gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
b811d2c2 3 Copyright (C) 1996-2020 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
d55e5aa6 26#include "frame.h"
4de283e4
TT
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391 33#include "inferior.h"
d55e5aa6 34#include "symfile.h"
4de283e4
TT
35#include "arch-utils.h"
36#include "regcache.h"
37#include "dis-asm.h"
38#include "objfiles.h"
39#include <algorithm>
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
0963b4bd 62 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
0963b4bd
MS
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
8818c391 71
8818c391
TR
72/* Constants: prefixed with AVR_ to avoid name space clashes */
73
487d9753
PL
74/* Address space flags */
75
76/* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77 space. */
78
79#define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80#define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
8818c391 84enum
2e5ff58c
TR
85{
86 AVR_REG_W = 24,
87 AVR_REG_X = 26,
88 AVR_REG_Y = 28,
89 AVR_FP_REGNUM = 28,
90 AVR_REG_Z = 30,
91
92 AVR_SREG_REGNUM = 32,
93 AVR_SP_REGNUM = 33,
94 AVR_PC_REGNUM = 34,
95
96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
7d2552b4
TG
99 /* Pseudo registers. */
100 AVR_PSEUDO_PC_REGNUM = 35,
101 AVR_NUM_PSEUDO_REGS = 1,
102
2e5ff58c
TR
103 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104
4add8633 105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 106
0963b4bd 107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
108 AVR_MAX_PUSHES = 18,
109
0963b4bd 110 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
111 AVR_LAST_PUSHED_REGNUM = 17,
112
4add8633
TR
113 AVR_ARG1_REGNUM = 24, /* Single byte argument */
114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
cb86f388 115 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
4add8633
TR
116
117 AVR_RET1_REGNUM = 24, /* Single byte return value */
118 AVR_RETN_REGNUM = 25, /* Multi byte return value */
119
2e5ff58c 120 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 121 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
122 things easier in the future if they didn't need to match.
123
124 Note: I chose these values so as to be consistent with bfd vma
125 addresses.
126
127 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 128 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
129 thus the Most Significant Bit is 0x10000 which gets masked off my
130 AVR_MEM_MASK.
131
132 The problem manifests itself when trying to set a breakpoint in a
133 function which resides in the upper half of the instruction space and
134 thus requires a 17-bit address.
135
136 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 137 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
138 but could be for some remote targets by just adding the correct offset
139 to the address and letting the remote target handle the low-level
0963b4bd 140 details of actually accessing the eeprom. */
2e5ff58c
TR
141
142 AVR_IMEM_START = 0x00000000, /* INSN memory */
143 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 144#if 1
2e5ff58c
TR
145 /* No eeprom mask defined */
146 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 147#else
2e5ff58c
TR
148 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
149 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 150#endif
2e5ff58c 151};
8818c391 152
4add8633
TR
153/* Prologue types:
154
155 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156 causes the generation of the CALL type prologues). */
157
158enum {
159 AVR_PROLOGUE_NONE, /* No prologue */
160 AVR_PROLOGUE_NORMAL,
161 AVR_PROLOGUE_CALL, /* -mcall-prologues */
162 AVR_PROLOGUE_MAIN,
163 AVR_PROLOGUE_INTR, /* interrupt handler */
164 AVR_PROLOGUE_SIG, /* signal handler */
165};
166
8818c391
TR
167/* Any function with a frame looks like this
168 ....... <-SP POINTS HERE
169 LOCALS1 <-FP POINTS HERE
170 LOCALS0
171 SAVED FP
172 SAVED R3
173 SAVED R2
174 RET PC
175 FIRST ARG
176 SECOND ARG */
177
4add8633 178struct avr_unwind_cache
2e5ff58c 179{
4add8633
TR
180 /* The previous frame's inner most stack address. Used as this
181 frame ID's stack_addr. */
182 CORE_ADDR prev_sp;
183 /* The frame's base, optionally used by the high-level debug info. */
184 CORE_ADDR base;
185 int size;
186 int prologue_type;
187 /* Table indicating the location of each and every register. */
188 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 189};
8818c391
TR
190
191struct gdbarch_tdep
2e5ff58c 192{
4e99ad69 193 /* Number of bytes stored to the stack by call instructions.
9c97a070 194 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
4e99ad69 195 int call_length;
7d2552b4
TG
196
197 /* Type for void. */
198 struct type *void_type;
199 /* Type for a function returning void. */
200 struct type *func_void_type;
201 /* Type for a pointer to a function. Used for the type of PC. */
202 struct type *pc_type;
2e5ff58c 203};
8818c391 204
0963b4bd 205/* Lookup the name of a register given it's number. */
8818c391 206
fa88f677 207static const char *
d93859e2 208avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 209{
4e99ad69 210 static const char * const register_names[] = {
2e5ff58c
TR
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
215 "SREG", "SP", "PC2",
216 "pc"
8818c391
TR
217 };
218 if (regnum < 0)
219 return NULL;
220 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221 return NULL;
222 return register_names[regnum];
223}
224
8818c391
TR
225/* Return the GDB type object for the "standard" data type
226 of data in register N. */
227
228static struct type *
866b76ea 229avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 230{
866b76ea 231 if (reg_nr == AVR_PC_REGNUM)
df4df182 232 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
233 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 235 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 236 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 237 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
238}
239
0963b4bd 240/* Instruction address checks and convertions. */
8818c391
TR
241
242static CORE_ADDR
243avr_make_iaddr (CORE_ADDR x)
244{
245 return ((x) | AVR_IMEM_START);
246}
247
0963b4bd 248/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
249 devices are already up to 128KBytes of flash space.
250
0963b4bd 251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
252
253static CORE_ADDR
254avr_convert_iaddr_to_raw (CORE_ADDR x)
255{
256 return ((x) & 0xffffffff);
257}
258
0963b4bd 259/* SRAM address checks and convertions. */
8818c391
TR
260
261static CORE_ADDR
262avr_make_saddr (CORE_ADDR x)
263{
ee143e81
TG
264 /* Return 0 for NULL. */
265 if (x == 0)
266 return 0;
267
8818c391
TR
268 return ((x) | AVR_SMEM_START);
269}
270
8818c391
TR
271static CORE_ADDR
272avr_convert_saddr_to_raw (CORE_ADDR x)
273{
274 return ((x) & 0xffffffff);
275}
276
0963b4bd
MS
277/* EEPROM address checks and convertions. I don't know if these will ever
278 actually be used, but I've added them just the same. TRoth */
8818c391
TR
279
280/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 281 programs in the mega128. */
8818c391
TR
282
283/* static CORE_ADDR */
284/* avr_make_eaddr (CORE_ADDR x) */
285/* { */
286/* return ((x) | AVR_EMEM_START); */
287/* } */
288
289/* static int */
290/* avr_eaddr_p (CORE_ADDR x) */
291/* { */
292/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293/* } */
294
295/* static CORE_ADDR */
296/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
297/* { */
298/* return ((x) & 0xffffffff); */
299/* } */
300
0963b4bd 301/* Convert from address to pointer and vice-versa. */
8818c391
TR
302
303static void
9898f801
UW
304avr_address_to_pointer (struct gdbarch *gdbarch,
305 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 306{
e17a4113
UW
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308
487d9753
PL
309 /* Is it a data address in flash? */
310 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311 {
7d0d9d2b 312 /* A data pointer in flash is byte addressed. */
487d9753
PL
313 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314 avr_convert_iaddr_to_raw (addr));
315 }
8818c391 316 /* Is it a code address? */
78134374
SM
317 else if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
318 || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD)
8818c391 319 {
7d0d9d2b
PL
320 /* A code pointer is word (16 bits) addressed. We shift the address down
321 by 1 bit to convert it to a pointer. */
e17a4113 322 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 323 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
324 }
325 else
326 {
327 /* Strip off any upper segment bits. */
e17a4113 328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 329 avr_convert_saddr_to_raw (addr));
8818c391
TR
330 }
331}
332
333static CORE_ADDR
9898f801
UW
334avr_pointer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
8818c391 336{
e17a4113
UW
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 CORE_ADDR addr
339 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 340
487d9753
PL
341 /* Is it a data address in flash? */
342 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
7d0d9d2b
PL
343 {
344 /* A data pointer in flash is already byte addressed. */
345 return avr_make_iaddr (addr);
346 }
8818c391 347 /* Is it a code address? */
78134374
SM
348 else if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
349 || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD
487d9753 350 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
7d0d9d2b
PL
351 {
352 /* A code pointer is word (16 bits) addressed so we shift it up
353 by 1 bit to convert it to an address. */
354 return avr_make_iaddr (addr << 1);
355 }
8818c391
TR
356 else
357 return avr_make_saddr (addr);
358}
359
8a1d23b2
TG
360static CORE_ADDR
361avr_integer_to_address (struct gdbarch *gdbarch,
362 struct type *type, const gdb_byte *buf)
363{
364 ULONGEST addr = unpack_long (type, buf);
365
1218a4bf
CDA
366 if (TYPE_DATA_SPACE (type))
367 return avr_make_saddr (addr);
368 else
369 return avr_make_iaddr (addr);
8a1d23b2
TG
370}
371
8818c391 372static CORE_ADDR
c113ed0c 373avr_read_pc (readable_regcache *regcache)
8818c391 374{
8619218d 375 ULONGEST pc;
c113ed0c
YQ
376
377 regcache->cooked_read (AVR_PC_REGNUM, &pc);
61a1198a 378 return avr_make_iaddr (pc);
8818c391
TR
379}
380
381static void
61a1198a 382avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 383{
61a1198a 384 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
385 avr_convert_iaddr_to_raw (val));
386}
387
05d1431c 388static enum register_status
849d0ba8 389avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
7d2552b4
TG
390 int regnum, gdb_byte *buf)
391{
392 ULONGEST val;
05d1431c 393 enum register_status status;
7d2552b4
TG
394
395 switch (regnum)
396 {
397 case AVR_PSEUDO_PC_REGNUM:
03f50fc8 398 status = regcache->raw_read (AVR_PC_REGNUM, &val);
05d1431c
PA
399 if (status != REG_VALID)
400 return status;
7d2552b4
TG
401 val >>= 1;
402 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 403 return status;
7d2552b4
TG
404 default:
405 internal_error (__FILE__, __LINE__, _("invalid regnum"));
406 }
407}
408
409static void
410avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
411 int regnum, const gdb_byte *buf)
412{
413 ULONGEST val;
414
415 switch (regnum)
416 {
417 case AVR_PSEUDO_PC_REGNUM:
418 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
419 val <<= 1;
420 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
421 break;
422 default:
423 internal_error (__FILE__, __LINE__, _("invalid regnum"));
424 }
8818c391
TR
425}
426
4add8633 427/* Function: avr_scan_prologue
8818c391 428
4add8633 429 This function decodes an AVR function prologue to determine:
8818c391
TR
430 1) the size of the stack frame
431 2) which registers are saved on it
432 3) the offsets of saved regs
4add8633 433 This information is stored in the avr_unwind_cache structure.
8818c391 434
e3d8b004
TR
435 Some devices lack the sbiw instruction, so on those replace this:
436 sbiw r28, XX
437 with this:
438 subi r28,lo8(XX)
439 sbci r29,hi8(XX)
440
441 A typical AVR function prologue with a frame pointer might look like this:
442 push rXX ; saved regs
443 ...
444 push r28
445 push r29
446 in r28,__SP_L__
447 in r29,__SP_H__
448 sbiw r28,<LOCALS_SIZE>
449 in __tmp_reg__,__SREG__
8818c391 450 cli
e3d8b004 451 out __SP_H__,r29
72fab697
TR
452 out __SREG__,__tmp_reg__
453 out __SP_L__,r28
e3d8b004
TR
454
455 A typical AVR function prologue without a frame pointer might look like
456 this:
457 push rXX ; saved regs
458 ...
459
460 A main function prologue looks like this:
461 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
462 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
463 out __SP_H__,r29
464 out __SP_L__,r28
465
466 A signal handler prologue looks like this:
467 push __zero_reg__
468 push __tmp_reg__
469 in __tmp_reg__, __SREG__
470 push __tmp_reg__
471 clr __zero_reg__
472 push rXX ; save registers r18:r27, r30:r31
473 ...
474 push r28 ; save frame pointer
475 push r29
476 in r28, __SP_L__
477 in r29, __SP_H__
478 sbiw r28, <LOCALS_SIZE>
479 out __SP_H__, r29
480 out __SP_L__, r28
481
482 A interrupt handler prologue looks like this:
483 sei
484 push __zero_reg__
485 push __tmp_reg__
486 in __tmp_reg__, __SREG__
487 push __tmp_reg__
488 clr __zero_reg__
489 push rXX ; save registers r18:r27, r30:r31
490 ...
491 push r28 ; save frame pointer
492 push r29
493 in r28, __SP_L__
494 in r29, __SP_H__
495 sbiw r28, <LOCALS_SIZE>
496 cli
497 out __SP_H__, r29
498 sei
499 out __SP_L__, r28
500
501 A `-mcall-prologues' prologue looks like this (Note that the megas use a
502 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
503 32 bit insn and rjmp is a 16 bit insn):
504 ldi r26,lo8(<LOCALS_SIZE>)
505 ldi r27,hi8(<LOCALS_SIZE>)
506 ldi r30,pm_lo8(.L_foo_body)
507 ldi r31,pm_hi8(.L_foo_body)
508 rjmp __prologue_saves__+RRR
509 .L_foo_body: */
8818c391 510
4add8633
TR
511/* Not really part of a prologue, but still need to scan for it, is when a
512 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
513 registers. In this case, all local variables live in registers, so there
514 may be some register saves. This is what it looks like:
4add8633
TR
515 movw rMM, rNN
516 ...
517
0963b4bd
MS
518 There could be multiple movw's. If the target doesn't have a movw insn, it
519 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
520 types. */
521
522static CORE_ADDR
e17a4113 523avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 524 struct avr_unwind_cache *info)
8818c391 525{
e17a4113 526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
527 int i;
528 unsigned short insn;
2e5ff58c 529 int scan_stage = 0;
3b7344d5 530 struct bound_minimal_symbol msymbol;
8818c391
TR
531 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
532 int vpc = 0;
4e99ad69
TG
533 int len;
534
535 len = pc_end - pc_beg;
536 if (len > AVR_MAX_PROLOGUE_SIZE)
537 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 538
4add8633 539 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
540 reading in the bytes of the prologue. The problem is that the figuring
541 out where the end of the prologue is is a bit difficult. The old code
4add8633 542 tried to do that, but failed quite often. */
4e99ad69 543 read_memory (pc_beg, prologue, len);
8818c391
TR
544
545 /* Scanning main()'s prologue
546 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
547 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
548 out __SP_H__,r29
549 out __SP_L__,r28 */
550
4e99ad69 551 if (len >= 4)
8818c391
TR
552 {
553 CORE_ADDR locals;
4e99ad69 554 static const unsigned char img[] = {
2e5ff58c
TR
555 0xde, 0xbf, /* out __SP_H__,r29 */
556 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
557 };
558
e17a4113 559 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 560 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
561 if ((insn & 0xf0f0) == 0xe0c0)
562 {
563 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 564 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
565 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
566 if ((insn & 0xf0f0) == 0xe0d0)
567 {
568 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
569 if (vpc + 4 + sizeof (img) < len
570 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 571 {
4add8633
TR
572 info->prologue_type = AVR_PROLOGUE_MAIN;
573 info->base = locals;
4e99ad69 574 return pc_beg + 4;
2e5ff58c
TR
575 }
576 }
577 }
8818c391 578 }
2e5ff58c 579
4add8633
TR
580 /* Scanning `-mcall-prologues' prologue
581 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 582
e3d8b004 583 while (1) /* Using a while to avoid many goto's */
8818c391
TR
584 {
585 int loc_size;
586 int body_addr;
587 unsigned num_pushes;
4add8633 588 int pc_offset = 0;
2e5ff58c 589
4e99ad69
TG
590 /* At least the fifth instruction must have been executed to
591 modify frame shape. */
592 if (len < 10)
593 break;
594
e17a4113 595 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 596 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
597 if ((insn & 0xf0f0) != 0xe0a0)
598 break;
8818c391 599 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 600 pc_offset += 2;
2e5ff58c 601
e17a4113 602 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
603 /* ldi r27,<LOCALS_SIZE> / 256 */
604 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 605 break;
8818c391 606 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 607 pc_offset += 2;
2e5ff58c 608
e17a4113 609 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
610 /* ldi r30,pm_lo8(.L_foo_body) */
611 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 612 break;
8818c391 613 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 614 pc_offset += 2;
8818c391 615
e17a4113 616 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
617 /* ldi r31,pm_hi8(.L_foo_body) */
618 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 619 break;
8818c391 620 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 621 pc_offset += 2;
8818c391 622
8818c391 623 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
3b7344d5 624 if (!msymbol.minsym)
2e5ff58c 625 break;
8818c391 626
e17a4113 627 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 628 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
629 if ((insn & 0xf000) == 0xc000)
630 {
631 /* Extract PC relative offset from RJMP */
632 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
633 /* Convert offset to byte addressable mode */
634 i *= 2;
635 /* Destination address */
4e99ad69 636 i += pc_beg + 10;
e3d8b004 637
4e99ad69 638 if (body_addr != (pc_beg + 10)/2)
e3d8b004 639 break;
4add8633
TR
640
641 pc_offset += 2;
e3d8b004 642 }
e3d8b004
TR
643 else if ((insn & 0xfe0e) == 0x940c)
644 {
645 /* Extract absolute PC address from JMP */
646 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
647 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
648 & 0xffff));
e3d8b004
TR
649 /* Convert address to byte addressable mode */
650 i *= 2;
651
4e99ad69 652 if (body_addr != (pc_beg + 12)/2)
e3d8b004 653 break;
4add8633
TR
654
655 pc_offset += 4;
e3d8b004
TR
656 }
657 else
658 break;
2e5ff58c 659
4add8633 660 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391 661 Which is a pushes count in `-mcall-prologues' mode */
77e371c0 662 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
8818c391
TR
663
664 if (num_pushes > AVR_MAX_PUSHES)
4add8633 665 {
edefbb7c 666 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
667 num_pushes);
668 num_pushes = 0;
669 }
2e5ff58c 670
8818c391 671 if (num_pushes)
2e5ff58c
TR
672 {
673 int from;
4add8633
TR
674
675 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 676 if (num_pushes >= 2)
4add8633
TR
677 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
678
2e5ff58c
TR
679 i = 0;
680 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
681 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 682 info->saved_regs [from].addr = ++i;
2e5ff58c 683 }
4add8633
TR
684 info->size = loc_size + num_pushes;
685 info->prologue_type = AVR_PROLOGUE_CALL;
686
4e99ad69 687 return pc_beg + pc_offset;
8818c391
TR
688 }
689
4add8633
TR
690 /* Scan for the beginning of the prologue for an interrupt or signal
691 function. Note that we have to set the prologue type here since the
692 third stage of the prologue may not be present (e.g. no saved registered
693 or changing of the SP register). */
8818c391 694
4add8633 695 if (1)
8818c391 696 {
4e99ad69 697 static const unsigned char img[] = {
2e5ff58c
TR
698 0x78, 0x94, /* sei */
699 0x1f, 0x92, /* push r1 */
700 0x0f, 0x92, /* push r0 */
701 0x0f, 0xb6, /* in r0,0x3f SREG */
702 0x0f, 0x92, /* push r0 */
703 0x11, 0x24 /* clr r1 */
8818c391 704 };
4e99ad69
TG
705 if (len >= sizeof (img)
706 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 707 {
4add8633 708 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 709 vpc += sizeof (img);
4add8633
TR
710 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
711 info->saved_regs[0].addr = 2;
712 info->saved_regs[1].addr = 1;
713 info->size += 3;
2e5ff58c 714 }
4e99ad69
TG
715 else if (len >= sizeof (img) - 2
716 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 717 {
4add8633
TR
718 info->prologue_type = AVR_PROLOGUE_SIG;
719 vpc += sizeof (img) - 2;
720 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
721 info->saved_regs[0].addr = 2;
722 info->saved_regs[1].addr = 1;
243e2c5d 723 info->size += 2;
2e5ff58c 724 }
8818c391
TR
725 }
726
727 /* First stage of the prologue scanning.
4add8633 728 Scan pushes (saved registers) */
8818c391 729
4e99ad69 730 for (; vpc < len; vpc += 2)
8818c391 731 {
e17a4113 732 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
733 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
734 {
0963b4bd 735 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
736 int regno = (insn & 0x1f0) >> 4;
737 info->size++;
738 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
739 scan_stage = 1;
740 }
8818c391 741 else
2e5ff58c 742 break;
8818c391
TR
743 }
744
243e2c5d 745 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 746
1bd0bb72
TG
747 /* Handle static small stack allocation using rcall or push. */
748
749 while (scan_stage == 1 && vpc < len)
750 {
751 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
752 if (insn == 0xd000) /* rcall .+0 */
753 {
754 info->size += gdbarch_tdep (gdbarch)->call_length;
755 vpc += 2;
756 }
7588d2ec 757 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
1bd0bb72
TG
758 {
759 info->size += 1;
760 vpc += 2;
761 }
762 else
763 break;
764 }
765
8818c391
TR
766 /* Second stage of the prologue scanning.
767 Scan:
768 in r28,__SP_L__
769 in r29,__SP_H__ */
770
4e99ad69 771 if (scan_stage == 1 && vpc < len)
8818c391 772 {
4e99ad69 773 static const unsigned char img[] = {
2e5ff58c
TR
774 0xcd, 0xb7, /* in r28,__SP_L__ */
775 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 776 };
2e5ff58c 777
4e99ad69
TG
778 if (vpc + sizeof (img) < len
779 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
780 {
781 vpc += 4;
2e5ff58c
TR
782 scan_stage = 2;
783 }
8818c391
TR
784 }
785
0963b4bd 786 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
787 Scan for:
788 sbiw r28,XX or subi r28,lo8(XX)
72fab697 789 sbci r29,hi8(XX)
8818c391
TR
790 in __tmp_reg__,__SREG__
791 cli
e3d8b004 792 out __SP_H__,r29
8818c391 793 out __SREG__,__tmp_reg__
e3d8b004 794 out __SP_L__,r28 */
8818c391 795
4e99ad69 796 if (scan_stage == 2 && vpc < len)
8818c391
TR
797 {
798 int locals_size = 0;
4e99ad69 799 static const unsigned char img[] = {
2e5ff58c
TR
800 0x0f, 0xb6, /* in r0,0x3f */
801 0xf8, 0x94, /* cli */
e3d8b004 802 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 803 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 804 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 805 };
4e99ad69 806 static const unsigned char img_sig[] = {
e3d8b004
TR
807 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
808 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 809 };
4e99ad69 810 static const unsigned char img_int[] = {
2e5ff58c 811 0xf8, 0x94, /* cli */
e3d8b004 812 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 813 0x78, 0x94, /* sei */
e3d8b004 814 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 815 };
2e5ff58c 816
e17a4113 817 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 818 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
819 {
820 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
821 vpc += 2;
822 }
2e5ff58c
TR
823 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
824 {
825 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 826 vpc += 2;
e17a4113 827 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 828 vpc += 2;
1bd0bb72 829 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 830 }
8818c391 831 else
1bd0bb72 832 return pc_beg + vpc;
4add8633 833
0963b4bd 834 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
835 or signal handler functions, which is why we set the prologue type
836 when we saw the beginning of the prologue previously. */
837
4e99ad69
TG
838 if (vpc + sizeof (img_sig) < len
839 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
840 {
841 vpc += sizeof (img_sig);
842 }
4e99ad69
TG
843 else if (vpc + sizeof (img_int) < len
844 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
845 {
846 vpc += sizeof (img_int);
847 }
4e99ad69
TG
848 if (vpc + sizeof (img) < len
849 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
850 {
851 info->prologue_type = AVR_PROLOGUE_NORMAL;
852 vpc += sizeof (img);
853 }
854
855 info->size += locals_size;
856
4e99ad69 857 /* Fall through. */
8818c391 858 }
4add8633
TR
859
860 /* If we got this far, we could not scan the prologue, so just return the pc
861 of the frame plus an adjustment for argument move insns. */
862
4e99ad69
TG
863 for (; vpc < len; vpc += 2)
864 {
e17a4113 865 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
866 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
867 continue;
868 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
869 continue;
870 else
871 break;
872 }
873
874 return pc_beg + vpc;
8818c391
TR
875}
876
4add8633 877static CORE_ADDR
6093d2eb 878avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
879{
880 CORE_ADDR func_addr, func_end;
8c201e54 881 CORE_ADDR post_prologue_pc;
8818c391 882
4add8633 883 /* See what the symbol table says */
8818c391 884
8c201e54
TG
885 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
886 return pc;
2e5ff58c 887
8c201e54
TG
888 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
889 if (post_prologue_pc != 0)
325fac50 890 return std::max (pc, post_prologue_pc);
8818c391 891
8c201e54
TG
892 {
893 CORE_ADDR prologue_end = pc;
894 struct avr_unwind_cache info = {0};
895 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 896
8c201e54
TG
897 info.saved_regs = saved_regs;
898
899 /* Need to run the prologue scanner to figure out if the function has a
900 prologue and possibly skip over moving arguments passed via registers
901 to other registers. */
902
903 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
904
905 if (info.prologue_type != AVR_PROLOGUE_NONE)
906 return prologue_end;
907 }
2e5ff58c 908
4e99ad69
TG
909 /* Either we didn't find the start of this function (nothing we can do),
910 or there's no line info, or the line after the prologue is after
0963b4bd 911 the end of the function (there probably isn't a prologue). */
2e5ff58c 912
8c201e54 913 return pc;
4add8633 914}
8818c391 915
0963b4bd
MS
916/* Not all avr devices support the BREAK insn. Those that don't should treat
917 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
918 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 919
04180708 920constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
598cc9dc 921
04180708 922typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
8818c391 923
4c8b6ae0
UW
924/* Determine, for architecture GDBARCH, how a return value of TYPE
925 should be returned. If it is supposed to be returned in registers,
926 and READBUF is non-zero, read the appropriate value from REGCACHE,
927 and copy it into READBUF. If WRITEBUF is non-zero, write the value
928 from WRITEBUF into REGCACHE. */
929
63807e1d 930static enum return_value_convention
6a3a010b 931avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
932 struct type *valtype, struct regcache *regcache,
933 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 934{
1bd0bb72
TG
935 int i;
936 /* Single byte are returned in r24.
937 Otherwise, the MSB of the return value is always in r25, calculate which
938 register holds the LSB. */
939 int lsb_reg;
940
78134374
SM
941 if ((valtype->code () == TYPE_CODE_STRUCT
942 || valtype->code () == TYPE_CODE_UNION
943 || valtype->code () == TYPE_CODE_ARRAY)
1bd0bb72
TG
944 && TYPE_LENGTH (valtype) > 8)
945 return RETURN_VALUE_STRUCT_CONVENTION;
946
947 if (TYPE_LENGTH (valtype) <= 2)
948 lsb_reg = 24;
949 else if (TYPE_LENGTH (valtype) <= 4)
950 lsb_reg = 22;
951 else if (TYPE_LENGTH (valtype) <= 8)
952 lsb_reg = 18;
953 else
f3574227 954 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
955
956 if (writebuf != NULL)
957 {
1bd0bb72 958 for (i = 0; i < TYPE_LENGTH (valtype); i++)
b66f5587 959 regcache->cooked_write (lsb_reg + i, writebuf + i);
4c8b6ae0
UW
960 }
961
962 if (readbuf != NULL)
963 {
1bd0bb72 964 for (i = 0; i < TYPE_LENGTH (valtype); i++)
dca08e1f 965 regcache->cooked_read (lsb_reg + i, readbuf + i);
4c8b6ae0
UW
966 }
967
1bd0bb72 968 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
969}
970
971
4add8633
TR
972/* Put here the code to store, into fi->saved_regs, the addresses of
973 the saved registers of frame described by FRAME_INFO. This
974 includes special registers such as pc and fp saved in special ways
975 in the stack frame. sp is even more special: the address we return
0963b4bd 976 for it IS the sp for the next frame. */
8818c391 977
63807e1d 978static struct avr_unwind_cache *
94afd7a6 979avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 980 void **this_prologue_cache)
8818c391 981{
4e99ad69 982 CORE_ADDR start_pc, current_pc;
4add8633
TR
983 ULONGEST prev_sp;
984 ULONGEST this_base;
985 struct avr_unwind_cache *info;
4e99ad69
TG
986 struct gdbarch *gdbarch;
987 struct gdbarch_tdep *tdep;
4add8633
TR
988 int i;
989
4e99ad69 990 if (*this_prologue_cache)
9a3c8263 991 return (struct avr_unwind_cache *) *this_prologue_cache;
4add8633
TR
992
993 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 994 *this_prologue_cache = info;
94afd7a6 995 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
996
997 info->size = 0;
998 info->prologue_type = AVR_PROLOGUE_NONE;
999
4e99ad69
TG
1000 start_pc = get_frame_func (this_frame);
1001 current_pc = get_frame_pc (this_frame);
1002 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
1003 avr_scan_prologue (get_frame_arch (this_frame),
1004 start_pc, current_pc, info);
4add8633 1005
3b85b0f1
TR
1006 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1007 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
1008 {
1009 ULONGEST high_base; /* High byte of FP */
1010
1011 /* The SP was moved to the FP. This indicates that a new frame
1012 was created. Get THIS frame's FP value by unwinding it from
1013 the next frame. */
94afd7a6 1014 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 1015 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
1016 this_base += (high_base << 8);
1017
1018 /* The FP points at the last saved register. Adjust the FP back
1019 to before the first saved register giving the SP. */
1020 prev_sp = this_base + info->size;
1021 }
8818c391 1022 else
4add8633
TR
1023 {
1024 /* Assume that the FP is this frame's SP but with that pushed
1025 stack space added back. */
94afd7a6 1026 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1027 prev_sp = this_base + info->size;
1028 }
1029
1030 /* Add 1 here to adjust for the post-decrement nature of the push
1031 instruction.*/
4e99ad69 1032 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1033 info->base = avr_make_saddr (this_base);
1034
4e99ad69
TG
1035 gdbarch = get_frame_arch (this_frame);
1036
4add8633 1037 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1038 offsets. */
4e99ad69
TG
1039 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1040 if (info->saved_regs[i].addr > 0)
1041 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1042
1043 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1044 the stack and is at the base of the frame. */
4add8633
TR
1045
1046 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1047 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1048
3b85b0f1
TR
1049 /* The previous frame's SP needed to be computed. Save the computed
1050 value. */
4e99ad69
TG
1051 tdep = gdbarch_tdep (gdbarch);
1052 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1053 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1054
4add8633 1055 return info;
8818c391
TR
1056}
1057
1058static CORE_ADDR
4add8633 1059avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1060{
4add8633
TR
1061 ULONGEST pc;
1062
11411de3 1063 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1064
1065 return avr_make_iaddr (pc);
8818c391
TR
1066}
1067
30244cd8
UW
1068static CORE_ADDR
1069avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1070{
1071 ULONGEST sp;
1072
11411de3 1073 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1074
1075 return avr_make_saddr (sp);
1076}
1077
4add8633
TR
1078/* Given a GDB frame, determine the address of the calling function's
1079 frame. This will be used to create a new GDB frame struct. */
8818c391 1080
4add8633 1081static void
94afd7a6 1082avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1083 void **this_prologue_cache,
1084 struct frame_id *this_id)
8818c391 1085{
4add8633 1086 struct avr_unwind_cache *info
94afd7a6 1087 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1088 CORE_ADDR base;
1089 CORE_ADDR func;
1090 struct frame_id id;
1091
1092 /* The FUNC is easy. */
94afd7a6 1093 func = get_frame_func (this_frame);
4add8633 1094
4add8633
TR
1095 /* Hopefully the prologue analysis either correctly determined the
1096 frame's base (which is the SP from the previous frame), or set
1097 that base to "NULL". */
1098 base = info->prev_sp;
1099 if (base == 0)
1100 return;
1101
1102 id = frame_id_build (base, func);
4add8633 1103 (*this_id) = id;
8818c391
TR
1104}
1105
94afd7a6
UW
1106static struct value *
1107avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1108 void **this_prologue_cache, int regnum)
8818c391 1109{
4add8633 1110 struct avr_unwind_cache *info
94afd7a6 1111 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1112
7d2552b4 1113 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1114 {
7d2552b4 1115 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1116 {
94afd7a6
UW
1117 /* Reading the return PC from the PC register is slightly
1118 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1119 but in reality, only two bytes (3 in upcoming mega256) are
1120 stored on the stack.
1121
1122 Also, note that the value on the stack is an addr to a word
1123 not a byte, so we will need to multiply it by two at some
1124 point.
1125
1126 And to confuse matters even more, the return address stored
1127 on the stack is in big endian byte order, even though most
0963b4bd 1128 everything else about the avr is little endian. Ick! */
94afd7a6 1129 ULONGEST pc;
4e99ad69 1130 int i;
e362b510 1131 gdb_byte buf[3];
4e99ad69
TG
1132 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1133 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1134
7d2552b4
TG
1135 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1136 buf, tdep->call_length);
94afd7a6 1137
4e99ad69
TG
1138 /* Extract the PC read from memory as a big-endian. */
1139 pc = 0;
1140 for (i = 0; i < tdep->call_length; i++)
1141 pc = (pc << 8) | buf[i];
94afd7a6 1142
7d2552b4
TG
1143 if (regnum == AVR_PC_REGNUM)
1144 pc <<= 1;
1145
1146 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1147 }
94afd7a6
UW
1148
1149 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1150 }
94afd7a6
UW
1151
1152 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1153}
8818c391 1154
4add8633
TR
1155static const struct frame_unwind avr_frame_unwind = {
1156 NORMAL_FRAME,
8fbca658 1157 default_frame_unwind_stop_reason,
4add8633 1158 avr_frame_this_id,
94afd7a6
UW
1159 avr_frame_prev_register,
1160 NULL,
1161 default_frame_sniffer
4add8633
TR
1162};
1163
8818c391 1164static CORE_ADDR
94afd7a6 1165avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1166{
4add8633 1167 struct avr_unwind_cache *info
94afd7a6 1168 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1169
4add8633
TR
1170 return info->base;
1171}
8818c391 1172
4add8633
TR
1173static const struct frame_base avr_frame_base = {
1174 &avr_frame_unwind,
1175 avr_frame_base_address,
1176 avr_frame_base_address,
1177 avr_frame_base_address
1178};
ced15480 1179
94afd7a6
UW
1180/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1181 frame. The frame ID's base needs to match the TOS value saved by
1182 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1183
4add8633 1184static struct frame_id
94afd7a6 1185avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1186{
1187 ULONGEST base;
8818c391 1188
94afd7a6
UW
1189 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1190 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1191}
1192
4add8633 1193/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1194 order. The below implements a FILO (stack) to do this. */
8818c391 1195
4add8633
TR
1196struct stack_item
1197{
1198 int len;
1199 struct stack_item *prev;
7c543f7b 1200 gdb_byte *data;
4add8633 1201};
8818c391 1202
4add8633 1203static struct stack_item *
0fd88904 1204push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1205{
4add8633 1206 struct stack_item *si;
8d749320 1207 si = XNEW (struct stack_item);
7c543f7b 1208 si->data = (gdb_byte *) xmalloc (len);
4add8633
TR
1209 si->len = len;
1210 si->prev = prev;
1211 memcpy (si->data, contents, len);
1212 return si;
8818c391
TR
1213}
1214
4add8633
TR
1215static struct stack_item *pop_stack_item (struct stack_item *si);
1216static struct stack_item *
1217pop_stack_item (struct stack_item *si)
8818c391 1218{
4add8633
TR
1219 struct stack_item *dead = si;
1220 si = si->prev;
1221 xfree (dead->data);
1222 xfree (dead);
1223 return si;
8818c391
TR
1224}
1225
8818c391
TR
1226/* Setup the function arguments for calling a function in the inferior.
1227
1228 On the AVR architecture, there are 18 registers (R25 to R8) which are
1229 dedicated for passing function arguments. Up to the first 18 arguments
1230 (depending on size) may go into these registers. The rest go on the stack.
1231
4add8633 1232 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1233 arguments, including char, have one free register above them). For example,
4add8633
TR
1234 an int in arg1 and a char in arg2 would be passed as such:
1235
1236 arg1 -> r25:r24
1237 arg2 -> r22
1238
1239 Arguments that are larger than 2 bytes will be split between two or more
1240 registers as available, but will NOT be split between a register and the
0963b4bd 1241 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1242 similar to the d10v). */
1243
1244/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1245 inaccurate.
8818c391
TR
1246
1247 An exceptional case exists for struct arguments (and possibly other
1248 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1249 not a multiple of WORDSIZE bytes. In this case the argument is never split
1250 between the registers and the stack, but instead is copied in its entirety
1251 onto the stack, AND also copied into as many registers as there is room
1252 for. In other words, space in registers permitting, two copies of the same
1253 argument are passed in. As far as I can tell, only the one on the stack is
1254 used, although that may be a function of the level of compiler
1255 optimization. I suspect this is a compiler bug. Arguments of these odd
1256 sizes are left-justified within the word (as opposed to arguments smaller
1257 than WORDSIZE bytes, which are right-justified).
1258
1259 If the function is to return an aggregate type such as a struct, the caller
1260 must allocate space into which the callee will copy the return value. In
1261 this case, a pointer to the return value location is passed into the callee
1262 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1263 registers R0 to R2. */
8818c391
TR
1264
1265static CORE_ADDR
7d9b040b 1266avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1267 struct regcache *regcache, CORE_ADDR bp_addr,
1268 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1269 function_call_return_method return_method,
1270 CORE_ADDR struct_addr)
8818c391 1271{
4add8633 1272 int i;
e362b510 1273 gdb_byte buf[3];
6d1915d4 1274 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1275 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1276 int regnum = AVR_ARGN_REGNUM;
1277 struct stack_item *si = NULL;
8818c391 1278
cf84fa6b 1279 if (return_method == return_method_struct)
8818c391 1280 {
fd6d6815
TG
1281 regcache_cooked_write_unsigned
1282 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1283 regcache_cooked_write_unsigned
1284 (regcache, regnum--, struct_addr & 0xff);
1285 /* SP being post decremented, we need to reserve one byte so that the
1286 return address won't overwrite the result (or vice-versa). */
1287 if (sp == struct_addr)
1288 sp--;
8818c391
TR
1289 }
1290
4add8633 1291 for (i = 0; i < nargs; i++)
8818c391 1292 {
4add8633
TR
1293 int last_regnum;
1294 int j;
1295 struct value *arg = args[i];
4991999e 1296 struct type *type = check_typedef (value_type (arg));
0fd88904 1297 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1298 int len = TYPE_LENGTH (type);
1299
cb86f388
DC
1300 /* Calculate the potential last register needed.
1301 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1302 shall be used. So, last needed register will be regnum-1(24). */
1303 last_regnum = regnum - (len + (len & 1)) + 1;
4add8633 1304
0963b4bd
MS
1305 /* If there are registers available, use them. Once we start putting
1306 stuff on the stack, all subsequent args go on stack. */
cb86f388 1307 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
4add8633 1308 {
0963b4bd 1309 /* Skip a register for odd length args. */
4add8633
TR
1310 if (len & 1)
1311 regnum--;
1312
cb86f388
DC
1313 /* Write MSB of argument into register and subsequent bytes in
1314 decreasing register numbers. */
6d1915d4
TG
1315 for (j = 0; j < len; j++)
1316 regcache_cooked_write_unsigned
cb86f388 1317 (regcache, regnum--, contents[len - j - 1]);
4add8633 1318 }
0963b4bd 1319 /* No registers available, push the args onto the stack. */
4add8633
TR
1320 else
1321 {
0963b4bd 1322 /* From here on, we don't care about regnum. */
4add8633
TR
1323 si = push_stack_item (si, contents, len);
1324 }
8818c391 1325 }
909cd28e 1326
0963b4bd 1327 /* Push args onto the stack. */
4add8633
TR
1328 while (si)
1329 {
1330 sp -= si->len;
0963b4bd 1331 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1332 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1333 si = pop_stack_item (si);
1334 }
3605c34a 1335
4add8633
TR
1336 /* Set the return address. For the avr, the return address is the BP_ADDR.
1337 Need to push the return address onto the stack noting that it needs to be
1338 in big-endian order on the stack. */
6d1915d4
TG
1339 for (i = 1; i <= call_length; i++)
1340 {
1341 buf[call_length - i] = return_pc & 0xff;
1342 return_pc >>= 8;
1343 }
3605c34a 1344
6d1915d4 1345 sp -= call_length;
0963b4bd 1346 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1347 write_memory (sp + 1, buf, call_length);
3605c34a 1348
0963b4bd 1349 /* Finally, update the SP register. */
4add8633
TR
1350 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1351 avr_convert_saddr_to_raw (sp));
3605c34a 1352
6d1915d4
TG
1353 /* Return SP value for the dummy frame, where the return address hasn't been
1354 pushed. */
1355 return sp + call_length;
3605c34a
TR
1356}
1357
53f6a2c9
TG
1358/* Unfortunately dwarf2 register for SP is 32. */
1359
1360static int
1361avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1362{
1363 if (reg >= 0 && reg < 32)
1364 return reg;
1365 if (reg == 32)
1366 return AVR_SP_REGNUM;
53f6a2c9
TG
1367 return -1;
1368}
1369
487d9753
PL
1370/* Implementation of `address_class_type_flags' gdbarch method.
1371
1372 This method maps DW_AT_address_class attributes to a
1373 type_instance_flag_value. */
1374
1375static int
1376avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1377{
1378 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1379 __flash qualifier. Note that this attribute is only valid with
1380 pointer types and therefore the flag is set to the pointer type and
1381 not its target type. */
1382 if (dwarf2_addr_class == 1 && byte_size == 2)
1383 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1384 return 0;
1385}
1386
1387/* Implementation of `address_class_type_flags_to_name' gdbarch method.
1388
1389 Convert a type_instance_flag_value to an address space qualifier. */
1390
1391static const char*
1392avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1393{
1394 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1395 return "flash";
1396 else
1397 return NULL;
1398}
1399
1400/* Implementation of `address_class_name_to_type_flags' gdbarch method.
1401
1402 Convert an address space qualifier to a type_instance_flag_value. */
1403
1404static int
1405avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1406 const char* name,
1407 int *type_flags_ptr)
1408{
1409 if (strcmp (name, "flash") == 0)
1410 {
1411 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1412 return 1;
1413 }
1414 else
1415 return 0;
1416}
1417
0963b4bd 1418/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1419
1420static struct gdbarch *
2e5ff58c
TR
1421avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1422{
2e5ff58c
TR
1423 struct gdbarch *gdbarch;
1424 struct gdbarch_tdep *tdep;
4e99ad69
TG
1425 struct gdbarch_list *best_arch;
1426 int call_length;
8818c391 1427
4e99ad69 1428 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1429 switch (info.bfd_arch_info->mach)
1430 {
1431 case bfd_mach_avr1:
9c97a070 1432 case bfd_mach_avrxmega1:
8818c391 1433 case bfd_mach_avr2:
9c97a070 1434 case bfd_mach_avrxmega2:
8818c391 1435 case bfd_mach_avr3:
9c97a070 1436 case bfd_mach_avrxmega3:
8818c391 1437 case bfd_mach_avr4:
9c97a070 1438 case bfd_mach_avrxmega4:
8818c391 1439 case bfd_mach_avr5:
9c97a070 1440 case bfd_mach_avrxmega5:
4e99ad69
TG
1441 default:
1442 call_length = 2;
1443 break;
1444 case bfd_mach_avr6:
9c97a070
PL
1445 case bfd_mach_avrxmega6:
1446 case bfd_mach_avrxmega7:
4e99ad69 1447 call_length = 3;
8818c391
TR
1448 break;
1449 }
1450
4e99ad69
TG
1451 /* If there is already a candidate, use it. */
1452 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1453 best_arch != NULL;
1454 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1455 {
1456 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1457 return best_arch->gdbarch;
1458 }
1459
0963b4bd 1460 /* None found, create a new architecture from the information provided. */
cdd238da 1461 tdep = XCNEW (struct gdbarch_tdep);
4e99ad69
TG
1462 gdbarch = gdbarch_alloc (&info, tdep);
1463
1464 tdep->call_length = call_length;
1465
7d2552b4
TG
1466 /* Create a type for PC. We can't use builtin types here, as they may not
1467 be defined. */
77b7c781
UW
1468 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1469 "void");
7d2552b4 1470 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
88dfca6c
UW
1471 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1472 tdep->func_void_type);
7d2552b4 1473
8818c391
TR
1474 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1475 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1476 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1477 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1478 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1479 set_gdbarch_addr_bit (gdbarch, 32);
8818c391 1480
53375380
PA
1481 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1482 set_gdbarch_wchar_signed (gdbarch, 1);
1483
8818c391
TR
1484 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1485 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1486 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1487
8da61cc4
DJ
1488 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1489 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1490 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1491
1492 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1493 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1494
1495 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1496
1497 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1498 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1499
1500 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1501 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1502
7d2552b4
TG
1503 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1504 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1505 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1506
4c8b6ae0 1507 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391 1508
4add8633 1509 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1510
53f6a2c9
TG
1511 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1512
8818c391
TR
1513 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1514 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1515 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1516
8818c391 1517 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1518 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1519
04180708
YQ
1520 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1521 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
8818c391 1522
94afd7a6 1523 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1524 frame_base_set_default (gdbarch, &avr_frame_base);
1525
94afd7a6 1526 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1527
1528 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1529 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1530
487d9753
PL
1531 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1532 set_gdbarch_address_class_name_to_type_flags
1533 (gdbarch, avr_address_class_name_to_type_flags);
1534 set_gdbarch_address_class_type_flags_to_name
1535 (gdbarch, avr_address_class_type_flags_to_name);
1536
8818c391
TR
1537 return gdbarch;
1538}
1539
1540/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1541 registers. If args parameter is not NULL, then the user has requested info
8818c391 1542 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1543 now]. The query string should be one of these forms:
8818c391
TR
1544
1545 "Ravr.io_reg" -> reply is "NN" number of io registers
1546
1547 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1548 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1549 where, <NAME> is a string, and VV is the hex value of the register.
1550
0963b4bd 1551 All io registers are 8-bit. */
8818c391
TR
1552
1553static void
1d12d88f 1554avr_io_reg_read_command (const char *args, int from_tty)
8818c391 1555{
2e5ff58c 1556 char query[400];
2e5ff58c
TR
1557 unsigned int nreg = 0;
1558 unsigned int val;
8818c391 1559
0963b4bd 1560 /* Find out how many io registers the target has. */
9018be22 1561 gdb::optional<gdb::byte_vector> buf
8b88a78e 1562 = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, "avr.io_reg");
8818c391 1563
9018be22 1564 if (!buf)
8818c391 1565 {
2e5ff58c 1566 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1567 _("ERR: info io_registers NOT supported "
1568 "by current target\n"));
8818c391
TR
1569 return;
1570 }
1571
9018be22
SM
1572 const char *bufstr = (const char *) buf->data ();
1573
001f13d8 1574 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1575 {
2e5ff58c 1576 fprintf_unfiltered (gdb_stderr,
edefbb7c 1577 _("Error fetching number of io registers\n"));
8818c391
TR
1578 return;
1579 }
1580
2e5ff58c 1581 reinitialize_more_filter ();
8818c391 1582
edefbb7c 1583 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1584
1585 /* only fetch up to 8 registers at a time to keep the buffer small */
9018be22 1586 int step = 8;
8818c391 1587
9018be22 1588 for (int i = 0; i < nreg; i += step)
8818c391 1589 {
91ccbfc1 1590 /* how many registers this round? */
9018be22 1591 int j = step;
91ccbfc1
TR
1592 if ((i+j) >= nreg)
1593 j = nreg - i; /* last block is less than 8 registers */
8818c391 1594
2e5ff58c 1595 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
8b88a78e 1596 buf = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, query);
9018be22
SM
1597
1598 if (!buf)
1599 {
1600 fprintf_unfiltered (gdb_stderr,
1601 _("ERR: error reading avr.io_reg:%x,%x\n"),
1602 i, j);
1603 return;
1604 }
8818c391 1605
9018be22
SM
1606 const char *p = (const char *) buf->data ();
1607 for (int k = i; k < (i + j); k++)
2e5ff58c
TR
1608 {
1609 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1610 {
1611 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1612 while ((*p != ';') && (*p != '\0'))
1613 p++;
1614 p++; /* skip over ';' */
1615 if (*p == '\0')
1616 break;
1617 }
1618 }
8818c391
TR
1619 }
1620}
1621
6c265988 1622void _initialize_avr_tdep ();
8818c391 1623void
6c265988 1624_initialize_avr_tdep ()
8818c391
TR
1625{
1626 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1627
1628 /* Add a new command to allow the user to query the avr remote target for
1629 the values of the io space registers in a saner way than just using
0963b4bd 1630 `x/NNNb ADDR`. */
8818c391
TR
1631
1632 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1633 io_registers' to signify it is not available on other platforms. */
8818c391 1634
5f515954 1635 add_info ("io_registers", avr_io_reg_read_command,
c6170c2c 1636 _("Query remote AVR target for I/O space register values."));
8818c391 1637}
This page took 1.282195 seconds and 4 git commands to generate.