gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
b811d2c2 3 Copyright (C) 2001-2020 Free Software Foundation, Inc.
6b4d5c91 4
29134980
OF
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
a9762ec7 8 This file is part of GDB.
29134980 9
a9762ec7
JB
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
29134980 14
a9762ec7
JB
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
29134980 19
a9762ec7
JB
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29134980
OF
22
23#include "defs.h"
d55e5aa6 24#include "frame.h"
4de283e4
TT
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "trad-frame.h"
82ca8957 28#include "dwarf2/frame.h"
4de283e4 29#include "symtab.h"
d55e5aa6 30#include "inferior.h"
4de283e4
TT
31#include "gdbtypes.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "target.h"
35#include "value.h"
29134980 36#include "opcode/cris.h"
749c8b38 37#include "osabi.h"
4de283e4 38#include "arch-utils.h"
29134980 39#include "regcache.h"
69ed9b74 40#include "regset.h"
4de283e4
TT
41
42#include "objfiles.h"
43
44#include "solib.h" /* Support for shared libraries. */
76a9d10f 45#include "solib-svr4.h"
4de283e4
TT
46#include "dis-asm.h"
47
48#include "cris-tdep.h"
749c8b38 49
29134980
OF
50enum cris_num_regs
51{
52 /* There are no floating point registers. Used in gdbserver low-linux.c. */
53 NUM_FREGS = 0,
54
55 /* There are 16 general registers. */
56 NUM_GENREGS = 16,
57
58 /* There are 16 special registers. */
c600d464
OF
59 NUM_SPECREGS = 16,
60
61 /* CRISv32 has a pseudo PC register, not noted here. */
62
63 /* CRISv32 has 16 support registers. */
64 NUM_SUPPREGS = 16
29134980
OF
65};
66
67/* Register numbers of various important registers.
2e4b5889 68 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
69 STR_REGNUM Contains the address of structure return values.
70 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
71 ARG1_REGNUM Contains the first parameter to a function.
72 ARG2_REGNUM Contains the second parameter to a function.
73 ARG3_REGNUM Contains the third parameter to a function.
0963b4bd 74 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
3e8c568d
UW
75 gdbarch_sp_regnum Contains address of top of stack.
76 gdbarch_pc_regnum Contains address of next instruction.
29134980
OF
77 SRP_REGNUM Subroutine return pointer register.
78 BRP_REGNUM Breakpoint return pointer register. */
79
29134980
OF
80enum cris_regnums
81{
82 /* Enums with respect to the general registers, valid for all
c600d464 83 CRIS versions. The frame pointer is always in R8. */
2e4b5889 84 CRIS_FP_REGNUM = 8,
c600d464 85 /* ABI related registers. */
29134980
OF
86 STR_REGNUM = 9,
87 RET_REGNUM = 10,
88 ARG1_REGNUM = 10,
89 ARG2_REGNUM = 11,
90 ARG3_REGNUM = 12,
91 ARG4_REGNUM = 13,
92
c600d464 93 /* Registers which happen to be common. */
29134980 94 VR_REGNUM = 17,
c600d464
OF
95 MOF_REGNUM = 23,
96 SRP_REGNUM = 27,
97
0963b4bd 98 /* CRISv10 et al. specific registers. */
c600d464 99 P0_REGNUM = 16,
29134980
OF
100 P4_REGNUM = 20,
101 CCR_REGNUM = 21,
29134980
OF
102 P8_REGNUM = 24,
103 IBR_REGNUM = 25,
104 IRP_REGNUM = 26,
29134980 105 BAR_REGNUM = 28,
2a9ecef2 106 DCCR_REGNUM = 29,
29134980 107 BRP_REGNUM = 30,
c600d464
OF
108 USP_REGNUM = 31,
109
110 /* CRISv32 specific registers. */
111 ACR_REGNUM = 15,
112 BZ_REGNUM = 16,
113 PID_REGNUM = 18,
114 SRS_REGNUM = 19,
115 WZ_REGNUM = 20,
116 EXS_REGNUM = 21,
117 EDA_REGNUM = 22,
118 DZ_REGNUM = 24,
119 EBP_REGNUM = 25,
120 ERP_REGNUM = 26,
121 NRP_REGNUM = 28,
122 CCS_REGNUM = 29,
123 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 SPC_REGNUM = 31,
125 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
126
127 S0_REGNUM = 33,
128 S1_REGNUM = 34,
129 S2_REGNUM = 35,
130 S3_REGNUM = 36,
131 S4_REGNUM = 37,
132 S5_REGNUM = 38,
133 S6_REGNUM = 39,
134 S7_REGNUM = 40,
135 S8_REGNUM = 41,
136 S9_REGNUM = 42,
137 S10_REGNUM = 43,
138 S11_REGNUM = 44,
139 S12_REGNUM = 45,
140 S13_REGNUM = 46,
141 S14_REGNUM = 47,
142 S15_REGNUM = 48,
29134980
OF
143};
144
145extern const struct cris_spec_reg cris_spec_regs[];
146
147/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31 148 register names and sizes. */
e4286e57 149static unsigned int usr_cmd_cris_version;
29134980
OF
150
151/* Indicates whether to trust the above variable. */
491144b5 152static bool usr_cmd_cris_version_valid = false;
29134980 153
41922353
OF
154static const char cris_mode_normal[] = "normal";
155static const char cris_mode_guru[] = "guru";
40478521 156static const char *const cris_modes[] = {
0e6bdb31
OF
157 cris_mode_normal,
158 cris_mode_guru,
159 0
160};
161
162/* CRIS mode, set via the user command 'set cris-mode'. Affects
163 type of break instruction among other things. */
164static const char *usr_cmd_cris_mode = cris_mode_normal;
165
a5f6c8f5 166/* Whether to make use of Dwarf-2 CFI (default on). */
491144b5 167static bool usr_cmd_cris_dwarf2_cfi = true;
29134980 168
a5f6c8f5
OF
169/* Sigtramp identification code copied from i386-linux-tdep.c. */
170
171#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
172#define SIGTRAMP_OFFSET0 0
173#define SIGTRAMP_INSN1 0xe93d /* break 13 */
174#define SIGTRAMP_OFFSET1 4
175
176static const unsigned short sigtramp_code[] =
177{
178 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
179 SIGTRAMP_INSN1 /* break 13 */
180};
181
182#define SIGTRAMP_LEN (sizeof sigtramp_code)
183
184/* Note: same length as normal sigtramp code. */
185
186static const unsigned short rt_sigtramp_code[] =
29134980 187{
a5f6c8f5
OF
188 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
189 SIGTRAMP_INSN1 /* break 13 */
190};
191
192/* If PC is in a sigtramp routine, return the address of the start of
193 the routine. Otherwise, return 0. */
194
195static CORE_ADDR
94afd7a6 196cris_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 197{
94afd7a6 198 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 199 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 200
94afd7a6 201 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
202 return 0;
203
e2a2a3e8 204 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 205 {
e2a2a3e8 206 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
207 return 0;
208
209 pc -= SIGTRAMP_OFFSET1;
94afd7a6 210 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
211 return 0;
212 }
213
214 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
215 return 0;
216
217 return pc;
218}
219
220/* If PC is in a RT sigtramp routine, return the address of the start of
221 the routine. Otherwise, return 0. */
222
223static CORE_ADDR
94afd7a6 224cris_rt_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 225{
94afd7a6 226 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 227 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 228
94afd7a6 229 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
230 return 0;
231
e2a2a3e8 232 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 233 {
e2a2a3e8 234 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
235 return 0;
236
237 pc -= SIGTRAMP_OFFSET1;
94afd7a6 238 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
239 return 0;
240 }
241
242 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
243 return 0;
244
245 return pc;
246}
247
94afd7a6
UW
248/* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
249 return the address of the associated sigcontext structure. */
a5f6c8f5
OF
250
251static CORE_ADDR
94afd7a6 252cris_sigcontext_addr (struct frame_info *this_frame)
a5f6c8f5 253{
e17a4113
UW
254 struct gdbarch *gdbarch = get_frame_arch (this_frame);
255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5
OF
256 CORE_ADDR pc;
257 CORE_ADDR sp;
e362b510 258 gdb_byte buf[4];
a5f6c8f5 259
e17a4113
UW
260 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
261 sp = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5
OF
262
263 /* Look for normal sigtramp frame first. */
94afd7a6 264 pc = cris_sigtramp_start (this_frame);
a5f6c8f5
OF
265 if (pc)
266 {
267 /* struct signal_frame (arch/cris/kernel/signal.c) contains
268 struct sigcontext as its first member, meaning the SP points to
269 it already. */
270 return sp;
271 }
272
94afd7a6 273 pc = cris_rt_sigtramp_start (this_frame);
a5f6c8f5
OF
274 if (pc)
275 {
276 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
277 a struct ucontext, which in turn contains a struct sigcontext.
278 Magic digging:
279 4 + 4 + 128 to struct ucontext, then
280 4 + 4 + 12 to struct sigcontext. */
281 return (sp + 156);
282 }
283
8a3fe4f8 284 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 285 return 0;
29134980
OF
286}
287
2e4b5889 288struct cris_unwind_cache
29134980 289{
2e4b5889
OF
290 /* The previous frame's inner most stack address. Used as this
291 frame ID's stack_addr. */
292 CORE_ADDR prev_sp;
293 /* The frame's base, optionally used by the high-level debug info. */
294 CORE_ADDR base;
295 int size;
296 /* How far the SP and r8 (FP) have been offset from the start of
297 the stack frame (as defined by the previous frame's stack
298 pointer). */
299 LONGEST sp_offset;
300 LONGEST r8_offset;
301 int uses_frame;
302
303 /* From old frame_extra_info struct. */
29134980
OF
304 CORE_ADDR return_pc;
305 int leaf_function;
2e4b5889
OF
306
307 /* Table indicating the location of each and every register. */
308 struct trad_frame_saved_reg *saved_regs;
29134980
OF
309};
310
a5f6c8f5 311static struct cris_unwind_cache *
94afd7a6 312cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
a5f6c8f5
OF
313 void **this_cache)
314{
94afd7a6 315 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7fbe2eba 316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5 318 struct cris_unwind_cache *info;
a5f6c8f5 319 CORE_ADDR addr;
e362b510 320 gdb_byte buf[4];
a5f6c8f5
OF
321 int i;
322
323 if ((*this_cache))
9a3c8263 324 return (struct cris_unwind_cache *) (*this_cache);
a5f6c8f5
OF
325
326 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
327 (*this_cache) = info;
94afd7a6 328 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a5f6c8f5
OF
329
330 /* Zero all fields. */
331 info->prev_sp = 0;
332 info->base = 0;
333 info->size = 0;
334 info->sp_offset = 0;
335 info->r8_offset = 0;
336 info->uses_frame = 0;
337 info->return_pc = 0;
338 info->leaf_function = 0;
339
94afd7a6 340 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
e17a4113 341 info->base = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5 342
94afd7a6 343 addr = cris_sigcontext_addr (this_frame);
a5f6c8f5
OF
344
345 /* Layout of the sigcontext struct:
346 struct sigcontext {
347 struct pt_regs regs;
348 unsigned long oldmask;
349 unsigned long usp;
350 }; */
351
c600d464
OF
352 if (tdep->cris_version == 10)
353 {
354 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
355 struct pt_regs. */
356 for (i = 0; i <= 13; i++)
357 info->saved_regs[i].addr = addr + ((15 - i) * 4);
358
359 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
360 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
361 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
362 /* Note: IRP is off by 2 at this point. There's no point in correcting
363 it though since that will mean that the backtrace will show a PC
364 different from what is shown when stopped. */
365 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
7fbe2eba 366 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 367 = info->saved_regs[IRP_REGNUM];
7fbe2eba 368 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
c600d464
OF
369 }
370 else
371 {
372 /* CRISv32. */
373 /* R0 to R13 are stored in order at offset (1 * 4) in
374 struct pt_regs. */
375 for (i = 0; i <= 13; i++)
376 info->saved_regs[i].addr = addr + ((i + 1) * 4);
377
378 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
379 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
380 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
381 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
382 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
384 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
385 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
386 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
387
388 /* FIXME: If ERP is in a delay slot at this point then the PC will
389 be wrong at this point. This problem manifests itself in the
390 sigaltstack.exp test case, which occasionally generates FAILs when
0963b4bd 391 the signal is received while in a delay slot.
c600d464
OF
392
393 This could be solved by a couple of read_memory_unsigned_integer and a
394 trad_frame_set_value. */
7fbe2eba 395 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 396 = info->saved_regs[ERP_REGNUM];
c600d464 397
7fbe2eba 398 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
3e8c568d 399 = addr + (25 * 4);
c600d464 400 }
a5f6c8f5
OF
401
402 return info;
403}
404
405static void
94afd7a6 406cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
a5f6c8f5
OF
407 struct frame_id *this_id)
408{
409 struct cris_unwind_cache *cache =
94afd7a6
UW
410 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
411 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
a5f6c8f5
OF
412}
413
414/* Forward declaration. */
415
94afd7a6
UW
416static struct value *cris_frame_prev_register (struct frame_info *this_frame,
417 void **this_cache, int regnum);
418static struct value *
419cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
420 void **this_cache, int regnum)
a5f6c8f5
OF
421{
422 /* Make sure we've initialized the cache. */
94afd7a6
UW
423 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
424 return cris_frame_prev_register (this_frame, this_cache, regnum);
425}
426
427static int
428cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
429 struct frame_info *this_frame,
430 void **this_cache)
431{
432 if (cris_sigtramp_start (this_frame)
433 || cris_rt_sigtramp_start (this_frame))
434 return 1;
435
436 return 0;
a5f6c8f5
OF
437}
438
439static const struct frame_unwind cris_sigtramp_frame_unwind =
440{
441 SIGTRAMP_FRAME,
8fbca658 442 default_frame_unwind_stop_reason,
a5f6c8f5 443 cris_sigtramp_frame_this_id,
94afd7a6
UW
444 cris_sigtramp_frame_prev_register,
445 NULL,
446 cris_sigtramp_frame_sniffer
a5f6c8f5
OF
447};
448
63807e1d 449static int
c600d464
OF
450crisv32_single_step_through_delay (struct gdbarch *gdbarch,
451 struct frame_info *this_frame)
452{
7fbe2eba 453 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c600d464
OF
454 ULONGEST erp;
455 int ret = 0;
c600d464 456
35488783 457 if (tdep->cris_mode == cris_mode_guru)
395f2fc2 458 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
0e6bdb31 459 else
395f2fc2 460 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
c600d464
OF
461
462 if (erp & 0x1)
463 {
464 /* In delay slot - check if there's a breakpoint at the preceding
465 instruction. */
6c95b8df 466 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
c600d464
OF
467 ret = 1;
468 }
469 return ret;
470}
471
29134980 472/* The instruction environment needed to find single-step breakpoints. */
c600d464 473
29134980
OF
474typedef
475struct instruction_environment
476{
477 unsigned long reg[NUM_GENREGS];
478 unsigned long preg[NUM_SPECREGS];
479 unsigned long branch_break_address;
480 unsigned long delay_slot_pc;
481 unsigned long prefix_value;
482 int branch_found;
483 int prefix_found;
484 int invalid;
485 int slot_needed;
486 int delay_slot_pc_active;
487 int xflag_found;
488 int disable_interrupt;
78c5b882 489 enum bfd_endian byte_order;
29134980
OF
490} inst_env_type;
491
29134980
OF
492/* Machine-dependencies in CRIS for opcodes. */
493
494/* Instruction sizes. */
495enum cris_instruction_sizes
496{
497 INST_BYTE_SIZE = 0,
498 INST_WORD_SIZE = 1,
499 INST_DWORD_SIZE = 2
500};
501
502/* Addressing modes. */
503enum cris_addressing_modes
504{
505 REGISTER_MODE = 1,
506 INDIRECT_MODE = 2,
507 AUTOINC_MODE = 3
508};
509
510/* Prefix addressing modes. */
511enum cris_prefix_addressing_modes
512{
513 PREFIX_INDEX_MODE = 2,
514 PREFIX_ASSIGN_MODE = 3,
515
516 /* Handle immediate byte offset addressing mode prefix format. */
517 PREFIX_OFFSET_MODE = 2
518};
519
520/* Masks for opcodes. */
521enum cris_opcode_masks
522{
523 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
524 SIGNED_EXTEND_BIT_MASK = 0x2,
525 SIGNED_BYTE_MASK = 0x80,
526 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
527 SIGNED_WORD_MASK = 0x8000,
528 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
529 SIGNED_DWORD_MASK = 0x80000000,
530 SIGNED_QUICK_VALUE_MASK = 0x20,
531 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
532};
533
534/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
535 Bit 15 - 12 Operand2
536 11 - 10 Mode
537 9 - 6 Opcode
538 5 - 4 Size
539 3 - 0 Operand1 */
540
541static int
542cris_get_operand2 (unsigned short insn)
543{
544 return ((insn & 0xF000) >> 12);
545}
546
547static int
548cris_get_mode (unsigned short insn)
549{
550 return ((insn & 0x0C00) >> 10);
551}
552
553static int
554cris_get_opcode (unsigned short insn)
555{
556 return ((insn & 0x03C0) >> 6);
557}
558
559static int
560cris_get_size (unsigned short insn)
561{
562 return ((insn & 0x0030) >> 4);
563}
564
565static int
566cris_get_operand1 (unsigned short insn)
567{
568 return (insn & 0x000F);
569}
570
571/* Additional functions in order to handle opcodes. */
572
29134980
OF
573static int
574cris_get_quick_value (unsigned short insn)
575{
576 return (insn & 0x003F);
577}
578
579static int
580cris_get_bdap_quick_offset (unsigned short insn)
581{
582 return (insn & 0x00FF);
583}
584
585static int
586cris_get_branch_short_offset (unsigned short insn)
587{
588 return (insn & 0x00FF);
589}
590
591static int
592cris_get_asr_shift_steps (unsigned long value)
593{
594 return (value & 0x3F);
595}
596
29134980
OF
597static int
598cris_get_clear_size (unsigned short insn)
599{
600 return ((insn) & 0xC000);
601}
602
603static int
604cris_is_signed_extend_bit_on (unsigned short insn)
605{
606 return (((insn) & 0x20) == 0x20);
607}
608
609static int
610cris_is_xflag_bit_on (unsigned short insn)
611{
612 return (((insn) & 0x1000) == 0x1000);
613}
614
615static void
616cris_set_size_to_dword (unsigned short *insn)
617{
618 *insn &= 0xFFCF;
619 *insn |= 0x20;
620}
621
8535cb38 622static signed char
29134980
OF
623cris_get_signed_offset (unsigned short insn)
624{
8535cb38 625 return ((signed char) (insn & 0x00FF));
29134980
OF
626}
627
628/* Calls an op function given the op-type, working on the insn and the
629 inst_env. */
be8626e0
MD
630static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
631 inst_env_type *);
29134980 632
29134980
OF
633static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
634 struct gdbarch_list *);
635
29134980
OF
636static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
637
eb4c3f4a 638static void set_cris_version (const char *ignore_args, int from_tty,
a5f6c8f5 639 struct cmd_list_element *c);
29134980 640
eb4c3f4a 641static void set_cris_mode (const char *ignore_args, int from_tty,
0e6bdb31
OF
642 struct cmd_list_element *c);
643
eb4c3f4a 644static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
a5f6c8f5 645 struct cmd_list_element *c);
29134980 646
2e4b5889 647static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
94afd7a6 648 struct frame_info *this_frame,
2e4b5889
OF
649 struct cris_unwind_cache *info);
650
5114e29d 651static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
94afd7a6 652 struct frame_info *this_frame,
5114e29d
OF
653 struct cris_unwind_cache *info);
654
2e4b5889 655/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 656 order. The below implements a FILO (stack) to do this.
a5f6c8f5 657 Copied from d10v-tdep.c. */
2e4b5889
OF
658
659struct stack_item
660{
661 int len;
662 struct stack_item *prev;
7c543f7b 663 gdb_byte *data;
2e4b5889
OF
664};
665
666static struct stack_item *
948f8e3d 667push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
2e4b5889 668{
8d749320 669 struct stack_item *si = XNEW (struct stack_item);
7c543f7b 670 si->data = (gdb_byte *) xmalloc (len);
2e4b5889
OF
671 si->len = len;
672 si->prev = prev;
673 memcpy (si->data, contents, len);
674 return si;
675}
676
677static struct stack_item *
678pop_stack_item (struct stack_item *si)
679{
680 struct stack_item *dead = si;
681 si = si->prev;
682 xfree (dead->data);
683 xfree (dead);
684 return si;
685}
686
687/* Put here the code to store, into fi->saved_regs, the addresses of
688 the saved registers of frame described by FRAME_INFO. This
689 includes special registers such as pc and fp saved in special ways
690 in the stack frame. sp is even more special: the address we return
a5f6c8f5 691 for it IS the sp for the next frame. */
2e4b5889 692
63807e1d 693static struct cris_unwind_cache *
94afd7a6 694cris_frame_unwind_cache (struct frame_info *this_frame,
2e4b5889
OF
695 void **this_prologue_cache)
696{
35488783
UW
697 struct gdbarch *gdbarch = get_frame_arch (this_frame);
698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889 699 struct cris_unwind_cache *info;
2e4b5889
OF
700
701 if ((*this_prologue_cache))
9a3c8263 702 return (struct cris_unwind_cache *) (*this_prologue_cache);
2e4b5889
OF
703
704 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
705 (*this_prologue_cache) = info;
94afd7a6 706 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2e4b5889
OF
707
708 /* Zero all fields. */
709 info->prev_sp = 0;
710 info->base = 0;
711 info->size = 0;
712 info->sp_offset = 0;
713 info->r8_offset = 0;
714 info->uses_frame = 0;
715 info->return_pc = 0;
716 info->leaf_function = 0;
717
718 /* Prologue analysis does the rest... */
35488783 719 if (tdep->cris_version == 32)
94afd7a6 720 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
5114e29d 721 else
94afd7a6 722 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
2e4b5889
OF
723
724 return info;
725}
726
727/* Given a GDB frame, determine the address of the calling function's
728 frame. This will be used to create a new GDB frame struct. */
729
730static void
94afd7a6 731cris_frame_this_id (struct frame_info *this_frame,
2e4b5889
OF
732 void **this_prologue_cache,
733 struct frame_id *this_id)
734{
735 struct cris_unwind_cache *info
94afd7a6 736 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
2e4b5889
OF
737 CORE_ADDR base;
738 CORE_ADDR func;
739 struct frame_id id;
740
741 /* The FUNC is easy. */
94afd7a6 742 func = get_frame_func (this_frame);
2e4b5889
OF
743
744 /* Hopefully the prologue analysis either correctly determined the
745 frame's base (which is the SP from the previous frame), or set
746 that base to "NULL". */
747 base = info->prev_sp;
748 if (base == 0)
749 return;
750
751 id = frame_id_build (base, func);
752
753 (*this_id) = id;
754}
755
94afd7a6
UW
756static struct value *
757cris_frame_prev_register (struct frame_info *this_frame,
758 void **this_prologue_cache, int regnum)
2e4b5889
OF
759{
760 struct cris_unwind_cache *info
94afd7a6
UW
761 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
762 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2e4b5889
OF
763}
764
2e4b5889
OF
765static CORE_ADDR
766cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
767{
768 /* Align to the size of an instruction (so that they can safely be
769 pushed onto the stack). */
770 return sp & ~3;
771}
772
773static CORE_ADDR
774cris_push_dummy_code (struct gdbarch *gdbarch,
82585c72 775 CORE_ADDR sp, CORE_ADDR funaddr,
2e4b5889
OF
776 struct value **args, int nargs,
777 struct type *value_type,
e4fd649a
UW
778 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
779 struct regcache *regcache)
2e4b5889
OF
780{
781 /* Allocate space sufficient for a breakpoint. */
782 sp = (sp - 4) & ~3;
783 /* Store the address of that breakpoint */
784 *bp_addr = sp;
785 /* CRIS always starts the call at the callee's entry point. */
786 *real_pc = funaddr;
787 return sp;
788}
789
790static CORE_ADDR
7d9b040b 791cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
792 struct regcache *regcache, CORE_ADDR bp_addr,
793 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
794 function_call_return_method return_method,
795 CORE_ADDR struct_addr)
2e4b5889 796{
e17a4113 797 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
798 int argreg;
799 int argnum;
800
2e4b5889
OF
801 struct stack_item *si = NULL;
802
a5f6c8f5 803 /* Push the return address. */
2e4b5889
OF
804 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
805
806 /* Are we returning a value using a structure return or a normal value
807 return? struct_addr is the address of the reserved space for the return
808 structure to be written on the stack. */
cf84fa6b
AH
809 if (return_method == return_method_struct)
810 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
2e4b5889
OF
811
812 /* Now load as many as possible of the first arguments into registers,
813 and push the rest onto the stack. */
814 argreg = ARG1_REGNUM;
2e4b5889
OF
815
816 for (argnum = 0; argnum < nargs; argnum++)
817 {
818 int len;
948f8e3d 819 const gdb_byte *val;
2e4b5889
OF
820 int reg_demand;
821 int i;
822
4991999e 823 len = TYPE_LENGTH (value_type (args[argnum]));
948f8e3d 824 val = value_contents (args[argnum]);
2e4b5889
OF
825
826 /* How may registers worth of storage do we need for this argument? */
827 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
828
829 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
830 {
831 /* Data passed by value. Fits in available register(s). */
832 for (i = 0; i < reg_demand; i++)
833 {
b66f5587 834 regcache->cooked_write (argreg, val);
2e4b5889
OF
835 argreg++;
836 val += 4;
837 }
838 }
839 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
840 {
841 /* Data passed by value. Does not fit in available register(s).
842 Use the register(s) first, then the stack. */
843 for (i = 0; i < reg_demand; i++)
844 {
845 if (argreg <= ARG4_REGNUM)
846 {
b66f5587 847 regcache->cooked_write (argreg, val);
2e4b5889
OF
848 argreg++;
849 val += 4;
850 }
851 else
852 {
853 /* Push item for later so that pushed arguments
854 come in the right order. */
855 si = push_stack_item (si, val, 4);
856 val += 4;
857 }
858 }
859 }
860 else if (len > (2 * 4))
861 {
f6e56ab3
UW
862 /* Data passed by reference. Push copy of data onto stack
863 and pass pointer to this copy as argument. */
864 sp = (sp - len) & ~3;
865 write_memory (sp, val, len);
866
867 if (argreg <= ARG4_REGNUM)
868 {
869 regcache_cooked_write_unsigned (regcache, argreg, sp);
870 argreg++;
871 }
872 else
873 {
874 gdb_byte buf[4];
e17a4113 875 store_unsigned_integer (buf, 4, byte_order, sp);
f6e56ab3
UW
876 si = push_stack_item (si, buf, 4);
877 }
2e4b5889
OF
878 }
879 else
880 {
881 /* Data passed by value. No available registers. Put it on
882 the stack. */
883 si = push_stack_item (si, val, len);
884 }
885 }
886
887 while (si)
888 {
889 /* fp_arg must be word-aligned (i.e., don't += len) to match
890 the function prologue. */
891 sp = (sp - si->len) & ~3;
892 write_memory (sp, si->data, si->len);
893 si = pop_stack_item (si);
894 }
895
896 /* Finally, update the SP register. */
7fbe2eba 897 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
2e4b5889
OF
898
899 return sp;
900}
901
e2a2a3e8
OF
902static const struct frame_unwind cris_frame_unwind =
903{
2e4b5889 904 NORMAL_FRAME,
8fbca658 905 default_frame_unwind_stop_reason,
2e4b5889 906 cris_frame_this_id,
94afd7a6
UW
907 cris_frame_prev_register,
908 NULL,
909 default_frame_sniffer
2e4b5889
OF
910};
911
2e4b5889 912static CORE_ADDR
94afd7a6 913cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
2e4b5889
OF
914{
915 struct cris_unwind_cache *info
94afd7a6 916 = cris_frame_unwind_cache (this_frame, this_cache);
2e4b5889
OF
917 return info->base;
918}
919
e2a2a3e8
OF
920static const struct frame_base cris_frame_base =
921{
2e4b5889
OF
922 &cris_frame_unwind,
923 cris_frame_base_address,
924 cris_frame_base_address,
925 cris_frame_base_address
926};
927
29134980
OF
928/* Frames information. The definition of the struct frame_info is
929
930 CORE_ADDR frame
931 CORE_ADDR pc
5a203e44 932 enum frame_type type;
29134980
OF
933 CORE_ADDR return_pc
934 int leaf_function
935
936 If the compilation option -fno-omit-frame-pointer is present the
937 variable frame will be set to the content of R8 which is the frame
938 pointer register.
939
940 The variable pc contains the address where execution is performed
941 in the present frame. The innermost frame contains the current content
942 of the register PC. All other frames contain the content of the
943 register PC in the next frame.
944
5a203e44
AC
945 The variable `type' indicates the frame's type: normal, SIGTRAMP
946 (associated with a signal handler), dummy (associated with a dummy
947 frame).
29134980
OF
948
949 The variable return_pc contains the address where execution should be
950 resumed when the present frame has finished, the return address.
951
952 The variable leaf_function is 1 if the return address is in the register
953 SRP, and 0 if it is on the stack.
954
955 Prologue instructions C-code.
956 The prologue may consist of (-fno-omit-frame-pointer)
957 1) 2)
958 push srp
959 push r8 push r8
960 move.d sp,r8 move.d sp,r8
961 subq X,sp subq X,sp
962 movem rY,[sp] movem rY,[sp]
963 move.S rZ,[r8-U] move.S rZ,[r8-U]
964
965 where 1 is a non-terminal function, and 2 is a leaf-function.
966
967 Note that this assumption is extremely brittle, and will break at the
968 slightest change in GCC's prologue.
969
970 If local variables are declared or register contents are saved on stack
971 the subq-instruction will be present with X as the number of bytes
972 needed for storage. The reshuffle with respect to r8 may be performed
973 with any size S (b, w, d) and any of the general registers Z={0..13}.
0963b4bd 974 The offset U should be representable by a signed 8-bit value in all cases.
29134980
OF
975 Thus, the prefix word is assumed to be immediate byte offset mode followed
976 by another word containing the instruction.
977
978 Degenerate cases:
979 3)
980 push r8
981 move.d sp,r8
982 move.d r8,sp
983 pop r8
984
985 Prologue instructions C++-code.
986 Case 1) and 2) in the C-code may be followed by
987
988 move.d r10,rS ; this
989 move.d r11,rT ; P1
990 move.d r12,rU ; P2
991 move.d r13,rV ; P3
992 move.S [r8+U],rZ ; P4
993
0963b4bd 994 if any of the call parameters are stored. The host expects these
29134980
OF
995 instructions to be executed in order to get the call parameters right. */
996
997/* Examine the prologue of a function. The variable ip is the address of
998 the first instruction of the prologue. The variable limit is the address
999 of the first instruction after the prologue. The variable fi contains the
1000 information in struct frame_info. The variable frameless_p controls whether
1001 the entire prologue is examined (0) or just enough instructions to
1002 determine that it is a prologue (1). */
1003
a78f21af 1004static CORE_ADDR
94afd7a6 1005cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
2e4b5889 1006 struct cris_unwind_cache *info)
29134980 1007{
94afd7a6 1008 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1009 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1010
29134980
OF
1011 /* Present instruction. */
1012 unsigned short insn;
1013
1014 /* Next instruction, lookahead. */
1015 unsigned short insn_next;
1016 int regno;
1017
29134980
OF
1018 /* Number of byte on stack used for local variables and movem. */
1019 int val;
1020
1021 /* Highest register number in a movem. */
1022 int regsave;
1023
1024 /* move.d r<source_register>,rS */
1025 short source_register;
1026
2e4b5889
OF
1027 /* Scan limit. */
1028 int limit;
29134980 1029
2e4b5889
OF
1030 /* This frame is with respect to a leaf until a push srp is found. */
1031 if (info)
1032 {
1033 info->leaf_function = 1;
1034 }
29134980
OF
1035
1036 /* Assume nothing on stack. */
1037 val = 0;
1038 regsave = -1;
1039
94afd7a6 1040 /* If we were called without a this_frame, that means we were called
2e4b5889
OF
1041 from cris_skip_prologue which already tried to find the end of the
1042 prologue through the symbol information. 64 instructions past current
1043 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
94afd7a6 1044 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
29134980 1045
29134980 1046 /* Find the prologue instructions. */
a5f6c8f5 1047 while (pc > 0 && pc < limit)
29134980 1048 {
e17a4113 1049 insn = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1050 pc += 2;
29134980
OF
1051 if (insn == 0xE1FC)
1052 {
0963b4bd 1053 /* push <reg> 32 bit instruction. */
e17a4113 1054 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1055 pc += 2;
29134980 1056 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1057 if (info)
1058 {
1059 info->sp_offset += 4;
1060 }
dbbff683
OF
1061 /* This check, meant to recognize srp, used to be regno ==
1062 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1063 if (insn_next == 0xBE7E)
29134980 1064 {
2e4b5889
OF
1065 if (info)
1066 {
1067 info->leaf_function = 0;
1068 }
29134980 1069 }
b4206d25
OF
1070 else if (insn_next == 0x8FEE)
1071 {
1072 /* push $r8 */
1073 if (info)
1074 {
1075 info->r8_offset = info->sp_offset;
1076 }
1077 }
29134980
OF
1078 }
1079 else if (insn == 0x866E)
1080 {
1081 /* move.d sp,r8 */
2e4b5889
OF
1082 if (info)
1083 {
1084 info->uses_frame = 1;
2e4b5889 1085 }
29134980
OF
1086 continue;
1087 }
7fbe2eba 1088 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1089 && cris_get_mode (insn) == 0x0000
1090 && cris_get_opcode (insn) == 0x000A)
1091 {
1092 /* subq <val>,sp */
2e4b5889
OF
1093 if (info)
1094 {
1095 info->sp_offset += cris_get_quick_value (insn);
1096 }
29134980
OF
1097 }
1098 else if (cris_get_mode (insn) == 0x0002
1099 && cris_get_opcode (insn) == 0x000F
1100 && cris_get_size (insn) == 0x0003
7fbe2eba 1101 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
29134980
OF
1102 {
1103 /* movem r<regsave>,[sp] */
29134980
OF
1104 regsave = cris_get_operand2 (insn);
1105 }
7fbe2eba 1106 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1107 && ((insn & 0x0F00) >> 8) == 0x0001
1108 && (cris_get_signed_offset (insn) < 0))
1109 {
1110 /* Immediate byte offset addressing prefix word with sp as base
1111 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1112 is between 64 and 128.
1113 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1114 if (info)
1115 {
1116 info->sp_offset += -cris_get_signed_offset (insn);
1117 }
e17a4113 1118 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1119 pc += 2;
29134980
OF
1120 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1121 && cris_get_opcode (insn_next) == 0x000F
1122 && cris_get_size (insn_next) == 0x0003
3e8c568d 1123 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
7fbe2eba 1124 (gdbarch))
29134980 1125 {
29134980
OF
1126 regsave = cris_get_operand2 (insn_next);
1127 }
1128 else
1129 {
1130 /* The prologue ended before the limit was reached. */
2e4b5889 1131 pc -= 4;
29134980
OF
1132 break;
1133 }
1134 }
1135 else if (cris_get_mode (insn) == 0x0001
1136 && cris_get_opcode (insn) == 0x0009
1137 && cris_get_size (insn) == 0x0002)
1138 {
1139 /* move.d r<10..13>,r<0..15> */
29134980 1140 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1141
1142 /* FIXME? In the glibc solibs, the prologue might contain something
1143 like (this example taken from relocate_doit):
1144 move.d $pc,$r0
1145 sub.d 0xfffef426,$r0
1146 which isn't covered by the source_register check below. Question
1147 is whether to add a check for this combo, or make better use of
1148 the limit variable instead. */
29134980
OF
1149 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1150 {
1151 /* The prologue ended before the limit was reached. */
2e4b5889 1152 pc -= 2;
29134980
OF
1153 break;
1154 }
1155 }
2e4b5889 1156 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1157 /* The size is a fixed-size. */
1158 && ((insn & 0x0F00) >> 8) == 0x0001
1159 /* A negative offset. */
1160 && (cris_get_signed_offset (insn) < 0))
1161 {
1162 /* move.S rZ,[r8-U] (?) */
e17a4113 1163 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1164 pc += 2;
29134980 1165 regno = cris_get_operand2 (insn_next);
7fbe2eba 1166 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1167 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1168 && cris_get_opcode (insn_next) == 0x000F)
1169 {
1170 /* move.S rZ,[r8-U] */
1171 continue;
1172 }
1173 else
1174 {
1175 /* The prologue ended before the limit was reached. */
2e4b5889 1176 pc -= 4;
29134980
OF
1177 break;
1178 }
1179 }
2e4b5889 1180 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1181 /* The size is a fixed-size. */
1182 && ((insn & 0x0F00) >> 8) == 0x0001
1183 /* A positive offset. */
1184 && (cris_get_signed_offset (insn) > 0))
1185 {
1186 /* move.S [r8+U],rZ (?) */
e17a4113 1187 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1188 pc += 2;
29134980 1189 regno = cris_get_operand2 (insn_next);
7fbe2eba 1190 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1191 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1192 && cris_get_opcode (insn_next) == 0x0009
1193 && cris_get_operand1 (insn_next) == regno)
1194 {
1195 /* move.S [r8+U],rZ */
1196 continue;
1197 }
1198 else
1199 {
1200 /* The prologue ended before the limit was reached. */
2e4b5889 1201 pc -= 4;
29134980
OF
1202 break;
1203 }
1204 }
1205 else
1206 {
1207 /* The prologue ended before the limit was reached. */
2e4b5889 1208 pc -= 2;
29134980
OF
1209 break;
1210 }
1211 }
29134980 1212
94afd7a6 1213 /* We only want to know the end of the prologue when this_frame and info
2e4b5889 1214 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1215 if (this_frame == NULL && info == NULL)
2e4b5889
OF
1216 {
1217 return pc;
1218 }
29134980 1219
2e4b5889
OF
1220 info->size = info->sp_offset;
1221
1222 /* Compute the previous frame's stack pointer (which is also the
1223 frame's ID's stack address), and this frame's base pointer. */
1224 if (info->uses_frame)
29134980 1225 {
2e4b5889
OF
1226 ULONGEST this_base;
1227 /* The SP was moved to the FP. This indicates that a new frame
1228 was created. Get THIS frame's FP value by unwinding it from
1229 the next frame. */
94afd7a6 1230 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
2e4b5889 1231 info->base = this_base;
b4206d25
OF
1232 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1233
2e4b5889
OF
1234 /* The FP points at the last saved register. Adjust the FP back
1235 to before the first saved register giving the SP. */
1236 info->prev_sp = info->base + info->r8_offset;
1237 }
1238 else
1239 {
1240 ULONGEST this_base;
1241 /* Assume that the FP is this frame's SP but with that pushed
1242 stack space added back. */
94afd7a6
UW
1243 this_base = get_frame_register_unsigned (this_frame,
1244 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1245 info->base = this_base;
1246 info->prev_sp = info->base + info->size;
1247 }
29134980 1248
2e4b5889
OF
1249 /* Calculate the addresses for the saved registers on the stack. */
1250 /* FIXME: The address calculation should really be done on the fly while
1251 we're analyzing the prologue (we only hold one regsave value as it is
1252 now). */
1253 val = info->sp_offset;
1254
1255 for (regno = regsave; regno >= 0; regno--)
1256 {
1257 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1258 val -= 4;
1259 }
1260
1261 /* The previous frame's SP needed to be computed. Save the computed
1262 value. */
3e8c568d 1263 trad_frame_set_value (info->saved_regs,
7fbe2eba 1264 gdbarch_sp_regnum (gdbarch), info->prev_sp);
2e4b5889
OF
1265
1266 if (!info->leaf_function)
1267 {
b4206d25
OF
1268 /* SRP saved on the stack. But where? */
1269 if (info->r8_offset == 0)
1270 {
1271 /* R8 not pushed yet. */
1272 info->saved_regs[SRP_REGNUM].addr = info->base;
1273 }
1274 else
1275 {
1276 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1277 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1278 }
29134980 1279 }
2e4b5889
OF
1280
1281 /* The PC is found in SRP (the actual register or located on the stack). */
7fbe2eba 1282 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1283 = info->saved_regs[SRP_REGNUM];
2e4b5889
OF
1284
1285 return pc;
29134980
OF
1286}
1287
5114e29d 1288static CORE_ADDR
94afd7a6 1289crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
5114e29d
OF
1290 struct cris_unwind_cache *info)
1291{
94afd7a6 1292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
5114e29d
OF
1293 ULONGEST this_base;
1294
1295 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1296 meant to be a full-fledged prologue scanner. It is only needed for
1297 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1298
1299 * PLT stubs (library calls)
1300 * call dummys
1301 * signal trampolines
1302
1303 For those cases, it is assumed that there is no actual prologue; that
1304 the stack pointer is not adjusted, and (as a consequence) the return
1305 address is not pushed onto the stack. */
1306
94afd7a6 1307 /* We only want to know the end of the prologue when this_frame and info
5114e29d 1308 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1309 if (this_frame == NULL && info == NULL)
5114e29d
OF
1310 {
1311 return pc;
1312 }
1313
1314 /* The SP is assumed to be unaltered. */
94afd7a6
UW
1315 this_base = get_frame_register_unsigned (this_frame,
1316 gdbarch_sp_regnum (gdbarch));
5114e29d
OF
1317 info->base = this_base;
1318 info->prev_sp = this_base;
1319
1320 /* The PC is assumed to be found in SRP. */
7fbe2eba 1321 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1322 = info->saved_regs[SRP_REGNUM];
5114e29d
OF
1323
1324 return pc;
1325}
1326
29134980
OF
1327/* Advance pc beyond any function entry prologue instructions at pc
1328 to reach some "real" code. */
1329
29134980
OF
1330/* Given a PC value corresponding to the start of a function, return the PC
1331 of the first instruction after the function prologue. */
1332
a78f21af 1333static CORE_ADDR
6093d2eb 1334cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
29134980 1335{
35488783 1336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889
OF
1337 CORE_ADDR func_addr, func_end;
1338 struct symtab_and_line sal;
29134980
OF
1339 CORE_ADDR pc_after_prologue;
1340
2e4b5889
OF
1341 /* If we have line debugging information, then the end of the prologue
1342 should the first assembly instruction of the first source line. */
1343 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1344 {
1345 sal = find_pc_line (func_addr, 0);
1346 if (sal.end > 0 && sal.end < func_end)
1347 return sal.end;
1348 }
29134980 1349
35488783 1350 if (tdep->cris_version == 32)
5114e29d
OF
1351 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1352 else
1353 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1354
29134980
OF
1355 return pc_after_prologue;
1356}
1357
cd6c3b4f
YQ
1358/* Implement the breakpoint_kind_from_pc gdbarch method. */
1359
d19280ad
YQ
1360static int
1361cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1362{
1363 return 2;
1364}
29134980 1365
cd6c3b4f
YQ
1366/* Implement the sw_breakpoint_from_kind gdbarch method. */
1367
d19280ad
YQ
1368static const gdb_byte *
1369cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
29134980 1370{
35488783 1371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
0e6bdb31
OF
1372 static unsigned char break8_insn[] = {0x38, 0xe9};
1373 static unsigned char break15_insn[] = {0x3f, 0xe9};
d19280ad
YQ
1374
1375 *size = kind;
29134980 1376
35488783 1377 if (tdep->cris_mode == cris_mode_guru)
0e6bdb31
OF
1378 return break15_insn;
1379 else
1380 return break8_insn;
29134980
OF
1381}
1382
29134980
OF
1383/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1384 0 otherwise. */
1385
a78f21af 1386static int
35488783
UW
1387cris_spec_reg_applicable (struct gdbarch *gdbarch,
1388 struct cris_spec_reg spec_reg)
29134980 1389{
35488783 1390 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e4286e57 1391 unsigned int version = tdep->cris_version;
29134980
OF
1392
1393 switch (spec_reg.applicable_version)
1394 {
1395 case cris_ver_version_all:
1396 return 1;
1397 case cris_ver_warning:
1398 /* Indeterminate/obsolete. */
1399 return 0;
29134980 1400 case cris_ver_v0_3:
b020ff80 1401 return in_inclusive_range (version, 0U, 3U);
29134980
OF
1402 case cris_ver_v3p:
1403 return (version >= 3);
1404 case cris_ver_v8:
b020ff80 1405 return in_inclusive_range (version, 8U, 9U);
29134980
OF
1406 case cris_ver_v8p:
1407 return (version >= 8);
c600d464 1408 case cris_ver_v0_10:
b020ff80 1409 return in_inclusive_range (version, 0U, 10U);
c600d464 1410 case cris_ver_v3_10:
b020ff80 1411 return in_inclusive_range (version, 3U, 10U);
c600d464 1412 case cris_ver_v8_10:
b020ff80 1413 return in_inclusive_range (version, 8U, 10U);
c600d464
OF
1414 case cris_ver_v10:
1415 return (version == 10);
29134980
OF
1416 case cris_ver_v10p:
1417 return (version >= 10);
c600d464
OF
1418 case cris_ver_v32p:
1419 return (version >= 32);
29134980
OF
1420 default:
1421 /* Invalid cris version. */
1422 return 0;
1423 }
1424}
1425
1d94326f
AC
1426/* Returns the register size in unit byte. Returns 0 for an unimplemented
1427 register, -1 for an invalid register. */
1428
1429static int
be8626e0 1430cris_register_size (struct gdbarch *gdbarch, int regno)
1d94326f
AC
1431{
1432 int i;
1433 int spec_regno;
1434
1435 if (regno >= 0 && regno < NUM_GENREGS)
1436 {
1437 /* General registers (R0 - R15) are 32 bits. */
1438 return 4;
1439 }
c600d464 1440 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1441 {
1442 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1443 Adjust regno accordingly. */
1444 spec_regno = regno - NUM_GENREGS;
1445
c600d464 1446 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1447 {
1448 if (cris_spec_regs[i].number == spec_regno
35488783 1449 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1d94326f
AC
1450 /* Go with the first applicable register. */
1451 return cris_spec_regs[i].reg_size;
1452 }
1453 /* Special register not applicable to this CRIS version. */
1454 return 0;
1455 }
be8626e0
MD
1456 else if (regno >= gdbarch_pc_regnum (gdbarch)
1457 && regno < gdbarch_num_regs (gdbarch))
1d94326f 1458 {
c600d464
OF
1459 /* This will apply to CRISv32 only where there are additional registers
1460 after the special registers (pseudo PC and support registers). */
1461 return 4;
1d94326f 1462 }
c600d464
OF
1463
1464
1465 return -1;
1d94326f
AC
1466}
1467
29134980
OF
1468/* Nonzero if regno should not be fetched from the target. This is the case
1469 for unimplemented (size 0) and non-existant registers. */
1470
a78f21af 1471static int
64a3914f 1472cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
29134980 1473{
64a3914f 1474 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1475 || (cris_register_size (gdbarch, regno) == 0));
29134980
OF
1476}
1477
1478/* Nonzero if regno should not be written to the target, for various
1479 reasons. */
1480
a78f21af 1481static int
64a3914f 1482cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
29134980
OF
1483{
1484 /* There are three kinds of registers we refuse to write to.
1485 1. Those that not implemented.
1486 2. Those that are read-only (depends on the processor mode).
0963b4bd 1487 3. Those registers to which a write has no effect. */
29134980 1488
f57d151a 1489 if (regno < 0
64a3914f 1490 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1491 || cris_register_size (gdbarch, regno) == 0)
29134980
OF
1492 /* Not implemented. */
1493 return 1;
1494
1495 else if (regno == VR_REGNUM)
1496 /* Read-only. */
1497 return 1;
1498
1499 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1500 /* Writing has no effect. */
1501 return 1;
1502
a5f6c8f5
OF
1503 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1504 agent decide whether they are writable. */
29134980
OF
1505
1506 return 0;
1507}
1508
c600d464
OF
1509/* Nonzero if regno should not be fetched from the target. This is the case
1510 for unimplemented (size 0) and non-existant registers. */
1511
1512static int
64a3914f 1513crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
c600d464 1514{
64a3914f 1515 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1516 || (cris_register_size (gdbarch, regno) == 0));
c600d464
OF
1517}
1518
1519/* Nonzero if regno should not be written to the target, for various
1520 reasons. */
1521
1522static int
64a3914f 1523crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
c600d464
OF
1524{
1525 /* There are three kinds of registers we refuse to write to.
1526 1. Those that not implemented.
1527 2. Those that are read-only (depends on the processor mode).
0963b4bd 1528 3. Those registers to which a write has no effect. */
c600d464 1529
f57d151a 1530 if (regno < 0
64a3914f 1531 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1532 || cris_register_size (gdbarch, regno) == 0)
c600d464
OF
1533 /* Not implemented. */
1534 return 1;
1535
1536 else if (regno == VR_REGNUM)
1537 /* Read-only. */
1538 return 1;
1539
1540 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1541 /* Writing has no effect. */
1542 return 1;
1543
1544 /* Many special registers are read-only in user mode. Let the debug
1545 agent decide whether they are writable. */
1546
1547 return 0;
1548}
1549
29134980
OF
1550/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1551 of data in register regno. */
1552
a78f21af 1553static struct type *
c1d546cd 1554cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1555{
7fbe2eba 1556 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1557 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1558 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1559 || regno == CRIS_FP_REGNUM)
0dfff4cb 1560 return builtin_type (gdbarch)->builtin_data_ptr;
7fbe2eba 1561 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
a5f6c8f5
OF
1562 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1563 /* Note: R8 taken care of previous clause. */
df4df182 1564 return builtin_type (gdbarch)->builtin_uint32;
a5f6c8f5 1565 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
df4df182 1566 return builtin_type (gdbarch)->builtin_uint16;
a5f6c8f5 1567 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
df4df182 1568 return builtin_type (gdbarch)->builtin_uint8;
29134980 1569 else
a5f6c8f5 1570 /* Invalid (unimplemented) register. */
df4df182 1571 return builtin_type (gdbarch)->builtin_int0;
29134980
OF
1572}
1573
c600d464
OF
1574static struct type *
1575crisv32_register_type (struct gdbarch *gdbarch, int regno)
1576{
7fbe2eba 1577 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1578 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1579 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1580 || regno == CRIS_FP_REGNUM)
0dfff4cb 1581 return builtin_type (gdbarch)->builtin_data_ptr;
c600d464
OF
1582 else if ((regno >= 0 && regno <= ACR_REGNUM)
1583 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1584 || (regno == PID_REGNUM)
1585 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1586 /* Note: R8 and SP taken care of by previous clause. */
df4df182 1587 return builtin_type (gdbarch)->builtin_uint32;
c600d464 1588 else if (regno == WZ_REGNUM)
df4df182 1589 return builtin_type (gdbarch)->builtin_uint16;
c600d464 1590 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
df4df182 1591 return builtin_type (gdbarch)->builtin_uint8;
c600d464
OF
1592 else
1593 {
1594 /* Invalid (unimplemented) register. Should not happen as there are
1595 no unimplemented CRISv32 registers. */
8a3fe4f8 1596 warning (_("crisv32_register_type: unknown regno %d"), regno);
df4df182 1597 return builtin_type (gdbarch)->builtin_int0;
c600d464
OF
1598 }
1599}
1600
2e4b5889
OF
1601/* Stores a function return value of type type, where valbuf is the address
1602 of the value to be stored. */
29134980 1603
2e4b5889 1604/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1605
2e4b5889
OF
1606static void
1607cris_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1608 const gdb_byte *valbuf)
29134980 1609{
ac7936df 1610 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1611 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889 1612 ULONGEST val;
bad43aa5 1613 int len = TYPE_LENGTH (type);
29134980 1614
bad43aa5 1615 if (len <= 4)
29134980 1616 {
2e4b5889 1617 /* Put the return value in R10. */
bad43aa5 1618 val = extract_unsigned_integer (valbuf, len, byte_order);
2e4b5889 1619 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1620 }
bad43aa5 1621 else if (len <= 8)
29134980 1622 {
2e4b5889 1623 /* Put the return value in R10 and R11. */
e17a4113 1624 val = extract_unsigned_integer (valbuf, 4, byte_order);
2e4b5889 1625 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
948f8e3d 1626 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
2e4b5889 1627 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1628 }
2e4b5889 1629 else
8a3fe4f8 1630 error (_("cris_store_return_value: type length too large."));
29134980
OF
1631}
1632
0963b4bd
MS
1633/* Return the name of register regno as a string. Return NULL for an
1634 invalid or unimplemented register. */
29134980 1635
c600d464 1636static const char *
35488783 1637cris_special_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1638{
1639 int spec_regno;
1640 int i;
1641
1642 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1643 Adjust regno accordingly. */
1644 spec_regno = regno - NUM_GENREGS;
1645
1646 /* Assume nothing about the layout of the cris_spec_regs struct
1647 when searching. */
1648 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1649 {
1650 if (cris_spec_regs[i].number == spec_regno
35488783 1651 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
c600d464
OF
1652 /* Go with the first applicable register. */
1653 return cris_spec_regs[i].name;
1654 }
1655 /* Special register not applicable to this CRIS version. */
1656 return NULL;
1657}
1658
2e4b5889 1659static const char *
d93859e2 1660cris_register_name (struct gdbarch *gdbarch, int regno)
2e4b5889 1661{
a121b7c1 1662 static const char *cris_genreg_names[] =
2e4b5889
OF
1663 { "r0", "r1", "r2", "r3", \
1664 "r4", "r5", "r6", "r7", \
1665 "r8", "r9", "r10", "r11", \
1666 "r12", "r13", "sp", "pc" };
29134980 1667
2e4b5889 1668 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1669 {
2e4b5889
OF
1670 /* General register. */
1671 return cris_genreg_names[regno];
29134980 1672 }
d93859e2 1673 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
29134980 1674 {
35488783 1675 return cris_special_register_name (gdbarch, regno);
c600d464
OF
1676 }
1677 else
1678 {
1679 /* Invalid register. */
2e4b5889
OF
1680 return NULL;
1681 }
c600d464
OF
1682}
1683
1684static const char *
d93859e2 1685crisv32_register_name (struct gdbarch *gdbarch, int regno)
c600d464 1686{
a121b7c1 1687 static const char *crisv32_genreg_names[] =
c600d464
OF
1688 { "r0", "r1", "r2", "r3", \
1689 "r4", "r5", "r6", "r7", \
1690 "r8", "r9", "r10", "r11", \
1691 "r12", "r13", "sp", "acr"
1692 };
1693
a121b7c1 1694 static const char *crisv32_sreg_names[] =
c600d464
OF
1695 { "s0", "s1", "s2", "s3", \
1696 "s4", "s5", "s6", "s7", \
1697 "s8", "s9", "s10", "s11", \
1698 "s12", "s13", "s14", "s15"
1699 };
1700
1701 if (regno >= 0 && regno < NUM_GENREGS)
1702 {
1703 /* General register. */
1704 return crisv32_genreg_names[regno];
1705 }
1706 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1707 {
35488783 1708 return cris_special_register_name (gdbarch, regno);
c600d464 1709 }
d93859e2 1710 else if (regno == gdbarch_pc_regnum (gdbarch))
c600d464
OF
1711 {
1712 return "pc";
1713 }
1714 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1715 {
1716 return crisv32_sreg_names[regno - S0_REGNUM];
1717 }
2e4b5889
OF
1718 else
1719 {
1720 /* Invalid register. */
1721 return NULL;
29134980 1722 }
29134980
OF
1723}
1724
a5f6c8f5
OF
1725/* Convert DWARF register number REG to the appropriate register
1726 number used by GDB. */
1727
2e4b5889 1728static int
d3f73121 1729cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
29134980 1730{
a5f6c8f5
OF
1731 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1732 numbering, MOF is 18).
1733 Adapted from gcc/config/cris/cris.h. */
1734 static int cris_dwarf_regmap[] = {
1735 0, 1, 2, 3,
1736 4, 5, 6, 7,
1737 8, 9, 10, 11,
1738 12, 13, 14, 15,
1739 27, -1, -1, -1,
1740 -1, -1, -1, 23,
1741 -1, -1, -1, 27,
1742 -1, -1, -1, -1
1743 };
1744 int regnum = -1;
1745
1746 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1747 regnum = cris_dwarf_regmap[reg];
1748
a5f6c8f5
OF
1749 return regnum;
1750}
1751
1752/* DWARF-2 frame support. */
1753
1754static void
1755cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1756 struct dwarf2_frame_state_reg *reg,
4a4e5149 1757 struct frame_info *this_frame)
a5f6c8f5
OF
1758{
1759 /* The return address column. */
7fbe2eba 1760 if (regnum == gdbarch_pc_regnum (gdbarch))
a5f6c8f5
OF
1761 reg->how = DWARF2_FRAME_REG_RA;
1762
1763 /* The call frame address. */
7fbe2eba 1764 else if (regnum == gdbarch_sp_regnum (gdbarch))
a5f6c8f5 1765 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1766}
1767
2e4b5889
OF
1768/* Extract from an array regbuf containing the raw register state a function
1769 return value of type type, and copy that, in virtual format, into
1770 valbuf. */
1771
1772/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1773
2e4b5889
OF
1774static void
1775cris_extract_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1776 gdb_byte *valbuf)
29134980 1777{
ac7936df 1778 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1779 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889 1780 ULONGEST val;
bad43aa5 1781 int len = TYPE_LENGTH (type);
29134980 1782
bad43aa5 1783 if (len <= 4)
29134980 1784 {
2e4b5889
OF
1785 /* Get the return value from R10. */
1786 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
bad43aa5 1787 store_unsigned_integer (valbuf, len, byte_order, val);
29134980 1788 }
bad43aa5 1789 else if (len <= 8)
29134980 1790 {
2e4b5889
OF
1791 /* Get the return value from R10 and R11. */
1792 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
e17a4113 1793 store_unsigned_integer (valbuf, 4, byte_order, val);
2e4b5889 1794 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
948f8e3d 1795 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
29134980 1796 }
2e4b5889 1797 else
8a3fe4f8 1798 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1799}
1800
b4206d25
OF
1801/* Handle the CRIS return value convention. */
1802
1803static enum return_value_convention
6a3a010b 1804cris_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1805 struct type *type, struct regcache *regcache,
1806 gdb_byte *readbuf, const gdb_byte *writebuf)
b4206d25 1807{
78134374
SM
1808 if (type->code () == TYPE_CODE_STRUCT
1809 || type->code () == TYPE_CODE_UNION
b4206d25
OF
1810 || TYPE_LENGTH (type) > 8)
1811 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1812 goes on the stack. */
1813 return RETURN_VALUE_STRUCT_CONVENTION;
1814
1815 if (readbuf)
1816 cris_extract_return_value (type, regcache, readbuf);
1817 if (writebuf)
1818 cris_store_return_value (type, regcache, writebuf);
1819
1820 return RETURN_VALUE_REGISTER_CONVENTION;
1821}
1822
29134980
OF
1823/* Calculates a value that measures how good inst_args constraints an
1824 instruction. It stems from cris_constraint, found in cris-dis.c. */
1825
1826static int
948f8e3d 1827constraint (unsigned int insn, const char *inst_args,
29134980
OF
1828 inst_env_type *inst_env)
1829{
1830 int retval = 0;
1831 int tmp, i;
1832
948f8e3d 1833 const gdb_byte *s = (const gdb_byte *) inst_args;
29134980
OF
1834
1835 for (; *s; s++)
1836 switch (*s)
1837 {
1838 case 'm':
1839 if ((insn & 0x30) == 0x30)
1840 return -1;
1841 break;
1842
1843 case 'S':
1844 /* A prefix operand. */
1845 if (inst_env->prefix_found)
1846 break;
1847 else
1848 return -1;
1849
1850 case 'B':
1851 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1852 valid "push" size. In case of special register, it may be != 4. */
1853 if (inst_env->prefix_found)
1854 break;
1855 else
1856 return -1;
1857
1858 case 'D':
1859 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1860 if (!retval)
1861 return -1;
1862 else
1863 retval += 4;
1864 break;
1865
1866 case 'P':
1867 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1868
1869 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1870 {
1871 /* Since we match four bits, we will give a value of
1872 4 - 1 = 3 in a match. If there is a corresponding
1873 exact match of a special register in another pattern, it
1874 will get a value of 4, which will be higher. This should
1875 be correct in that an exact pattern would match better that
1876 a general pattern.
1877 Note that there is a reason for not returning zero; the
1878 pattern for "clear" is partly matched in the bit-pattern
1879 (the two lower bits must be zero), while the bit-pattern
1880 for a move from a special register is matched in the
1881 register constraint.
1882 This also means we will will have a race condition if
1883 there is a partly match in three bits in the bit pattern. */
1884 if (tmp == cris_spec_regs[i].number)
1885 {
1886 retval += 3;
1887 break;
1888 }
1889 }
1890
1891 if (cris_spec_regs[i].name == NULL)
29134980
OF
1892 return -1;
1893 break;
1894 }
1895 return retval;
1896}
1897
1898/* Returns the number of bits set in the variable value. */
1899
1900static int
1901number_of_bits (unsigned int value)
1902{
1903 int number_of_bits = 0;
1904
1905 while (value != 0)
1906 {
1907 number_of_bits += 1;
1908 value &= (value - 1);
1909 }
1910 return number_of_bits;
1911}
1912
1913/* Finds the address that should contain the single step breakpoint(s).
1914 It stems from code in cris-dis.c. */
1915
1916static int
1917find_cris_op (unsigned short insn, inst_env_type *inst_env)
1918{
1919 int i;
1920 int max_level_of_match = -1;
1921 int max_matched = -1;
1922 int level_of_match;
1923
1924 for (i = 0; cris_opcodes[i].name != NULL; i++)
1925 {
1926 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
1927 && ((cris_opcodes[i].lose & insn) == 0)
1928 /* Only CRISv10 instructions, please. */
1929 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
1930 {
1931 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1932 if (level_of_match >= 0)
1933 {
1934 level_of_match +=
1935 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1936 if (level_of_match > max_level_of_match)
1937 {
1938 max_matched = i;
1939 max_level_of_match = level_of_match;
1940 if (level_of_match == 16)
1941 {
1942 /* All bits matched, cannot find better. */
1943 break;
1944 }
1945 }
1946 }
1947 }
1948 }
1949 return max_matched;
1950}
1951
1952/* Attempts to find single-step breakpoints. Returns -1 on failure which is
1953 actually an internal error. */
1954
1955static int
5b6e2eee 1956find_step_target (struct regcache *regcache, inst_env_type *inst_env)
29134980
OF
1957{
1958 int i;
1959 int offset;
1960 unsigned short insn;
ac7936df 1961 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1962 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
29134980
OF
1963
1964 /* Create a local register image and set the initial state. */
1965 for (i = 0; i < NUM_GENREGS; i++)
1966 {
0b1b3e42 1967 inst_env->reg[i] =
5b6e2eee 1968 (unsigned long) regcache_raw_get_unsigned (regcache, i);
29134980
OF
1969 }
1970 offset = NUM_GENREGS;
1971 for (i = 0; i < NUM_SPECREGS; i++)
1972 {
0b1b3e42 1973 inst_env->preg[i] =
5b6e2eee 1974 (unsigned long) regcache_raw_get_unsigned (regcache, offset + i);
29134980
OF
1975 }
1976 inst_env->branch_found = 0;
1977 inst_env->slot_needed = 0;
1978 inst_env->delay_slot_pc_active = 0;
1979 inst_env->prefix_found = 0;
1980 inst_env->invalid = 0;
1981 inst_env->xflag_found = 0;
1982 inst_env->disable_interrupt = 0;
e17a4113 1983 inst_env->byte_order = byte_order;
29134980
OF
1984
1985 /* Look for a step target. */
1986 do
1987 {
1988 /* Read an instruction from the client. */
3e8c568d 1989 insn = read_memory_unsigned_integer
e17a4113 1990 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
29134980
OF
1991
1992 /* If the instruction is not in a delay slot the new content of the
1993 PC is [PC] + 2. If the instruction is in a delay slot it is not
1994 that simple. Since a instruction in a delay slot cannot change
1995 the content of the PC, it does not matter what value PC will have.
1996 Just make sure it is a valid instruction. */
1997 if (!inst_env->delay_slot_pc_active)
1998 {
7fbe2eba 1999 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
29134980
OF
2000 }
2001 else
2002 {
2003 inst_env->delay_slot_pc_active = 0;
7fbe2eba 2004 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
3e8c568d 2005 = inst_env->delay_slot_pc;
29134980
OF
2006 }
2007 /* Analyse the present instruction. */
2008 i = find_cris_op (insn, inst_env);
2009 if (i == -1)
2010 {
2011 inst_env->invalid = 1;
2012 }
2013 else
2014 {
be8626e0 2015 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
29134980
OF
2016 }
2017 } while (!inst_env->invalid
2018 && (inst_env->prefix_found || inst_env->xflag_found
2019 || inst_env->slot_needed));
2020 return i;
2021}
2022
2023/* There is no hardware single-step support. The function find_step_target
0963b4bd 2024 digs through the opcodes in order to find all possible targets.
29134980
OF
2025 Either one ordinary target or two targets for branches may be found. */
2026
a0ff9e1a 2027static std::vector<CORE_ADDR>
f5ea389a 2028cris_software_single_step (struct regcache *regcache)
29134980 2029{
ac7936df 2030 struct gdbarch *gdbarch = regcache->arch ();
29134980 2031 inst_env_type inst_env;
a0ff9e1a 2032 std::vector<CORE_ADDR> next_pcs;
8181d85f 2033
e0cd558a
UW
2034 /* Analyse the present instruction environment and insert
2035 breakpoints. */
5b6e2eee 2036 int status = find_step_target (regcache, &inst_env);
e0cd558a 2037 if (status == -1)
29134980 2038 {
e0cd558a
UW
2039 /* Could not find a target. Things are likely to go downhill
2040 from here. */
2041 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2042 }
2043 else
e0cd558a
UW
2044 {
2045 /* Insert at most two breakpoints. One for the next PC content
2046 and possibly another one for a branch, jump, etc. */
a6d9a66e
UW
2047 CORE_ADDR next_pc
2048 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
93f9a11f 2049
a0ff9e1a 2050 next_pcs.push_back (next_pc);
e0cd558a
UW
2051 if (inst_env.branch_found
2052 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2053 {
2054 CORE_ADDR branch_target_address
2055 = (CORE_ADDR) inst_env.branch_break_address;
93f9a11f 2056
a0ff9e1a 2057 next_pcs.push_back (branch_target_address);
e0cd558a
UW
2058 }
2059 }
e6590a1b 2060
93f9a11f 2061 return next_pcs;
29134980
OF
2062}
2063
2064/* Calculates the prefix value for quick offset addressing mode. */
2065
a78f21af 2066static void
29134980
OF
2067quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2068{
2069 /* It's invalid to be in a delay slot. You can't have a prefix to this
2070 instruction (not 100% sure). */
2071 if (inst_env->slot_needed || inst_env->prefix_found)
2072 {
2073 inst_env->invalid = 1;
2074 return;
2075 }
2076
2077 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2078 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2079
2080 /* A prefix doesn't change the xflag_found. But the rest of the flags
2081 need updating. */
2082 inst_env->slot_needed = 0;
2083 inst_env->prefix_found = 1;
2084}
2085
2086/* Updates the autoincrement register. The size of the increment is derived
2087 from the size of the operation. The PC is always kept aligned on even
2088 word addresses. */
2089
a78f21af 2090static void
29134980
OF
2091process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2092{
2093 if (size == INST_BYTE_SIZE)
2094 {
2095 inst_env->reg[cris_get_operand1 (inst)] += 1;
2096
2097 /* The PC must be word aligned, so increase the PC with one
2098 word even if the size is byte. */
2099 if (cris_get_operand1 (inst) == REG_PC)
2100 {
2101 inst_env->reg[REG_PC] += 1;
2102 }
2103 }
2104 else if (size == INST_WORD_SIZE)
2105 {
2106 inst_env->reg[cris_get_operand1 (inst)] += 2;
2107 }
2108 else if (size == INST_DWORD_SIZE)
2109 {
2110 inst_env->reg[cris_get_operand1 (inst)] += 4;
2111 }
2112 else
2113 {
2114 /* Invalid size. */
2115 inst_env->invalid = 1;
2116 }
2117}
2118
2a9ecef2
OF
2119/* Just a forward declaration. */
2120
a78f21af 2121static unsigned long get_data_from_address (unsigned short *inst,
e17a4113
UW
2122 CORE_ADDR address,
2123 enum bfd_endian byte_order);
2a9ecef2 2124
29134980
OF
2125/* Calculates the prefix value for the general case of offset addressing
2126 mode. */
2127
a78f21af 2128static void
29134980
OF
2129bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2130{
29134980
OF
2131 /* It's invalid to be in a delay slot. */
2132 if (inst_env->slot_needed || inst_env->prefix_found)
2133 {
2134 inst_env->invalid = 1;
2135 return;
2136 }
2137
fa4e4598
OF
2138 /* The calculation of prefix_value used to be after process_autoincrement,
2139 but that fails for an instruction such as jsr [$r0+12] which is encoded
2140 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2141 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2142 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2143
2144 /* The offset is an indirection of the contents of the operand1 register. */
2145 inst_env->prefix_value +=
e17a4113
UW
2146 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2147 inst_env->byte_order);
2a9ecef2 2148
fa4e4598
OF
2149 if (cris_get_mode (inst) == AUTOINC_MODE)
2150 {
2151 process_autoincrement (cris_get_size (inst), inst, inst_env);
2152 }
2153
29134980
OF
2154 /* A prefix doesn't change the xflag_found. But the rest of the flags
2155 need updating. */
2156 inst_env->slot_needed = 0;
2157 inst_env->prefix_found = 1;
2158}
2159
2160/* Calculates the prefix value for the index addressing mode. */
2161
a78f21af 2162static void
29134980
OF
2163biap_prefix (unsigned short inst, inst_env_type *inst_env)
2164{
2165 /* It's invalid to be in a delay slot. I can't see that it's possible to
2166 have a prefix to this instruction. So I will treat this as invalid. */
2167 if (inst_env->slot_needed || inst_env->prefix_found)
2168 {
2169 inst_env->invalid = 1;
2170 return;
2171 }
2172
2173 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2174
2175 /* The offset is the operand2 value shifted the size of the instruction
2176 to the left. */
2177 inst_env->prefix_value +=
2178 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2179
2180 /* If the PC is operand1 (base) the address used is the address after
2181 the main instruction, i.e. address + 2 (the PC is already compensated
2182 for the prefix operation). */
2183 if (cris_get_operand1 (inst) == REG_PC)
2184 {
2185 inst_env->prefix_value += 2;
2186 }
2187
2188 /* A prefix doesn't change the xflag_found. But the rest of the flags
2189 need updating. */
2190 inst_env->slot_needed = 0;
2191 inst_env->xflag_found = 0;
2192 inst_env->prefix_found = 1;
2193}
2194
2195/* Calculates the prefix value for the double indirect addressing mode. */
2196
a78f21af 2197static void
29134980
OF
2198dip_prefix (unsigned short inst, inst_env_type *inst_env)
2199{
2200
2201 CORE_ADDR address;
2202
2203 /* It's invalid to be in a delay slot. */
2204 if (inst_env->slot_needed || inst_env->prefix_found)
2205 {
2206 inst_env->invalid = 1;
2207 return;
2208 }
2209
2210 /* The prefix value is one dereference of the contents of the operand1
2211 register. */
2212 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2213 inst_env->prefix_value
2214 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
29134980
OF
2215
2216 /* Check if the mode is autoincrement. */
2217 if (cris_get_mode (inst) == AUTOINC_MODE)
2218 {
2219 inst_env->reg[cris_get_operand1 (inst)] += 4;
2220 }
2221
2222 /* A prefix doesn't change the xflag_found. But the rest of the flags
2223 need updating. */
2224 inst_env->slot_needed = 0;
2225 inst_env->xflag_found = 0;
2226 inst_env->prefix_found = 1;
2227}
2228
2229/* Finds the destination for a branch with 8-bits offset. */
2230
a78f21af 2231static void
29134980
OF
2232eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2233{
2234
2235 short offset;
2236
2237 /* If we have a prefix or are in a delay slot it's bad. */
2238 if (inst_env->slot_needed || inst_env->prefix_found)
2239 {
2240 inst_env->invalid = 1;
2241 return;
2242 }
2243
2244 /* We have a branch, find out where the branch will land. */
2245 offset = cris_get_branch_short_offset (inst);
2246
2247 /* Check if the offset is signed. */
2248 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2249 {
2250 offset |= 0xFF00;
2251 }
2252
2253 /* The offset ends with the sign bit, set it to zero. The address
2254 should always be word aligned. */
2255 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2256
2257 inst_env->branch_found = 1;
2258 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2259
2260 inst_env->slot_needed = 1;
2261 inst_env->prefix_found = 0;
2262 inst_env->xflag_found = 0;
2263 inst_env->disable_interrupt = 1;
2264}
2265
2266/* Finds the destination for a branch with 16-bits offset. */
2267
a78f21af 2268static void
29134980
OF
2269sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2270{
2271 short offset;
2272
2273 /* If we have a prefix or is in a delay slot it's bad. */
2274 if (inst_env->slot_needed || inst_env->prefix_found)
2275 {
2276 inst_env->invalid = 1;
2277 return;
2278 }
2279
2280 /* We have a branch, find out the offset for the branch. */
0963b4bd
MS
2281 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2282 inst_env->byte_order);
29134980
OF
2283
2284 /* The instruction is one word longer than normal, so add one word
2285 to the PC. */
2286 inst_env->reg[REG_PC] += 2;
2287
2288 inst_env->branch_found = 1;
2289 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2290
2291
2292 inst_env->slot_needed = 1;
2293 inst_env->prefix_found = 0;
2294 inst_env->xflag_found = 0;
2295 inst_env->disable_interrupt = 1;
2296}
2297
2298/* Handles the ABS instruction. */
2299
a78f21af 2300static void
29134980
OF
2301abs_op (unsigned short inst, inst_env_type *inst_env)
2302{
2303
2304 long value;
2305
2306 /* ABS can't have a prefix, so it's bad if it does. */
2307 if (inst_env->prefix_found)
2308 {
2309 inst_env->invalid = 1;
2310 return;
2311 }
2312
2313 /* Check if the operation affects the PC. */
2314 if (cris_get_operand2 (inst) == REG_PC)
2315 {
2316
2317 /* It's invalid to change to the PC if we are in a delay slot. */
2318 if (inst_env->slot_needed)
2319 {
2320 inst_env->invalid = 1;
2321 return;
2322 }
2323
2324 value = (long) inst_env->reg[REG_PC];
2325
2326 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2327 if (value != SIGNED_DWORD_MASK)
2328 {
2329 value = -value;
2330 inst_env->reg[REG_PC] = (long) value;
2331 }
2332 }
2333
2334 inst_env->slot_needed = 0;
2335 inst_env->prefix_found = 0;
2336 inst_env->xflag_found = 0;
2337 inst_env->disable_interrupt = 0;
2338}
2339
2340/* Handles the ADDI instruction. */
2341
a78f21af 2342static void
29134980
OF
2343addi_op (unsigned short inst, inst_env_type *inst_env)
2344{
2345 /* It's invalid to have the PC as base register. And ADDI can't have
2346 a prefix. */
2347 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2348 {
2349 inst_env->invalid = 1;
2350 return;
2351 }
2352
2353 inst_env->slot_needed = 0;
2354 inst_env->prefix_found = 0;
2355 inst_env->xflag_found = 0;
2356 inst_env->disable_interrupt = 0;
2357}
2358
2359/* Handles the ASR instruction. */
2360
a78f21af 2361static void
29134980
OF
2362asr_op (unsigned short inst, inst_env_type *inst_env)
2363{
2364 int shift_steps;
2365 unsigned long value;
2366 unsigned long signed_extend_mask = 0;
2367
2368 /* ASR can't have a prefix, so check that it doesn't. */
2369 if (inst_env->prefix_found)
2370 {
2371 inst_env->invalid = 1;
2372 return;
2373 }
2374
2375 /* Check if the PC is the target register. */
2376 if (cris_get_operand2 (inst) == REG_PC)
2377 {
2378 /* It's invalid to change the PC in a delay slot. */
2379 if (inst_env->slot_needed)
2380 {
2381 inst_env->invalid = 1;
2382 return;
2383 }
2384 /* Get the number of bits to shift. */
0963b4bd
MS
2385 shift_steps
2386 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
29134980
OF
2387 value = inst_env->reg[REG_PC];
2388
2389 /* Find out how many bits the operation should apply to. */
2390 if (cris_get_size (inst) == INST_BYTE_SIZE)
2391 {
2392 if (value & SIGNED_BYTE_MASK)
2393 {
2394 signed_extend_mask = 0xFF;
2395 signed_extend_mask = signed_extend_mask >> shift_steps;
2396 signed_extend_mask = ~signed_extend_mask;
2397 }
2398 value = value >> shift_steps;
2399 value |= signed_extend_mask;
2400 value &= 0xFF;
2401 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2402 inst_env->reg[REG_PC] |= value;
2403 }
2404 else if (cris_get_size (inst) == INST_WORD_SIZE)
2405 {
2406 if (value & SIGNED_WORD_MASK)
2407 {
2408 signed_extend_mask = 0xFFFF;
2409 signed_extend_mask = signed_extend_mask >> shift_steps;
2410 signed_extend_mask = ~signed_extend_mask;
2411 }
2412 value = value >> shift_steps;
2413 value |= signed_extend_mask;
2414 value &= 0xFFFF;
2415 inst_env->reg[REG_PC] &= 0xFFFF0000;
2416 inst_env->reg[REG_PC] |= value;
2417 }
2418 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2419 {
2420 if (value & SIGNED_DWORD_MASK)
2421 {
2422 signed_extend_mask = 0xFFFFFFFF;
2423 signed_extend_mask = signed_extend_mask >> shift_steps;
2424 signed_extend_mask = ~signed_extend_mask;
2425 }
2426 value = value >> shift_steps;
2427 value |= signed_extend_mask;
2428 inst_env->reg[REG_PC] = value;
2429 }
2430 }
2431 inst_env->slot_needed = 0;
2432 inst_env->prefix_found = 0;
2433 inst_env->xflag_found = 0;
2434 inst_env->disable_interrupt = 0;
2435}
2436
2437/* Handles the ASRQ instruction. */
2438
a78f21af 2439static void
29134980
OF
2440asrq_op (unsigned short inst, inst_env_type *inst_env)
2441{
2442
2443 int shift_steps;
2444 unsigned long value;
2445 unsigned long signed_extend_mask = 0;
2446
2447 /* ASRQ can't have a prefix, so check that it doesn't. */
2448 if (inst_env->prefix_found)
2449 {
2450 inst_env->invalid = 1;
2451 return;
2452 }
2453
2454 /* Check if the PC is the target register. */
2455 if (cris_get_operand2 (inst) == REG_PC)
2456 {
2457
2458 /* It's invalid to change the PC in a delay slot. */
2459 if (inst_env->slot_needed)
2460 {
2461 inst_env->invalid = 1;
2462 return;
2463 }
2464 /* The shift size is given as a 5 bit quick value, i.e. we don't
b021a221 2465 want the sign bit of the quick value. */
29134980
OF
2466 shift_steps = cris_get_asr_shift_steps (inst);
2467 value = inst_env->reg[REG_PC];
2468 if (value & SIGNED_DWORD_MASK)
2469 {
2470 signed_extend_mask = 0xFFFFFFFF;
2471 signed_extend_mask = signed_extend_mask >> shift_steps;
2472 signed_extend_mask = ~signed_extend_mask;
2473 }
2474 value = value >> shift_steps;
2475 value |= signed_extend_mask;
2476 inst_env->reg[REG_PC] = value;
2477 }
2478 inst_env->slot_needed = 0;
2479 inst_env->prefix_found = 0;
2480 inst_env->xflag_found = 0;
2481 inst_env->disable_interrupt = 0;
2482}
2483
2484/* Handles the AX, EI and SETF instruction. */
2485
a78f21af 2486static void
29134980
OF
2487ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2488{
2489 if (inst_env->prefix_found)
2490 {
2491 inst_env->invalid = 1;
2492 return;
2493 }
2494 /* Check if the instruction is setting the X flag. */
2495 if (cris_is_xflag_bit_on (inst))
2496 {
2497 inst_env->xflag_found = 1;
2498 }
2499 else
2500 {
2501 inst_env->xflag_found = 0;
2502 }
2503 inst_env->slot_needed = 0;
2504 inst_env->prefix_found = 0;
2505 inst_env->disable_interrupt = 1;
2506}
2507
2508/* Checks if the instruction is in assign mode. If so, it updates the assign
2509 register. Note that check_assign assumes that the caller has checked that
2510 there is a prefix to this instruction. The mode check depends on this. */
2511
a78f21af 2512static void
29134980
OF
2513check_assign (unsigned short inst, inst_env_type *inst_env)
2514{
2515 /* Check if it's an assign addressing mode. */
2516 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2517 {
2518 /* Assign the prefix value to operand 1. */
2519 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2520 }
2521}
2522
2523/* Handles the 2-operand BOUND instruction. */
2524
a78f21af 2525static void
29134980
OF
2526two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2527{
2528 /* It's invalid to have the PC as the index operand. */
2529 if (cris_get_operand2 (inst) == REG_PC)
2530 {
2531 inst_env->invalid = 1;
2532 return;
2533 }
2534 /* Check if we have a prefix. */
2535 if (inst_env->prefix_found)
2536 {
2537 check_assign (inst, inst_env);
2538 }
2539 /* Check if this is an autoincrement mode. */
2540 else if (cris_get_mode (inst) == AUTOINC_MODE)
2541 {
2542 /* It's invalid to change the PC in a delay slot. */
2543 if (inst_env->slot_needed)
2544 {
2545 inst_env->invalid = 1;
2546 return;
2547 }
2548 process_autoincrement (cris_get_size (inst), inst, inst_env);
2549 }
2550 inst_env->slot_needed = 0;
2551 inst_env->prefix_found = 0;
2552 inst_env->xflag_found = 0;
2553 inst_env->disable_interrupt = 0;
2554}
2555
2556/* Handles the 3-operand BOUND instruction. */
2557
a78f21af 2558static void
29134980
OF
2559three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2560{
2561 /* It's an error if we haven't got a prefix. And it's also an error
2562 if the PC is the destination register. */
2563 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2564 {
2565 inst_env->invalid = 1;
2566 return;
2567 }
2568 inst_env->slot_needed = 0;
2569 inst_env->prefix_found = 0;
2570 inst_env->xflag_found = 0;
2571 inst_env->disable_interrupt = 0;
2572}
2573
2574/* Clears the status flags in inst_env. */
2575
a78f21af 2576static void
29134980
OF
2577btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2578{
2579 /* It's an error if we have got a prefix. */
2580 if (inst_env->prefix_found)
2581 {
2582 inst_env->invalid = 1;
2583 return;
2584 }
2585
2586 inst_env->slot_needed = 0;
2587 inst_env->prefix_found = 0;
2588 inst_env->xflag_found = 0;
2589 inst_env->disable_interrupt = 0;
2590}
2591
2592/* Clears the status flags in inst_env. */
2593
a78f21af 2594static void
29134980
OF
2595clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2596{
2597 /* It's an error if we have got a prefix. */
2598 if (inst_env->prefix_found)
2599 {
2600 inst_env->invalid = 1;
2601 return;
2602 }
2603
2604 inst_env->slot_needed = 0;
2605 inst_env->prefix_found = 0;
2606 inst_env->xflag_found = 0;
2607 inst_env->disable_interrupt = 1;
2608}
2609
2610/* Handles the CLEAR instruction if it's in register mode. */
2611
a78f21af 2612static void
29134980
OF
2613reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2614{
2615 /* Check if the target is the PC. */
2616 if (cris_get_operand2 (inst) == REG_PC)
2617 {
2618 /* The instruction will clear the instruction's size bits. */
2619 int clear_size = cris_get_clear_size (inst);
2620 if (clear_size == INST_BYTE_SIZE)
2621 {
2622 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2623 }
2624 if (clear_size == INST_WORD_SIZE)
2625 {
2626 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2627 }
2628 if (clear_size == INST_DWORD_SIZE)
2629 {
2630 inst_env->delay_slot_pc = 0x0;
2631 }
2632 /* The jump will be delayed with one delay slot. So we need a delay
2633 slot. */
2634 inst_env->slot_needed = 1;
2635 inst_env->delay_slot_pc_active = 1;
2636 }
2637 else
2638 {
2639 /* The PC will not change => no delay slot. */
2640 inst_env->slot_needed = 0;
2641 }
2642 inst_env->prefix_found = 0;
2643 inst_env->xflag_found = 0;
2644 inst_env->disable_interrupt = 0;
2645}
2646
2647/* Handles the TEST instruction if it's in register mode. */
2648
a78f21af 2649static void
29134980
OF
2650reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2651{
2652 /* It's an error if we have got a prefix. */
2653 if (inst_env->prefix_found)
2654 {
2655 inst_env->invalid = 1;
2656 return;
2657 }
2658 inst_env->slot_needed = 0;
2659 inst_env->prefix_found = 0;
2660 inst_env->xflag_found = 0;
2661 inst_env->disable_interrupt = 0;
2662
2663}
2664
2665/* Handles the CLEAR and TEST instruction if the instruction isn't
2666 in register mode. */
2667
a78f21af 2668static void
29134980
OF
2669none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2670{
2671 /* Check if we are in a prefix mode. */
2672 if (inst_env->prefix_found)
2673 {
2674 /* The only way the PC can change is if this instruction is in
2675 assign addressing mode. */
2676 check_assign (inst, inst_env);
2677 }
2678 /* Indirect mode can't change the PC so just check if the mode is
2679 autoincrement. */
2680 else if (cris_get_mode (inst) == AUTOINC_MODE)
2681 {
2682 process_autoincrement (cris_get_size (inst), inst, inst_env);
2683 }
2684 inst_env->slot_needed = 0;
2685 inst_env->prefix_found = 0;
2686 inst_env->xflag_found = 0;
2687 inst_env->disable_interrupt = 0;
2688}
2689
2690/* Checks that the PC isn't the destination register or the instructions has
2691 a prefix. */
2692
a78f21af 2693static void
29134980
OF
2694dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2695{
2696 /* It's invalid to have the PC as the destination. The instruction can't
2697 have a prefix. */
2698 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2699 {
2700 inst_env->invalid = 1;
2701 return;
2702 }
2703
2704 inst_env->slot_needed = 0;
2705 inst_env->prefix_found = 0;
2706 inst_env->xflag_found = 0;
2707 inst_env->disable_interrupt = 0;
2708}
2709
2710/* Checks that the instruction doesn't have a prefix. */
2711
a78f21af 2712static void
29134980
OF
2713break_op (unsigned short inst, inst_env_type *inst_env)
2714{
2715 /* The instruction can't have a prefix. */
2716 if (inst_env->prefix_found)
2717 {
2718 inst_env->invalid = 1;
2719 return;
2720 }
2721
2722 inst_env->slot_needed = 0;
2723 inst_env->prefix_found = 0;
2724 inst_env->xflag_found = 0;
2725 inst_env->disable_interrupt = 1;
2726}
2727
2728/* Checks that the PC isn't the destination register and that the instruction
2729 doesn't have a prefix. */
2730
a78f21af 2731static void
29134980
OF
2732scc_op (unsigned short inst, inst_env_type *inst_env)
2733{
2734 /* It's invalid to have the PC as the destination. The instruction can't
2735 have a prefix. */
2736 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2737 {
2738 inst_env->invalid = 1;
2739 return;
2740 }
2741
2742 inst_env->slot_needed = 0;
2743 inst_env->prefix_found = 0;
2744 inst_env->xflag_found = 0;
2745 inst_env->disable_interrupt = 1;
2746}
2747
2748/* Handles the register mode JUMP instruction. */
2749
a78f21af 2750static void
29134980
OF
2751reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2752{
2753 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2754 you can't have a prefix. */
2755 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2756 {
2757 inst_env->invalid = 1;
2758 return;
2759 }
2760
2761 /* Just change the PC. */
2762 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2763 inst_env->slot_needed = 0;
2764 inst_env->prefix_found = 0;
2765 inst_env->xflag_found = 0;
2766 inst_env->disable_interrupt = 1;
2767}
2768
2769/* Handles the JUMP instruction for all modes except register. */
2770
a78f21af
AC
2771static void
2772none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2773{
2774 unsigned long newpc;
2775 CORE_ADDR address;
2776
2777 /* It's invalid to do a JUMP in a delay slot. */
2778 if (inst_env->slot_needed)
2779 {
2780 inst_env->invalid = 1;
2781 }
2782 else
2783 {
2784 /* Check if we have a prefix. */
2785 if (inst_env->prefix_found)
2786 {
2787 check_assign (inst, inst_env);
2788
b021a221 2789 /* Get the new value for the PC. */
29134980
OF
2790 newpc =
2791 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
e17a4113 2792 4, inst_env->byte_order);
29134980
OF
2793 }
2794 else
2795 {
2796 /* Get the new value for the PC. */
2797 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2798 newpc = read_memory_unsigned_integer (address,
2799 4, inst_env->byte_order);
29134980
OF
2800
2801 /* Check if we should increment a register. */
2802 if (cris_get_mode (inst) == AUTOINC_MODE)
2803 {
2804 inst_env->reg[cris_get_operand1 (inst)] += 4;
2805 }
2806 }
2807 inst_env->reg[REG_PC] = newpc;
2808 }
2809 inst_env->slot_needed = 0;
2810 inst_env->prefix_found = 0;
2811 inst_env->xflag_found = 0;
2812 inst_env->disable_interrupt = 1;
2813}
2814
2815/* Handles moves to special registers (aka P-register) for all modes. */
2816
a78f21af 2817static void
be8626e0
MD
2818move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2819 inst_env_type *inst_env)
29134980
OF
2820{
2821 if (inst_env->prefix_found)
2822 {
2823 /* The instruction has a prefix that means we are only interested if
2824 the instruction is in assign mode. */
2825 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2826 {
2827 /* The prefix handles the problem if we are in a delay slot. */
2828 if (cris_get_operand1 (inst) == REG_PC)
2829 {
2830 /* Just take care of the assign. */
2831 check_assign (inst, inst_env);
2832 }
2833 }
2834 }
2835 else if (cris_get_mode (inst) == AUTOINC_MODE)
2836 {
2837 /* The instruction doesn't have a prefix, the only case left that we
2838 are interested in is the autoincrement mode. */
2839 if (cris_get_operand1 (inst) == REG_PC)
2840 {
2841 /* If the PC is to be incremented it's invalid to be in a
2842 delay slot. */
2843 if (inst_env->slot_needed)
2844 {
2845 inst_env->invalid = 1;
2846 return;
2847 }
2a9ecef2
OF
2848
2849 /* The increment depends on the size of the special register. */
be8626e0 2850 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
2851 {
2852 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2853 }
be8626e0 2854 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
2855 {
2856 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2857 }
2858 else
2859 {
2860 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2861 }
2862 }
2863 }
2864 inst_env->slot_needed = 0;
2865 inst_env->prefix_found = 0;
2866 inst_env->xflag_found = 0;
2867 inst_env->disable_interrupt = 1;
2868}
2869
2870/* Handles moves from special registers (aka P-register) for all modes
2871 except register. */
2872
a78f21af 2873static void
be8626e0
MD
2874none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2875 inst_env_type *inst_env)
29134980
OF
2876{
2877 if (inst_env->prefix_found)
2878 {
2879 /* The instruction has a prefix that means we are only interested if
2880 the instruction is in assign mode. */
2881 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2882 {
2883 /* The prefix handles the problem if we are in a delay slot. */
2884 if (cris_get_operand1 (inst) == REG_PC)
2885 {
2886 /* Just take care of the assign. */
2887 check_assign (inst, inst_env);
2888 }
2889 }
2890 }
2891 /* The instruction doesn't have a prefix, the only case left that we
2892 are interested in is the autoincrement mode. */
2893 else if (cris_get_mode (inst) == AUTOINC_MODE)
2894 {
2895 if (cris_get_operand1 (inst) == REG_PC)
2896 {
2897 /* If the PC is to be incremented it's invalid to be in a
2898 delay slot. */
2899 if (inst_env->slot_needed)
2900 {
2901 inst_env->invalid = 1;
2902 return;
2903 }
2a9ecef2
OF
2904
2905 /* The increment depends on the size of the special register. */
be8626e0 2906 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
2907 {
2908 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2909 }
be8626e0 2910 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
2911 {
2912 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2913 }
2914 else
2915 {
2916 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2917 }
2918 }
2919 }
2920 inst_env->slot_needed = 0;
2921 inst_env->prefix_found = 0;
2922 inst_env->xflag_found = 0;
2923 inst_env->disable_interrupt = 1;
2924}
2925
2926/* Handles moves from special registers (aka P-register) when the mode
2927 is register. */
2928
a78f21af 2929static void
29134980
OF
2930reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2931{
2932 /* Register mode move from special register can't have a prefix. */
2933 if (inst_env->prefix_found)
2934 {
2935 inst_env->invalid = 1;
2936 return;
2937 }
2938
2939 if (cris_get_operand1 (inst) == REG_PC)
2940 {
2941 /* It's invalid to change the PC in a delay slot. */
2942 if (inst_env->slot_needed)
2943 {
2944 inst_env->invalid = 1;
2945 return;
2946 }
2947 /* The destination is the PC, the jump will have a delay slot. */
2948 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2949 inst_env->slot_needed = 1;
2950 inst_env->delay_slot_pc_active = 1;
2951 }
2952 else
2953 {
2954 /* If the destination isn't PC, there will be no jump. */
2955 inst_env->slot_needed = 0;
2956 }
2957 inst_env->prefix_found = 0;
2958 inst_env->xflag_found = 0;
2959 inst_env->disable_interrupt = 1;
2960}
2961
2962/* Handles the MOVEM from memory to general register instruction. */
2963
a78f21af 2964static void
29134980
OF
2965move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2966{
2967 if (inst_env->prefix_found)
2968 {
2969 /* The prefix handles the problem if we are in a delay slot. Is the
2970 MOVEM instruction going to change the PC? */
2971 if (cris_get_operand2 (inst) >= REG_PC)
2972 {
2973 inst_env->reg[REG_PC] =
e17a4113
UW
2974 read_memory_unsigned_integer (inst_env->prefix_value,
2975 4, inst_env->byte_order);
29134980
OF
2976 }
2977 /* The assign value is the value after the increment. Normally, the
2978 assign value is the value before the increment. */
2979 if ((cris_get_operand1 (inst) == REG_PC)
2980 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2981 {
2982 inst_env->reg[REG_PC] = inst_env->prefix_value;
2983 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2984 }
2985 }
2986 else
2987 {
2988 /* Is the MOVEM instruction going to change the PC? */
2989 if (cris_get_operand2 (inst) == REG_PC)
2990 {
2991 /* It's invalid to change the PC in a delay slot. */
2992 if (inst_env->slot_needed)
2993 {
2994 inst_env->invalid = 1;
2995 return;
2996 }
2997 inst_env->reg[REG_PC] =
2998 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
e17a4113 2999 4, inst_env->byte_order);
29134980
OF
3000 }
3001 /* The increment is not depending on the size, instead it's depending
3002 on the number of registers loaded from memory. */
0963b4bd
MS
3003 if ((cris_get_operand1 (inst) == REG_PC)
3004 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3005 {
3006 /* It's invalid to change the PC in a delay slot. */
3007 if (inst_env->slot_needed)
3008 {
3009 inst_env->invalid = 1;
3010 return;
3011 }
3012 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3013 }
3014 }
3015 inst_env->slot_needed = 0;
3016 inst_env->prefix_found = 0;
3017 inst_env->xflag_found = 0;
3018 inst_env->disable_interrupt = 0;
3019}
3020
3021/* Handles the MOVEM to memory from general register instruction. */
3022
a78f21af 3023static void
29134980
OF
3024move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3025{
3026 if (inst_env->prefix_found)
3027 {
3028 /* The assign value is the value after the increment. Normally, the
3029 assign value is the value before the increment. */
5aafa1cc
PM
3030 if ((cris_get_operand1 (inst) == REG_PC)
3031 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
29134980
OF
3032 {
3033 /* The prefix handles the problem if we are in a delay slot. */
3034 inst_env->reg[REG_PC] = inst_env->prefix_value;
3035 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3036 }
3037 }
3038 else
3039 {
3040 /* The increment is not depending on the size, instead it's depending
3041 on the number of registers loaded to memory. */
0963b4bd
MS
3042 if ((cris_get_operand1 (inst) == REG_PC)
3043 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3044 {
3045 /* It's invalid to change the PC in a delay slot. */
3046 if (inst_env->slot_needed)
3047 {
3048 inst_env->invalid = 1;
3049 return;
3050 }
3051 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3052 }
3053 }
3054 inst_env->slot_needed = 0;
3055 inst_env->prefix_found = 0;
3056 inst_env->xflag_found = 0;
3057 inst_env->disable_interrupt = 0;
3058}
3059
85102364 3060/* Handles the instructions that's not yet implemented, by setting
29134980
OF
3061 inst_env->invalid to true. */
3062
a78f21af 3063static void
29134980
OF
3064not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3065{
3066 inst_env->invalid = 1;
3067}
3068
3069/* Handles the XOR instruction. */
3070
a78f21af 3071static void
29134980
OF
3072xor_op (unsigned short inst, inst_env_type *inst_env)
3073{
3074 /* XOR can't have a prefix. */
3075 if (inst_env->prefix_found)
3076 {
3077 inst_env->invalid = 1;
3078 return;
3079 }
3080
3081 /* Check if the PC is the target. */
3082 if (cris_get_operand2 (inst) == REG_PC)
3083 {
3084 /* It's invalid to change the PC in a delay slot. */
3085 if (inst_env->slot_needed)
3086 {
3087 inst_env->invalid = 1;
3088 return;
3089 }
3090 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3091 }
3092 inst_env->slot_needed = 0;
3093 inst_env->prefix_found = 0;
3094 inst_env->xflag_found = 0;
3095 inst_env->disable_interrupt = 0;
3096}
3097
3098/* Handles the MULS instruction. */
3099
a78f21af 3100static void
29134980
OF
3101muls_op (unsigned short inst, inst_env_type *inst_env)
3102{
3103 /* MULS/U can't have a prefix. */
3104 if (inst_env->prefix_found)
3105 {
3106 inst_env->invalid = 1;
3107 return;
3108 }
3109
3110 /* Consider it invalid if the PC is the target. */
3111 if (cris_get_operand2 (inst) == REG_PC)
3112 {
3113 inst_env->invalid = 1;
3114 return;
3115 }
3116 inst_env->slot_needed = 0;
3117 inst_env->prefix_found = 0;
3118 inst_env->xflag_found = 0;
3119 inst_env->disable_interrupt = 0;
3120}
3121
3122/* Handles the MULU instruction. */
3123
a78f21af 3124static void
29134980
OF
3125mulu_op (unsigned short inst, inst_env_type *inst_env)
3126{
3127 /* MULS/U can't have a prefix. */
3128 if (inst_env->prefix_found)
3129 {
3130 inst_env->invalid = 1;
3131 return;
3132 }
3133
3134 /* Consider it invalid if the PC is the target. */
3135 if (cris_get_operand2 (inst) == REG_PC)
3136 {
3137 inst_env->invalid = 1;
3138 return;
3139 }
3140 inst_env->slot_needed = 0;
3141 inst_env->prefix_found = 0;
3142 inst_env->xflag_found = 0;
3143 inst_env->disable_interrupt = 0;
3144}
3145
0963b4bd 3146/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
29134980
OF
3147 The MOVE instruction is the move from source to register. */
3148
a78f21af 3149static void
29134980
OF
3150add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3151 unsigned long source1, unsigned long source2)
3152{
3153 unsigned long pc_mask;
3154 unsigned long operation_mask;
3155
3156 /* Find out how many bits the operation should apply to. */
3157 if (cris_get_size (inst) == INST_BYTE_SIZE)
3158 {
3159 pc_mask = 0xFFFFFF00;
3160 operation_mask = 0xFF;
3161 }
3162 else if (cris_get_size (inst) == INST_WORD_SIZE)
3163 {
3164 pc_mask = 0xFFFF0000;
3165 operation_mask = 0xFFFF;
3166 }
3167 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3168 {
3169 pc_mask = 0x0;
3170 operation_mask = 0xFFFFFFFF;
3171 }
3172 else
3173 {
3174 /* The size is out of range. */
3175 inst_env->invalid = 1;
3176 return;
3177 }
3178
3179 /* The instruction just works on uw_operation_mask bits. */
3180 source2 &= operation_mask;
3181 source1 &= operation_mask;
3182
3183 /* Now calculate the result. The opcode's 3 first bits separates
3184 the different actions. */
3185 switch (cris_get_opcode (inst) & 7)
3186 {
3187 case 0: /* add */
3188 source1 += source2;
3189 break;
3190
3191 case 1: /* move */
3192 source1 = source2;
3193 break;
3194
3195 case 2: /* subtract */
3196 source1 -= source2;
3197 break;
3198
3199 case 3: /* compare */
3200 break;
3201
3202 case 4: /* and */
3203 source1 &= source2;
3204 break;
3205
3206 case 5: /* or */
3207 source1 |= source2;
3208 break;
3209
3210 default:
3211 inst_env->invalid = 1;
3212 return;
3213
3214 break;
3215 }
3216
3217 /* Make sure that the result doesn't contain more than the instruction
3218 size bits. */
3219 source2 &= operation_mask;
3220
3221 /* Calculate the new breakpoint address. */
3222 inst_env->reg[REG_PC] &= pc_mask;
3223 inst_env->reg[REG_PC] |= source1;
3224
3225}
3226
3227/* Extends the value from either byte or word size to a dword. If the mode
3228 is zero extend then the value is extended with zero. If instead the mode
3229 is signed extend the sign bit of the value is taken into consideration. */
3230
a78f21af 3231static unsigned long
29134980
OF
3232do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3233{
3234 /* The size can be either byte or word, check which one it is.
3235 Don't check the highest bit, it's indicating if it's a zero
3236 or sign extend. */
3237 if (cris_get_size (*inst) & INST_WORD_SIZE)
3238 {
3239 /* Word size. */
3240 value &= 0xFFFF;
3241
3242 /* Check if the instruction is signed extend. If so, check if value has
3243 the sign bit on. */
3244 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3245 {
3246 value |= SIGNED_WORD_EXTEND_MASK;
3247 }
3248 }
3249 else
3250 {
3251 /* Byte size. */
3252 value &= 0xFF;
3253
3254 /* Check if the instruction is signed extend. If so, check if value has
3255 the sign bit on. */
3256 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3257 {
3258 value |= SIGNED_BYTE_EXTEND_MASK;
3259 }
3260 }
3261 /* The size should now be dword. */
3262 cris_set_size_to_dword (inst);
3263 return value;
3264}
3265
3266/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3267 instruction. The MOVE instruction is the move from source to register. */
3268
a78f21af 3269static void
29134980
OF
3270reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3271 inst_env_type *inst_env)
3272{
3273 unsigned long operand1;
3274 unsigned long operand2;
3275
3276 /* It's invalid to have a prefix to the instruction. This is a register
3277 mode instruction and can't have a prefix. */
3278 if (inst_env->prefix_found)
3279 {
3280 inst_env->invalid = 1;
3281 return;
3282 }
3283 /* Check if the instruction has PC as its target. */
3284 if (cris_get_operand2 (inst) == REG_PC)
3285 {
3286 if (inst_env->slot_needed)
3287 {
3288 inst_env->invalid = 1;
3289 return;
3290 }
3291 /* The instruction has the PC as its target register. */
7ab98e9e 3292 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3293 operand2 = inst_env->reg[REG_PC];
3294
3295 /* Check if it's a extend, signed or zero instruction. */
3296 if (cris_get_opcode (inst) < 4)
3297 {
3298 operand1 = do_sign_or_zero_extend (operand1, &inst);
3299 }
3300 /* Calculate the PC value after the instruction, i.e. where the
3301 breakpoint should be. The order of the udw_operands is vital. */
3302 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3303 }
3304 inst_env->slot_needed = 0;
3305 inst_env->prefix_found = 0;
3306 inst_env->xflag_found = 0;
3307 inst_env->disable_interrupt = 0;
3308}
3309
3310/* Returns the data contained at address. The size of the data is derived from
3311 the size of the operation. If the instruction is a zero or signed
3312 extend instruction, the size field is changed in instruction. */
3313
a78f21af 3314static unsigned long
0963b4bd
MS
3315get_data_from_address (unsigned short *inst, CORE_ADDR address,
3316 enum bfd_endian byte_order)
29134980
OF
3317{
3318 int size = cris_get_size (*inst);
3319 unsigned long value;
3320
3321 /* If it's an extend instruction we don't want the signed extend bit,
3322 because it influences the size. */
3323 if (cris_get_opcode (*inst) < 4)
3324 {
3325 size &= ~SIGNED_EXTEND_BIT_MASK;
3326 }
3327 /* Is there a need for checking the size? Size should contain the number of
3328 bytes to read. */
3329 size = 1 << size;
e17a4113 3330 value = read_memory_unsigned_integer (address, size, byte_order);
29134980
OF
3331
3332 /* Check if it's an extend, signed or zero instruction. */
3333 if (cris_get_opcode (*inst) < 4)
3334 {
3335 value = do_sign_or_zero_extend (value, inst);
3336 }
3337 return value;
3338}
3339
3340/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3341 instructions. The MOVE instruction is the move from source to register. */
3342
a78f21af 3343static void
29134980
OF
3344handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3345 inst_env_type *inst_env)
3346{
3347 unsigned long operand2;
3348 unsigned long operand3;
3349
3350 check_assign (inst, inst_env);
3351 if (cris_get_operand2 (inst) == REG_PC)
3352 {
3353 operand2 = inst_env->reg[REG_PC];
3354
3355 /* Get the value of the third operand. */
e17a4113
UW
3356 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3357 inst_env->byte_order);
29134980
OF
3358
3359 /* Calculate the PC value after the instruction, i.e. where the
3360 breakpoint should be. The order of the udw_operands is vital. */
3361 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3362 }
3363 inst_env->slot_needed = 0;
3364 inst_env->prefix_found = 0;
3365 inst_env->xflag_found = 0;
3366 inst_env->disable_interrupt = 0;
3367}
3368
3369/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3370 OR instructions. Note that for this to work as expected, the calling
3371 function must have made sure that there is a prefix to this instruction. */
3372
a78f21af 3373static void
29134980
OF
3374three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3375 inst_env_type *inst_env)
3376{
3377 unsigned long operand2;
3378 unsigned long operand3;
3379
3380 if (cris_get_operand1 (inst) == REG_PC)
3381 {
3382 /* The PC will be changed by the instruction. */
3383 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3384
3385 /* Get the value of the third operand. */
e17a4113
UW
3386 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3387 inst_env->byte_order);
29134980
OF
3388
3389 /* Calculate the PC value after the instruction, i.e. where the
3390 breakpoint should be. */
3391 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3392 }
3393 inst_env->slot_needed = 0;
3394 inst_env->prefix_found = 0;
3395 inst_env->xflag_found = 0;
3396 inst_env->disable_interrupt = 0;
3397}
3398
3399/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3400 instructions. The MOVE instruction is the move from source to register. */
3401
a78f21af 3402static void
29134980
OF
3403handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3404 inst_env_type *inst_env)
3405{
3406 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3407 {
3408 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3409 SUB, AND or OR something weird is going on (if everything works these
3410 instructions should end up in the three operand version). */
3411 inst_env->invalid = 1;
3412 return;
3413 }
3414 else
3415 {
3416 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3417 so use it. */
3418 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3419 }
3420 inst_env->slot_needed = 0;
3421 inst_env->prefix_found = 0;
3422 inst_env->xflag_found = 0;
3423 inst_env->disable_interrupt = 0;
3424}
3425
3426/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3427 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3428 source to register. */
3429
a78f21af 3430static void
29134980
OF
3431handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3432 inst_env_type *inst_env)
3433{
3434 unsigned long operand1;
3435 unsigned long operand2;
3436 unsigned long operand3;
3437 int size;
3438
0963b4bd 3439 /* The instruction is either an indirect or autoincrement addressing mode.
29134980
OF
3440 Check if the destination register is the PC. */
3441 if (cris_get_operand2 (inst) == REG_PC)
3442 {
3443 /* Must be done here, get_data_from_address may change the size
3444 field. */
3445 size = cris_get_size (inst);
3446 operand2 = inst_env->reg[REG_PC];
3447
3448 /* Get the value of the third operand, i.e. the indirect operand. */
3449 operand1 = inst_env->reg[cris_get_operand1 (inst)];
e17a4113 3450 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
29134980
OF
3451
3452 /* Calculate the PC value after the instruction, i.e. where the
3453 breakpoint should be. The order of the udw_operands is vital. */
3454 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3455 }
3456 /* If this is an autoincrement addressing mode, check if the increment
3457 changes the PC. */
0963b4bd
MS
3458 if ((cris_get_operand1 (inst) == REG_PC)
3459 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3460 {
3461 /* Get the size field. */
3462 size = cris_get_size (inst);
3463
3464 /* If it's an extend instruction we don't want the signed extend bit,
3465 because it influences the size. */
3466 if (cris_get_opcode (inst) < 4)
3467 {
3468 size &= ~SIGNED_EXTEND_BIT_MASK;
3469 }
3470 process_autoincrement (size, inst, inst_env);
3471 }
3472 inst_env->slot_needed = 0;
3473 inst_env->prefix_found = 0;
3474 inst_env->xflag_found = 0;
3475 inst_env->disable_interrupt = 0;
3476}
3477
3478/* Handles the two-operand addressing mode, all modes except register, for
3479 the ADD, SUB CMP, AND and OR instruction. */
3480
a78f21af 3481static void
29134980
OF
3482none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3483 inst_env_type *inst_env)
3484{
3485 if (inst_env->prefix_found)
3486 {
3487 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3488 {
3489 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3490 }
3491 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3492 {
3493 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3494 }
3495 else
3496 {
3497 /* The mode is invalid for a prefixed base instruction. */
3498 inst_env->invalid = 1;
3499 return;
3500 }
3501 }
3502 else
3503 {
3504 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3505 }
3506}
3507
3508/* Handles the quick addressing mode for the ADD and SUB instruction. */
3509
a78f21af 3510static void
29134980
OF
3511quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3512{
3513 unsigned long operand1;
3514 unsigned long operand2;
3515
3516 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3517 instruction and can't have a prefix. */
3518 if (inst_env->prefix_found)
3519 {
3520 inst_env->invalid = 1;
3521 return;
3522 }
3523
3524 /* Check if the instruction has PC as its target. */
3525 if (cris_get_operand2 (inst) == REG_PC)
3526 {
3527 if (inst_env->slot_needed)
3528 {
3529 inst_env->invalid = 1;
3530 return;
3531 }
3532 operand1 = cris_get_quick_value (inst);
3533 operand2 = inst_env->reg[REG_PC];
3534
3535 /* The size should now be dword. */
3536 cris_set_size_to_dword (&inst);
3537
3538 /* Calculate the PC value after the instruction, i.e. where the
3539 breakpoint should be. */
3540 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3541 }
3542 inst_env->slot_needed = 0;
3543 inst_env->prefix_found = 0;
3544 inst_env->xflag_found = 0;
3545 inst_env->disable_interrupt = 0;
3546}
3547
3548/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3549
a78f21af 3550static void
29134980
OF
3551quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3552{
3553 unsigned long operand1;
3554 unsigned long operand2;
3555
3556 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3557 instruction and can't have a prefix. */
3558 if (inst_env->prefix_found)
3559 {
3560 inst_env->invalid = 1;
3561 return;
3562 }
3563 /* Check if the instruction has PC as its target. */
3564 if (cris_get_operand2 (inst) == REG_PC)
3565 {
3566 if (inst_env->slot_needed)
3567 {
3568 inst_env->invalid = 1;
3569 return;
3570 }
3571 /* The instruction has the PC as its target register. */
3572 operand1 = cris_get_quick_value (inst);
3573 operand2 = inst_env->reg[REG_PC];
3574
3575 /* The quick value is signed, so check if we must do a signed extend. */
3576 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3577 {
3578 /* sign extend */
3579 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3580 }
3581 /* The size should now be dword. */
3582 cris_set_size_to_dword (&inst);
3583
3584 /* Calculate the PC value after the instruction, i.e. where the
3585 breakpoint should be. */
3586 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3587 }
3588 inst_env->slot_needed = 0;
3589 inst_env->prefix_found = 0;
3590 inst_env->xflag_found = 0;
3591 inst_env->disable_interrupt = 0;
3592}
3593
3594/* Translate op_type to a function and call it. */
3595
a78f21af 3596static void
be8626e0
MD
3597cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3598 unsigned short inst, inst_env_type *inst_env)
29134980
OF
3599{
3600 switch (op_type)
3601 {
3602 case cris_not_implemented_op:
3603 not_implemented_op (inst, inst_env);
3604 break;
3605
3606 case cris_abs_op:
3607 abs_op (inst, inst_env);
3608 break;
3609
3610 case cris_addi_op:
3611 addi_op (inst, inst_env);
3612 break;
3613
3614 case cris_asr_op:
3615 asr_op (inst, inst_env);
3616 break;
3617
3618 case cris_asrq_op:
3619 asrq_op (inst, inst_env);
3620 break;
3621
3622 case cris_ax_ei_setf_op:
3623 ax_ei_setf_op (inst, inst_env);
3624 break;
3625
3626 case cris_bdap_prefix:
3627 bdap_prefix (inst, inst_env);
3628 break;
3629
3630 case cris_biap_prefix:
3631 biap_prefix (inst, inst_env);
3632 break;
3633
3634 case cris_break_op:
3635 break_op (inst, inst_env);
3636 break;
3637
3638 case cris_btst_nop_op:
3639 btst_nop_op (inst, inst_env);
3640 break;
3641
3642 case cris_clearf_di_op:
3643 clearf_di_op (inst, inst_env);
3644 break;
3645
3646 case cris_dip_prefix:
3647 dip_prefix (inst, inst_env);
3648 break;
3649
3650 case cris_dstep_logshift_mstep_neg_not_op:
3651 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3652 break;
3653
3654 case cris_eight_bit_offset_branch_op:
3655 eight_bit_offset_branch_op (inst, inst_env);
3656 break;
3657
3658 case cris_move_mem_to_reg_movem_op:
3659 move_mem_to_reg_movem_op (inst, inst_env);
3660 break;
3661
3662 case cris_move_reg_to_mem_movem_op:
3663 move_reg_to_mem_movem_op (inst, inst_env);
3664 break;
3665
3666 case cris_move_to_preg_op:
be8626e0 3667 move_to_preg_op (gdbarch, inst, inst_env);
29134980
OF
3668 break;
3669
3670 case cris_muls_op:
3671 muls_op (inst, inst_env);
3672 break;
3673
3674 case cris_mulu_op:
3675 mulu_op (inst, inst_env);
3676 break;
3677
3678 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3679 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3680 break;
3681
3682 case cris_none_reg_mode_clear_test_op:
3683 none_reg_mode_clear_test_op (inst, inst_env);
3684 break;
3685
3686 case cris_none_reg_mode_jump_op:
3687 none_reg_mode_jump_op (inst, inst_env);
3688 break;
3689
3690 case cris_none_reg_mode_move_from_preg_op:
be8626e0 3691 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
29134980
OF
3692 break;
3693
3694 case cris_quick_mode_add_sub_op:
3695 quick_mode_add_sub_op (inst, inst_env);
3696 break;
3697
3698 case cris_quick_mode_and_cmp_move_or_op:
3699 quick_mode_and_cmp_move_or_op (inst, inst_env);
3700 break;
3701
3702 case cris_quick_mode_bdap_prefix:
3703 quick_mode_bdap_prefix (inst, inst_env);
3704 break;
3705
3706 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3707 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3708 break;
3709
3710 case cris_reg_mode_clear_op:
3711 reg_mode_clear_op (inst, inst_env);
3712 break;
3713
3714 case cris_reg_mode_jump_op:
3715 reg_mode_jump_op (inst, inst_env);
3716 break;
3717
3718 case cris_reg_mode_move_from_preg_op:
3719 reg_mode_move_from_preg_op (inst, inst_env);
3720 break;
3721
3722 case cris_reg_mode_test_op:
3723 reg_mode_test_op (inst, inst_env);
3724 break;
3725
3726 case cris_scc_op:
3727 scc_op (inst, inst_env);
3728 break;
3729
3730 case cris_sixteen_bit_offset_branch_op:
3731 sixteen_bit_offset_branch_op (inst, inst_env);
3732 break;
3733
3734 case cris_three_operand_add_sub_cmp_and_or_op:
3735 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3736 break;
3737
3738 case cris_three_operand_bound_op:
3739 three_operand_bound_op (inst, inst_env);
3740 break;
3741
3742 case cris_two_operand_bound_op:
3743 two_operand_bound_op (inst, inst_env);
3744 break;
3745
3746 case cris_xor_op:
3747 xor_op (inst, inst_env);
3748 break;
3749 }
3750}
3751
18b3c2f5
RW
3752/* Originally from <asm/elf.h>. */
3753typedef unsigned char cris_elf_greg_t[4];
dbbff683
OF
3754
3755/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464 3756#define CRISV10_ELF_NGREG 35
18b3c2f5 3757typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
c600d464
OF
3758
3759#define CRISV32_ELF_NGREG 32
18b3c2f5 3760typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683 3761
18b3c2f5 3762/* Unpack a cris_elf_gregset_t into GDB's register cache. */
dbbff683 3763
a78f21af 3764static void
69ed9b74
CB
3765cris_supply_gregset (const struct regset *regset, struct regcache *regcache,
3766 int regnum, const void *gregs, size_t len)
dbbff683 3767{
ac7936df 3768 struct gdbarch *gdbarch = regcache->arch ();
7fbe2eba 3769 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
dbbff683 3770 int i;
69ed9b74
CB
3771 const cris_elf_greg_t *regp = static_cast<const cris_elf_greg_t *>(gregs);
3772
3773 if (len != sizeof (cris_elf_gregset_t)
3774 && len != sizeof (crisv32_elf_gregset_t))
3775 warning (_("wrong size gregset struct in core file"));
3776 gdb_assert (len >= sizeof (crisv32_elf_gregset_t));
dbbff683
OF
3777
3778 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3779 knows about the actual size of each register so that's no problem. */
3780 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3781 {
69ed9b74
CB
3782 if (regnum == -1 || regnum == i)
3783 regcache->raw_supply (i, (char *)&regp[i]);
dbbff683 3784 }
c600d464 3785
69ed9b74 3786 if (tdep->cris_version == 32 && (regnum == -1 || regnum == ERP_REGNUM))
c600d464
OF
3787 {
3788 /* Needed to set pseudo-register PC for CRISv32. */
3789 /* FIXME: If ERP is in a delay slot at this point then the PC will
3790 be wrong. Issue a warning to alert the user. */
73e1c03f
SM
3791 regcache->raw_supply (gdbarch_pc_regnum (gdbarch),
3792 (char *)&regp[ERP_REGNUM]);
c600d464
OF
3793
3794 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3795 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3796 }
dbbff683
OF
3797}
3798
69ed9b74
CB
3799static const struct regset cris_regset = {
3800 nullptr,
3801 cris_supply_gregset,
3802 /* We don't need a collect function because we only use this for core files
3803 (via iterate_over_regset_sections). */
3804 nullptr,
3805 REGSET_VARIABLE_SIZE
3806};
dbbff683 3807
69ed9b74
CB
3808static void cris_iterate_over_regset_sections (struct gdbarch *gdbarch,
3809 iterate_over_regset_sections_cb *cb,
3810 void *cb_data,
3811 const struct regcache *regcache)
dbbff683 3812{
69ed9b74
CB
3813 cb (".reg", sizeof (crisv32_elf_gregset_t), sizeof (crisv32_elf_gregset_t),
3814 &cris_regset, NULL, cb_data);
dbbff683
OF
3815}
3816
6c265988 3817void _initialize_cris_tdep ();
29134980 3818void
6c265988 3819_initialize_cris_tdep ()
29134980 3820{
29134980
OF
3821 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3822
29134980 3823 /* CRIS-specific user-commands. */
addb4faf
PA
3824 add_setshow_zuinteger_cmd ("cris-version", class_support,
3825 &usr_cmd_cris_version,
3826 _("Set the current CRIS version."),
3827 _("Show the current CRIS version."),
3828 _("\
bdd56253
OF
3829Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3830Defaults to 10. "),
addb4faf
PA
3831 set_cris_version,
3832 NULL, /* FIXME: i18n: Current CRIS version
3833 is %s. */
3834 &setlist, &showlist);
0e6bdb31
OF
3835
3836 add_setshow_enum_cmd ("cris-mode", class_support,
3837 cris_modes, &usr_cmd_cris_mode,
3838 _("Set the current CRIS mode."),
3839 _("Show the current CRIS mode."),
bdd56253
OF
3840 _("\
3841Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3842Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3843 set_cris_mode,
3844 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3845 &setlist, &showlist);
dbbff683 3846
a5f6c8f5
OF
3847 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3848 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3849 _("Set the usage of Dwarf-2 CFI for CRIS."),
3850 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3851 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3852 set_cris_dwarf2_cfi,
0963b4bd
MS
3853 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3854 for CRIS is %d. */
a5f6c8f5 3855 &setlist, &showlist);
29134980
OF
3856}
3857
3858/* Prints out all target specific values. */
3859
3860static void
3861cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3862{
7fbe2eba 3863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
29134980
OF
3864 if (tdep != NULL)
3865 {
3866 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3867 tdep->cris_version);
0e6bdb31
OF
3868 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3869 tdep->cris_mode);
a5f6c8f5
OF
3870 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3871 tdep->cris_dwarf2_cfi);
29134980
OF
3872 }
3873}
3874
3875static void
eb4c3f4a 3876set_cris_version (const char *ignore_args, int from_tty,
a5f6c8f5 3877 struct cmd_list_element *c)
29134980
OF
3878{
3879 struct gdbarch_info info;
3880
a5f6c8f5 3881 usr_cmd_cris_version_valid = 1;
29134980 3882
a5f6c8f5
OF
3883 /* Update the current architecture, if needed. */
3884 gdbarch_info_init (&info);
3885 if (!gdbarch_update_p (info))
3886 internal_error (__FILE__, __LINE__,
e2e0b3e5 3887 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
3888}
3889
0e6bdb31 3890static void
eb4c3f4a 3891set_cris_mode (const char *ignore_args, int from_tty,
0e6bdb31
OF
3892 struct cmd_list_element *c)
3893{
3894 struct gdbarch_info info;
3895
3896 /* Update the current architecture, if needed. */
3897 gdbarch_info_init (&info);
3898 if (!gdbarch_update_p (info))
3899 internal_error (__FILE__, __LINE__,
3900 "cris_gdbarch_update: failed to update architecture.");
3901}
3902
29134980 3903static void
eb4c3f4a 3904set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
a5f6c8f5 3905 struct cmd_list_element *c)
29134980
OF
3906{
3907 struct gdbarch_info info;
a5f6c8f5
OF
3908
3909 /* Update the current architecture, if needed. */
3910 gdbarch_info_init (&info);
3911 if (!gdbarch_update_p (info))
3912 internal_error (__FILE__, __LINE__,
e2e0b3e5 3913 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
3914}
3915
29134980
OF
3916static struct gdbarch *
3917cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3918{
3919 struct gdbarch *gdbarch;
3920 struct gdbarch_tdep *tdep;
e4286e57 3921 unsigned int cris_version;
29134980
OF
3922
3923 if (usr_cmd_cris_version_valid)
3924 {
3925 /* Trust the user's CRIS version setting. */
3926 cris_version = usr_cmd_cris_version;
3927 }
c600d464
OF
3928 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3929 {
3930 cris_version = 32;
3931 }
29134980
OF
3932 else
3933 {
3934 /* Assume it's CRIS version 10. */
3935 cris_version = 10;
3936 }
3937
29134980
OF
3938 /* Make the current settings visible to the user. */
3939 usr_cmd_cris_version = cris_version;
29134980 3940
0e6bdb31 3941 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
3942 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3943 arches != NULL;
3944 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3945 {
a5f6c8f5
OF
3946 if ((gdbarch_tdep (arches->gdbarch)->cris_version
3947 == usr_cmd_cris_version)
0e6bdb31
OF
3948 && (gdbarch_tdep (arches->gdbarch)->cris_mode
3949 == usr_cmd_cris_mode)
a5f6c8f5
OF
3950 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
3951 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
3952 return arches->gdbarch;
3953 }
3954
3955 /* No matching architecture was found. Create a new one. */
cdd238da 3956 tdep = XCNEW (struct gdbarch_tdep);
7cf1de6c 3957 info.byte_order = BFD_ENDIAN_LITTLE;
29134980
OF
3958 gdbarch = gdbarch_alloc (&info, tdep);
3959
a5f6c8f5 3960 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 3961 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 3962 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980 3963
b4206d25 3964 set_gdbarch_return_value (gdbarch, cris_return_value);
29134980 3965 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
3966
3967 /* Length of ordinary registers used in push_word and a few other
3968 places. register_size() is the real way to know how big a
3969 register is. */
a5f6c8f5 3970
2e4b5889 3971 set_gdbarch_double_bit (gdbarch, 64);
ea06eb3d 3972 /* The default definition of a long double is 2 * gdbarch_double_bit,
2e4b5889 3973 which means we have to set this explicitly. */
c600d464 3974 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 3975
29134980
OF
3976 /* The total amount of space needed to store (in an array called registers)
3977 GDB's copy of the machine's register state. Note: We can not use
d93859e2 3978 cris_register_size at this point, since it relies on gdbarch
29134980
OF
3979 being set. */
3980 switch (tdep->cris_version)
3981 {
3982 case 0:
3983 case 1:
3984 case 2:
3985 case 3:
29134980
OF
3986 case 8:
3987 case 9:
a5f6c8f5 3988 /* Old versions; not supported. */
114d7832 3989 return 0;
29134980
OF
3990
3991 case 10:
3992 case 11:
3993 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
3994 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
3995 set_gdbarch_pc_regnum (gdbarch, 15);
3996 set_gdbarch_register_type (gdbarch, cris_register_type);
3997 /* There are 32 registers (some of which may not be implemented). */
3998 set_gdbarch_num_regs (gdbarch, 32);
3999 set_gdbarch_register_name (gdbarch, cris_register_name);
4000 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4001 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4002
4003 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4004 break;
4005
4006 case 32:
4007 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4008 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4009 and pseudo-register PC (32 bits). */
4010 set_gdbarch_pc_regnum (gdbarch, 32);
4011 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4012 /* 32 registers + pseudo-register PC + 16 support registers. */
4013 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4014 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4015
4016 set_gdbarch_cannot_store_register
4017 (gdbarch, crisv32_cannot_store_register);
4018 set_gdbarch_cannot_fetch_register
4019 (gdbarch, crisv32_cannot_fetch_register);
4020
4021 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4022
4023 set_gdbarch_single_step_through_delay
4024 (gdbarch, crisv32_single_step_through_delay);
4025
29134980
OF
4026 break;
4027
4028 default:
114d7832
PA
4029 /* Unknown version. */
4030 return 0;
29134980
OF
4031 }
4032
c600d464
OF
4033 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4034 have the same ABI). */
2e4b5889
OF
4035 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4036 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4037 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4038 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4039
4040 /* The stack grows downward. */
4041 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4042
04180708
YQ
4043 set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
4044 set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
69ed9b74 4045 set_gdbarch_iterate_over_regset_sections (gdbarch, cris_iterate_over_regset_sections);
29134980 4046
a5f6c8f5
OF
4047 if (tdep->cris_dwarf2_cfi == 1)
4048 {
4049 /* Hook in the Dwarf-2 frame sniffer. */
4050 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4051 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
94afd7a6 4052 dwarf2_append_unwinders (gdbarch);
a5f6c8f5
OF
4053 }
4054
0e6bdb31
OF
4055 if (tdep->cris_mode != cris_mode_guru)
4056 {
94afd7a6 4057 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
0e6bdb31 4058 }
a5f6c8f5 4059
94afd7a6 4060 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
2e4b5889 4061 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4062
749c8b38
RW
4063 /* Hook in ABI-specific overrides, if they have been registered. */
4064 gdbarch_init_osabi (info, gdbarch);
4065
29134980
OF
4066 return gdbarch;
4067}
This page took 1.578717 seconds and 4 git commands to generate.