i386: Align branches within a fixed boundary
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
82704155 1@c Copyright (C) 1991-2019 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
5d79adc4 186@code{enqcmd},
43234a1e
L
187@code{avx512f},
188@code{avx512cd},
189@code{avx512er},
190@code{avx512pf},
1dfc6506
L
191@code{avx512vl},
192@code{avx512bw},
193@code{avx512dq},
2cc1b5aa 194@code{avx512ifma},
14f195c9 195@code{avx512vbmi},
920d2ddc 196@code{avx512_4fmaps},
47acf0bd 197@code{avx512_4vnniw},
620214f7 198@code{avx512_vpopcntdq},
53467f57 199@code{avx512_vbmi2},
8cfcb765 200@code{avx512_vnni},
ee6872be 201@code{avx512_bitalg},
d6aab7a1 202@code{avx512_bf16},
144b71e2
L
203@code{noavx512f},
204@code{noavx512cd},
205@code{noavx512er},
206@code{noavx512pf},
207@code{noavx512vl},
208@code{noavx512bw},
209@code{noavx512dq},
210@code{noavx512ifma},
211@code{noavx512vbmi},
920d2ddc 212@code{noavx512_4fmaps},
47acf0bd 213@code{noavx512_4vnniw},
620214f7 214@code{noavx512_vpopcntdq},
53467f57 215@code{noavx512_vbmi2},
8cfcb765 216@code{noavx512_vnni},
ee6872be 217@code{noavx512_bitalg},
9186c494 218@code{noavx512_vp2intersect},
d6aab7a1 219@code{noavx512_bf16},
dd455cf5 220@code{noenqcmd},
6305a203 221@code{vmx},
8729a6f6 222@code{vmfunc},
6305a203 223@code{smx},
f03fe4c1 224@code{xsave},
c7b8aa3a 225@code{xsaveopt},
1dfc6506
L
226@code{xsavec},
227@code{xsaves},
c0f3af97 228@code{aes},
594ab6a3 229@code{pclmul},
c7b8aa3a
L
230@code{fsgsbase},
231@code{rdrnd},
232@code{f16c},
6c30d220 233@code{bmi2},
c0f3af97 234@code{fma},
f1f8f695
L
235@code{movbe},
236@code{ept},
6c30d220 237@code{lzcnt},
42164a71
L
238@code{hle},
239@code{rtm},
6c30d220 240@code{invpcid},
bd5295b2 241@code{clflush},
9916071f 242@code{mwaitx},
029f3522 243@code{clzero},
3233d7d0 244@code{wbnoinvd},
be3a8dca 245@code{pconfig},
de89d0a3 246@code{waitpkg},
c48935d7 247@code{cldemote},
142861df
JB
248@code{rdpru},
249@code{mcommit},
f88c9eb0 250@code{lwp},
5dd85c99
SP
251@code{fma4},
252@code{xop},
60aa667e 253@code{cx16},
bd5295b2 254@code{syscall},
1b7f3fb0 255@code{rdtscp},
6305a203
L
256@code{3dnow},
257@code{3dnowa},
258@code{sse4a},
259@code{sse5},
260@code{svme},
261@code{abm} and
262@code{padlock}.
309d3373
JB
263Note that rather than extending a basic instruction set, the extension
264mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
265
266When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
267@code{.arch} directive will take precedent.
268
269@cindex @samp{-mtune=} option, i386
270@cindex @samp{-mtune=} option, x86-64
271@item -mtune=@var{CPU}
272This option specifies a processor to optimize for. When used in
273conjunction with the @option{-march} option, only instructions
274of the processor specified by the @option{-march} option will be
275generated.
276
6305a203
L
277Valid @var{CPU} values are identical to the processor list of
278@option{-march=@var{CPU}}.
9103f4f4 279
c0f3af97
L
280@cindex @samp{-msse2avx} option, i386
281@cindex @samp{-msse2avx} option, x86-64
282@item -msse2avx
283This option specifies that the assembler should encode SSE instructions
284with VEX prefix.
285
daf50ae7
L
286@cindex @samp{-msse-check=} option, i386
287@cindex @samp{-msse-check=} option, x86-64
288@item -msse-check=@var{none}
1f9bb1ca
AS
289@itemx -msse-check=@var{warning}
290@itemx -msse-check=@var{error}
9aff4b7a 291These options control if the assembler should check SSE instructions.
daf50ae7
L
292@option{-msse-check=@var{none}} will make the assembler not to check SSE
293instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 294will make the assembler issue a warning for any SSE instruction.
daf50ae7 295@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 296for any SSE instruction.
daf50ae7 297
539f890d
L
298@cindex @samp{-mavxscalar=} option, i386
299@cindex @samp{-mavxscalar=} option, x86-64
300@item -mavxscalar=@var{128}
1f9bb1ca 301@itemx -mavxscalar=@var{256}
2aab8acd 302These options control how the assembler should encode scalar AVX
539f890d
L
303instructions. @option{-mavxscalar=@var{128}} will encode scalar
304AVX instructions with 128bit vector length, which is the default.
305@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
306with 256bit vector length.
307
4970191f
JB
308WARNING: Don't use this for production code - due to CPU errata the
309resulting code may not work on certain models.
310
03751133
L
311@cindex @samp{-mvexwig=} option, i386
312@cindex @samp{-mvexwig=} option, x86-64
313@item -mvexwig=@var{0}
314@itemx -mvexwig=@var{1}
315These options control how the assembler should encode VEX.W-ignored (WIG)
316VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
317instructions with vex.w = 0, which is the default.
318@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
319vex.w = 1.
320
4970191f
JB
321WARNING: Don't use this for production code - due to CPU errata the
322resulting code may not work on certain models.
323
43234a1e
L
324@cindex @samp{-mevexlig=} option, i386
325@cindex @samp{-mevexlig=} option, x86-64
326@item -mevexlig=@var{128}
327@itemx -mevexlig=@var{256}
328@itemx -mevexlig=@var{512}
329These options control how the assembler should encode length-ignored
330(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
331EVEX instructions with 128bit vector length, which is the default.
332@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
333encode LIG EVEX instructions with 256bit and 512bit vector length,
334respectively.
335
336@cindex @samp{-mevexwig=} option, i386
337@cindex @samp{-mevexwig=} option, x86-64
338@item -mevexwig=@var{0}
339@itemx -mevexwig=@var{1}
340These options control how the assembler should encode w-ignored (WIG)
341EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
342EVEX instructions with evex.w = 0, which is the default.
343@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
344evex.w = 1.
345
1efbbeb4
L
346@cindex @samp{-mmnemonic=} option, i386
347@cindex @samp{-mmnemonic=} option, x86-64
348@item -mmnemonic=@var{att}
1f9bb1ca 349@itemx -mmnemonic=@var{intel}
34bca508 350This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
351The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
352take precedent.
353
354@cindex @samp{-msyntax=} option, i386
355@cindex @samp{-msyntax=} option, x86-64
356@item -msyntax=@var{att}
1f9bb1ca 357@itemx -msyntax=@var{intel}
34bca508 358This option specifies instruction syntax when processing instructions.
1efbbeb4
L
359The @code{.att_syntax} and @code{.intel_syntax} directives will
360take precedent.
361
362@cindex @samp{-mnaked-reg} option, i386
363@cindex @samp{-mnaked-reg} option, x86-64
364@item -mnaked-reg
33eaf5de 365This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 366The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 367
7e8b059b
L
368@cindex @samp{-madd-bnd-prefix} option, i386
369@cindex @samp{-madd-bnd-prefix} option, x86-64
370@item -madd-bnd-prefix
371This option forces the assembler to add BND prefix to all branches, even
372if such prefix was not explicitly specified in the source code.
373
8dcea932
L
374@cindex @samp{-mshared} option, i386
375@cindex @samp{-mshared} option, x86-64
376@item -mno-shared
377On ELF target, the assembler normally optimizes out non-PLT relocations
378against defined non-weak global branch targets with default visibility.
379The @samp{-mshared} option tells the assembler to generate code which
380may go into a shared library where all non-weak global branch targets
381with default visibility can be preempted. The resulting code is
382slightly bigger. This option only affects the handling of branch
383instructions.
384
167ad85b
TG
385@cindex @samp{-mbig-obj} option, x86-64
386@item -mbig-obj
387On x86-64 PE/COFF target this option forces the use of big object file
388format, which allows more than 32768 sections.
389
d022bddd
IT
390@cindex @samp{-momit-lock-prefix=} option, i386
391@cindex @samp{-momit-lock-prefix=} option, x86-64
392@item -momit-lock-prefix=@var{no}
393@itemx -momit-lock-prefix=@var{yes}
394These options control how the assembler should encode lock prefix.
395This option is intended as a workaround for processors, that fail on
396lock prefix. This option can only be safely used with single-core,
397single-thread computers
398@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
399@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
400which is the default.
401
e4e00185
AS
402@cindex @samp{-mfence-as-lock-add=} option, i386
403@cindex @samp{-mfence-as-lock-add=} option, x86-64
404@item -mfence-as-lock-add=@var{no}
405@itemx -mfence-as-lock-add=@var{yes}
406These options control how the assembler should encode lfence, mfence and
407sfence.
408@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
409sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
410@samp{lock addl $0x0, (%esp)} in 32-bit mode.
411@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
412sfence as usual, which is the default.
413
0cb4071e
L
414@cindex @samp{-mrelax-relocations=} option, i386
415@cindex @samp{-mrelax-relocations=} option, x86-64
416@item -mrelax-relocations=@var{no}
417@itemx -mrelax-relocations=@var{yes}
418These options control whether the assembler should generate relax
419relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
420R_X86_64_REX_GOTPCRELX, in 64-bit mode.
421@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
422@option{-mrelax-relocations=@var{no}} will not generate relax
423relocations. The default can be controlled by a configure option
424@option{--enable-x86-relax-relocations}.
425
e379e5f3
L
426@cindex @samp{-malign-branch-boundary=} option, i386
427@cindex @samp{-malign-branch-boundary=} option, x86-64
428@item -malign-branch-boundary=@var{NUM}
429This option controls how the assembler should align branches with segment
430prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
431no less than 16. Branches will be aligned within @var{NUM} byte
432boundary. @option{-malign-branch-boundary=0}, which is the default,
433doesn't align branches.
434
435@cindex @samp{-malign-branch=} option, i386
436@cindex @samp{-malign-branch=} option, x86-64
437@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
438This option specifies types of branches to align. @var{TYPE} is
439combination of @samp{jcc}, which aligns conditional jumps,
440@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
441which aligns unconditional jumps, @samp{call} which aligns calls,
442@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
443jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
444
445@cindex @samp{-malign-branch-prefix-size=} option, i386
446@cindex @samp{-malign-branch-prefix-size=} option, x86-64
447@item -malign-branch-prefix-size=@var{NUM}
448This option specifies the maximum number of prefixes on an instruction
449to align branches. @var{NUM} should be between 0 and 5. The default
450@var{NUM} is 5.
451
b4a3a7b4
L
452@cindex @samp{-mx86-used-note=} option, i386
453@cindex @samp{-mx86-used-note=} option, x86-64
454@item -mx86-used-note=@var{no}
455@itemx -mx86-used-note=@var{yes}
456These options control whether the assembler should generate
457GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
458GNU property notes. The default can be controlled by the
459@option{--enable-x86-used-note} configure option.
460
d3d3c6db
IT
461@cindex @samp{-mevexrcig=} option, i386
462@cindex @samp{-mevexrcig=} option, x86-64
463@item -mevexrcig=@var{rne}
464@itemx -mevexrcig=@var{rd}
465@itemx -mevexrcig=@var{ru}
466@itemx -mevexrcig=@var{rz}
467These options control how the assembler should encode SAE-only
468EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
469of EVEX instruction with 00, which is the default.
470@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
471and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
472with 01, 10 and 11 RC bits, respectively.
473
5db04b09
L
474@cindex @samp{-mamd64} option, x86-64
475@cindex @samp{-mintel64} option, x86-64
476@item -mamd64
477@itemx -mintel64
478This option specifies that the assembler should accept only AMD64 or
479Intel64 ISA in 64-bit mode. The default is to accept both.
480
b6f8c7c4
L
481@cindex @samp{-O0} option, i386
482@cindex @samp{-O0} option, x86-64
483@cindex @samp{-O} option, i386
484@cindex @samp{-O} option, x86-64
485@cindex @samp{-O1} option, i386
486@cindex @samp{-O1} option, x86-64
487@cindex @samp{-O2} option, i386
488@cindex @samp{-O2} option, x86-64
489@cindex @samp{-Os} option, i386
490@cindex @samp{-Os} option, x86-64
491@item -O0 | -O | -O1 | -O2 | -Os
492Optimize instruction encoding with smaller instruction size. @samp{-O}
493and @samp{-O1} encode 64-bit register load instructions with 64-bit
494immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 495immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
496register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
497register clearing instructions with 128-bit VEX vector register
498clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 499register load/store instructions with VEX vector register load/store
a0a1771e
JB
500instructions, and encode 128-bit/256-bit EVEX packed integer logical
501instructions with 128-bit/256-bit VEX packed integer logical.
502
503@samp{-O2} includes @samp{-O1} optimization plus encodes
504256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
505EVEX vector register clearing instructions. In 64-bit mode VEX encoded
506instructions with commutative source operands will also have their
507source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
508instead of the 3-byte one. Certain forms of AND as well as OR with the
509same (register) operand specified twice will also be changed to TEST.
a0a1771e 510
b6f8c7c4
L
511@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
512and 64-bit register tests with immediate as 8-bit register test with
513immediate. @samp{-O0} turns off this optimization.
514
55b62671 515@end table
731caf76 516@c man end
e413e4e9 517
a6c24e68
NC
518@node i386-Directives
519@section x86 specific Directives
520
521@cindex machine directives, x86
522@cindex x86 machine directives
523@table @code
524
525@cindex @code{lcomm} directive, COFF
526@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
527Reserve @var{length} (an absolute expression) bytes for a local common
528denoted by @var{symbol}. The section and value of @var{symbol} are
529those of the new local common. The addresses are allocated in the bss
704209c0
NC
530section, so that at run-time the bytes start off zeroed. Since
531@var{symbol} is not declared global, it is normally not visible to
532@code{@value{LD}}. The optional third parameter, @var{alignment},
533specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
534
535This directive is only available for COFF based x86 targets.
536
102e9361
NC
537@cindex @code{largecomm} directive, ELF
538@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
539This directive behaves in the same way as the @code{comm} directive
540except that the data is placed into the @var{.lbss} section instead of
541the @var{.bss} section @ref{Comm}.
542
543The directive is intended to be used for data which requires a large
544amount of space, and it is only available for ELF based x86_64
545targets.
546
f2f51cd5
NC
547@cindex @code{value} directive
548@item .value @var{expression} [, @var{expression}]
549This directive behaves in the same way as the @code{.short} directive,
550taking a series of comma separated expressions and storing them as
551two-byte wide values into the current section.
552
a6c24e68 553@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
554
555@end table
556
252b5132 557@node i386-Syntax
7c31ae13
NC
558@section i386 Syntactical Considerations
559@menu
560* i386-Variations:: AT&T Syntax versus Intel Syntax
561* i386-Chars:: Special Characters
562@end menu
563
564@node i386-Variations
565@subsection AT&T Syntax versus Intel Syntax
252b5132 566
e413e4e9
AM
567@cindex i386 intel_syntax pseudo op
568@cindex intel_syntax pseudo op, i386
569@cindex i386 att_syntax pseudo op
570@cindex att_syntax pseudo op, i386
252b5132
RH
571@cindex i386 syntax compatibility
572@cindex syntax compatibility, i386
55b62671
AJ
573@cindex x86-64 intel_syntax pseudo op
574@cindex intel_syntax pseudo op, x86-64
575@cindex x86-64 att_syntax pseudo op
576@cindex att_syntax pseudo op, x86-64
577@cindex x86-64 syntax compatibility
578@cindex syntax compatibility, x86-64
e413e4e9
AM
579
580@code{@value{AS}} now supports assembly using Intel assembler syntax.
581@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
582back to the usual AT&T mode for compatibility with the output of
583@code{@value{GCC}}. Either of these directives may have an optional
584argument, @code{prefix}, or @code{noprefix} specifying whether registers
585require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
586different from Intel syntax. We mention these differences because
587almost all 80386 documents use Intel syntax. Notable differences
588between the two syntaxes are:
589
590@cindex immediate operands, i386
591@cindex i386 immediate operands
592@cindex register operands, i386
593@cindex i386 register operands
594@cindex jump/call operands, i386
595@cindex i386 jump/call operands
596@cindex operand delimiters, i386
55b62671
AJ
597
598@cindex immediate operands, x86-64
599@cindex x86-64 immediate operands
600@cindex register operands, x86-64
601@cindex x86-64 register operands
602@cindex jump/call operands, x86-64
603@cindex x86-64 jump/call operands
604@cindex operand delimiters, x86-64
252b5132
RH
605@itemize @bullet
606@item
607AT&T immediate operands are preceded by @samp{$}; Intel immediate
608operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
609AT&T register operands are preceded by @samp{%}; Intel register operands
610are undelimited. AT&T absolute (as opposed to PC relative) jump/call
611operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
612
613@cindex i386 source, destination operands
614@cindex source, destination operands; i386
55b62671
AJ
615@cindex x86-64 source, destination operands
616@cindex source, destination operands; x86-64
252b5132
RH
617@item
618AT&T and Intel syntax use the opposite order for source and destination
619operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
620@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
621previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
622instructions with 2 immediate operands, such as the @samp{enter}
623instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
624
625@cindex mnemonic suffixes, i386
626@cindex sizes operands, i386
627@cindex i386 size suffixes
55b62671
AJ
628@cindex mnemonic suffixes, x86-64
629@cindex sizes operands, x86-64
630@cindex x86-64 size suffixes
252b5132
RH
631@item
632In AT&T syntax the size of memory operands is determined from the last
633character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 634@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
635(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
636of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
637(256-bit vector) and zmm (512-bit vector) memory references, only when there's
638no other way to disambiguate an instruction. Intel syntax accomplishes this by
639prefixing memory operands (@emph{not} the instruction mnemonics) with
640@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
641@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
642syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
643syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
644@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 645
4b06377f
L
646In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
647instruction with the 64-bit displacement or immediate operand.
648
252b5132
RH
649@cindex return instructions, i386
650@cindex i386 jump, call, return
55b62671
AJ
651@cindex return instructions, x86-64
652@cindex x86-64 jump, call, return
252b5132
RH
653@item
654Immediate form long jumps and calls are
655@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
656Intel syntax is
657@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
658instruction
659is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
660@samp{ret far @var{stack-adjust}}.
661
662@cindex sections, i386
663@cindex i386 sections
55b62671
AJ
664@cindex sections, x86-64
665@cindex x86-64 sections
252b5132
RH
666@item
667The AT&T assembler does not provide support for multiple section
668programs. Unix style systems expect all programs to be single sections.
669@end itemize
670
7c31ae13
NC
671@node i386-Chars
672@subsection Special Characters
673
674@cindex line comment character, i386
675@cindex i386 line comment character
676The presence of a @samp{#} appearing anywhere on a line indicates the
677start of a comment that extends to the end of that line.
678
679If a @samp{#} appears as the first character of a line then the whole
680line is treated as a comment, but in this case the line can also be a
681logical line number directive (@pxref{Comments}) or a preprocessor
682control command (@pxref{Preprocessing}).
683
a05a5b64 684If the @option{--divide} command-line option has not been specified
7c31ae13
NC
685then the @samp{/} character appearing anywhere on a line also
686introduces a line comment.
687
688@cindex line separator, i386
689@cindex statement separator, i386
690@cindex i386 line separator
691The @samp{;} character can be used to separate statements on the same
692line.
693
252b5132 694@node i386-Mnemonics
d3b47e2b
L
695@section i386-Mnemonics
696@subsection Instruction Naming
252b5132
RH
697
698@cindex i386 instruction naming
699@cindex instruction naming, i386
55b62671
AJ
700@cindex x86-64 instruction naming
701@cindex instruction naming, x86-64
702
252b5132 703Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
704specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
705and @samp{q} specify byte, word, long and quadruple word operands. If
706no suffix is specified by an instruction then @code{@value{AS}} tries to
707fill in the missing suffix based on the destination register operand
708(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
709to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
710@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
711assembler which assumes that a missing mnemonic suffix implies long
712operand size. (This incompatibility does not affect compiler output
713since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
714
715Almost all instructions have the same names in AT&T and Intel format.
716There are a few exceptions. The sign extend and zero extend
717instructions need two sizes to specify them. They need a size to
718sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
719is accomplished by using two instruction mnemonic suffixes in AT&T
720syntax. Base names for sign extend and zero extend are
721@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
722and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
723are tacked on to this base name, the @emph{from} suffix before the
724@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
725``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
726thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
727@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
728@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
729quadruple word).
252b5132 730
b6169b20
L
731@cindex encoding options, i386
732@cindex encoding options, x86-64
733
86fa6981
L
734Different encoding options can be specified via pseudo prefixes:
735
736@itemize @bullet
737@item
738@samp{@{disp8@}} -- prefer 8-bit displacement.
739
740@item
741@samp{@{disp32@}} -- prefer 32-bit displacement.
742
743@item
744@samp{@{load@}} -- prefer load-form instruction.
745
746@item
747@samp{@{store@}} -- prefer store-form instruction.
748
749@item
750@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
751
752@item
753@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
754
755@item
756@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
757
758@item
759@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
760instructions (x86-64 only). Note that this differs from the @samp{rex}
761prefix which generates REX prefix unconditionally.
b6f8c7c4
L
762
763@item
764@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 765@end itemize
b6169b20 766
252b5132
RH
767@cindex conversion instructions, i386
768@cindex i386 conversion instructions
55b62671
AJ
769@cindex conversion instructions, x86-64
770@cindex x86-64 conversion instructions
252b5132
RH
771The Intel-syntax conversion instructions
772
773@itemize @bullet
774@item
775@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
776
777@item
778@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
779
780@item
781@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
782
783@item
784@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
785
786@item
787@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
788(x86-64 only),
789
790@item
d5f0cf92 791@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 792@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
793@end itemize
794
795@noindent
55b62671
AJ
796are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
797@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
798instructions.
252b5132
RH
799
800@cindex jump instructions, i386
801@cindex call instructions, i386
55b62671
AJ
802@cindex jump instructions, x86-64
803@cindex call instructions, x86-64
252b5132
RH
804Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
805AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
806convention.
807
d3b47e2b 808@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
809
810@cindex i386 mnemonic compatibility
811@cindex mnemonic compatibility, i386
812
813@code{@value{AS}} supports assembly using Intel mnemonic.
814@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
815@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
816syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
817Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
818@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
819@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
820assembler with different mnemonics from those in Intel IA32 specification.
821@code{@value{GCC}} generates those instructions with AT&T mnemonic.
822
252b5132
RH
823@node i386-Regs
824@section Register Naming
825
826@cindex i386 registers
827@cindex registers, i386
55b62671
AJ
828@cindex x86-64 registers
829@cindex registers, x86-64
252b5132
RH
830Register operands are always prefixed with @samp{%}. The 80386 registers
831consist of
832
833@itemize @bullet
834@item
835the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
836@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
837frame pointer), and @samp{%esp} (the stack pointer).
838
839@item
840the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
841@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
842
843@item
844the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
845@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
846are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
847@samp{%cx}, and @samp{%dx})
848
849@item
850the 6 section registers @samp{%cs} (code section), @samp{%ds}
851(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
852and @samp{%gs}.
853
854@item
4bde3cdd
UD
855the 5 processor control registers @samp{%cr0}, @samp{%cr2},
856@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
857
858@item
859the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
860@samp{%db3}, @samp{%db6}, and @samp{%db7}.
861
862@item
863the 2 test registers @samp{%tr6} and @samp{%tr7}.
864
865@item
866the 8 floating point register stack @samp{%st} or equivalently
867@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
868@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
869These registers are overloaded by 8 MMX registers @samp{%mm0},
870@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
871@samp{%mm6} and @samp{%mm7}.
872
873@item
4bde3cdd 874the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
875@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
876@end itemize
877
878The AMD x86-64 architecture extends the register set by:
879
880@itemize @bullet
881@item
882enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
883accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
884@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
885pointer)
886
887@item
888the 8 extended registers @samp{%r8}--@samp{%r15}.
889
890@item
4bde3cdd 891the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
892
893@item
4bde3cdd 894the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
895
896@item
4bde3cdd 897the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
898
899@item
900the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
901
902@item
903the 8 debug registers: @samp{%db8}--@samp{%db15}.
904
905@item
4bde3cdd
UD
906the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
907@end itemize
908
909With the AVX extensions more registers were made available:
910
911@itemize @bullet
912
913@item
914the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
915available in 32-bit mode). The bottom 128 bits are overlaid with the
916@samp{xmm0}--@samp{xmm15} registers.
917
918@end itemize
919
920The AVX2 extensions made in 64-bit mode more registers available:
921
922@itemize @bullet
923
924@item
925the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
926registers @samp{%ymm16}--@samp{%ymm31}.
927
928@end itemize
929
930The AVX512 extensions added the following registers:
931
932@itemize @bullet
933
934@item
935the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
936available in 32-bit mode). The bottom 128 bits are overlaid with the
937@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
938overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
939
940@item
941the 8 mask registers @samp{%k0}--@samp{%k7}.
942
252b5132
RH
943@end itemize
944
945@node i386-Prefixes
946@section Instruction Prefixes
947
948@cindex i386 instruction prefixes
949@cindex instruction prefixes, i386
950@cindex prefixes, i386
951Instruction prefixes are used to modify the following instruction. They
952are used to repeat string instructions, to provide section overrides, to
953perform bus lock operations, and to change operand and address sizes.
954(Most instructions that normally operate on 32-bit operands will use
95516-bit operands if the instruction has an ``operand size'' prefix.)
956Instruction prefixes are best written on the same line as the instruction
957they act upon. For example, the @samp{scas} (scan string) instruction is
958repeated with:
959
960@smallexample
961 repne scas %es:(%edi),%al
962@end smallexample
963
964You may also place prefixes on the lines immediately preceding the
965instruction, but this circumvents checks that @code{@value{AS}} does
966with prefixes, and will not work with all prefixes.
967
968Here is a list of instruction prefixes:
969
970@cindex section override prefixes, i386
971@itemize @bullet
972@item
973Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
974@samp{fs}, @samp{gs}. These are automatically added by specifying
975using the @var{section}:@var{memory-operand} form for memory references.
976
977@cindex size prefixes, i386
978@item
979Operand/Address size prefixes @samp{data16} and @samp{addr16}
980change 32-bit operands/addresses into 16-bit operands/addresses,
981while @samp{data32} and @samp{addr32} change 16-bit ones (in a
982@code{.code16} section) into 32-bit operands/addresses. These prefixes
983@emph{must} appear on the same line of code as the instruction they
984modify. For example, in a 16-bit @code{.code16} section, you might
985write:
986
987@smallexample
988 addr32 jmpl *(%ebx)
989@end smallexample
990
991@cindex bus lock prefixes, i386
992@cindex inhibiting interrupts, i386
993@item
994The bus lock prefix @samp{lock} inhibits interrupts during execution of
995the instruction it precedes. (This is only valid with certain
996instructions; see a 80386 manual for details).
997
998@cindex coprocessor wait, i386
999@item
1000The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1001complete the current instruction. This should never be needed for the
100280386/80387 combination.
1003
1004@cindex repeat prefixes, i386
1005@item
1006The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1007to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1008times if the current address size is 16-bits).
55b62671
AJ
1009@cindex REX prefixes, i386
1010@item
1011The @samp{rex} family of prefixes is used by x86-64 to encode
1012extensions to i386 instruction set. The @samp{rex} prefix has four
1013bits --- an operand size overwrite (@code{64}) used to change operand size
1014from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1015register set.
1016
1017You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1018instruction emits @samp{rex} prefix with all the bits set. By omitting
1019the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1020prefixes as well. Normally, there is no need to write the prefixes
1021explicitly, since gas will automatically generate them based on the
1022instruction operands.
252b5132
RH
1023@end itemize
1024
1025@node i386-Memory
1026@section Memory References
1027
1028@cindex i386 memory references
1029@cindex memory references, i386
55b62671
AJ
1030@cindex x86-64 memory references
1031@cindex memory references, x86-64
252b5132
RH
1032An Intel syntax indirect memory reference of the form
1033
1034@smallexample
1035@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1036@end smallexample
1037
1038@noindent
1039is translated into the AT&T syntax
1040
1041@smallexample
1042@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1043@end smallexample
1044
1045@noindent
1046where @var{base} and @var{index} are the optional 32-bit base and
1047index registers, @var{disp} is the optional displacement, and
1048@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1049to calculate the address of the operand. If no @var{scale} is
1050specified, @var{scale} is taken to be 1. @var{section} specifies the
1051optional section register for the memory operand, and may override the
1052default section register (see a 80386 manual for section register
1053defaults). Note that section overrides in AT&T syntax @emph{must}
1054be preceded by a @samp{%}. If you specify a section override which
1055coincides with the default section register, @code{@value{AS}} does @emph{not}
1056output any section register override prefixes to assemble the given
1057instruction. Thus, section overrides can be specified to emphasize which
1058section register is used for a given memory operand.
1059
1060Here are some examples of Intel and AT&T style memory references:
1061
1062@table @asis
1063@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1064@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1065missing, and the default section is used (@samp{%ss} for addressing with
1066@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1067
1068@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1069@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1070@samp{foo}. All other fields are missing. The section register here
1071defaults to @samp{%ds}.
1072
1073@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1074This uses the value pointed to by @samp{foo} as a memory operand.
1075Note that @var{base} and @var{index} are both missing, but there is only
1076@emph{one} @samp{,}. This is a syntactic exception.
1077
1078@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1079This selects the contents of the variable @samp{foo} with section
1080register @var{section} being @samp{%gs}.
1081@end table
1082
1083Absolute (as opposed to PC relative) call and jump operands must be
1084prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1085always chooses PC relative addressing for jump/call labels.
1086
1087Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1088@emph{must} specify its size (byte, word, long, or quadruple) with an
1089instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1090respectively).
1091
1092The x86-64 architecture adds an RIP (instruction pointer relative)
1093addressing. This addressing mode is specified by using @samp{rip} as a
1094base register. Only constant offsets are valid. For example:
1095
1096@table @asis
1097@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1098Points to the address 1234 bytes past the end of the current
1099instruction.
1100
1101@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1102Points to the @code{symbol} in RIP relative way, this is shorter than
1103the default absolute addressing.
1104@end table
1105
1106Other addressing modes remain unchanged in x86-64 architecture, except
1107registers used are 64-bit instead of 32-bit.
252b5132 1108
fddf5b5b 1109@node i386-Jumps
252b5132
RH
1110@section Handling of Jump Instructions
1111
1112@cindex jump optimization, i386
1113@cindex i386 jump optimization
55b62671
AJ
1114@cindex jump optimization, x86-64
1115@cindex x86-64 jump optimization
252b5132
RH
1116Jump instructions are always optimized to use the smallest possible
1117displacements. This is accomplished by using byte (8-bit) displacement
1118jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1119is insufficient a long displacement is used. We do not support
252b5132
RH
1120word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1121instruction with the @samp{data16} instruction prefix), since the 80386
1122insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1123is added. (See also @pxref{i386-Arch})
252b5132
RH
1124
1125Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1126@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1127displacements, so that if you use these instructions (@code{@value{GCC}} does
1128not use them) you may get an error message (and incorrect code). The AT&T
112980386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1130to
1131
1132@smallexample
1133 jcxz cx_zero
1134 jmp cx_nonzero
1135cx_zero: jmp foo
1136cx_nonzero:
1137@end smallexample
1138
1139@node i386-Float
1140@section Floating Point
1141
1142@cindex i386 floating point
1143@cindex floating point, i386
55b62671
AJ
1144@cindex x86-64 floating point
1145@cindex floating point, x86-64
252b5132
RH
1146All 80387 floating point types except packed BCD are supported.
1147(BCD support may be added without much difficulty). These data
1148types are 16-, 32-, and 64- bit integers, and single (32-bit),
1149double (64-bit), and extended (80-bit) precision floating point.
1150Each supported type has an instruction mnemonic suffix and a constructor
1151associated with it. Instruction mnemonic suffixes specify the operand's
1152data type. Constructors build these data types into memory.
1153
1154@cindex @code{float} directive, i386
1155@cindex @code{single} directive, i386
1156@cindex @code{double} directive, i386
1157@cindex @code{tfloat} directive, i386
55b62671
AJ
1158@cindex @code{float} directive, x86-64
1159@cindex @code{single} directive, x86-64
1160@cindex @code{double} directive, x86-64
1161@cindex @code{tfloat} directive, x86-64
252b5132
RH
1162@itemize @bullet
1163@item
1164Floating point constructors are @samp{.float} or @samp{.single},
1165@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1166These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1167and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1168only supports this format via the @samp{fldt} (load 80-bit real to stack
1169top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1170
1171@cindex @code{word} directive, i386
1172@cindex @code{long} directive, i386
1173@cindex @code{int} directive, i386
1174@cindex @code{quad} directive, i386
55b62671
AJ
1175@cindex @code{word} directive, x86-64
1176@cindex @code{long} directive, x86-64
1177@cindex @code{int} directive, x86-64
1178@cindex @code{quad} directive, x86-64
252b5132
RH
1179@item
1180Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1181@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1182corresponding instruction mnemonic suffixes are @samp{s} (single),
1183@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1184the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1185quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1186stack) instructions.
1187@end itemize
1188
1189Register to register operations should not use instruction mnemonic suffixes.
1190@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1191wrote @samp{fst %st, %st(1)}, since all register to register operations
1192use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1193which converts @samp{%st} from 80-bit to 64-bit floating point format,
1194then stores the result in the 4 byte location @samp{mem})
1195
1196@node i386-SIMD
1197@section Intel's MMX and AMD's 3DNow! SIMD Operations
1198
1199@cindex MMX, i386
1200@cindex 3DNow!, i386
1201@cindex SIMD, i386
55b62671
AJ
1202@cindex MMX, x86-64
1203@cindex 3DNow!, x86-64
1204@cindex SIMD, x86-64
252b5132
RH
1205
1206@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1207instructions for integer data), available on Intel's Pentium MMX
1208processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1209Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1210instruction set (SIMD instructions for 32-bit floating point data)
1211available on AMD's K6-2 processor and possibly others in the future.
1212
1213Currently, @code{@value{AS}} does not support Intel's floating point
1214SIMD, Katmai (KNI).
1215
1216The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1217@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
121816-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1219floating point values. The MMX registers cannot be used at the same time
1220as the floating point stack.
1221
1222See Intel and AMD documentation, keeping in mind that the operand order in
1223instructions is reversed from the Intel syntax.
1224
f88c9eb0
SP
1225@node i386-LWP
1226@section AMD's Lightweight Profiling Instructions
1227
1228@cindex LWP, i386
1229@cindex LWP, x86-64
1230
1231@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1232instruction set, available on AMD's Family 15h (Orochi) processors.
1233
1234LWP enables applications to collect and manage performance data, and
1235react to performance events. The collection of performance data
1236requires no context switches. LWP runs in the context of a thread and
1237so several counters can be used independently across multiple threads.
1238LWP can be used in both 64-bit and legacy 32-bit modes.
1239
1240For detailed information on the LWP instruction set, see the
1241@cite{AMD Lightweight Profiling Specification} available at
1242@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1243
87973e9f
QN
1244@node i386-BMI
1245@section Bit Manipulation Instructions
1246
1247@cindex BMI, i386
1248@cindex BMI, x86-64
1249
1250@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1251
1252BMI instructions provide several instructions implementing individual
1253bit manipulation operations such as isolation, masking, setting, or
34bca508 1254resetting.
87973e9f
QN
1255
1256@c Need to add a specification citation here when available.
1257
2a2a0f38
QN
1258@node i386-TBM
1259@section AMD's Trailing Bit Manipulation Instructions
1260
1261@cindex TBM, i386
1262@cindex TBM, x86-64
1263
1264@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1265instruction set, available on AMD's BDVER2 processors (Trinity and
1266Viperfish).
1267
1268TBM instructions provide instructions implementing individual bit
1269manipulation operations such as isolating, masking, setting, resetting,
1270complementing, and operations on trailing zeros and ones.
1271
1272@c Need to add a specification citation here when available.
87973e9f 1273
252b5132
RH
1274@node i386-16bit
1275@section Writing 16-bit Code
1276
1277@cindex i386 16-bit code
1278@cindex 16-bit code, i386
1279@cindex real-mode code, i386
eecb386c 1280@cindex @code{code16gcc} directive, i386
252b5132
RH
1281@cindex @code{code16} directive, i386
1282@cindex @code{code32} directive, i386
55b62671
AJ
1283@cindex @code{code64} directive, i386
1284@cindex @code{code64} directive, x86-64
1285While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1286or 64-bit x86-64 code depending on the default configuration,
252b5132 1287it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1288mode code segments. To do this, put a @samp{.code16} or
1289@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1290be run in 16-bit mode. You can switch @code{@value{AS}} to writing
129132-bit code with the @samp{.code32} directive or 64-bit code with the
1292@samp{.code64} directive.
eecb386c
AM
1293
1294@samp{.code16gcc} provides experimental support for generating 16-bit
1295code from gcc, and differs from @samp{.code16} in that @samp{call},
1296@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1297@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1298default to 32-bit size. This is so that the stack pointer is
1299manipulated in the same way over function calls, allowing access to
1300function parameters at the same stack offsets as in 32-bit mode.
1301@samp{.code16gcc} also automatically adds address size prefixes where
1302necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1303
1304The code which @code{@value{AS}} generates in 16-bit mode will not
1305necessarily run on a 16-bit pre-80386 processor. To write code that
1306runs on such a processor, you must refrain from using @emph{any} 32-bit
1307constructs which require @code{@value{AS}} to output address or operand
1308size prefixes.
1309
1310Note that writing 16-bit code instructions by explicitly specifying a
1311prefix or an instruction mnemonic suffix within a 32-bit code section
1312generates different machine instructions than those generated for a
131316-bit code segment. In a 32-bit code section, the following code
1314generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1315value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1316
1317@smallexample
1318 pushw $4
1319@end smallexample
1320
1321The same code in a 16-bit code section would generate the machine
b45619c0 1322opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1323is correct since the processor default operand size is assumed to be 16
1324bits in a 16-bit code section.
1325
e413e4e9
AM
1326@node i386-Arch
1327@section Specifying CPU Architecture
1328
1329@cindex arch directive, i386
1330@cindex i386 arch directive
55b62671
AJ
1331@cindex arch directive, x86-64
1332@cindex x86-64 arch directive
e413e4e9
AM
1333
1334@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1335(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1336directive enables a warning when gas detects an instruction that is not
1337supported on the CPU specified. The choices for @var{cpu_type} are:
1338
1339@multitable @columnfractions .20 .20 .20 .20
1340@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1341@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1342@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1343@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1344@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1345@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1346@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1347@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1348@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1349@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1350@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1351@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1352@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1353@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1354@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1355@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1356@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1357@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1358@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1359@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1360@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1361@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1362@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1363@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1364@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1365@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1366@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1367@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1368@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1369@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1370@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1371@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df
JB
1372@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1373@item @samp{.mcommit}
e413e4e9
AM
1374@end multitable
1375
fddf5b5b
AM
1376Apart from the warning, there are only two other effects on
1377@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1378@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1379will automatically use a two byte opcode sequence. The larger three
1380byte opcode sequence is used on the 486 (and when no architecture is
1381specified) because it executes faster on the 486. Note that you can
1382explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1383Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1384@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1385conditional jumps will be promoted when necessary to a two instruction
1386sequence consisting of a conditional jump of the opposite sense around
1387an unconditional jump to the target.
1388
5c6af06e
JB
1389Following the CPU architecture (but not a sub-architecture, which are those
1390starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1391control automatic promotion of conditional jumps. @samp{jumps} is the
1392default, and enables jump promotion; All external jumps will be of the long
1393variety, and file-local jumps will be promoted as necessary.
1394(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1395byte offset jumps, and warns about file-local conditional jumps that
1396@code{@value{AS}} promotes.
fddf5b5b
AM
1397Unconditional jumps are treated as for @samp{jumps}.
1398
1399For example
1400
1401@smallexample
1402 .arch i8086,nojumps
1403@end smallexample
e413e4e9 1404
5c9352f3
AM
1405@node i386-Bugs
1406@section AT&T Syntax bugs
1407
1408The UnixWare assembler, and probably other AT&T derived ix86 Unix
1409assemblers, generate floating point instructions with reversed source
1410and destination registers in certain cases. Unfortunately, gcc and
1411possibly many other programs use this reversed syntax, so we're stuck
1412with it.
1413
1414For example
1415
1416@smallexample
1417 fsub %st,%st(3)
1418@end smallexample
1419@noindent
1420results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1421than the expected @samp{%st(3) - %st}. This happens with all the
1422non-commutative arithmetic floating point operations with two register
1423operands where the source register is @samp{%st} and the destination
1424register is @samp{%st(i)}.
1425
252b5132
RH
1426@node i386-Notes
1427@section Notes
1428
1429@cindex i386 @code{mul}, @code{imul} instructions
1430@cindex @code{mul} instruction, i386
1431@cindex @code{imul} instruction, i386
55b62671
AJ
1432@cindex @code{mul} instruction, x86-64
1433@cindex @code{imul} instruction, x86-64
252b5132 1434There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1435instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1436multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1437for @samp{imul}) can be output only in the one operand form. Thus,
1438@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1439the expanding multiply would clobber the @samp{%edx} register, and this
1440would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
144164-bit product in @samp{%edx:%eax}.
1442
1443We have added a two operand form of @samp{imul} when the first operand
1444is an immediate mode expression and the second operand is a register.
1445This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1446example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1447$69, %eax, %eax}.
1448
This page took 0.915637 seconds and 4 git commands to generate.