gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gas / itbl-ops.c
CommitLineData
252b5132 1/* itbl-ops.c
b3adc24a 2 Copyright (C) 1997-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132
RH
20
21/*======================================================================*/
22/*
23 * Herein lies the support for dynamic specification of processor
24 * instructions and registers. Mnemonics, values, and formats for each
25 * instruction and register are specified in an ascii file consisting of
26 * table entries. The grammar for the table is defined in the document
27 * "Processor instruction table specification".
28 *
29 * Instructions use the gnu assembler syntax, with the addition of
30 * allowing mnemonics for register.
31 * Eg. "func $2,reg3,0x100,symbol ; comment"
32 * func - opcode name
33 * $n - register n
34 * reg3 - mnemonic for processor's register defined in table
35 * 0xddd..d - immediate value
36 * symbol - address of label or external symbol
37 *
38 * First, itbl_parse reads in the table of register and instruction
39 * names and formats, and builds a list of entries for each
40 * processor/type combination. lex and yacc are used to parse
41 * the entries in the table and call functions defined here to
42 * add each entry to our list.
43 *
44 * Then, when assembling or disassembling, these functions are called to
45 * 1) get information on a processor's registers and
46 * 2) assemble/disassemble an instruction.
47 * To assemble(disassemble) an instruction, the function
48 * itbl_assemble(itbl_disassemble) is called to search the list of
49 * instruction entries, and if a match is found, uses the format
50 * described in the instruction entry structure to complete the action.
51 *
52 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
53 * and we want to define function "pig" which takes two operands.
54 *
55 * Given the table entries:
56 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
57 * "p3 dreg d2 0x2"
58 * and that the instruction encoding for coprocessor pz has encoding:
59 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
60 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
61 *
62 * a structure to describe the instruction might look something like:
63 * struct itbl_entry = {
64 * e_processor processor = e_p3
65 * e_type type = e_insn
66 * char *name = "pig"
67 * uint value = 0x1
68 * uint flags = 0
69 * struct itbl_range range = 24-21
70 * struct itbl_field *field = {
71 * e_type type = e_dreg
72 * struct itbl_range range = 20-16
73 * struct itbl_field *next = {
74 * e_type type = e_immed
75 * struct itbl_range range = 15-0
76 * struct itbl_field *next = 0
77 * };
78 * };
79 * struct itbl_entry *next = 0
80 * };
81 *
82 * And the assembler instructions:
83 * "pig d2,0x100"
84 * "pig $2,0x100"
85 *
86 * would both assemble to the hex value:
87 * "0x4e220100"
88 *
89 */
90
ebd1c875 91#include "as.h"
252b5132 92#include "itbl-ops.h"
3d82a647 93#include <itbl-parse.h>
252b5132
RH
94
95/* #define DEBUG */
96
97#ifdef DEBUG
98#include <assert.h>
9c2799c2 99#define ASSERT(x) gas_assert (x)
252b5132
RH
100#define DBG(x) printf x
101#else
102#define ASSERT(x)
103#define DBG(x)
104#endif
105
106#ifndef min
107#define min(a,b) (a<b?a:b)
108#endif
109
110int itbl_have_entries = 0;
111
112/*======================================================================*/
113/* structures for keeping itbl format entries */
114
ef99799a
KH
115struct itbl_range {
116 int sbit; /* mask starting bit position */
117 int ebit; /* mask ending bit position */
118};
119
120struct itbl_field {
121 e_type type; /* dreg/creg/greg/immed/symb */
122 struct itbl_range range; /* field's bitfield range within instruction */
123 unsigned long flags; /* field flags */
124 struct itbl_field *next; /* next field in list */
125};
252b5132 126
252b5132
RH
127/* These structures define the instructions and registers for a processor.
128 * If the type is an instruction, the structure defines the format of an
129 * instruction where the fields are the list of operands.
130 * The flags field below uses the same values as those defined in the
c488923f 131 * gnu assembler and are machine specific. */
ef99799a
KH
132struct itbl_entry {
133 e_processor processor; /* processor number */
134 e_type type; /* dreg/creg/greg/insn */
33eaf5de 135 char *name; /* mnemonic name for insn/register */
ef99799a
KH
136 unsigned long value; /* opcode/instruction mask/register number */
137 unsigned long flags; /* effects of the instruction */
138 struct itbl_range range; /* bit range within instruction for value */
139 struct itbl_field *fields; /* list of operand definitions (if any) */
140 struct itbl_entry *next; /* next entry */
141};
252b5132 142
252b5132
RH
143/* local data and structures */
144
145static int itbl_num_opcodes = 0;
146/* Array of entries for each processor and entry type */
e5551801 147static struct itbl_entry *entries[e_nprocs][e_ntypes];
252b5132
RH
148
149/* local prototypes */
b1f1fa96
KH
150static unsigned long build_opcode (struct itbl_entry *e);
151static e_type get_type (int yytype);
152static e_processor get_processor (int yyproc);
153static struct itbl_entry **get_entries (e_processor processor,
154 e_type type);
155static struct itbl_entry *find_entry_byname (e_processor processor,
156 e_type type, char *name);
157static struct itbl_entry *find_entry_byval (e_processor processor,
158 e_type type, unsigned long val, struct itbl_range *r);
159static struct itbl_entry *alloc_entry (e_processor processor,
160 e_type type, char *name, unsigned long value);
161static unsigned long apply_range (unsigned long value, struct itbl_range r);
162static unsigned long extract_range (unsigned long value, struct itbl_range r);
163static struct itbl_field *alloc_field (e_type type, int sbit,
164 int ebit, unsigned long flags);
252b5132 165
252b5132
RH
166/*======================================================================*/
167/* Interfaces to the parser */
168
252b5132
RH
169/* Open the table and use lex and yacc to parse the entries.
170 * Return 1 for failure; 0 for success. */
171
c488923f 172int
252b5132
RH
173itbl_parse (char *insntbl)
174{
175 extern FILE *yyin;
176 extern int yyparse (void);
f740e790
NC
177
178 yyin = fopen (insntbl, FOPEN_RT);
252b5132
RH
179 if (yyin == 0)
180 {
181 printf ("Can't open processor instruction specification file \"%s\"\n",
182 insntbl);
183 return 1;
184 }
f740e790
NC
185
186 while (yyparse ())
187 ;
188
252b5132
RH
189 fclose (yyin);
190 itbl_have_entries = 1;
191 return 0;
192}
193
194/* Add a register entry */
195
196struct itbl_entry *
197itbl_add_reg (int yyprocessor, int yytype, char *regname,
198 int regnum)
199{
252b5132
RH
200 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
201 (unsigned long) regnum);
202}
203
204/* Add an instruction entry */
205
206struct itbl_entry *
207itbl_add_insn (int yyprocessor, char *name, unsigned long value,
208 int sbit, int ebit, unsigned long flags)
209{
210 struct itbl_entry *e;
211 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
212 if (e)
213 {
214 e->range.sbit = sbit;
215 e->range.ebit = ebit;
216 e->flags = flags;
217 itbl_num_opcodes++;
218 }
219 return e;
220}
221
222/* Add an operand to an instruction entry */
223
224struct itbl_field *
225itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
226 int ebit, unsigned long flags)
227{
228 struct itbl_field *f, **last_f;
229 if (!e)
230 return 0;
c488923f 231 /* Add to end of fields' list. */
252b5132
RH
232 f = alloc_field (get_type (yytype), sbit, ebit, flags);
233 if (f)
234 {
235 last_f = &e->fields;
236 while (*last_f)
237 last_f = &(*last_f)->next;
238 *last_f = f;
239 f->next = 0;
240 }
241 return f;
242}
243
252b5132
RH
244/*======================================================================*/
245/* Interfaces for assembler and disassembler */
246
247#ifndef STAND_ALONE
252b5132
RH
248static void append_insns_as_macros (void);
249
ef99799a
KH
250/* Initialize for gas. */
251
c488923f 252void
252b5132
RH
253itbl_init (void)
254{
255 struct itbl_entry *e, **es;
256 e_processor procn;
257 e_type type;
258
259 if (!itbl_have_entries)
ef99799a 260 return;
252b5132
RH
261
262 /* Since register names don't have a prefix, put them in the symbol table so
263 they can't be used as symbols. This simplifies argument parsing as
c488923f 264 we can let gas parse registers for us. */
252b5132
RH
265 /* Use symbol_create instead of symbol_new so we don't try to
266 output registers into the object file's symbol table. */
267
268 for (type = e_regtype0; type < e_nregtypes; type++)
269 for (procn = e_p0; procn < e_nprocs; procn++)
270 {
271 es = get_entries (procn, type);
272 for (e = *es; e; e = e->next)
273 {
274 symbol_table_insert (symbol_create (e->name, reg_section,
ef99799a 275 e->value, &zero_address_frag));
252b5132
RH
276 }
277 }
278 append_insns_as_macros ();
279}
280
c488923f
KH
281/* Append insns to opcodes table and increase number of opcodes
282 * Structure of opcodes table:
252b5132
RH
283 * struct itbl_opcode
284 * {
285 * const char *name;
c488923f
KH
286 * const char *args; - string describing the arguments.
287 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
288 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
289 * unsigned long pinfo; - insn flags, or INSN_MACRO
252b5132
RH
290 * };
291 * examples:
292 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
293 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
294 */
295
296static char *form_args (struct itbl_entry *e);
c488923f 297static void
252b5132
RH
298append_insns_as_macros (void)
299{
300 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
301 struct itbl_entry *e, **es;
add39d23 302 int n, size, new_num_opcodes;
87975d2a
AM
303#ifdef USE_MACROS
304 int id;
305#endif
252b5132
RH
306
307 if (!itbl_have_entries)
ef99799a 308 return;
252b5132
RH
309
310 if (!itbl_num_opcodes) /* no new instructions to add! */
311 {
312 return;
313 }
314 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
315
316 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
317 ASSERT (new_num_opcodes >= itbl_num_opcodes);
318
319 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
320 ASSERT (size >= 0);
321 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
322
33eaf5de 323 /* FIXME since ITBL_OPCODES could be a static table,
c488923f 324 we can't realloc or delete the old memory. */
add39d23 325 new_opcodes = XNEWVEC (struct ITBL_OPCODE_STRUCT, new_num_opcodes);
252b5132
RH
326 if (!new_opcodes)
327 {
328 printf (_("Unable to allocate memory for new instructions\n"));
329 return;
330 }
47eebc20 331 if (size) /* copy preexisting opcodes table */
252b5132
RH
332 memcpy (new_opcodes, ITBL_OPCODES, size);
333
334 /* FIXME! some NUMOPCODES are calculated expressions.
c488923f 335 These need to be changed before itbls can be supported. */
252b5132 336
87975d2a 337#ifdef USE_MACROS
252b5132 338 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
87975d2a 339#endif
252b5132
RH
340 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
341 for (n = e_p0; n < e_nprocs; n++)
342 {
343 es = get_entries (n, e_insn);
344 for (e = *es; e; e = e->next)
345 {
346 /* name, args, mask, match, pinfo
347 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
348 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
349 * Construct args from itbl_fields.
350 */
351 o->name = e->name;
352 o->args = strdup (form_args (e));
353 o->mask = apply_range (e->value, e->range);
47eebc20 354 /* FIXME how to catch during assembly? */
252b5132
RH
355 /* mask to identify this insn */
356 o->match = apply_range (e->value, e->range);
357 o->pinfo = 0;
358
359#ifdef USE_MACROS
47eebc20 360 o->mask = id++; /* FIXME how to catch during assembly? */
252b5132
RH
361 o->match = 0; /* for macros, the insn_isa number */
362 o->pinfo = INSN_MACRO;
363#endif
364
365 /* Don't add instructions which caused an error */
366 if (o->args)
367 o++;
368 else
369 new_num_opcodes--;
370 }
371 }
372 ITBL_OPCODES = new_opcodes;
373 ITBL_NUM_OPCODES = new_num_opcodes;
374
375 /* FIXME
376 At this point, we can free the entries, as they should have
377 been added to the assembler's tables.
378 Don't free name though, since name is being used by the new
379 opcodes table.
380
c488923f 381 Eventually, we should also free the new opcodes table itself
252b5132
RH
382 on exit.
383 */
384}
385
386static char *
387form_args (struct itbl_entry *e)
388{
389 static char s[31];
390 char c = 0, *p = s;
391 struct itbl_field *f;
392
393 ASSERT (e);
394 for (f = e->fields; f; f = f->next)
395 {
396 switch (f->type)
397 {
398 case e_dreg:
399 c = 'd';
400 break;
401 case e_creg:
402 c = 't';
403 break;
404 case e_greg:
405 c = 's';
406 break;
407 case e_immed:
408 c = 'i';
409 break;
410 case e_addr:
411 c = 'a';
412 break;
413 default:
414 c = 0; /* ignore; unknown field type */
415 }
416 if (c)
417 {
418 if (p != s)
419 *p++ = ',';
420 *p++ = c;
421 }
422 }
423 *p = 0;
424 return s;
425}
426#endif /* !STAND_ALONE */
427
252b5132
RH
428/* Get processor's register name from val */
429
d7ba4a77
ILT
430int
431itbl_get_reg_val (char *name, unsigned long *pval)
252b5132
RH
432{
433 e_type t;
434 e_processor p;
d7ba4a77 435
252b5132 436 for (p = e_p0; p < e_nprocs; p++)
d7ba4a77
ILT
437 {
438 for (t = e_regtype0; t < e_nregtypes; t++)
439 {
440 if (itbl_get_val (p, t, name, pval))
441 return 1;
442 }
443 }
252b5132
RH
444 return 0;
445}
446
447char *
448itbl_get_name (e_processor processor, e_type type, unsigned long val)
449{
450 struct itbl_entry *r;
451 /* type depends on instruction passed */
452 r = find_entry_byval (processor, type, val, 0);
453 if (r)
454 return r->name;
455 else
456 return 0; /* error; invalid operand */
457}
458
459/* Get processor's register value from name */
460
d7ba4a77
ILT
461int
462itbl_get_val (e_processor processor, e_type type, char *name,
463 unsigned long *pval)
252b5132
RH
464{
465 struct itbl_entry *r;
466 /* type depends on instruction passed */
467 r = find_entry_byname (processor, type, name);
d7ba4a77
ILT
468 if (r == NULL)
469 return 0;
470 *pval = r->value;
471 return 1;
252b5132
RH
472}
473
252b5132
RH
474/* Assemble instruction "name" with operands "s".
475 * name - name of instruction
476 * s - operands
477 * returns - long word for assembled instruction */
478
c488923f 479unsigned long
252b5132
RH
480itbl_assemble (char *name, char *s)
481{
482 unsigned long opcode;
3438adb3 483 struct itbl_entry *e = NULL;
252b5132
RH
484 struct itbl_field *f;
485 char *n;
486 int processor;
487
488 if (!name || !*name)
3b37fd66 489 return 0; /* error! must have an opcode name/expr */
252b5132
RH
490
491 /* find entry in list of instructions for all processors */
492 for (processor = 0; processor < e_nprocs; processor++)
493 {
494 e = find_entry_byname (processor, e_insn, name);
495 if (e)
496 break;
497 }
498 if (!e)
ef5c4bfc 499 return 0; /* opcode not in table; invalid instruction */
252b5132
RH
500 opcode = build_opcode (e);
501
502 /* parse opcode's args (if any) */
c488923f 503 for (f = e->fields; f; f = f->next) /* for each arg, ... */
252b5132
RH
504 {
505 struct itbl_entry *r;
506 unsigned long value;
507 if (!s || !*s)
508 return 0; /* error - not enough operands */
509 n = itbl_get_field (&s);
510 /* n should be in form $n or 0xhhh (are symbol names valid?? */
511 switch (f->type)
512 {
513 case e_dreg:
514 case e_creg:
515 case e_greg:
516 /* Accept either a string name
517 * or '$' followed by the register number */
518 if (*n == '$')
519 {
520 n++;
521 value = strtol (n, 0, 10);
522 /* FIXME! could have "0l"... then what?? */
523 if (value == 0 && *n != '0')
524 return 0; /* error; invalid operand */
525 }
526 else
527 {
528 r = find_entry_byname (e->processor, f->type, n);
529 if (r)
530 value = r->value;
531 else
532 return 0; /* error; invalid operand */
533 }
534 break;
535 case e_addr:
536 /* use assembler's symbol table to find symbol */
537 /* FIXME!! Do we need this?
538 if so, what about relocs??
539 my_getExpression (&imm_expr, s);
540 return 0; /-* error; invalid operand *-/
541 break;
542 */
2b0f3761 543 /* If not a symbol, fallthru to IMMED */
252b5132 544 case e_immed:
c488923f 545 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
252b5132
RH
546 {
547 n += 2;
548 value = strtol (n, 0, 16);
549 /* FIXME! could have "0xl"... then what?? */
550 }
551 else
552 {
553 value = strtol (n, 0, 10);
554 /* FIXME! could have "0l"... then what?? */
555 if (value == 0 && *n != '0')
556 return 0; /* error; invalid operand */
557 }
558 break;
559 default:
560 return 0; /* error; invalid field spec */
561 }
562 opcode |= apply_range (value, f->range);
563 }
564 if (s && *s)
565 return 0; /* error - too many operands */
566 return opcode; /* done! */
567}
568
569/* Disassemble instruction "insn".
570 * insn - instruction
571 * s - buffer to hold disassembled instruction
572 * returns - 1 if succeeded; 0 if failed
573 */
574
c488923f 575int
252b5132
RH
576itbl_disassemble (char *s, unsigned long insn)
577{
578 e_processor processor;
579 struct itbl_entry *e;
580 struct itbl_field *f;
581
582 if (!ITBL_IS_INSN (insn))
ef99799a 583 return 0; /* error */
252b5132
RH
584 processor = get_processor (ITBL_DECODE_PNUM (insn));
585
586 /* find entry in list */
587 e = find_entry_byval (processor, e_insn, insn, 0);
588 if (!e)
ef5c4bfc 589 return 0; /* opcode not in table; invalid instruction */
252b5132
RH
590 strcpy (s, e->name);
591
ef99799a 592 /* Parse insn's args (if any). */
c488923f 593 for (f = e->fields; f; f = f->next) /* for each arg, ... */
252b5132
RH
594 {
595 struct itbl_entry *r;
596 unsigned long value;
4ef2cf8b 597 char s_value[20];
252b5132 598
47eebc20 599 if (f == e->fields) /* First operand is preceded by tab. */
252b5132 600 strcat (s, "\t");
ef99799a 601 else /* ','s separate following operands. */
252b5132
RH
602 strcat (s, ",");
603 value = extract_range (insn, f->range);
604 /* n should be in form $n or 0xhhh (are symbol names valid?? */
605 switch (f->type)
606 {
607 case e_dreg:
608 case e_creg:
609 case e_greg:
610 /* Accept either a string name
ef99799a 611 or '$' followed by the register number. */
252b5132
RH
612 r = find_entry_byval (e->processor, f->type, value, &f->range);
613 if (r)
614 strcat (s, r->name);
615 else
4ef2cf8b
NC
616 {
617 sprintf (s_value, "$%lu", value);
618 strcat (s, s_value);
619 }
252b5132
RH
620 break;
621 case e_addr:
ef99799a
KH
622 /* Use assembler's symbol table to find symbol. */
623 /* FIXME!! Do we need this? If so, what about relocs?? */
624 /* If not a symbol, fall through to IMMED. */
252b5132 625 case e_immed:
4ef2cf8b
NC
626 sprintf (s_value, "0x%lx", value);
627 strcat (s, s_value);
252b5132
RH
628 break;
629 default:
630 return 0; /* error; invalid field spec */
631 }
632 }
ef99799a 633 return 1; /* Done! */
252b5132
RH
634}
635
636/*======================================================================*/
637/*
638 * Local functions for manipulating private structures containing
639 * the names and format for the new instructions and registers
640 * for each processor.
641 */
642
643/* Calculate instruction's opcode and function values from entry */
644
c488923f 645static unsigned long
252b5132
RH
646build_opcode (struct itbl_entry *e)
647{
648 unsigned long opcode;
649
650 opcode = apply_range (e->value, e->range);
651 opcode |= ITBL_ENCODE_PNUM (e->processor);
652 return opcode;
653}
654
655/* Calculate absolute value given the relative value and bit position range
656 * within the instruction.
657 * The range is inclusive where 0 is least significant bit.
658 * A range of { 24, 20 } will have a mask of
659 * bit 3 2 1
660 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
661 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
662 * hex: 0 1 f 0 0 0 0 0
663 * mask: 0x01f00000.
664 */
665
c488923f 666static unsigned long
252b5132
RH
667apply_range (unsigned long rval, struct itbl_range r)
668{
669 unsigned long mask;
670 unsigned long aval;
671 int len = MAX_BITPOS - r.sbit;
672
673 ASSERT (r.sbit >= r.ebit);
674 ASSERT (MAX_BITPOS >= r.sbit);
675 ASSERT (r.ebit >= 0);
676
677 /* create mask by truncating 1s by shifting */
678 mask = 0xffffffff << len;
679 mask = mask >> len;
680 mask = mask >> r.ebit;
681 mask = mask << r.ebit;
682
683 aval = (rval << r.ebit) & mask;
684 return aval;
685}
686
687/* Calculate relative value given the absolute value and bit position range
688 * within the instruction. */
689
c488923f 690static unsigned long
252b5132
RH
691extract_range (unsigned long aval, struct itbl_range r)
692{
693 unsigned long mask;
694 unsigned long rval;
695 int len = MAX_BITPOS - r.sbit;
696
697 /* create mask by truncating 1s by shifting */
698 mask = 0xffffffff << len;
699 mask = mask >> len;
700 mask = mask >> r.ebit;
701 mask = mask << r.ebit;
702
703 rval = (aval & mask) >> r.ebit;
704 return rval;
705}
706
707/* Extract processor's assembly instruction field name from s;
708 * forms are "n args" "n,args" or "n" */
709/* Return next argument from string pointer "s" and advance s.
d7ba4a77 710 * delimiters are " ,()" */
252b5132
RH
711
712char *
713itbl_get_field (char **S)
714{
715 static char n[128];
41e60a82 716 char *s;
252b5132
RH
717 int len;
718
719 s = *S;
720 if (!s || !*s)
721 return 0;
d7ba4a77
ILT
722 /* FIXME: This is a weird set of delimiters. */
723 len = strcspn (s, " \t,()");
252b5132
RH
724 ASSERT (128 > len + 1);
725 strncpy (n, s, len);
726 n[len] = 0;
727 if (s[len] == '\0')
728 s = 0; /* no more args */
729 else
730 s += len + 1; /* advance to next arg */
731
732 *S = s;
733 return n;
734}
735
736/* Search entries for a given processor and type
737 * to find one matching the name "n".
738 * Return a pointer to the entry */
739
740static struct itbl_entry *
741find_entry_byname (e_processor processor,
742 e_type type, char *n)
743{
744 struct itbl_entry *e, **es;
745
746 es = get_entries (processor, type);
c488923f 747 for (e = *es; e; e = e->next) /* for each entry, ... */
252b5132
RH
748 {
749 if (!strcmp (e->name, n))
750 return e;
751 }
752 return 0;
753}
754
755/* Search entries for a given processor and type
756 * to find one matching the value "val" for the range "r".
757 * Return a pointer to the entry.
758 * This function is used for disassembling fields of an instruction.
759 */
760
761static struct itbl_entry *
762find_entry_byval (e_processor processor, e_type type,
763 unsigned long val, struct itbl_range *r)
764{
765 struct itbl_entry *e, **es;
766 unsigned long eval;
767
768 es = get_entries (processor, type);
c488923f 769 for (e = *es; e; e = e->next) /* for each entry, ... */
252b5132
RH
770 {
771 if (processor != e->processor)
772 continue;
773 /* For insns, we might not know the range of the opcode,
774 * so a range of 0 will allow this routine to match against
775 * the range of the entry to be compared with.
776 * This could cause ambiguities.
777 * For operands, we get an extracted value and a range.
778 */
c488923f 779 /* if range is 0, mask val against the range of the compared entry. */
252b5132
RH
780 if (r == 0) /* if no range passed, must be whole 32-bits
781 * so create 32-bit value from entry's range */
782 {
783 eval = apply_range (e->value, e->range);
784 val &= apply_range (0xffffffff, e->range);
785 }
41e60a82
ILT
786 else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
787 || (e->range.sbit == 0 && e->range.ebit == 0))
252b5132
RH
788 {
789 eval = apply_range (e->value, *r);
790 val = apply_range (val, *r);
791 }
792 else
793 continue;
794 if (val == eval)
795 return e;
796 }
797 return 0;
798}
799
c488923f 800/* Return a pointer to the list of entries for a given processor and type. */
252b5132
RH
801
802static struct itbl_entry **
803get_entries (e_processor processor, e_type type)
804{
805 return &entries[processor][type];
806}
807
c488923f 808/* Return an integral value for the processor passed from yyparse. */
252b5132 809
c488923f 810static e_processor
252b5132
RH
811get_processor (int yyproc)
812{
813 /* translate from yacc's processor to enum */
814 if (yyproc >= e_p0 && yyproc < e_nprocs)
815 return (e_processor) yyproc;
816 return e_invproc; /* error; invalid processor */
817}
818
c488923f 819/* Return an integral value for the entry type passed from yyparse. */
252b5132 820
c488923f 821static e_type
252b5132
RH
822get_type (int yytype)
823{
824 switch (yytype)
825 {
826 /* translate from yacc's type to enum */
827 case INSN:
828 return e_insn;
829 case DREG:
830 return e_dreg;
831 case CREG:
832 return e_creg;
833 case GREG:
834 return e_greg;
835 case ADDR:
836 return e_addr;
837 case IMMED:
838 return e_immed;
839 default:
840 return e_invtype; /* error; invalid type */
841 }
842}
843
252b5132
RH
844/* Allocate and initialize an entry */
845
846static struct itbl_entry *
847alloc_entry (e_processor processor, e_type type,
848 char *name, unsigned long value)
849{
850 struct itbl_entry *e, **es;
851 if (!name)
852 return 0;
add39d23 853 e = XNEW (struct itbl_entry);
252b5132
RH
854 if (e)
855 {
856 memset (e, 0, sizeof (struct itbl_entry));
29a2809e 857 e->name = xstrdup (name);
252b5132
RH
858 e->processor = processor;
859 e->type = type;
860 e->value = value;
861 es = get_entries (e->processor, e->type);
862 e->next = *es;
863 *es = e;
864 }
865 return e;
866}
867
868/* Allocate and initialize an entry's field */
869
870static struct itbl_field *
871alloc_field (e_type type, int sbit, int ebit,
872 unsigned long flags)
873{
874 struct itbl_field *f;
add39d23 875 f = XNEW (struct itbl_field);
252b5132
RH
876 if (f)
877 {
878 memset (f, 0, sizeof (struct itbl_field));
879 f->type = type;
880 f->range.sbit = sbit;
881 f->range.ebit = ebit;
882 f->flags = flags;
883 }
884 return f;
885}
This page took 0.907845 seconds and 4 git commands to generate.