relocation, that indicate where they jump to.
6685 This saves some pipeline bubbles. */
6686 r_type = ELF_R_TYPE (abfd, irel->r_info);
6687 if (r_type != R_MIPS_JALR)
6688 continue;
6689
6690 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6691 /* Compute the address of the jump target. */
6692 if (r_symndx >= extsymoff)
6693 {
6694 struct mips_elf_link_hash_entry *h
6695 = ((struct mips_elf_link_hash_entry *)
6696 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6697
6698 while (h->root.root.type == bfd_link_hash_indirect
6699 || h->root.root.type == bfd_link_hash_warning)
6700 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6701
d0647110
AO
6702 /* If a symbol is undefined, or if it may be overridden,
6703 skip it. */
6704 if (! ((h->root.root.type == bfd_link_hash_defined
6705 || h->root.root.type == bfd_link_hash_defweak)
6706 && h->root.root.u.def.section)
6707 || (link_info->shared && ! link_info->symbolic
f5385ebf 6708 && !h->root.forced_local))
d0647110
AO
6709 continue;
6710
6711 sym_sec = h->root.root.u.def.section;
6712 if (sym_sec->output_section)
6713 symval = (h->root.root.u.def.value
6714 + sym_sec->output_section->vma
6715 + sym_sec->output_offset);
6716 else
6717 symval = h->root.root.u.def.value;
6718 }
6719 else
6720 {
6721 Elf_Internal_Sym *isym;
6722
6723 /* Read this BFD's symbols if we haven't done so already. */
6724 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6725 {
6726 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6727 if (isymbuf == NULL)
6728 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6729 symtab_hdr->sh_info, 0,
6730 NULL, NULL, NULL);
6731 if (isymbuf == NULL)
6732 goto relax_return;
6733 }
6734
6735 isym = isymbuf + r_symndx;
6736 if (isym->st_shndx == SHN_UNDEF)
6737 continue;
6738 else if (isym->st_shndx == SHN_ABS)
6739 sym_sec = bfd_abs_section_ptr;
6740 else if (isym->st_shndx == SHN_COMMON)
6741 sym_sec = bfd_com_section_ptr;
6742 else
6743 sym_sec
6744 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6745 symval = isym->st_value
6746 + sym_sec->output_section->vma
6747 + sym_sec->output_offset;
6748 }
6749
6750 /* Compute branch offset, from delay slot of the jump to the
6751 branch target. */
6752 sym_offset = (symval + irel->r_addend)
6753 - (sec_start + irel->r_offset + 4);
6754
6755 /* Branch offset must be properly aligned. */
6756 if ((sym_offset & 3) != 0)
6757 continue;
6758
6759 sym_offset >>= 2;
6760
6761 /* Check that it's in range. */
6762 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6763 continue;
143d77c5 6764
d0647110
AO
6765 /* Get the section contents if we haven't done so already. */
6766 if (contents == NULL)
6767 {
6768 /* Get cached copy if it exists. */
6769 if (elf_section_data (sec)->this_hdr.contents != NULL)
6770 contents = elf_section_data (sec)->this_hdr.contents;
6771 else
6772 {
eea6121a 6773 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6774 goto relax_return;
6775 }
6776 }
6777
6778 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6779
6780 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6781 if ((instruction & 0xfc1fffff) == 0x0000f809)
6782 instruction = 0x04110000;
6783 /* If it was jr <reg>, turn it into b <target>. */
6784 else if ((instruction & 0xfc1fffff) == 0x00000008)
6785 instruction = 0x10000000;
6786 else
6787 continue;
6788
6789 instruction |= (sym_offset & 0xffff);
6790 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6791 changed_contents = TRUE;
6792 }
6793
6794 if (contents != NULL
6795 && elf_section_data (sec)->this_hdr.contents != contents)
6796 {
6797 if (!changed_contents && !link_info->keep_memory)
6798 free (contents);
6799 else
6800 {
6801 /* Cache the section contents for elf_link_input_bfd. */
6802 elf_section_data (sec)->this_hdr.contents = contents;
6803 }
6804 }
6805 return TRUE;
6806
143d77c5 6807 relax_return:
eea6121a
AM
6808 if (contents != NULL
6809 && elf_section_data (sec)->this_hdr.contents != contents)
6810 free (contents);
d0647110
AO
6811 return FALSE;
6812}
6813\f
b49e97c9
TS
6814/* Adjust a symbol defined by a dynamic object and referenced by a
6815 regular object. The current definition is in some section of the
6816 dynamic object, but we're not including those sections. We have to
6817 change the definition to something the rest of the link can
6818 understand. */
6819
b34976b6 6820bfd_boolean
9719ad41
RS
6821_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6822 struct elf_link_hash_entry *h)
b49e97c9
TS
6823{
6824 bfd *dynobj;
6825 struct mips_elf_link_hash_entry *hmips;
6826 asection *s;
6827
6828 dynobj = elf_hash_table (info)->dynobj;
6829
6830 /* Make sure we know what is going on here. */
6831 BFD_ASSERT (dynobj != NULL
f5385ebf 6832 && (h->needs_plt
f6e332e6 6833 || h->u.weakdef != NULL
f5385ebf
AM
6834 || (h->def_dynamic
6835 && h->ref_regular
6836 && !h->def_regular)));
b49e97c9
TS
6837
6838 /* If this symbol is defined in a dynamic object, we need to copy
6839 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6840 file. */
6841 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6842 if (! info->relocatable
b49e97c9
TS
6843 && hmips->possibly_dynamic_relocs != 0
6844 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6845 || !h->def_regular))
b49e97c9 6846 {
0a44bf69
RS
6847 mips_elf_allocate_dynamic_relocations
6848 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6849 if (hmips->readonly_reloc)
b49e97c9
TS
6850 /* We tell the dynamic linker that there are relocations
6851 against the text segment. */
6852 info->flags |= DF_TEXTREL;
6853 }
6854
6855 /* For a function, create a stub, if allowed. */
6856 if (! hmips->no_fn_stub
f5385ebf 6857 && h->needs_plt)
b49e97c9
TS
6858 {
6859 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6860 return TRUE;
b49e97c9
TS
6861
6862 /* If this symbol is not defined in a regular file, then set
6863 the symbol to the stub location. This is required to make
6864 function pointers compare as equal between the normal
6865 executable and the shared library. */
f5385ebf 6866 if (!h->def_regular)
b49e97c9
TS
6867 {
6868 /* We need .stub section. */
6869 s = bfd_get_section_by_name (dynobj,
6870 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6871 BFD_ASSERT (s != NULL);
6872
6873 h->root.u.def.section = s;
eea6121a 6874 h->root.u.def.value = s->size;
b49e97c9
TS
6875
6876 /* XXX Write this stub address somewhere. */
eea6121a 6877 h->plt.offset = s->size;
b49e97c9
TS
6878
6879 /* Make room for this stub code. */
eea6121a 6880 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6881
6882 /* The last half word of the stub will be filled with the index
6883 of this symbol in .dynsym section. */
b34976b6 6884 return TRUE;
b49e97c9
TS
6885 }
6886 }
6887 else if ((h->type == STT_FUNC)
f5385ebf 6888 && !h->needs_plt)
b49e97c9
TS
6889 {
6890 /* This will set the entry for this symbol in the GOT to 0, and
6891 the dynamic linker will take care of this. */
6892 h->root.u.def.value = 0;
b34976b6 6893 return TRUE;
b49e97c9
TS
6894 }
6895
6896 /* If this is a weak symbol, and there is a real definition, the
6897 processor independent code will have arranged for us to see the
6898 real definition first, and we can just use the same value. */
f6e332e6 6899 if (h->u.weakdef != NULL)
b49e97c9 6900 {
f6e332e6
AM
6901 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6902 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6903 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6904 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6905 return TRUE;
b49e97c9
TS
6906 }
6907
6908 /* This is a reference to a symbol defined by a dynamic object which
6909 is not a function. */
6910
b34976b6 6911 return TRUE;
b49e97c9 6912}
0a44bf69
RS
6913
6914/* Likewise, for VxWorks. */
6915
6916bfd_boolean
6917_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6918 struct elf_link_hash_entry *h)
6919{
6920 bfd *dynobj;
6921 struct mips_elf_link_hash_entry *hmips;
6922 struct mips_elf_link_hash_table *htab;
6923 unsigned int power_of_two;
6924
6925 htab = mips_elf_hash_table (info);
6926 dynobj = elf_hash_table (info)->dynobj;
6927 hmips = (struct mips_elf_link_hash_entry *) h;
6928
6929 /* Make sure we know what is going on here. */
6930 BFD_ASSERT (dynobj != NULL
6931 && (h->needs_plt
6932 || h->needs_copy
6933 || h->u.weakdef != NULL
6934 || (h->def_dynamic
6935 && h->ref_regular
6936 && !h->def_regular)));
6937
6938 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6939 either (a) we want to branch to the symbol or (b) we're linking an
6940 executable that needs a canonical function address. In the latter
6941 case, the canonical address will be the address of the executable's
6942 load stub. */
6943 if ((hmips->is_branch_target
6944 || (!info->shared
6945 && h->type == STT_FUNC
6946 && hmips->is_relocation_target))
6947 && h->def_dynamic
6948 && h->ref_regular
6949 && !h->def_regular
6950 && !h->forced_local)
6951 h->needs_plt = 1;
6952
6953 /* Locally-binding symbols do not need a PLT stub; we can refer to
6954 the functions directly. */
6955 else if (h->needs_plt
6956 && (SYMBOL_CALLS_LOCAL (info, h)
6957 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6958 && h->root.type == bfd_link_hash_undefweak)))
6959 {
6960 h->needs_plt = 0;
6961 return TRUE;
6962 }
6963
6964 if (h->needs_plt)
6965 {
6966 /* If this is the first symbol to need a PLT entry, allocate room
6967 for the header, and for the header's .rela.plt.unloaded entries. */
6968 if (htab->splt->size == 0)
6969 {
6970 htab->splt->size += htab->plt_header_size;
6971 if (!info->shared)
6972 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6973 }
6974
6975 /* Assign the next .plt entry to this symbol. */
6976 h->plt.offset = htab->splt->size;
6977 htab->splt->size += htab->plt_entry_size;
6978
6979 /* If the output file has no definition of the symbol, set the
6980 symbol's value to the address of the stub. For executables,
6981 point at the PLT load stub rather than the lazy resolution stub;
6982 this stub will become the canonical function address. */
6983 if (!h->def_regular)
6984 {
6985 h->root.u.def.section = htab->splt;
6986 h->root.u.def.value = h->plt.offset;
6987 if (!info->shared)
6988 h->root.u.def.value += 8;
6989 }
6990
6991 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
6992 htab->sgotplt->size += 4;
6993 htab->srelplt->size += sizeof (Elf32_External_Rela);
6994
6995 /* Make room for the .rela.plt.unloaded relocations. */
6996 if (!info->shared)
6997 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
6998
6999 return TRUE;
7000 }
7001
7002 /* If a function symbol is defined by a dynamic object, and we do not
7003 need a PLT stub for it, the symbol's value should be zero. */
7004 if (h->type == STT_FUNC
7005 && h->def_dynamic
7006 && h->ref_regular
7007 && !h->def_regular)
7008 {
7009 h->root.u.def.value = 0;
7010 return TRUE;
7011 }
7012
7013 /* If this is a weak symbol, and there is a real definition, the
7014 processor independent code will have arranged for us to see the
7015 real definition first, and we can just use the same value. */
7016 if (h->u.weakdef != NULL)
7017 {
7018 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7019 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7020 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7021 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7022 return TRUE;
7023 }
7024
7025 /* This is a reference to a symbol defined by a dynamic object which
7026 is not a function. */
7027 if (info->shared)
7028 return TRUE;
7029
7030 /* We must allocate the symbol in our .dynbss section, which will
7031 become part of the .bss section of the executable. There will be
7032 an entry for this symbol in the .dynsym section. The dynamic
7033 object will contain position independent code, so all references
7034 from the dynamic object to this symbol will go through the global
7035 offset table. The dynamic linker will use the .dynsym entry to
7036 determine the address it must put in the global offset table, so
7037 both the dynamic object and the regular object will refer to the
7038 same memory location for the variable. */
7039
7040 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7041 {
7042 htab->srelbss->size += sizeof (Elf32_External_Rela);
7043 h->needs_copy = 1;
7044 }
7045
7046 /* We need to figure out the alignment required for this symbol. */
7047 power_of_two = bfd_log2 (h->size);
7048 if (power_of_two > 4)
7049 power_of_two = 4;
7050
7051 /* Apply the required alignment. */
7052 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7053 (bfd_size_type) 1 << power_of_two);
7054 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7055 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7056 return FALSE;
7057
7058 /* Define the symbol as being at this point in the section. */
7059 h->root.u.def.section = htab->sdynbss;
7060 h->root.u.def.value = htab->sdynbss->size;
7061
7062 /* Increment the section size to make room for the symbol. */
7063 htab->sdynbss->size += h->size;
7064
7065 return TRUE;
7066}
b49e97c9
TS
7067\f
7068/* This function is called after all the input files have been read,
7069 and the input sections have been assigned to output sections. We
7070 check for any mips16 stub sections that we can discard. */
7071
b34976b6 7072bfd_boolean
9719ad41
RS
7073_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7074 struct bfd_link_info *info)
b49e97c9
TS
7075{
7076 asection *ri;
7077
f4416af6
AO
7078 bfd *dynobj;
7079 asection *s;
7080 struct mips_got_info *g;
7081 int i;
7082 bfd_size_type loadable_size = 0;
7083 bfd_size_type local_gotno;
7084 bfd *sub;
0f20cc35 7085 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7086 struct mips_elf_link_hash_table *htab;
7087
7088 htab = mips_elf_hash_table (info);
f4416af6 7089
b49e97c9
TS
7090 /* The .reginfo section has a fixed size. */
7091 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7092 if (ri != NULL)
9719ad41 7093 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7094
1049f94e 7095 if (! (info->relocatable
f4416af6
AO
7096 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7097 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7098 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7099
7100 dynobj = elf_hash_table (info)->dynobj;
7101 if (dynobj == NULL)
7102 /* Relocatable links don't have it. */
7103 return TRUE;
143d77c5 7104
f4416af6
AO
7105 g = mips_elf_got_info (dynobj, &s);
7106 if (s == NULL)
b34976b6 7107 return TRUE;
b49e97c9 7108
f4416af6
AO
7109 /* Calculate the total loadable size of the output. That
7110 will give us the maximum number of GOT_PAGE entries
7111 required. */
7112 for (sub = info->input_bfds; sub; sub = sub->link_next)
7113 {
7114 asection *subsection;
7115
7116 for (subsection = sub->sections;
7117 subsection;
7118 subsection = subsection->next)
7119 {
7120 if ((subsection->flags & SEC_ALLOC) == 0)
7121 continue;
eea6121a 7122 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7123 &~ (bfd_size_type) 0xf);
7124 }
7125 }
7126
7127 /* There has to be a global GOT entry for every symbol with
7128 a dynamic symbol table index of DT_MIPS_GOTSYM or
7129 higher. Therefore, it make sense to put those symbols
7130 that need GOT entries at the end of the symbol table. We
7131 do that here. */
7132 if (! mips_elf_sort_hash_table (info, 1))
7133 return FALSE;
7134
7135 if (g->global_gotsym != NULL)
7136 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7137 else
7138 /* If there are no global symbols, or none requiring
7139 relocations, then GLOBAL_GOTSYM will be NULL. */
7140 i = 0;
7141
7142 /* In the worst case, we'll get one stub per dynamic symbol, plus
7143 one to account for the dummy entry at the end required by IRIX
7144 rld. */
7145 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
7146
0a44bf69
RS
7147 if (htab->is_vxworks)
7148 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7149 relocations against local symbols evaluate to "G", and the EABI does
7150 not include R_MIPS_GOT_PAGE. */
7151 local_gotno = 0;
7152 else
7153 /* Assume there are two loadable segments consisting of contiguous
7154 sections. Is 5 enough? */
7155 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7156
7157 g->local_gotno += local_gotno;
eea6121a 7158 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7159
7160 g->global_gotno = i;
eea6121a 7161 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7162
0f20cc35
DJ
7163 /* We need to calculate tls_gotno for global symbols at this point
7164 instead of building it up earlier, to avoid doublecounting
7165 entries for one global symbol from multiple input files. */
7166 count_tls_arg.info = info;
7167 count_tls_arg.needed = 0;
7168 elf_link_hash_traverse (elf_hash_table (info),
7169 mips_elf_count_global_tls_entries,
7170 &count_tls_arg);
7171 g->tls_gotno += count_tls_arg.needed;
7172 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7173
7174 mips_elf_resolve_final_got_entries (g);
7175
0a44bf69
RS
7176 /* VxWorks does not support multiple GOTs. It initializes $gp to
7177 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7178 dynamic loader. */
7179 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7180 {
7181 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7182 return FALSE;
7183 }
7184 else
7185 {
7186 /* Set up TLS entries for the first GOT. */
7187 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7188 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7189 }
b49e97c9 7190
b34976b6 7191 return TRUE;
b49e97c9
TS
7192}
7193
7194/* Set the sizes of the dynamic sections. */
7195
b34976b6 7196bfd_boolean
9719ad41
RS
7197_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7198 struct bfd_link_info *info)
b49e97c9
TS
7199{
7200 bfd *dynobj;
0a44bf69 7201 asection *s, *sreldyn;
b34976b6 7202 bfd_boolean reltext;
0a44bf69 7203 struct mips_elf_link_hash_table *htab;
b49e97c9 7204
0a44bf69 7205 htab = mips_elf_hash_table (info);
b49e97c9
TS
7206 dynobj = elf_hash_table (info)->dynobj;
7207 BFD_ASSERT (dynobj != NULL);
7208
7209 if (elf_hash_table (info)->dynamic_sections_created)
7210 {
7211 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7212 if (info->executable)
b49e97c9
TS
7213 {
7214 s = bfd_get_section_by_name (dynobj, ".interp");
7215 BFD_ASSERT (s != NULL);
eea6121a 7216 s->size
b49e97c9
TS
7217 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7218 s->contents
7219 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7220 }
7221 }
7222
7223 /* The check_relocs and adjust_dynamic_symbol entry points have
7224 determined the sizes of the various dynamic sections. Allocate
7225 memory for them. */
b34976b6 7226 reltext = FALSE;
0a44bf69 7227 sreldyn = NULL;
b49e97c9
TS
7228 for (s = dynobj->sections; s != NULL; s = s->next)
7229 {
7230 const char *name;
b49e97c9
TS
7231
7232 /* It's OK to base decisions on the section name, because none
7233 of the dynobj section names depend upon the input files. */
7234 name = bfd_get_section_name (dynobj, s);
7235
7236 if ((s->flags & SEC_LINKER_CREATED) == 0)
7237 continue;
7238
b49e97c9
TS
7239 if (strncmp (name, ".rel", 4) == 0)
7240 {
c456f082 7241 if (s->size != 0)
b49e97c9
TS
7242 {
7243 const char *outname;
7244 asection *target;
7245
7246 /* If this relocation section applies to a read only
7247 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7248 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7249 assert a DT_TEXTREL entry rather than testing whether
7250 there exists a relocation to a read only section or
7251 not. */
7252 outname = bfd_get_section_name (output_bfd,
7253 s->output_section);
7254 target = bfd_get_section_by_name (output_bfd, outname + 4);
7255 if ((target != NULL
7256 && (target->flags & SEC_READONLY) != 0
7257 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7258 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7259 reltext = TRUE;
b49e97c9
TS
7260
7261 /* We use the reloc_count field as a counter if we need
7262 to copy relocs into the output file. */
0a44bf69 7263 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7264 s->reloc_count = 0;
f4416af6
AO
7265
7266 /* If combreloc is enabled, elf_link_sort_relocs() will
7267 sort relocations, but in a different way than we do,
7268 and before we're done creating relocations. Also, it
7269 will move them around between input sections'
7270 relocation's contents, so our sorting would be
7271 broken, so don't let it run. */
7272 info->combreloc = 0;
b49e97c9
TS
7273 }
7274 }
0a44bf69
RS
7275 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7276 {
7277 /* Executables do not need a GOT. */
7278 if (info->shared)
7279 {
7280 /* Allocate relocations for all but the reserved entries. */
7281 struct mips_got_info *g;
7282 unsigned int count;
7283
7284 g = mips_elf_got_info (dynobj, NULL);
7285 count = (g->global_gotno
7286 + g->local_gotno
7287 - MIPS_RESERVED_GOTNO (info));
7288 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7289 }
7290 }
7291 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
b49e97c9 7292 {
f4416af6
AO
7293 /* _bfd_mips_elf_always_size_sections() has already done
7294 most of the work, but some symbols may have been mapped
7295 to versions that we must now resolve in the got_entries
7296 hash tables. */
7297 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7298 struct mips_got_info *g = gg;
7299 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7300 unsigned int needed_relocs = 0;
143d77c5 7301
f4416af6 7302 if (gg->next)
b49e97c9 7303 {
f4416af6
AO
7304 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7305 set_got_offset_arg.info = info;
b49e97c9 7306
0f20cc35
DJ
7307 /* NOTE 2005-02-03: How can this call, or the next, ever
7308 find any indirect entries to resolve? They were all
7309 resolved in mips_elf_multi_got. */
f4416af6
AO
7310 mips_elf_resolve_final_got_entries (gg);
7311 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7312 {
f4416af6
AO
7313 unsigned int save_assign;
7314
7315 mips_elf_resolve_final_got_entries (g);
7316
7317 /* Assign offsets to global GOT entries. */
7318 save_assign = g->assigned_gotno;
7319 g->assigned_gotno = g->local_gotno;
7320 set_got_offset_arg.g = g;
7321 set_got_offset_arg.needed_relocs = 0;
7322 htab_traverse (g->got_entries,
7323 mips_elf_set_global_got_offset,
7324 &set_got_offset_arg);
7325 needed_relocs += set_got_offset_arg.needed_relocs;
7326 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7327 <= g->global_gotno);
7328
7329 g->assigned_gotno = save_assign;
7330 if (info->shared)
7331 {
7332 needed_relocs += g->local_gotno - g->assigned_gotno;
7333 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7334 + g->next->global_gotno
0f20cc35 7335 + g->next->tls_gotno
0a44bf69 7336 + MIPS_RESERVED_GOTNO (info));
f4416af6 7337 }
b49e97c9 7338 }
0f20cc35
DJ
7339 }
7340 else
7341 {
7342 struct mips_elf_count_tls_arg arg;
7343 arg.info = info;
7344 arg.needed = 0;
b49e97c9 7345
0f20cc35
DJ
7346 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7347 &arg);
7348 elf_link_hash_traverse (elf_hash_table (info),
7349 mips_elf_count_global_tls_relocs,
7350 &arg);
7351
7352 needed_relocs += arg.needed;
f4416af6 7353 }
0f20cc35
DJ
7354
7355 if (needed_relocs)
0a44bf69
RS
7356 mips_elf_allocate_dynamic_relocations (dynobj, info,
7357 needed_relocs);
b49e97c9
TS
7358 }
7359 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7360 {
8dc1a139 7361 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 7362 of .text section. So put a dummy. XXX */
eea6121a 7363 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7364 }
7365 else if (! info->shared
7366 && ! mips_elf_hash_table (info)->use_rld_obj_head
7367 && strncmp (name, ".rld_map", 8) == 0)
7368 {
7369 /* We add a room for __rld_map. It will be filled in by the
7370 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7371 s->size += 4;
b49e97c9
TS
7372 }
7373 else if (SGI_COMPAT (output_bfd)
7374 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 7375 s->size += mips_elf_hash_table (info)->compact_rel_size;
0a44bf69
RS
7376 else if (strncmp (name, ".init", 5) != 0
7377 && s != htab->sgotplt
7378 && s != htab->splt)
b49e97c9
TS
7379 {
7380 /* It's not one of our sections, so don't allocate space. */
7381 continue;
7382 }
7383
c456f082 7384 if (s->size == 0)
b49e97c9 7385 {
8423293d 7386 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7387 continue;
7388 }
7389
c456f082
AM
7390 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7391 continue;
7392
0a44bf69
RS
7393 /* Allocate memory for this section last, since we may increase its
7394 size above. */
7395 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7396 {
7397 sreldyn = s;
7398 continue;
7399 }
7400
b49e97c9 7401 /* Allocate memory for the section contents. */
eea6121a 7402 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7403 if (s->contents == NULL)
b49e97c9
TS
7404 {
7405 bfd_set_error (bfd_error_no_memory);
b34976b6 7406 return FALSE;
b49e97c9
TS
7407 }
7408 }
7409
0a44bf69
RS
7410 /* Allocate memory for the .rel(a).dyn section. */
7411 if (sreldyn != NULL)
7412 {
7413 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7414 if (sreldyn->contents == NULL)
7415 {
7416 bfd_set_error (bfd_error_no_memory);
7417 return FALSE;
7418 }
7419 }
7420
b49e97c9
TS
7421 if (elf_hash_table (info)->dynamic_sections_created)
7422 {
7423 /* Add some entries to the .dynamic section. We fill in the
7424 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7425 must add the entries now so that we get the correct size for
7426 the .dynamic section. The DT_DEBUG entry is filled in by the
7427 dynamic linker and used by the debugger. */
7428 if (! info->shared)
7429 {
7430 /* SGI object has the equivalence of DT_DEBUG in the
7431 DT_MIPS_RLD_MAP entry. */
7432 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 7433 return FALSE;
b49e97c9
TS
7434 if (!SGI_COMPAT (output_bfd))
7435 {
7436 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7437 return FALSE;
b49e97c9
TS
7438 }
7439 }
7440 else
7441 {
7442 /* Shared libraries on traditional mips have DT_DEBUG. */
7443 if (!SGI_COMPAT (output_bfd))
7444 {
7445 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7446 return FALSE;
b49e97c9
TS
7447 }
7448 }
7449
0a44bf69 7450 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7451 info->flags |= DF_TEXTREL;
7452
7453 if ((info->flags & DF_TEXTREL) != 0)
7454 {
7455 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7456 return FALSE;
943284cc
DJ
7457
7458 /* Clear the DF_TEXTREL flag. It will be set again if we
7459 write out an actual text relocation; we may not, because
7460 at this point we do not know whether e.g. any .eh_frame
7461 absolute relocations have been converted to PC-relative. */
7462 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7463 }
7464
7465 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7466 return FALSE;
b49e97c9 7467
0a44bf69 7468 if (htab->is_vxworks)
b49e97c9 7469 {
0a44bf69
RS
7470 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7471 use any of the DT_MIPS_* tags. */
7472 if (mips_elf_rel_dyn_section (info, FALSE))
7473 {
7474 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7475 return FALSE;
b49e97c9 7476
0a44bf69
RS
7477 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7478 return FALSE;
b49e97c9 7479
0a44bf69
RS
7480 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7481 return FALSE;
7482 }
7483 if (htab->splt->size > 0)
7484 {
7485 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7486 return FALSE;
7487
7488 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7489 return FALSE;
7490
7491 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7492 return FALSE;
7493 }
b49e97c9 7494 }
0a44bf69
RS
7495 else
7496 {
7497 if (mips_elf_rel_dyn_section (info, FALSE))
7498 {
7499 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7500 return FALSE;
b49e97c9 7501
0a44bf69
RS
7502 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7503 return FALSE;
b49e97c9 7504
0a44bf69
RS
7505 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7506 return FALSE;
7507 }
b49e97c9 7508
0a44bf69
RS
7509 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7510 return FALSE;
b49e97c9 7511
0a44bf69
RS
7512 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7513 return FALSE;
b49e97c9 7514
0a44bf69
RS
7515 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7516 return FALSE;
b49e97c9 7517
0a44bf69
RS
7518 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7519 return FALSE;
b49e97c9 7520
0a44bf69
RS
7521 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7522 return FALSE;
b49e97c9 7523
0a44bf69
RS
7524 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7525 return FALSE;
b49e97c9 7526
0a44bf69
RS
7527 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7528 return FALSE;
7529
7530 if (IRIX_COMPAT (dynobj) == ict_irix5
7531 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7532 return FALSE;
7533
7534 if (IRIX_COMPAT (dynobj) == ict_irix6
7535 && (bfd_get_section_by_name
7536 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7537 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7538 return FALSE;
7539 }
b49e97c9
TS
7540 }
7541
b34976b6 7542 return TRUE;
b49e97c9
TS
7543}
7544\f
81d43bff
RS
7545/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7546 Adjust its R_ADDEND field so that it is correct for the output file.
7547 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7548 and sections respectively; both use symbol indexes. */
7549
7550static void
7551mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7552 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7553 asection **local_sections, Elf_Internal_Rela *rel)
7554{
7555 unsigned int r_type, r_symndx;
7556 Elf_Internal_Sym *sym;
7557 asection *sec;
7558
7559 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7560 {
7561 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7562 if (r_type == R_MIPS16_GPREL
7563 || r_type == R_MIPS_GPREL16
7564 || r_type == R_MIPS_GPREL32
7565 || r_type == R_MIPS_LITERAL)
7566 {
7567 rel->r_addend += _bfd_get_gp_value (input_bfd);
7568 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7569 }
7570
7571 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7572 sym = local_syms + r_symndx;
7573
7574 /* Adjust REL's addend to account for section merging. */
7575 if (!info->relocatable)
7576 {
7577 sec = local_sections[r_symndx];
7578 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7579 }
7580
7581 /* This would normally be done by the rela_normal code in elflink.c. */
7582 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7583 rel->r_addend += local_sections[r_symndx]->output_offset;
7584 }
7585}
7586
b49e97c9
TS
7587/* Relocate a MIPS ELF section. */
7588
b34976b6 7589bfd_boolean
9719ad41
RS
7590_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7591 bfd *input_bfd, asection *input_section,
7592 bfd_byte *contents, Elf_Internal_Rela *relocs,
7593 Elf_Internal_Sym *local_syms,
7594 asection **local_sections)
b49e97c9
TS
7595{
7596 Elf_Internal_Rela *rel;
7597 const Elf_Internal_Rela *relend;
7598 bfd_vma addend = 0;
b34976b6 7599 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7600 const struct elf_backend_data *bed;
b49e97c9
TS
7601
7602 bed = get_elf_backend_data (output_bfd);
7603 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7604 for (rel = relocs; rel < relend; ++rel)
7605 {
7606 const char *name;
c9adbffe 7607 bfd_vma value = 0;
b49e97c9 7608 reloc_howto_type *howto;
b34976b6
AM
7609 bfd_boolean require_jalx;
7610 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7611 REL relocation. */
b34976b6 7612 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7613 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7614 const char *msg;
b49e97c9
TS
7615
7616 /* Find the relocation howto for this relocation. */
4a14403c 7617 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7618 {
7619 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7620 64-bit code, but make sure all their addresses are in the
7621 lowermost or uppermost 32-bit section of the 64-bit address
7622 space. Thus, when they use an R_MIPS_64 they mean what is
7623 usually meant by R_MIPS_32, with the exception that the
7624 stored value is sign-extended to 64 bits. */
b34976b6 7625 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7626
7627 /* On big-endian systems, we need to lie about the position
7628 of the reloc. */
7629 if (bfd_big_endian (input_bfd))
7630 rel->r_offset += 4;
7631 }
7632 else
7633 /* NewABI defaults to RELA relocations. */
7634 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
7635 NEWABI_P (input_bfd)
7636 && (MIPS_RELOC_RELA_P
7637 (input_bfd, input_section,
7638 rel - relocs)));
b49e97c9
TS
7639
7640 if (!use_saved_addend_p)
7641 {
7642 Elf_Internal_Shdr *rel_hdr;
7643
7644 /* If these relocations were originally of the REL variety,
7645 we must pull the addend out of the field that will be
7646 relocated. Otherwise, we simply use the contents of the
7647 RELA relocation. To determine which flavor or relocation
7648 this is, we depend on the fact that the INPUT_SECTION's
7649 REL_HDR is read before its REL_HDR2. */
7650 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7651 if ((size_t) (rel - relocs)
7652 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7653 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7654 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7655 {
d6f16593
MR
7656 bfd_byte *location = contents + rel->r_offset;
7657
b49e97c9 7658 /* Note that this is a REL relocation. */
b34976b6 7659 rela_relocation_p = FALSE;
b49e97c9
TS
7660
7661 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7662 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7663 location);
b49e97c9
TS
7664 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7665 contents);
d6f16593
MR
7666 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7667 location);
7668
b49e97c9
TS
7669 addend &= howto->src_mask;
7670
7671 /* For some kinds of relocations, the ADDEND is a
7672 combination of the addend stored in two different
7673 relocations. */
d6f16593 7674 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7675 || (r_type == R_MIPS_GOT16
7676 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7677 local_sections, FALSE)))
b49e97c9
TS
7678 {
7679 bfd_vma l;
7680 const Elf_Internal_Rela *lo16_relocation;
7681 reloc_howto_type *lo16_howto;
d6f16593
MR
7682 bfd_byte *lo16_location;
7683 int lo16_type;
7684
7685 if (r_type == R_MIPS16_HI16)
7686 lo16_type = R_MIPS16_LO16;
7687 else
7688 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7689
7690 /* The combined value is the sum of the HI16 addend,
7691 left-shifted by sixteen bits, and the LO16
7692 addend, sign extended. (Usually, the code does
7693 a `lui' of the HI16 value, and then an `addiu' of
7694 the LO16 value.)
7695
4030e8f6
CD
7696 Scan ahead to find a matching LO16 relocation.
7697
7698 According to the MIPS ELF ABI, the R_MIPS_LO16
7699 relocation must be immediately following.
7700 However, for the IRIX6 ABI, the next relocation
7701 may be a composed relocation consisting of
7702 several relocations for the same address. In
7703 that case, the R_MIPS_LO16 relocation may occur
7704 as one of these. We permit a similar extension
7705 in general, as that is useful for GCC. */
7706 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7707 lo16_type,
b49e97c9
TS
7708 rel, relend);
7709 if (lo16_relocation == NULL)
b34976b6 7710 return FALSE;
b49e97c9 7711
d6f16593
MR
7712 lo16_location = contents + lo16_relocation->r_offset;
7713
b49e97c9 7714 /* Obtain the addend kept there. */
4030e8f6 7715 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7716 lo16_type, FALSE);
7717 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7718 lo16_location);
b49e97c9
TS
7719 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7720 input_bfd, contents);
d6f16593
MR
7721 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7722 lo16_location);
b49e97c9 7723 l &= lo16_howto->src_mask;
5a659663 7724 l <<= lo16_howto->rightshift;
a7ebbfdf 7725 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7726
7727 addend <<= 16;
7728
7729 /* Compute the combined addend. */
7730 addend += l;
b49e97c9 7731 }
30ac9238
RS
7732 else
7733 addend <<= howto->rightshift;
b49e97c9
TS
7734 }
7735 else
7736 addend = rel->r_addend;
81d43bff
RS
7737 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7738 local_syms, local_sections, rel);
b49e97c9
TS
7739 }
7740
1049f94e 7741 if (info->relocatable)
b49e97c9 7742 {
4a14403c 7743 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7744 && bfd_big_endian (input_bfd))
7745 rel->r_offset -= 4;
7746
81d43bff 7747 if (!rela_relocation_p && rel->r_addend)
5a659663 7748 {
81d43bff 7749 addend += rel->r_addend;
30ac9238 7750 if (r_type == R_MIPS_HI16
4030e8f6 7751 || r_type == R_MIPS_GOT16)
5a659663
TS
7752 addend = mips_elf_high (addend);
7753 else if (r_type == R_MIPS_HIGHER)
7754 addend = mips_elf_higher (addend);
7755 else if (r_type == R_MIPS_HIGHEST)
7756 addend = mips_elf_highest (addend);
30ac9238
RS
7757 else
7758 addend >>= howto->rightshift;
b49e97c9 7759
30ac9238
RS
7760 /* We use the source mask, rather than the destination
7761 mask because the place to which we are writing will be
7762 source of the addend in the final link. */
b49e97c9
TS
7763 addend &= howto->src_mask;
7764
5a659663 7765 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7766 /* See the comment above about using R_MIPS_64 in the 32-bit
7767 ABI. Here, we need to update the addend. It would be
7768 possible to get away with just using the R_MIPS_32 reloc
7769 but for endianness. */
7770 {
7771 bfd_vma sign_bits;
7772 bfd_vma low_bits;
7773 bfd_vma high_bits;
7774
7775 if (addend & ((bfd_vma) 1 << 31))
7776#ifdef BFD64
7777 sign_bits = ((bfd_vma) 1 << 32) - 1;
7778#else
7779 sign_bits = -1;
7780#endif
7781 else
7782 sign_bits = 0;
7783
7784 /* If we don't know that we have a 64-bit type,
7785 do two separate stores. */
7786 if (bfd_big_endian (input_bfd))
7787 {
7788 /* Store the sign-bits (which are most significant)
7789 first. */
7790 low_bits = sign_bits;
7791 high_bits = addend;
7792 }
7793 else
7794 {
7795 low_bits = addend;
7796 high_bits = sign_bits;
7797 }
7798 bfd_put_32 (input_bfd, low_bits,
7799 contents + rel->r_offset);
7800 bfd_put_32 (input_bfd, high_bits,
7801 contents + rel->r_offset + 4);
7802 continue;
7803 }
7804
7805 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7806 input_bfd, input_section,
b34976b6
AM
7807 contents, FALSE))
7808 return FALSE;
b49e97c9
TS
7809 }
7810
7811 /* Go on to the next relocation. */
7812 continue;
7813 }
7814
7815 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7816 relocations for the same offset. In that case we are
7817 supposed to treat the output of each relocation as the addend
7818 for the next. */
7819 if (rel + 1 < relend
7820 && rel->r_offset == rel[1].r_offset
7821 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7822 use_saved_addend_p = TRUE;
b49e97c9 7823 else
b34976b6 7824 use_saved_addend_p = FALSE;
b49e97c9
TS
7825
7826 /* Figure out what value we are supposed to relocate. */
7827 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7828 input_section, info, rel,
7829 addend, howto, local_syms,
7830 local_sections, &value,
bce03d3d
AO
7831 &name, &require_jalx,
7832 use_saved_addend_p))
b49e97c9
TS
7833 {
7834 case bfd_reloc_continue:
7835 /* There's nothing to do. */
7836 continue;
7837
7838 case bfd_reloc_undefined:
7839 /* mips_elf_calculate_relocation already called the
7840 undefined_symbol callback. There's no real point in
7841 trying to perform the relocation at this point, so we
7842 just skip ahead to the next relocation. */
7843 continue;
7844
7845 case bfd_reloc_notsupported:
7846 msg = _("internal error: unsupported relocation error");
7847 info->callbacks->warning
7848 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7849 return FALSE;
b49e97c9
TS
7850
7851 case bfd_reloc_overflow:
7852 if (use_saved_addend_p)
7853 /* Ignore overflow until we reach the last relocation for
7854 a given location. */
7855 ;
7856 else
7857 {
7858 BFD_ASSERT (name != NULL);
7859 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7860 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7861 input_bfd, input_section, rel->r_offset)))
b34976b6 7862 return FALSE;
b49e97c9
TS
7863 }
7864 break;
7865
7866 case bfd_reloc_ok:
7867 break;
7868
7869 default:
7870 abort ();
7871 break;
7872 }
7873
7874 /* If we've got another relocation for the address, keep going
7875 until we reach the last one. */
7876 if (use_saved_addend_p)
7877 {
7878 addend = value;
7879 continue;
7880 }
7881
4a14403c 7882 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7883 /* See the comment above about using R_MIPS_64 in the 32-bit
7884 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7885 that calculated the right value. Now, however, we
7886 sign-extend the 32-bit result to 64-bits, and store it as a
7887 64-bit value. We are especially generous here in that we
7888 go to extreme lengths to support this usage on systems with
7889 only a 32-bit VMA. */
7890 {
7891 bfd_vma sign_bits;
7892 bfd_vma low_bits;
7893 bfd_vma high_bits;
7894
7895 if (value & ((bfd_vma) 1 << 31))
7896#ifdef BFD64
7897 sign_bits = ((bfd_vma) 1 << 32) - 1;
7898#else
7899 sign_bits = -1;
7900#endif
7901 else
7902 sign_bits = 0;
7903
7904 /* If we don't know that we have a 64-bit type,
7905 do two separate stores. */
7906 if (bfd_big_endian (input_bfd))
7907 {
7908 /* Undo what we did above. */
7909 rel->r_offset -= 4;
7910 /* Store the sign-bits (which are most significant)
7911 first. */
7912 low_bits = sign_bits;
7913 high_bits = value;
7914 }
7915 else
7916 {
7917 low_bits = value;
7918 high_bits = sign_bits;
7919 }
7920 bfd_put_32 (input_bfd, low_bits,
7921 contents + rel->r_offset);
7922 bfd_put_32 (input_bfd, high_bits,
7923 contents + rel->r_offset + 4);
7924 continue;
7925 }
7926
7927 /* Actually perform the relocation. */
7928 if (! mips_elf_perform_relocation (info, howto, rel, value,
7929 input_bfd, input_section,
7930 contents, require_jalx))
b34976b6 7931 return FALSE;
b49e97c9
TS
7932 }
7933
b34976b6 7934 return TRUE;
b49e97c9
TS
7935}
7936\f
7937/* If NAME is one of the special IRIX6 symbols defined by the linker,
7938 adjust it appropriately now. */
7939
7940static void
9719ad41
RS
7941mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7942 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7943{
7944 /* The linker script takes care of providing names and values for
7945 these, but we must place them into the right sections. */
7946 static const char* const text_section_symbols[] = {
7947 "_ftext",
7948 "_etext",
7949 "__dso_displacement",
7950 "__elf_header",
7951 "__program_header_table",
7952 NULL
7953 };
7954
7955 static const char* const data_section_symbols[] = {
7956 "_fdata",
7957 "_edata",
7958 "_end",
7959 "_fbss",
7960 NULL
7961 };
7962
7963 const char* const *p;
7964 int i;
7965
7966 for (i = 0; i < 2; ++i)
7967 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7968 *p;
7969 ++p)
7970 if (strcmp (*p, name) == 0)
7971 {
7972 /* All of these symbols are given type STT_SECTION by the
7973 IRIX6 linker. */
7974 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 7975 sym->st_other = STO_PROTECTED;
b49e97c9
TS
7976
7977 /* The IRIX linker puts these symbols in special sections. */
7978 if (i == 0)
7979 sym->st_shndx = SHN_MIPS_TEXT;
7980 else
7981 sym->st_shndx = SHN_MIPS_DATA;
7982
7983 break;
7984 }
7985}
7986
7987/* Finish up dynamic symbol handling. We set the contents of various
7988 dynamic sections here. */
7989
b34976b6 7990bfd_boolean
9719ad41
RS
7991_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7992 struct bfd_link_info *info,
7993 struct elf_link_hash_entry *h,
7994 Elf_Internal_Sym *sym)
b49e97c9
TS
7995{
7996 bfd *dynobj;
b49e97c9 7997 asection *sgot;
f4416af6 7998 struct mips_got_info *g, *gg;
b49e97c9 7999 const char *name;
b49e97c9
TS
8000
8001 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8002
c5ae1840 8003 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8004 {
8005 asection *s;
8006 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8007
8008 /* This symbol has a stub. Set it up. */
8009
8010 BFD_ASSERT (h->dynindx != -1);
8011
8012 s = bfd_get_section_by_name (dynobj,
8013 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8014 BFD_ASSERT (s != NULL);
8015
6ece8836 8016 /* FIXME: Can h->dynindx be more than 64K? */
b49e97c9 8017 if (h->dynindx & 0xffff0000)
b34976b6 8018 return FALSE;
b49e97c9
TS
8019
8020 /* Fill the stub. */
8021 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
8022 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
8023 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
8024 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
8025
eea6121a 8026 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
8027 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8028
8029 /* Mark the symbol as undefined. plt.offset != -1 occurs
8030 only for the referenced symbol. */
8031 sym->st_shndx = SHN_UNDEF;
8032
8033 /* The run-time linker uses the st_value field of the symbol
8034 to reset the global offset table entry for this external
8035 to its stub address when unlinking a shared object. */
c5ae1840
TS
8036 sym->st_value = (s->output_section->vma + s->output_offset
8037 + h->plt.offset);
b49e97c9
TS
8038 }
8039
8040 BFD_ASSERT (h->dynindx != -1
f5385ebf 8041 || h->forced_local);
b49e97c9 8042
f4416af6 8043 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8044 BFD_ASSERT (sgot != NULL);
f4416af6 8045 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8046 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8047 BFD_ASSERT (g != NULL);
8048
8049 /* Run through the global symbol table, creating GOT entries for all
8050 the symbols that need them. */
8051 if (g->global_gotsym != NULL
8052 && h->dynindx >= g->global_gotsym->dynindx)
8053 {
8054 bfd_vma offset;
8055 bfd_vma value;
8056
6eaa6adc 8057 value = sym->st_value;
0f20cc35 8058 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8059 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8060 }
8061
0f20cc35 8062 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8063 {
8064 struct mips_got_entry e, *p;
0626d451 8065 bfd_vma entry;
f4416af6 8066 bfd_vma offset;
f4416af6
AO
8067
8068 gg = g;
8069
8070 e.abfd = output_bfd;
8071 e.symndx = -1;
8072 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8073 e.tls_type = 0;
143d77c5 8074
f4416af6
AO
8075 for (g = g->next; g->next != gg; g = g->next)
8076 {
8077 if (g->got_entries
8078 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8079 &e)))
8080 {
8081 offset = p->gotidx;
0626d451
RS
8082 if (info->shared
8083 || (elf_hash_table (info)->dynamic_sections_created
8084 && p->d.h != NULL
f5385ebf
AM
8085 && p->d.h->root.def_dynamic
8086 && !p->d.h->root.def_regular))
0626d451
RS
8087 {
8088 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8089 the various compatibility problems, it's easier to mock
8090 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8091 mips_elf_create_dynamic_relocation to calculate the
8092 appropriate addend. */
8093 Elf_Internal_Rela rel[3];
8094
8095 memset (rel, 0, sizeof (rel));
8096 if (ABI_64_P (output_bfd))
8097 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8098 else
8099 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8100 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8101
8102 entry = 0;
8103 if (! (mips_elf_create_dynamic_relocation
8104 (output_bfd, info, rel,
8105 e.d.h, NULL, sym->st_value, &entry, sgot)))
8106 return FALSE;
8107 }
8108 else
8109 entry = sym->st_value;
8110 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8111 }
8112 }
8113 }
8114
b49e97c9
TS
8115 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8116 name = h->root.root.string;
8117 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8118 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8119 sym->st_shndx = SHN_ABS;
8120 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8121 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8122 {
8123 sym->st_shndx = SHN_ABS;
8124 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8125 sym->st_value = 1;
8126 }
4a14403c 8127 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8128 {
8129 sym->st_shndx = SHN_ABS;
8130 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8131 sym->st_value = elf_gp (output_bfd);
8132 }
8133 else if (SGI_COMPAT (output_bfd))
8134 {
8135 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8136 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8137 {
8138 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8139 sym->st_other = STO_PROTECTED;
8140 sym->st_value = 0;
8141 sym->st_shndx = SHN_MIPS_DATA;
8142 }
8143 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8144 {
8145 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8146 sym->st_other = STO_PROTECTED;
8147 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8148 sym->st_shndx = SHN_ABS;
8149 }
8150 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8151 {
8152 if (h->type == STT_FUNC)
8153 sym->st_shndx = SHN_MIPS_TEXT;
8154 else if (h->type == STT_OBJECT)
8155 sym->st_shndx = SHN_MIPS_DATA;
8156 }
8157 }
8158
8159 /* Handle the IRIX6-specific symbols. */
8160 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8161 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8162
8163 if (! info->shared)
8164 {
8165 if (! mips_elf_hash_table (info)->use_rld_obj_head
8166 && (strcmp (name, "__rld_map") == 0
8167 || strcmp (name, "__RLD_MAP") == 0))
8168 {
8169 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8170 BFD_ASSERT (s != NULL);
8171 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8172 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8173 if (mips_elf_hash_table (info)->rld_value == 0)
8174 mips_elf_hash_table (info)->rld_value = sym->st_value;
8175 }
8176 else if (mips_elf_hash_table (info)->use_rld_obj_head
8177 && strcmp (name, "__rld_obj_head") == 0)
8178 {
8179 /* IRIX6 does not use a .rld_map section. */
8180 if (IRIX_COMPAT (output_bfd) == ict_irix5
8181 || IRIX_COMPAT (output_bfd) == ict_none)
8182 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8183 != NULL);
8184 mips_elf_hash_table (info)->rld_value = sym->st_value;
8185 }
8186 }
8187
8188 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8189 if (sym->st_other == STO_MIPS16)
8190 sym->st_value &= ~1;
b49e97c9 8191
b34976b6 8192 return TRUE;
b49e97c9
TS
8193}
8194
0a44bf69
RS
8195/* Likewise, for VxWorks. */
8196
8197bfd_boolean
8198_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8199 struct bfd_link_info *info,
8200 struct elf_link_hash_entry *h,
8201 Elf_Internal_Sym *sym)
8202{
8203 bfd *dynobj;
8204 asection *sgot;
8205 struct mips_got_info *g;
8206 struct mips_elf_link_hash_table *htab;
8207
8208 htab = mips_elf_hash_table (info);
8209 dynobj = elf_hash_table (info)->dynobj;
8210
8211 if (h->plt.offset != (bfd_vma) -1)
8212 {
6d79d2ed 8213 bfd_byte *loc;
0a44bf69
RS
8214 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8215 Elf_Internal_Rela rel;
8216 static const bfd_vma *plt_entry;
8217
8218 BFD_ASSERT (h->dynindx != -1);
8219 BFD_ASSERT (htab->splt != NULL);
8220 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8221
8222 /* Calculate the address of the .plt entry. */
8223 plt_address = (htab->splt->output_section->vma
8224 + htab->splt->output_offset
8225 + h->plt.offset);
8226
8227 /* Calculate the index of the entry. */
8228 plt_index = ((h->plt.offset - htab->plt_header_size)
8229 / htab->plt_entry_size);
8230
8231 /* Calculate the address of the .got.plt entry. */
8232 got_address = (htab->sgotplt->output_section->vma
8233 + htab->sgotplt->output_offset
8234 + plt_index * 4);
8235
8236 /* Calculate the offset of the .got.plt entry from
8237 _GLOBAL_OFFSET_TABLE_. */
8238 got_offset = mips_elf_gotplt_index (info, h);
8239
8240 /* Calculate the offset for the branch at the start of the PLT
8241 entry. The branch jumps to the beginning of .plt. */
8242 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8243
8244 /* Fill in the initial value of the .got.plt entry. */
8245 bfd_put_32 (output_bfd, plt_address,
8246 htab->sgotplt->contents + plt_index * 4);
8247
8248 /* Find out where the .plt entry should go. */
8249 loc = htab->splt->contents + h->plt.offset;
8250
8251 if (info->shared)
8252 {
8253 plt_entry = mips_vxworks_shared_plt_entry;
8254 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8255 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8256 }
8257 else
8258 {
8259 bfd_vma got_address_high, got_address_low;
8260
8261 plt_entry = mips_vxworks_exec_plt_entry;
8262 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8263 got_address_low = got_address & 0xffff;
8264
8265 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8266 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8267 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8268 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8269 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8270 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8271 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8272 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8273
8274 loc = (htab->srelplt2->contents
8275 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8276
8277 /* Emit a relocation for the .got.plt entry. */
8278 rel.r_offset = got_address;
8279 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8280 rel.r_addend = h->plt.offset;
8281 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8282
8283 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8284 loc += sizeof (Elf32_External_Rela);
8285 rel.r_offset = plt_address + 8;
8286 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8287 rel.r_addend = got_offset;
8288 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8289
8290 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8291 loc += sizeof (Elf32_External_Rela);
8292 rel.r_offset += 4;
8293 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8294 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8295 }
8296
8297 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8298 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8299 rel.r_offset = got_address;
8300 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8301 rel.r_addend = 0;
8302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8303
8304 if (!h->def_regular)
8305 sym->st_shndx = SHN_UNDEF;
8306 }
8307
8308 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8309
8310 sgot = mips_elf_got_section (dynobj, FALSE);
8311 BFD_ASSERT (sgot != NULL);
8312 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8313 g = mips_elf_section_data (sgot)->u.got_info;
8314 BFD_ASSERT (g != NULL);
8315
8316 /* See if this symbol has an entry in the GOT. */
8317 if (g->global_gotsym != NULL
8318 && h->dynindx >= g->global_gotsym->dynindx)
8319 {
8320 bfd_vma offset;
8321 Elf_Internal_Rela outrel;
8322 bfd_byte *loc;
8323 asection *s;
8324
8325 /* Install the symbol value in the GOT. */
8326 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8327 R_MIPS_GOT16, info);
8328 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8329
8330 /* Add a dynamic relocation for it. */
8331 s = mips_elf_rel_dyn_section (info, FALSE);
8332 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8333 outrel.r_offset = (sgot->output_section->vma
8334 + sgot->output_offset
8335 + offset);
8336 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8337 outrel.r_addend = 0;
8338 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8339 }
8340
8341 /* Emit a copy reloc, if needed. */
8342 if (h->needs_copy)
8343 {
8344 Elf_Internal_Rela rel;
8345
8346 BFD_ASSERT (h->dynindx != -1);
8347
8348 rel.r_offset = (h->root.u.def.section->output_section->vma
8349 + h->root.u.def.section->output_offset
8350 + h->root.u.def.value);
8351 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8352 rel.r_addend = 0;
8353 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8354 htab->srelbss->contents
8355 + (htab->srelbss->reloc_count
8356 * sizeof (Elf32_External_Rela)));
8357 ++htab->srelbss->reloc_count;
8358 }
8359
8360 /* If this is a mips16 symbol, force the value to be even. */
8361 if (sym->st_other == STO_MIPS16)
8362 sym->st_value &= ~1;
8363
8364 return TRUE;
8365}
8366
8367/* Install the PLT header for a VxWorks executable and finalize the
8368 contents of .rela.plt.unloaded. */
8369
8370static void
8371mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8372{
8373 Elf_Internal_Rela rela;
8374 bfd_byte *loc;
8375 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8376 static const bfd_vma *plt_entry;
8377 struct mips_elf_link_hash_table *htab;
8378
8379 htab = mips_elf_hash_table (info);
8380 plt_entry = mips_vxworks_exec_plt0_entry;
8381
8382 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8383 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8384 + htab->root.hgot->root.u.def.section->output_offset
8385 + htab->root.hgot->root.u.def.value);
8386
8387 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8388 got_value_low = got_value & 0xffff;
8389
8390 /* Calculate the address of the PLT header. */
8391 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8392
8393 /* Install the PLT header. */
8394 loc = htab->splt->contents;
8395 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8396 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8397 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8398 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8399 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8400 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8401
8402 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8403 loc = htab->srelplt2->contents;
8404 rela.r_offset = plt_address;
8405 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8406 rela.r_addend = 0;
8407 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8408 loc += sizeof (Elf32_External_Rela);
8409
8410 /* Output the relocation for the following addiu of
8411 %lo(_GLOBAL_OFFSET_TABLE_). */
8412 rela.r_offset += 4;
8413 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8414 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8415 loc += sizeof (Elf32_External_Rela);
8416
8417 /* Fix up the remaining relocations. They may have the wrong
8418 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8419 in which symbols were output. */
8420 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8421 {
8422 Elf_Internal_Rela rel;
8423
8424 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8425 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8426 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8427 loc += sizeof (Elf32_External_Rela);
8428
8429 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8430 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8431 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8432 loc += sizeof (Elf32_External_Rela);
8433
8434 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8435 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8436 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8437 loc += sizeof (Elf32_External_Rela);
8438 }
8439}
8440
8441/* Install the PLT header for a VxWorks shared library. */
8442
8443static void
8444mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8445{
8446 unsigned int i;
8447 struct mips_elf_link_hash_table *htab;
8448
8449 htab = mips_elf_hash_table (info);
8450
8451 /* We just need to copy the entry byte-by-byte. */
8452 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8453 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8454 htab->splt->contents + i * 4);
8455}
8456
b49e97c9
TS
8457/* Finish up the dynamic sections. */
8458
b34976b6 8459bfd_boolean
9719ad41
RS
8460_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8461 struct bfd_link_info *info)
b49e97c9
TS
8462{
8463 bfd *dynobj;
8464 asection *sdyn;
8465 asection *sgot;
f4416af6 8466 struct mips_got_info *gg, *g;
0a44bf69 8467 struct mips_elf_link_hash_table *htab;
b49e97c9 8468
0a44bf69 8469 htab = mips_elf_hash_table (info);
b49e97c9
TS
8470 dynobj = elf_hash_table (info)->dynobj;
8471
8472 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8473
f4416af6 8474 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8475 if (sgot == NULL)
f4416af6 8476 gg = g = NULL;
b49e97c9
TS
8477 else
8478 {
f4416af6
AO
8479 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8480 gg = mips_elf_section_data (sgot)->u.got_info;
8481 BFD_ASSERT (gg != NULL);
8482 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8483 BFD_ASSERT (g != NULL);
8484 }
8485
8486 if (elf_hash_table (info)->dynamic_sections_created)
8487 {
8488 bfd_byte *b;
943284cc 8489 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8490
8491 BFD_ASSERT (sdyn != NULL);
8492 BFD_ASSERT (g != NULL);
8493
8494 for (b = sdyn->contents;
eea6121a 8495 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8496 b += MIPS_ELF_DYN_SIZE (dynobj))
8497 {
8498 Elf_Internal_Dyn dyn;
8499 const char *name;
8500 size_t elemsize;
8501 asection *s;
b34976b6 8502 bfd_boolean swap_out_p;
b49e97c9
TS
8503
8504 /* Read in the current dynamic entry. */
8505 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8506
8507 /* Assume that we're going to modify it and write it out. */
b34976b6 8508 swap_out_p = TRUE;
b49e97c9
TS
8509
8510 switch (dyn.d_tag)
8511 {
8512 case DT_RELENT:
b49e97c9
TS
8513 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8514 break;
8515
0a44bf69
RS
8516 case DT_RELAENT:
8517 BFD_ASSERT (htab->is_vxworks);
8518 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8519 break;
8520
b49e97c9
TS
8521 case DT_STRSZ:
8522 /* Rewrite DT_STRSZ. */
8523 dyn.d_un.d_val =
8524 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8525 break;
8526
8527 case DT_PLTGOT:
8528 name = ".got";
0a44bf69
RS
8529 if (htab->is_vxworks)
8530 {
8531 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8532 of the ".got" section in DYNOBJ. */
8533 s = bfd_get_section_by_name (dynobj, name);
8534 BFD_ASSERT (s != NULL);
8535 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8536 }
8537 else
8538 {
8539 s = bfd_get_section_by_name (output_bfd, name);
8540 BFD_ASSERT (s != NULL);
8541 dyn.d_un.d_ptr = s->vma;
8542 }
b49e97c9
TS
8543 break;
8544
8545 case DT_MIPS_RLD_VERSION:
8546 dyn.d_un.d_val = 1; /* XXX */
8547 break;
8548
8549 case DT_MIPS_FLAGS:
8550 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8551 break;
8552
b49e97c9 8553 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8554 {
8555 time_t t;
8556 time (&t);
8557 dyn.d_un.d_val = t;
8558 }
b49e97c9
TS
8559 break;
8560
8561 case DT_MIPS_ICHECKSUM:
8562 /* XXX FIXME: */
b34976b6 8563 swap_out_p = FALSE;
b49e97c9
TS
8564 break;
8565
8566 case DT_MIPS_IVERSION:
8567 /* XXX FIXME: */
b34976b6 8568 swap_out_p = FALSE;
b49e97c9
TS
8569 break;
8570
8571 case DT_MIPS_BASE_ADDRESS:
8572 s = output_bfd->sections;
8573 BFD_ASSERT (s != NULL);
8574 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8575 break;
8576
8577 case DT_MIPS_LOCAL_GOTNO:
8578 dyn.d_un.d_val = g->local_gotno;
8579 break;
8580
8581 case DT_MIPS_UNREFEXTNO:
8582 /* The index into the dynamic symbol table which is the
8583 entry of the first external symbol that is not
8584 referenced within the same object. */
8585 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8586 break;
8587
8588 case DT_MIPS_GOTSYM:
f4416af6 8589 if (gg->global_gotsym)
b49e97c9 8590 {
f4416af6 8591 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8592 break;
8593 }
8594 /* In case if we don't have global got symbols we default
8595 to setting DT_MIPS_GOTSYM to the same value as
8596 DT_MIPS_SYMTABNO, so we just fall through. */
8597
8598 case DT_MIPS_SYMTABNO:
8599 name = ".dynsym";
8600 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8601 s = bfd_get_section_by_name (output_bfd, name);
8602 BFD_ASSERT (s != NULL);
8603
eea6121a 8604 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8605 break;
8606
8607 case DT_MIPS_HIPAGENO:
0a44bf69 8608 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8609 break;
8610
8611 case DT_MIPS_RLD_MAP:
8612 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8613 break;
8614
8615 case DT_MIPS_OPTIONS:
8616 s = (bfd_get_section_by_name
8617 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8618 dyn.d_un.d_ptr = s->vma;
8619 break;
8620
0a44bf69
RS
8621 case DT_RELASZ:
8622 BFD_ASSERT (htab->is_vxworks);
8623 /* The count does not include the JUMP_SLOT relocations. */
8624 if (htab->srelplt)
8625 dyn.d_un.d_val -= htab->srelplt->size;
8626 break;
8627
8628 case DT_PLTREL:
8629 BFD_ASSERT (htab->is_vxworks);
8630 dyn.d_un.d_val = DT_RELA;
8631 break;
8632
8633 case DT_PLTRELSZ:
8634 BFD_ASSERT (htab->is_vxworks);
8635 dyn.d_un.d_val = htab->srelplt->size;
8636 break;
8637
8638 case DT_JMPREL:
8639 BFD_ASSERT (htab->is_vxworks);
8640 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8641 + htab->srelplt->output_offset);
8642 break;
8643
943284cc
DJ
8644 case DT_TEXTREL:
8645 /* If we didn't need any text relocations after all, delete
8646 the dynamic tag. */
8647 if (!(info->flags & DF_TEXTREL))
8648 {
8649 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8650 swap_out_p = FALSE;
8651 }
8652 break;
8653
8654 case DT_FLAGS:
8655 /* If we didn't need any text relocations after all, clear
8656 DF_TEXTREL from DT_FLAGS. */
8657 if (!(info->flags & DF_TEXTREL))
8658 dyn.d_un.d_val &= ~DF_TEXTREL;
8659 else
8660 swap_out_p = FALSE;
8661 break;
8662
b49e97c9 8663 default:
b34976b6 8664 swap_out_p = FALSE;
b49e97c9
TS
8665 break;
8666 }
8667
943284cc 8668 if (swap_out_p || dyn_skipped)
b49e97c9 8669 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8670 (dynobj, &dyn, b - dyn_skipped);
8671
8672 if (dyn_to_skip)
8673 {
8674 dyn_skipped += dyn_to_skip;
8675 dyn_to_skip = 0;
8676 }
b49e97c9 8677 }
943284cc
DJ
8678
8679 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8680 if (dyn_skipped > 0)
8681 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8682 }
8683
eea6121a 8684 if (sgot != NULL && sgot->size > 0)
b49e97c9 8685 {
0a44bf69
RS
8686 if (htab->is_vxworks)
8687 {
8688 /* The first entry of the global offset table points to the
8689 ".dynamic" section. The second is initialized by the
8690 loader and contains the shared library identifier.
8691 The third is also initialized by the loader and points
8692 to the lazy resolution stub. */
8693 MIPS_ELF_PUT_WORD (output_bfd,
8694 sdyn->output_offset + sdyn->output_section->vma,
8695 sgot->contents);
8696 MIPS_ELF_PUT_WORD (output_bfd, 0,
8697 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8698 MIPS_ELF_PUT_WORD (output_bfd, 0,
8699 sgot->contents
8700 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8701 }
8702 else
8703 {
8704 /* The first entry of the global offset table will be filled at
8705 runtime. The second entry will be used by some runtime loaders.
8706 This isn't the case of IRIX rld. */
8707 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8708 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8709 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8710 }
b49e97c9
TS
8711 }
8712
8713 if (sgot != NULL)
8714 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8715 = MIPS_ELF_GOT_SIZE (output_bfd);
8716
f4416af6
AO
8717 /* Generate dynamic relocations for the non-primary gots. */
8718 if (gg != NULL && gg->next)
8719 {
8720 Elf_Internal_Rela rel[3];
8721 bfd_vma addend = 0;
8722
8723 memset (rel, 0, sizeof (rel));
8724 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8725
8726 for (g = gg->next; g->next != gg; g = g->next)
8727 {
0f20cc35
DJ
8728 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8729 + g->next->tls_gotno;
f4416af6 8730
9719ad41 8731 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8732 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8733 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8734 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8735
8736 if (! info->shared)
8737 continue;
8738
8739 while (index < g->assigned_gotno)
8740 {
8741 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8742 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8743 if (!(mips_elf_create_dynamic_relocation
8744 (output_bfd, info, rel, NULL,
8745 bfd_abs_section_ptr,
8746 0, &addend, sgot)))
8747 return FALSE;
8748 BFD_ASSERT (addend == 0);
8749 }
8750 }
8751 }
8752
3133ddbf
DJ
8753 /* The generation of dynamic relocations for the non-primary gots
8754 adds more dynamic relocations. We cannot count them until
8755 here. */
8756
8757 if (elf_hash_table (info)->dynamic_sections_created)
8758 {
8759 bfd_byte *b;
8760 bfd_boolean swap_out_p;
8761
8762 BFD_ASSERT (sdyn != NULL);
8763
8764 for (b = sdyn->contents;
8765 b < sdyn->contents + sdyn->size;
8766 b += MIPS_ELF_DYN_SIZE (dynobj))
8767 {
8768 Elf_Internal_Dyn dyn;
8769 asection *s;
8770
8771 /* Read in the current dynamic entry. */
8772 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8773
8774 /* Assume that we're going to modify it and write it out. */
8775 swap_out_p = TRUE;
8776
8777 switch (dyn.d_tag)
8778 {
8779 case DT_RELSZ:
8780 /* Reduce DT_RELSZ to account for any relocations we
8781 decided not to make. This is for the n64 irix rld,
8782 which doesn't seem to apply any relocations if there
8783 are trailing null entries. */
0a44bf69 8784 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8785 dyn.d_un.d_val = (s->reloc_count
8786 * (ABI_64_P (output_bfd)
8787 ? sizeof (Elf64_Mips_External_Rel)
8788 : sizeof (Elf32_External_Rel)));
8789 break;
8790
8791 default:
8792 swap_out_p = FALSE;
8793 break;
8794 }
8795
8796 if (swap_out_p)
8797 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8798 (dynobj, &dyn, b);
8799 }
8800 }
8801
b49e97c9 8802 {
b49e97c9
TS
8803 asection *s;
8804 Elf32_compact_rel cpt;
8805
b49e97c9
TS
8806 if (SGI_COMPAT (output_bfd))
8807 {
8808 /* Write .compact_rel section out. */
8809 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8810 if (s != NULL)
8811 {
8812 cpt.id1 = 1;
8813 cpt.num = s->reloc_count;
8814 cpt.id2 = 2;
8815 cpt.offset = (s->output_section->filepos
8816 + sizeof (Elf32_External_compact_rel));
8817 cpt.reserved0 = 0;
8818 cpt.reserved1 = 0;
8819 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8820 ((Elf32_External_compact_rel *)
8821 s->contents));
8822
8823 /* Clean up a dummy stub function entry in .text. */
8824 s = bfd_get_section_by_name (dynobj,
8825 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8826 if (s != NULL)
8827 {
8828 file_ptr dummy_offset;
8829
eea6121a
AM
8830 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
8831 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
8832 memset (s->contents + dummy_offset, 0,
8833 MIPS_FUNCTION_STUB_SIZE);
8834 }
8835 }
8836 }
8837
0a44bf69
RS
8838 /* The psABI says that the dynamic relocations must be sorted in
8839 increasing order of r_symndx. The VxWorks EABI doesn't require
8840 this, and because the code below handles REL rather than RELA
8841 relocations, using it for VxWorks would be outright harmful. */
8842 if (!htab->is_vxworks)
b49e97c9 8843 {
0a44bf69
RS
8844 s = mips_elf_rel_dyn_section (info, FALSE);
8845 if (s != NULL
8846 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8847 {
8848 reldyn_sorting_bfd = output_bfd;
b49e97c9 8849
0a44bf69
RS
8850 if (ABI_64_P (output_bfd))
8851 qsort ((Elf64_External_Rel *) s->contents + 1,
8852 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8853 sort_dynamic_relocs_64);
8854 else
8855 qsort ((Elf32_External_Rel *) s->contents + 1,
8856 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8857 sort_dynamic_relocs);
8858 }
b49e97c9 8859 }
b49e97c9
TS
8860 }
8861
0a44bf69
RS
8862 if (htab->is_vxworks && htab->splt->size > 0)
8863 {
8864 if (info->shared)
8865 mips_vxworks_finish_shared_plt (output_bfd, info);
8866 else
8867 mips_vxworks_finish_exec_plt (output_bfd, info);
8868 }
b34976b6 8869 return TRUE;
b49e97c9
TS
8870}
8871
b49e97c9 8872
64543e1a
RS
8873/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8874
8875static void
9719ad41 8876mips_set_isa_flags (bfd *abfd)
b49e97c9 8877{
64543e1a 8878 flagword val;
b49e97c9
TS
8879
8880 switch (bfd_get_mach (abfd))
8881 {
8882 default:
8883 case bfd_mach_mips3000:
8884 val = E_MIPS_ARCH_1;
8885 break;
8886
8887 case bfd_mach_mips3900:
8888 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8889 break;
8890
8891 case bfd_mach_mips6000:
8892 val = E_MIPS_ARCH_2;
8893 break;
8894
8895 case bfd_mach_mips4000:
8896 case bfd_mach_mips4300:
8897 case bfd_mach_mips4400:
8898 case bfd_mach_mips4600:
8899 val = E_MIPS_ARCH_3;
8900 break;
8901
8902 case bfd_mach_mips4010:
8903 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8904 break;
8905
8906 case bfd_mach_mips4100:
8907 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8908 break;
8909
8910 case bfd_mach_mips4111:
8911 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8912 break;
8913
00707a0e
RS
8914 case bfd_mach_mips4120:
8915 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8916 break;
8917
b49e97c9
TS
8918 case bfd_mach_mips4650:
8919 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8920 break;
8921
00707a0e
RS
8922 case bfd_mach_mips5400:
8923 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
8924 break;
8925
8926 case bfd_mach_mips5500:
8927 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
8928 break;
8929
0d2e43ed
ILT
8930 case bfd_mach_mips9000:
8931 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
8932 break;
8933
b49e97c9 8934 case bfd_mach_mips5000:
5a7ea749 8935 case bfd_mach_mips7000:
b49e97c9
TS
8936 case bfd_mach_mips8000:
8937 case bfd_mach_mips10000:
8938 case bfd_mach_mips12000:
8939 val = E_MIPS_ARCH_4;
8940 break;
8941
8942 case bfd_mach_mips5:
8943 val = E_MIPS_ARCH_5;
8944 break;
8945
8946 case bfd_mach_mips_sb1:
8947 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
8948 break;
8949
8950 case bfd_mach_mipsisa32:
8951 val = E_MIPS_ARCH_32;
8952 break;
8953
8954 case bfd_mach_mipsisa64:
8955 val = E_MIPS_ARCH_64;
af7ee8bf
CD
8956 break;
8957
8958 case bfd_mach_mipsisa32r2:
8959 val = E_MIPS_ARCH_32R2;
8960 break;
5f74bc13
CD
8961
8962 case bfd_mach_mipsisa64r2:
8963 val = E_MIPS_ARCH_64R2;
8964 break;
b49e97c9 8965 }
b49e97c9
TS
8966 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8967 elf_elfheader (abfd)->e_flags |= val;
8968
64543e1a
RS
8969}
8970
8971
8972/* The final processing done just before writing out a MIPS ELF object
8973 file. This gets the MIPS architecture right based on the machine
8974 number. This is used by both the 32-bit and the 64-bit ABI. */
8975
8976void
9719ad41
RS
8977_bfd_mips_elf_final_write_processing (bfd *abfd,
8978 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
8979{
8980 unsigned int i;
8981 Elf_Internal_Shdr **hdrpp;
8982 const char *name;
8983 asection *sec;
8984
8985 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
8986 is nonzero. This is for compatibility with old objects, which used
8987 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8988 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
8989 mips_set_isa_flags (abfd);
8990
b49e97c9
TS
8991 /* Set the sh_info field for .gptab sections and other appropriate
8992 info for each special section. */
8993 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
8994 i < elf_numsections (abfd);
8995 i++, hdrpp++)
8996 {
8997 switch ((*hdrpp)->sh_type)
8998 {
8999 case SHT_MIPS_MSYM:
9000 case SHT_MIPS_LIBLIST:
9001 sec = bfd_get_section_by_name (abfd, ".dynstr");
9002 if (sec != NULL)
9003 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9004 break;
9005
9006 case SHT_MIPS_GPTAB:
9007 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9008 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9009 BFD_ASSERT (name != NULL
9010 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
9011 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9012 BFD_ASSERT (sec != NULL);
9013 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9014 break;
9015
9016 case SHT_MIPS_CONTENT:
9017 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9018 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9019 BFD_ASSERT (name != NULL
9020 && strncmp (name, ".MIPS.content",
9021 sizeof ".MIPS.content" - 1) == 0);
9022 sec = bfd_get_section_by_name (abfd,
9023 name + sizeof ".MIPS.content" - 1);
9024 BFD_ASSERT (sec != NULL);
9025 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9026 break;
9027
9028 case SHT_MIPS_SYMBOL_LIB:
9029 sec = bfd_get_section_by_name (abfd, ".dynsym");
9030 if (sec != NULL)
9031 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9032 sec = bfd_get_section_by_name (abfd, ".liblist");
9033 if (sec != NULL)
9034 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9035 break;
9036
9037 case SHT_MIPS_EVENTS:
9038 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9039 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9040 BFD_ASSERT (name != NULL);
9041 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9042 sec = bfd_get_section_by_name (abfd,
9043 name + sizeof ".MIPS.events" - 1);
9044 else
9045 {
9046 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9047 sizeof ".MIPS.post_rel" - 1) == 0);
9048 sec = bfd_get_section_by_name (abfd,
9049 (name
9050 + sizeof ".MIPS.post_rel" - 1));
9051 }
9052 BFD_ASSERT (sec != NULL);
9053 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9054 break;
9055
9056 }
9057 }
9058}
9059\f
8dc1a139 9060/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9061 segments. */
9062
9063int
9719ad41 9064_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
9065{
9066 asection *s;
9067 int ret = 0;
9068
9069 /* See if we need a PT_MIPS_REGINFO segment. */
9070 s = bfd_get_section_by_name (abfd, ".reginfo");
9071 if (s && (s->flags & SEC_LOAD))
9072 ++ret;
9073
9074 /* See if we need a PT_MIPS_OPTIONS segment. */
9075 if (IRIX_COMPAT (abfd) == ict_irix6
9076 && bfd_get_section_by_name (abfd,
9077 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9078 ++ret;
9079
9080 /* See if we need a PT_MIPS_RTPROC segment. */
9081 if (IRIX_COMPAT (abfd) == ict_irix5
9082 && bfd_get_section_by_name (abfd, ".dynamic")
9083 && bfd_get_section_by_name (abfd, ".mdebug"))
9084 ++ret;
9085
9086 return ret;
9087}
9088
8dc1a139 9089/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9090
b34976b6 9091bfd_boolean
9719ad41
RS
9092_bfd_mips_elf_modify_segment_map (bfd *abfd,
9093 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9094{
9095 asection *s;
9096 struct elf_segment_map *m, **pm;
9097 bfd_size_type amt;
9098
9099 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9100 segment. */
9101 s = bfd_get_section_by_name (abfd, ".reginfo");
9102 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9103 {
9104 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9105 if (m->p_type == PT_MIPS_REGINFO)
9106 break;
9107 if (m == NULL)
9108 {
9109 amt = sizeof *m;
9719ad41 9110 m = bfd_zalloc (abfd, amt);
b49e97c9 9111 if (m == NULL)
b34976b6 9112 return FALSE;
b49e97c9
TS
9113
9114 m->p_type = PT_MIPS_REGINFO;
9115 m->count = 1;
9116 m->sections[0] = s;
9117
9118 /* We want to put it after the PHDR and INTERP segments. */
9119 pm = &elf_tdata (abfd)->segment_map;
9120 while (*pm != NULL
9121 && ((*pm)->p_type == PT_PHDR
9122 || (*pm)->p_type == PT_INTERP))
9123 pm = &(*pm)->next;
9124
9125 m->next = *pm;
9126 *pm = m;
9127 }
9128 }
9129
9130 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9131 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9132 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9133 table. */
c1fd6598
AO
9134 if (NEWABI_P (abfd)
9135 /* On non-IRIX6 new abi, we'll have already created a segment
9136 for this section, so don't create another. I'm not sure this
9137 is not also the case for IRIX 6, but I can't test it right
9138 now. */
9139 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9140 {
9141 for (s = abfd->sections; s; s = s->next)
9142 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9143 break;
9144
9145 if (s)
9146 {
9147 struct elf_segment_map *options_segment;
9148
98a8deaf
RS
9149 pm = &elf_tdata (abfd)->segment_map;
9150 while (*pm != NULL
9151 && ((*pm)->p_type == PT_PHDR
9152 || (*pm)->p_type == PT_INTERP))
9153 pm = &(*pm)->next;
b49e97c9
TS
9154
9155 amt = sizeof (struct elf_segment_map);
9156 options_segment = bfd_zalloc (abfd, amt);
9157 options_segment->next = *pm;
9158 options_segment->p_type = PT_MIPS_OPTIONS;
9159 options_segment->p_flags = PF_R;
b34976b6 9160 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
9161 options_segment->count = 1;
9162 options_segment->sections[0] = s;
9163 *pm = options_segment;
9164 }
9165 }
9166 else
9167 {
9168 if (IRIX_COMPAT (abfd) == ict_irix5)
9169 {
9170 /* If there are .dynamic and .mdebug sections, we make a room
9171 for the RTPROC header. FIXME: Rewrite without section names. */
9172 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9173 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9174 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9175 {
9176 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9177 if (m->p_type == PT_MIPS_RTPROC)
9178 break;
9179 if (m == NULL)
9180 {
9181 amt = sizeof *m;
9719ad41 9182 m = bfd_zalloc (abfd, amt);
b49e97c9 9183 if (m == NULL)
b34976b6 9184 return FALSE;
b49e97c9
TS
9185
9186 m->p_type = PT_MIPS_RTPROC;
9187
9188 s = bfd_get_section_by_name (abfd, ".rtproc");
9189 if (s == NULL)
9190 {
9191 m->count = 0;
9192 m->p_flags = 0;
9193 m->p_flags_valid = 1;
9194 }
9195 else
9196 {
9197 m->count = 1;
9198 m->sections[0] = s;
9199 }
9200
9201 /* We want to put it after the DYNAMIC segment. */
9202 pm = &elf_tdata (abfd)->segment_map;
9203 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9204 pm = &(*pm)->next;
9205 if (*pm != NULL)
9206 pm = &(*pm)->next;
9207
9208 m->next = *pm;
9209 *pm = m;
9210 }
9211 }
9212 }
8dc1a139 9213 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9214 .dynstr, .dynsym, and .hash sections, and everything in
9215 between. */
9216 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9217 pm = &(*pm)->next)
9218 if ((*pm)->p_type == PT_DYNAMIC)
9219 break;
9220 m = *pm;
9221 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9222 {
9223 /* For a normal mips executable the permissions for the PT_DYNAMIC
9224 segment are read, write and execute. We do that here since
9225 the code in elf.c sets only the read permission. This matters
9226 sometimes for the dynamic linker. */
9227 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9228 {
9229 m->p_flags = PF_R | PF_W | PF_X;
9230 m->p_flags_valid = 1;
9231 }
9232 }
9233 if (m != NULL
9234 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9235 {
9236 static const char *sec_names[] =
9237 {
9238 ".dynamic", ".dynstr", ".dynsym", ".hash"
9239 };
9240 bfd_vma low, high;
9241 unsigned int i, c;
9242 struct elf_segment_map *n;
9243
792b4a53 9244 low = ~(bfd_vma) 0;
b49e97c9
TS
9245 high = 0;
9246 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9247 {
9248 s = bfd_get_section_by_name (abfd, sec_names[i]);
9249 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9250 {
9251 bfd_size_type sz;
9252
9253 if (low > s->vma)
9254 low = s->vma;
eea6121a 9255 sz = s->size;
b49e97c9
TS
9256 if (high < s->vma + sz)
9257 high = s->vma + sz;
9258 }
9259 }
9260
9261 c = 0;
9262 for (s = abfd->sections; s != NULL; s = s->next)
9263 if ((s->flags & SEC_LOAD) != 0
9264 && s->vma >= low
eea6121a 9265 && s->vma + s->size <= high)
b49e97c9
TS
9266 ++c;
9267
9268 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9269 n = bfd_zalloc (abfd, amt);
b49e97c9 9270 if (n == NULL)
b34976b6 9271 return FALSE;
b49e97c9
TS
9272 *n = *m;
9273 n->count = c;
9274
9275 i = 0;
9276 for (s = abfd->sections; s != NULL; s = s->next)
9277 {
9278 if ((s->flags & SEC_LOAD) != 0
9279 && s->vma >= low
eea6121a 9280 && s->vma + s->size <= high)
b49e97c9
TS
9281 {
9282 n->sections[i] = s;
9283 ++i;
9284 }
9285 }
9286
9287 *pm = n;
9288 }
9289 }
9290
b34976b6 9291 return TRUE;
b49e97c9
TS
9292}
9293\f
9294/* Return the section that should be marked against GC for a given
9295 relocation. */
9296
9297asection *
9719ad41
RS
9298_bfd_mips_elf_gc_mark_hook (asection *sec,
9299 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9300 Elf_Internal_Rela *rel,
9301 struct elf_link_hash_entry *h,
9302 Elf_Internal_Sym *sym)
b49e97c9
TS
9303{
9304 /* ??? Do mips16 stub sections need to be handled special? */
9305
9306 if (h != NULL)
9307 {
1e2f5b6e 9308 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
9309 {
9310 case R_MIPS_GNU_VTINHERIT:
9311 case R_MIPS_GNU_VTENTRY:
9312 break;
9313
9314 default:
9315 switch (h->root.type)
9316 {
9317 case bfd_link_hash_defined:
9318 case bfd_link_hash_defweak:
9319 return h->root.u.def.section;
9320
9321 case bfd_link_hash_common:
9322 return h->root.u.c.p->section;
9323
9324 default:
9325 break;
9326 }
9327 }
9328 }
9329 else
1e2f5b6e 9330 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
9331
9332 return NULL;
9333}
9334
9335/* Update the got entry reference counts for the section being removed. */
9336
b34976b6 9337bfd_boolean
9719ad41
RS
9338_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9339 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9340 asection *sec ATTRIBUTE_UNUSED,
9341 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9342{
9343#if 0
9344 Elf_Internal_Shdr *symtab_hdr;
9345 struct elf_link_hash_entry **sym_hashes;
9346 bfd_signed_vma *local_got_refcounts;
9347 const Elf_Internal_Rela *rel, *relend;
9348 unsigned long r_symndx;
9349 struct elf_link_hash_entry *h;
9350
9351 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9352 sym_hashes = elf_sym_hashes (abfd);
9353 local_got_refcounts = elf_local_got_refcounts (abfd);
9354
9355 relend = relocs + sec->reloc_count;
9356 for (rel = relocs; rel < relend; rel++)
9357 switch (ELF_R_TYPE (abfd, rel->r_info))
9358 {
9359 case R_MIPS_GOT16:
9360 case R_MIPS_CALL16:
9361 case R_MIPS_CALL_HI16:
9362 case R_MIPS_CALL_LO16:
9363 case R_MIPS_GOT_HI16:
9364 case R_MIPS_GOT_LO16:
4a14403c
TS
9365 case R_MIPS_GOT_DISP:
9366 case R_MIPS_GOT_PAGE:
9367 case R_MIPS_GOT_OFST:
b49e97c9
TS
9368 /* ??? It would seem that the existing MIPS code does no sort
9369 of reference counting or whatnot on its GOT and PLT entries,
9370 so it is not possible to garbage collect them at this time. */
9371 break;
9372
9373 default:
9374 break;
9375 }
9376#endif
9377
b34976b6 9378 return TRUE;
b49e97c9
TS
9379}
9380\f
9381/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9382 hiding the old indirect symbol. Process additional relocation
9383 information. Also called for weakdefs, in which case we just let
9384 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9385
9386void
fcfa13d2 9387_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9388 struct elf_link_hash_entry *dir,
9389 struct elf_link_hash_entry *ind)
b49e97c9
TS
9390{
9391 struct mips_elf_link_hash_entry *dirmips, *indmips;
9392
fcfa13d2 9393 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9394
9395 if (ind->root.type != bfd_link_hash_indirect)
9396 return;
9397
9398 dirmips = (struct mips_elf_link_hash_entry *) dir;
9399 indmips = (struct mips_elf_link_hash_entry *) ind;
9400 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9401 if (indmips->readonly_reloc)
b34976b6 9402 dirmips->readonly_reloc = TRUE;
b49e97c9 9403 if (indmips->no_fn_stub)
b34976b6 9404 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9405
9406 if (dirmips->tls_type == 0)
9407 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9408}
9409
9410void
9719ad41
RS
9411_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9412 struct elf_link_hash_entry *entry,
9413 bfd_boolean force_local)
b49e97c9
TS
9414{
9415 bfd *dynobj;
9416 asection *got;
9417 struct mips_got_info *g;
9418 struct mips_elf_link_hash_entry *h;
7c5fcef7 9419
b49e97c9 9420 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9421 if (h->forced_local)
9422 return;
4b555070 9423 h->forced_local = force_local;
7c5fcef7 9424
b49e97c9 9425 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9426 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9427 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9428 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9429 {
c45a316a
AM
9430 if (g->next)
9431 {
9432 struct mips_got_entry e;
9433 struct mips_got_info *gg = g;
9434
9435 /* Since we're turning what used to be a global symbol into a
9436 local one, bump up the number of local entries of each GOT
9437 that had an entry for it. This will automatically decrease
9438 the number of global entries, since global_gotno is actually
9439 the upper limit of global entries. */
9440 e.abfd = dynobj;
9441 e.symndx = -1;
9442 e.d.h = h;
0f20cc35 9443 e.tls_type = 0;
c45a316a
AM
9444
9445 for (g = g->next; g != gg; g = g->next)
9446 if (htab_find (g->got_entries, &e))
9447 {
9448 BFD_ASSERT (g->global_gotno > 0);
9449 g->local_gotno++;
9450 g->global_gotno--;
9451 }
b49e97c9 9452
c45a316a
AM
9453 /* If this was a global symbol forced into the primary GOT, we
9454 no longer need an entry for it. We can't release the entry
9455 at this point, but we must at least stop counting it as one
9456 of the symbols that required a forced got entry. */
9457 if (h->root.got.offset == 2)
9458 {
9459 BFD_ASSERT (gg->assigned_gotno > 0);
9460 gg->assigned_gotno--;
9461 }
9462 }
9463 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9464 /* If we haven't got through GOT allocation yet, just bump up the
9465 number of local entries, as this symbol won't be counted as
9466 global. */
9467 g->local_gotno++;
9468 else if (h->root.got.offset == 1)
f4416af6 9469 {
c45a316a
AM
9470 /* If we're past non-multi-GOT allocation and this symbol had
9471 been marked for a global got entry, give it a local entry
9472 instead. */
9473 BFD_ASSERT (g->global_gotno > 0);
9474 g->local_gotno++;
9475 g->global_gotno--;
f4416af6
AO
9476 }
9477 }
f4416af6
AO
9478
9479 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9480}
9481\f
d01414a5
TS
9482#define PDR_SIZE 32
9483
b34976b6 9484bfd_boolean
9719ad41
RS
9485_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9486 struct bfd_link_info *info)
d01414a5
TS
9487{
9488 asection *o;
b34976b6 9489 bfd_boolean ret = FALSE;
d01414a5
TS
9490 unsigned char *tdata;
9491 size_t i, skip;
9492
9493 o = bfd_get_section_by_name (abfd, ".pdr");
9494 if (! o)
b34976b6 9495 return FALSE;
eea6121a 9496 if (o->size == 0)
b34976b6 9497 return FALSE;
eea6121a 9498 if (o->size % PDR_SIZE != 0)
b34976b6 9499 return FALSE;
d01414a5
TS
9500 if (o->output_section != NULL
9501 && bfd_is_abs_section (o->output_section))
b34976b6 9502 return FALSE;
d01414a5 9503
eea6121a 9504 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9505 if (! tdata)
b34976b6 9506 return FALSE;
d01414a5 9507
9719ad41 9508 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9509 info->keep_memory);
d01414a5
TS
9510 if (!cookie->rels)
9511 {
9512 free (tdata);
b34976b6 9513 return FALSE;
d01414a5
TS
9514 }
9515
9516 cookie->rel = cookie->rels;
9517 cookie->relend = cookie->rels + o->reloc_count;
9518
eea6121a 9519 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9520 {
c152c796 9521 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9522 {
9523 tdata[i] = 1;
9524 skip ++;
9525 }
9526 }
9527
9528 if (skip != 0)
9529 {
f0abc2a1 9530 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9531 o->size -= skip * PDR_SIZE;
b34976b6 9532 ret = TRUE;
d01414a5
TS
9533 }
9534 else
9535 free (tdata);
9536
9537 if (! info->keep_memory)
9538 free (cookie->rels);
9539
9540 return ret;
9541}
9542
b34976b6 9543bfd_boolean
9719ad41 9544_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9545{
9546 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9547 return TRUE;
9548 return FALSE;
53bfd6b4 9549}
d01414a5 9550
b34976b6 9551bfd_boolean
9719ad41
RS
9552_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9553 bfd_byte *contents)
d01414a5
TS
9554{
9555 bfd_byte *to, *from, *end;
9556 int i;
9557
9558 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9559 return FALSE;
d01414a5 9560
f0abc2a1 9561 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9562 return FALSE;
d01414a5
TS
9563
9564 to = contents;
eea6121a 9565 end = contents + sec->size;
d01414a5
TS
9566 for (from = contents, i = 0;
9567 from < end;
9568 from += PDR_SIZE, i++)
9569 {
f0abc2a1 9570 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9571 continue;
9572 if (to != from)
9573 memcpy (to, from, PDR_SIZE);
9574 to += PDR_SIZE;
9575 }
9576 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9577 sec->output_offset, sec->size);
b34976b6 9578 return TRUE;
d01414a5 9579}
53bfd6b4 9580\f
b49e97c9
TS
9581/* MIPS ELF uses a special find_nearest_line routine in order the
9582 handle the ECOFF debugging information. */
9583
9584struct mips_elf_find_line
9585{
9586 struct ecoff_debug_info d;
9587 struct ecoff_find_line i;
9588};
9589
b34976b6 9590bfd_boolean
9719ad41
RS
9591_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9592 asymbol **symbols, bfd_vma offset,
9593 const char **filename_ptr,
9594 const char **functionname_ptr,
9595 unsigned int *line_ptr)
b49e97c9
TS
9596{
9597 asection *msec;
9598
9599 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9600 filename_ptr, functionname_ptr,
9601 line_ptr))
b34976b6 9602 return TRUE;
b49e97c9
TS
9603
9604 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9605 filename_ptr, functionname_ptr,
9719ad41 9606 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9607 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9608 return TRUE;
b49e97c9
TS
9609
9610 msec = bfd_get_section_by_name (abfd, ".mdebug");
9611 if (msec != NULL)
9612 {
9613 flagword origflags;
9614 struct mips_elf_find_line *fi;
9615 const struct ecoff_debug_swap * const swap =
9616 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9617
9618 /* If we are called during a link, mips_elf_final_link may have
9619 cleared the SEC_HAS_CONTENTS field. We force it back on here
9620 if appropriate (which it normally will be). */
9621 origflags = msec->flags;
9622 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9623 msec->flags |= SEC_HAS_CONTENTS;
9624
9625 fi = elf_tdata (abfd)->find_line_info;
9626 if (fi == NULL)
9627 {
9628 bfd_size_type external_fdr_size;
9629 char *fraw_src;
9630 char *fraw_end;
9631 struct fdr *fdr_ptr;
9632 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9633
9719ad41 9634 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9635 if (fi == NULL)
9636 {
9637 msec->flags = origflags;
b34976b6 9638 return FALSE;
b49e97c9
TS
9639 }
9640
9641 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9642 {
9643 msec->flags = origflags;
b34976b6 9644 return FALSE;
b49e97c9
TS
9645 }
9646
9647 /* Swap in the FDR information. */
9648 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9649 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9650 if (fi->d.fdr == NULL)
9651 {
9652 msec->flags = origflags;
b34976b6 9653 return FALSE;
b49e97c9
TS
9654 }
9655 external_fdr_size = swap->external_fdr_size;
9656 fdr_ptr = fi->d.fdr;
9657 fraw_src = (char *) fi->d.external_fdr;
9658 fraw_end = (fraw_src
9659 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9660 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9661 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9662
9663 elf_tdata (abfd)->find_line_info = fi;
9664
9665 /* Note that we don't bother to ever free this information.
9666 find_nearest_line is either called all the time, as in
9667 objdump -l, so the information should be saved, or it is
9668 rarely called, as in ld error messages, so the memory
9669 wasted is unimportant. Still, it would probably be a
9670 good idea for free_cached_info to throw it away. */
9671 }
9672
9673 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9674 &fi->i, filename_ptr, functionname_ptr,
9675 line_ptr))
9676 {
9677 msec->flags = origflags;
b34976b6 9678 return TRUE;
b49e97c9
TS
9679 }
9680
9681 msec->flags = origflags;
9682 }
9683
9684 /* Fall back on the generic ELF find_nearest_line routine. */
9685
9686 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9687 filename_ptr, functionname_ptr,
9688 line_ptr);
9689}
4ab527b0
FF
9690
9691bfd_boolean
9692_bfd_mips_elf_find_inliner_info (bfd *abfd,
9693 const char **filename_ptr,
9694 const char **functionname_ptr,
9695 unsigned int *line_ptr)
9696{
9697 bfd_boolean found;
9698 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9699 functionname_ptr, line_ptr,
9700 & elf_tdata (abfd)->dwarf2_find_line_info);
9701 return found;
9702}
9703
b49e97c9
TS
9704\f
9705/* When are writing out the .options or .MIPS.options section,
9706 remember the bytes we are writing out, so that we can install the
9707 GP value in the section_processing routine. */
9708
b34976b6 9709bfd_boolean
9719ad41
RS
9710_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9711 const void *location,
9712 file_ptr offset, bfd_size_type count)
b49e97c9 9713{
cc2e31b9 9714 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9715 {
9716 bfd_byte *c;
9717
9718 if (elf_section_data (section) == NULL)
9719 {
9720 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9721 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9722 if (elf_section_data (section) == NULL)
b34976b6 9723 return FALSE;
b49e97c9 9724 }
f0abc2a1 9725 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9726 if (c == NULL)
9727 {
eea6121a 9728 c = bfd_zalloc (abfd, section->size);
b49e97c9 9729 if (c == NULL)
b34976b6 9730 return FALSE;
f0abc2a1 9731 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9732 }
9733
9719ad41 9734 memcpy (c + offset, location, count);
b49e97c9
TS
9735 }
9736
9737 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9738 count);
9739}
9740
9741/* This is almost identical to bfd_generic_get_... except that some
9742 MIPS relocations need to be handled specially. Sigh. */
9743
9744bfd_byte *
9719ad41
RS
9745_bfd_elf_mips_get_relocated_section_contents
9746 (bfd *abfd,
9747 struct bfd_link_info *link_info,
9748 struct bfd_link_order *link_order,
9749 bfd_byte *data,
9750 bfd_boolean relocatable,
9751 asymbol **symbols)
b49e97c9
TS
9752{
9753 /* Get enough memory to hold the stuff */
9754 bfd *input_bfd = link_order->u.indirect.section->owner;
9755 asection *input_section = link_order->u.indirect.section;
eea6121a 9756 bfd_size_type sz;
b49e97c9
TS
9757
9758 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9759 arelent **reloc_vector = NULL;
9760 long reloc_count;
9761
9762 if (reloc_size < 0)
9763 goto error_return;
9764
9719ad41 9765 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
9766 if (reloc_vector == NULL && reloc_size != 0)
9767 goto error_return;
9768
9769 /* read in the section */
eea6121a
AM
9770 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9771 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
9772 goto error_return;
9773
b49e97c9
TS
9774 reloc_count = bfd_canonicalize_reloc (input_bfd,
9775 input_section,
9776 reloc_vector,
9777 symbols);
9778 if (reloc_count < 0)
9779 goto error_return;
9780
9781 if (reloc_count > 0)
9782 {
9783 arelent **parent;
9784 /* for mips */
9785 int gp_found;
9786 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9787
9788 {
9789 struct bfd_hash_entry *h;
9790 struct bfd_link_hash_entry *lh;
9791 /* Skip all this stuff if we aren't mixing formats. */
9792 if (abfd && input_bfd
9793 && abfd->xvec == input_bfd->xvec)
9794 lh = 0;
9795 else
9796 {
b34976b6 9797 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
9798 lh = (struct bfd_link_hash_entry *) h;
9799 }
9800 lookup:
9801 if (lh)
9802 {
9803 switch (lh->type)
9804 {
9805 case bfd_link_hash_undefined:
9806 case bfd_link_hash_undefweak:
9807 case bfd_link_hash_common:
9808 gp_found = 0;
9809 break;
9810 case bfd_link_hash_defined:
9811 case bfd_link_hash_defweak:
9812 gp_found = 1;
9813 gp = lh->u.def.value;
9814 break;
9815 case bfd_link_hash_indirect:
9816 case bfd_link_hash_warning:
9817 lh = lh->u.i.link;
9818 /* @@FIXME ignoring warning for now */
9819 goto lookup;
9820 case bfd_link_hash_new:
9821 default:
9822 abort ();
9823 }
9824 }
9825 else
9826 gp_found = 0;
9827 }
9828 /* end mips */
9719ad41 9829 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 9830 {
9719ad41 9831 char *error_message = NULL;
b49e97c9
TS
9832 bfd_reloc_status_type r;
9833
9834 /* Specific to MIPS: Deal with relocation types that require
9835 knowing the gp of the output bfd. */
9836 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 9837
8236346f
EC
9838 /* If we've managed to find the gp and have a special
9839 function for the relocation then go ahead, else default
9840 to the generic handling. */
9841 if (gp_found
9842 && (*parent)->howto->special_function
9843 == _bfd_mips_elf32_gprel16_reloc)
9844 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9845 input_section, relocatable,
9846 data, gp);
9847 else
86324f90 9848 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
9849 input_section,
9850 relocatable ? abfd : NULL,
9851 &error_message);
b49e97c9 9852
1049f94e 9853 if (relocatable)
b49e97c9
TS
9854 {
9855 asection *os = input_section->output_section;
9856
9857 /* A partial link, so keep the relocs */
9858 os->orelocation[os->reloc_count] = *parent;
9859 os->reloc_count++;
9860 }
9861
9862 if (r != bfd_reloc_ok)
9863 {
9864 switch (r)
9865 {
9866 case bfd_reloc_undefined:
9867 if (!((*link_info->callbacks->undefined_symbol)
9868 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 9869 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
9870 goto error_return;
9871 break;
9872 case bfd_reloc_dangerous:
9719ad41 9873 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
9874 if (!((*link_info->callbacks->reloc_dangerous)
9875 (link_info, error_message, input_bfd, input_section,
9876 (*parent)->address)))
9877 goto error_return;
9878 break;
9879 case bfd_reloc_overflow:
9880 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
9881 (link_info, NULL,
9882 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
9883 (*parent)->howto->name, (*parent)->addend,
9884 input_bfd, input_section, (*parent)->address)))
9885 goto error_return;
9886 break;
9887 case bfd_reloc_outofrange:
9888 default:
9889 abort ();
9890 break;
9891 }
9892
9893 }
9894 }
9895 }
9896 if (reloc_vector != NULL)
9897 free (reloc_vector);
9898 return data;
9899
9900error_return:
9901 if (reloc_vector != NULL)
9902 free (reloc_vector);
9903 return NULL;
9904}
9905\f
9906/* Create a MIPS ELF linker hash table. */
9907
9908struct bfd_link_hash_table *
9719ad41 9909_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
9910{
9911 struct mips_elf_link_hash_table *ret;
9912 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9913
9719ad41
RS
9914 ret = bfd_malloc (amt);
9915 if (ret == NULL)
b49e97c9
TS
9916 return NULL;
9917
66eb6687
AM
9918 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
9919 mips_elf_link_hash_newfunc,
9920 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 9921 {
e2d34d7d 9922 free (ret);
b49e97c9
TS
9923 return NULL;
9924 }
9925
9926#if 0
9927 /* We no longer use this. */
9928 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
9929 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
9930#endif
9931 ret->procedure_count = 0;
9932 ret->compact_rel_size = 0;
b34976b6 9933 ret->use_rld_obj_head = FALSE;
b49e97c9 9934 ret->rld_value = 0;
b34976b6 9935 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
9936 ret->is_vxworks = FALSE;
9937 ret->srelbss = NULL;
9938 ret->sdynbss = NULL;
9939 ret->srelplt = NULL;
9940 ret->srelplt2 = NULL;
9941 ret->sgotplt = NULL;
9942 ret->splt = NULL;
9943 ret->plt_header_size = 0;
9944 ret->plt_entry_size = 0;
b49e97c9
TS
9945
9946 return &ret->root.root;
9947}
0a44bf69
RS
9948
9949/* Likewise, but indicate that the target is VxWorks. */
9950
9951struct bfd_link_hash_table *
9952_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
9953{
9954 struct bfd_link_hash_table *ret;
9955
9956 ret = _bfd_mips_elf_link_hash_table_create (abfd);
9957 if (ret)
9958 {
9959 struct mips_elf_link_hash_table *htab;
9960
9961 htab = (struct mips_elf_link_hash_table *) ret;
9962 htab->is_vxworks = 1;
9963 }
9964 return ret;
9965}
b49e97c9
TS
9966\f
9967/* We need to use a special link routine to handle the .reginfo and
9968 the .mdebug sections. We need to merge all instances of these
9969 sections together, not write them all out sequentially. */
9970
b34976b6 9971bfd_boolean
9719ad41 9972_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 9973{
b49e97c9
TS
9974 asection *o;
9975 struct bfd_link_order *p;
9976 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
9977 asection *rtproc_sec;
9978 Elf32_RegInfo reginfo;
9979 struct ecoff_debug_info debug;
7a2a6943
NC
9980 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9981 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 9982 HDRR *symhdr = &debug.symbolic_header;
9719ad41 9983 void *mdebug_handle = NULL;
b49e97c9
TS
9984 asection *s;
9985 EXTR esym;
9986 unsigned int i;
9987 bfd_size_type amt;
0a44bf69 9988 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
9989
9990 static const char * const secname[] =
9991 {
9992 ".text", ".init", ".fini", ".data",
9993 ".rodata", ".sdata", ".sbss", ".bss"
9994 };
9995 static const int sc[] =
9996 {
9997 scText, scInit, scFini, scData,
9998 scRData, scSData, scSBss, scBss
9999 };
10000
b49e97c9
TS
10001 /* We'd carefully arranged the dynamic symbol indices, and then the
10002 generic size_dynamic_sections renumbered them out from under us.
10003 Rather than trying somehow to prevent the renumbering, just do
10004 the sort again. */
0a44bf69 10005 htab = mips_elf_hash_table (info);
b49e97c9
TS
10006 if (elf_hash_table (info)->dynamic_sections_created)
10007 {
10008 bfd *dynobj;
10009 asection *got;
10010 struct mips_got_info *g;
7a2a6943 10011 bfd_size_type dynsecsymcount;
b49e97c9
TS
10012
10013 /* When we resort, we must tell mips_elf_sort_hash_table what
10014 the lowest index it may use is. That's the number of section
10015 symbols we're going to add. The generic ELF linker only
10016 adds these symbols when building a shared object. Note that
10017 we count the sections after (possibly) removing the .options
10018 section above. */
7a2a6943
NC
10019
10020 dynsecsymcount = 0;
10021 if (info->shared)
10022 {
10023 asection * p;
10024
10025 for (p = abfd->sections; p ; p = p->next)
10026 if ((p->flags & SEC_EXCLUDE) == 0
10027 && (p->flags & SEC_ALLOC) != 0
10028 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
10029 ++ dynsecsymcount;
10030 }
86324f90 10031
7a2a6943 10032 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10033 return FALSE;
b49e97c9
TS
10034
10035 /* Make sure we didn't grow the global .got region. */
10036 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10037 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10038 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10039
10040 if (g->global_gotsym != NULL)
10041 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10042 - g->global_gotsym->dynindx)
10043 <= g->global_gotno);
10044 }
10045
b49e97c9
TS
10046 /* Get a value for the GP register. */
10047 if (elf_gp (abfd) == 0)
10048 {
10049 struct bfd_link_hash_entry *h;
10050
b34976b6 10051 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10052 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10053 elf_gp (abfd) = (h->u.def.value
10054 + h->u.def.section->output_section->vma
10055 + h->u.def.section->output_offset);
0a44bf69
RS
10056 else if (htab->is_vxworks
10057 && (h = bfd_link_hash_lookup (info->hash,
10058 "_GLOBAL_OFFSET_TABLE_",
10059 FALSE, FALSE, TRUE))
10060 && h->type == bfd_link_hash_defined)
10061 elf_gp (abfd) = (h->u.def.section->output_section->vma
10062 + h->u.def.section->output_offset
10063 + h->u.def.value);
1049f94e 10064 else if (info->relocatable)
b49e97c9
TS
10065 {
10066 bfd_vma lo = MINUS_ONE;
10067
10068 /* Find the GP-relative section with the lowest offset. */
9719ad41 10069 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10070 if (o->vma < lo
10071 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10072 lo = o->vma;
10073
10074 /* And calculate GP relative to that. */
0a44bf69 10075 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10076 }
10077 else
10078 {
10079 /* If the relocate_section function needs to do a reloc
10080 involving the GP value, it should make a reloc_dangerous
10081 callback to warn that GP is not defined. */
10082 }
10083 }
10084
10085 /* Go through the sections and collect the .reginfo and .mdebug
10086 information. */
10087 reginfo_sec = NULL;
10088 mdebug_sec = NULL;
10089 gptab_data_sec = NULL;
10090 gptab_bss_sec = NULL;
9719ad41 10091 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10092 {
10093 if (strcmp (o->name, ".reginfo") == 0)
10094 {
10095 memset (&reginfo, 0, sizeof reginfo);
10096
10097 /* We have found the .reginfo section in the output file.
10098 Look through all the link_orders comprising it and merge
10099 the information together. */
8423293d 10100 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10101 {
10102 asection *input_section;
10103 bfd *input_bfd;
10104 Elf32_External_RegInfo ext;
10105 Elf32_RegInfo sub;
10106
10107 if (p->type != bfd_indirect_link_order)
10108 {
10109 if (p->type == bfd_data_link_order)
10110 continue;
10111 abort ();
10112 }
10113
10114 input_section = p->u.indirect.section;
10115 input_bfd = input_section->owner;
10116
b49e97c9 10117 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10118 &ext, 0, sizeof ext))
b34976b6 10119 return FALSE;
b49e97c9
TS
10120
10121 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10122
10123 reginfo.ri_gprmask |= sub.ri_gprmask;
10124 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10125 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10126 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10127 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10128
10129 /* ri_gp_value is set by the function
10130 mips_elf32_section_processing when the section is
10131 finally written out. */
10132
10133 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10134 elf_link_input_bfd ignores this section. */
10135 input_section->flags &= ~SEC_HAS_CONTENTS;
10136 }
10137
10138 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10139 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10140
10141 /* Skip this section later on (I don't think this currently
10142 matters, but someday it might). */
8423293d 10143 o->map_head.link_order = NULL;
b49e97c9
TS
10144
10145 reginfo_sec = o;
10146 }
10147
10148 if (strcmp (o->name, ".mdebug") == 0)
10149 {
10150 struct extsym_info einfo;
10151 bfd_vma last;
10152
10153 /* We have found the .mdebug section in the output file.
10154 Look through all the link_orders comprising it and merge
10155 the information together. */
10156 symhdr->magic = swap->sym_magic;
10157 /* FIXME: What should the version stamp be? */
10158 symhdr->vstamp = 0;
10159 symhdr->ilineMax = 0;
10160 symhdr->cbLine = 0;
10161 symhdr->idnMax = 0;
10162 symhdr->ipdMax = 0;
10163 symhdr->isymMax = 0;
10164 symhdr->ioptMax = 0;
10165 symhdr->iauxMax = 0;
10166 symhdr->issMax = 0;
10167 symhdr->issExtMax = 0;
10168 symhdr->ifdMax = 0;
10169 symhdr->crfd = 0;
10170 symhdr->iextMax = 0;
10171
10172 /* We accumulate the debugging information itself in the
10173 debug_info structure. */
10174 debug.line = NULL;
10175 debug.external_dnr = NULL;
10176 debug.external_pdr = NULL;
10177 debug.external_sym = NULL;
10178 debug.external_opt = NULL;
10179 debug.external_aux = NULL;
10180 debug.ss = NULL;
10181 debug.ssext = debug.ssext_end = NULL;
10182 debug.external_fdr = NULL;
10183 debug.external_rfd = NULL;
10184 debug.external_ext = debug.external_ext_end = NULL;
10185
10186 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10187 if (mdebug_handle == NULL)
b34976b6 10188 return FALSE;
b49e97c9
TS
10189
10190 esym.jmptbl = 0;
10191 esym.cobol_main = 0;
10192 esym.weakext = 0;
10193 esym.reserved = 0;
10194 esym.ifd = ifdNil;
10195 esym.asym.iss = issNil;
10196 esym.asym.st = stLocal;
10197 esym.asym.reserved = 0;
10198 esym.asym.index = indexNil;
10199 last = 0;
10200 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10201 {
10202 esym.asym.sc = sc[i];
10203 s = bfd_get_section_by_name (abfd, secname[i]);
10204 if (s != NULL)
10205 {
10206 esym.asym.value = s->vma;
eea6121a 10207 last = s->vma + s->size;
b49e97c9
TS
10208 }
10209 else
10210 esym.asym.value = last;
10211 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10212 secname[i], &esym))
b34976b6 10213 return FALSE;
b49e97c9
TS
10214 }
10215
8423293d 10216 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10217 {
10218 asection *input_section;
10219 bfd *input_bfd;
10220 const struct ecoff_debug_swap *input_swap;
10221 struct ecoff_debug_info input_debug;
10222 char *eraw_src;
10223 char *eraw_end;
10224
10225 if (p->type != bfd_indirect_link_order)
10226 {
10227 if (p->type == bfd_data_link_order)
10228 continue;
10229 abort ();
10230 }
10231
10232 input_section = p->u.indirect.section;
10233 input_bfd = input_section->owner;
10234
10235 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10236 || (get_elf_backend_data (input_bfd)
10237 ->elf_backend_ecoff_debug_swap) == NULL)
10238 {
10239 /* I don't know what a non MIPS ELF bfd would be
10240 doing with a .mdebug section, but I don't really
10241 want to deal with it. */
10242 continue;
10243 }
10244
10245 input_swap = (get_elf_backend_data (input_bfd)
10246 ->elf_backend_ecoff_debug_swap);
10247
eea6121a 10248 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10249
10250 /* The ECOFF linking code expects that we have already
10251 read in the debugging information and set up an
10252 ecoff_debug_info structure, so we do that now. */
10253 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10254 &input_debug))
b34976b6 10255 return FALSE;
b49e97c9
TS
10256
10257 if (! (bfd_ecoff_debug_accumulate
10258 (mdebug_handle, abfd, &debug, swap, input_bfd,
10259 &input_debug, input_swap, info)))
b34976b6 10260 return FALSE;
b49e97c9
TS
10261
10262 /* Loop through the external symbols. For each one with
10263 interesting information, try to find the symbol in
10264 the linker global hash table and save the information
10265 for the output external symbols. */
10266 eraw_src = input_debug.external_ext;
10267 eraw_end = (eraw_src
10268 + (input_debug.symbolic_header.iextMax
10269 * input_swap->external_ext_size));
10270 for (;
10271 eraw_src < eraw_end;
10272 eraw_src += input_swap->external_ext_size)
10273 {
10274 EXTR ext;
10275 const char *name;
10276 struct mips_elf_link_hash_entry *h;
10277
9719ad41 10278 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10279 if (ext.asym.sc == scNil
10280 || ext.asym.sc == scUndefined
10281 || ext.asym.sc == scSUndefined)
10282 continue;
10283
10284 name = input_debug.ssext + ext.asym.iss;
10285 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10286 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10287 if (h == NULL || h->esym.ifd != -2)
10288 continue;
10289
10290 if (ext.ifd != -1)
10291 {
10292 BFD_ASSERT (ext.ifd
10293 < input_debug.symbolic_header.ifdMax);
10294 ext.ifd = input_debug.ifdmap[ext.ifd];
10295 }
10296
10297 h->esym = ext;
10298 }
10299
10300 /* Free up the information we just read. */
10301 free (input_debug.line);
10302 free (input_debug.external_dnr);
10303 free (input_debug.external_pdr);
10304 free (input_debug.external_sym);
10305 free (input_debug.external_opt);
10306 free (input_debug.external_aux);
10307 free (input_debug.ss);
10308 free (input_debug.ssext);
10309 free (input_debug.external_fdr);
10310 free (input_debug.external_rfd);
10311 free (input_debug.external_ext);
10312
10313 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10314 elf_link_input_bfd ignores this section. */
10315 input_section->flags &= ~SEC_HAS_CONTENTS;
10316 }
10317
10318 if (SGI_COMPAT (abfd) && info->shared)
10319 {
10320 /* Create .rtproc section. */
10321 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10322 if (rtproc_sec == NULL)
10323 {
10324 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10325 | SEC_LINKER_CREATED | SEC_READONLY);
10326
3496cb2a
L
10327 rtproc_sec = bfd_make_section_with_flags (abfd,
10328 ".rtproc",
10329 flags);
b49e97c9 10330 if (rtproc_sec == NULL
b49e97c9 10331 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10332 return FALSE;
b49e97c9
TS
10333 }
10334
10335 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10336 info, rtproc_sec,
10337 &debug))
b34976b6 10338 return FALSE;
b49e97c9
TS
10339 }
10340
10341 /* Build the external symbol information. */
10342 einfo.abfd = abfd;
10343 einfo.info = info;
10344 einfo.debug = &debug;
10345 einfo.swap = swap;
b34976b6 10346 einfo.failed = FALSE;
b49e97c9 10347 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10348 mips_elf_output_extsym, &einfo);
b49e97c9 10349 if (einfo.failed)
b34976b6 10350 return FALSE;
b49e97c9
TS
10351
10352 /* Set the size of the .mdebug section. */
eea6121a 10353 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10354
10355 /* Skip this section later on (I don't think this currently
10356 matters, but someday it might). */
8423293d 10357 o->map_head.link_order = NULL;
b49e97c9
TS
10358
10359 mdebug_sec = o;
10360 }
10361
10362 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10363 {
10364 const char *subname;
10365 unsigned int c;
10366 Elf32_gptab *tab;
10367 Elf32_External_gptab *ext_tab;
10368 unsigned int j;
10369
10370 /* The .gptab.sdata and .gptab.sbss sections hold
10371 information describing how the small data area would
10372 change depending upon the -G switch. These sections
10373 not used in executables files. */
1049f94e 10374 if (! info->relocatable)
b49e97c9 10375 {
8423293d 10376 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10377 {
10378 asection *input_section;
10379
10380 if (p->type != bfd_indirect_link_order)
10381 {
10382 if (p->type == bfd_data_link_order)
10383 continue;
10384 abort ();
10385 }
10386
10387 input_section = p->u.indirect.section;
10388
10389 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10390 elf_link_input_bfd ignores this section. */
10391 input_section->flags &= ~SEC_HAS_CONTENTS;
10392 }
10393
10394 /* Skip this section later on (I don't think this
10395 currently matters, but someday it might). */
8423293d 10396 o->map_head.link_order = NULL;
b49e97c9
TS
10397
10398 /* Really remove the section. */
5daa8fe7 10399 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10400 --abfd->section_count;
10401
10402 continue;
10403 }
10404
10405 /* There is one gptab for initialized data, and one for
10406 uninitialized data. */
10407 if (strcmp (o->name, ".gptab.sdata") == 0)
10408 gptab_data_sec = o;
10409 else if (strcmp (o->name, ".gptab.sbss") == 0)
10410 gptab_bss_sec = o;
10411 else
10412 {
10413 (*_bfd_error_handler)
10414 (_("%s: illegal section name `%s'"),
10415 bfd_get_filename (abfd), o->name);
10416 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10417 return FALSE;
b49e97c9
TS
10418 }
10419
10420 /* The linker script always combines .gptab.data and
10421 .gptab.sdata into .gptab.sdata, and likewise for
10422 .gptab.bss and .gptab.sbss. It is possible that there is
10423 no .sdata or .sbss section in the output file, in which
10424 case we must change the name of the output section. */
10425 subname = o->name + sizeof ".gptab" - 1;
10426 if (bfd_get_section_by_name (abfd, subname) == NULL)
10427 {
10428 if (o == gptab_data_sec)
10429 o->name = ".gptab.data";
10430 else
10431 o->name = ".gptab.bss";
10432 subname = o->name + sizeof ".gptab" - 1;
10433 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10434 }
10435
10436 /* Set up the first entry. */
10437 c = 1;
10438 amt = c * sizeof (Elf32_gptab);
9719ad41 10439 tab = bfd_malloc (amt);
b49e97c9 10440 if (tab == NULL)
b34976b6 10441 return FALSE;
b49e97c9
TS
10442 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10443 tab[0].gt_header.gt_unused = 0;
10444
10445 /* Combine the input sections. */
8423293d 10446 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10447 {
10448 asection *input_section;
10449 bfd *input_bfd;
10450 bfd_size_type size;
10451 unsigned long last;
10452 bfd_size_type gpentry;
10453
10454 if (p->type != bfd_indirect_link_order)
10455 {
10456 if (p->type == bfd_data_link_order)
10457 continue;
10458 abort ();
10459 }
10460
10461 input_section = p->u.indirect.section;
10462 input_bfd = input_section->owner;
10463
10464 /* Combine the gptab entries for this input section one
10465 by one. We know that the input gptab entries are
10466 sorted by ascending -G value. */
eea6121a 10467 size = input_section->size;
b49e97c9
TS
10468 last = 0;
10469 for (gpentry = sizeof (Elf32_External_gptab);
10470 gpentry < size;
10471 gpentry += sizeof (Elf32_External_gptab))
10472 {
10473 Elf32_External_gptab ext_gptab;
10474 Elf32_gptab int_gptab;
10475 unsigned long val;
10476 unsigned long add;
b34976b6 10477 bfd_boolean exact;
b49e97c9
TS
10478 unsigned int look;
10479
10480 if (! (bfd_get_section_contents
9719ad41
RS
10481 (input_bfd, input_section, &ext_gptab, gpentry,
10482 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10483 {
10484 free (tab);
b34976b6 10485 return FALSE;
b49e97c9
TS
10486 }
10487
10488 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10489 &int_gptab);
10490 val = int_gptab.gt_entry.gt_g_value;
10491 add = int_gptab.gt_entry.gt_bytes - last;
10492
b34976b6 10493 exact = FALSE;
b49e97c9
TS
10494 for (look = 1; look < c; look++)
10495 {
10496 if (tab[look].gt_entry.gt_g_value >= val)
10497 tab[look].gt_entry.gt_bytes += add;
10498
10499 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10500 exact = TRUE;
b49e97c9
TS
10501 }
10502
10503 if (! exact)
10504 {
10505 Elf32_gptab *new_tab;
10506 unsigned int max;
10507
10508 /* We need a new table entry. */
10509 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10510 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10511 if (new_tab == NULL)
10512 {
10513 free (tab);
b34976b6 10514 return FALSE;
b49e97c9
TS
10515 }
10516 tab = new_tab;
10517 tab[c].gt_entry.gt_g_value = val;
10518 tab[c].gt_entry.gt_bytes = add;
10519
10520 /* Merge in the size for the next smallest -G
10521 value, since that will be implied by this new
10522 value. */
10523 max = 0;
10524 for (look = 1; look < c; look++)
10525 {
10526 if (tab[look].gt_entry.gt_g_value < val
10527 && (max == 0
10528 || (tab[look].gt_entry.gt_g_value
10529 > tab[max].gt_entry.gt_g_value)))
10530 max = look;
10531 }
10532 if (max != 0)
10533 tab[c].gt_entry.gt_bytes +=
10534 tab[max].gt_entry.gt_bytes;
10535
10536 ++c;
10537 }
10538
10539 last = int_gptab.gt_entry.gt_bytes;
10540 }
10541
10542 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10543 elf_link_input_bfd ignores this section. */
10544 input_section->flags &= ~SEC_HAS_CONTENTS;
10545 }
10546
10547 /* The table must be sorted by -G value. */
10548 if (c > 2)
10549 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10550
10551 /* Swap out the table. */
10552 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10553 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10554 if (ext_tab == NULL)
10555 {
10556 free (tab);
b34976b6 10557 return FALSE;
b49e97c9
TS
10558 }
10559
10560 for (j = 0; j < c; j++)
10561 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10562 free (tab);
10563
eea6121a 10564 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10565 o->contents = (bfd_byte *) ext_tab;
10566
10567 /* Skip this section later on (I don't think this currently
10568 matters, but someday it might). */
8423293d 10569 o->map_head.link_order = NULL;
b49e97c9
TS
10570 }
10571 }
10572
10573 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10574 if (!bfd_elf_final_link (abfd, info))
b34976b6 10575 return FALSE;
b49e97c9
TS
10576
10577 /* Now write out the computed sections. */
10578
9719ad41 10579 if (reginfo_sec != NULL)
b49e97c9
TS
10580 {
10581 Elf32_External_RegInfo ext;
10582
10583 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10584 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10585 return FALSE;
b49e97c9
TS
10586 }
10587
9719ad41 10588 if (mdebug_sec != NULL)
b49e97c9
TS
10589 {
10590 BFD_ASSERT (abfd->output_has_begun);
10591 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10592 swap, info,
10593 mdebug_sec->filepos))
b34976b6 10594 return FALSE;
b49e97c9
TS
10595
10596 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10597 }
10598
9719ad41 10599 if (gptab_data_sec != NULL)
b49e97c9
TS
10600 {
10601 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10602 gptab_data_sec->contents,
eea6121a 10603 0, gptab_data_sec->size))
b34976b6 10604 return FALSE;
b49e97c9
TS
10605 }
10606
9719ad41 10607 if (gptab_bss_sec != NULL)
b49e97c9
TS
10608 {
10609 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10610 gptab_bss_sec->contents,
eea6121a 10611 0, gptab_bss_sec->size))
b34976b6 10612 return FALSE;
b49e97c9
TS
10613 }
10614
10615 if (SGI_COMPAT (abfd))
10616 {
10617 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10618 if (rtproc_sec != NULL)
10619 {
10620 if (! bfd_set_section_contents (abfd, rtproc_sec,
10621 rtproc_sec->contents,
eea6121a 10622 0, rtproc_sec->size))
b34976b6 10623 return FALSE;
b49e97c9
TS
10624 }
10625 }
10626
b34976b6 10627 return TRUE;
b49e97c9
TS
10628}
10629\f
64543e1a
RS
10630/* Structure for saying that BFD machine EXTENSION extends BASE. */
10631
10632struct mips_mach_extension {
10633 unsigned long extension, base;
10634};
10635
10636
10637/* An array describing how BFD machines relate to one another. The entries
10638 are ordered topologically with MIPS I extensions listed last. */
10639
10640static const struct mips_mach_extension mips_mach_extensions[] = {
10641 /* MIPS64 extensions. */
5f74bc13 10642 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10643 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10644
10645 /* MIPS V extensions. */
10646 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10647
10648 /* R10000 extensions. */
10649 { bfd_mach_mips12000, bfd_mach_mips10000 },
10650
10651 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10652 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10653 better to allow vr5400 and vr5500 code to be merged anyway, since
10654 many libraries will just use the core ISA. Perhaps we could add
10655 some sort of ASE flag if this ever proves a problem. */
10656 { bfd_mach_mips5500, bfd_mach_mips5400 },
10657 { bfd_mach_mips5400, bfd_mach_mips5000 },
10658
10659 /* MIPS IV extensions. */
10660 { bfd_mach_mips5, bfd_mach_mips8000 },
10661 { bfd_mach_mips10000, bfd_mach_mips8000 },
10662 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10663 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10664 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10665
10666 /* VR4100 extensions. */
10667 { bfd_mach_mips4120, bfd_mach_mips4100 },
10668 { bfd_mach_mips4111, bfd_mach_mips4100 },
10669
10670 /* MIPS III extensions. */
10671 { bfd_mach_mips8000, bfd_mach_mips4000 },
10672 { bfd_mach_mips4650, bfd_mach_mips4000 },
10673 { bfd_mach_mips4600, bfd_mach_mips4000 },
10674 { bfd_mach_mips4400, bfd_mach_mips4000 },
10675 { bfd_mach_mips4300, bfd_mach_mips4000 },
10676 { bfd_mach_mips4100, bfd_mach_mips4000 },
10677 { bfd_mach_mips4010, bfd_mach_mips4000 },
10678
10679 /* MIPS32 extensions. */
10680 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10681
10682 /* MIPS II extensions. */
10683 { bfd_mach_mips4000, bfd_mach_mips6000 },
10684 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10685
10686 /* MIPS I extensions. */
10687 { bfd_mach_mips6000, bfd_mach_mips3000 },
10688 { bfd_mach_mips3900, bfd_mach_mips3000 }
10689};
10690
10691
10692/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10693
10694static bfd_boolean
9719ad41 10695mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10696{
10697 size_t i;
10698
c5211a54
RS
10699 if (extension == base)
10700 return TRUE;
10701
10702 if (base == bfd_mach_mipsisa32
10703 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10704 return TRUE;
10705
10706 if (base == bfd_mach_mipsisa32r2
10707 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10708 return TRUE;
10709
10710 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10711 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10712 {
10713 extension = mips_mach_extensions[i].base;
10714 if (extension == base)
10715 return TRUE;
10716 }
64543e1a 10717
c5211a54 10718 return FALSE;
64543e1a
RS
10719}
10720
10721
10722/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10723
b34976b6 10724static bfd_boolean
9719ad41 10725mips_32bit_flags_p (flagword flags)
00707a0e 10726{
64543e1a
RS
10727 return ((flags & EF_MIPS_32BITMODE) != 0
10728 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10729 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10730 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10731 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10732 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10733 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10734}
10735
64543e1a 10736
b49e97c9
TS
10737/* Merge backend specific data from an object file to the output
10738 object file when linking. */
10739
b34976b6 10740bfd_boolean
9719ad41 10741_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
10742{
10743 flagword old_flags;
10744 flagword new_flags;
b34976b6
AM
10745 bfd_boolean ok;
10746 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
10747 asection *sec;
10748
10749 /* Check if we have the same endianess */
82e51918 10750 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
10751 {
10752 (*_bfd_error_handler)
d003868e
AM
10753 (_("%B: endianness incompatible with that of the selected emulation"),
10754 ibfd);
aa701218
AO
10755 return FALSE;
10756 }
b49e97c9
TS
10757
10758 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10759 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 10760 return TRUE;
b49e97c9 10761
aa701218
AO
10762 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10763 {
10764 (*_bfd_error_handler)
d003868e
AM
10765 (_("%B: ABI is incompatible with that of the selected emulation"),
10766 ibfd);
aa701218
AO
10767 return FALSE;
10768 }
10769
b49e97c9
TS
10770 new_flags = elf_elfheader (ibfd)->e_flags;
10771 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10772 old_flags = elf_elfheader (obfd)->e_flags;
10773
10774 if (! elf_flags_init (obfd))
10775 {
b34976b6 10776 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
10777 elf_elfheader (obfd)->e_flags = new_flags;
10778 elf_elfheader (obfd)->e_ident[EI_CLASS]
10779 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10780
10781 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10782 && bfd_get_arch_info (obfd)->the_default)
10783 {
10784 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10785 bfd_get_mach (ibfd)))
b34976b6 10786 return FALSE;
b49e97c9
TS
10787 }
10788
b34976b6 10789 return TRUE;
b49e97c9
TS
10790 }
10791
10792 /* Check flag compatibility. */
10793
10794 new_flags &= ~EF_MIPS_NOREORDER;
10795 old_flags &= ~EF_MIPS_NOREORDER;
10796
f4416af6
AO
10797 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10798 doesn't seem to matter. */
10799 new_flags &= ~EF_MIPS_XGOT;
10800 old_flags &= ~EF_MIPS_XGOT;
10801
98a8deaf
RS
10802 /* MIPSpro generates ucode info in n64 objects. Again, we should
10803 just be able to ignore this. */
10804 new_flags &= ~EF_MIPS_UCODE;
10805 old_flags &= ~EF_MIPS_UCODE;
10806
0a44bf69
RS
10807 /* Don't care about the PIC flags from dynamic objects; they are
10808 PIC by design. */
10809 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10810 && (ibfd->flags & DYNAMIC) != 0)
10811 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10812
b49e97c9 10813 if (new_flags == old_flags)
b34976b6 10814 return TRUE;
b49e97c9
TS
10815
10816 /* Check to see if the input BFD actually contains any sections.
10817 If not, its flags may not have been initialised either, but it cannot
10818 actually cause any incompatibility. */
10819 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10820 {
10821 /* Ignore synthetic sections and empty .text, .data and .bss sections
10822 which are automatically generated by gas. */
10823 if (strcmp (sec->name, ".reginfo")
10824 && strcmp (sec->name, ".mdebug")
eea6121a 10825 && (sec->size != 0
d13d89fa
NS
10826 || (strcmp (sec->name, ".text")
10827 && strcmp (sec->name, ".data")
10828 && strcmp (sec->name, ".bss"))))
b49e97c9 10829 {
b34976b6 10830 null_input_bfd = FALSE;
b49e97c9
TS
10831 break;
10832 }
10833 }
10834 if (null_input_bfd)
b34976b6 10835 return TRUE;
b49e97c9 10836
b34976b6 10837 ok = TRUE;
b49e97c9 10838
143d77c5
EC
10839 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10840 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 10841 {
b49e97c9 10842 (*_bfd_error_handler)
d003868e
AM
10843 (_("%B: warning: linking PIC files with non-PIC files"),
10844 ibfd);
143d77c5 10845 ok = TRUE;
b49e97c9
TS
10846 }
10847
143d77c5
EC
10848 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10849 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10850 if (! (new_flags & EF_MIPS_PIC))
10851 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10852
10853 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10854 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 10855
64543e1a
RS
10856 /* Compare the ISAs. */
10857 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 10858 {
64543e1a 10859 (*_bfd_error_handler)
d003868e
AM
10860 (_("%B: linking 32-bit code with 64-bit code"),
10861 ibfd);
64543e1a
RS
10862 ok = FALSE;
10863 }
10864 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10865 {
10866 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10867 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 10868 {
64543e1a
RS
10869 /* Copy the architecture info from IBFD to OBFD. Also copy
10870 the 32-bit flag (if set) so that we continue to recognise
10871 OBFD as a 32-bit binary. */
10872 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10873 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10874 elf_elfheader (obfd)->e_flags
10875 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10876
10877 /* Copy across the ABI flags if OBFD doesn't use them
10878 and if that was what caused us to treat IBFD as 32-bit. */
10879 if ((old_flags & EF_MIPS_ABI) == 0
10880 && mips_32bit_flags_p (new_flags)
10881 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10882 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
10883 }
10884 else
10885 {
64543e1a 10886 /* The ISAs aren't compatible. */
b49e97c9 10887 (*_bfd_error_handler)
d003868e
AM
10888 (_("%B: linking %s module with previous %s modules"),
10889 ibfd,
64543e1a
RS
10890 bfd_printable_name (ibfd),
10891 bfd_printable_name (obfd));
b34976b6 10892 ok = FALSE;
b49e97c9 10893 }
b49e97c9
TS
10894 }
10895
64543e1a
RS
10896 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10897 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10898
10899 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
10900 does set EI_CLASS differently from any 32-bit ABI. */
10901 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10902 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10903 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10904 {
10905 /* Only error if both are set (to different values). */
10906 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10907 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10908 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10909 {
10910 (*_bfd_error_handler)
d003868e
AM
10911 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10912 ibfd,
b49e97c9
TS
10913 elf_mips_abi_name (ibfd),
10914 elf_mips_abi_name (obfd));
b34976b6 10915 ok = FALSE;
b49e97c9
TS
10916 }
10917 new_flags &= ~EF_MIPS_ABI;
10918 old_flags &= ~EF_MIPS_ABI;
10919 }
10920
fb39dac1
RS
10921 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10922 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10923 {
10924 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10925
10926 new_flags &= ~ EF_MIPS_ARCH_ASE;
10927 old_flags &= ~ EF_MIPS_ARCH_ASE;
10928 }
10929
b49e97c9
TS
10930 /* Warn about any other mismatches */
10931 if (new_flags != old_flags)
10932 {
10933 (*_bfd_error_handler)
d003868e
AM
10934 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
10935 ibfd, (unsigned long) new_flags,
b49e97c9 10936 (unsigned long) old_flags);
b34976b6 10937 ok = FALSE;
b49e97c9
TS
10938 }
10939
10940 if (! ok)
10941 {
10942 bfd_set_error (bfd_error_bad_value);
b34976b6 10943 return FALSE;
b49e97c9
TS
10944 }
10945
b34976b6 10946 return TRUE;
b49e97c9
TS
10947}
10948
10949/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
10950
b34976b6 10951bfd_boolean
9719ad41 10952_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
10953{
10954 BFD_ASSERT (!elf_flags_init (abfd)
10955 || elf_elfheader (abfd)->e_flags == flags);
10956
10957 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
10958 elf_flags_init (abfd) = TRUE;
10959 return TRUE;
b49e97c9
TS
10960}
10961
b34976b6 10962bfd_boolean
9719ad41 10963_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 10964{
9719ad41 10965 FILE *file = ptr;
b49e97c9
TS
10966
10967 BFD_ASSERT (abfd != NULL && ptr != NULL);
10968
10969 /* Print normal ELF private data. */
10970 _bfd_elf_print_private_bfd_data (abfd, ptr);
10971
10972 /* xgettext:c-format */
10973 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10974
10975 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
10976 fprintf (file, _(" [abi=O32]"));
10977 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
10978 fprintf (file, _(" [abi=O64]"));
10979 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
10980 fprintf (file, _(" [abi=EABI32]"));
10981 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
10982 fprintf (file, _(" [abi=EABI64]"));
10983 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
10984 fprintf (file, _(" [abi unknown]"));
10985 else if (ABI_N32_P (abfd))
10986 fprintf (file, _(" [abi=N32]"));
10987 else if (ABI_64_P (abfd))
10988 fprintf (file, _(" [abi=64]"));
10989 else
10990 fprintf (file, _(" [no abi set]"));
10991
10992 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
10993 fprintf (file, _(" [mips1]"));
10994 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
10995 fprintf (file, _(" [mips2]"));
10996 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
10997 fprintf (file, _(" [mips3]"));
10998 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
10999 fprintf (file, _(" [mips4]"));
11000 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11001 fprintf (file, _(" [mips5]"));
11002 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11003 fprintf (file, _(" [mips32]"));
11004 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11005 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
11006 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11007 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
11008 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11009 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
11010 else
11011 fprintf (file, _(" [unknown ISA]"));
11012
40d32fc6
CD
11013 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11014 fprintf (file, _(" [mdmx]"));
11015
11016 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11017 fprintf (file, _(" [mips16]"));
11018
b49e97c9
TS
11019 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11020 fprintf (file, _(" [32bitmode]"));
11021 else
11022 fprintf (file, _(" [not 32bitmode]"));
11023
11024 fputc ('\n', file);
11025
b34976b6 11026 return TRUE;
b49e97c9 11027}
2f89ff8d 11028
b35d266b 11029const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11030{
7dcb9820
AM
11031 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11032 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
7dcb9820 11033 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
551b43fd
AM
11034 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11035 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11036 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
7dcb9820 11037 { NULL, 0, 0, 0, 0 }
2f89ff8d 11038};
5e2b0d47
NC
11039
11040/* Ensure that the STO_OPTIONAL flag is copied into h->other,
11041 even if this is not a defintion of the symbol. */
11042void
11043_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11044 const Elf_Internal_Sym *isym,
11045 bfd_boolean definition,
11046 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11047{
11048 if (! definition
11049 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11050 h->other |= STO_OPTIONAL;
11051}
12ac1cf5
NC
11052
11053/* Decide whether an undefined symbol is special and can be ignored.
11054 This is the case for OPTIONAL symbols on IRIX. */
11055bfd_boolean
11056_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11057{
11058 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11059}
This page took 0.916225 seconds and 4 git commands to generate.