Use an accessor function for general_symbol_info::language
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
1bac305b
AC
1/* GDB-specific functions for operating on agent expressions.
2
42a4f53d 3 Copyright (C) 1998-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
4de283e4
TT
21#include "symtab.h"
22#include "symfile.h"
23#include "gdbtypes.h"
24#include "language.h"
25#include "value.h"
26#include "expression.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "frame.h"
30#include "target.h"
d55e5aa6 31#include "ax.h"
4de283e4 32#include "ax-gdb.h"
fe898f56 33#include "block.h"
4de283e4
TT
34#include "regcache.h"
35#include "user-regs.h"
36#include "dictionary.h"
00bf0b85 37#include "breakpoint.h"
4de283e4 38#include "tracepoint.h"
d55e5aa6 39#include "cp-support.h"
4de283e4
TT
40#include "arch-utils.h"
41#include "cli/cli-utils.h"
34b536a8 42#include "linespec.h"
f00aae0f 43#include "location.h"
77e371c0 44#include "objfiles.h"
46a4882b 45#include "typeprint.h"
3065dfb6 46#include "valprint.h"
4de283e4
TT
47#include "c-lang.h"
48
268a13a5 49#include "gdbsupport/format.h"
d3ce09f5 50
6426a772
JM
51/* To make sense of this file, you should read doc/agentexpr.texi.
52 Then look at the types and enums in ax-gdb.h. For the code itself,
53 look at gen_expr, towards the bottom; that's the main function that
54 looks at the GDB expressions and calls everything else to generate
55 code.
c906108c
SS
56
57 I'm beginning to wonder whether it wouldn't be nicer to internally
58 generate trees, with types, and then spit out the bytecode in
59 linear form afterwards; we could generate fewer `swap', `ext', and
60 `zero_ext' bytecodes that way; it would make good constant folding
61 easier, too. But at the moment, I think we should be willing to
62 pay for the simplicity of this code with less-than-optimal bytecode
63 strings.
64
c5aa993b
JM
65 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
66\f
c906108c
SS
67
68
0e2de366 69/* Prototypes for local functions. */
c906108c
SS
70
71/* There's a standard order to the arguments of these functions:
72 union exp_element ** --- pointer into expression
73 struct agent_expr * --- agent expression buffer to generate code into
74 struct axs_value * --- describes value left on top of stack */
c5aa993b 75
a14ed312
KB
76static struct value *const_var_ref (struct symbol *var);
77static struct value *const_expr (union exp_element **pc);
78static struct value *maybe_const_expr (union exp_element **pc);
79
40f4af28 80static void gen_traced_pop (struct agent_expr *, struct axs_value *);
a14ed312
KB
81
82static void gen_sign_extend (struct agent_expr *, struct type *);
83static void gen_extend (struct agent_expr *, struct type *);
84static void gen_fetch (struct agent_expr *, struct type *);
85static void gen_left_shift (struct agent_expr *, int);
86
87
40f4af28
SM
88static void gen_frame_args_address (struct agent_expr *);
89static void gen_frame_locals_address (struct agent_expr *);
a14ed312
KB
90static void gen_offset (struct agent_expr *ax, int offset);
91static void gen_sym_offset (struct agent_expr *, struct symbol *);
40f4af28
SM
92static void gen_var_ref (struct agent_expr *ax, struct axs_value *value,
93 struct symbol *var);
a14ed312
KB
94
95
96static void gen_int_literal (struct agent_expr *ax,
97 struct axs_value *value,
98 LONGEST k, struct type *type);
99
6661ad48 100static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
a14ed312
KB
101static int type_wider_than (struct type *type1, struct type *type2);
102static struct type *max_type (struct type *type1, struct type *type2);
103static void gen_conversion (struct agent_expr *ax,
104 struct type *from, struct type *to);
105static int is_nontrivial_conversion (struct type *from, struct type *to);
6661ad48 106static void gen_usual_arithmetic (struct agent_expr *ax,
a14ed312
KB
107 struct axs_value *value1,
108 struct axs_value *value2);
6661ad48 109static void gen_integral_promotions (struct agent_expr *ax,
a14ed312
KB
110 struct axs_value *value);
111static void gen_cast (struct agent_expr *ax,
112 struct axs_value *value, struct type *type);
113static void gen_scale (struct agent_expr *ax,
114 enum agent_op op, struct type *type);
f7c79c41
UW
115static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
116 struct axs_value *value1, struct axs_value *value2);
117static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
118 struct axs_value *value1, struct axs_value *value2);
119static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
120 struct axs_value *value1, struct axs_value *value2,
121 struct type *result_type);
a14ed312
KB
122static void gen_binop (struct agent_expr *ax,
123 struct axs_value *value,
124 struct axs_value *value1,
125 struct axs_value *value2,
126 enum agent_op op,
a121b7c1
PA
127 enum agent_op op_unsigned, int may_carry,
128 const char *name);
f7c79c41
UW
129static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
130 struct type *result_type);
a14ed312 131static void gen_complement (struct agent_expr *ax, struct axs_value *value);
053f8057
SM
132static void gen_deref (struct axs_value *);
133static void gen_address_of (struct axs_value *);
6661ad48 134static void gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
a14ed312 135 struct type *type, int start, int end);
6661ad48 136static void gen_primitive_field (struct agent_expr *ax,
b6e7192f
SS
137 struct axs_value *value,
138 int offset, int fieldno, struct type *type);
6661ad48 139static int gen_struct_ref_recursive (struct agent_expr *ax,
b6e7192f 140 struct axs_value *value,
a121b7c1 141 const char *field, int offset,
b6e7192f 142 struct type *type);
6661ad48 143static void gen_struct_ref (struct agent_expr *ax,
a14ed312 144 struct axs_value *value,
a121b7c1
PA
145 const char *field,
146 const char *operator_name,
147 const char *operand_name);
40f4af28 148static void gen_static_field (struct agent_expr *ax, struct axs_value *value,
b6e7192f 149 struct type *type, int fieldno);
f7c79c41 150static void gen_repeat (struct expression *exp, union exp_element **pc,
a14ed312 151 struct agent_expr *ax, struct axs_value *value);
f7c79c41
UW
152static void gen_sizeof (struct expression *exp, union exp_element **pc,
153 struct agent_expr *ax, struct axs_value *value,
154 struct type *size_type);
f61e138d
SS
155static void gen_expr_binop_rest (struct expression *exp,
156 enum exp_opcode op, union exp_element **pc,
157 struct agent_expr *ax,
158 struct axs_value *value,
159 struct axs_value *value1,
160 struct axs_value *value2);
c906108c 161\f
c5aa993b 162
c906108c
SS
163/* Detecting constant expressions. */
164
165/* If the variable reference at *PC is a constant, return its value.
166 Otherwise, return zero.
167
168 Hey, Wally! How can a variable reference be a constant?
169
170 Well, Beav, this function really handles the OP_VAR_VALUE operator,
171 not specifically variable references. GDB uses OP_VAR_VALUE to
172 refer to any kind of symbolic reference: function names, enum
173 elements, and goto labels are all handled through the OP_VAR_VALUE
174 operator, even though they're constants. It makes sense given the
175 situation.
176
177 Gee, Wally, don'cha wonder sometimes if data representations that
178 subvert commonly accepted definitions of terms in favor of heavily
179 context-specific interpretations are really just a tool of the
180 programming hegemony to preserve their power and exclude the
181 proletariat? */
182
183static struct value *
fba45db2 184const_var_ref (struct symbol *var)
c906108c
SS
185{
186 struct type *type = SYMBOL_TYPE (var);
187
188 switch (SYMBOL_CLASS (var))
189 {
190 case LOC_CONST:
191 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
192
193 case LOC_LABEL:
4478b372 194 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
195
196 default:
197 return 0;
198 }
199}
200
201
202/* If the expression starting at *PC has a constant value, return it.
203 Otherwise, return zero. If we return a value, then *PC will be
204 advanced to the end of it. If we return zero, *PC could be
205 anywhere. */
206static struct value *
fba45db2 207const_expr (union exp_element **pc)
c906108c
SS
208{
209 enum exp_opcode op = (*pc)->opcode;
210 struct value *v1;
211
212 switch (op)
213 {
214 case OP_LONG:
215 {
216 struct type *type = (*pc)[1].type;
217 LONGEST k = (*pc)[2].longconst;
5b4ee69b 218
c906108c
SS
219 (*pc) += 4;
220 return value_from_longest (type, k);
221 }
222
223 case OP_VAR_VALUE:
224 {
225 struct value *v = const_var_ref ((*pc)[2].symbol);
5b4ee69b 226
c906108c
SS
227 (*pc) += 4;
228 return v;
229 }
230
c5aa993b 231 /* We could add more operators in here. */
c906108c
SS
232
233 case UNOP_NEG:
234 (*pc)++;
235 v1 = const_expr (pc);
236 if (v1)
237 return value_neg (v1);
238 else
239 return 0;
240
241 default:
242 return 0;
243 }
244}
245
246
247/* Like const_expr, but guarantee also that *PC is undisturbed if the
248 expression is not constant. */
249static struct value *
fba45db2 250maybe_const_expr (union exp_element **pc)
c906108c
SS
251{
252 union exp_element *tentative_pc = *pc;
253 struct value *v = const_expr (&tentative_pc);
254
255 /* If we got a value, then update the real PC. */
256 if (v)
257 *pc = tentative_pc;
c5aa993b 258
c906108c
SS
259 return v;
260}
c906108c 261\f
c5aa993b 262
c906108c
SS
263/* Generating bytecode from GDB expressions: general assumptions */
264
265/* Here are a few general assumptions made throughout the code; if you
266 want to make a change that contradicts one of these, then you'd
267 better scan things pretty thoroughly.
268
269 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
270 sometimes we'll swap to get at the left argument to a binary
271 operator. If we decide that void values should occupy no stack
272 elements, or that synthetic arrays (whose size is determined at
273 run time, created by the `@' operator) should occupy two stack
274 elements (address and length), then this will cause trouble.
c906108c
SS
275
276 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
277 don't have to worry what happens if the user requests an
278 operation that is wider than the actual interpreter's stack.
279 That is, it's up to the interpreter to handle directly all the
280 integer widths the user has access to. (Woe betide the language
281 with bignums!)
c906108c
SS
282
283 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 284 GCC's generalized lvalues, function calls, etc.
c906108c
SS
285
286 - We don't support floating point. Many places where we switch on
c5aa993b
JM
287 some type don't bother to include cases for floating point; there
288 may be even more subtle ways this assumption exists. For
289 example, the arguments to % must be integers.
c906108c
SS
290
291 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
292 we tried to support convenience variables, this would be a
293 problem.
c906108c
SS
294
295 - All values on the stack should always be fully zero- or
c5aa993b
JM
296 sign-extended.
297
298 (I wasn't sure whether to choose this or its opposite --- that
299 only addresses are assumed extended --- but it turns out that
300 neither convention completely eliminates spurious extend
301 operations (if everything is always extended, then you have to
302 extend after add, because it could overflow; if nothing is
303 extended, then you end up producing extends whenever you change
304 sizes), and this is simpler.) */
c906108c 305\f
c5aa993b 306
400c6af0
SS
307/* Scan for all static fields in the given class, including any base
308 classes, and generate tracing bytecodes for each. */
309
310static void
40f4af28 311gen_trace_static_fields (struct agent_expr *ax,
400c6af0
SS
312 struct type *type)
313{
314 int i, nbases = TYPE_N_BASECLASSES (type);
315 struct axs_value value;
316
f168693b 317 type = check_typedef (type);
400c6af0
SS
318
319 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
320 {
321 if (field_is_static (&TYPE_FIELD (type, i)))
322 {
40f4af28 323 gen_static_field (ax, &value, type, i);
400c6af0
SS
324 if (value.optimized_out)
325 continue;
326 switch (value.kind)
327 {
328 case axs_lvalue_memory:
329 {
744a8059
SP
330 /* Initialize the TYPE_LENGTH if it is a typedef. */
331 check_typedef (value.type);
332 ax_const_l (ax, TYPE_LENGTH (value.type));
400c6af0
SS
333 ax_simple (ax, aop_trace);
334 }
335 break;
336
337 case axs_lvalue_register:
35c9c7ba
SS
338 /* We don't actually need the register's value to be pushed,
339 just note that we need it to be collected. */
340 ax_reg_mask (ax, value.u.reg);
400c6af0
SS
341
342 default:
343 break;
344 }
345 }
346 }
347
348 /* Now scan through base classes recursively. */
349 for (i = 0; i < nbases; i++)
350 {
351 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
352
40f4af28 353 gen_trace_static_fields (ax, basetype);
400c6af0
SS
354 }
355}
356
c906108c
SS
357/* Trace the lvalue on the stack, if it needs it. In either case, pop
358 the value. Useful on the left side of a comma, and at the end of
359 an expression being used for tracing. */
360static void
40f4af28 361gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
c906108c 362{
3065dfb6 363 int string_trace = 0;
92bc6a20 364 if (ax->trace_string
3065dfb6
SS
365 && TYPE_CODE (value->type) == TYPE_CODE_PTR
366 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
367 's'))
368 string_trace = 1;
369
92bc6a20 370 if (ax->tracing)
c906108c
SS
371 switch (value->kind)
372 {
373 case axs_rvalue:
3065dfb6
SS
374 if (string_trace)
375 {
92bc6a20 376 ax_const_l (ax, ax->trace_string);
3065dfb6
SS
377 ax_simple (ax, aop_tracenz);
378 }
379 else
380 /* We don't trace rvalues, just the lvalues necessary to
381 produce them. So just dispose of this value. */
382 ax_simple (ax, aop_pop);
c906108c
SS
383 break;
384
385 case axs_lvalue_memory:
386 {
744a8059
SP
387 /* Initialize the TYPE_LENGTH if it is a typedef. */
388 check_typedef (value->type);
389
3065dfb6
SS
390 if (string_trace)
391 {
f906b857 392 gen_fetch (ax, value->type);
92bc6a20 393 ax_const_l (ax, ax->trace_string);
3065dfb6
SS
394 ax_simple (ax, aop_tracenz);
395 }
f906b857
MK
396 else
397 {
398 /* There's no point in trying to use a trace_quick bytecode
399 here, since "trace_quick SIZE pop" is three bytes, whereas
400 "const8 SIZE trace" is also three bytes, does the same
401 thing, and the simplest code which generates that will also
402 work correctly for objects with large sizes. */
403 ax_const_l (ax, TYPE_LENGTH (value->type));
404 ax_simple (ax, aop_trace);
405 }
c906108c 406 }
c5aa993b 407 break;
c906108c
SS
408
409 case axs_lvalue_register:
35c9c7ba
SS
410 /* We don't actually need the register's value to be on the
411 stack, and the target will get heartburn if the register is
412 larger than will fit in a stack, so just mark it for
413 collection and be done with it. */
414 ax_reg_mask (ax, value->u.reg);
3065dfb6
SS
415
416 /* But if the register points to a string, assume the value
417 will fit on the stack and push it anyway. */
418 if (string_trace)
419 {
420 ax_reg (ax, value->u.reg);
92bc6a20 421 ax_const_l (ax, ax->trace_string);
3065dfb6
SS
422 ax_simple (ax, aop_tracenz);
423 }
c906108c
SS
424 break;
425 }
426 else
427 /* If we're not tracing, just pop the value. */
428 ax_simple (ax, aop_pop);
400c6af0
SS
429
430 /* To trace C++ classes with static fields stored elsewhere. */
92bc6a20 431 if (ax->tracing
400c6af0
SS
432 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
433 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
40f4af28 434 gen_trace_static_fields (ax, value->type);
c906108c 435}
c5aa993b 436\f
c906108c
SS
437
438
c906108c
SS
439/* Generating bytecode from GDB expressions: helper functions */
440
441/* Assume that the lower bits of the top of the stack is a value of
442 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
443static void
fba45db2 444gen_sign_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
445{
446 /* Do we need to sign-extend this? */
c5aa993b 447 if (!TYPE_UNSIGNED (type))
0004e5a2 448 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
c906108c
SS
449}
450
451
452/* Assume the lower bits of the top of the stack hold a value of type
453 TYPE, and the upper bits are garbage. Sign-extend or truncate as
454 needed. */
455static void
fba45db2 456gen_extend (struct agent_expr *ax, struct type *type)
c906108c 457{
0004e5a2 458 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5b4ee69b 459
c906108c
SS
460 /* I just had to. */
461 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
462}
463
464
465/* Assume that the top of the stack contains a value of type "pointer
466 to TYPE"; generate code to fetch its value. Note that TYPE is the
467 target type, not the pointer type. */
468static void
fba45db2 469gen_fetch (struct agent_expr *ax, struct type *type)
c906108c 470{
92bc6a20 471 if (ax->tracing)
c906108c
SS
472 {
473 /* Record the area of memory we're about to fetch. */
474 ax_trace_quick (ax, TYPE_LENGTH (type));
475 }
476
af381b8c
JB
477 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
478 type = TYPE_TARGET_TYPE (type);
479
0004e5a2 480 switch (TYPE_CODE (type))
c906108c
SS
481 {
482 case TYPE_CODE_PTR:
b97aedf3 483 case TYPE_CODE_REF:
aa006118 484 case TYPE_CODE_RVALUE_REF:
c906108c
SS
485 case TYPE_CODE_ENUM:
486 case TYPE_CODE_INT:
487 case TYPE_CODE_CHAR:
3b11a015 488 case TYPE_CODE_BOOL:
c906108c
SS
489 /* It's a scalar value, so we know how to dereference it. How
490 many bytes long is it? */
0004e5a2 491 switch (TYPE_LENGTH (type))
c906108c 492 {
c5aa993b
JM
493 case 8 / TARGET_CHAR_BIT:
494 ax_simple (ax, aop_ref8);
495 break;
496 case 16 / TARGET_CHAR_BIT:
497 ax_simple (ax, aop_ref16);
498 break;
499 case 32 / TARGET_CHAR_BIT:
500 ax_simple (ax, aop_ref32);
501 break;
502 case 64 / TARGET_CHAR_BIT:
503 ax_simple (ax, aop_ref64);
504 break;
c906108c
SS
505
506 /* Either our caller shouldn't have asked us to dereference
507 that pointer (other code's fault), or we're not
508 implementing something we should be (this code's fault).
509 In any case, it's a bug the user shouldn't see. */
510 default:
8e65ff28 511 internal_error (__FILE__, __LINE__,
3d263c1d 512 _("gen_fetch: strange size"));
c906108c
SS
513 }
514
515 gen_sign_extend (ax, type);
516 break;
517
518 default:
52323be9
LM
519 /* Our caller requested us to dereference a pointer from an unsupported
520 type. Error out and give callers a chance to handle the failure
521 gracefully. */
522 error (_("gen_fetch: Unsupported type code `%s'."),
523 TYPE_NAME (type));
c906108c
SS
524 }
525}
526
527
528/* Generate code to left shift the top of the stack by DISTANCE bits, or
529 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
530 unsigned (logical) right shifts. */
531static void
fba45db2 532gen_left_shift (struct agent_expr *ax, int distance)
c906108c
SS
533{
534 if (distance > 0)
535 {
536 ax_const_l (ax, distance);
537 ax_simple (ax, aop_lsh);
538 }
539 else if (distance < 0)
540 {
541 ax_const_l (ax, -distance);
542 ax_simple (ax, aop_rsh_unsigned);
543 }
544}
c5aa993b 545\f
c906108c
SS
546
547
c906108c
SS
548/* Generating bytecode from GDB expressions: symbol references */
549
550/* Generate code to push the base address of the argument portion of
551 the top stack frame. */
552static void
40f4af28 553gen_frame_args_address (struct agent_expr *ax)
c906108c 554{
39d4ef09
AC
555 int frame_reg;
556 LONGEST frame_offset;
c906108c 557
40f4af28 558 gdbarch_virtual_frame_pointer (ax->gdbarch,
c7bb205c 559 ax->scope, &frame_reg, &frame_offset);
c5aa993b 560 ax_reg (ax, frame_reg);
c906108c
SS
561 gen_offset (ax, frame_offset);
562}
563
564
565/* Generate code to push the base address of the locals portion of the
566 top stack frame. */
567static void
40f4af28 568gen_frame_locals_address (struct agent_expr *ax)
c906108c 569{
39d4ef09
AC
570 int frame_reg;
571 LONGEST frame_offset;
c906108c 572
40f4af28 573 gdbarch_virtual_frame_pointer (ax->gdbarch,
c7bb205c 574 ax->scope, &frame_reg, &frame_offset);
c5aa993b 575 ax_reg (ax, frame_reg);
c906108c
SS
576 gen_offset (ax, frame_offset);
577}
578
579
580/* Generate code to add OFFSET to the top of the stack. Try to
581 generate short and readable code. We use this for getting to
582 variables on the stack, and structure members. If we were
583 programming in ML, it would be clearer why these are the same
584 thing. */
585static void
fba45db2 586gen_offset (struct agent_expr *ax, int offset)
c906108c
SS
587{
588 /* It would suffice to simply push the offset and add it, but this
589 makes it easier to read positive and negative offsets in the
590 bytecode. */
591 if (offset > 0)
592 {
593 ax_const_l (ax, offset);
594 ax_simple (ax, aop_add);
595 }
596 else if (offset < 0)
597 {
598 ax_const_l (ax, -offset);
599 ax_simple (ax, aop_sub);
600 }
601}
602
603
604/* In many cases, a symbol's value is the offset from some other
605 address (stack frame, base register, etc.) Generate code to add
606 VAR's value to the top of the stack. */
607static void
fba45db2 608gen_sym_offset (struct agent_expr *ax, struct symbol *var)
c906108c
SS
609{
610 gen_offset (ax, SYMBOL_VALUE (var));
611}
612
613
614/* Generate code for a variable reference to AX. The variable is the
615 symbol VAR. Set VALUE to describe the result. */
616
617static void
40f4af28 618gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
c906108c 619{
0e2de366 620 /* Dereference any typedefs. */
c906108c 621 value->type = check_typedef (SYMBOL_TYPE (var));
400c6af0 622 value->optimized_out = 0;
c906108c 623
24d6c2a0
TT
624 if (SYMBOL_COMPUTED_OPS (var) != NULL)
625 {
40f4af28 626 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, ax, value);
24d6c2a0
TT
627 return;
628 }
629
c906108c
SS
630 /* I'm imitating the code in read_var_value. */
631 switch (SYMBOL_CLASS (var))
632 {
633 case LOC_CONST: /* A constant, like an enum value. */
634 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
635 value->kind = axs_rvalue;
636 break;
637
638 case LOC_LABEL: /* A goto label, being used as a value. */
639 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
640 value->kind = axs_rvalue;
641 break;
642
643 case LOC_CONST_BYTES:
8e65ff28 644 internal_error (__FILE__, __LINE__,
3e43a32a
MS
645 _("gen_var_ref: LOC_CONST_BYTES "
646 "symbols are not supported"));
c906108c
SS
647
648 /* Variable at a fixed location in memory. Easy. */
649 case LOC_STATIC:
650 /* Push the address of the variable. */
651 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
652 value->kind = axs_lvalue_memory;
653 break;
654
655 case LOC_ARG: /* var lives in argument area of frame */
40f4af28 656 gen_frame_args_address (ax);
c906108c
SS
657 gen_sym_offset (ax, var);
658 value->kind = axs_lvalue_memory;
659 break;
660
661 case LOC_REF_ARG: /* As above, but the frame slot really
662 holds the address of the variable. */
40f4af28 663 gen_frame_args_address (ax);
c906108c
SS
664 gen_sym_offset (ax, var);
665 /* Don't assume any particular pointer size. */
40f4af28 666 gen_fetch (ax, builtin_type (ax->gdbarch)->builtin_data_ptr);
c906108c
SS
667 value->kind = axs_lvalue_memory;
668 break;
669
670 case LOC_LOCAL: /* var lives in locals area of frame */
40f4af28 671 gen_frame_locals_address (ax);
c906108c
SS
672 gen_sym_offset (ax, var);
673 value->kind = axs_lvalue_memory;
674 break;
675
c906108c 676 case LOC_TYPEDEF:
3d263c1d 677 error (_("Cannot compute value of typedef `%s'."),
987012b8 678 var->print_name ());
c906108c
SS
679 break;
680
681 case LOC_BLOCK:
2b1ffcfd 682 ax_const_l (ax, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)));
c906108c
SS
683 value->kind = axs_rvalue;
684 break;
685
686 case LOC_REGISTER:
c906108c
SS
687 /* Don't generate any code at all; in the process of treating
688 this as an lvalue or rvalue, the caller will generate the
689 right code. */
690 value->kind = axs_lvalue_register;
40f4af28
SM
691 value->u.reg
692 = SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch);
c906108c
SS
693 break;
694
695 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
2a2d4dc3
AS
696 register, not on the stack. Simpler than LOC_REGISTER
697 because it's just like any other case where the thing
698 has a real address. */
c906108c 699 case LOC_REGPARM_ADDR:
40f4af28
SM
700 ax_reg (ax,
701 SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch));
c906108c
SS
702 value->kind = axs_lvalue_memory;
703 break;
704
705 case LOC_UNRESOLVED:
706 {
3b7344d5 707 struct bound_minimal_symbol msym
987012b8 708 = lookup_minimal_symbol (var->linkage_name (), NULL, NULL);
5b4ee69b 709
3b7344d5 710 if (!msym.minsym)
987012b8 711 error (_("Couldn't resolve symbol `%s'."), var->print_name ());
c5aa993b 712
c906108c 713 /* Push the address of the variable. */
77e371c0 714 ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
715 value->kind = axs_lvalue_memory;
716 }
c5aa993b 717 break;
c906108c 718
a55cc764 719 case LOC_COMPUTED:
24d6c2a0 720 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
a55cc764 721
c906108c 722 case LOC_OPTIMIZED_OUT:
400c6af0
SS
723 /* Flag this, but don't say anything; leave it up to callers to
724 warn the user. */
725 value->optimized_out = 1;
c906108c
SS
726 break;
727
728 default:
3d263c1d 729 error (_("Cannot find value of botched symbol `%s'."),
987012b8 730 var->print_name ());
c906108c
SS
731 break;
732 }
733}
74ea4be4
PA
734
735/* Generate code for a minimal symbol variable reference to AX. The
736 variable is the symbol MINSYM, of OBJFILE. Set VALUE to describe
737 the result. */
738
739static void
740gen_msym_var_ref (agent_expr *ax, axs_value *value,
741 minimal_symbol *msymbol, objfile *objf)
742{
743 CORE_ADDR address;
744 type *t = find_minsym_type_and_address (msymbol, objf, &address);
745 value->type = t;
746 value->optimized_out = false;
747 ax_const_l (ax, address);
748 value->kind = axs_lvalue_memory;
749}
750
c5aa993b 751\f
c906108c
SS
752
753
c906108c
SS
754/* Generating bytecode from GDB expressions: literals */
755
756static void
fba45db2
KB
757gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
758 struct type *type)
c906108c
SS
759{
760 ax_const_l (ax, k);
761 value->kind = axs_rvalue;
648027cc 762 value->type = check_typedef (type);
c906108c 763}
c5aa993b 764\f
c906108c
SS
765
766
c906108c
SS
767/* Generating bytecode from GDB expressions: unary conversions, casts */
768
769/* Take what's on the top of the stack (as described by VALUE), and
770 try to make an rvalue out of it. Signal an error if we can't do
771 that. */
55aa24fb 772void
fba45db2 773require_rvalue (struct agent_expr *ax, struct axs_value *value)
c906108c 774{
3a96536b
SS
775 /* Only deal with scalars, structs and such may be too large
776 to fit in a stack entry. */
777 value->type = check_typedef (value->type);
778 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
779 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
780 || TYPE_CODE (value->type) == TYPE_CODE_UNION
781 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1c40aa62 782 error (_("Value not scalar: cannot be an rvalue."));
3a96536b 783
c906108c
SS
784 switch (value->kind)
785 {
786 case axs_rvalue:
787 /* It's already an rvalue. */
788 break;
789
790 case axs_lvalue_memory:
791 /* The top of stack is the address of the object. Dereference. */
792 gen_fetch (ax, value->type);
793 break;
794
795 case axs_lvalue_register:
796 /* There's nothing on the stack, but value->u.reg is the
797 register number containing the value.
798
c5aa993b
JM
799 When we add floating-point support, this is going to have to
800 change. What about SPARC register pairs, for example? */
c906108c
SS
801 ax_reg (ax, value->u.reg);
802 gen_extend (ax, value->type);
803 break;
804 }
805
806 value->kind = axs_rvalue;
807}
808
809
810/* Assume the top of the stack is described by VALUE, and perform the
811 usual unary conversions. This is motivated by ANSI 6.2.2, but of
812 course GDB expressions are not ANSI; they're the mishmash union of
813 a bunch of languages. Rah.
814
815 NOTE! This function promises to produce an rvalue only when the
816 incoming value is of an appropriate type. In other words, the
817 consumer of the value this function produces may assume the value
818 is an rvalue only after checking its type.
819
820 The immediate issue is that if the user tries to use a structure or
821 union as an operand of, say, the `+' operator, we don't want to try
822 to convert that structure to an rvalue; require_rvalue will bomb on
823 structs and unions. Rather, we want to simply pass the struct
824 lvalue through unchanged, and let `+' raise an error. */
825
826static void
6661ad48 827gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
828{
829 /* We don't have to generate any code for the usual integral
830 conversions, since values are always represented as full-width on
831 the stack. Should we tweak the type? */
832
833 /* Some types require special handling. */
0004e5a2 834 switch (TYPE_CODE (value->type))
c906108c
SS
835 {
836 /* Functions get converted to a pointer to the function. */
837 case TYPE_CODE_FUNC:
838 value->type = lookup_pointer_type (value->type);
839 value->kind = axs_rvalue; /* Should always be true, but just in case. */
840 break;
841
842 /* Arrays get converted to a pointer to their first element, and
c5aa993b 843 are no longer an lvalue. */
c906108c
SS
844 case TYPE_CODE_ARRAY:
845 {
846 struct type *elements = TYPE_TARGET_TYPE (value->type);
5b4ee69b 847
c906108c
SS
848 value->type = lookup_pointer_type (elements);
849 value->kind = axs_rvalue;
850 /* We don't need to generate any code; the address of the array
851 is also the address of its first element. */
852 }
c5aa993b 853 break;
c906108c 854
c5aa993b
JM
855 /* Don't try to convert structures and unions to rvalues. Let the
856 consumer signal an error. */
c906108c
SS
857 case TYPE_CODE_STRUCT:
858 case TYPE_CODE_UNION:
859 return;
c906108c
SS
860 }
861
862 /* If the value is an lvalue, dereference it. */
863 require_rvalue (ax, value);
864}
865
866
867/* Return non-zero iff the type TYPE1 is considered "wider" than the
868 type TYPE2, according to the rules described in gen_usual_arithmetic. */
869static int
fba45db2 870type_wider_than (struct type *type1, struct type *type2)
c906108c
SS
871{
872 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
873 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
874 && TYPE_UNSIGNED (type1)
c5aa993b 875 && !TYPE_UNSIGNED (type2)));
c906108c
SS
876}
877
878
879/* Return the "wider" of the two types TYPE1 and TYPE2. */
880static struct type *
fba45db2 881max_type (struct type *type1, struct type *type2)
c906108c
SS
882{
883 return type_wider_than (type1, type2) ? type1 : type2;
884}
885
886
887/* Generate code to convert a scalar value of type FROM to type TO. */
888static void
fba45db2 889gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
c906108c
SS
890{
891 /* Perhaps there is a more graceful way to state these rules. */
892
893 /* If we're converting to a narrower type, then we need to clear out
894 the upper bits. */
895 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
bcf5c1d9 896 gen_extend (ax, to);
c906108c
SS
897
898 /* If the two values have equal width, but different signednesses,
899 then we need to extend. */
900 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
901 {
902 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
903 gen_extend (ax, to);
904 }
905
906 /* If we're converting to a wider type, and becoming unsigned, then
907 we need to zero out any possible sign bits. */
908 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
909 {
910 if (TYPE_UNSIGNED (to))
911 gen_extend (ax, to);
912 }
913}
914
915
916/* Return non-zero iff the type FROM will require any bytecodes to be
917 emitted to be converted to the type TO. */
918static int
fba45db2 919is_nontrivial_conversion (struct type *from, struct type *to)
c906108c 920{
833177a4 921 agent_expr_up ax (new agent_expr (NULL, 0));
c906108c
SS
922 int nontrivial;
923
924 /* Actually generate the code, and see if anything came out. At the
925 moment, it would be trivial to replicate the code in
926 gen_conversion here, but in the future, when we're supporting
927 floating point and the like, it may not be. Doing things this
928 way allows this function to be independent of the logic in
929 gen_conversion. */
833177a4 930 gen_conversion (ax.get (), from, to);
c906108c 931 nontrivial = ax->len > 0;
c906108c
SS
932 return nontrivial;
933}
934
935
936/* Generate code to perform the "usual arithmetic conversions" (ANSI C
937 6.2.1.5) for the two operands of an arithmetic operator. This
938 effectively finds a "least upper bound" type for the two arguments,
939 and promotes each argument to that type. *VALUE1 and *VALUE2
940 describe the values as they are passed in, and as they are left. */
941static void
6661ad48
SM
942gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
943 struct axs_value *value2)
c906108c
SS
944{
945 /* Do the usual binary conversions. */
946 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
947 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
948 {
949 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
950 integer types by size, and then by signedness: an n-bit
951 unsigned type is considered "wider" than an n-bit signed
952 type. Promote to the "wider" of the two types, and always
953 promote at least to int. */
6661ad48 954 struct type *target = max_type (builtin_type (ax->gdbarch)->builtin_int,
c906108c
SS
955 max_type (value1->type, value2->type));
956
957 /* Deal with value2, on the top of the stack. */
958 gen_conversion (ax, value2->type, target);
959
960 /* Deal with value1, not on the top of the stack. Don't
961 generate the `swap' instructions if we're not actually going
962 to do anything. */
963 if (is_nontrivial_conversion (value1->type, target))
964 {
965 ax_simple (ax, aop_swap);
966 gen_conversion (ax, value1->type, target);
967 ax_simple (ax, aop_swap);
968 }
969
648027cc 970 value1->type = value2->type = check_typedef (target);
c906108c
SS
971 }
972}
973
974
975/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
976 the value on the top of the stack, as described by VALUE. Assume
977 the value has integral type. */
978static void
6661ad48 979gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
c906108c 980{
6661ad48 981 const struct builtin_type *builtin = builtin_type (ax->gdbarch);
f7c79c41
UW
982
983 if (!type_wider_than (value->type, builtin->builtin_int))
c906108c 984 {
f7c79c41
UW
985 gen_conversion (ax, value->type, builtin->builtin_int);
986 value->type = builtin->builtin_int;
c906108c 987 }
f7c79c41 988 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
c906108c 989 {
f7c79c41
UW
990 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
991 value->type = builtin->builtin_unsigned_int;
c906108c
SS
992 }
993}
994
995
996/* Generate code for a cast to TYPE. */
997static void
fba45db2 998gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
c906108c
SS
999{
1000 /* GCC does allow casts to yield lvalues, so this should be fixed
1001 before merging these changes into the trunk. */
1002 require_rvalue (ax, value);
0e2de366 1003 /* Dereference typedefs. */
c906108c
SS
1004 type = check_typedef (type);
1005
0004e5a2 1006 switch (TYPE_CODE (type))
c906108c
SS
1007 {
1008 case TYPE_CODE_PTR:
b97aedf3 1009 case TYPE_CODE_REF:
aa006118 1010 case TYPE_CODE_RVALUE_REF:
c906108c
SS
1011 /* It's implementation-defined, and I'll bet this is what GCC
1012 does. */
1013 break;
1014
1015 case TYPE_CODE_ARRAY:
1016 case TYPE_CODE_STRUCT:
1017 case TYPE_CODE_UNION:
1018 case TYPE_CODE_FUNC:
3d263c1d 1019 error (_("Invalid type cast: intended type must be scalar."));
c906108c
SS
1020
1021 case TYPE_CODE_ENUM:
3b11a015 1022 case TYPE_CODE_BOOL:
c906108c
SS
1023 /* We don't have to worry about the size of the value, because
1024 all our integral values are fully sign-extended, and when
1025 casting pointers we can do anything we like. Is there any
74b35824
JB
1026 way for us to know what GCC actually does with a cast like
1027 this? */
c906108c 1028 break;
c5aa993b 1029
c906108c
SS
1030 case TYPE_CODE_INT:
1031 gen_conversion (ax, value->type, type);
1032 break;
1033
1034 case TYPE_CODE_VOID:
1035 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
1036 the type and notice that this value doesn't occupy a stack
1037 slot. But for now, leave the value on the stack, and
1038 preserve the "value == stack element" assumption. */
c906108c
SS
1039 break;
1040
1041 default:
3d263c1d 1042 error (_("Casts to requested type are not yet implemented."));
c906108c
SS
1043 }
1044
1045 value->type = type;
1046}
c5aa993b 1047\f
c906108c
SS
1048
1049
c906108c
SS
1050/* Generating bytecode from GDB expressions: arithmetic */
1051
1052/* Scale the integer on the top of the stack by the size of the target
1053 of the pointer type TYPE. */
1054static void
fba45db2 1055gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
c906108c
SS
1056{
1057 struct type *element = TYPE_TARGET_TYPE (type);
1058
0004e5a2 1059 if (TYPE_LENGTH (element) != 1)
c906108c 1060 {
0004e5a2 1061 ax_const_l (ax, TYPE_LENGTH (element));
c906108c
SS
1062 ax_simple (ax, op);
1063 }
1064}
1065
1066
f7c79c41 1067/* Generate code for pointer arithmetic PTR + INT. */
c906108c 1068static void
f7c79c41
UW
1069gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1070 struct axs_value *value1, struct axs_value *value2)
c906108c 1071{
b97aedf3 1072 gdb_assert (pointer_type (value1->type));
f7c79c41 1073 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
c906108c 1074
f7c79c41
UW
1075 gen_scale (ax, aop_mul, value1->type);
1076 ax_simple (ax, aop_add);
1077 gen_extend (ax, value1->type); /* Catch overflow. */
1078 value->type = value1->type;
1079 value->kind = axs_rvalue;
1080}
c906108c 1081
c906108c 1082
f7c79c41
UW
1083/* Generate code for pointer arithmetic PTR - INT. */
1084static void
1085gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1086 struct axs_value *value1, struct axs_value *value2)
1087{
b97aedf3 1088 gdb_assert (pointer_type (value1->type));
f7c79c41 1089 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
c906108c 1090
f7c79c41
UW
1091 gen_scale (ax, aop_mul, value1->type);
1092 ax_simple (ax, aop_sub);
1093 gen_extend (ax, value1->type); /* Catch overflow. */
1094 value->type = value1->type;
c906108c
SS
1095 value->kind = axs_rvalue;
1096}
1097
1098
f7c79c41 1099/* Generate code for pointer arithmetic PTR - PTR. */
c906108c 1100static void
f7c79c41
UW
1101gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1102 struct axs_value *value1, struct axs_value *value2,
1103 struct type *result_type)
c906108c 1104{
b97aedf3
SS
1105 gdb_assert (pointer_type (value1->type));
1106 gdb_assert (pointer_type (value2->type));
c906108c 1107
f7c79c41
UW
1108 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1109 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
ac74f770
MS
1110 error (_("\
1111First argument of `-' is a pointer, but second argument is neither\n\
1112an integer nor a pointer of the same type."));
c906108c 1113
f7c79c41
UW
1114 ax_simple (ax, aop_sub);
1115 gen_scale (ax, aop_div_unsigned, value1->type);
1116 value->type = result_type;
c906108c
SS
1117 value->kind = axs_rvalue;
1118}
1119
3b11a015
SS
1120static void
1121gen_equal (struct agent_expr *ax, struct axs_value *value,
1122 struct axs_value *value1, struct axs_value *value2,
1123 struct type *result_type)
1124{
1125 if (pointer_type (value1->type) || pointer_type (value2->type))
1126 ax_simple (ax, aop_equal);
1127 else
1128 gen_binop (ax, value, value1, value2,
1129 aop_equal, aop_equal, 0, "equal");
1130 value->type = result_type;
1131 value->kind = axs_rvalue;
1132}
1133
1134static void
1135gen_less (struct agent_expr *ax, struct axs_value *value,
1136 struct axs_value *value1, struct axs_value *value2,
1137 struct type *result_type)
1138{
1139 if (pointer_type (value1->type) || pointer_type (value2->type))
1140 ax_simple (ax, aop_less_unsigned);
1141 else
1142 gen_binop (ax, value, value1, value2,
1143 aop_less_signed, aop_less_unsigned, 0, "less than");
1144 value->type = result_type;
1145 value->kind = axs_rvalue;
1146}
f7c79c41 1147
c906108c
SS
1148/* Generate code for a binary operator that doesn't do pointer magic.
1149 We set VALUE to describe the result value; we assume VALUE1 and
1150 VALUE2 describe the two operands, and that they've undergone the
1151 usual binary conversions. MAY_CARRY should be non-zero iff the
1152 result needs to be extended. NAME is the English name of the
1153 operator, used in error messages */
1154static void
fba45db2 1155gen_binop (struct agent_expr *ax, struct axs_value *value,
3e43a32a
MS
1156 struct axs_value *value1, struct axs_value *value2,
1157 enum agent_op op, enum agent_op op_unsigned,
a121b7c1 1158 int may_carry, const char *name)
c906108c
SS
1159{
1160 /* We only handle INT op INT. */
0004e5a2
DJ
1161 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1162 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
3d263c1d 1163 error (_("Invalid combination of types in %s."), name);
c5aa993b 1164
c906108c
SS
1165 ax_simple (ax,
1166 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1167 if (may_carry)
c5aa993b 1168 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1169 value->type = value1->type;
1170 value->kind = axs_rvalue;
1171}
1172
1173
1174static void
f7c79c41
UW
1175gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1176 struct type *result_type)
c906108c
SS
1177{
1178 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1179 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1180 error (_("Invalid type of operand to `!'."));
c906108c 1181
c906108c 1182 ax_simple (ax, aop_log_not);
f7c79c41 1183 value->type = result_type;
c906108c
SS
1184}
1185
1186
1187static void
fba45db2 1188gen_complement (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1189{
1190 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
3d263c1d 1191 error (_("Invalid type of operand to `~'."));
c906108c 1192
c906108c
SS
1193 ax_simple (ax, aop_bit_not);
1194 gen_extend (ax, value->type);
1195}
c5aa993b 1196\f
c906108c
SS
1197
1198
c906108c
SS
1199/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1200
1201/* Dereference the value on the top of the stack. */
1202static void
053f8057 1203gen_deref (struct axs_value *value)
c906108c
SS
1204{
1205 /* The caller should check the type, because several operators use
1206 this, and we don't know what error message to generate. */
b97aedf3 1207 if (!pointer_type (value->type))
8e65ff28 1208 internal_error (__FILE__, __LINE__,
3d263c1d 1209 _("gen_deref: expected a pointer"));
c906108c
SS
1210
1211 /* We've got an rvalue now, which is a pointer. We want to yield an
1212 lvalue, whose address is exactly that pointer. So we don't
1213 actually emit any code; we just change the type from "Pointer to
1214 T" to "T", and mark the value as an lvalue in memory. Leave it
1215 to the consumer to actually dereference it. */
1216 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
b1028c8e
PA
1217 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1218 error (_("Attempt to dereference a generic pointer."));
0004e5a2 1219 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1220 ? axs_rvalue : axs_lvalue_memory);
1221}
1222
1223
1224/* Produce the address of the lvalue on the top of the stack. */
1225static void
053f8057 1226gen_address_of (struct axs_value *value)
c906108c
SS
1227{
1228 /* Special case for taking the address of a function. The ANSI
1229 standard describes this as a special case, too, so this
1230 arrangement is not without motivation. */
0004e5a2 1231 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1232 /* The value's already an rvalue on the stack, so we just need to
1233 change the type. */
1234 value->type = lookup_pointer_type (value->type);
1235 else
1236 switch (value->kind)
1237 {
1238 case axs_rvalue:
3d263c1d 1239 error (_("Operand of `&' is an rvalue, which has no address."));
c906108c
SS
1240
1241 case axs_lvalue_register:
3d263c1d 1242 error (_("Operand of `&' is in a register, and has no address."));
c906108c
SS
1243
1244 case axs_lvalue_memory:
1245 value->kind = axs_rvalue;
1246 value->type = lookup_pointer_type (value->type);
1247 break;
1248 }
1249}
1250
c906108c
SS
1251/* Generate code to push the value of a bitfield of a structure whose
1252 address is on the top of the stack. START and END give the
1253 starting and one-past-ending *bit* numbers of the field within the
1254 structure. */
1255static void
6661ad48
SM
1256gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1257 struct type *type, int start, int end)
c906108c
SS
1258{
1259 /* Note that ops[i] fetches 8 << i bits. */
1260 static enum agent_op ops[]
5b4ee69b 1261 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1262 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1263
1264 /* We don't want to touch any byte that the bitfield doesn't
1265 actually occupy; we shouldn't make any accesses we're not
1266 explicitly permitted to. We rely here on the fact that the
1267 bytecode `ref' operators work on unaligned addresses.
1268
1269 It takes some fancy footwork to get the stack to work the way
1270 we'd like. Say we're retrieving a bitfield that requires three
1271 fetches. Initially, the stack just contains the address:
c5aa993b 1272 addr
c906108c 1273 For the first fetch, we duplicate the address
c5aa993b 1274 addr addr
c906108c
SS
1275 then add the byte offset, do the fetch, and shift and mask as
1276 needed, yielding a fragment of the value, properly aligned for
1277 the final bitwise or:
c5aa993b 1278 addr frag1
c906108c 1279 then we swap, and repeat the process:
c5aa993b
JM
1280 frag1 addr --- address on top
1281 frag1 addr addr --- duplicate it
1282 frag1 addr frag2 --- get second fragment
1283 frag1 frag2 addr --- swap again
1284 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1285 Notice that, since the third fragment is the last one, we don't
1286 bother duplicating the address this time. Now we have all the
1287 fragments on the stack, and we can simply `or' them together,
1288 yielding the final value of the bitfield. */
1289
1290 /* The first and one-after-last bits in the field, but rounded down
1291 and up to byte boundaries. */
1292 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1293 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1294 / TARGET_CHAR_BIT)
1295 * TARGET_CHAR_BIT);
c906108c
SS
1296
1297 /* current bit offset within the structure */
1298 int offset;
1299
1300 /* The index in ops of the opcode we're considering. */
1301 int op;
1302
1303 /* The number of fragments we generated in the process. Probably
1304 equal to the number of `one' bits in bytesize, but who cares? */
1305 int fragment_count;
1306
0e2de366 1307 /* Dereference any typedefs. */
c906108c
SS
1308 type = check_typedef (type);
1309
1310 /* Can we fetch the number of bits requested at all? */
1311 if ((end - start) > ((1 << num_ops) * 8))
8e65ff28 1312 internal_error (__FILE__, __LINE__,
3d263c1d 1313 _("gen_bitfield_ref: bitfield too wide"));
c906108c
SS
1314
1315 /* Note that we know here that we only need to try each opcode once.
1316 That may not be true on machines with weird byte sizes. */
1317 offset = bound_start;
1318 fragment_count = 0;
1319 for (op = num_ops - 1; op >= 0; op--)
1320 {
1321 /* number of bits that ops[op] would fetch */
1322 int op_size = 8 << op;
1323
1324 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1325 more fragments, then the address. */
1326
c906108c
SS
1327 /* Does this fetch fit within the bitfield? */
1328 if (offset + op_size <= bound_end)
1329 {
1330 /* Is this the last fragment? */
1331 int last_frag = (offset + op_size == bound_end);
1332
c5aa993b
JM
1333 if (!last_frag)
1334 ax_simple (ax, aop_dup); /* keep a copy of the address */
1335
c906108c
SS
1336 /* Add the offset. */
1337 gen_offset (ax, offset / TARGET_CHAR_BIT);
1338
92bc6a20 1339 if (ax->tracing)
c906108c
SS
1340 {
1341 /* Record the area of memory we're about to fetch. */
1342 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1343 }
1344
1345 /* Perform the fetch. */
1346 ax_simple (ax, ops[op]);
c5aa993b
JM
1347
1348 /* Shift the bits we have to their proper position.
c906108c
SS
1349 gen_left_shift will generate right shifts when the operand
1350 is negative.
1351
c5aa993b
JM
1352 A big-endian field diagram to ponder:
1353 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1354 +------++------++------++------++------++------++------++------+
1355 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1356 ^ ^ ^ ^
1357 bit number 16 32 48 53
c906108c
SS
1358 These are bit numbers as supplied by GDB. Note that the
1359 bit numbers run from right to left once you've fetched the
1360 value!
1361
c5aa993b
JM
1362 A little-endian field diagram to ponder:
1363 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1364 +------++------++------++------++------++------++------++------+
1365 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1366 ^ ^ ^ ^ ^
1367 bit number 48 32 16 4 0
1368
1369 In both cases, the most significant end is on the left
1370 (i.e. normal numeric writing order), which means that you
1371 don't go crazy thinking about `left' and `right' shifts.
1372
1373 We don't have to worry about masking yet:
1374 - If they contain garbage off the least significant end, then we
1375 must be looking at the low end of the field, and the right
1376 shift will wipe them out.
1377 - If they contain garbage off the most significant end, then we
1378 must be looking at the most significant end of the word, and
1379 the sign/zero extension will wipe them out.
1380 - If we're in the interior of the word, then there is no garbage
1381 on either end, because the ref operators zero-extend. */
6661ad48 1382 if (gdbarch_byte_order (ax->gdbarch) == BFD_ENDIAN_BIG)
c906108c 1383 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1384 else
c906108c
SS
1385 gen_left_shift (ax, offset - start);
1386
c5aa993b 1387 if (!last_frag)
c906108c
SS
1388 /* Bring the copy of the address up to the top. */
1389 ax_simple (ax, aop_swap);
1390
1391 offset += op_size;
1392 fragment_count++;
1393 }
1394 }
1395
1396 /* Generate enough bitwise `or' operations to combine all the
1397 fragments we left on the stack. */
1398 while (fragment_count-- > 1)
1399 ax_simple (ax, aop_bit_or);
1400
1401 /* Sign- or zero-extend the value as appropriate. */
1402 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1403
1404 /* This is *not* an lvalue. Ugh. */
1405 value->kind = axs_rvalue;
1406 value->type = type;
1407}
1408
b6e7192f
SS
1409/* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1410 is an accumulated offset (in bytes), will be nonzero for objects
1411 embedded in other objects, like C++ base classes. Behavior should
1412 generally follow value_primitive_field. */
1413
1414static void
6661ad48 1415gen_primitive_field (struct agent_expr *ax, struct axs_value *value,
b6e7192f
SS
1416 int offset, int fieldno, struct type *type)
1417{
1418 /* Is this a bitfield? */
1419 if (TYPE_FIELD_PACKED (type, fieldno))
6661ad48 1420 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, fieldno),
b6e7192f
SS
1421 (offset * TARGET_CHAR_BIT
1422 + TYPE_FIELD_BITPOS (type, fieldno)),
1423 (offset * TARGET_CHAR_BIT
1424 + TYPE_FIELD_BITPOS (type, fieldno)
1425 + TYPE_FIELD_BITSIZE (type, fieldno)));
1426 else
1427 {
1428 gen_offset (ax, offset
1429 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1430 value->kind = axs_lvalue_memory;
1431 value->type = TYPE_FIELD_TYPE (type, fieldno);
1432 }
1433}
1434
1435/* Search for the given field in either the given type or one of its
1436 base classes. Return 1 if found, 0 if not. */
1437
1438static int
6661ad48 1439gen_struct_ref_recursive (struct agent_expr *ax, struct axs_value *value,
a121b7c1 1440 const char *field, int offset, struct type *type)
b6e7192f
SS
1441{
1442 int i, rslt;
1443 int nbases = TYPE_N_BASECLASSES (type);
1444
f168693b 1445 type = check_typedef (type);
b6e7192f
SS
1446
1447 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1448 {
0d5cff50 1449 const char *this_name = TYPE_FIELD_NAME (type, i);
b6e7192f
SS
1450
1451 if (this_name)
1452 {
1453 if (strcmp (field, this_name) == 0)
1454 {
1455 /* Note that bytecodes for the struct's base (aka
1456 "this") will have been generated already, which will
1457 be unnecessary but not harmful if the static field is
1458 being handled as a global. */
1459 if (field_is_static (&TYPE_FIELD (type, i)))
1460 {
40f4af28 1461 gen_static_field (ax, value, type, i);
400c6af0 1462 if (value->optimized_out)
3e43a32a
MS
1463 error (_("static field `%s' has been "
1464 "optimized out, cannot use"),
400c6af0 1465 field);
b6e7192f
SS
1466 return 1;
1467 }
1468
6661ad48 1469 gen_primitive_field (ax, value, offset, i, type);
b6e7192f
SS
1470 return 1;
1471 }
1472#if 0 /* is this right? */
1473 if (this_name[0] == '\0')
1474 internal_error (__FILE__, __LINE__,
1475 _("find_field: anonymous unions not supported"));
1476#endif
1477 }
1478 }
1479
1480 /* Now scan through base classes recursively. */
1481 for (i = 0; i < nbases; i++)
1482 {
1483 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1484
6661ad48 1485 rslt = gen_struct_ref_recursive (ax, value, field,
3e43a32a
MS
1486 offset + TYPE_BASECLASS_BITPOS (type, i)
1487 / TARGET_CHAR_BIT,
b6e7192f
SS
1488 basetype);
1489 if (rslt)
1490 return 1;
1491 }
1492
1493 /* Not found anywhere, flag so caller can complain. */
1494 return 0;
1495}
c906108c
SS
1496
1497/* Generate code to reference the member named FIELD of a structure or
1498 union. The top of the stack, as described by VALUE, should have
1499 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1500 the operator being compiled, and OPERAND_NAME is the kind of thing
1501 it operates on; we use them in error messages. */
1502static void
6661ad48
SM
1503gen_struct_ref (struct agent_expr *ax, struct axs_value *value,
1504 const char *field, const char *operator_name,
1505 const char *operand_name)
c906108c
SS
1506{
1507 struct type *type;
b6e7192f 1508 int found;
c906108c
SS
1509
1510 /* Follow pointers until we reach a non-pointer. These aren't the C
1511 semantics, but they're what the normal GDB evaluator does, so we
1512 should at least be consistent. */
b97aedf3 1513 while (pointer_type (value->type))
c906108c 1514 {
f7c79c41 1515 require_rvalue (ax, value);
053f8057 1516 gen_deref (value);
c906108c 1517 }
e8860ec2 1518 type = check_typedef (value->type);
c906108c
SS
1519
1520 /* This must yield a structure or a union. */
1521 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1522 && TYPE_CODE (type) != TYPE_CODE_UNION)
3d263c1d 1523 error (_("The left operand of `%s' is not a %s."),
c906108c
SS
1524 operator_name, operand_name);
1525
1526 /* And it must be in memory; we don't deal with structure rvalues,
1527 or structures living in registers. */
1528 if (value->kind != axs_lvalue_memory)
3d263c1d 1529 error (_("Structure does not live in memory."));
c906108c 1530
b6e7192f 1531 /* Search through fields and base classes recursively. */
6661ad48 1532 found = gen_struct_ref_recursive (ax, value, field, 0, type);
b6e7192f
SS
1533
1534 if (!found)
1535 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
e86ca25f 1536 field, TYPE_NAME (type));
b6e7192f 1537}
c5aa993b 1538
b6e7192f 1539static int
6661ad48 1540gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
b6e7192f
SS
1541 const struct type *curtype, char *name);
1542static int
6661ad48 1543gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
b6e7192f
SS
1544 const struct type *curtype, char *name);
1545
1546static void
40f4af28 1547gen_static_field (struct agent_expr *ax, struct axs_value *value,
b6e7192f
SS
1548 struct type *type, int fieldno)
1549{
1550 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1551 {
b6e7192f 1552 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c 1553 value->kind = axs_lvalue_memory;
b6e7192f 1554 value->type = TYPE_FIELD_TYPE (type, fieldno);
400c6af0 1555 value->optimized_out = 0;
b6e7192f
SS
1556 }
1557 else
1558 {
ff355380 1559 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
d12307c1 1560 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol;
b6e7192f 1561
400c6af0
SS
1562 if (sym)
1563 {
40f4af28 1564 gen_var_ref (ax, value, sym);
400c6af0
SS
1565
1566 /* Don't error if the value was optimized out, we may be
1567 scanning all static fields and just want to pass over this
1568 and continue with the rest. */
1569 }
1570 else
1571 {
1572 /* Silently assume this was optimized out; class printing
1573 will let the user know why the data is missing. */
1574 value->optimized_out = 1;
1575 }
b6e7192f
SS
1576 }
1577}
1578
1579static int
6661ad48 1580gen_struct_elt_for_reference (struct agent_expr *ax, struct axs_value *value,
b6e7192f
SS
1581 struct type *type, char *fieldname)
1582{
1583 struct type *t = type;
1584 int i;
b6e7192f
SS
1585
1586 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1587 && TYPE_CODE (t) != TYPE_CODE_UNION)
1588 internal_error (__FILE__, __LINE__,
1589 _("non-aggregate type to gen_struct_elt_for_reference"));
1590
1591 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1592 {
0d5cff50 1593 const char *t_field_name = TYPE_FIELD_NAME (t, i);
b6e7192f
SS
1594
1595 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1596 {
1597 if (field_is_static (&TYPE_FIELD (t, i)))
1598 {
40f4af28 1599 gen_static_field (ax, value, t, i);
400c6af0 1600 if (value->optimized_out)
3e43a32a
MS
1601 error (_("static field `%s' has been "
1602 "optimized out, cannot use"),
400c6af0 1603 fieldname);
b6e7192f
SS
1604 return 1;
1605 }
1606 if (TYPE_FIELD_PACKED (t, i))
1607 error (_("pointers to bitfield members not allowed"));
1608
1609 /* FIXME we need a way to do "want_address" equivalent */
1610
1611 error (_("Cannot reference non-static field \"%s\""), fieldname);
1612 }
c906108c 1613 }
b6e7192f
SS
1614
1615 /* FIXME add other scoped-reference cases here */
1616
1617 /* Do a last-ditch lookup. */
6661ad48 1618 return gen_maybe_namespace_elt (ax, value, type, fieldname);
c906108c
SS
1619}
1620
b6e7192f
SS
1621/* C++: Return the member NAME of the namespace given by the type
1622 CURTYPE. */
1623
1624static int
6661ad48 1625gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
b6e7192f
SS
1626 const struct type *curtype, char *name)
1627{
6661ad48 1628 int found = gen_maybe_namespace_elt (ax, value, curtype, name);
b6e7192f
SS
1629
1630 if (!found)
1631 error (_("No symbol \"%s\" in namespace \"%s\"."),
e86ca25f 1632 name, TYPE_NAME (curtype));
b6e7192f
SS
1633
1634 return found;
1635}
1636
1637/* A helper function used by value_namespace_elt and
1638 value_struct_elt_for_reference. It looks up NAME inside the
1639 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1640 is a class and NAME refers to a type in CURTYPE itself (as opposed
1641 to, say, some base class of CURTYPE). */
1642
1643static int
6661ad48 1644gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
b6e7192f
SS
1645 const struct type *curtype, char *name)
1646{
e86ca25f 1647 const char *namespace_name = TYPE_NAME (curtype);
d12307c1 1648 struct block_symbol sym;
b6e7192f
SS
1649
1650 sym = cp_lookup_symbol_namespace (namespace_name, name,
1651 block_for_pc (ax->scope),
ac0cd78b 1652 VAR_DOMAIN);
b6e7192f 1653
d12307c1 1654 if (sym.symbol == NULL)
b6e7192f
SS
1655 return 0;
1656
40f4af28 1657 gen_var_ref (ax, value, sym.symbol);
b6e7192f 1658
400c6af0
SS
1659 if (value->optimized_out)
1660 error (_("`%s' has been optimized out, cannot use"),
987012b8 1661 sym.symbol->print_name ());
400c6af0 1662
b6e7192f
SS
1663 return 1;
1664}
1665
1666
1667static int
6661ad48 1668gen_aggregate_elt_ref (struct agent_expr *ax, struct axs_value *value,
2347965c 1669 struct type *type, char *field)
b6e7192f
SS
1670{
1671 switch (TYPE_CODE (type))
1672 {
1673 case TYPE_CODE_STRUCT:
1674 case TYPE_CODE_UNION:
6661ad48 1675 return gen_struct_elt_for_reference (ax, value, type, field);
b6e7192f
SS
1676 break;
1677 case TYPE_CODE_NAMESPACE:
6661ad48 1678 return gen_namespace_elt (ax, value, type, field);
b6e7192f
SS
1679 break;
1680 default:
1681 internal_error (__FILE__, __LINE__,
1682 _("non-aggregate type in gen_aggregate_elt_ref"));
1683 }
1684
1685 return 0;
1686}
c906108c 1687
0e2de366 1688/* Generate code for GDB's magical `repeat' operator.
c906108c
SS
1689 LVALUE @ INT creates an array INT elements long, and whose elements
1690 have the same type as LVALUE, located in memory so that LVALUE is
1691 its first element. For example, argv[0]@argc gives you the array
1692 of command-line arguments.
1693
1694 Unfortunately, because we have to know the types before we actually
1695 have a value for the expression, we can't implement this perfectly
1696 without changing the type system, having values that occupy two
1697 stack slots, doing weird things with sizeof, etc. So we require
1698 the right operand to be a constant expression. */
1699static void
f7c79c41
UW
1700gen_repeat (struct expression *exp, union exp_element **pc,
1701 struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1702{
1703 struct axs_value value1;
5b4ee69b 1704
c906108c
SS
1705 /* We don't want to turn this into an rvalue, so no conversions
1706 here. */
f7c79c41 1707 gen_expr (exp, pc, ax, &value1);
c906108c 1708 if (value1.kind != axs_lvalue_memory)
3d263c1d 1709 error (_("Left operand of `@' must be an object in memory."));
c906108c
SS
1710
1711 /* Evaluate the length; it had better be a constant. */
1712 {
1713 struct value *v = const_expr (pc);
1714 int length;
1715
c5aa993b 1716 if (!v)
3e43a32a
MS
1717 error (_("Right operand of `@' must be a "
1718 "constant, in agent expressions."));
04624583 1719 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
3d263c1d 1720 error (_("Right operand of `@' must be an integer."));
c906108c
SS
1721 length = value_as_long (v);
1722 if (length <= 0)
3d263c1d 1723 error (_("Right operand of `@' must be positive."));
c906108c
SS
1724
1725 /* The top of the stack is already the address of the object, so
1726 all we need to do is frob the type of the lvalue. */
1727 {
1728 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1729 done with it. */
e3506a9f
UW
1730 struct type *array
1731 = lookup_array_range_type (value1.type, 0, length - 1);
c906108c
SS
1732
1733 value->kind = axs_lvalue_memory;
1734 value->type = array;
1735 }
1736 }
1737}
1738
1739
1740/* Emit code for the `sizeof' operator.
1741 *PC should point at the start of the operand expression; we advance it
1742 to the first instruction after the operand. */
1743static void
f7c79c41
UW
1744gen_sizeof (struct expression *exp, union exp_element **pc,
1745 struct agent_expr *ax, struct axs_value *value,
1746 struct type *size_type)
c906108c
SS
1747{
1748 /* We don't care about the value of the operand expression; we only
1749 care about its type. However, in the current arrangement, the
1750 only way to find an expression's type is to generate code for it.
1751 So we generate code for the operand, and then throw it away,
1752 replacing it with code that simply pushes its size. */
1753 int start = ax->len;
5b4ee69b 1754
f7c79c41 1755 gen_expr (exp, pc, ax, value);
c906108c
SS
1756
1757 /* Throw away the code we just generated. */
1758 ax->len = start;
c5aa993b 1759
c906108c
SS
1760 ax_const_l (ax, TYPE_LENGTH (value->type));
1761 value->kind = axs_rvalue;
f7c79c41 1762 value->type = size_type;
c906108c 1763}
c906108c 1764\f
c5aa993b 1765
46a4882b
PA
1766/* Generate bytecode for a cast to TO_TYPE. Advance *PC over the
1767 subexpression. */
1768
1769static void
1770gen_expr_for_cast (struct expression *exp, union exp_element **pc,
1771 struct agent_expr *ax, struct axs_value *value,
1772 struct type *to_type)
1773{
1774 enum exp_opcode op = (*pc)[0].opcode;
1775
1776 /* Don't let symbols be handled with gen_expr because that throws an
1777 "unknown type" error for no-debug data symbols. Instead, we want
1778 the cast to reinterpret such symbols. */
1779 if (op == OP_VAR_MSYM_VALUE || op == OP_VAR_VALUE)
1780 {
1781 if (op == OP_VAR_VALUE)
1782 {
1783 gen_var_ref (ax, value, (*pc)[2].symbol);
1784
1785 if (value->optimized_out)
1786 error (_("`%s' has been optimized out, cannot use"),
987012b8 1787 (*pc)[2].symbol->print_name ());
46a4882b
PA
1788 }
1789 else
1790 gen_msym_var_ref (ax, value, (*pc)[2].msymbol, (*pc)[1].objfile);
1791 if (TYPE_CODE (value->type) == TYPE_CODE_ERROR)
1792 value->type = to_type;
1793 (*pc) += 4;
1794 }
1795 else
1796 gen_expr (exp, pc, ax, value);
1797 gen_cast (ax, value, to_type);
1798}
1799
c906108c
SS
1800/* Generating bytecode from GDB expressions: general recursive thingy */
1801
3d263c1d 1802/* XXX: i18n */
c906108c
SS
1803/* A gen_expr function written by a Gen-X'er guy.
1804 Append code for the subexpression of EXPR starting at *POS_P to AX. */
55aa24fb 1805void
f7c79c41
UW
1806gen_expr (struct expression *exp, union exp_element **pc,
1807 struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1808{
1809 /* Used to hold the descriptions of operand expressions. */
09d559e4 1810 struct axs_value value1, value2, value3;
f61e138d 1811 enum exp_opcode op = (*pc)[0].opcode, op2;
09d559e4 1812 int if1, go1, if2, go2, end;
6661ad48 1813 struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
c906108c
SS
1814
1815 /* If we're looking at a constant expression, just push its value. */
1816 {
1817 struct value *v = maybe_const_expr (pc);
c5aa993b 1818
c906108c
SS
1819 if (v)
1820 {
1821 ax_const_l (ax, value_as_long (v));
1822 value->kind = axs_rvalue;
df407dfe 1823 value->type = check_typedef (value_type (v));
c906108c
SS
1824 return;
1825 }
1826 }
1827
1828 /* Otherwise, go ahead and generate code for it. */
1829 switch (op)
1830 {
1831 /* Binary arithmetic operators. */
1832 case BINOP_ADD:
1833 case BINOP_SUB:
1834 case BINOP_MUL:
1835 case BINOP_DIV:
1836 case BINOP_REM:
948103cf
SS
1837 case BINOP_LSH:
1838 case BINOP_RSH:
c906108c
SS
1839 case BINOP_SUBSCRIPT:
1840 case BINOP_BITWISE_AND:
1841 case BINOP_BITWISE_IOR:
1842 case BINOP_BITWISE_XOR:
782b2b07
SS
1843 case BINOP_EQUAL:
1844 case BINOP_NOTEQUAL:
1845 case BINOP_LESS:
1846 case BINOP_GTR:
1847 case BINOP_LEQ:
1848 case BINOP_GEQ:
c906108c 1849 (*pc)++;
f7c79c41 1850 gen_expr (exp, pc, ax, &value1);
6661ad48 1851 gen_usual_unary (ax, &value1);
f61e138d
SS
1852 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1853 break;
1854
09d559e4
SS
1855 case BINOP_LOGICAL_AND:
1856 (*pc)++;
1857 /* Generate the obvious sequence of tests and jumps. */
1858 gen_expr (exp, pc, ax, &value1);
6661ad48 1859 gen_usual_unary (ax, &value1);
09d559e4
SS
1860 if1 = ax_goto (ax, aop_if_goto);
1861 go1 = ax_goto (ax, aop_goto);
1862 ax_label (ax, if1, ax->len);
1863 gen_expr (exp, pc, ax, &value2);
6661ad48 1864 gen_usual_unary (ax, &value2);
09d559e4
SS
1865 if2 = ax_goto (ax, aop_if_goto);
1866 go2 = ax_goto (ax, aop_goto);
1867 ax_label (ax, if2, ax->len);
1868 ax_const_l (ax, 1);
1869 end = ax_goto (ax, aop_goto);
1870 ax_label (ax, go1, ax->len);
1871 ax_label (ax, go2, ax->len);
1872 ax_const_l (ax, 0);
1873 ax_label (ax, end, ax->len);
1874 value->kind = axs_rvalue;
3b11a015 1875 value->type = int_type;
09d559e4
SS
1876 break;
1877
1878 case BINOP_LOGICAL_OR:
1879 (*pc)++;
1880 /* Generate the obvious sequence of tests and jumps. */
1881 gen_expr (exp, pc, ax, &value1);
6661ad48 1882 gen_usual_unary (ax, &value1);
09d559e4
SS
1883 if1 = ax_goto (ax, aop_if_goto);
1884 gen_expr (exp, pc, ax, &value2);
6661ad48 1885 gen_usual_unary (ax, &value2);
09d559e4
SS
1886 if2 = ax_goto (ax, aop_if_goto);
1887 ax_const_l (ax, 0);
1888 end = ax_goto (ax, aop_goto);
1889 ax_label (ax, if1, ax->len);
1890 ax_label (ax, if2, ax->len);
1891 ax_const_l (ax, 1);
1892 ax_label (ax, end, ax->len);
1893 value->kind = axs_rvalue;
3b11a015 1894 value->type = int_type;
09d559e4
SS
1895 break;
1896
1897 case TERNOP_COND:
1898 (*pc)++;
1899 gen_expr (exp, pc, ax, &value1);
6661ad48 1900 gen_usual_unary (ax, &value1);
09d559e4
SS
1901 /* For (A ? B : C), it's easiest to generate subexpression
1902 bytecodes in order, but if_goto jumps on true, so we invert
1903 the sense of A. Then we can do B by dropping through, and
1904 jump to do C. */
3b11a015 1905 gen_logical_not (ax, &value1, int_type);
09d559e4
SS
1906 if1 = ax_goto (ax, aop_if_goto);
1907 gen_expr (exp, pc, ax, &value2);
6661ad48 1908 gen_usual_unary (ax, &value2);
09d559e4
SS
1909 end = ax_goto (ax, aop_goto);
1910 ax_label (ax, if1, ax->len);
1911 gen_expr (exp, pc, ax, &value3);
6661ad48 1912 gen_usual_unary (ax, &value3);
09d559e4 1913 ax_label (ax, end, ax->len);
85102364 1914 /* This is arbitrary - what if B and C are incompatible types? */
09d559e4
SS
1915 value->type = value2.type;
1916 value->kind = value2.kind;
1917 break;
1918
f61e138d
SS
1919 case BINOP_ASSIGN:
1920 (*pc)++;
1921 if ((*pc)[0].opcode == OP_INTERNALVAR)
c906108c 1922 {
f61e138d
SS
1923 char *name = internalvar_name ((*pc)[1].internalvar);
1924 struct trace_state_variable *tsv;
5b4ee69b 1925
f61e138d
SS
1926 (*pc) += 3;
1927 gen_expr (exp, pc, ax, value);
1928 tsv = find_trace_state_variable (name);
1929 if (tsv)
f7c79c41 1930 {
f61e138d 1931 ax_tsv (ax, aop_setv, tsv->number);
92bc6a20 1932 if (ax->tracing)
f61e138d 1933 ax_tsv (ax, aop_tracev, tsv->number);
f7c79c41 1934 }
f7c79c41 1935 else
3e43a32a
MS
1936 error (_("$%s is not a trace state variable, "
1937 "may not assign to it"), name);
f61e138d
SS
1938 }
1939 else
1940 error (_("May only assign to trace state variables"));
1941 break;
782b2b07 1942
f61e138d
SS
1943 case BINOP_ASSIGN_MODIFY:
1944 (*pc)++;
1945 op2 = (*pc)[0].opcode;
1946 (*pc)++;
1947 (*pc)++;
1948 if ((*pc)[0].opcode == OP_INTERNALVAR)
1949 {
1950 char *name = internalvar_name ((*pc)[1].internalvar);
1951 struct trace_state_variable *tsv;
5b4ee69b 1952
f61e138d
SS
1953 (*pc) += 3;
1954 tsv = find_trace_state_variable (name);
1955 if (tsv)
1956 {
1957 /* The tsv will be the left half of the binary operation. */
1958 ax_tsv (ax, aop_getv, tsv->number);
92bc6a20 1959 if (ax->tracing)
f61e138d
SS
1960 ax_tsv (ax, aop_tracev, tsv->number);
1961 /* Trace state variables are always 64-bit integers. */
1962 value1.kind = axs_rvalue;
6661ad48 1963 value1.type = builtin_type (ax->gdbarch)->builtin_long_long;
f61e138d
SS
1964 /* Now do right half of expression. */
1965 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1966 /* We have a result of the binary op, set the tsv. */
1967 ax_tsv (ax, aop_setv, tsv->number);
92bc6a20 1968 if (ax->tracing)
f61e138d
SS
1969 ax_tsv (ax, aop_tracev, tsv->number);
1970 }
1971 else
3e43a32a
MS
1972 error (_("$%s is not a trace state variable, "
1973 "may not assign to it"), name);
c906108c 1974 }
f61e138d
SS
1975 else
1976 error (_("May only assign to trace state variables"));
c906108c
SS
1977 break;
1978
1979 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1980 for comma. In C, we can do some optimizations here because
1981 we know the left operand is only being evaluated for effect.
1982 However, if the tracing kludge is in effect, then we always
1983 need to evaluate the left hand side fully, so that all the
1984 variables it mentions get traced. */
c906108c
SS
1985 case BINOP_COMMA:
1986 (*pc)++;
f7c79c41 1987 gen_expr (exp, pc, ax, &value1);
c906108c 1988 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1989 in which case we want to emit code to trace it if it's an
1990 lvalue. */
40f4af28 1991 gen_traced_pop (ax, &value1);
f7c79c41 1992 gen_expr (exp, pc, ax, value);
c906108c
SS
1993 /* It's the consumer's responsibility to trace the right operand. */
1994 break;
c5aa993b 1995
c906108c
SS
1996 case OP_LONG: /* some integer constant */
1997 {
1998 struct type *type = (*pc)[1].type;
1999 LONGEST k = (*pc)[2].longconst;
5b4ee69b 2000
c906108c
SS
2001 (*pc) += 4;
2002 gen_int_literal (ax, value, k, type);
2003 }
c5aa993b 2004 break;
c906108c
SS
2005
2006 case OP_VAR_VALUE:
40f4af28 2007 gen_var_ref (ax, value, (*pc)[2].symbol);
400c6af0
SS
2008
2009 if (value->optimized_out)
2010 error (_("`%s' has been optimized out, cannot use"),
987012b8 2011 (*pc)[2].symbol->print_name ());
400c6af0 2012
46a4882b 2013 if (TYPE_CODE (value->type) == TYPE_CODE_ERROR)
987012b8 2014 error_unknown_type ((*pc)[2].symbol->print_name ());
46a4882b 2015
c906108c
SS
2016 (*pc) += 4;
2017 break;
2018
74ea4be4
PA
2019 case OP_VAR_MSYM_VALUE:
2020 gen_msym_var_ref (ax, value, (*pc)[2].msymbol, (*pc)[1].objfile);
46a4882b
PA
2021
2022 if (TYPE_CODE (value->type) == TYPE_CODE_ERROR)
c9d95fa3 2023 error_unknown_type ((*pc)[2].msymbol->linkage_name ());
46a4882b 2024
74ea4be4
PA
2025 (*pc) += 4;
2026 break;
2027
c906108c
SS
2028 case OP_REGISTER:
2029 {
67f3407f
DJ
2030 const char *name = &(*pc)[2].string;
2031 int reg;
5b4ee69b 2032
67f3407f 2033 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
6661ad48 2034 reg = user_reg_map_name_to_regnum (ax->gdbarch, name, strlen (name));
67f3407f
DJ
2035 if (reg == -1)
2036 internal_error (__FILE__, __LINE__,
2037 _("Register $%s not available"), name);
6ab12e0f 2038 /* No support for tracing user registers yet. */
f6efe3f8 2039 if (reg >= gdbarch_num_cooked_regs (ax->gdbarch))
abc1f4cd
HZ
2040 error (_("'%s' is a user-register; "
2041 "GDB cannot yet trace user-register contents."),
6ab12e0f 2042 name);
c906108c
SS
2043 value->kind = axs_lvalue_register;
2044 value->u.reg = reg;
6661ad48 2045 value->type = register_type (ax->gdbarch, reg);
c906108c 2046 }
c5aa993b 2047 break;
c906108c
SS
2048
2049 case OP_INTERNALVAR:
f61e138d 2050 {
22d2b532
SDJ
2051 struct internalvar *var = (*pc)[1].internalvar;
2052 const char *name = internalvar_name (var);
f61e138d 2053 struct trace_state_variable *tsv;
5b4ee69b 2054
f61e138d
SS
2055 (*pc) += 3;
2056 tsv = find_trace_state_variable (name);
2057 if (tsv)
2058 {
2059 ax_tsv (ax, aop_getv, tsv->number);
92bc6a20 2060 if (ax->tracing)
f61e138d
SS
2061 ax_tsv (ax, aop_tracev, tsv->number);
2062 /* Trace state variables are always 64-bit integers. */
2063 value->kind = axs_rvalue;
6661ad48 2064 value->type = builtin_type (ax->gdbarch)->builtin_long_long;
f61e138d 2065 }
22d2b532 2066 else if (! compile_internalvar_to_ax (var, ax, value))
3e43a32a
MS
2067 error (_("$%s is not a trace state variable; GDB agent "
2068 "expressions cannot use convenience variables."), name);
f61e138d
SS
2069 }
2070 break;
c906108c 2071
c5aa993b 2072 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
2073 case BINOP_REPEAT:
2074 /* Note that gen_repeat handles its own argument evaluation. */
2075 (*pc)++;
f7c79c41 2076 gen_repeat (exp, pc, ax, value);
c906108c
SS
2077 break;
2078
2079 case UNOP_CAST:
2080 {
2081 struct type *type = (*pc)[1].type;
5b4ee69b 2082
c906108c 2083 (*pc) += 3;
46a4882b 2084 gen_expr_for_cast (exp, pc, ax, value, type);
c906108c 2085 }
c5aa993b 2086 break;
c906108c 2087
9eaf6705
TT
2088 case UNOP_CAST_TYPE:
2089 {
2090 int offset;
2091 struct value *val;
2092 struct type *type;
2093
2094 ++*pc;
2095 offset = *pc - exp->elts;
2096 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2097 type = value_type (val);
2098 *pc = &exp->elts[offset];
46a4882b 2099 gen_expr_for_cast (exp, pc, ax, value, type);
9eaf6705
TT
2100 }
2101 break;
2102
c906108c
SS
2103 case UNOP_MEMVAL:
2104 {
2105 struct type *type = check_typedef ((*pc)[1].type);
5b4ee69b 2106
c906108c 2107 (*pc) += 3;
f7c79c41 2108 gen_expr (exp, pc, ax, value);
a0c78a73
PA
2109
2110 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2111 already have the right value on the stack. For
2112 axs_lvalue_register, we must convert. */
2113 if (value->kind == axs_lvalue_register)
2114 require_rvalue (ax, value);
2115
c906108c
SS
2116 value->type = type;
2117 value->kind = axs_lvalue_memory;
2118 }
c5aa993b 2119 break;
c906108c 2120
9eaf6705
TT
2121 case UNOP_MEMVAL_TYPE:
2122 {
2123 int offset;
2124 struct value *val;
2125 struct type *type;
2126
2127 ++*pc;
2128 offset = *pc - exp->elts;
2129 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2130 type = value_type (val);
2131 *pc = &exp->elts[offset];
2132
2133 gen_expr (exp, pc, ax, value);
2134
2135 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2136 already have the right value on the stack. For
2137 axs_lvalue_register, we must convert. */
2138 if (value->kind == axs_lvalue_register)
2139 require_rvalue (ax, value);
2140
2141 value->type = type;
2142 value->kind = axs_lvalue_memory;
2143 }
2144 break;
2145
36e9969c
NS
2146 case UNOP_PLUS:
2147 (*pc)++;
0e2de366 2148 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
f7c79c41 2149 gen_expr (exp, pc, ax, value);
6661ad48 2150 gen_usual_unary (ax, value);
36e9969c
NS
2151 break;
2152
c906108c
SS
2153 case UNOP_NEG:
2154 (*pc)++;
2155 /* -FOO is equivalent to 0 - FOO. */
22601c15 2156 gen_int_literal (ax, &value1, 0,
6661ad48
SM
2157 builtin_type (ax->gdbarch)->builtin_int);
2158 gen_usual_unary (ax, &value1); /* shouldn't do much */
f7c79c41 2159 gen_expr (exp, pc, ax, &value2);
6661ad48
SM
2160 gen_usual_unary (ax, &value2);
2161 gen_usual_arithmetic (ax, &value1, &value2);
f7c79c41 2162 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
c906108c
SS
2163 break;
2164
2165 case UNOP_LOGICAL_NOT:
2166 (*pc)++;
f7c79c41 2167 gen_expr (exp, pc, ax, value);
6661ad48 2168 gen_usual_unary (ax, value);
3b11a015 2169 gen_logical_not (ax, value, int_type);
c906108c
SS
2170 break;
2171
2172 case UNOP_COMPLEMENT:
2173 (*pc)++;
f7c79c41 2174 gen_expr (exp, pc, ax, value);
6661ad48
SM
2175 gen_usual_unary (ax, value);
2176 gen_integral_promotions (ax, value);
c906108c
SS
2177 gen_complement (ax, value);
2178 break;
2179
2180 case UNOP_IND:
2181 (*pc)++;
f7c79c41 2182 gen_expr (exp, pc, ax, value);
6661ad48 2183 gen_usual_unary (ax, value);
b97aedf3 2184 if (!pointer_type (value->type))
3d263c1d 2185 error (_("Argument of unary `*' is not a pointer."));
053f8057 2186 gen_deref (value);
c906108c
SS
2187 break;
2188
2189 case UNOP_ADDR:
2190 (*pc)++;
f7c79c41 2191 gen_expr (exp, pc, ax, value);
053f8057 2192 gen_address_of (value);
c906108c
SS
2193 break;
2194
2195 case UNOP_SIZEOF:
2196 (*pc)++;
2197 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
2198 of the other unary operator functions. This is because we
2199 have to throw away the code we generate. */
f7c79c41 2200 gen_sizeof (exp, pc, ax, value,
6661ad48 2201 builtin_type (ax->gdbarch)->builtin_int);
c906108c
SS
2202 break;
2203
2204 case STRUCTOP_STRUCT:
2205 case STRUCTOP_PTR:
2206 {
2207 int length = (*pc)[1].longconst;
2208 char *name = &(*pc)[2].string;
2209
2210 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
f7c79c41 2211 gen_expr (exp, pc, ax, value);
c906108c 2212 if (op == STRUCTOP_STRUCT)
6661ad48 2213 gen_struct_ref (ax, value, name, ".", "structure or union");
c906108c 2214 else if (op == STRUCTOP_PTR)
6661ad48 2215 gen_struct_ref (ax, value, name, "->",
c906108c
SS
2216 "pointer to a structure or union");
2217 else
2218 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 2219 shouldn't mention it, and we shouldn't be here. */
8e65ff28 2220 internal_error (__FILE__, __LINE__,
3d263c1d 2221 _("gen_expr: unhandled struct case"));
c906108c 2222 }
c5aa993b 2223 break;
c906108c 2224
6c228b9c
SS
2225 case OP_THIS:
2226 {
66a17cb6 2227 struct symbol *sym, *func;
3977b71f 2228 const struct block *b;
66a17cb6 2229 const struct language_defn *lang;
6c228b9c 2230
66a17cb6
TT
2231 b = block_for_pc (ax->scope);
2232 func = block_linkage_function (b);
c1b5c1eb 2233 lang = language_def (func->language ());
6c228b9c 2234
d12307c1 2235 sym = lookup_language_this (lang, b).symbol;
6c228b9c 2236 if (!sym)
66a17cb6 2237 error (_("no `%s' found"), lang->la_name_of_this);
6c228b9c 2238
40f4af28 2239 gen_var_ref (ax, value, sym);
400c6af0
SS
2240
2241 if (value->optimized_out)
2242 error (_("`%s' has been optimized out, cannot use"),
987012b8 2243 sym->print_name ());
400c6af0 2244
6c228b9c
SS
2245 (*pc) += 2;
2246 }
2247 break;
2248
b6e7192f
SS
2249 case OP_SCOPE:
2250 {
2251 struct type *type = (*pc)[1].type;
2252 int length = longest_to_int ((*pc)[2].longconst);
2253 char *name = &(*pc)[3].string;
2254 int found;
2255
2347965c 2256 found = gen_aggregate_elt_ref (ax, value, type, name);
b6e7192f
SS
2257 if (!found)
2258 error (_("There is no field named %s"), name);
2259 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2260 }
2261 break;
2262
c906108c 2263 case OP_TYPE:
608b4967
TT
2264 case OP_TYPEOF:
2265 case OP_DECLTYPE:
3d263c1d 2266 error (_("Attempt to use a type name as an expression."));
c906108c
SS
2267
2268 default:
b6e7192f 2269 error (_("Unsupported operator %s (%d) in expression."),
bd0b9f9e 2270 op_name (exp, op), op);
c906108c
SS
2271 }
2272}
f61e138d
SS
2273
2274/* This handles the middle-to-right-side of code generation for binary
2275 expressions, which is shared between regular binary operations and
2276 assign-modify (+= and friends) expressions. */
2277
2278static void
2279gen_expr_binop_rest (struct expression *exp,
2280 enum exp_opcode op, union exp_element **pc,
2281 struct agent_expr *ax, struct axs_value *value,
2282 struct axs_value *value1, struct axs_value *value2)
2283{
6661ad48 2284 struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
3b11a015 2285
f61e138d 2286 gen_expr (exp, pc, ax, value2);
6661ad48
SM
2287 gen_usual_unary (ax, value2);
2288 gen_usual_arithmetic (ax, value1, value2);
f61e138d
SS
2289 switch (op)
2290 {
2291 case BINOP_ADD:
2292 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
b97aedf3 2293 && pointer_type (value2->type))
f61e138d
SS
2294 {
2295 /* Swap the values and proceed normally. */
2296 ax_simple (ax, aop_swap);
2297 gen_ptradd (ax, value, value2, value1);
2298 }
b97aedf3 2299 else if (pointer_type (value1->type)
f61e138d
SS
2300 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2301 gen_ptradd (ax, value, value1, value2);
2302 else
2303 gen_binop (ax, value, value1, value2,
2304 aop_add, aop_add, 1, "addition");
2305 break;
2306 case BINOP_SUB:
b97aedf3 2307 if (pointer_type (value1->type)
f61e138d
SS
2308 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2309 gen_ptrsub (ax,value, value1, value2);
b97aedf3
SS
2310 else if (pointer_type (value1->type)
2311 && pointer_type (value2->type))
f61e138d
SS
2312 /* FIXME --- result type should be ptrdiff_t */
2313 gen_ptrdiff (ax, value, value1, value2,
6661ad48 2314 builtin_type (ax->gdbarch)->builtin_long);
f61e138d
SS
2315 else
2316 gen_binop (ax, value, value1, value2,
2317 aop_sub, aop_sub, 1, "subtraction");
2318 break;
2319 case BINOP_MUL:
2320 gen_binop (ax, value, value1, value2,
2321 aop_mul, aop_mul, 1, "multiplication");
2322 break;
2323 case BINOP_DIV:
2324 gen_binop (ax, value, value1, value2,
2325 aop_div_signed, aop_div_unsigned, 1, "division");
2326 break;
2327 case BINOP_REM:
2328 gen_binop (ax, value, value1, value2,
2329 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2330 break;
948103cf
SS
2331 case BINOP_LSH:
2332 gen_binop (ax, value, value1, value2,
2333 aop_lsh, aop_lsh, 1, "left shift");
2334 break;
2335 case BINOP_RSH:
2336 gen_binop (ax, value, value1, value2,
2337 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2338 break;
f61e138d 2339 case BINOP_SUBSCRIPT:
be636754
PA
2340 {
2341 struct type *type;
2342
2343 if (binop_types_user_defined_p (op, value1->type, value2->type))
2344 {
3e43a32a
MS
2345 error (_("cannot subscript requested type: "
2346 "cannot call user defined functions"));
be636754
PA
2347 }
2348 else
2349 {
2350 /* If the user attempts to subscript something that is not
2351 an array or pointer type (like a plain int variable for
2352 example), then report this as an error. */
2353 type = check_typedef (value1->type);
2354 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2355 && TYPE_CODE (type) != TYPE_CODE_PTR)
2356 {
2357 if (TYPE_NAME (type))
2358 error (_("cannot subscript something of type `%s'"),
2359 TYPE_NAME (type));
2360 else
2361 error (_("cannot subscript requested type"));
2362 }
2363 }
2364
5d5b640e 2365 if (!is_integral_type (value2->type))
3e43a32a
MS
2366 error (_("Argument to arithmetic operation "
2367 "not a number or boolean."));
5d5b640e 2368
be636754 2369 gen_ptradd (ax, value, value1, value2);
053f8057 2370 gen_deref (value);
be636754
PA
2371 break;
2372 }
f61e138d
SS
2373 case BINOP_BITWISE_AND:
2374 gen_binop (ax, value, value1, value2,
2375 aop_bit_and, aop_bit_and, 0, "bitwise and");
2376 break;
2377
2378 case BINOP_BITWISE_IOR:
2379 gen_binop (ax, value, value1, value2,
2380 aop_bit_or, aop_bit_or, 0, "bitwise or");
2381 break;
2382
2383 case BINOP_BITWISE_XOR:
2384 gen_binop (ax, value, value1, value2,
2385 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2386 break;
2387
2388 case BINOP_EQUAL:
3b11a015 2389 gen_equal (ax, value, value1, value2, int_type);
f61e138d
SS
2390 break;
2391
2392 case BINOP_NOTEQUAL:
3b11a015
SS
2393 gen_equal (ax, value, value1, value2, int_type);
2394 gen_logical_not (ax, value, int_type);
f61e138d
SS
2395 break;
2396
2397 case BINOP_LESS:
3b11a015 2398 gen_less (ax, value, value1, value2, int_type);
f61e138d
SS
2399 break;
2400
2401 case BINOP_GTR:
2402 ax_simple (ax, aop_swap);
3b11a015 2403 gen_less (ax, value, value1, value2, int_type);
f61e138d
SS
2404 break;
2405
2406 case BINOP_LEQ:
2407 ax_simple (ax, aop_swap);
3b11a015
SS
2408 gen_less (ax, value, value1, value2, int_type);
2409 gen_logical_not (ax, value, int_type);
f61e138d
SS
2410 break;
2411
2412 case BINOP_GEQ:
3b11a015
SS
2413 gen_less (ax, value, value1, value2, int_type);
2414 gen_logical_not (ax, value, int_type);
f61e138d
SS
2415 break;
2416
2417 default:
2418 /* We should only list operators in the outer case statement
2419 that we actually handle in the inner case statement. */
2420 internal_error (__FILE__, __LINE__,
2421 _("gen_expr: op case sets don't match"));
2422 }
2423}
c906108c 2424\f
c5aa993b 2425
0936ad1d
SS
2426/* Given a single variable and a scope, generate bytecodes to trace
2427 its value. This is for use in situations where we have only a
2428 variable's name, and no parsed expression; for instance, when the
2429 name comes from a list of local variables of a function. */
2430
833177a4 2431agent_expr_up
400c6af0 2432gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
92bc6a20 2433 struct symbol *var, int trace_string)
0936ad1d 2434{
833177a4 2435 agent_expr_up ax (new agent_expr (gdbarch, scope));
0936ad1d
SS
2436 struct axs_value value;
2437
92bc6a20
TT
2438 ax->tracing = 1;
2439 ax->trace_string = trace_string;
40f4af28 2440 gen_var_ref (ax.get (), &value, var);
400c6af0
SS
2441
2442 /* If there is no actual variable to trace, flag it by returning
2443 an empty agent expression. */
2444 if (value.optimized_out)
833177a4 2445 return agent_expr_up ();
0936ad1d
SS
2446
2447 /* Make sure we record the final object, and get rid of it. */
40f4af28 2448 gen_traced_pop (ax.get (), &value);
0936ad1d
SS
2449
2450 /* Oh, and terminate. */
833177a4 2451 ax_simple (ax.get (), aop_end);
0936ad1d 2452
0936ad1d
SS
2453 return ax;
2454}
c5aa993b 2455
c906108c
SS
2456/* Generating bytecode from GDB expressions: driver */
2457
c906108c
SS
2458/* Given a GDB expression EXPR, return bytecode to trace its value.
2459 The result will use the `trace' and `trace_quick' bytecodes to
2460 record the value of all memory touched by the expression. The
2461 caller can then use the ax_reqs function to discover which
2462 registers it relies upon. */
833177a4
PA
2463
2464agent_expr_up
92bc6a20
TT
2465gen_trace_for_expr (CORE_ADDR scope, struct expression *expr,
2466 int trace_string)
c906108c 2467{
833177a4 2468 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
c906108c
SS
2469 union exp_element *pc;
2470 struct axs_value value;
2471
c906108c 2472 pc = expr->elts;
92bc6a20
TT
2473 ax->tracing = 1;
2474 ax->trace_string = trace_string;
35c9c7ba 2475 value.optimized_out = 0;
833177a4 2476 gen_expr (expr, &pc, ax.get (), &value);
c906108c
SS
2477
2478 /* Make sure we record the final object, and get rid of it. */
40f4af28 2479 gen_traced_pop (ax.get (), &value);
c906108c
SS
2480
2481 /* Oh, and terminate. */
833177a4 2482 ax_simple (ax.get (), aop_end);
c906108c 2483
c906108c
SS
2484 return ax;
2485}
c906108c 2486
782b2b07
SS
2487/* Given a GDB expression EXPR, return a bytecode sequence that will
2488 evaluate and return a result. The bytecodes will do a direct
2489 evaluation, using the current data on the target, rather than
2490 recording blocks of memory and registers for later use, as
2491 gen_trace_for_expr does. The generated bytecode sequence leaves
2492 the result of expression evaluation on the top of the stack. */
2493
833177a4 2494agent_expr_up
782b2b07
SS
2495gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2496{
833177a4 2497 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
782b2b07
SS
2498 union exp_element *pc;
2499 struct axs_value value;
2500
782b2b07 2501 pc = expr->elts;
92bc6a20 2502 ax->tracing = 0;
35c9c7ba 2503 value.optimized_out = 0;
833177a4 2504 gen_expr (expr, &pc, ax.get (), &value);
782b2b07 2505
833177a4 2506 require_rvalue (ax.get (), &value);
35c9c7ba 2507
782b2b07 2508 /* Oh, and terminate. */
833177a4 2509 ax_simple (ax.get (), aop_end);
782b2b07 2510
782b2b07
SS
2511 return ax;
2512}
2513
833177a4 2514agent_expr_up
92bc6a20
TT
2515gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch,
2516 int trace_string)
6710bf39 2517{
833177a4 2518 agent_expr_up ax (new agent_expr (gdbarch, scope));
6710bf39
SS
2519 struct axs_value value;
2520
92bc6a20
TT
2521 ax->tracing = 1;
2522 ax->trace_string = trace_string;
6710bf39 2523
833177a4 2524 gdbarch_gen_return_address (gdbarch, ax.get (), &value, scope);
6710bf39
SS
2525
2526 /* Make sure we record the final object, and get rid of it. */
40f4af28 2527 gen_traced_pop (ax.get (), &value);
6710bf39
SS
2528
2529 /* Oh, and terminate. */
833177a4 2530 ax_simple (ax.get (), aop_end);
6710bf39 2531
6710bf39
SS
2532 return ax;
2533}
2534
d3ce09f5
SS
2535/* Given a collection of printf-style arguments, generate code to
2536 evaluate the arguments and pass everything to a special
2537 bytecode. */
2538
833177a4 2539agent_expr_up
d3ce09f5
SS
2540gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
2541 CORE_ADDR function, LONGEST channel,
741d92cf 2542 const char *format, int fmtlen,
d3ce09f5
SS
2543 int nargs, struct expression **exprs)
2544{
833177a4 2545 agent_expr_up ax (new agent_expr (gdbarch, scope));
d3ce09f5
SS
2546 union exp_element *pc;
2547 struct axs_value value;
0e43993a 2548 int tem;
d3ce09f5 2549
92bc6a20
TT
2550 /* We're computing values, not doing side effects. */
2551 ax->tracing = 0;
2552
d3ce09f5
SS
2553 /* Evaluate and push the args on the stack in reverse order,
2554 for simplicity of collecting them on the target side. */
2555 for (tem = nargs - 1; tem >= 0; --tem)
2556 {
2557 pc = exprs[tem]->elts;
d3ce09f5 2558 value.optimized_out = 0;
833177a4
PA
2559 gen_expr (exprs[tem], &pc, ax.get (), &value);
2560 require_rvalue (ax.get (), &value);
d3ce09f5
SS
2561 }
2562
2563 /* Push function and channel. */
833177a4
PA
2564 ax_const_l (ax.get (), channel);
2565 ax_const_l (ax.get (), function);
d3ce09f5
SS
2566
2567 /* Issue the printf bytecode proper. */
833177a4
PA
2568 ax_simple (ax.get (), aop_printf);
2569 ax_raw_byte (ax.get (), nargs);
2570 ax_string (ax.get (), format, fmtlen);
d3ce09f5
SS
2571
2572 /* And terminate. */
833177a4 2573 ax_simple (ax.get (), aop_end);
d3ce09f5
SS
2574
2575 return ax;
2576}
2577
c906108c 2578static void
6f937416 2579agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc)
c906108c 2580{
bbc13ae3 2581 const char *arg;
92bc6a20 2582 int trace_string = 0;
c906108c 2583
34b536a8
HZ
2584 if (!eval)
2585 {
34b536a8 2586 if (*exp == '/')
92bc6a20 2587 exp = decode_agent_options (exp, &trace_string);
34b536a8 2588 }
3065dfb6 2589
833177a4
PA
2590 agent_expr_up agent;
2591
bbc13ae3
KS
2592 arg = exp;
2593 if (!eval && strcmp (arg, "$_ret") == 0)
6710bf39 2594 {
036e657b
JB
2595 agent = gen_trace_for_return_address (pc, get_current_arch (),
2596 trace_string);
6710bf39
SS
2597 }
2598 else
2599 {
4d01a485 2600 expression_up expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0);
833177a4 2601
34b536a8 2602 if (eval)
92bc6a20
TT
2603 {
2604 gdb_assert (trace_string == 0);
036e657b 2605 agent = gen_eval_for_expr (pc, expr.get ());
92bc6a20 2606 }
34b536a8 2607 else
036e657b 2608 agent = gen_trace_for_expr (pc, expr.get (), trace_string);
6710bf39
SS
2609 }
2610
833177a4
PA
2611 ax_reqs (agent.get ());
2612 ax_print (gdb_stdout, agent.get ());
085dd6e6
JM
2613
2614 /* It would be nice to call ax_reqs here to gather some general info
2615 about the expression, and then print out the result. */
c906108c 2616
c906108c
SS
2617 dont_repeat ();
2618}
782b2b07 2619
782b2b07 2620static void
f2fc3015 2621agent_command_1 (const char *exp, int eval)
782b2b07 2622{
782b2b07
SS
2623 /* We don't deal with overlay debugging at the moment. We need to
2624 think more carefully about this. If you copy this code into
2625 another command, change the error message; the user shouldn't
2626 have to know anything about agent expressions. */
2627 if (overlay_debugging)
2628 error (_("GDB can't do agent expression translation with overlays."));
2629
2630 if (exp == 0)
2631 error_no_arg (_("expression to translate"));
2632
34b536a8
HZ
2633 if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
2634 {
2635 struct linespec_result canonical;
34b536a8 2636
a20714ff
PA
2637 event_location_up location
2638 = new_linespec_location (&exp, symbol_name_match_type::WILD);
ffc2605c 2639 decode_line_full (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
cafb3438 2640 NULL, 0, &canonical,
34b536a8 2641 NULL, NULL);
34b536a8
HZ
2642 exp = skip_spaces (exp);
2643 if (exp[0] == ',')
2644 {
2645 exp++;
2646 exp = skip_spaces (exp);
2647 }
6c5b2ebe
PA
2648 for (const auto &lsal : canonical.lsals)
2649 for (const auto &sal : lsal.sals)
2650 agent_eval_command_one (exp, eval, sal.pc);
34b536a8
HZ
2651 }
2652 else
2653 agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
782b2b07 2654
782b2b07
SS
2655 dont_repeat ();
2656}
34b536a8
HZ
2657
2658static void
4fd41b24 2659agent_command (const char *exp, int from_tty)
34b536a8
HZ
2660{
2661 agent_command_1 (exp, 0);
2662}
2663
2664/* Parse the given expression, compile it into an agent expression
2665 that does direct evaluation, and display the resulting
2666 expression. */
2667
2668static void
4fd41b24 2669agent_eval_command (const char *exp, int from_tty)
34b536a8
HZ
2670{
2671 agent_command_1 (exp, 1);
2672}
2673
d3ce09f5
SS
2674/* Parse the given expression, compile it into an agent expression
2675 that does a printf, and display the resulting expression. */
2676
2677static void
4fd41b24 2678maint_agent_printf_command (const char *cmdrest, int from_tty)
d3ce09f5 2679{
d3ce09f5 2680 struct frame_info *fi = get_current_frame (); /* need current scope */
bbc13ae3 2681 const char *format_start, *format_end;
d3ce09f5
SS
2682
2683 /* We don't deal with overlay debugging at the moment. We need to
2684 think more carefully about this. If you copy this code into
2685 another command, change the error message; the user shouldn't
2686 have to know anything about agent expressions. */
2687 if (overlay_debugging)
2688 error (_("GDB can't do agent expression translation with overlays."));
2689
4fd41b24 2690 if (cmdrest == 0)
d3ce09f5
SS
2691 error_no_arg (_("expression to translate"));
2692
f1735a53 2693 cmdrest = skip_spaces (cmdrest);
d3ce09f5
SS
2694
2695 if (*cmdrest++ != '"')
2696 error (_("Must start with a format string."));
2697
2698 format_start = cmdrest;
2699
8e481c3b 2700 format_pieces fpieces (&cmdrest);
d3ce09f5
SS
2701
2702 format_end = cmdrest;
2703
2704 if (*cmdrest++ != '"')
2705 error (_("Bad format string, non-terminated '\"'."));
2706
f1735a53 2707 cmdrest = skip_spaces (cmdrest);
d3ce09f5
SS
2708
2709 if (*cmdrest != ',' && *cmdrest != 0)
2710 error (_("Invalid argument syntax"));
2711
2712 if (*cmdrest == ',')
2713 cmdrest++;
f1735a53 2714 cmdrest = skip_spaces (cmdrest);
d3ce09f5 2715
8e481c3b 2716 std::vector<struct expression *> argvec;
d3ce09f5
SS
2717 while (*cmdrest != '\0')
2718 {
bbc13ae3 2719 const char *cmd1;
d3ce09f5
SS
2720
2721 cmd1 = cmdrest;
4d01a485 2722 expression_up expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
8e481c3b 2723 argvec.push_back (expr.release ());
d3ce09f5
SS
2724 cmdrest = cmd1;
2725 if (*cmdrest == ',')
2726 ++cmdrest;
2727 /* else complain? */
2728 }
2729
2730
833177a4
PA
2731 agent_expr_up agent = gen_printf (get_frame_pc (fi), get_current_arch (),
2732 0, 0,
2733 format_start, format_end - format_start,
8e481c3b 2734 argvec.size (), argvec.data ());
833177a4
PA
2735 ax_reqs (agent.get ());
2736 ax_print (gdb_stdout, agent.get ());
d3ce09f5
SS
2737
2738 /* It would be nice to call ax_reqs here to gather some general info
2739 about the expression, and then print out the result. */
2740
d3ce09f5
SS
2741 dont_repeat ();
2742}
c5aa993b 2743
c906108c
SS
2744/* Initialization code. */
2745
c906108c 2746void
fba45db2 2747_initialize_ax_gdb (void)
c906108c 2748{
c906108c 2749 add_cmd ("agent", class_maintenance, agent_command,
34b536a8
HZ
2750 _("\
2751Translate an expression into remote agent bytecode for tracing.\n\
48c5e7e2 2752Usage: maint agent [-at LOCATION,] EXPRESSION\n\
34b536a8
HZ
2753If -at is given, generate remote agent bytecode for this location.\n\
2754If not, generate remote agent bytecode for current frame pc address."),
782b2b07
SS
2755 &maintenancelist);
2756
2757 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
34b536a8
HZ
2758 _("\
2759Translate an expression into remote agent bytecode for evaluation.\n\
48c5e7e2 2760Usage: maint agent-eval [-at LOCATION,] EXPRESSION\n\
34b536a8
HZ
2761If -at is given, generate remote agent bytecode for this location.\n\
2762If not, generate remote agent bytecode for current frame pc address."),
c906108c 2763 &maintenancelist);
d3ce09f5
SS
2764
2765 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
2766 _("Translate an expression into remote "
2767 "agent bytecode for evaluation and display the bytecodes."),
2768 &maintenancelist);
c906108c 2769}
This page took 1.406049 seconds and 4 git commands to generate.