* python/py-prettyprint.c (print_stack_unless_memory_error): Add
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
7b6bb8da 4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
9291a0cd
TT
54#include "exceptions.h"
55#include "gdb_stat.h"
96d19272 56#include "completer.h"
34eaf542 57#include "vec.h"
98bfdba5
PA
58#include "c-lang.h"
59#include "valprint.h"
4c2df51b 60
c906108c
SS
61#include <fcntl.h>
62#include "gdb_string.h"
4bdf3d34 63#include "gdb_assert.h"
c906108c 64#include <sys/types.h>
233a11ab
CS
65#ifdef HAVE_ZLIB_H
66#include <zlib.h>
67#endif
dce234bc
PP
68#ifdef HAVE_MMAP
69#include <sys/mman.h>
85d9bd0e
TT
70#ifndef MAP_FAILED
71#define MAP_FAILED ((void *) -1)
72#endif
dce234bc 73#endif
d8151005 74
34eaf542
TT
75typedef struct symbol *symbolp;
76DEF_VEC_P (symbolp);
77
107d2387 78#if 0
357e46e7 79/* .debug_info header for a compilation unit
c906108c
SS
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91_COMP_UNIT_HEADER;
92#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 93#endif
c906108c 94
c906108c
SS
95/* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116_STATEMENT_PROLOGUE;
117
d97bc12b
DE
118/* When non-zero, dump DIEs after they are read in. */
119static int dwarf2_die_debug = 0;
120
dce234bc
PP
121static int pagesize;
122
df8a16a1
DJ
123/* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127static int processing_has_namespace_info;
128
6502dd73
DJ
129static const struct objfile_data *dwarf2_objfile_data_key;
130
dce234bc
PP
131struct dwarf2_section_info
132{
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
be391dca
TT
137 /* True if we have tried to read this section. */
138 int readin;
dce234bc
PP
139};
140
9291a0cd
TT
141/* All offsets in the index are of this type. It must be
142 architecture-independent. */
143typedef uint32_t offset_type;
144
145DEF_VEC_I (offset_type);
146
147/* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149struct mapped_index
150{
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
3876f04e
DE
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
9291a0cd 159 /* Size in slots, each slot is 2 offset_types. */
3876f04e 160 offset_type symbol_table_slots;
9291a0cd
TT
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163};
164
6502dd73
DJ
165struct dwarf2_per_objfile
166{
dce234bc
PP
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
dce234bc
PP
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
348e048f 174 struct dwarf2_section_info types;
dce234bc
PP
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
9291a0cd 177 struct dwarf2_section_info gdb_index;
ae038cb0 178
be391dca
TT
179 /* Back link. */
180 struct objfile *objfile;
181
10b3939b
DJ
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
ae038cb0
DJ
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
1fd400ff
TT
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
ae038cb0
DJ
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 198
348e048f
DE
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
72dca2f5
FR
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
9291a0cd 206
ae2de4f8
DE
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
209 unsigned char using_index;
210
ae2de4f8 211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 212 struct mapped_index *index_table;
98bfdba5 213
7b9f3c50
DE
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
98bfdba5
PA
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
673bfd45
DE
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
6502dd73
DJ
233};
234
235static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
236
237/* names of the debugging sections */
238
233a11ab
CS
239/* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242#define INFO_SECTION "debug_info"
243#define ABBREV_SECTION "debug_abbrev"
244#define LINE_SECTION "debug_line"
233a11ab
CS
245#define LOC_SECTION "debug_loc"
246#define MACINFO_SECTION "debug_macinfo"
247#define STR_SECTION "debug_str"
248#define RANGES_SECTION "debug_ranges"
348e048f 249#define TYPES_SECTION "debug_types"
233a11ab
CS
250#define FRAME_SECTION "debug_frame"
251#define EH_FRAME_SECTION "eh_frame"
9291a0cd 252#define GDB_INDEX_SECTION "gdb_index"
c906108c
SS
253
254/* local data types */
255
0963b4bd 256/* We hold several abbreviation tables in memory at the same time. */
57349743
JB
257#ifndef ABBREV_HASH_SIZE
258#define ABBREV_HASH_SIZE 121
259#endif
260
107d2387
AC
261/* The data in a compilation unit header, after target2host
262 translation, looks like this. */
c906108c 263struct comp_unit_head
a738430d 264{
c764a876 265 unsigned int length;
a738430d 266 short version;
a738430d
MK
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
9cbfa09e 269 unsigned int abbrev_offset;
57349743 270
a738430d
MK
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
57349743 273
a738430d
MK
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
57349743 276
a738430d
MK
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
57349743 280
d00adf39
DE
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
a738430d 284};
c906108c 285
3da10d80
KS
286/* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288struct delayed_method_info
289{
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304};
305
306typedef struct delayed_method_info delayed_method_info;
307DEF_VEC_O (delayed_method_info);
308
e7c27a73
DJ
309/* Internal state when decoding a particular compilation unit. */
310struct dwarf2_cu
311{
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
d00adf39 315 /* The header of the compilation unit. */
e7c27a73 316 struct comp_unit_head header;
e142c38c 317
d00adf39
DE
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
e142c38c
DJ
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
b0f35d58
DL
330 const char *producer;
331
e142c38c
DJ
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
f3dd6933
DJ
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
72bf9492
DJ
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
ae038cb0
DJ
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
10b3939b 368 /* A hash table of die offsets for following references. */
51545339 369 htab_t die_hash;
10b3939b
DJ
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
cb1df416
DJ
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
3da10d80
KS
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
ae038cb0
DJ
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
72bf9492
DJ
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
e7c27a73
DJ
398};
399
10b3939b
DJ
400/* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
ae038cb0
DJ
406struct dwarf2_per_cu_data
407{
348e048f 408 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 409 bytes should suffice to store the length of any compilation unit
45452591
DE
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
c764a876 413 unsigned int offset;
348e048f 414 unsigned int length : 29;
ae038cb0
DJ
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
c764a876 418 unsigned int queued : 1;
ae038cb0 419
5afb4e99
DJ
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
348e048f
DE
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
17ea53c3
JK
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
ae038cb0 432 struct dwarf2_cu *cu;
1c379e20 433
9291a0cd
TT
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
ae038cb0
DJ
449};
450
348e048f
DE
451/* Entry in the signatured_types hash table. */
452
453struct signatured_type
454{
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465};
466
0963b4bd
MS
467/* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
93311388
DE
472
473struct die_reader_specs
474{
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484};
485
debd256d
JB
486/* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489struct line_header
490{
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
2dc7f7b3 495 unsigned char maximum_ops_per_instruction;
debd256d
JB
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
c906108c 519 {
debd256d
JB
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
aaa75496 524 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 525 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
526 } *file_names;
527
528 /* The start and end of the statement program following this
6502dd73 529 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 530 gdb_byte *statement_program_start, *statement_program_end;
debd256d 531};
c906108c
SS
532
533/* When we construct a partial symbol table entry we only
0963b4bd 534 need this much information. */
c906108c
SS
535struct partial_die_info
536 {
72bf9492 537 /* Offset of this DIE. */
c906108c 538 unsigned int offset;
72bf9492
DJ
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
72bf9492
DJ
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
fa4028e9
JB
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
98bfdba5
PA
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
abc72ce4
DE
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
72bf9492 564 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 565 sometimes a default name for unnamed DIEs. */
c906108c 566 char *name;
72bf9492 567
abc72ce4
DE
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
72bf9492
DJ
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
72bf9492 582
93311388 583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 584 DW_AT_sibling, if any. */
abc72ce4
DE
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 587 gdb_byte *sibling;
72bf9492
DJ
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
597 };
598
0963b4bd 599/* This data structure holds the information of an abbrev. */
c906108c
SS
600struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
c906108c
SS
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610struct attr_abbrev
611 {
9d25dd43
DE
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
614 };
615
0963b4bd 616/* Attributes have a name and a value. */
b60c80d6
DJ
617struct attribute
618 {
9d25dd43 619 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
b60c80d6
DJ
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
43bbcdc2
PH
631 ULONGEST unsnd;
632 LONGEST snd;
b60c80d6 633 CORE_ADDR addr;
348e048f 634 struct signatured_type *signatured_type;
b60c80d6
DJ
635 }
636 u;
637 };
638
0963b4bd 639/* This data structure holds a complete die structure. */
c906108c
SS
640struct die_info
641 {
76815b17
DE
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
98bfdba5
PA
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
76815b17
DE
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
93311388 655 /* Offset in .debug_info or .debug_types section. */
76815b17 656 unsigned int offset;
78ba4af6
JB
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
4950bc1c 661 together via their SIBLING fields. */
639d11d3
DC
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
c906108c 665
b60c80d6
DJ
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
c906108c
SS
670 };
671
5fb290d7
DJ
672struct function_range
673{
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678};
679
0963b4bd 680/* Get at parts of an attribute structure. */
c906108c
SS
681
682#define DW_STRING(attr) ((attr)->u.str)
8285870a 683#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
684#define DW_UNSND(attr) ((attr)->u.unsnd)
685#define DW_BLOCK(attr) ((attr)->u.blk)
686#define DW_SND(attr) ((attr)->u.snd)
687#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 688#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 689
0963b4bd 690/* Blocks are a bunch of untyped bytes. */
c906108c
SS
691struct dwarf_block
692 {
693 unsigned int size;
fe1b8b76 694 gdb_byte *data;
c906108c
SS
695 };
696
c906108c
SS
697#ifndef ATTR_ALLOC_CHUNK
698#define ATTR_ALLOC_CHUNK 4
699#endif
700
c906108c
SS
701/* Allocate fields for structs, unions and enums in this size. */
702#ifndef DW_FIELD_ALLOC_CHUNK
703#define DW_FIELD_ALLOC_CHUNK 4
704#endif
705
c906108c
SS
706/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709static int bits_per_byte = 8;
710
711/* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714struct field_info
c5aa993b 715 {
0963b4bd 716 /* List of data member and baseclasses fields. */
c5aa993b
JM
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
7d0ccb61 724 *fields, *baseclasses;
c906108c 725
7d0ccb61 726 /* Number of fields (including baseclasses). */
c5aa993b 727 int nfields;
c906108c 728
c5aa993b
JM
729 /* Number of baseclasses. */
730 int nbaseclasses;
c906108c 731
c5aa993b
JM
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
c906108c 734
c5aa993b
JM
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
c906108c 743
c5aa993b
JM
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
c906108c 754
c5aa993b
JM
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
98751a41
JK
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
c5aa993b 767 };
c906108c 768
10b3939b
DJ
769/* One item on the queue of compilation units to read in full symbols
770 for. */
771struct dwarf2_queue_item
772{
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775};
776
777/* The current queue. */
778static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
ae038cb0
DJ
780/* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785static int dwarf2_max_cache_age = 5;
920d2a44
AC
786static void
787show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789{
3e43a32a
MS
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
792 value);
793}
794
ae038cb0 795
0963b4bd 796/* Various complaints about symbol reading that don't abort the process. */
c906108c 797
4d3c2250
KB
798static void
799dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 800{
4d3c2250 801 complaint (&symfile_complaints,
e2e0b3e5 802 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
803}
804
25e43795
DJ
805static void
806dwarf2_debug_line_missing_file_complaint (void)
807{
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810}
811
59205f5a
JB
812static void
813dwarf2_debug_line_missing_end_sequence_complaint (void)
814{
815 complaint (&symfile_complaints,
3e43a32a
MS
816 _(".debug_line section has line "
817 "program sequence without an end"));
59205f5a
JB
818}
819
4d3c2250
KB
820static void
821dwarf2_complex_location_expr_complaint (void)
2e276125 822{
e2e0b3e5 823 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
824}
825
4d3c2250
KB
826static void
827dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
2e276125 829{
4d3c2250 830 complaint (&symfile_complaints,
3e43a32a
MS
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
4d3c2250
KB
833}
834
835static void
836dwarf2_macros_too_long_complaint (void)
2e276125 837{
4d3c2250 838 complaint (&symfile_complaints,
e2e0b3e5 839 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
840}
841
842static void
843dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 844{
4d3c2250 845 complaint (&symfile_complaints,
3e43a32a
MS
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
4d3c2250
KB
848 arg1);
849}
850
851static void
852dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 853{
4d3c2250 854 complaint (&symfile_complaints,
3e43a32a
MS
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
4d3c2250 857}
c906108c 858
c906108c
SS
859/* local function prototypes */
860
4efb68b1 861static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 862
aaa75496
JB
863static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
c67a9c90 866static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 867
72bf9492
DJ
868static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
5734ee8b 870 int, struct dwarf2_cu *);
c906108c 871
72bf9492
DJ
872static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
63d06c5c 874
72bf9492
DJ
875static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 877 int need_pc, struct dwarf2_cu *cu);
63d06c5c 878
5d7cb8df
JK
879static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
72bf9492
DJ
883static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
91c24f0a 885
bc30ff58
JB
886static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 888 int need_pc, struct dwarf2_cu *cu);
bc30ff58 889
fe1b8b76 890static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 893
a14ed312 894static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 895
a14ed312 896static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 897
e7c27a73 898static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 899
f3dd6933 900static void dwarf2_free_abbrev_table (void *);
c906108c 901
fe1b8b76 902static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 903 struct dwarf2_cu *);
72bf9492 904
57349743 905static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 906 struct dwarf2_cu *);
c906108c 907
93311388
DE
908static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
72bf9492 911
fe1b8b76 912static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
c906108c 917
c764a876 918static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 919 struct dwarf2_cu *);
72bf9492
DJ
920
921static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
fe1b8b76
JB
924static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 926
fe1b8b76
JB
927static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 929
fe1b8b76 930static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 931
fe1b8b76 932static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 933
fe1b8b76 934static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 935
fe1b8b76 936static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 937
93311388 938static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 939
fe1b8b76 940static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 941 unsigned int *);
c906108c 942
c764a876
DE
943static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
613e1657 948
fe1b8b76 949static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
950 unsigned int *);
951
952static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 953
fe1b8b76 954static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 955
9b1c24c8 956static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 957
fe1b8b76
JB
958static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
4bdf3d34 961
fe1b8b76 962static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 963
fe1b8b76 964static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 965
fe1b8b76 966static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 967
e142c38c 968static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 969
e142c38c
DJ
970static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
c906108c 972
348e048f
DE
973static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
05cf31d1
JB
977static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
e142c38c 980static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 981
e142c38c 982static struct die_info *die_specification (struct die_info *die,
f2f0e013 983 struct dwarf2_cu **);
63d06c5c 984
debd256d
JB
985static void free_line_header (struct line_header *lh);
986
aaa75496
JB
987static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
debd256d
JB
990static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
e7c27a73 992 bfd *abfd, struct dwarf2_cu *cu));
debd256d 993
72b9f47f 994static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
aaa75496 995 struct dwarf2_cu *, struct partial_symtab *);
c906108c 996
72b9f47f 997static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 998
a14ed312 999static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1000 struct dwarf2_cu *);
c906108c 1001
34eaf542
TT
1002static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
a14ed312 1005static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1006 struct dwarf2_cu *);
c906108c 1007
98bfdba5
PA
1008static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
2df3850c 1015
e7c27a73 1016static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1017
b4ba55a1
JB
1018static int need_gnat_info (struct dwarf2_cu *);
1019
3e43a32a
MS
1020static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
b4ba55a1
JB
1022
1023static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
e7c27a73
DJ
1026static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
c906108c 1028
673bfd45
DE
1029static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
c906108c 1031
f792889a 1032static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1033
673bfd45
DE
1034static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
086ed43d 1036static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1037
6e70227d 1038static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
63d06c5c 1041
e7c27a73 1042static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1043
348e048f
DE
1044static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
e7c27a73 1046static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1047
e7c27a73 1048static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1049
ff013f42
JK
1050static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
a14ed312 1053static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
c906108c 1056
fae299cd
DC
1057static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
801e3a5b
JB
1061static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
a14ed312 1064static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1065 struct dwarf2_cu *);
c906108c 1066
a14ed312 1067static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1068 struct type *, struct dwarf2_cu *);
c906108c 1069
a14ed312 1070static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1071 struct die_info *, struct type *,
e7c27a73 1072 struct dwarf2_cu *);
c906108c 1073
a14ed312 1074static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1075 struct type *,
1076 struct dwarf2_cu *);
c906108c 1077
134d01f1 1078static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1079
e7c27a73 1080static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1081
e7c27a73 1082static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1083
5d7cb8df
JK
1084static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
27aa8d6a
SW
1086static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
f55ee35c
JK
1088static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
38d518c9 1091static const char *namespace_name (struct die_info *die,
e142c38c 1092 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1093
134d01f1 1094static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1095
e7c27a73 1096static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1097
6e70227d 1098static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1099 struct dwarf2_cu *);
1100
93311388 1101static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1102
93311388
DE
1103static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
d97bc12b
DE
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
93311388
DE
1108static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
fe1b8b76 1110 gdb_byte **new_info_ptr,
639d11d3
DC
1111 struct die_info *parent);
1112
93311388
DE
1113static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
fe1b8b76 1115 gdb_byte **new_info_ptr,
639d11d3
DC
1116 struct die_info *parent);
1117
93311388
DE
1118static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
e7c27a73 1122static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1123
71c25dea
TT
1124static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
e142c38c 1127static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1128
98bfdba5
PA
1129static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
e142c38c 1133static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1134 struct dwarf2_cu **);
9219021c 1135
a14ed312 1136static char *dwarf_tag_name (unsigned int);
c906108c 1137
a14ed312 1138static char *dwarf_attr_name (unsigned int);
c906108c 1139
a14ed312 1140static char *dwarf_form_name (unsigned int);
c906108c 1141
a14ed312 1142static char *dwarf_bool_name (unsigned int);
c906108c 1143
a14ed312 1144static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1145
1146#if 0
a14ed312 1147static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1148#endif
1149
f9aca02d 1150static struct die_info *sibling_die (struct die_info *);
c906108c 1151
d97bc12b
DE
1152static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154static void dump_die_for_error (struct die_info *);
1155
1156static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
c906108c 1158
d97bc12b 1159/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1160
51545339 1161static void store_in_ref_table (struct die_info *,
10b3939b 1162 struct dwarf2_cu *);
c906108c 1163
93311388
DE
1164static int is_ref_attr (struct attribute *);
1165
c764a876 1166static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1167
43bbcdc2 1168static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1169
348e048f
DE
1170static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
10b3939b
DJ
1174static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
f2f0e013 1176 struct dwarf2_cu **);
c906108c 1177
348e048f
DE
1178static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
c906108c
SS
1188/* memory allocation interface */
1189
7b5a2f43 1190static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1191
f3dd6933 1192static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1193
b60c80d6 1194static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1195
e142c38c 1196static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1197
e142c38c
DJ
1198static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
5fb290d7 1200
2e276125 1201static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1202 char *, bfd *, struct dwarf2_cu *);
2e276125 1203
8e19ed76
PS
1204static int attr_form_is_block (struct attribute *);
1205
3690dd37
JB
1206static int attr_form_is_section_offset (struct attribute *);
1207
1208static int attr_form_is_constant (struct attribute *);
1209
8cf6f0b1
TT
1210static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
93e7bd98
DJ
1214static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
4c2df51b 1217
93311388
DE
1218static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
4bb7a0a7 1221
72bf9492
DJ
1222static void free_stack_comp_unit (void *);
1223
72bf9492
DJ
1224static hashval_t partial_die_hash (const void *item);
1225
1226static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
ae038cb0 1228static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1229 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1230
1231static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1232 (unsigned int offset, struct objfile *objfile);
ae038cb0 1233
9816fde3
JK
1234static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
93311388 1239
ae038cb0
DJ
1240static void free_one_comp_unit (void *);
1241
1242static void free_cached_comp_units (void *);
1243
1244static void age_cached_comp_units (void);
1245
1246static void free_one_cached_comp_unit (void *);
1247
f792889a
DJ
1248static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1c379e20 1250
ae038cb0
DJ
1251static void create_all_comp_units (struct objfile *);
1252
1fd400ff
TT
1253static int create_debug_types_hash_table (struct objfile *objfile);
1254
93311388
DE
1255static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
10b3939b
DJ
1257
1258static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
ae038cb0
DJ
1263static void dwarf2_mark (struct dwarf2_cu *);
1264
1265static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
673bfd45
DE
1267static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
f792889a 1270static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1271
9291a0cd
TT
1272static void dwarf2_release_queue (void *dummy);
1273
1274static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277static void process_queue (struct objfile *objfile);
1278
1279static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
673bfd45 1295static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1296
9291a0cd
TT
1297#if WORDS_BIGENDIAN
1298
1299/* Convert VALUE between big- and little-endian. */
1300static offset_type
1301byte_swap (offset_type value)
1302{
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310}
1311
1312#define MAYBE_SWAP(V) byte_swap (V)
1313
1314#else
1315#define MAYBE_SWAP(V) (V)
1316#endif /* WORDS_BIGENDIAN */
1317
1318/* The suffix for an index file. */
1319#define INDEX_SUFFIX ".gdb-index"
1320
3da10d80
KS
1321static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
c906108c
SS
1324/* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327int
6502dd73 1328dwarf2_has_info (struct objfile *objfile)
c906108c 1329{
be391dca
TT
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1336
be391dca
TT
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
6502dd73 1340
be391dca
TT
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1346}
1347
233a11ab
CS
1348/* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351static int
dce234bc 1352section_is_p (const char *section_name, const char *name)
233a11ab 1353{
dce234bc
PP
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1358}
1359
c906108c
SS
1360/* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364static void
72dca2f5 1365dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1366{
dce234bc 1367 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1368 {
dce234bc
PP
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1371 }
dce234bc 1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1373 {
dce234bc
PP
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1376 }
dce234bc 1377 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1378 {
dce234bc
PP
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1381 }
dce234bc 1382 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1383 {
dce234bc
PP
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1386 }
dce234bc 1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1388 {
dce234bc
PP
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1391 }
dce234bc 1392 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1393 {
dce234bc
PP
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1396 }
dce234bc 1397 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1398 {
dce234bc
PP
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1401 }
dce234bc 1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1403 {
3799ccc6 1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1405
3799ccc6
EZ
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
dce234bc
PP
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1410 }
b6af0555 1411 }
dce234bc 1412 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1413 {
dce234bc
PP
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1416 }
348e048f
DE
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
9291a0cd
TT
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
dce234bc 1427
72dca2f5
FR
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1431}
1432
dce234bc
PP
1433/* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1435
1436static void
dce234bc
PP
1437zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439{
1440 bfd *abfd = objfile->obfd;
1441#ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445#else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
3e43a32a
MS
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
dce234bc
PP
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
affddf13 1506 do_cleanups (cleanup);
dce234bc
PP
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509#endif
233a11ab
CS
1510}
1511
9e0ac564
TT
1512/* A helper function that decides whether a section is empty. */
1513
1514static int
1515dwarf2_section_empty_p (struct dwarf2_section_info *info)
1516{
1517 return info->asection == NULL || info->size == 0;
1518}
1519
dce234bc
PP
1520/* Read the contents of the section SECTP from object file specified by
1521 OBJFILE, store info about the section into INFO.
1522 If the section is compressed, uncompress it before returning. */
c906108c 1523
dce234bc
PP
1524static void
1525dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1526{
dce234bc
PP
1527 bfd *abfd = objfile->obfd;
1528 asection *sectp = info->asection;
1529 gdb_byte *buf, *retbuf;
1530 unsigned char header[4];
c906108c 1531
be391dca
TT
1532 if (info->readin)
1533 return;
dce234bc
PP
1534 info->buffer = NULL;
1535 info->was_mmapped = 0;
be391dca 1536 info->readin = 1;
188dd5d6 1537
9e0ac564 1538 if (dwarf2_section_empty_p (info))
dce234bc 1539 return;
c906108c 1540
dce234bc
PP
1541 /* Check if the file has a 4-byte header indicating compression. */
1542 if (info->size > sizeof (header)
1543 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1544 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1545 {
1546 /* Upon decompression, update the buffer and its size. */
1547 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1548 {
1549 zlib_decompress_section (objfile, sectp, &info->buffer,
1550 &info->size);
1551 return;
1552 }
1553 }
4bdf3d34 1554
dce234bc
PP
1555#ifdef HAVE_MMAP
1556 if (pagesize == 0)
1557 pagesize = getpagesize ();
2e276125 1558
dce234bc
PP
1559 /* Only try to mmap sections which are large enough: we don't want to
1560 waste space due to fragmentation. Also, only try mmap for sections
1561 without relocations. */
1562
1563 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1564 {
1565 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1566 size_t map_length = info->size + sectp->filepos - pg_offset;
1567 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1568 MAP_PRIVATE, pg_offset);
1569
1570 if (retbuf != MAP_FAILED)
1571 {
1572 info->was_mmapped = 1;
1573 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1574#if HAVE_POSIX_MADVISE
1575 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1576#endif
dce234bc
PP
1577 return;
1578 }
1579 }
1580#endif
1581
1582 /* If we get here, we are a normal, not-compressed section. */
1583 info->buffer = buf
1584 = obstack_alloc (&objfile->objfile_obstack, info->size);
1585
1586 /* When debugging .o files, we may need to apply relocations; see
1587 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1588 We never compress sections in .o files, so we only need to
1589 try this when the section is not compressed. */
ac8035ab 1590 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1591 if (retbuf != NULL)
1592 {
1593 info->buffer = retbuf;
1594 return;
1595 }
1596
1597 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1598 || bfd_bread (buf, info->size, abfd) != info->size)
1599 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1600 bfd_get_filename (abfd));
1601}
1602
9e0ac564
TT
1603/* A helper function that returns the size of a section in a safe way.
1604 If you are positive that the section has been read before using the
1605 size, then it is safe to refer to the dwarf2_section_info object's
1606 "size" field directly. In other cases, you must call this
1607 function, because for compressed sections the size field is not set
1608 correctly until the section has been read. */
1609
1610static bfd_size_type
1611dwarf2_section_size (struct objfile *objfile,
1612 struct dwarf2_section_info *info)
1613{
1614 if (!info->readin)
1615 dwarf2_read_section (objfile, info);
1616 return info->size;
1617}
1618
dce234bc 1619/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1620 SECTION_NAME. */
af34e669 1621
dce234bc
PP
1622void
1623dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1624 asection **sectp, gdb_byte **bufp,
1625 bfd_size_type *sizep)
1626{
1627 struct dwarf2_per_objfile *data
1628 = objfile_data (objfile, dwarf2_objfile_data_key);
1629 struct dwarf2_section_info *info;
a3b2a86b
TT
1630
1631 /* We may see an objfile without any DWARF, in which case we just
1632 return nothing. */
1633 if (data == NULL)
1634 {
1635 *sectp = NULL;
1636 *bufp = NULL;
1637 *sizep = 0;
1638 return;
1639 }
dce234bc
PP
1640 if (section_is_p (section_name, EH_FRAME_SECTION))
1641 info = &data->eh_frame;
1642 else if (section_is_p (section_name, FRAME_SECTION))
1643 info = &data->frame;
0d53c4c4 1644 else
f3574227 1645 gdb_assert_not_reached ("unexpected section");
dce234bc 1646
9e0ac564 1647 dwarf2_read_section (objfile, info);
dce234bc
PP
1648
1649 *sectp = info->asection;
1650 *bufp = info->buffer;
1651 *sizep = info->size;
1652}
1653
9291a0cd 1654\f
7b9f3c50
DE
1655/* DWARF quick_symbols_functions support. */
1656
1657/* TUs can share .debug_line entries, and there can be a lot more TUs than
1658 unique line tables, so we maintain a separate table of all .debug_line
1659 derived entries to support the sharing.
1660 All the quick functions need is the list of file names. We discard the
1661 line_header when we're done and don't need to record it here. */
1662struct quick_file_names
1663{
1664 /* The offset in .debug_line of the line table. We hash on this. */
1665 unsigned int offset;
1666
1667 /* The number of entries in file_names, real_names. */
1668 unsigned int num_file_names;
1669
1670 /* The file names from the line table, after being run through
1671 file_full_name. */
1672 const char **file_names;
1673
1674 /* The file names from the line table after being run through
1675 gdb_realpath. These are computed lazily. */
1676 const char **real_names;
1677};
1678
1679/* When using the index (and thus not using psymtabs), each CU has an
1680 object of this type. This is used to hold information needed by
1681 the various "quick" methods. */
1682struct dwarf2_per_cu_quick_data
1683{
1684 /* The file table. This can be NULL if there was no file table
1685 or it's currently not read in.
1686 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1687 struct quick_file_names *file_names;
1688
1689 /* The corresponding symbol table. This is NULL if symbols for this
1690 CU have not yet been read. */
1691 struct symtab *symtab;
1692
1693 /* A temporary mark bit used when iterating over all CUs in
1694 expand_symtabs_matching. */
1695 unsigned int mark : 1;
1696
1697 /* True if we've tried to read the file table and found there isn't one.
1698 There will be no point in trying to read it again next time. */
1699 unsigned int no_file_data : 1;
1700};
1701
1702/* Hash function for a quick_file_names. */
1703
1704static hashval_t
1705hash_file_name_entry (const void *e)
1706{
1707 const struct quick_file_names *file_data = e;
1708
1709 return file_data->offset;
1710}
1711
1712/* Equality function for a quick_file_names. */
1713
1714static int
1715eq_file_name_entry (const void *a, const void *b)
1716{
1717 const struct quick_file_names *ea = a;
1718 const struct quick_file_names *eb = b;
1719
1720 return ea->offset == eb->offset;
1721}
1722
1723/* Delete function for a quick_file_names. */
1724
1725static void
1726delete_file_name_entry (void *e)
1727{
1728 struct quick_file_names *file_data = e;
1729 int i;
1730
1731 for (i = 0; i < file_data->num_file_names; ++i)
1732 {
1733 xfree ((void*) file_data->file_names[i]);
1734 if (file_data->real_names)
1735 xfree ((void*) file_data->real_names[i]);
1736 }
1737
1738 /* The space for the struct itself lives on objfile_obstack,
1739 so we don't free it here. */
1740}
1741
1742/* Create a quick_file_names hash table. */
1743
1744static htab_t
1745create_quick_file_names_table (unsigned int nr_initial_entries)
1746{
1747 return htab_create_alloc (nr_initial_entries,
1748 hash_file_name_entry, eq_file_name_entry,
1749 delete_file_name_entry, xcalloc, xfree);
1750}
9291a0cd
TT
1751
1752/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1753 this CU came. */
2fdf6df6 1754
9291a0cd
TT
1755static void
1756dw2_do_instantiate_symtab (struct objfile *objfile,
1757 struct dwarf2_per_cu_data *per_cu)
1758{
1759 struct cleanup *back_to;
1760
1761 back_to = make_cleanup (dwarf2_release_queue, NULL);
1762
1763 queue_comp_unit (per_cu, objfile);
1764
1765 if (per_cu->from_debug_types)
1766 read_signatured_type_at_offset (objfile, per_cu->offset);
1767 else
1768 load_full_comp_unit (per_cu, objfile);
1769
1770 process_queue (objfile);
1771
1772 /* Age the cache, releasing compilation units that have not
1773 been used recently. */
1774 age_cached_comp_units ();
1775
1776 do_cleanups (back_to);
1777}
1778
1779/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1780 the objfile from which this CU came. Returns the resulting symbol
1781 table. */
2fdf6df6 1782
9291a0cd
TT
1783static struct symtab *
1784dw2_instantiate_symtab (struct objfile *objfile,
1785 struct dwarf2_per_cu_data *per_cu)
1786{
1787 if (!per_cu->v.quick->symtab)
1788 {
1789 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1790 increment_reading_symtab ();
1791 dw2_do_instantiate_symtab (objfile, per_cu);
1792 do_cleanups (back_to);
1793 }
1794 return per_cu->v.quick->symtab;
1795}
1796
1fd400ff 1797/* Return the CU given its index. */
2fdf6df6 1798
1fd400ff
TT
1799static struct dwarf2_per_cu_data *
1800dw2_get_cu (int index)
1801{
1802 if (index >= dwarf2_per_objfile->n_comp_units)
1803 {
1804 index -= dwarf2_per_objfile->n_comp_units;
1805 return dwarf2_per_objfile->type_comp_units[index];
1806 }
1807 return dwarf2_per_objfile->all_comp_units[index];
1808}
1809
9291a0cd
TT
1810/* A helper function that knows how to read a 64-bit value in a way
1811 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1812 otherwise. */
2fdf6df6 1813
9291a0cd
TT
1814static int
1815extract_cu_value (const char *bytes, ULONGEST *result)
1816{
1817 if (sizeof (ULONGEST) < 8)
1818 {
1819 int i;
1820
1821 /* Ignore the upper 4 bytes if they are all zero. */
1822 for (i = 0; i < 4; ++i)
1823 if (bytes[i + 4] != 0)
1824 return 0;
1825
1826 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1827 }
1828 else
1829 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1830 return 1;
1831}
1832
1833/* Read the CU list from the mapped index, and use it to create all
1834 the CU objects for this objfile. Return 0 if something went wrong,
1835 1 if everything went ok. */
2fdf6df6 1836
9291a0cd 1837static int
1fd400ff
TT
1838create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1839 offset_type cu_list_elements)
9291a0cd
TT
1840{
1841 offset_type i;
9291a0cd
TT
1842
1843 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1844 dwarf2_per_objfile->all_comp_units
1845 = obstack_alloc (&objfile->objfile_obstack,
1846 dwarf2_per_objfile->n_comp_units
1847 * sizeof (struct dwarf2_per_cu_data *));
1848
1849 for (i = 0; i < cu_list_elements; i += 2)
1850 {
1851 struct dwarf2_per_cu_data *the_cu;
1852 ULONGEST offset, length;
1853
1854 if (!extract_cu_value (cu_list, &offset)
1855 || !extract_cu_value (cu_list + 8, &length))
1856 return 0;
1857 cu_list += 2 * 8;
1858
1859 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1860 struct dwarf2_per_cu_data);
1861 the_cu->offset = offset;
1862 the_cu->length = length;
1863 the_cu->objfile = objfile;
1864 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1865 struct dwarf2_per_cu_quick_data);
1866 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1867 }
1868
1869 return 1;
1870}
1871
1fd400ff 1872/* Create the signatured type hash table from the index. */
673bfd45 1873
1fd400ff 1874static int
673bfd45
DE
1875create_signatured_type_table_from_index (struct objfile *objfile,
1876 const gdb_byte *bytes,
1877 offset_type elements)
1fd400ff
TT
1878{
1879 offset_type i;
673bfd45 1880 htab_t sig_types_hash;
1fd400ff
TT
1881
1882 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1883 dwarf2_per_objfile->type_comp_units
1884 = obstack_alloc (&objfile->objfile_obstack,
1885 dwarf2_per_objfile->n_type_comp_units
1886 * sizeof (struct dwarf2_per_cu_data *));
1887
673bfd45 1888 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
1889
1890 for (i = 0; i < elements; i += 3)
1891 {
1892 struct signatured_type *type_sig;
1893 ULONGEST offset, type_offset, signature;
1894 void **slot;
1895
1896 if (!extract_cu_value (bytes, &offset)
1897 || !extract_cu_value (bytes + 8, &type_offset))
1898 return 0;
1899 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1900 bytes += 3 * 8;
1901
1902 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1903 struct signatured_type);
1904 type_sig->signature = signature;
1905 type_sig->offset = offset;
1906 type_sig->type_offset = type_offset;
1907 type_sig->per_cu.from_debug_types = 1;
1908 type_sig->per_cu.offset = offset;
1909 type_sig->per_cu.objfile = objfile;
1910 type_sig->per_cu.v.quick
1911 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1912 struct dwarf2_per_cu_quick_data);
1913
673bfd45 1914 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1fd400ff
TT
1915 *slot = type_sig;
1916
1917 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1918 }
1919
673bfd45 1920 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
1921
1922 return 1;
1923}
1924
9291a0cd
TT
1925/* Read the address map data from the mapped index, and use it to
1926 populate the objfile's psymtabs_addrmap. */
2fdf6df6 1927
9291a0cd
TT
1928static void
1929create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1930{
1931 const gdb_byte *iter, *end;
1932 struct obstack temp_obstack;
1933 struct addrmap *mutable_map;
1934 struct cleanup *cleanup;
1935 CORE_ADDR baseaddr;
1936
1937 obstack_init (&temp_obstack);
1938 cleanup = make_cleanup_obstack_free (&temp_obstack);
1939 mutable_map = addrmap_create_mutable (&temp_obstack);
1940
1941 iter = index->address_table;
1942 end = iter + index->address_table_size;
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1945
1946 while (iter < end)
1947 {
1948 ULONGEST hi, lo, cu_index;
1949 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1950 iter += 8;
1951 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1952 iter += 8;
1953 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1954 iter += 4;
1955
1956 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 1957 dw2_get_cu (cu_index));
9291a0cd
TT
1958 }
1959
1960 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1961 &objfile->objfile_obstack);
1962 do_cleanups (cleanup);
1963}
1964
1965/* The hash function for strings in the mapped index. This is the
1966 same as the hashtab.c hash function, but we keep a separate copy to
1967 maintain control over the implementation. This is necessary
1968 because the hash function is tied to the format of the mapped index
1969 file. */
2fdf6df6 1970
9291a0cd
TT
1971static hashval_t
1972mapped_index_string_hash (const void *p)
1973{
1974 const unsigned char *str = (const unsigned char *) p;
1975 hashval_t r = 0;
1976 unsigned char c;
1977
1978 while ((c = *str++) != 0)
1979 r = r * 67 + c - 113;
1980
1981 return r;
1982}
1983
1984/* Find a slot in the mapped index INDEX for the object named NAME.
1985 If NAME is found, set *VEC_OUT to point to the CU vector in the
1986 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 1987
9291a0cd
TT
1988static int
1989find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1990 offset_type **vec_out)
1991{
1992 offset_type hash = mapped_index_string_hash (name);
1993 offset_type slot, step;
1994
3876f04e
DE
1995 slot = hash & (index->symbol_table_slots - 1);
1996 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
9291a0cd
TT
1997
1998 for (;;)
1999 {
2000 /* Convert a slot number to an offset into the table. */
2001 offset_type i = 2 * slot;
2002 const char *str;
3876f04e 2003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
9291a0cd
TT
2004 return 0;
2005
3876f04e 2006 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
9291a0cd
TT
2007 if (!strcmp (name, str))
2008 {
2009 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2010 + MAYBE_SWAP (index->symbol_table[i + 1]));
9291a0cd
TT
2011 return 1;
2012 }
2013
3876f04e 2014 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2015 }
2016}
2017
2018/* Read the index file. If everything went ok, initialize the "quick"
2019 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 2020
9291a0cd
TT
2021static int
2022dwarf2_read_index (struct objfile *objfile)
2023{
9291a0cd
TT
2024 char *addr;
2025 struct mapped_index *map;
b3b272e1 2026 offset_type *metadata;
ac0b195c
KW
2027 const gdb_byte *cu_list;
2028 const gdb_byte *types_list = NULL;
2029 offset_type version, cu_list_elements;
2030 offset_type types_list_elements = 0;
1fd400ff 2031 int i;
9291a0cd 2032
9e0ac564 2033 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
9291a0cd 2034 return 0;
82430852
JK
2035
2036 /* Older elfutils strip versions could keep the section in the main
2037 executable while splitting it for the separate debug info file. */
2038 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2039 & SEC_HAS_CONTENTS) == 0)
2040 return 0;
2041
9291a0cd
TT
2042 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2043
2044 addr = dwarf2_per_objfile->gdb_index.buffer;
2045 /* Version check. */
1fd400ff 2046 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2047 /* Versions earlier than 3 emitted every copy of a psymbol. This
831adc1f
JK
2048 causes the index to behave very poorly for certain requests. Version 4
2049 contained incomplete addrmap. So, it seems better to just ignore such
2050 indices. */
2051 if (version < 4)
9291a0cd 2052 return 0;
594e8718
JK
2053 /* Indexes with higher version than the one supported by GDB may be no
2054 longer backward compatible. */
831adc1f 2055 if (version > 4)
594e8718 2056 return 0;
9291a0cd
TT
2057
2058 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
b3b272e1 2059 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
2060
2061 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2062
2063 i = 0;
2064 cu_list = addr + MAYBE_SWAP (metadata[i]);
2065 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 2066 / 8);
1fd400ff
TT
2067 ++i;
2068
987d643c
TT
2069 types_list = addr + MAYBE_SWAP (metadata[i]);
2070 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2071 - MAYBE_SWAP (metadata[i]))
2072 / 8);
2073 ++i;
1fd400ff
TT
2074
2075 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2076 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2077 - MAYBE_SWAP (metadata[i]));
2078 ++i;
2079
3876f04e
DE
2080 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2081 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2082 - MAYBE_SWAP (metadata[i]))
2083 / (2 * sizeof (offset_type)));
1fd400ff 2084 ++i;
9291a0cd 2085
1fd400ff
TT
2086 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2087
2088 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2089 return 0;
2090
987d643c 2091 if (types_list_elements
673bfd45
DE
2092 && !create_signatured_type_table_from_index (objfile, types_list,
2093 types_list_elements))
9291a0cd
TT
2094 return 0;
2095
2096 create_addrmap_from_index (objfile, map);
2097
2098 dwarf2_per_objfile->index_table = map;
2099 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2100 dwarf2_per_objfile->quick_file_names_table =
2101 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2102
2103 return 1;
2104}
2105
2106/* A helper for the "quick" functions which sets the global
2107 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2108
9291a0cd
TT
2109static void
2110dw2_setup (struct objfile *objfile)
2111{
2112 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2113 gdb_assert (dwarf2_per_objfile);
2114}
2115
2116/* A helper for the "quick" functions which attempts to read the line
2117 table for THIS_CU. */
2fdf6df6 2118
7b9f3c50
DE
2119static struct quick_file_names *
2120dw2_get_file_names (struct objfile *objfile,
2121 struct dwarf2_per_cu_data *this_cu)
9291a0cd
TT
2122{
2123 bfd *abfd = objfile->obfd;
7b9f3c50 2124 struct line_header *lh;
9291a0cd
TT
2125 struct attribute *attr;
2126 struct cleanup *cleanups;
2127 struct die_info *comp_unit_die;
36374493 2128 struct dwarf2_section_info* sec;
9291a0cd
TT
2129 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2130 int has_children, i;
2131 struct dwarf2_cu cu;
2132 unsigned int bytes_read, buffer_size;
2133 struct die_reader_specs reader_specs;
2134 char *name, *comp_dir;
7b9f3c50
DE
2135 void **slot;
2136 struct quick_file_names *qfn;
2137 unsigned int line_offset;
9291a0cd 2138
7b9f3c50
DE
2139 if (this_cu->v.quick->file_names != NULL)
2140 return this_cu->v.quick->file_names;
2141 /* If we know there is no line data, no point in looking again. */
2142 if (this_cu->v.quick->no_file_data)
2143 return NULL;
9291a0cd 2144
9816fde3 2145 init_one_comp_unit (&cu, objfile);
9291a0cd
TT
2146 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2147
36374493
DE
2148 if (this_cu->from_debug_types)
2149 sec = &dwarf2_per_objfile->types;
2150 else
2151 sec = &dwarf2_per_objfile->info;
2152 dwarf2_read_section (objfile, sec);
2153 buffer_size = sec->size;
2154 buffer = sec->buffer;
9291a0cd
TT
2155 info_ptr = buffer + this_cu->offset;
2156 beg_of_comp_unit = info_ptr;
2157
2158 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2159 buffer, buffer_size,
2160 abfd);
2161
2162 /* Complete the cu_header. */
2163 cu.header.offset = beg_of_comp_unit - buffer;
2164 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2165
2166 this_cu->cu = &cu;
2167 cu.per_cu = this_cu;
2168
2169 dwarf2_read_abbrevs (abfd, &cu);
2170 make_cleanup (dwarf2_free_abbrev_table, &cu);
2171
2172 if (this_cu->from_debug_types)
2173 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2174 init_cu_die_reader (&reader_specs, &cu);
e8e80198
MS
2175 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2176 &has_children);
9291a0cd 2177
7b9f3c50
DE
2178 lh = NULL;
2179 slot = NULL;
2180 line_offset = 0;
9291a0cd
TT
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2182 if (attr)
2183 {
7b9f3c50
DE
2184 struct quick_file_names find_entry;
2185
2186 line_offset = DW_UNSND (attr);
2187
2188 /* We may have already read in this line header (TU line header sharing).
2189 If we have we're done. */
2190 find_entry.offset = line_offset;
2191 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2192 &find_entry, INSERT);
2193 if (*slot != NULL)
2194 {
2195 do_cleanups (cleanups);
2196 this_cu->v.quick->file_names = *slot;
2197 return *slot;
2198 }
2199
9291a0cd
TT
2200 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2201 }
2202 if (lh == NULL)
2203 {
2204 do_cleanups (cleanups);
7b9f3c50
DE
2205 this_cu->v.quick->no_file_data = 1;
2206 return NULL;
9291a0cd
TT
2207 }
2208
7b9f3c50
DE
2209 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2210 qfn->offset = line_offset;
2211 gdb_assert (slot != NULL);
2212 *slot = qfn;
9291a0cd 2213
7b9f3c50 2214 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
9291a0cd 2215
7b9f3c50
DE
2216 qfn->num_file_names = lh->num_file_names;
2217 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2218 lh->num_file_names * sizeof (char *));
9291a0cd 2219 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2220 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2221 qfn->real_names = NULL;
9291a0cd 2222
7b9f3c50 2223 free_line_header (lh);
9291a0cd 2224 do_cleanups (cleanups);
7b9f3c50
DE
2225
2226 this_cu->v.quick->file_names = qfn;
2227 return qfn;
9291a0cd
TT
2228}
2229
2230/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2231 real path for a given file name from the line table. */
2fdf6df6 2232
9291a0cd 2233static const char *
7b9f3c50
DE
2234dw2_get_real_path (struct objfile *objfile,
2235 struct quick_file_names *qfn, int index)
9291a0cd 2236{
7b9f3c50
DE
2237 if (qfn->real_names == NULL)
2238 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2239 qfn->num_file_names, sizeof (char *));
9291a0cd 2240
7b9f3c50
DE
2241 if (qfn->real_names[index] == NULL)
2242 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2243
7b9f3c50 2244 return qfn->real_names[index];
9291a0cd
TT
2245}
2246
2247static struct symtab *
2248dw2_find_last_source_symtab (struct objfile *objfile)
2249{
2250 int index;
ae2de4f8 2251
9291a0cd
TT
2252 dw2_setup (objfile);
2253 index = dwarf2_per_objfile->n_comp_units - 1;
1fd400ff 2254 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
9291a0cd
TT
2255}
2256
7b9f3c50
DE
2257/* Traversal function for dw2_forget_cached_source_info. */
2258
2259static int
2260dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2261{
7b9f3c50 2262 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2263
7b9f3c50 2264 if (file_data->real_names)
9291a0cd 2265 {
7b9f3c50 2266 int i;
9291a0cd 2267
7b9f3c50 2268 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 2269 {
7b9f3c50
DE
2270 xfree ((void*) file_data->real_names[i]);
2271 file_data->real_names[i] = NULL;
9291a0cd
TT
2272 }
2273 }
7b9f3c50
DE
2274
2275 return 1;
2276}
2277
2278static void
2279dw2_forget_cached_source_info (struct objfile *objfile)
2280{
2281 dw2_setup (objfile);
2282
2283 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2284 dw2_free_cached_file_names, NULL);
9291a0cd
TT
2285}
2286
2287static int
2288dw2_lookup_symtab (struct objfile *objfile, const char *name,
2289 const char *full_path, const char *real_path,
2290 struct symtab **result)
2291{
2292 int i;
2293 int check_basename = lbasename (name) == name;
2294 struct dwarf2_per_cu_data *base_cu = NULL;
2295
2296 dw2_setup (objfile);
ae2de4f8 2297
1fd400ff
TT
2298 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2299 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2300 {
2301 int j;
e254ef6a 2302 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2303 struct quick_file_names *file_data;
9291a0cd 2304
e254ef6a 2305 if (per_cu->v.quick->symtab)
9291a0cd
TT
2306 continue;
2307
7b9f3c50
DE
2308 file_data = dw2_get_file_names (objfile, per_cu);
2309 if (file_data == NULL)
9291a0cd
TT
2310 continue;
2311
7b9f3c50 2312 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2313 {
7b9f3c50 2314 const char *this_name = file_data->file_names[j];
9291a0cd
TT
2315
2316 if (FILENAME_CMP (name, this_name) == 0)
2317 {
e254ef6a 2318 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2319 return 1;
2320 }
2321
2322 if (check_basename && ! base_cu
2323 && FILENAME_CMP (lbasename (this_name), name) == 0)
e254ef6a 2324 base_cu = per_cu;
9291a0cd
TT
2325
2326 if (full_path != NULL)
2327 {
7b9f3c50
DE
2328 const char *this_real_name = dw2_get_real_path (objfile,
2329 file_data, j);
9291a0cd 2330
7b9f3c50
DE
2331 if (this_real_name != NULL
2332 && FILENAME_CMP (full_path, this_real_name) == 0)
9291a0cd 2333 {
e254ef6a 2334 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2335 return 1;
2336 }
2337 }
2338
2339 if (real_path != NULL)
2340 {
7b9f3c50
DE
2341 const char *this_real_name = dw2_get_real_path (objfile,
2342 file_data, j);
9291a0cd 2343
7b9f3c50
DE
2344 if (this_real_name != NULL
2345 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 2346 {
74dd2ca6
DE
2347 *result = dw2_instantiate_symtab (objfile, per_cu);
2348 return 1;
9291a0cd
TT
2349 }
2350 }
2351 }
2352 }
2353
2354 if (base_cu)
2355 {
2356 *result = dw2_instantiate_symtab (objfile, base_cu);
2357 return 1;
2358 }
2359
2360 return 0;
2361}
2362
2363static struct symtab *
2364dw2_lookup_symbol (struct objfile *objfile, int block_index,
2365 const char *name, domain_enum domain)
2366{
774b6a14 2367 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2368 instead. */
2369 return NULL;
2370}
2371
2372/* A helper function that expands all symtabs that hold an object
2373 named NAME. */
2fdf6df6 2374
9291a0cd
TT
2375static void
2376dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2377{
2378 dw2_setup (objfile);
2379
ae2de4f8 2380 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2381 if (dwarf2_per_objfile->index_table)
2382 {
2383 offset_type *vec;
2384
2385 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2386 name, &vec))
2387 {
2388 offset_type i, len = MAYBE_SWAP (*vec);
2389 for (i = 0; i < len; ++i)
2390 {
2391 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2393
e254ef6a 2394 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2395 }
2396 }
2397 }
2398}
2399
774b6a14
TT
2400static void
2401dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2402 int kind, const char *name,
2403 domain_enum domain)
9291a0cd 2404{
774b6a14 2405 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2406}
2407
2408static void
2409dw2_print_stats (struct objfile *objfile)
2410{
2411 int i, count;
2412
2413 dw2_setup (objfile);
2414 count = 0;
1fd400ff
TT
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2417 {
e254ef6a 2418 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2419
e254ef6a 2420 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2421 ++count;
2422 }
2423 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2424}
2425
2426static void
2427dw2_dump (struct objfile *objfile)
2428{
2429 /* Nothing worth printing. */
2430}
2431
2432static void
2433dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2434 struct section_offsets *delta)
2435{
2436 /* There's nothing to relocate here. */
2437}
2438
2439static void
2440dw2_expand_symtabs_for_function (struct objfile *objfile,
2441 const char *func_name)
2442{
2443 dw2_do_expand_symtabs_matching (objfile, func_name);
2444}
2445
2446static void
2447dw2_expand_all_symtabs (struct objfile *objfile)
2448{
2449 int i;
2450
2451 dw2_setup (objfile);
1fd400ff
TT
2452
2453 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2454 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2455 {
e254ef6a 2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2457
e254ef6a 2458 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2459 }
2460}
2461
2462static void
2463dw2_expand_symtabs_with_filename (struct objfile *objfile,
2464 const char *filename)
2465{
2466 int i;
2467
2468 dw2_setup (objfile);
d4637a04
DE
2469
2470 /* We don't need to consider type units here.
2471 This is only called for examining code, e.g. expand_line_sal.
2472 There can be an order of magnitude (or more) more type units
2473 than comp units, and we avoid them if we can. */
2474
2475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
2476 {
2477 int j;
e254ef6a 2478 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2479 struct quick_file_names *file_data;
9291a0cd 2480
e254ef6a 2481 if (per_cu->v.quick->symtab)
9291a0cd
TT
2482 continue;
2483
7b9f3c50
DE
2484 file_data = dw2_get_file_names (objfile, per_cu);
2485 if (file_data == NULL)
9291a0cd
TT
2486 continue;
2487
7b9f3c50 2488 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2489 {
7b9f3c50 2490 const char *this_name = file_data->file_names[j];
1ef75ecc 2491 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 2492 {
e254ef6a 2493 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2494 break;
2495 }
2496 }
2497 }
2498}
2499
dd786858 2500static const char *
9291a0cd
TT
2501dw2_find_symbol_file (struct objfile *objfile, const char *name)
2502{
e254ef6a 2503 struct dwarf2_per_cu_data *per_cu;
9291a0cd 2504 offset_type *vec;
7b9f3c50 2505 struct quick_file_names *file_data;
9291a0cd
TT
2506
2507 dw2_setup (objfile);
2508
ae2de4f8 2509 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2510 if (!dwarf2_per_objfile->index_table)
2511 return NULL;
2512
2513 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2514 name, &vec))
2515 return NULL;
2516
2517 /* Note that this just looks at the very first one named NAME -- but
2518 actually we are looking for a function. find_main_filename
2519 should be rewritten so that it doesn't require a custom hook. It
2520 could just use the ordinary symbol tables. */
2521 /* vec[0] is the length, which must always be >0. */
e254ef6a 2522 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2523
7b9f3c50
DE
2524 file_data = dw2_get_file_names (objfile, per_cu);
2525 if (file_data == NULL)
9291a0cd
TT
2526 return NULL;
2527
7b9f3c50 2528 return file_data->file_names[file_data->num_file_names - 1];
9291a0cd
TT
2529}
2530
2531static void
40658b94
PH
2532dw2_map_matching_symbols (const char * name, domain_enum namespace,
2533 struct objfile *objfile, int global,
2534 int (*callback) (struct block *,
2535 struct symbol *, void *),
2edb89d3
JK
2536 void *data, symbol_compare_ftype *match,
2537 symbol_compare_ftype *ordered_compare)
9291a0cd 2538{
40658b94 2539 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2540 current language is Ada for a non-Ada objfile using GNU index. As Ada
2541 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2542}
2543
2544static void
2545dw2_expand_symtabs_matching (struct objfile *objfile,
2546 int (*file_matcher) (const char *, void *),
2547 int (*name_matcher) (const char *, void *),
2548 domain_enum kind,
2549 void *data)
2550{
2551 int i;
2552 offset_type iter;
4b5246aa 2553 struct mapped_index *index;
9291a0cd
TT
2554
2555 dw2_setup (objfile);
ae2de4f8
DE
2556
2557 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2558 if (!dwarf2_per_objfile->index_table)
2559 return;
4b5246aa 2560 index = dwarf2_per_objfile->index_table;
9291a0cd 2561
1fd400ff
TT
2562 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2563 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2564 {
2565 int j;
e254ef6a 2566 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2567 struct quick_file_names *file_data;
9291a0cd 2568
e254ef6a
DE
2569 per_cu->v.quick->mark = 0;
2570 if (per_cu->v.quick->symtab)
9291a0cd
TT
2571 continue;
2572
7b9f3c50
DE
2573 file_data = dw2_get_file_names (objfile, per_cu);
2574 if (file_data == NULL)
9291a0cd
TT
2575 continue;
2576
7b9f3c50 2577 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2578 {
7b9f3c50 2579 if (file_matcher (file_data->file_names[j], data))
9291a0cd 2580 {
e254ef6a 2581 per_cu->v.quick->mark = 1;
9291a0cd
TT
2582 break;
2583 }
2584 }
2585 }
2586
3876f04e 2587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2588 {
2589 offset_type idx = 2 * iter;
2590 const char *name;
2591 offset_type *vec, vec_len, vec_idx;
2592
3876f04e 2593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2594 continue;
2595
3876f04e 2596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd
TT
2597
2598 if (! (*name_matcher) (name, data))
2599 continue;
2600
2601 /* The name was matched, now expand corresponding CUs that were
2602 marked. */
4b5246aa 2603 vec = (offset_type *) (index->constant_pool
3876f04e 2604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
2605 vec_len = MAYBE_SWAP (vec[0]);
2606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2607 {
e254ef6a 2608 struct dwarf2_per_cu_data *per_cu;
1fd400ff 2609
e254ef6a
DE
2610 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2611 if (per_cu->v.quick->mark)
2612 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2613 }
2614 }
2615}
2616
2617static struct symtab *
2618dw2_find_pc_sect_symtab (struct objfile *objfile,
2619 struct minimal_symbol *msymbol,
2620 CORE_ADDR pc,
2621 struct obj_section *section,
2622 int warn_if_readin)
2623{
2624 struct dwarf2_per_cu_data *data;
2625
2626 dw2_setup (objfile);
2627
2628 if (!objfile->psymtabs_addrmap)
2629 return NULL;
2630
2631 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2632 if (!data)
2633 return NULL;
2634
2635 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 2636 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
2637 paddress (get_objfile_arch (objfile), pc));
2638
2639 return dw2_instantiate_symtab (objfile, data);
2640}
2641
2642static void
2643dw2_map_symbol_names (struct objfile *objfile,
2644 void (*fun) (const char *, void *),
2645 void *data)
2646{
2647 offset_type iter;
4b5246aa
TT
2648 struct mapped_index *index;
2649
9291a0cd
TT
2650 dw2_setup (objfile);
2651
ae2de4f8 2652 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2653 if (!dwarf2_per_objfile->index_table)
2654 return;
4b5246aa 2655 index = dwarf2_per_objfile->index_table;
9291a0cd 2656
3876f04e 2657 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2658 {
2659 offset_type idx = 2 * iter;
2660 const char *name;
2661 offset_type *vec, vec_len, vec_idx;
2662
3876f04e 2663 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2664 continue;
2665
3876f04e 2666 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
9291a0cd
TT
2667
2668 (*fun) (name, data);
2669 }
2670}
2671
2672static void
2673dw2_map_symbol_filenames (struct objfile *objfile,
2674 void (*fun) (const char *, const char *, void *),
2675 void *data)
2676{
2677 int i;
2678
2679 dw2_setup (objfile);
ae2de4f8 2680
1fd400ff
TT
2681 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2682 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2683 {
2684 int j;
e254ef6a 2685 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2686 struct quick_file_names *file_data;
9291a0cd 2687
e254ef6a 2688 if (per_cu->v.quick->symtab)
9291a0cd
TT
2689 continue;
2690
7b9f3c50
DE
2691 file_data = dw2_get_file_names (objfile, per_cu);
2692 if (file_data == NULL)
9291a0cd
TT
2693 continue;
2694
7b9f3c50 2695 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2696 {
7b9f3c50
DE
2697 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2698 j);
2699 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
2700 }
2701 }
2702}
2703
2704static int
2705dw2_has_symbols (struct objfile *objfile)
2706{
2707 return 1;
2708}
2709
2710const struct quick_symbol_functions dwarf2_gdb_index_functions =
2711{
2712 dw2_has_symbols,
2713 dw2_find_last_source_symtab,
2714 dw2_forget_cached_source_info,
2715 dw2_lookup_symtab,
2716 dw2_lookup_symbol,
774b6a14 2717 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
2718 dw2_print_stats,
2719 dw2_dump,
2720 dw2_relocate,
2721 dw2_expand_symtabs_for_function,
2722 dw2_expand_all_symtabs,
2723 dw2_expand_symtabs_with_filename,
2724 dw2_find_symbol_file,
40658b94 2725 dw2_map_matching_symbols,
9291a0cd
TT
2726 dw2_expand_symtabs_matching,
2727 dw2_find_pc_sect_symtab,
2728 dw2_map_symbol_names,
2729 dw2_map_symbol_filenames
2730};
2731
2732/* Initialize for reading DWARF for this objfile. Return 0 if this
2733 file will use psymtabs, or 1 if using the GNU index. */
2734
2735int
2736dwarf2_initialize_objfile (struct objfile *objfile)
2737{
2738 /* If we're about to read full symbols, don't bother with the
2739 indices. In this case we also don't care if some other debug
2740 format is making psymtabs, because they are all about to be
2741 expanded anyway. */
2742 if ((objfile->flags & OBJF_READNOW))
2743 {
2744 int i;
2745
2746 dwarf2_per_objfile->using_index = 1;
2747 create_all_comp_units (objfile);
1fd400ff 2748 create_debug_types_hash_table (objfile);
7b9f3c50
DE
2749 dwarf2_per_objfile->quick_file_names_table =
2750 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 2751
1fd400ff
TT
2752 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2753 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2754 {
e254ef6a 2755 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2756
e254ef6a
DE
2757 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2758 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
2759 }
2760
2761 /* Return 1 so that gdb sees the "quick" functions. However,
2762 these functions will be no-ops because we will have expanded
2763 all symtabs. */
2764 return 1;
2765 }
2766
2767 if (dwarf2_read_index (objfile))
2768 return 1;
2769
9291a0cd
TT
2770 return 0;
2771}
2772
2773\f
2774
dce234bc
PP
2775/* Build a partial symbol table. */
2776
2777void
f29dff0a 2778dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2779{
f29dff0a 2780 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2781 {
2782 init_psymbol_list (objfile, 1024);
2783 }
2784
d146bf1e 2785 dwarf2_build_psymtabs_hard (objfile);
c906108c 2786}
c906108c 2787
45452591
DE
2788/* Return TRUE if OFFSET is within CU_HEADER. */
2789
2790static inline int
2791offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2792{
2793 unsigned int bottom = cu_header->offset;
2794 unsigned int top = (cu_header->offset
2795 + cu_header->length
2796 + cu_header->initial_length_size);
9a619af0 2797
45452591
DE
2798 return (offset >= bottom && offset < top);
2799}
2800
93311388
DE
2801/* Read in the comp unit header information from the debug_info at info_ptr.
2802 NOTE: This leaves members offset, first_die_offset to be filled in
2803 by the caller. */
107d2387 2804
fe1b8b76 2805static gdb_byte *
107d2387 2806read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2807 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2808{
2809 int signed_addr;
891d2f0b 2810 unsigned int bytes_read;
c764a876
DE
2811
2812 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2813 cu_header->initial_length_size = bytes_read;
2814 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2815 info_ptr += bytes_read;
107d2387
AC
2816 cu_header->version = read_2_bytes (abfd, info_ptr);
2817 info_ptr += 2;
613e1657 2818 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2819 &bytes_read);
613e1657 2820 info_ptr += bytes_read;
107d2387
AC
2821 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2822 info_ptr += 1;
2823 signed_addr = bfd_get_sign_extend_vma (abfd);
2824 if (signed_addr < 0)
8e65ff28 2825 internal_error (__FILE__, __LINE__,
e2e0b3e5 2826 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2827 cu_header->signed_addr_p = signed_addr;
c764a876 2828
107d2387
AC
2829 return info_ptr;
2830}
2831
fe1b8b76
JB
2832static gdb_byte *
2833partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 2834 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
2835 bfd *abfd)
2836{
fe1b8b76 2837 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
2838
2839 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2840
2dc7f7b3 2841 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 2842 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
2843 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2844 bfd_get_filename (abfd));
72bf9492 2845
9e0ac564
TT
2846 if (header->abbrev_offset
2847 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2848 &dwarf2_per_objfile->abbrev))
8a3fe4f8
AC
2849 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2850 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 2851 (long) header->abbrev_offset,
93311388 2852 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2853 bfd_get_filename (abfd));
2854
2855 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 2856 > buffer + buffer_size)
8a3fe4f8
AC
2857 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2858 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 2859 (long) header->length,
93311388 2860 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2861 bfd_get_filename (abfd));
2862
2863 return info_ptr;
2864}
2865
348e048f
DE
2866/* Read in the types comp unit header information from .debug_types entry at
2867 types_ptr. The result is a pointer to one past the end of the header. */
2868
2869static gdb_byte *
2870read_type_comp_unit_head (struct comp_unit_head *cu_header,
2871 ULONGEST *signature,
2872 gdb_byte *types_ptr, bfd *abfd)
2873{
348e048f
DE
2874 gdb_byte *initial_types_ptr = types_ptr;
2875
6e70227d 2876 dwarf2_read_section (dwarf2_per_objfile->objfile,
fa238c03 2877 &dwarf2_per_objfile->types);
348e048f
DE
2878 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2879
2880 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2881
2882 *signature = read_8_bytes (abfd, types_ptr);
2883 types_ptr += 8;
2884 types_ptr += cu_header->offset_size;
2885 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2886
2887 return types_ptr;
2888}
2889
aaa75496
JB
2890/* Allocate a new partial symtab for file named NAME and mark this new
2891 partial symtab as being an include of PST. */
2892
2893static void
2894dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2895 struct objfile *objfile)
2896{
2897 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2898
2899 subpst->section_offsets = pst->section_offsets;
2900 subpst->textlow = 0;
2901 subpst->texthigh = 0;
2902
2903 subpst->dependencies = (struct partial_symtab **)
2904 obstack_alloc (&objfile->objfile_obstack,
2905 sizeof (struct partial_symtab *));
2906 subpst->dependencies[0] = pst;
2907 subpst->number_of_dependencies = 1;
2908
2909 subpst->globals_offset = 0;
2910 subpst->n_global_syms = 0;
2911 subpst->statics_offset = 0;
2912 subpst->n_static_syms = 0;
2913 subpst->symtab = NULL;
2914 subpst->read_symtab = pst->read_symtab;
2915 subpst->readin = 0;
2916
2917 /* No private part is necessary for include psymtabs. This property
2918 can be used to differentiate between such include psymtabs and
10b3939b 2919 the regular ones. */
58a9656e 2920 subpst->read_symtab_private = NULL;
aaa75496
JB
2921}
2922
2923/* Read the Line Number Program data and extract the list of files
2924 included by the source file represented by PST. Build an include
d85a05f0 2925 partial symtab for each of these included files. */
aaa75496
JB
2926
2927static void
2928dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 2929 struct die_info *die,
aaa75496
JB
2930 struct partial_symtab *pst)
2931{
2932 struct objfile *objfile = cu->objfile;
2933 bfd *abfd = objfile->obfd;
d85a05f0
DJ
2934 struct line_header *lh = NULL;
2935 struct attribute *attr;
aaa75496 2936
d85a05f0
DJ
2937 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2938 if (attr)
2939 {
2940 unsigned int line_offset = DW_UNSND (attr);
9a619af0 2941
d85a05f0
DJ
2942 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2943 }
aaa75496
JB
2944 if (lh == NULL)
2945 return; /* No linetable, so no includes. */
2946
c6da4cef
DE
2947 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2948 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
aaa75496
JB
2949
2950 free_line_header (lh);
2951}
2952
348e048f
DE
2953static hashval_t
2954hash_type_signature (const void *item)
2955{
2956 const struct signatured_type *type_sig = item;
9a619af0 2957
348e048f
DE
2958 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2959 return type_sig->signature;
2960}
2961
2962static int
2963eq_type_signature (const void *item_lhs, const void *item_rhs)
2964{
2965 const struct signatured_type *lhs = item_lhs;
2966 const struct signatured_type *rhs = item_rhs;
9a619af0 2967
348e048f
DE
2968 return lhs->signature == rhs->signature;
2969}
2970
1fd400ff
TT
2971/* Allocate a hash table for signatured types. */
2972
2973static htab_t
673bfd45 2974allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
2975{
2976 return htab_create_alloc_ex (41,
2977 hash_type_signature,
2978 eq_type_signature,
2979 NULL,
2980 &objfile->objfile_obstack,
2981 hashtab_obstack_allocate,
2982 dummy_obstack_deallocate);
2983}
2984
2985/* A helper function to add a signatured type CU to a list. */
2986
2987static int
2988add_signatured_type_cu_to_list (void **slot, void *datum)
2989{
2990 struct signatured_type *sigt = *slot;
2991 struct dwarf2_per_cu_data ***datap = datum;
2992
2993 **datap = &sigt->per_cu;
2994 ++*datap;
2995
2996 return 1;
2997}
2998
348e048f
DE
2999/* Create the hash table of all entries in the .debug_types section.
3000 The result is zero if there is an error (e.g. missing .debug_types section),
3001 otherwise non-zero. */
3002
3003static int
3004create_debug_types_hash_table (struct objfile *objfile)
3005{
be391dca 3006 gdb_byte *info_ptr;
348e048f 3007 htab_t types_htab;
1fd400ff 3008 struct dwarf2_per_cu_data **iter;
348e048f 3009
be391dca
TT
3010 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
3011 info_ptr = dwarf2_per_objfile->types.buffer;
3012
348e048f
DE
3013 if (info_ptr == NULL)
3014 {
3015 dwarf2_per_objfile->signatured_types = NULL;
3016 return 0;
3017 }
3018
673bfd45 3019 types_htab = allocate_signatured_type_table (objfile);
348e048f
DE
3020
3021 if (dwarf2_die_debug)
3022 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3023
3e43a32a
MS
3024 while (info_ptr < dwarf2_per_objfile->types.buffer
3025 + dwarf2_per_objfile->types.size)
348e048f
DE
3026 {
3027 unsigned int offset;
3028 unsigned int offset_size;
3029 unsigned int type_offset;
3030 unsigned int length, initial_length_size;
3031 unsigned short version;
3032 ULONGEST signature;
3033 struct signatured_type *type_sig;
3034 void **slot;
3035 gdb_byte *ptr = info_ptr;
3036
3037 offset = ptr - dwarf2_per_objfile->types.buffer;
3038
3039 /* We need to read the type's signature in order to build the hash
3040 table, but we don't need to read anything else just yet. */
3041
3042 /* Sanity check to ensure entire cu is present. */
3043 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3044 if (ptr + length + initial_length_size
3045 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3046 {
3047 complaint (&symfile_complaints,
3e43a32a
MS
3048 _("debug type entry runs off end "
3049 "of `.debug_types' section, ignored"));
348e048f
DE
3050 break;
3051 }
3052
3053 offset_size = initial_length_size == 4 ? 4 : 8;
3054 ptr += initial_length_size;
3055 version = bfd_get_16 (objfile->obfd, ptr);
3056 ptr += 2;
3057 ptr += offset_size; /* abbrev offset */
3058 ptr += 1; /* address size */
3059 signature = bfd_get_64 (objfile->obfd, ptr);
3060 ptr += 8;
3061 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3062
3063 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3064 memset (type_sig, 0, sizeof (*type_sig));
3065 type_sig->signature = signature;
3066 type_sig->offset = offset;
3067 type_sig->type_offset = type_offset;
ca1f3406 3068 type_sig->per_cu.objfile = objfile;
1fd400ff 3069 type_sig->per_cu.from_debug_types = 1;
348e048f
DE
3070
3071 slot = htab_find_slot (types_htab, type_sig, INSERT);
3072 gdb_assert (slot != NULL);
3073 *slot = type_sig;
3074
3075 if (dwarf2_die_debug)
3076 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3077 offset, phex (signature, sizeof (signature)));
3078
3079 info_ptr = info_ptr + initial_length_size + length;
3080 }
3081
3082 dwarf2_per_objfile->signatured_types = types_htab;
3083
1fd400ff
TT
3084 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3085 dwarf2_per_objfile->type_comp_units
3086 = obstack_alloc (&objfile->objfile_obstack,
3087 dwarf2_per_objfile->n_type_comp_units
3088 * sizeof (struct dwarf2_per_cu_data *));
3089 iter = &dwarf2_per_objfile->type_comp_units[0];
3090 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3091 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3092 == dwarf2_per_objfile->n_type_comp_units);
3093
348e048f
DE
3094 return 1;
3095}
3096
3097/* Lookup a signature based type.
3098 Returns NULL if SIG is not present in the table. */
3099
3100static struct signatured_type *
3101lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3102{
3103 struct signatured_type find_entry, *entry;
3104
3105 if (dwarf2_per_objfile->signatured_types == NULL)
3106 {
3107 complaint (&symfile_complaints,
55f1336d 3108 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
348e048f
DE
3109 return 0;
3110 }
3111
3112 find_entry.signature = sig;
3113 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3114 return entry;
3115}
3116
d85a05f0
DJ
3117/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3118
3119static void
3120init_cu_die_reader (struct die_reader_specs *reader,
3121 struct dwarf2_cu *cu)
3122{
3123 reader->abfd = cu->objfile->obfd;
3124 reader->cu = cu;
3125 if (cu->per_cu->from_debug_types)
be391dca
TT
3126 {
3127 gdb_assert (dwarf2_per_objfile->types.readin);
3128 reader->buffer = dwarf2_per_objfile->types.buffer;
3129 }
d85a05f0 3130 else
be391dca
TT
3131 {
3132 gdb_assert (dwarf2_per_objfile->info.readin);
3133 reader->buffer = dwarf2_per_objfile->info.buffer;
3134 }
d85a05f0
DJ
3135}
3136
3137/* Find the base address of the compilation unit for range lists and
3138 location lists. It will normally be specified by DW_AT_low_pc.
3139 In DWARF-3 draft 4, the base address could be overridden by
3140 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3141 compilation units with discontinuous ranges. */
3142
3143static void
3144dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3145{
3146 struct attribute *attr;
3147
3148 cu->base_known = 0;
3149 cu->base_address = 0;
3150
3151 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3152 if (attr)
3153 {
3154 cu->base_address = DW_ADDR (attr);
3155 cu->base_known = 1;
3156 }
3157 else
3158 {
3159 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3160 if (attr)
3161 {
3162 cu->base_address = DW_ADDR (attr);
3163 cu->base_known = 1;
3164 }
3165 }
3166}
3167
348e048f
DE
3168/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3169 to combine the common parts.
93311388 3170 Process a compilation unit for a psymtab.
348e048f
DE
3171 BUFFER is a pointer to the beginning of the dwarf section buffer,
3172 either .debug_info or debug_types.
93311388
DE
3173 INFO_PTR is a pointer to the start of the CU.
3174 Returns a pointer to the next CU. */
aaa75496 3175
93311388
DE
3176static gdb_byte *
3177process_psymtab_comp_unit (struct objfile *objfile,
3178 struct dwarf2_per_cu_data *this_cu,
3179 gdb_byte *buffer, gdb_byte *info_ptr,
3180 unsigned int buffer_size)
c906108c 3181{
c906108c 3182 bfd *abfd = objfile->obfd;
93311388 3183 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 3184 struct die_info *comp_unit_die;
c906108c 3185 struct partial_symtab *pst;
5734ee8b 3186 CORE_ADDR baseaddr;
93311388
DE
3187 struct cleanup *back_to_inner;
3188 struct dwarf2_cu cu;
d85a05f0
DJ
3189 int has_children, has_pc_info;
3190 struct attribute *attr;
d85a05f0
DJ
3191 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3192 struct die_reader_specs reader_specs;
3e2a0cee 3193 const char *filename;
c906108c 3194
9816fde3 3195 init_one_comp_unit (&cu, objfile);
93311388 3196 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 3197
93311388
DE
3198 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3199 buffer, buffer_size,
3200 abfd);
10b3939b 3201
93311388
DE
3202 /* Complete the cu_header. */
3203 cu.header.offset = beg_of_comp_unit - buffer;
3204 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 3205
93311388 3206 cu.list_in_scope = &file_symbols;
af703f96 3207
328c9494
DJ
3208 /* If this compilation unit was already read in, free the
3209 cached copy in order to read it in again. This is
3210 necessary because we skipped some symbols when we first
3211 read in the compilation unit (see load_partial_dies).
3212 This problem could be avoided, but the benefit is
3213 unclear. */
3214 if (this_cu->cu != NULL)
3215 free_one_cached_comp_unit (this_cu->cu);
3216
3217 /* Note that this is a pointer to our stack frame, being
3218 added to a global data structure. It will be cleaned up
3219 in free_stack_comp_unit when we finish with this
3220 compilation unit. */
3221 this_cu->cu = &cu;
d85a05f0
DJ
3222 cu.per_cu = this_cu;
3223
93311388
DE
3224 /* Read the abbrevs for this compilation unit into a table. */
3225 dwarf2_read_abbrevs (abfd, &cu);
3226 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 3227
93311388 3228 /* Read the compilation unit die. */
348e048f
DE
3229 if (this_cu->from_debug_types)
3230 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
3231 init_cu_die_reader (&reader_specs, &cu);
3232 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3233 &has_children);
93311388 3234
348e048f
DE
3235 if (this_cu->from_debug_types)
3236 {
3237 /* offset,length haven't been set yet for type units. */
3238 this_cu->offset = cu.header.offset;
3239 this_cu->length = cu.header.length + cu.header.initial_length_size;
3240 }
d85a05f0 3241 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 3242 {
93311388
DE
3243 info_ptr = (beg_of_comp_unit + cu.header.length
3244 + cu.header.initial_length_size);
3245 do_cleanups (back_to_inner);
3246 return info_ptr;
3247 }
72bf9492 3248
9816fde3 3249 prepare_one_comp_unit (&cu, comp_unit_die);
c906108c 3250
93311388 3251 /* Allocate a new partial symbol table structure. */
d85a05f0 3252 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3e2a0cee
TT
3253 if (attr == NULL || !DW_STRING (attr))
3254 filename = "";
3255 else
3256 filename = DW_STRING (attr);
93311388 3257 pst = start_psymtab_common (objfile, objfile->section_offsets,
3e2a0cee 3258 filename,
93311388
DE
3259 /* TEXTLOW and TEXTHIGH are set below. */
3260 0,
3261 objfile->global_psymbols.next,
3262 objfile->static_psymbols.next);
72bf9492 3263
d85a05f0
DJ
3264 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3265 if (attr != NULL)
3266 pst->dirname = DW_STRING (attr);
72bf9492 3267
e38df1d0 3268 pst->read_symtab_private = this_cu;
72bf9492 3269
93311388 3270 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 3271
0963b4bd 3272 /* Store the function that reads in the rest of the symbol table. */
93311388 3273 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 3274
9291a0cd 3275 this_cu->v.psymtab = pst;
c906108c 3276
d85a05f0
DJ
3277 dwarf2_find_base_address (comp_unit_die, &cu);
3278
93311388
DE
3279 /* Possibly set the default values of LOWPC and HIGHPC from
3280 `DW_AT_ranges'. */
d85a05f0
DJ
3281 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3282 &best_highpc, &cu, pst);
3283 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
3284 /* Store the contiguous range if it is not empty; it can be empty for
3285 CUs with no code. */
3286 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
3287 best_lowpc + baseaddr,
3288 best_highpc + baseaddr - 1, pst);
93311388
DE
3289
3290 /* Check if comp unit has_children.
3291 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3292 If not, there's no more debug_info for this comp unit. */
d85a05f0 3293 if (has_children)
93311388
DE
3294 {
3295 struct partial_die_info *first_die;
3296 CORE_ADDR lowpc, highpc;
31ffec48 3297
93311388
DE
3298 lowpc = ((CORE_ADDR) -1);
3299 highpc = ((CORE_ADDR) 0);
c906108c 3300
93311388 3301 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 3302
93311388 3303 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 3304 ! has_pc_info, &cu);
57c22c6c 3305
93311388
DE
3306 /* If we didn't find a lowpc, set it to highpc to avoid
3307 complaints from `maint check'. */
3308 if (lowpc == ((CORE_ADDR) -1))
3309 lowpc = highpc;
10b3939b 3310
93311388
DE
3311 /* If the compilation unit didn't have an explicit address range,
3312 then use the information extracted from its child dies. */
d85a05f0 3313 if (! has_pc_info)
93311388 3314 {
d85a05f0
DJ
3315 best_lowpc = lowpc;
3316 best_highpc = highpc;
93311388
DE
3317 }
3318 }
d85a05f0
DJ
3319 pst->textlow = best_lowpc + baseaddr;
3320 pst->texthigh = best_highpc + baseaddr;
c906108c 3321
93311388
DE
3322 pst->n_global_syms = objfile->global_psymbols.next -
3323 (objfile->global_psymbols.list + pst->globals_offset);
3324 pst->n_static_syms = objfile->static_psymbols.next -
3325 (objfile->static_psymbols.list + pst->statics_offset);
3326 sort_pst_symbols (pst);
c906108c 3327
93311388
DE
3328 info_ptr = (beg_of_comp_unit + cu.header.length
3329 + cu.header.initial_length_size);
ae038cb0 3330
348e048f
DE
3331 if (this_cu->from_debug_types)
3332 {
3333 /* It's not clear we want to do anything with stmt lists here.
3334 Waiting to see what gcc ultimately does. */
3335 }
d85a05f0 3336 else
93311388
DE
3337 {
3338 /* Get the list of files included in the current compilation unit,
3339 and build a psymtab for each of them. */
d85a05f0 3340 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 3341 }
ae038cb0 3342
93311388 3343 do_cleanups (back_to_inner);
ae038cb0 3344
93311388
DE
3345 return info_ptr;
3346}
ff013f42 3347
348e048f
DE
3348/* Traversal function for htab_traverse_noresize.
3349 Process one .debug_types comp-unit. */
3350
3351static int
3352process_type_comp_unit (void **slot, void *info)
3353{
3354 struct signatured_type *entry = (struct signatured_type *) *slot;
3355 struct objfile *objfile = (struct objfile *) info;
3356 struct dwarf2_per_cu_data *this_cu;
3357
3358 this_cu = &entry->per_cu;
348e048f 3359
be391dca 3360 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
3361 process_psymtab_comp_unit (objfile, this_cu,
3362 dwarf2_per_objfile->types.buffer,
3363 dwarf2_per_objfile->types.buffer + entry->offset,
3364 dwarf2_per_objfile->types.size);
3365
3366 return 1;
3367}
3368
3369/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3370 Build partial symbol tables for the .debug_types comp-units. */
3371
3372static void
3373build_type_psymtabs (struct objfile *objfile)
3374{
3375 if (! create_debug_types_hash_table (objfile))
3376 return;
3377
3378 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3379 process_type_comp_unit, objfile);
3380}
3381
60606b2c
TT
3382/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3383
3384static void
3385psymtabs_addrmap_cleanup (void *o)
3386{
3387 struct objfile *objfile = o;
ec61707d 3388
60606b2c
TT
3389 objfile->psymtabs_addrmap = NULL;
3390}
3391
93311388
DE
3392/* Build the partial symbol table by doing a quick pass through the
3393 .debug_info and .debug_abbrev sections. */
72bf9492 3394
93311388 3395static void
c67a9c90 3396dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3397{
93311388 3398 gdb_byte *info_ptr;
60606b2c
TT
3399 struct cleanup *back_to, *addrmap_cleanup;
3400 struct obstack temp_obstack;
93311388 3401
98bfdba5
PA
3402 dwarf2_per_objfile->reading_partial_symbols = 1;
3403
be391dca 3404 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 3405 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 3406
93311388
DE
3407 /* Any cached compilation units will be linked by the per-objfile
3408 read_in_chain. Make sure to free them when we're done. */
3409 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3410
348e048f
DE
3411 build_type_psymtabs (objfile);
3412
93311388 3413 create_all_comp_units (objfile);
c906108c 3414
60606b2c
TT
3415 /* Create a temporary address map on a temporary obstack. We later
3416 copy this to the final obstack. */
3417 obstack_init (&temp_obstack);
3418 make_cleanup_obstack_free (&temp_obstack);
3419 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3420 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3421
93311388
DE
3422 /* Since the objects we're extracting from .debug_info vary in
3423 length, only the individual functions to extract them (like
3424 read_comp_unit_head and load_partial_die) can really know whether
3425 the buffer is large enough to hold another complete object.
c906108c 3426
93311388
DE
3427 At the moment, they don't actually check that. If .debug_info
3428 holds just one extra byte after the last compilation unit's dies,
3429 then read_comp_unit_head will happily read off the end of the
3430 buffer. read_partial_die is similarly casual. Those functions
3431 should be fixed.
c906108c 3432
93311388
DE
3433 For this loop condition, simply checking whether there's any data
3434 left at all should be sufficient. */
c906108c 3435
93311388
DE
3436 while (info_ptr < (dwarf2_per_objfile->info.buffer
3437 + dwarf2_per_objfile->info.size))
3438 {
3439 struct dwarf2_per_cu_data *this_cu;
dd373385 3440
3e43a32a
MS
3441 this_cu = dwarf2_find_comp_unit (info_ptr
3442 - dwarf2_per_objfile->info.buffer,
93311388 3443 objfile);
aaa75496 3444
93311388
DE
3445 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3446 dwarf2_per_objfile->info.buffer,
3447 info_ptr,
3448 dwarf2_per_objfile->info.size);
c906108c 3449 }
ff013f42
JK
3450
3451 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3452 &objfile->objfile_obstack);
60606b2c 3453 discard_cleanups (addrmap_cleanup);
ff013f42 3454
ae038cb0
DJ
3455 do_cleanups (back_to);
3456}
3457
93311388 3458/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3459
3460static void
93311388
DE
3461load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3462 struct objfile *objfile)
ae038cb0
DJ
3463{
3464 bfd *abfd = objfile->obfd;
fe1b8b76 3465 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 3466 struct die_info *comp_unit_die;
ae038cb0 3467 struct dwarf2_cu *cu;
1d9ec526 3468 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
d85a05f0
DJ
3469 int has_children;
3470 struct die_reader_specs reader_specs;
98bfdba5 3471 int read_cu = 0;
ae038cb0 3472
348e048f
DE
3473 gdb_assert (! this_cu->from_debug_types);
3474
be391dca 3475 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 3476 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
3477 beg_of_comp_unit = info_ptr;
3478
98bfdba5
PA
3479 if (this_cu->cu == NULL)
3480 {
9816fde3
JK
3481 cu = xmalloc (sizeof (*cu));
3482 init_one_comp_unit (cu, objfile);
ae038cb0 3483
98bfdba5 3484 read_cu = 1;
ae038cb0 3485
98bfdba5
PA
3486 /* If an error occurs while loading, release our storage. */
3487 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
328c9494 3488
98bfdba5
PA
3489 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3490 dwarf2_per_objfile->info.buffer,
3491 dwarf2_per_objfile->info.size,
3492 abfd);
ae038cb0 3493
98bfdba5
PA
3494 /* Complete the cu_header. */
3495 cu->header.offset = this_cu->offset;
3496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3497
3498 /* Link this compilation unit into the compilation unit tree. */
3499 this_cu->cu = cu;
3500 cu->per_cu = this_cu;
98bfdba5
PA
3501
3502 /* Link this CU into read_in_chain. */
3503 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3504 dwarf2_per_objfile->read_in_chain = this_cu;
3505 }
3506 else
3507 {
3508 cu = this_cu->cu;
3509 info_ptr += cu->header.first_die_offset;
3510 }
ae038cb0
DJ
3511
3512 /* Read the abbrevs for this compilation unit into a table. */
98bfdba5 3513 gdb_assert (cu->dwarf2_abbrevs == NULL);
ae038cb0 3514 dwarf2_read_abbrevs (abfd, cu);
98bfdba5 3515 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
ae038cb0
DJ
3516
3517 /* Read the compilation unit die. */
d85a05f0
DJ
3518 init_cu_die_reader (&reader_specs, cu);
3519 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3520 &has_children);
ae038cb0 3521
9816fde3 3522 prepare_one_comp_unit (cu, comp_unit_die);
ae038cb0 3523
ae038cb0
DJ
3524 /* Check if comp unit has_children.
3525 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3526 If not, there's no more debug_info for this comp unit. */
d85a05f0 3527 if (has_children)
93311388 3528 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0 3529
98bfdba5
PA
3530 do_cleanups (free_abbrevs_cleanup);
3531
3532 if (read_cu)
3533 {
3534 /* We've successfully allocated this compilation unit. Let our
3535 caller clean it up when finished with it. */
3536 discard_cleanups (free_cu_cleanup);
3537 }
ae038cb0
DJ
3538}
3539
3540/* Create a list of all compilation units in OBJFILE. We do this only
3541 if an inter-comp-unit reference is found; presumably if there is one,
3542 there will be many, and one will occur early in the .debug_info section.
3543 So there's no point in building this list incrementally. */
3544
3545static void
3546create_all_comp_units (struct objfile *objfile)
3547{
3548 int n_allocated;
3549 int n_comp_units;
3550 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3551 gdb_byte *info_ptr;
3552
3553 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3554 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3555
3556 n_comp_units = 0;
3557 n_allocated = 10;
3558 all_comp_units = xmalloc (n_allocated
3559 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3560
3e43a32a
MS
3561 while (info_ptr < dwarf2_per_objfile->info.buffer
3562 + dwarf2_per_objfile->info.size)
ae038cb0 3563 {
c764a876 3564 unsigned int length, initial_length_size;
ae038cb0 3565 struct dwarf2_per_cu_data *this_cu;
c764a876 3566 unsigned int offset;
ae038cb0 3567
dce234bc 3568 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3569
3570 /* Read just enough information to find out where the next
3571 compilation unit is. */
c764a876
DE
3572 length = read_initial_length (objfile->obfd, info_ptr,
3573 &initial_length_size);
ae038cb0
DJ
3574
3575 /* Save the compilation unit for later lookup. */
3576 this_cu = obstack_alloc (&objfile->objfile_obstack,
3577 sizeof (struct dwarf2_per_cu_data));
3578 memset (this_cu, 0, sizeof (*this_cu));
3579 this_cu->offset = offset;
c764a876 3580 this_cu->length = length + initial_length_size;
9291a0cd 3581 this_cu->objfile = objfile;
ae038cb0
DJ
3582
3583 if (n_comp_units == n_allocated)
3584 {
3585 n_allocated *= 2;
3586 all_comp_units = xrealloc (all_comp_units,
3587 n_allocated
3588 * sizeof (struct dwarf2_per_cu_data *));
3589 }
3590 all_comp_units[n_comp_units++] = this_cu;
3591
3592 info_ptr = info_ptr + this_cu->length;
3593 }
3594
3595 dwarf2_per_objfile->all_comp_units
3596 = obstack_alloc (&objfile->objfile_obstack,
3597 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3598 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3599 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3600 xfree (all_comp_units);
3601 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3602}
3603
5734ee8b
DJ
3604/* Process all loaded DIEs for compilation unit CU, starting at
3605 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3607 DW_AT_ranges). If NEED_PC is set, then this function will set
3608 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3609 and record the covered ranges in the addrmap. */
c906108c 3610
72bf9492
DJ
3611static void
3612scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3613 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3614{
72bf9492 3615 struct partial_die_info *pdi;
c906108c 3616
91c24f0a
DC
3617 /* Now, march along the PDI's, descending into ones which have
3618 interesting children but skipping the children of the other ones,
3619 until we reach the end of the compilation unit. */
c906108c 3620
72bf9492 3621 pdi = first_die;
91c24f0a 3622
72bf9492
DJ
3623 while (pdi != NULL)
3624 {
3625 fixup_partial_die (pdi, cu);
c906108c 3626
f55ee35c 3627 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3628 children, so we need to look at them. Ditto for anonymous
3629 enums. */
933c6fe4 3630
72bf9492 3631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3633 {
72bf9492 3634 switch (pdi->tag)
c906108c
SS
3635 {
3636 case DW_TAG_subprogram:
5734ee8b 3637 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 3638 break;
72929c62 3639 case DW_TAG_constant:
c906108c
SS
3640 case DW_TAG_variable:
3641 case DW_TAG_typedef:
91c24f0a 3642 case DW_TAG_union_type:
72bf9492 3643 if (!pdi->is_declaration)
63d06c5c 3644 {
72bf9492 3645 add_partial_symbol (pdi, cu);
63d06c5c
DC
3646 }
3647 break;
c906108c 3648 case DW_TAG_class_type:
680b30c7 3649 case DW_TAG_interface_type:
c906108c 3650 case DW_TAG_structure_type:
72bf9492 3651 if (!pdi->is_declaration)
c906108c 3652 {
72bf9492 3653 add_partial_symbol (pdi, cu);
c906108c
SS
3654 }
3655 break;
91c24f0a 3656 case DW_TAG_enumeration_type:
72bf9492
DJ
3657 if (!pdi->is_declaration)
3658 add_partial_enumeration (pdi, cu);
c906108c
SS
3659 break;
3660 case DW_TAG_base_type:
a02abb62 3661 case DW_TAG_subrange_type:
c906108c 3662 /* File scope base type definitions are added to the partial
c5aa993b 3663 symbol table. */
72bf9492 3664 add_partial_symbol (pdi, cu);
c906108c 3665 break;
d9fa45fe 3666 case DW_TAG_namespace:
5734ee8b 3667 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3668 break;
5d7cb8df
JK
3669 case DW_TAG_module:
3670 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3671 break;
c906108c
SS
3672 default:
3673 break;
3674 }
3675 }
3676
72bf9492
DJ
3677 /* If the die has a sibling, skip to the sibling. */
3678
3679 pdi = pdi->die_sibling;
3680 }
3681}
3682
3683/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3684
72bf9492 3685 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3686 name is concatenated with "::" and the partial DIE's name. For
3687 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3688 Enumerators are an exception; they use the scope of their parent
3689 enumeration type, i.e. the name of the enumeration type is not
3690 prepended to the enumerator.
91c24f0a 3691
72bf9492
DJ
3692 There are two complexities. One is DW_AT_specification; in this
3693 case "parent" means the parent of the target of the specification,
3694 instead of the direct parent of the DIE. The other is compilers
3695 which do not emit DW_TAG_namespace; in this case we try to guess
3696 the fully qualified name of structure types from their members'
3697 linkage names. This must be done using the DIE's children rather
3698 than the children of any DW_AT_specification target. We only need
3699 to do this for structures at the top level, i.e. if the target of
3700 any DW_AT_specification (if any; otherwise the DIE itself) does not
3701 have a parent. */
3702
3703/* Compute the scope prefix associated with PDI's parent, in
3704 compilation unit CU. The result will be allocated on CU's
3705 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3706 field. NULL is returned if no prefix is necessary. */
3707static char *
3708partial_die_parent_scope (struct partial_die_info *pdi,
3709 struct dwarf2_cu *cu)
3710{
3711 char *grandparent_scope;
3712 struct partial_die_info *parent, *real_pdi;
91c24f0a 3713
72bf9492
DJ
3714 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3715 then this means the parent of the specification DIE. */
3716
3717 real_pdi = pdi;
72bf9492 3718 while (real_pdi->has_specification)
10b3939b 3719 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3720
3721 parent = real_pdi->die_parent;
3722 if (parent == NULL)
3723 return NULL;
3724
3725 if (parent->scope_set)
3726 return parent->scope;
3727
3728 fixup_partial_die (parent, cu);
3729
10b3939b 3730 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3731
acebe513
UW
3732 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3733 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3734 Work around this problem here. */
3735 if (cu->language == language_cplus
6e70227d 3736 && parent->tag == DW_TAG_namespace
acebe513
UW
3737 && strcmp (parent->name, "::") == 0
3738 && grandparent_scope == NULL)
3739 {
3740 parent->scope = NULL;
3741 parent->scope_set = 1;
3742 return NULL;
3743 }
3744
72bf9492 3745 if (parent->tag == DW_TAG_namespace
f55ee35c 3746 || parent->tag == DW_TAG_module
72bf9492
DJ
3747 || parent->tag == DW_TAG_structure_type
3748 || parent->tag == DW_TAG_class_type
680b30c7 3749 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3750 || parent->tag == DW_TAG_union_type
3751 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3752 {
3753 if (grandparent_scope == NULL)
3754 parent->scope = parent->name;
3755 else
3e43a32a
MS
3756 parent->scope = typename_concat (&cu->comp_unit_obstack,
3757 grandparent_scope,
f55ee35c 3758 parent->name, 0, cu);
72bf9492 3759 }
ceeb3d5a 3760 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
3761 /* Enumerators should not get the name of the enumeration as a prefix. */
3762 parent->scope = grandparent_scope;
3763 else
3764 {
3765 /* FIXME drow/2004-04-01: What should we be doing with
3766 function-local names? For partial symbols, we should probably be
3767 ignoring them. */
3768 complaint (&symfile_complaints,
e2e0b3e5 3769 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3770 parent->tag, pdi->offset);
3771 parent->scope = grandparent_scope;
c906108c
SS
3772 }
3773
72bf9492
DJ
3774 parent->scope_set = 1;
3775 return parent->scope;
3776}
3777
3778/* Return the fully scoped name associated with PDI, from compilation unit
3779 CU. The result will be allocated with malloc. */
3780static char *
3781partial_die_full_name (struct partial_die_info *pdi,
3782 struct dwarf2_cu *cu)
3783{
3784 char *parent_scope;
3785
98bfdba5
PA
3786 /* If this is a template instantiation, we can not work out the
3787 template arguments from partial DIEs. So, unfortunately, we have
3788 to go through the full DIEs. At least any work we do building
3789 types here will be reused if full symbols are loaded later. */
3790 if (pdi->has_template_arguments)
3791 {
3792 fixup_partial_die (pdi, cu);
3793
3794 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3795 {
3796 struct die_info *die;
3797 struct attribute attr;
3798 struct dwarf2_cu *ref_cu = cu;
3799
3800 attr.name = 0;
3801 attr.form = DW_FORM_ref_addr;
3802 attr.u.addr = pdi->offset;
3803 die = follow_die_ref (NULL, &attr, &ref_cu);
3804
3805 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3806 }
3807 }
3808
72bf9492
DJ
3809 parent_scope = partial_die_parent_scope (pdi, cu);
3810 if (parent_scope == NULL)
3811 return NULL;
3812 else
f55ee35c 3813 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3814}
3815
3816static void
72bf9492 3817add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3818{
e7c27a73 3819 struct objfile *objfile = cu->objfile;
c906108c 3820 CORE_ADDR addr = 0;
decbce07 3821 char *actual_name = NULL;
5c4e30ca 3822 const struct partial_symbol *psym = NULL;
e142c38c 3823 CORE_ADDR baseaddr;
72bf9492 3824 int built_actual_name = 0;
e142c38c
DJ
3825
3826 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3827
94af9270
KS
3828 actual_name = partial_die_full_name (pdi, cu);
3829 if (actual_name)
3830 built_actual_name = 1;
63d06c5c 3831
72bf9492
DJ
3832 if (actual_name == NULL)
3833 actual_name = pdi->name;
3834
c906108c
SS
3835 switch (pdi->tag)
3836 {
3837 case DW_TAG_subprogram:
2cfa0c8d 3838 if (pdi->is_external || cu->language == language_ada)
c906108c 3839 {
2cfa0c8d
JB
3840 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3841 of the global scope. But in Ada, we want to be able to access
3842 nested procedures globally. So all Ada subprograms are stored
3843 in the global scope. */
f47fb265 3844 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3845 mst_text, objfile); */
f47fb265
MS
3846 add_psymbol_to_list (actual_name, strlen (actual_name),
3847 built_actual_name,
3848 VAR_DOMAIN, LOC_BLOCK,
3849 &objfile->global_psymbols,
3850 0, pdi->lowpc + baseaddr,
3851 cu->language, objfile);
c906108c
SS
3852 }
3853 else
3854 {
f47fb265 3855 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3856 mst_file_text, objfile); */
f47fb265
MS
3857 add_psymbol_to_list (actual_name, strlen (actual_name),
3858 built_actual_name,
3859 VAR_DOMAIN, LOC_BLOCK,
3860 &objfile->static_psymbols,
3861 0, pdi->lowpc + baseaddr,
3862 cu->language, objfile);
c906108c
SS
3863 }
3864 break;
72929c62
JB
3865 case DW_TAG_constant:
3866 {
3867 struct psymbol_allocation_list *list;
3868
3869 if (pdi->is_external)
3870 list = &objfile->global_psymbols;
3871 else
3872 list = &objfile->static_psymbols;
f47fb265
MS
3873 add_psymbol_to_list (actual_name, strlen (actual_name),
3874 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3875 list, 0, 0, cu->language, objfile);
72929c62
JB
3876 }
3877 break;
c906108c 3878 case DW_TAG_variable:
caac4577
JG
3879 if (pdi->locdesc)
3880 addr = decode_locdesc (pdi->locdesc, cu);
3881
3882 if (pdi->locdesc
3883 && addr == 0
3884 && !dwarf2_per_objfile->has_section_at_zero)
3885 {
3886 /* A global or static variable may also have been stripped
3887 out by the linker if unused, in which case its address
3888 will be nullified; do not add such variables into partial
3889 symbol table then. */
3890 }
3891 else if (pdi->is_external)
c906108c
SS
3892 {
3893 /* Global Variable.
3894 Don't enter into the minimal symbol tables as there is
3895 a minimal symbol table entry from the ELF symbols already.
3896 Enter into partial symbol table if it has a location
3897 descriptor or a type.
3898 If the location descriptor is missing, new_symbol will create
3899 a LOC_UNRESOLVED symbol, the address of the variable will then
3900 be determined from the minimal symbol table whenever the variable
3901 is referenced.
3902 The address for the partial symbol table entry is not
3903 used by GDB, but it comes in handy for debugging partial symbol
3904 table building. */
3905
c906108c 3906 if (pdi->locdesc || pdi->has_type)
f47fb265
MS
3907 add_psymbol_to_list (actual_name, strlen (actual_name),
3908 built_actual_name,
3909 VAR_DOMAIN, LOC_STATIC,
3910 &objfile->global_psymbols,
3911 0, addr + baseaddr,
3912 cu->language, objfile);
c906108c
SS
3913 }
3914 else
3915 {
0963b4bd 3916 /* Static Variable. Skip symbols without location descriptors. */
c906108c 3917 if (pdi->locdesc == NULL)
decbce07
MS
3918 {
3919 if (built_actual_name)
3920 xfree (actual_name);
3921 return;
3922 }
f47fb265 3923 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 3924 mst_file_data, objfile); */
f47fb265
MS
3925 add_psymbol_to_list (actual_name, strlen (actual_name),
3926 built_actual_name,
3927 VAR_DOMAIN, LOC_STATIC,
3928 &objfile->static_psymbols,
3929 0, addr + baseaddr,
3930 cu->language, objfile);
c906108c
SS
3931 }
3932 break;
3933 case DW_TAG_typedef:
3934 case DW_TAG_base_type:
a02abb62 3935 case DW_TAG_subrange_type:
38d518c9 3936 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3937 built_actual_name,
176620f1 3938 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 3939 &objfile->static_psymbols,
e142c38c 3940 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3941 break;
72bf9492
DJ
3942 case DW_TAG_namespace:
3943 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3944 built_actual_name,
72bf9492
DJ
3945 VAR_DOMAIN, LOC_TYPEDEF,
3946 &objfile->global_psymbols,
3947 0, (CORE_ADDR) 0, cu->language, objfile);
3948 break;
c906108c 3949 case DW_TAG_class_type:
680b30c7 3950 case DW_TAG_interface_type:
c906108c
SS
3951 case DW_TAG_structure_type:
3952 case DW_TAG_union_type:
3953 case DW_TAG_enumeration_type:
fa4028e9
JB
3954 /* Skip external references. The DWARF standard says in the section
3955 about "Structure, Union, and Class Type Entries": "An incomplete
3956 structure, union or class type is represented by a structure,
3957 union or class entry that does not have a byte size attribute
3958 and that has a DW_AT_declaration attribute." */
3959 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
3960 {
3961 if (built_actual_name)
3962 xfree (actual_name);
3963 return;
3964 }
fa4028e9 3965
63d06c5c
DC
3966 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3967 static vs. global. */
38d518c9 3968 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3969 built_actual_name,
176620f1 3970 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
3971 (cu->language == language_cplus
3972 || cu->language == language_java)
63d06c5c
DC
3973 ? &objfile->global_psymbols
3974 : &objfile->static_psymbols,
e142c38c 3975 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3976
c906108c
SS
3977 break;
3978 case DW_TAG_enumerator:
38d518c9 3979 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3980 built_actual_name,
176620f1 3981 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
3982 (cu->language == language_cplus
3983 || cu->language == language_java)
f6fe98ef
DJ
3984 ? &objfile->global_psymbols
3985 : &objfile->static_psymbols,
e142c38c 3986 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
3987 break;
3988 default:
3989 break;
3990 }
5c4e30ca 3991
72bf9492
DJ
3992 if (built_actual_name)
3993 xfree (actual_name);
c906108c
SS
3994}
3995
5c4e30ca
DC
3996/* Read a partial die corresponding to a namespace; also, add a symbol
3997 corresponding to that namespace to the symbol table. NAMESPACE is
3998 the name of the enclosing namespace. */
91c24f0a 3999
72bf9492
DJ
4000static void
4001add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 4002 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4003 int need_pc, struct dwarf2_cu *cu)
91c24f0a 4004{
72bf9492 4005 /* Add a symbol for the namespace. */
e7c27a73 4006
72bf9492 4007 add_partial_symbol (pdi, cu);
5c4e30ca
DC
4008
4009 /* Now scan partial symbols in that namespace. */
4010
91c24f0a 4011 if (pdi->has_children)
5734ee8b 4012 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
4013}
4014
5d7cb8df
JK
4015/* Read a partial die corresponding to a Fortran module. */
4016
4017static void
4018add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4019 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4020{
f55ee35c 4021 /* Now scan partial symbols in that module. */
5d7cb8df
JK
4022
4023 if (pdi->has_children)
4024 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4025}
4026
bc30ff58
JB
4027/* Read a partial die corresponding to a subprogram and create a partial
4028 symbol for that subprogram. When the CU language allows it, this
4029 routine also defines a partial symbol for each nested subprogram
4030 that this subprogram contains.
6e70227d 4031
bc30ff58
JB
4032 DIE my also be a lexical block, in which case we simply search
4033 recursively for suprograms defined inside that lexical block.
4034 Again, this is only performed when the CU language allows this
4035 type of definitions. */
4036
4037static void
4038add_partial_subprogram (struct partial_die_info *pdi,
4039 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4040 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
4041{
4042 if (pdi->tag == DW_TAG_subprogram)
4043 {
4044 if (pdi->has_pc_info)
4045 {
4046 if (pdi->lowpc < *lowpc)
4047 *lowpc = pdi->lowpc;
4048 if (pdi->highpc > *highpc)
4049 *highpc = pdi->highpc;
5734ee8b
DJ
4050 if (need_pc)
4051 {
4052 CORE_ADDR baseaddr;
4053 struct objfile *objfile = cu->objfile;
4054
4055 baseaddr = ANOFFSET (objfile->section_offsets,
4056 SECT_OFF_TEXT (objfile));
4057 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
4058 pdi->lowpc + baseaddr,
4059 pdi->highpc - 1 + baseaddr,
9291a0cd 4060 cu->per_cu->v.psymtab);
5734ee8b 4061 }
bc30ff58 4062 if (!pdi->is_declaration)
e8d05480
JB
4063 /* Ignore subprogram DIEs that do not have a name, they are
4064 illegal. Do not emit a complaint at this point, we will
4065 do so when we convert this psymtab into a symtab. */
4066 if (pdi->name)
4067 add_partial_symbol (pdi, cu);
bc30ff58
JB
4068 }
4069 }
6e70227d 4070
bc30ff58
JB
4071 if (! pdi->has_children)
4072 return;
4073
4074 if (cu->language == language_ada)
4075 {
4076 pdi = pdi->die_child;
4077 while (pdi != NULL)
4078 {
4079 fixup_partial_die (pdi, cu);
4080 if (pdi->tag == DW_TAG_subprogram
4081 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 4082 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
4083 pdi = pdi->die_sibling;
4084 }
4085 }
4086}
4087
91c24f0a
DC
4088/* Read a partial die corresponding to an enumeration type. */
4089
72bf9492
DJ
4090static void
4091add_partial_enumeration (struct partial_die_info *enum_pdi,
4092 struct dwarf2_cu *cu)
91c24f0a 4093{
72bf9492 4094 struct partial_die_info *pdi;
91c24f0a
DC
4095
4096 if (enum_pdi->name != NULL)
72bf9492
DJ
4097 add_partial_symbol (enum_pdi, cu);
4098
4099 pdi = enum_pdi->die_child;
4100 while (pdi)
91c24f0a 4101 {
72bf9492 4102 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 4103 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 4104 else
72bf9492
DJ
4105 add_partial_symbol (pdi, cu);
4106 pdi = pdi->die_sibling;
91c24f0a 4107 }
91c24f0a
DC
4108}
4109
4bb7a0a7
DJ
4110/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4111 Return the corresponding abbrev, or NULL if the number is zero (indicating
4112 an empty DIE). In either case *BYTES_READ will be set to the length of
4113 the initial number. */
4114
4115static struct abbrev_info *
fe1b8b76 4116peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 4117 struct dwarf2_cu *cu)
4bb7a0a7
DJ
4118{
4119 bfd *abfd = cu->objfile->obfd;
4120 unsigned int abbrev_number;
4121 struct abbrev_info *abbrev;
4122
4123 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4124
4125 if (abbrev_number == 0)
4126 return NULL;
4127
4128 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4129 if (!abbrev)
4130 {
3e43a32a
MS
4131 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4132 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
4133 }
4134
4135 return abbrev;
4136}
4137
93311388
DE
4138/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4139 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
4140 DIE. Any children of the skipped DIEs will also be skipped. */
4141
fe1b8b76 4142static gdb_byte *
93311388 4143skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4144{
4145 struct abbrev_info *abbrev;
4146 unsigned int bytes_read;
4147
4148 while (1)
4149 {
4150 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4151 if (abbrev == NULL)
4152 return info_ptr + bytes_read;
4153 else
93311388 4154 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
4155 }
4156}
4157
93311388
DE
4158/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4159 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
4160 abbrev corresponding to that skipped uleb128 should be passed in
4161 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4162 children. */
4163
fe1b8b76 4164static gdb_byte *
93311388
DE
4165skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4166 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4167{
4168 unsigned int bytes_read;
4169 struct attribute attr;
4170 bfd *abfd = cu->objfile->obfd;
4171 unsigned int form, i;
4172
4173 for (i = 0; i < abbrev->num_attrs; i++)
4174 {
4175 /* The only abbrev we care about is DW_AT_sibling. */
4176 if (abbrev->attrs[i].name == DW_AT_sibling)
4177 {
4178 read_attribute (&attr, &abbrev->attrs[i],
4179 abfd, info_ptr, cu);
4180 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
4181 complaint (&symfile_complaints,
4182 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 4183 else
93311388 4184 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
4185 }
4186
4187 /* If it isn't DW_AT_sibling, skip this attribute. */
4188 form = abbrev->attrs[i].form;
4189 skip_attribute:
4190 switch (form)
4191 {
4bb7a0a7 4192 case DW_FORM_ref_addr:
ae411497
TT
4193 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4194 and later it is offset sized. */
4195 if (cu->header.version == 2)
4196 info_ptr += cu->header.addr_size;
4197 else
4198 info_ptr += cu->header.offset_size;
4199 break;
4200 case DW_FORM_addr:
4bb7a0a7
DJ
4201 info_ptr += cu->header.addr_size;
4202 break;
4203 case DW_FORM_data1:
4204 case DW_FORM_ref1:
4205 case DW_FORM_flag:
4206 info_ptr += 1;
4207 break;
2dc7f7b3
TT
4208 case DW_FORM_flag_present:
4209 break;
4bb7a0a7
DJ
4210 case DW_FORM_data2:
4211 case DW_FORM_ref2:
4212 info_ptr += 2;
4213 break;
4214 case DW_FORM_data4:
4215 case DW_FORM_ref4:
4216 info_ptr += 4;
4217 break;
4218 case DW_FORM_data8:
4219 case DW_FORM_ref8:
55f1336d 4220 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
4221 info_ptr += 8;
4222 break;
4223 case DW_FORM_string:
9b1c24c8 4224 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
4225 info_ptr += bytes_read;
4226 break;
2dc7f7b3 4227 case DW_FORM_sec_offset:
4bb7a0a7
DJ
4228 case DW_FORM_strp:
4229 info_ptr += cu->header.offset_size;
4230 break;
2dc7f7b3 4231 case DW_FORM_exprloc:
4bb7a0a7
DJ
4232 case DW_FORM_block:
4233 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4234 info_ptr += bytes_read;
4235 break;
4236 case DW_FORM_block1:
4237 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4238 break;
4239 case DW_FORM_block2:
4240 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4241 break;
4242 case DW_FORM_block4:
4243 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4244 break;
4245 case DW_FORM_sdata:
4246 case DW_FORM_udata:
4247 case DW_FORM_ref_udata:
4248 info_ptr = skip_leb128 (abfd, info_ptr);
4249 break;
4250 case DW_FORM_indirect:
4251 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4252 info_ptr += bytes_read;
4253 /* We need to continue parsing from here, so just go back to
4254 the top. */
4255 goto skip_attribute;
4256
4257 default:
3e43a32a
MS
4258 error (_("Dwarf Error: Cannot handle %s "
4259 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
4260 dwarf_form_name (form),
4261 bfd_get_filename (abfd));
4262 }
4263 }
4264
4265 if (abbrev->has_children)
93311388 4266 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
4267 else
4268 return info_ptr;
4269}
4270
93311388
DE
4271/* Locate ORIG_PDI's sibling.
4272 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4273 in BUFFER. */
91c24f0a 4274
fe1b8b76 4275static gdb_byte *
93311388
DE
4276locate_pdi_sibling (struct partial_die_info *orig_pdi,
4277 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 4278 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
4279{
4280 /* Do we know the sibling already? */
72bf9492 4281
91c24f0a
DC
4282 if (orig_pdi->sibling)
4283 return orig_pdi->sibling;
4284
4285 /* Are there any children to deal with? */
4286
4287 if (!orig_pdi->has_children)
4288 return info_ptr;
4289
4bb7a0a7 4290 /* Skip the children the long way. */
91c24f0a 4291
93311388 4292 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
4293}
4294
c906108c
SS
4295/* Expand this partial symbol table into a full symbol table. */
4296
4297static void
fba45db2 4298dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 4299{
c906108c
SS
4300 if (pst != NULL)
4301 {
4302 if (pst->readin)
4303 {
3e43a32a
MS
4304 warning (_("bug: psymtab for %s is already read in."),
4305 pst->filename);
c906108c
SS
4306 }
4307 else
4308 {
4309 if (info_verbose)
4310 {
3e43a32a
MS
4311 printf_filtered (_("Reading in symbols for %s..."),
4312 pst->filename);
c906108c
SS
4313 gdb_flush (gdb_stdout);
4314 }
4315
10b3939b
DJ
4316 /* Restore our global data. */
4317 dwarf2_per_objfile = objfile_data (pst->objfile,
4318 dwarf2_objfile_data_key);
4319
b2ab525c
KB
4320 /* If this psymtab is constructed from a debug-only objfile, the
4321 has_section_at_zero flag will not necessarily be correct. We
4322 can get the correct value for this flag by looking at the data
4323 associated with the (presumably stripped) associated objfile. */
4324 if (pst->objfile->separate_debug_objfile_backlink)
4325 {
4326 struct dwarf2_per_objfile *dpo_backlink
4327 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4328 dwarf2_objfile_data_key);
9a619af0 4329
b2ab525c
KB
4330 dwarf2_per_objfile->has_section_at_zero
4331 = dpo_backlink->has_section_at_zero;
4332 }
4333
98bfdba5
PA
4334 dwarf2_per_objfile->reading_partial_symbols = 0;
4335
c906108c
SS
4336 psymtab_to_symtab_1 (pst);
4337
4338 /* Finish up the debug error message. */
4339 if (info_verbose)
a3f17187 4340 printf_filtered (_("done.\n"));
c906108c
SS
4341 }
4342 }
4343}
4344
10b3939b
DJ
4345/* Add PER_CU to the queue. */
4346
4347static void
03dd20cc 4348queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
4349{
4350 struct dwarf2_queue_item *item;
4351
4352 per_cu->queued = 1;
4353 item = xmalloc (sizeof (*item));
4354 item->per_cu = per_cu;
4355 item->next = NULL;
4356
4357 if (dwarf2_queue == NULL)
4358 dwarf2_queue = item;
4359 else
4360 dwarf2_queue_tail->next = item;
4361
4362 dwarf2_queue_tail = item;
4363}
4364
4365/* Process the queue. */
4366
4367static void
4368process_queue (struct objfile *objfile)
4369{
4370 struct dwarf2_queue_item *item, *next_item;
4371
03dd20cc
DJ
4372 /* The queue starts out with one item, but following a DIE reference
4373 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
4374 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4375 {
9291a0cd
TT
4376 if (dwarf2_per_objfile->using_index
4377 ? !item->per_cu->v.quick->symtab
4378 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
4379 process_full_comp_unit (item->per_cu);
4380
4381 item->per_cu->queued = 0;
4382 next_item = item->next;
4383 xfree (item);
4384 }
4385
4386 dwarf2_queue_tail = NULL;
4387}
4388
4389/* Free all allocated queue entries. This function only releases anything if
4390 an error was thrown; if the queue was processed then it would have been
4391 freed as we went along. */
4392
4393static void
4394dwarf2_release_queue (void *dummy)
4395{
4396 struct dwarf2_queue_item *item, *last;
4397
4398 item = dwarf2_queue;
4399 while (item)
4400 {
4401 /* Anything still marked queued is likely to be in an
4402 inconsistent state, so discard it. */
4403 if (item->per_cu->queued)
4404 {
4405 if (item->per_cu->cu != NULL)
4406 free_one_cached_comp_unit (item->per_cu->cu);
4407 item->per_cu->queued = 0;
4408 }
4409
4410 last = item;
4411 item = item->next;
4412 xfree (last);
4413 }
4414
4415 dwarf2_queue = dwarf2_queue_tail = NULL;
4416}
4417
4418/* Read in full symbols for PST, and anything it depends on. */
4419
c906108c 4420static void
fba45db2 4421psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 4422{
10b3939b 4423 struct dwarf2_per_cu_data *per_cu;
c906108c 4424 struct cleanup *back_to;
aaa75496
JB
4425 int i;
4426
4427 for (i = 0; i < pst->number_of_dependencies; i++)
4428 if (!pst->dependencies[i]->readin)
4429 {
4430 /* Inform about additional files that need to be read in. */
4431 if (info_verbose)
4432 {
a3f17187 4433 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4434 fputs_filtered (" ", gdb_stdout);
4435 wrap_here ("");
4436 fputs_filtered ("and ", gdb_stdout);
4437 wrap_here ("");
4438 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 4439 wrap_here (""); /* Flush output. */
aaa75496
JB
4440 gdb_flush (gdb_stdout);
4441 }
4442 psymtab_to_symtab_1 (pst->dependencies[i]);
4443 }
4444
e38df1d0 4445 per_cu = pst->read_symtab_private;
10b3939b
DJ
4446
4447 if (per_cu == NULL)
aaa75496
JB
4448 {
4449 /* It's an include file, no symbols to read for it.
4450 Everything is in the parent symtab. */
4451 pst->readin = 1;
4452 return;
4453 }
c906108c 4454
9291a0cd 4455 dw2_do_instantiate_symtab (pst->objfile, per_cu);
10b3939b
DJ
4456}
4457
93311388 4458/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4459
93311388 4460static void
3e43a32a
MS
4461load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4462 struct objfile *objfile)
10b3939b 4463{
31ffec48 4464 bfd *abfd = objfile->obfd;
10b3939b 4465 struct dwarf2_cu *cu;
c764a876 4466 unsigned int offset;
93311388 4467 gdb_byte *info_ptr, *beg_of_comp_unit;
98bfdba5 4468 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
10b3939b 4469 struct attribute *attr;
98bfdba5 4470 int read_cu = 0;
6502dd73 4471
348e048f
DE
4472 gdb_assert (! per_cu->from_debug_types);
4473
c906108c 4474 /* Set local variables from the partial symbol table info. */
10b3939b 4475 offset = per_cu->offset;
6502dd73 4476
be391dca 4477 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4478 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4479 beg_of_comp_unit = info_ptr;
63d06c5c 4480
98bfdba5
PA
4481 if (per_cu->cu == NULL)
4482 {
9816fde3
JK
4483 cu = xmalloc (sizeof (*cu));
4484 init_one_comp_unit (cu, objfile);
98bfdba5
PA
4485
4486 read_cu = 1;
c906108c 4487
98bfdba5
PA
4488 /* If an error occurs while loading, release our storage. */
4489 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 4490
98bfdba5
PA
4491 /* Read in the comp_unit header. */
4492 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4493
98bfdba5
PA
4494 /* Complete the cu_header. */
4495 cu->header.offset = offset;
4496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
93311388 4497
98bfdba5
PA
4498 /* Read the abbrevs for this compilation unit. */
4499 dwarf2_read_abbrevs (abfd, cu);
4500 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
10b3939b 4501
98bfdba5
PA
4502 /* Link this compilation unit into the compilation unit tree. */
4503 per_cu->cu = cu;
4504 cu->per_cu = per_cu;
98bfdba5
PA
4505
4506 /* Link this CU into read_in_chain. */
4507 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4508 dwarf2_per_objfile->read_in_chain = per_cu;
4509 }
4510 else
4511 {
4512 cu = per_cu->cu;
4513 info_ptr += cu->header.first_die_offset;
4514 }
e142c38c 4515
93311388 4516 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4517
4518 /* We try not to read any attributes in this function, because not
4519 all objfiles needed for references have been loaded yet, and symbol
4520 table processing isn't initialized. But we have to set the CU language,
4521 or we won't be able to build types correctly. */
9816fde3 4522 prepare_one_comp_unit (cu, cu->dies);
10b3939b 4523
a6c727b2
DJ
4524 /* Similarly, if we do not read the producer, we can not apply
4525 producer-specific interpretation. */
4526 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4527 if (attr)
4528 cu->producer = DW_STRING (attr);
4529
98bfdba5
PA
4530 if (read_cu)
4531 {
4532 do_cleanups (free_abbrevs_cleanup);
e142c38c 4533
98bfdba5
PA
4534 /* We've successfully allocated this compilation unit. Let our
4535 caller clean it up when finished with it. */
4536 discard_cleanups (free_cu_cleanup);
4537 }
10b3939b
DJ
4538}
4539
3da10d80
KS
4540/* Add a DIE to the delayed physname list. */
4541
4542static void
4543add_to_method_list (struct type *type, int fnfield_index, int index,
4544 const char *name, struct die_info *die,
4545 struct dwarf2_cu *cu)
4546{
4547 struct delayed_method_info mi;
4548 mi.type = type;
4549 mi.fnfield_index = fnfield_index;
4550 mi.index = index;
4551 mi.name = name;
4552 mi.die = die;
4553 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4554}
4555
4556/* A cleanup for freeing the delayed method list. */
4557
4558static void
4559free_delayed_list (void *ptr)
4560{
4561 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4562 if (cu->method_list != NULL)
4563 {
4564 VEC_free (delayed_method_info, cu->method_list);
4565 cu->method_list = NULL;
4566 }
4567}
4568
4569/* Compute the physnames of any methods on the CU's method list.
4570
4571 The computation of method physnames is delayed in order to avoid the
4572 (bad) condition that one of the method's formal parameters is of an as yet
4573 incomplete type. */
4574
4575static void
4576compute_delayed_physnames (struct dwarf2_cu *cu)
4577{
4578 int i;
4579 struct delayed_method_info *mi;
4580 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4581 {
4582 char *physname;
4583 struct fn_fieldlist *fn_flp
4584 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4585 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4586 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4587 }
4588}
4589
10b3939b
DJ
4590/* Generate full symbol information for PST and CU, whose DIEs have
4591 already been loaded into memory. */
4592
4593static void
4594process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4595{
10b3939b 4596 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4597 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4598 CORE_ADDR lowpc, highpc;
4599 struct symtab *symtab;
3da10d80 4600 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
4601 CORE_ADDR baseaddr;
4602
4603 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4604
10b3939b
DJ
4605 buildsym_init ();
4606 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 4607 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
4608
4609 cu->list_in_scope = &file_symbols;
c906108c 4610
d85a05f0 4611 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 4612
c906108c 4613 /* Do line number decoding in read_file_scope () */
10b3939b 4614 process_die (cu->dies, cu);
c906108c 4615
3da10d80
KS
4616 /* Now that we have processed all the DIEs in the CU, all the types
4617 should be complete, and it should now be safe to compute all of the
4618 physnames. */
4619 compute_delayed_physnames (cu);
4620 do_cleanups (delayed_list_cleanup);
4621
fae299cd
DC
4622 /* Some compilers don't define a DW_AT_high_pc attribute for the
4623 compilation unit. If the DW_AT_high_pc is missing, synthesize
4624 it, by scanning the DIE's below the compilation unit. */
10b3939b 4625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4626
613e1657 4627 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
4628
4629 /* Set symtab language to language from DW_AT_language.
4630 If the compilation is from a C file generated by language preprocessors,
4631 do not set the language if it was already deduced by start_subfile. */
4632 if (symtab != NULL
10b3939b 4633 && !(cu->language == language_c && symtab->language != language_c))
c906108c 4634 {
10b3939b 4635 symtab->language = cu->language;
c906108c 4636 }
9291a0cd
TT
4637
4638 if (dwarf2_per_objfile->using_index)
4639 per_cu->v.quick->symtab = symtab;
4640 else
4641 {
4642 struct partial_symtab *pst = per_cu->v.psymtab;
4643 pst->symtab = symtab;
4644 pst->readin = 1;
4645 }
c906108c
SS
4646
4647 do_cleanups (back_to);
4648}
4649
4650/* Process a die and its children. */
4651
4652static void
e7c27a73 4653process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4654{
4655 switch (die->tag)
4656 {
4657 case DW_TAG_padding:
4658 break;
4659 case DW_TAG_compile_unit:
e7c27a73 4660 read_file_scope (die, cu);
c906108c 4661 break;
348e048f
DE
4662 case DW_TAG_type_unit:
4663 read_type_unit_scope (die, cu);
4664 break;
c906108c 4665 case DW_TAG_subprogram:
c906108c 4666 case DW_TAG_inlined_subroutine:
edb3359d 4667 read_func_scope (die, cu);
c906108c
SS
4668 break;
4669 case DW_TAG_lexical_block:
14898363
L
4670 case DW_TAG_try_block:
4671 case DW_TAG_catch_block:
e7c27a73 4672 read_lexical_block_scope (die, cu);
c906108c
SS
4673 break;
4674 case DW_TAG_class_type:
680b30c7 4675 case DW_TAG_interface_type:
c906108c
SS
4676 case DW_TAG_structure_type:
4677 case DW_TAG_union_type:
134d01f1 4678 process_structure_scope (die, cu);
c906108c
SS
4679 break;
4680 case DW_TAG_enumeration_type:
134d01f1 4681 process_enumeration_scope (die, cu);
c906108c 4682 break;
134d01f1 4683
f792889a
DJ
4684 /* These dies have a type, but processing them does not create
4685 a symbol or recurse to process the children. Therefore we can
4686 read them on-demand through read_type_die. */
c906108c 4687 case DW_TAG_subroutine_type:
72019c9c 4688 case DW_TAG_set_type:
c906108c 4689 case DW_TAG_array_type:
c906108c 4690 case DW_TAG_pointer_type:
c906108c 4691 case DW_TAG_ptr_to_member_type:
c906108c 4692 case DW_TAG_reference_type:
c906108c 4693 case DW_TAG_string_type:
c906108c 4694 break;
134d01f1 4695
c906108c 4696 case DW_TAG_base_type:
a02abb62 4697 case DW_TAG_subrange_type:
cb249c71 4698 case DW_TAG_typedef:
134d01f1
DJ
4699 /* Add a typedef symbol for the type definition, if it has a
4700 DW_AT_name. */
f792889a 4701 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4702 break;
c906108c 4703 case DW_TAG_common_block:
e7c27a73 4704 read_common_block (die, cu);
c906108c
SS
4705 break;
4706 case DW_TAG_common_inclusion:
4707 break;
d9fa45fe 4708 case DW_TAG_namespace:
63d06c5c 4709 processing_has_namespace_info = 1;
e7c27a73 4710 read_namespace (die, cu);
d9fa45fe 4711 break;
5d7cb8df 4712 case DW_TAG_module:
f55ee35c 4713 processing_has_namespace_info = 1;
5d7cb8df
JK
4714 read_module (die, cu);
4715 break;
d9fa45fe
DC
4716 case DW_TAG_imported_declaration:
4717 case DW_TAG_imported_module:
63d06c5c 4718 processing_has_namespace_info = 1;
27aa8d6a
SW
4719 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4720 || cu->language != language_fortran))
4721 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4722 dwarf_tag_name (die->tag));
4723 read_import_statement (die, cu);
d9fa45fe 4724 break;
c906108c 4725 default:
e7c27a73 4726 new_symbol (die, NULL, cu);
c906108c
SS
4727 break;
4728 }
4729}
4730
94af9270
KS
4731/* A helper function for dwarf2_compute_name which determines whether DIE
4732 needs to have the name of the scope prepended to the name listed in the
4733 die. */
4734
4735static int
4736die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4737{
1c809c68
TT
4738 struct attribute *attr;
4739
94af9270
KS
4740 switch (die->tag)
4741 {
4742 case DW_TAG_namespace:
4743 case DW_TAG_typedef:
4744 case DW_TAG_class_type:
4745 case DW_TAG_interface_type:
4746 case DW_TAG_structure_type:
4747 case DW_TAG_union_type:
4748 case DW_TAG_enumeration_type:
4749 case DW_TAG_enumerator:
4750 case DW_TAG_subprogram:
4751 case DW_TAG_member:
4752 return 1;
4753
4754 case DW_TAG_variable:
c2b0a229 4755 case DW_TAG_constant:
94af9270
KS
4756 /* We only need to prefix "globally" visible variables. These include
4757 any variable marked with DW_AT_external or any variable that
4758 lives in a namespace. [Variables in anonymous namespaces
4759 require prefixing, but they are not DW_AT_external.] */
4760
4761 if (dwarf2_attr (die, DW_AT_specification, cu))
4762 {
4763 struct dwarf2_cu *spec_cu = cu;
9a619af0 4764
94af9270
KS
4765 return die_needs_namespace (die_specification (die, &spec_cu),
4766 spec_cu);
4767 }
4768
1c809c68 4769 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4770 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4771 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4772 return 0;
4773 /* A variable in a lexical block of some kind does not need a
4774 namespace, even though in C++ such variables may be external
4775 and have a mangled name. */
4776 if (die->parent->tag == DW_TAG_lexical_block
4777 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4778 || die->parent->tag == DW_TAG_catch_block
4779 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4780 return 0;
4781 return 1;
94af9270
KS
4782
4783 default:
4784 return 0;
4785 }
4786}
4787
98bfdba5
PA
4788/* Retrieve the last character from a mem_file. */
4789
4790static void
4791do_ui_file_peek_last (void *object, const char *buffer, long length)
4792{
4793 char *last_char_p = (char *) object;
4794
4795 if (length > 0)
4796 *last_char_p = buffer[length - 1];
4797}
4798
94af9270
KS
4799/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4800 compute the physname for the object, which include a method's
4801 formal parameters (C++/Java) and return type (Java).
4802
af6b7be1
JB
4803 For Ada, return the DIE's linkage name rather than the fully qualified
4804 name. PHYSNAME is ignored..
4805
94af9270
KS
4806 The result is allocated on the objfile_obstack and canonicalized. */
4807
4808static const char *
4809dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4810 int physname)
4811{
4812 if (name == NULL)
4813 name = dwarf2_name (die, cu);
4814
f55ee35c
JK
4815 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4816 compute it by typename_concat inside GDB. */
4817 if (cu->language == language_ada
4818 || (cu->language == language_fortran && physname))
4819 {
4820 /* For Ada unit, we prefer the linkage name over the name, as
4821 the former contains the exported name, which the user expects
4822 to be able to reference. Ideally, we want the user to be able
4823 to reference this entity using either natural or linkage name,
4824 but we haven't started looking at this enhancement yet. */
4825 struct attribute *attr;
4826
4827 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4828 if (attr == NULL)
4829 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4830 if (attr && DW_STRING (attr))
4831 return DW_STRING (attr);
4832 }
4833
94af9270
KS
4834 /* These are the only languages we know how to qualify names in. */
4835 if (name != NULL
f55ee35c
JK
4836 && (cu->language == language_cplus || cu->language == language_java
4837 || cu->language == language_fortran))
94af9270
KS
4838 {
4839 if (die_needs_namespace (die, cu))
4840 {
4841 long length;
4842 char *prefix;
4843 struct ui_file *buf;
4844
4845 prefix = determine_prefix (die, cu);
4846 buf = mem_fileopen ();
4847 if (*prefix != '\0')
4848 {
f55ee35c
JK
4849 char *prefixed_name = typename_concat (NULL, prefix, name,
4850 physname, cu);
9a619af0 4851
94af9270
KS
4852 fputs_unfiltered (prefixed_name, buf);
4853 xfree (prefixed_name);
4854 }
4855 else
62d5b8da 4856 fputs_unfiltered (name, buf);
94af9270 4857
98bfdba5
PA
4858 /* Template parameters may be specified in the DIE's DW_AT_name, or
4859 as children with DW_TAG_template_type_param or
4860 DW_TAG_value_type_param. If the latter, add them to the name
4861 here. If the name already has template parameters, then
4862 skip this step; some versions of GCC emit both, and
4863 it is more efficient to use the pre-computed name.
4864
4865 Something to keep in mind about this process: it is very
4866 unlikely, or in some cases downright impossible, to produce
4867 something that will match the mangled name of a function.
4868 If the definition of the function has the same debug info,
4869 we should be able to match up with it anyway. But fallbacks
4870 using the minimal symbol, for instance to find a method
4871 implemented in a stripped copy of libstdc++, will not work.
4872 If we do not have debug info for the definition, we will have to
4873 match them up some other way.
4874
4875 When we do name matching there is a related problem with function
4876 templates; two instantiated function templates are allowed to
4877 differ only by their return types, which we do not add here. */
4878
4879 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4880 {
4881 struct attribute *attr;
4882 struct die_info *child;
4883 int first = 1;
4884
4885 die->building_fullname = 1;
4886
4887 for (child = die->child; child != NULL; child = child->sibling)
4888 {
4889 struct type *type;
4890 long value;
4891 gdb_byte *bytes;
4892 struct dwarf2_locexpr_baton *baton;
4893 struct value *v;
4894
4895 if (child->tag != DW_TAG_template_type_param
4896 && child->tag != DW_TAG_template_value_param)
4897 continue;
4898
4899 if (first)
4900 {
4901 fputs_unfiltered ("<", buf);
4902 first = 0;
4903 }
4904 else
4905 fputs_unfiltered (", ", buf);
4906
4907 attr = dwarf2_attr (child, DW_AT_type, cu);
4908 if (attr == NULL)
4909 {
4910 complaint (&symfile_complaints,
4911 _("template parameter missing DW_AT_type"));
4912 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4913 continue;
4914 }
4915 type = die_type (child, cu);
4916
4917 if (child->tag == DW_TAG_template_type_param)
4918 {
4919 c_print_type (type, "", buf, -1, 0);
4920 continue;
4921 }
4922
4923 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4924 if (attr == NULL)
4925 {
4926 complaint (&symfile_complaints,
3e43a32a
MS
4927 _("template parameter missing "
4928 "DW_AT_const_value"));
98bfdba5
PA
4929 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4930 continue;
4931 }
4932
4933 dwarf2_const_value_attr (attr, type, name,
4934 &cu->comp_unit_obstack, cu,
4935 &value, &bytes, &baton);
4936
4937 if (TYPE_NOSIGN (type))
4938 /* GDB prints characters as NUMBER 'CHAR'. If that's
4939 changed, this can use value_print instead. */
4940 c_printchar (value, type, buf);
4941 else
4942 {
4943 struct value_print_options opts;
4944
4945 if (baton != NULL)
4946 v = dwarf2_evaluate_loc_desc (type, NULL,
4947 baton->data,
4948 baton->size,
4949 baton->per_cu);
4950 else if (bytes != NULL)
4951 {
4952 v = allocate_value (type);
4953 memcpy (value_contents_writeable (v), bytes,
4954 TYPE_LENGTH (type));
4955 }
4956 else
4957 v = value_from_longest (type, value);
4958
3e43a32a
MS
4959 /* Specify decimal so that we do not depend on
4960 the radix. */
98bfdba5
PA
4961 get_formatted_print_options (&opts, 'd');
4962 opts.raw = 1;
4963 value_print (v, buf, &opts);
4964 release_value (v);
4965 value_free (v);
4966 }
4967 }
4968
4969 die->building_fullname = 0;
4970
4971 if (!first)
4972 {
4973 /* Close the argument list, with a space if necessary
4974 (nested templates). */
4975 char last_char = '\0';
4976 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4977 if (last_char == '>')
4978 fputs_unfiltered (" >", buf);
4979 else
4980 fputs_unfiltered (">", buf);
4981 }
4982 }
4983
94af9270
KS
4984 /* For Java and C++ methods, append formal parameter type
4985 information, if PHYSNAME. */
6e70227d 4986
94af9270
KS
4987 if (physname && die->tag == DW_TAG_subprogram
4988 && (cu->language == language_cplus
4989 || cu->language == language_java))
4990 {
4991 struct type *type = read_type_die (die, cu);
4992
3167638f 4993 c_type_print_args (type, buf, 1, cu->language);
94af9270
KS
4994
4995 if (cu->language == language_java)
4996 {
4997 /* For java, we must append the return type to method
0963b4bd 4998 names. */
94af9270
KS
4999 if (die->tag == DW_TAG_subprogram)
5000 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5001 0, 0);
5002 }
5003 else if (cu->language == language_cplus)
5004 {
60430eff
DJ
5005 /* Assume that an artificial first parameter is
5006 "this", but do not crash if it is not. RealView
5007 marks unnamed (and thus unused) parameters as
5008 artificial; there is no way to differentiate
5009 the two cases. */
94af9270
KS
5010 if (TYPE_NFIELDS (type) > 0
5011 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 5012 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
5013 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5014 0))))
94af9270
KS
5015 fputs_unfiltered (" const", buf);
5016 }
5017 }
5018
5019 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5020 &length);
5021 ui_file_delete (buf);
5022
5023 if (cu->language == language_cplus)
5024 {
5025 char *cname
5026 = dwarf2_canonicalize_name (name, cu,
5027 &cu->objfile->objfile_obstack);
9a619af0 5028
94af9270
KS
5029 if (cname != NULL)
5030 name = cname;
5031 }
5032 }
5033 }
5034
5035 return name;
5036}
5037
0114d602
DJ
5038/* Return the fully qualified name of DIE, based on its DW_AT_name.
5039 If scope qualifiers are appropriate they will be added. The result
5040 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
5041 not have a name. NAME may either be from a previous call to
5042 dwarf2_name or NULL.
5043
0963b4bd 5044 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
5045
5046static const char *
94af9270 5047dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 5048{
94af9270
KS
5049 return dwarf2_compute_name (name, die, cu, 0);
5050}
0114d602 5051
94af9270
KS
5052/* Construct a physname for the given DIE in CU. NAME may either be
5053 from a previous call to dwarf2_name or NULL. The result will be
5054 allocated on the objfile_objstack or NULL if the DIE does not have a
5055 name.
0114d602 5056
94af9270 5057 The output string will be canonicalized (if C++/Java). */
0114d602 5058
94af9270
KS
5059static const char *
5060dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5061{
5062 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
5063}
5064
27aa8d6a
SW
5065/* Read the import statement specified by the given die and record it. */
5066
5067static void
5068read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5069{
5070 struct attribute *import_attr;
5071 struct die_info *imported_die;
de4affc9 5072 struct dwarf2_cu *imported_cu;
27aa8d6a 5073 const char *imported_name;
794684b6 5074 const char *imported_name_prefix;
13387711
SW
5075 const char *canonical_name;
5076 const char *import_alias;
5077 const char *imported_declaration = NULL;
794684b6 5078 const char *import_prefix;
13387711
SW
5079
5080 char *temp;
27aa8d6a
SW
5081
5082 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5083 if (import_attr == NULL)
5084 {
5085 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5086 dwarf_tag_name (die->tag));
5087 return;
5088 }
5089
de4affc9
CC
5090 imported_cu = cu;
5091 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5092 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
5093 if (imported_name == NULL)
5094 {
5095 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5096
5097 The import in the following code:
5098 namespace A
5099 {
5100 typedef int B;
5101 }
5102
5103 int main ()
5104 {
5105 using A::B;
5106 B b;
5107 return b;
5108 }
5109
5110 ...
5111 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5112 <52> DW_AT_decl_file : 1
5113 <53> DW_AT_decl_line : 6
5114 <54> DW_AT_import : <0x75>
5115 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5116 <59> DW_AT_name : B
5117 <5b> DW_AT_decl_file : 1
5118 <5c> DW_AT_decl_line : 2
5119 <5d> DW_AT_type : <0x6e>
5120 ...
5121 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5122 <76> DW_AT_byte_size : 4
5123 <77> DW_AT_encoding : 5 (signed)
5124
5125 imports the wrong die ( 0x75 instead of 0x58 ).
5126 This case will be ignored until the gcc bug is fixed. */
5127 return;
5128 }
5129
82856980
SW
5130 /* Figure out the local name after import. */
5131 import_alias = dwarf2_name (die, cu);
27aa8d6a 5132
794684b6
SW
5133 /* Figure out where the statement is being imported to. */
5134 import_prefix = determine_prefix (die, cu);
5135
5136 /* Figure out what the scope of the imported die is and prepend it
5137 to the name of the imported die. */
de4affc9 5138 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 5139
f55ee35c
JK
5140 if (imported_die->tag != DW_TAG_namespace
5141 && imported_die->tag != DW_TAG_module)
794684b6 5142 {
13387711
SW
5143 imported_declaration = imported_name;
5144 canonical_name = imported_name_prefix;
794684b6 5145 }
13387711 5146 else if (strlen (imported_name_prefix) > 0)
794684b6 5147 {
13387711
SW
5148 temp = alloca (strlen (imported_name_prefix)
5149 + 2 + strlen (imported_name) + 1);
5150 strcpy (temp, imported_name_prefix);
5151 strcat (temp, "::");
5152 strcat (temp, imported_name);
5153 canonical_name = temp;
794684b6 5154 }
13387711
SW
5155 else
5156 canonical_name = imported_name;
794684b6 5157
c0cc3a76
SW
5158 cp_add_using_directive (import_prefix,
5159 canonical_name,
5160 import_alias,
13387711 5161 imported_declaration,
c0cc3a76 5162 &cu->objfile->objfile_obstack);
27aa8d6a
SW
5163}
5164
5fb290d7 5165static void
e142c38c 5166initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 5167{
e142c38c 5168 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
5169}
5170
ae2de4f8
DE
5171/* Cleanup function for read_file_scope. */
5172
cb1df416
DJ
5173static void
5174free_cu_line_header (void *arg)
5175{
5176 struct dwarf2_cu *cu = arg;
5177
5178 free_line_header (cu->line_header);
5179 cu->line_header = NULL;
5180}
5181
9291a0cd
TT
5182static void
5183find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5184 char **name, char **comp_dir)
5185{
5186 struct attribute *attr;
5187
5188 *name = NULL;
5189 *comp_dir = NULL;
5190
5191 /* Find the filename. Do not use dwarf2_name here, since the filename
5192 is not a source language identifier. */
5193 attr = dwarf2_attr (die, DW_AT_name, cu);
5194 if (attr)
5195 {
5196 *name = DW_STRING (attr);
5197 }
5198
5199 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5200 if (attr)
5201 *comp_dir = DW_STRING (attr);
5202 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5203 {
5204 *comp_dir = ldirname (*name);
5205 if (*comp_dir != NULL)
5206 make_cleanup (xfree, *comp_dir);
5207 }
5208 if (*comp_dir != NULL)
5209 {
5210 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5211 directory, get rid of it. */
5212 char *cp = strchr (*comp_dir, ':');
5213
5214 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5215 *comp_dir = cp + 1;
5216 }
5217
5218 if (*name == NULL)
5219 *name = "<unknown>";
5220}
5221
ae2de4f8
DE
5222/* Process DW_TAG_compile_unit. */
5223
c906108c 5224static void
e7c27a73 5225read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5226{
e7c27a73 5227 struct objfile *objfile = cu->objfile;
debd256d 5228 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 5229 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
5230 CORE_ADDR highpc = ((CORE_ADDR) 0);
5231 struct attribute *attr;
e1024ff1 5232 char *name = NULL;
c906108c
SS
5233 char *comp_dir = NULL;
5234 struct die_info *child_die;
5235 bfd *abfd = objfile->obfd;
debd256d 5236 struct line_header *line_header = 0;
e142c38c 5237 CORE_ADDR baseaddr;
6e70227d 5238
e142c38c 5239 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5240
fae299cd 5241 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
5242
5243 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5244 from finish_block. */
2acceee2 5245 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
5246 lowpc = highpc;
5247 lowpc += baseaddr;
5248 highpc += baseaddr;
5249
9291a0cd 5250 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 5251
e142c38c 5252 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
5253 if (attr)
5254 {
e142c38c 5255 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
5256 }
5257
b0f35d58 5258 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5259 if (attr)
b0f35d58 5260 cu->producer = DW_STRING (attr);
303b6f5d 5261
f4b8a18d
KW
5262 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5263 standardised yet. As a workaround for the language detection we fall
5264 back to the DW_AT_producer string. */
5265 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5266 cu->language = language_opencl;
5267
0963b4bd 5268 /* We assume that we're processing GCC output. */
c906108c 5269 processing_gcc_compilation = 2;
c906108c 5270
df8a16a1
DJ
5271 processing_has_namespace_info = 0;
5272
c906108c
SS
5273 start_symtab (name, comp_dir, lowpc);
5274 record_debugformat ("DWARF 2");
303b6f5d 5275 record_producer (cu->producer);
c906108c 5276
e142c38c 5277 initialize_cu_func_list (cu);
c906108c 5278
cb1df416
DJ
5279 /* Decode line number information if present. We do this before
5280 processing child DIEs, so that the line header table is available
5281 for DW_AT_decl_file. */
e142c38c 5282 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
5283 if (attr)
5284 {
debd256d 5285 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 5286 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
5287 if (line_header)
5288 {
cb1df416
DJ
5289 cu->line_header = line_header;
5290 make_cleanup (free_cu_line_header, cu);
aaa75496 5291 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 5292 }
5fb290d7 5293 }
debd256d 5294
cb1df416
DJ
5295 /* Process all dies in compilation unit. */
5296 if (die->child != NULL)
5297 {
5298 child_die = die->child;
5299 while (child_die && child_die->tag)
5300 {
5301 process_die (child_die, cu);
5302 child_die = sibling_die (child_die);
5303 }
5304 }
5305
2e276125
JB
5306 /* Decode macro information, if present. Dwarf 2 macro information
5307 refers to information in the line number info statement program
5308 header, so we can only read it if we've read the header
5309 successfully. */
e142c38c 5310 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 5311 if (attr && line_header)
2e276125
JB
5312 {
5313 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 5314
2e276125 5315 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 5316 comp_dir, abfd, cu);
2e276125 5317 }
debd256d 5318 do_cleanups (back_to);
5fb290d7
DJ
5319}
5320
ae2de4f8
DE
5321/* Process DW_TAG_type_unit.
5322 For TUs we want to skip the first top level sibling if it's not the
348e048f
DE
5323 actual type being defined by this TU. In this case the first top
5324 level sibling is there to provide context only. */
5325
5326static void
5327read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5328{
5329 struct objfile *objfile = cu->objfile;
5330 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5331 CORE_ADDR lowpc;
5332 struct attribute *attr;
5333 char *name = NULL;
5334 char *comp_dir = NULL;
5335 struct die_info *child_die;
5336 bfd *abfd = objfile->obfd;
348e048f
DE
5337
5338 /* start_symtab needs a low pc, but we don't really have one.
5339 Do what read_file_scope would do in the absence of such info. */
5340 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5341
5342 /* Find the filename. Do not use dwarf2_name here, since the filename
5343 is not a source language identifier. */
5344 attr = dwarf2_attr (die, DW_AT_name, cu);
5345 if (attr)
5346 name = DW_STRING (attr);
5347
5348 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5349 if (attr)
5350 comp_dir = DW_STRING (attr);
5351 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5352 {
5353 comp_dir = ldirname (name);
5354 if (comp_dir != NULL)
5355 make_cleanup (xfree, comp_dir);
5356 }
5357
5358 if (name == NULL)
5359 name = "<unknown>";
5360
5361 attr = dwarf2_attr (die, DW_AT_language, cu);
5362 if (attr)
5363 set_cu_language (DW_UNSND (attr), cu);
5364
5365 /* This isn't technically needed today. It is done for symmetry
5366 with read_file_scope. */
5367 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5368 if (attr)
348e048f
DE
5369 cu->producer = DW_STRING (attr);
5370
0963b4bd 5371 /* We assume that we're processing GCC output. */
348e048f
DE
5372 processing_gcc_compilation = 2;
5373
5374 processing_has_namespace_info = 0;
5375
5376 start_symtab (name, comp_dir, lowpc);
5377 record_debugformat ("DWARF 2");
5378 record_producer (cu->producer);
5379
5380 /* Process the dies in the type unit. */
5381 if (die->child == NULL)
5382 {
5383 dump_die_for_error (die);
5384 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5385 bfd_get_filename (abfd));
5386 }
5387
5388 child_die = die->child;
5389
5390 while (child_die && child_die->tag)
5391 {
5392 process_die (child_die, cu);
5393
5394 child_die = sibling_die (child_die);
5395 }
5396
5397 do_cleanups (back_to);
5398}
5399
5fb290d7 5400static void
e142c38c
DJ
5401add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5402 struct dwarf2_cu *cu)
5fb290d7
DJ
5403{
5404 struct function_range *thisfn;
5405
5406 thisfn = (struct function_range *)
7b5a2f43 5407 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
5408 thisfn->name = name;
5409 thisfn->lowpc = lowpc;
5410 thisfn->highpc = highpc;
5411 thisfn->seen_line = 0;
5412 thisfn->next = NULL;
5413
e142c38c
DJ
5414 if (cu->last_fn == NULL)
5415 cu->first_fn = thisfn;
5fb290d7 5416 else
e142c38c 5417 cu->last_fn->next = thisfn;
5fb290d7 5418
e142c38c 5419 cu->last_fn = thisfn;
c906108c
SS
5420}
5421
d389af10
JK
5422/* qsort helper for inherit_abstract_dies. */
5423
5424static int
5425unsigned_int_compar (const void *ap, const void *bp)
5426{
5427 unsigned int a = *(unsigned int *) ap;
5428 unsigned int b = *(unsigned int *) bp;
5429
5430 return (a > b) - (b > a);
5431}
5432
5433/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
5434 Inherit only the children of the DW_AT_abstract_origin DIE not being
5435 already referenced by DW_AT_abstract_origin from the children of the
5436 current DIE. */
d389af10
JK
5437
5438static void
5439inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5440{
5441 struct die_info *child_die;
5442 unsigned die_children_count;
5443 /* CU offsets which were referenced by children of the current DIE. */
5444 unsigned *offsets;
5445 unsigned *offsets_end, *offsetp;
5446 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5447 struct die_info *origin_die;
5448 /* Iterator of the ORIGIN_DIE children. */
5449 struct die_info *origin_child_die;
5450 struct cleanup *cleanups;
5451 struct attribute *attr;
cd02d79d
PA
5452 struct dwarf2_cu *origin_cu;
5453 struct pending **origin_previous_list_in_scope;
d389af10
JK
5454
5455 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5456 if (!attr)
5457 return;
5458
cd02d79d
PA
5459 /* Note that following die references may follow to a die in a
5460 different cu. */
5461
5462 origin_cu = cu;
5463 origin_die = follow_die_ref (die, attr, &origin_cu);
5464
5465 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5466 symbols in. */
5467 origin_previous_list_in_scope = origin_cu->list_in_scope;
5468 origin_cu->list_in_scope = cu->list_in_scope;
5469
edb3359d
DJ
5470 if (die->tag != origin_die->tag
5471 && !(die->tag == DW_TAG_inlined_subroutine
5472 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5473 complaint (&symfile_complaints,
5474 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5475 die->offset, origin_die->offset);
5476
5477 child_die = die->child;
5478 die_children_count = 0;
5479 while (child_die && child_die->tag)
5480 {
5481 child_die = sibling_die (child_die);
5482 die_children_count++;
5483 }
5484 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5485 cleanups = make_cleanup (xfree, offsets);
5486
5487 offsets_end = offsets;
5488 child_die = die->child;
5489 while (child_die && child_die->tag)
5490 {
c38f313d
DJ
5491 /* For each CHILD_DIE, find the corresponding child of
5492 ORIGIN_DIE. If there is more than one layer of
5493 DW_AT_abstract_origin, follow them all; there shouldn't be,
5494 but GCC versions at least through 4.4 generate this (GCC PR
5495 40573). */
5496 struct die_info *child_origin_die = child_die;
cd02d79d 5497 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 5498
c38f313d
DJ
5499 while (1)
5500 {
cd02d79d
PA
5501 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5502 child_origin_cu);
c38f313d
DJ
5503 if (attr == NULL)
5504 break;
cd02d79d
PA
5505 child_origin_die = follow_die_ref (child_origin_die, attr,
5506 &child_origin_cu);
c38f313d
DJ
5507 }
5508
d389af10
JK
5509 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5510 counterpart may exist. */
c38f313d 5511 if (child_origin_die != child_die)
d389af10 5512 {
edb3359d
DJ
5513 if (child_die->tag != child_origin_die->tag
5514 && !(child_die->tag == DW_TAG_inlined_subroutine
5515 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5516 complaint (&symfile_complaints,
5517 _("Child DIE 0x%x and its abstract origin 0x%x have "
5518 "different tags"), child_die->offset,
5519 child_origin_die->offset);
c38f313d
DJ
5520 if (child_origin_die->parent != origin_die)
5521 complaint (&symfile_complaints,
5522 _("Child DIE 0x%x and its abstract origin 0x%x have "
5523 "different parents"), child_die->offset,
5524 child_origin_die->offset);
5525 else
5526 *offsets_end++ = child_origin_die->offset;
d389af10
JK
5527 }
5528 child_die = sibling_die (child_die);
5529 }
5530 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5531 unsigned_int_compar);
5532 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5533 if (offsetp[-1] == *offsetp)
3e43a32a
MS
5534 complaint (&symfile_complaints,
5535 _("Multiple children of DIE 0x%x refer "
5536 "to DIE 0x%x as their abstract origin"),
d389af10
JK
5537 die->offset, *offsetp);
5538
5539 offsetp = offsets;
5540 origin_child_die = origin_die->child;
5541 while (origin_child_die && origin_child_die->tag)
5542 {
5543 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5544 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5545 offsetp++;
5546 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5547 {
5548 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 5549 process_die (origin_child_die, origin_cu);
d389af10
JK
5550 }
5551 origin_child_die = sibling_die (origin_child_die);
5552 }
cd02d79d 5553 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
5554
5555 do_cleanups (cleanups);
5556}
5557
c906108c 5558static void
e7c27a73 5559read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5560{
e7c27a73 5561 struct objfile *objfile = cu->objfile;
52f0bd74 5562 struct context_stack *new;
c906108c
SS
5563 CORE_ADDR lowpc;
5564 CORE_ADDR highpc;
5565 struct die_info *child_die;
edb3359d 5566 struct attribute *attr, *call_line, *call_file;
c906108c 5567 char *name;
e142c38c 5568 CORE_ADDR baseaddr;
801e3a5b 5569 struct block *block;
edb3359d 5570 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
5571 VEC (symbolp) *template_args = NULL;
5572 struct template_symbol *templ_func = NULL;
edb3359d
DJ
5573
5574 if (inlined_func)
5575 {
5576 /* If we do not have call site information, we can't show the
5577 caller of this inlined function. That's too confusing, so
5578 only use the scope for local variables. */
5579 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5580 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5581 if (call_line == NULL || call_file == NULL)
5582 {
5583 read_lexical_block_scope (die, cu);
5584 return;
5585 }
5586 }
c906108c 5587
e142c38c
DJ
5588 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5589
94af9270 5590 name = dwarf2_name (die, cu);
c906108c 5591
e8d05480
JB
5592 /* Ignore functions with missing or empty names. These are actually
5593 illegal according to the DWARF standard. */
5594 if (name == NULL)
5595 {
5596 complaint (&symfile_complaints,
5597 _("missing name for subprogram DIE at %d"), die->offset);
5598 return;
5599 }
5600
5601 /* Ignore functions with missing or invalid low and high pc attributes. */
5602 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5603 {
ae4d0c03
PM
5604 attr = dwarf2_attr (die, DW_AT_external, cu);
5605 if (!attr || !DW_UNSND (attr))
5606 complaint (&symfile_complaints,
3e43a32a
MS
5607 _("cannot get low and high bounds "
5608 "for subprogram DIE at %d"),
ae4d0c03 5609 die->offset);
e8d05480
JB
5610 return;
5611 }
c906108c
SS
5612
5613 lowpc += baseaddr;
5614 highpc += baseaddr;
5615
5fb290d7 5616 /* Record the function range for dwarf_decode_lines. */
e142c38c 5617 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 5618
34eaf542
TT
5619 /* If we have any template arguments, then we must allocate a
5620 different sort of symbol. */
5621 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5622 {
5623 if (child_die->tag == DW_TAG_template_type_param
5624 || child_die->tag == DW_TAG_template_value_param)
5625 {
5626 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5627 struct template_symbol);
5628 templ_func->base.is_cplus_template_function = 1;
5629 break;
5630 }
5631 }
5632
c906108c 5633 new = push_context (0, lowpc);
34eaf542
TT
5634 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5635 (struct symbol *) templ_func);
4c2df51b 5636
4cecd739
DJ
5637 /* If there is a location expression for DW_AT_frame_base, record
5638 it. */
e142c38c 5639 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 5640 if (attr)
c034e007
AC
5641 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5642 expression is being recorded directly in the function's symbol
5643 and not in a separate frame-base object. I guess this hack is
5644 to avoid adding some sort of frame-base adjunct/annex to the
5645 function's symbol :-(. The problem with doing this is that it
5646 results in a function symbol with a location expression that
5647 has nothing to do with the location of the function, ouch! The
5648 relationship should be: a function's symbol has-a frame base; a
5649 frame-base has-a location expression. */
e7c27a73 5650 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 5651
e142c38c 5652 cu->list_in_scope = &local_symbols;
c906108c 5653
639d11d3 5654 if (die->child != NULL)
c906108c 5655 {
639d11d3 5656 child_die = die->child;
c906108c
SS
5657 while (child_die && child_die->tag)
5658 {
34eaf542
TT
5659 if (child_die->tag == DW_TAG_template_type_param
5660 || child_die->tag == DW_TAG_template_value_param)
5661 {
5662 struct symbol *arg = new_symbol (child_die, NULL, cu);
5663
f1078f66
DJ
5664 if (arg != NULL)
5665 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
5666 }
5667 else
5668 process_die (child_die, cu);
c906108c
SS
5669 child_die = sibling_die (child_die);
5670 }
5671 }
5672
d389af10
JK
5673 inherit_abstract_dies (die, cu);
5674
4a811a97
UW
5675 /* If we have a DW_AT_specification, we might need to import using
5676 directives from the context of the specification DIE. See the
5677 comment in determine_prefix. */
5678 if (cu->language == language_cplus
5679 && dwarf2_attr (die, DW_AT_specification, cu))
5680 {
5681 struct dwarf2_cu *spec_cu = cu;
5682 struct die_info *spec_die = die_specification (die, &spec_cu);
5683
5684 while (spec_die)
5685 {
5686 child_die = spec_die->child;
5687 while (child_die && child_die->tag)
5688 {
5689 if (child_die->tag == DW_TAG_imported_module)
5690 process_die (child_die, spec_cu);
5691 child_die = sibling_die (child_die);
5692 }
5693
5694 /* In some cases, GCC generates specification DIEs that
5695 themselves contain DW_AT_specification attributes. */
5696 spec_die = die_specification (spec_die, &spec_cu);
5697 }
5698 }
5699
c906108c
SS
5700 new = pop_context ();
5701 /* Make a block for the local symbols within. */
801e3a5b
JB
5702 block = finish_block (new->name, &local_symbols, new->old_blocks,
5703 lowpc, highpc, objfile);
5704
df8a16a1 5705 /* For C++, set the block's scope. */
f55ee35c 5706 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 5707 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 5708 determine_prefix (die, cu),
df8a16a1
DJ
5709 processing_has_namespace_info);
5710
801e3a5b
JB
5711 /* If we have address ranges, record them. */
5712 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 5713
34eaf542
TT
5714 /* Attach template arguments to function. */
5715 if (! VEC_empty (symbolp, template_args))
5716 {
5717 gdb_assert (templ_func != NULL);
5718
5719 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5720 templ_func->template_arguments
5721 = obstack_alloc (&objfile->objfile_obstack,
5722 (templ_func->n_template_arguments
5723 * sizeof (struct symbol *)));
5724 memcpy (templ_func->template_arguments,
5725 VEC_address (symbolp, template_args),
5726 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5727 VEC_free (symbolp, template_args);
5728 }
5729
208d8187
JB
5730 /* In C++, we can have functions nested inside functions (e.g., when
5731 a function declares a class that has methods). This means that
5732 when we finish processing a function scope, we may need to go
5733 back to building a containing block's symbol lists. */
5734 local_symbols = new->locals;
5735 param_symbols = new->params;
27aa8d6a 5736 using_directives = new->using_directives;
208d8187 5737
921e78cf
JB
5738 /* If we've finished processing a top-level function, subsequent
5739 symbols go in the file symbol list. */
5740 if (outermost_context_p ())
e142c38c 5741 cu->list_in_scope = &file_symbols;
c906108c
SS
5742}
5743
5744/* Process all the DIES contained within a lexical block scope. Start
5745 a new scope, process the dies, and then close the scope. */
5746
5747static void
e7c27a73 5748read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5749{
e7c27a73 5750 struct objfile *objfile = cu->objfile;
52f0bd74 5751 struct context_stack *new;
c906108c
SS
5752 CORE_ADDR lowpc, highpc;
5753 struct die_info *child_die;
e142c38c
DJ
5754 CORE_ADDR baseaddr;
5755
5756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
5757
5758 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
5759 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5760 as multiple lexical blocks? Handling children in a sane way would
6e70227d 5761 be nasty. Might be easier to properly extend generic blocks to
af34e669 5762 describe ranges. */
d85a05f0 5763 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
5764 return;
5765 lowpc += baseaddr;
5766 highpc += baseaddr;
5767
5768 push_context (0, lowpc);
639d11d3 5769 if (die->child != NULL)
c906108c 5770 {
639d11d3 5771 child_die = die->child;
c906108c
SS
5772 while (child_die && child_die->tag)
5773 {
e7c27a73 5774 process_die (child_die, cu);
c906108c
SS
5775 child_die = sibling_die (child_die);
5776 }
5777 }
5778 new = pop_context ();
5779
8540c487 5780 if (local_symbols != NULL || using_directives != NULL)
c906108c 5781 {
801e3a5b
JB
5782 struct block *block
5783 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5784 highpc, objfile);
5785
5786 /* Note that recording ranges after traversing children, as we
5787 do here, means that recording a parent's ranges entails
5788 walking across all its children's ranges as they appear in
5789 the address map, which is quadratic behavior.
5790
5791 It would be nicer to record the parent's ranges before
5792 traversing its children, simply overriding whatever you find
5793 there. But since we don't even decide whether to create a
5794 block until after we've traversed its children, that's hard
5795 to do. */
5796 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
5797 }
5798 local_symbols = new->locals;
27aa8d6a 5799 using_directives = new->using_directives;
c906108c
SS
5800}
5801
43039443 5802/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
5803 Return 1 if the attributes are present and valid, otherwise, return 0.
5804 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
5805
5806static int
5807dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
5808 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5809 struct partial_symtab *ranges_pst)
43039443
JK
5810{
5811 struct objfile *objfile = cu->objfile;
5812 struct comp_unit_head *cu_header = &cu->header;
5813 bfd *obfd = objfile->obfd;
5814 unsigned int addr_size = cu_header->addr_size;
5815 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5816 /* Base address selection entry. */
5817 CORE_ADDR base;
5818 int found_base;
5819 unsigned int dummy;
5820 gdb_byte *buffer;
5821 CORE_ADDR marker;
5822 int low_set;
5823 CORE_ADDR low = 0;
5824 CORE_ADDR high = 0;
ff013f42 5825 CORE_ADDR baseaddr;
43039443 5826
d00adf39
DE
5827 found_base = cu->base_known;
5828 base = cu->base_address;
43039443 5829
be391dca 5830 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 5831 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
5832 {
5833 complaint (&symfile_complaints,
5834 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5835 offset);
5836 return 0;
5837 }
dce234bc 5838 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
5839
5840 /* Read in the largest possible address. */
5841 marker = read_address (obfd, buffer, cu, &dummy);
5842 if ((marker & mask) == mask)
5843 {
5844 /* If we found the largest possible address, then
5845 read the base address. */
5846 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5847 buffer += 2 * addr_size;
5848 offset += 2 * addr_size;
5849 found_base = 1;
5850 }
5851
5852 low_set = 0;
5853
e7030f15 5854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 5855
43039443
JK
5856 while (1)
5857 {
5858 CORE_ADDR range_beginning, range_end;
5859
5860 range_beginning = read_address (obfd, buffer, cu, &dummy);
5861 buffer += addr_size;
5862 range_end = read_address (obfd, buffer, cu, &dummy);
5863 buffer += addr_size;
5864 offset += 2 * addr_size;
5865
5866 /* An end of list marker is a pair of zero addresses. */
5867 if (range_beginning == 0 && range_end == 0)
5868 /* Found the end of list entry. */
5869 break;
5870
5871 /* Each base address selection entry is a pair of 2 values.
5872 The first is the largest possible address, the second is
5873 the base address. Check for a base address here. */
5874 if ((range_beginning & mask) == mask)
5875 {
5876 /* If we found the largest possible address, then
5877 read the base address. */
5878 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5879 found_base = 1;
5880 continue;
5881 }
5882
5883 if (!found_base)
5884 {
5885 /* We have no valid base address for the ranges
5886 data. */
5887 complaint (&symfile_complaints,
5888 _("Invalid .debug_ranges data (no base address)"));
5889 return 0;
5890 }
5891
9277c30c
UW
5892 if (range_beginning > range_end)
5893 {
5894 /* Inverted range entries are invalid. */
5895 complaint (&symfile_complaints,
5896 _("Invalid .debug_ranges data (inverted range)"));
5897 return 0;
5898 }
5899
5900 /* Empty range entries have no effect. */
5901 if (range_beginning == range_end)
5902 continue;
5903
43039443
JK
5904 range_beginning += base;
5905 range_end += base;
5906
9277c30c 5907 if (ranges_pst != NULL)
ff013f42 5908 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
5909 range_beginning + baseaddr,
5910 range_end - 1 + baseaddr,
ff013f42
JK
5911 ranges_pst);
5912
43039443
JK
5913 /* FIXME: This is recording everything as a low-high
5914 segment of consecutive addresses. We should have a
5915 data structure for discontiguous block ranges
5916 instead. */
5917 if (! low_set)
5918 {
5919 low = range_beginning;
5920 high = range_end;
5921 low_set = 1;
5922 }
5923 else
5924 {
5925 if (range_beginning < low)
5926 low = range_beginning;
5927 if (range_end > high)
5928 high = range_end;
5929 }
5930 }
5931
5932 if (! low_set)
5933 /* If the first entry is an end-of-list marker, the range
5934 describes an empty scope, i.e. no instructions. */
5935 return 0;
5936
5937 if (low_return)
5938 *low_return = low;
5939 if (high_return)
5940 *high_return = high;
5941 return 1;
5942}
5943
af34e669
DJ
5944/* Get low and high pc attributes from a die. Return 1 if the attributes
5945 are present and valid, otherwise, return 0. Return -1 if the range is
5946 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 5947static int
af34e669 5948dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
5949 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5950 struct partial_symtab *pst)
c906108c
SS
5951{
5952 struct attribute *attr;
af34e669
DJ
5953 CORE_ADDR low = 0;
5954 CORE_ADDR high = 0;
5955 int ret = 0;
c906108c 5956
e142c38c 5957 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 5958 if (attr)
af34e669
DJ
5959 {
5960 high = DW_ADDR (attr);
e142c38c 5961 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
5962 if (attr)
5963 low = DW_ADDR (attr);
5964 else
5965 /* Found high w/o low attribute. */
5966 return 0;
5967
5968 /* Found consecutive range of addresses. */
5969 ret = 1;
5970 }
c906108c 5971 else
af34e669 5972 {
e142c38c 5973 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
5974 if (attr != NULL)
5975 {
af34e669 5976 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 5977 .debug_ranges section. */
d85a05f0 5978 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 5979 return 0;
43039443 5980 /* Found discontinuous range of addresses. */
af34e669
DJ
5981 ret = -1;
5982 }
5983 }
c906108c 5984
9373cf26
JK
5985 /* read_partial_die has also the strict LOW < HIGH requirement. */
5986 if (high <= low)
c906108c
SS
5987 return 0;
5988
5989 /* When using the GNU linker, .gnu.linkonce. sections are used to
5990 eliminate duplicate copies of functions and vtables and such.
5991 The linker will arbitrarily choose one and discard the others.
5992 The AT_*_pc values for such functions refer to local labels in
5993 these sections. If the section from that file was discarded, the
5994 labels are not in the output, so the relocs get a value of 0.
5995 If this is a discarded function, mark the pc bounds as invalid,
5996 so that GDB will ignore it. */
72dca2f5 5997 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
5998 return 0;
5999
6000 *lowpc = low;
6001 *highpc = high;
af34e669 6002 return ret;
c906108c
SS
6003}
6004
b084d499
JB
6005/* Assuming that DIE represents a subprogram DIE or a lexical block, get
6006 its low and high PC addresses. Do nothing if these addresses could not
6007 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6008 and HIGHPC to the high address if greater than HIGHPC. */
6009
6010static void
6011dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6012 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6013 struct dwarf2_cu *cu)
6014{
6015 CORE_ADDR low, high;
6016 struct die_info *child = die->child;
6017
d85a05f0 6018 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
6019 {
6020 *lowpc = min (*lowpc, low);
6021 *highpc = max (*highpc, high);
6022 }
6023
6024 /* If the language does not allow nested subprograms (either inside
6025 subprograms or lexical blocks), we're done. */
6026 if (cu->language != language_ada)
6027 return;
6e70227d 6028
b084d499
JB
6029 /* Check all the children of the given DIE. If it contains nested
6030 subprograms, then check their pc bounds. Likewise, we need to
6031 check lexical blocks as well, as they may also contain subprogram
6032 definitions. */
6033 while (child && child->tag)
6034 {
6035 if (child->tag == DW_TAG_subprogram
6036 || child->tag == DW_TAG_lexical_block)
6037 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6038 child = sibling_die (child);
6039 }
6040}
6041
fae299cd
DC
6042/* Get the low and high pc's represented by the scope DIE, and store
6043 them in *LOWPC and *HIGHPC. If the correct values can't be
6044 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6045
6046static void
6047get_scope_pc_bounds (struct die_info *die,
6048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6049 struct dwarf2_cu *cu)
6050{
6051 CORE_ADDR best_low = (CORE_ADDR) -1;
6052 CORE_ADDR best_high = (CORE_ADDR) 0;
6053 CORE_ADDR current_low, current_high;
6054
d85a05f0 6055 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
6056 {
6057 best_low = current_low;
6058 best_high = current_high;
6059 }
6060 else
6061 {
6062 struct die_info *child = die->child;
6063
6064 while (child && child->tag)
6065 {
6066 switch (child->tag) {
6067 case DW_TAG_subprogram:
b084d499 6068 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
6069 break;
6070 case DW_TAG_namespace:
f55ee35c 6071 case DW_TAG_module:
fae299cd
DC
6072 /* FIXME: carlton/2004-01-16: Should we do this for
6073 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6074 that current GCC's always emit the DIEs corresponding
6075 to definitions of methods of classes as children of a
6076 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6077 the DIEs giving the declarations, which could be
6078 anywhere). But I don't see any reason why the
6079 standards says that they have to be there. */
6080 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6081
6082 if (current_low != ((CORE_ADDR) -1))
6083 {
6084 best_low = min (best_low, current_low);
6085 best_high = max (best_high, current_high);
6086 }
6087 break;
6088 default:
0963b4bd 6089 /* Ignore. */
fae299cd
DC
6090 break;
6091 }
6092
6093 child = sibling_die (child);
6094 }
6095 }
6096
6097 *lowpc = best_low;
6098 *highpc = best_high;
6099}
6100
801e3a5b
JB
6101/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6102 in DIE. */
6103static void
6104dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6105 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6106{
6107 struct attribute *attr;
6108
6109 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6110 if (attr)
6111 {
6112 CORE_ADDR high = DW_ADDR (attr);
9a619af0 6113
801e3a5b
JB
6114 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6115 if (attr)
6116 {
6117 CORE_ADDR low = DW_ADDR (attr);
9a619af0 6118
801e3a5b
JB
6119 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6120 }
6121 }
6122
6123 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6124 if (attr)
6125 {
6126 bfd *obfd = cu->objfile->obfd;
6127
6128 /* The value of the DW_AT_ranges attribute is the offset of the
6129 address range list in the .debug_ranges section. */
6130 unsigned long offset = DW_UNSND (attr);
dce234bc 6131 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
6132
6133 /* For some target architectures, but not others, the
6134 read_address function sign-extends the addresses it returns.
6135 To recognize base address selection entries, we need a
6136 mask. */
6137 unsigned int addr_size = cu->header.addr_size;
6138 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6139
6140 /* The base address, to which the next pair is relative. Note
6141 that this 'base' is a DWARF concept: most entries in a range
6142 list are relative, to reduce the number of relocs against the
6143 debugging information. This is separate from this function's
6144 'baseaddr' argument, which GDB uses to relocate debugging
6145 information from a shared library based on the address at
6146 which the library was loaded. */
d00adf39
DE
6147 CORE_ADDR base = cu->base_address;
6148 int base_known = cu->base_known;
801e3a5b 6149
be391dca 6150 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 6151 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
6152 {
6153 complaint (&symfile_complaints,
6154 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6155 offset);
6156 return;
6157 }
6158
6159 for (;;)
6160 {
6161 unsigned int bytes_read;
6162 CORE_ADDR start, end;
6163
6164 start = read_address (obfd, buffer, cu, &bytes_read);
6165 buffer += bytes_read;
6166 end = read_address (obfd, buffer, cu, &bytes_read);
6167 buffer += bytes_read;
6168
6169 /* Did we find the end of the range list? */
6170 if (start == 0 && end == 0)
6171 break;
6172
6173 /* Did we find a base address selection entry? */
6174 else if ((start & base_select_mask) == base_select_mask)
6175 {
6176 base = end;
6177 base_known = 1;
6178 }
6179
6180 /* We found an ordinary address range. */
6181 else
6182 {
6183 if (!base_known)
6184 {
6185 complaint (&symfile_complaints,
3e43a32a
MS
6186 _("Invalid .debug_ranges data "
6187 "(no base address)"));
801e3a5b
JB
6188 return;
6189 }
6190
9277c30c
UW
6191 if (start > end)
6192 {
6193 /* Inverted range entries are invalid. */
6194 complaint (&symfile_complaints,
6195 _("Invalid .debug_ranges data "
6196 "(inverted range)"));
6197 return;
6198 }
6199
6200 /* Empty range entries have no effect. */
6201 if (start == end)
6202 continue;
6203
6e70227d
DE
6204 record_block_range (block,
6205 baseaddr + base + start,
801e3a5b
JB
6206 baseaddr + base + end - 1);
6207 }
6208 }
6209 }
6210}
6211
c906108c
SS
6212/* Add an aggregate field to the field list. */
6213
6214static void
107d2387 6215dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 6216 struct dwarf2_cu *cu)
6e70227d 6217{
e7c27a73 6218 struct objfile *objfile = cu->objfile;
5e2b427d 6219 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6220 struct nextfield *new_field;
6221 struct attribute *attr;
6222 struct field *fp;
6223 char *fieldname = "";
6224
6225 /* Allocate a new field list entry and link it in. */
6226 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 6227 make_cleanup (xfree, new_field);
c906108c 6228 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
6229
6230 if (die->tag == DW_TAG_inheritance)
6231 {
6232 new_field->next = fip->baseclasses;
6233 fip->baseclasses = new_field;
6234 }
6235 else
6236 {
6237 new_field->next = fip->fields;
6238 fip->fields = new_field;
6239 }
c906108c
SS
6240 fip->nfields++;
6241
29e0eb9c
JK
6242 /* Handle accessibility and virtuality of field.
6243 The default accessibility for members is public, the default
6244 accessibility for inheritance is private. */
6245 if (die->tag != DW_TAG_inheritance)
6246 new_field->accessibility = DW_ACCESS_public;
c906108c 6247 else
29e0eb9c 6248 new_field->accessibility = DW_ACCESS_private;
c906108c
SS
6249 new_field->virtuality = DW_VIRTUALITY_none;
6250
e142c38c 6251 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6252 if (attr)
6253 new_field->accessibility = DW_UNSND (attr);
6254 if (new_field->accessibility != DW_ACCESS_public)
6255 fip->non_public_fields = 1;
e142c38c 6256 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
6257 if (attr)
6258 new_field->virtuality = DW_UNSND (attr);
6259
6260 fp = &new_field->field;
a9a9bd0f 6261
e142c38c 6262 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 6263 {
a9a9bd0f 6264 /* Data member other than a C++ static data member. */
6e70227d 6265
c906108c 6266 /* Get type of field. */
e7c27a73 6267 fp->type = die_type (die, cu);
c906108c 6268
d6a843b5 6269 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 6270
c906108c 6271 /* Get bit size of field (zero if none). */
e142c38c 6272 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
6273 if (attr)
6274 {
6275 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6276 }
6277 else
6278 {
6279 FIELD_BITSIZE (*fp) = 0;
6280 }
6281
6282 /* Get bit offset of field. */
e142c38c 6283 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
6284 if (attr)
6285 {
d4b96c9a 6286 int byte_offset = 0;
c6a0999f 6287
3690dd37 6288 if (attr_form_is_section_offset (attr))
d4b96c9a 6289 dwarf2_complex_location_expr_complaint ();
3690dd37 6290 else if (attr_form_is_constant (attr))
c6a0999f 6291 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 6292 else if (attr_form_is_block (attr))
c6a0999f 6293 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
6294 else
6295 dwarf2_complex_location_expr_complaint ();
c6a0999f 6296
d6a843b5 6297 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 6298 }
e142c38c 6299 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
6300 if (attr)
6301 {
5e2b427d 6302 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
6303 {
6304 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
6305 additional bit offset from the MSB of the containing
6306 anonymous object to the MSB of the field. We don't
6307 have to do anything special since we don't need to
6308 know the size of the anonymous object. */
c906108c
SS
6309 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6310 }
6311 else
6312 {
6313 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
6314 MSB of the anonymous object, subtract off the number of
6315 bits from the MSB of the field to the MSB of the
6316 object, and then subtract off the number of bits of
6317 the field itself. The result is the bit offset of
6318 the LSB of the field. */
c906108c
SS
6319 int anonymous_size;
6320 int bit_offset = DW_UNSND (attr);
6321
e142c38c 6322 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6323 if (attr)
6324 {
6325 /* The size of the anonymous object containing
6326 the bit field is explicit, so use the
6327 indicated size (in bytes). */
6328 anonymous_size = DW_UNSND (attr);
6329 }
6330 else
6331 {
6332 /* The size of the anonymous object containing
6333 the bit field must be inferred from the type
6334 attribute of the data member containing the
6335 bit field. */
6336 anonymous_size = TYPE_LENGTH (fp->type);
6337 }
6338 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6339 - bit_offset - FIELD_BITSIZE (*fp);
6340 }
6341 }
6342
6343 /* Get name of field. */
39cbfefa
DJ
6344 fieldname = dwarf2_name (die, cu);
6345 if (fieldname == NULL)
6346 fieldname = "";
d8151005
DJ
6347
6348 /* The name is already allocated along with this objfile, so we don't
6349 need to duplicate it for the type. */
6350 fp->name = fieldname;
c906108c
SS
6351
6352 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 6353 pointer or virtual base class pointer) to private. */
e142c38c 6354 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 6355 {
d48cc9dd 6356 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
6357 new_field->accessibility = DW_ACCESS_private;
6358 fip->non_public_fields = 1;
6359 }
6360 }
a9a9bd0f 6361 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 6362 {
a9a9bd0f
DC
6363 /* C++ static member. */
6364
6365 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6366 is a declaration, but all versions of G++ as of this writing
6367 (so through at least 3.2.1) incorrectly generate
6368 DW_TAG_variable tags. */
6e70227d 6369
c906108c 6370 char *physname;
c906108c 6371
a9a9bd0f 6372 /* Get name of field. */
39cbfefa
DJ
6373 fieldname = dwarf2_name (die, cu);
6374 if (fieldname == NULL)
c906108c
SS
6375 return;
6376
254e6b9e 6377 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
6378 if (attr
6379 /* Only create a symbol if this is an external value.
6380 new_symbol checks this and puts the value in the global symbol
6381 table, which we want. If it is not external, new_symbol
6382 will try to put the value in cu->list_in_scope which is wrong. */
6383 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
6384 {
6385 /* A static const member, not much different than an enum as far as
6386 we're concerned, except that we can support more types. */
6387 new_symbol (die, NULL, cu);
6388 }
6389
2df3850c 6390 /* Get physical name. */
94af9270 6391 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 6392
d8151005
DJ
6393 /* The name is already allocated along with this objfile, so we don't
6394 need to duplicate it for the type. */
6395 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 6396 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 6397 FIELD_NAME (*fp) = fieldname;
c906108c
SS
6398 }
6399 else if (die->tag == DW_TAG_inheritance)
6400 {
6401 /* C++ base class field. */
e142c38c 6402 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 6403 if (attr)
d4b96c9a
JK
6404 {
6405 int byte_offset = 0;
6406
6407 if (attr_form_is_section_offset (attr))
6408 dwarf2_complex_location_expr_complaint ();
6409 else if (attr_form_is_constant (attr))
6410 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6411 else if (attr_form_is_block (attr))
6412 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6413 else
6414 dwarf2_complex_location_expr_complaint ();
6415
6416 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6417 }
c906108c 6418 FIELD_BITSIZE (*fp) = 0;
e7c27a73 6419 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
6420 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6421 fip->nbaseclasses++;
6422 }
6423}
6424
98751a41
JK
6425/* Add a typedef defined in the scope of the FIP's class. */
6426
6427static void
6428dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6429 struct dwarf2_cu *cu)
6e70227d 6430{
98751a41 6431 struct objfile *objfile = cu->objfile;
98751a41
JK
6432 struct typedef_field_list *new_field;
6433 struct attribute *attr;
6434 struct typedef_field *fp;
6435 char *fieldname = "";
6436
6437 /* Allocate a new field list entry and link it in. */
6438 new_field = xzalloc (sizeof (*new_field));
6439 make_cleanup (xfree, new_field);
6440
6441 gdb_assert (die->tag == DW_TAG_typedef);
6442
6443 fp = &new_field->field;
6444
6445 /* Get name of field. */
6446 fp->name = dwarf2_name (die, cu);
6447 if (fp->name == NULL)
6448 return;
6449
6450 fp->type = read_type_die (die, cu);
6451
6452 new_field->next = fip->typedef_field_list;
6453 fip->typedef_field_list = new_field;
6454 fip->typedef_field_list_count++;
6455}
6456
c906108c
SS
6457/* Create the vector of fields, and attach it to the type. */
6458
6459static void
fba45db2 6460dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6461 struct dwarf2_cu *cu)
c906108c
SS
6462{
6463 int nfields = fip->nfields;
6464
6465 /* Record the field count, allocate space for the array of fields,
6466 and create blank accessibility bitfields if necessary. */
6467 TYPE_NFIELDS (type) = nfields;
6468 TYPE_FIELDS (type) = (struct field *)
6469 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6470 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6471
b4ba55a1 6472 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
6473 {
6474 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6475
6476 TYPE_FIELD_PRIVATE_BITS (type) =
6477 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6478 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6479
6480 TYPE_FIELD_PROTECTED_BITS (type) =
6481 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6482 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6483
774b6a14
TT
6484 TYPE_FIELD_IGNORE_BITS (type) =
6485 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6486 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
6487 }
6488
6489 /* If the type has baseclasses, allocate and clear a bit vector for
6490 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 6491 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
6492 {
6493 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 6494 unsigned char *pointer;
c906108c
SS
6495
6496 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
6497 pointer = TYPE_ALLOC (type, num_bytes);
6498 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
6499 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6500 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6501 }
6502
3e43a32a
MS
6503 /* Copy the saved-up fields into the field vector. Start from the head of
6504 the list, adding to the tail of the field array, so that they end up in
6505 the same order in the array in which they were added to the list. */
c906108c
SS
6506 while (nfields-- > 0)
6507 {
7d0ccb61
DJ
6508 struct nextfield *fieldp;
6509
6510 if (fip->fields)
6511 {
6512 fieldp = fip->fields;
6513 fip->fields = fieldp->next;
6514 }
6515 else
6516 {
6517 fieldp = fip->baseclasses;
6518 fip->baseclasses = fieldp->next;
6519 }
6520
6521 TYPE_FIELD (type, nfields) = fieldp->field;
6522 switch (fieldp->accessibility)
c906108c 6523 {
c5aa993b 6524 case DW_ACCESS_private:
b4ba55a1
JB
6525 if (cu->language != language_ada)
6526 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 6527 break;
c906108c 6528
c5aa993b 6529 case DW_ACCESS_protected:
b4ba55a1
JB
6530 if (cu->language != language_ada)
6531 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 6532 break;
c906108c 6533
c5aa993b
JM
6534 case DW_ACCESS_public:
6535 break;
c906108c 6536
c5aa993b
JM
6537 default:
6538 /* Unknown accessibility. Complain and treat it as public. */
6539 {
e2e0b3e5 6540 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 6541 fieldp->accessibility);
c5aa993b
JM
6542 }
6543 break;
c906108c
SS
6544 }
6545 if (nfields < fip->nbaseclasses)
6546 {
7d0ccb61 6547 switch (fieldp->virtuality)
c906108c 6548 {
c5aa993b
JM
6549 case DW_VIRTUALITY_virtual:
6550 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 6551 if (cu->language == language_ada)
a73c6dcd 6552 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
6553 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6554 break;
c906108c
SS
6555 }
6556 }
c906108c
SS
6557 }
6558}
6559
c906108c
SS
6560/* Add a member function to the proper fieldlist. */
6561
6562static void
107d2387 6563dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 6564 struct type *type, struct dwarf2_cu *cu)
c906108c 6565{
e7c27a73 6566 struct objfile *objfile = cu->objfile;
c906108c
SS
6567 struct attribute *attr;
6568 struct fnfieldlist *flp;
6569 int i;
6570 struct fn_field *fnp;
6571 char *fieldname;
c906108c 6572 struct nextfnfield *new_fnfield;
f792889a 6573 struct type *this_type;
c906108c 6574
b4ba55a1 6575 if (cu->language == language_ada)
a73c6dcd 6576 error (_("unexpected member function in Ada type"));
b4ba55a1 6577
2df3850c 6578 /* Get name of member function. */
39cbfefa
DJ
6579 fieldname = dwarf2_name (die, cu);
6580 if (fieldname == NULL)
2df3850c 6581 return;
c906108c 6582
c906108c
SS
6583 /* Look up member function name in fieldlist. */
6584 for (i = 0; i < fip->nfnfields; i++)
6585 {
27bfe10e 6586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
6587 break;
6588 }
6589
6590 /* Create new list element if necessary. */
6591 if (i < fip->nfnfields)
6592 flp = &fip->fnfieldlists[i];
6593 else
6594 {
6595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6596 {
6597 fip->fnfieldlists = (struct fnfieldlist *)
6598 xrealloc (fip->fnfieldlists,
6599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 6600 * sizeof (struct fnfieldlist));
c906108c 6601 if (fip->nfnfields == 0)
c13c43fd 6602 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
6603 }
6604 flp = &fip->fnfieldlists[fip->nfnfields];
6605 flp->name = fieldname;
6606 flp->length = 0;
6607 flp->head = NULL;
3da10d80 6608 i = fip->nfnfields++;
c906108c
SS
6609 }
6610
6611 /* Create a new member function field and chain it to the field list
0963b4bd 6612 entry. */
c906108c 6613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 6614 make_cleanup (xfree, new_fnfield);
c906108c
SS
6615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6616 new_fnfield->next = flp->head;
6617 flp->head = new_fnfield;
6618 flp->length++;
6619
6620 /* Fill in the member function field info. */
6621 fnp = &new_fnfield->fnfield;
3da10d80
KS
6622
6623 /* Delay processing of the physname until later. */
6624 if (cu->language == language_cplus || cu->language == language_java)
6625 {
6626 add_to_method_list (type, i, flp->length - 1, fieldname,
6627 die, cu);
6628 }
6629 else
6630 {
6631 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6632 fnp->physname = physname ? physname : "";
6633 }
6634
c906108c 6635 fnp->type = alloc_type (objfile);
f792889a
DJ
6636 this_type = read_type_die (die, cu);
6637 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 6638 {
f792889a 6639 int nparams = TYPE_NFIELDS (this_type);
c906108c 6640
f792889a 6641 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
6642 of the method itself (TYPE_CODE_METHOD). */
6643 smash_to_method_type (fnp->type, type,
f792889a
DJ
6644 TYPE_TARGET_TYPE (this_type),
6645 TYPE_FIELDS (this_type),
6646 TYPE_NFIELDS (this_type),
6647 TYPE_VARARGS (this_type));
c906108c
SS
6648
6649 /* Handle static member functions.
c5aa993b 6650 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
6651 member functions. G++ helps GDB by marking the first
6652 parameter for non-static member functions (which is the this
6653 pointer) as artificial. We obtain this information from
6654 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 6655 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
6656 fnp->voffset = VOFFSET_STATIC;
6657 }
6658 else
e2e0b3e5 6659 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 6660 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
6661
6662 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 6663 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 6664 fnp->fcontext = die_containing_type (die, cu);
c906108c 6665
3e43a32a
MS
6666 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6667 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
6668
6669 /* Get accessibility. */
e142c38c 6670 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6671 if (attr)
6672 {
6673 switch (DW_UNSND (attr))
6674 {
c5aa993b
JM
6675 case DW_ACCESS_private:
6676 fnp->is_private = 1;
6677 break;
6678 case DW_ACCESS_protected:
6679 fnp->is_protected = 1;
6680 break;
c906108c
SS
6681 }
6682 }
6683
b02dede2 6684 /* Check for artificial methods. */
e142c38c 6685 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
6686 if (attr && DW_UNSND (attr) != 0)
6687 fnp->is_artificial = 1;
6688
0d564a31 6689 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
6690 function. For older versions of GCC, this is an offset in the
6691 appropriate virtual table, as specified by DW_AT_containing_type.
6692 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
6693 to the object address. */
6694
e142c38c 6695 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 6696 if (attr)
8e19ed76 6697 {
aec5aa8b 6698 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 6699 {
aec5aa8b
TT
6700 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6701 {
6702 /* Old-style GCC. */
6703 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6704 }
6705 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6706 || (DW_BLOCK (attr)->size > 1
6707 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6708 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6709 {
6710 struct dwarf_block blk;
6711 int offset;
6712
6713 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6714 ? 1 : 2);
6715 blk.size = DW_BLOCK (attr)->size - offset;
6716 blk.data = DW_BLOCK (attr)->data + offset;
6717 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6718 if ((fnp->voffset % cu->header.addr_size) != 0)
6719 dwarf2_complex_location_expr_complaint ();
6720 else
6721 fnp->voffset /= cu->header.addr_size;
6722 fnp->voffset += 2;
6723 }
6724 else
6725 dwarf2_complex_location_expr_complaint ();
6726
6727 if (!fnp->fcontext)
6728 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6729 }
3690dd37 6730 else if (attr_form_is_section_offset (attr))
8e19ed76 6731 {
4d3c2250 6732 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6733 }
6734 else
6735 {
4d3c2250
KB
6736 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6737 fieldname);
8e19ed76 6738 }
0d564a31 6739 }
d48cc9dd
DJ
6740 else
6741 {
6742 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6743 if (attr && DW_UNSND (attr))
6744 {
6745 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6746 complaint (&symfile_complaints,
3e43a32a
MS
6747 _("Member function \"%s\" (offset %d) is virtual "
6748 "but the vtable offset is not specified"),
d48cc9dd 6749 fieldname, die->offset);
9655fd1a 6750 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
6751 TYPE_CPLUS_DYNAMIC (type) = 1;
6752 }
6753 }
c906108c
SS
6754}
6755
6756/* Create the vector of member function fields, and attach it to the type. */
6757
6758static void
fba45db2 6759dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6760 struct dwarf2_cu *cu)
c906108c
SS
6761{
6762 struct fnfieldlist *flp;
6763 int total_length = 0;
6764 int i;
6765
b4ba55a1 6766 if (cu->language == language_ada)
a73c6dcd 6767 error (_("unexpected member functions in Ada type"));
b4ba55a1 6768
c906108c
SS
6769 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6770 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6771 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6772
6773 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6774 {
6775 struct nextfnfield *nfp = flp->head;
6776 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6777 int k;
6778
6779 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6780 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6781 fn_flp->fn_fields = (struct fn_field *)
6782 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6783 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 6784 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
6785
6786 total_length += flp->length;
6787 }
6788
6789 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6790 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6791}
6792
1168df01
JB
6793/* Returns non-zero if NAME is the name of a vtable member in CU's
6794 language, zero otherwise. */
6795static int
6796is_vtable_name (const char *name, struct dwarf2_cu *cu)
6797{
6798 static const char vptr[] = "_vptr";
987504bb 6799 static const char vtable[] = "vtable";
1168df01 6800
987504bb
JJ
6801 /* Look for the C++ and Java forms of the vtable. */
6802 if ((cu->language == language_java
6803 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6804 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6805 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
6806 return 1;
6807
6808 return 0;
6809}
6810
c0dd20ea 6811/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
6812 functions, with the ABI-specified layout. If TYPE describes
6813 such a structure, smash it into a member function type.
61049d3b
DJ
6814
6815 GCC shouldn't do this; it should just output pointer to member DIEs.
6816 This is GCC PR debug/28767. */
c0dd20ea 6817
0b92b5bb
TT
6818static void
6819quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 6820{
0b92b5bb 6821 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
6822
6823 /* Check for a structure with no name and two children. */
0b92b5bb
TT
6824 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6825 return;
c0dd20ea
DJ
6826
6827 /* Check for __pfn and __delta members. */
0b92b5bb
TT
6828 if (TYPE_FIELD_NAME (type, 0) == NULL
6829 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6830 || TYPE_FIELD_NAME (type, 1) == NULL
6831 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6832 return;
c0dd20ea
DJ
6833
6834 /* Find the type of the method. */
0b92b5bb 6835 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
6836 if (pfn_type == NULL
6837 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6838 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 6839 return;
c0dd20ea
DJ
6840
6841 /* Look for the "this" argument. */
6842 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6843 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 6844 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 6845 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 6846 return;
c0dd20ea
DJ
6847
6848 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
6849 new_type = alloc_type (objfile);
6850 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
6851 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6852 TYPE_VARARGS (pfn_type));
0b92b5bb 6853 smash_to_methodptr_type (type, new_type);
c0dd20ea 6854}
1168df01 6855
c906108c 6856/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
6857 (definition) to create a type for the structure or union. Fill in
6858 the type's name and general properties; the members will not be
6859 processed until process_structure_type.
c906108c 6860
c767944b
DJ
6861 NOTE: we need to call these functions regardless of whether or not the
6862 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
6863 structure or union. This gets the type entered into our set of
6864 user defined types.
6865
6866 However, if the structure is incomplete (an opaque struct/union)
6867 then suppress creating a symbol table entry for it since gdb only
6868 wants to find the one with the complete definition. Note that if
6869 it is complete, we just call new_symbol, which does it's own
6870 checking about whether the struct/union is anonymous or not (and
6871 suppresses creating a symbol table entry itself). */
6872
f792889a 6873static struct type *
134d01f1 6874read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6875{
e7c27a73 6876 struct objfile *objfile = cu->objfile;
c906108c
SS
6877 struct type *type;
6878 struct attribute *attr;
39cbfefa 6879 char *name;
c906108c 6880
348e048f
DE
6881 /* If the definition of this type lives in .debug_types, read that type.
6882 Don't follow DW_AT_specification though, that will take us back up
6883 the chain and we want to go down. */
6884 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6885 if (attr)
6886 {
6887 struct dwarf2_cu *type_cu = cu;
6888 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6889
348e048f
DE
6890 /* We could just recurse on read_structure_type, but we need to call
6891 get_die_type to ensure only one type for this DIE is created.
6892 This is important, for example, because for c++ classes we need
6893 TYPE_NAME set which is only done by new_symbol. Blech. */
6894 type = read_type_die (type_die, type_cu);
9dc481d3
DE
6895
6896 /* TYPE_CU may not be the same as CU.
6897 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
6898 return set_die_type (die, type, cu);
6899 }
6900
c0dd20ea 6901 type = alloc_type (objfile);
c906108c 6902 INIT_CPLUS_SPECIFIC (type);
93311388 6903
39cbfefa
DJ
6904 name = dwarf2_name (die, cu);
6905 if (name != NULL)
c906108c 6906 {
987504bb
JJ
6907 if (cu->language == language_cplus
6908 || cu->language == language_java)
63d06c5c 6909 {
3da10d80
KS
6910 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6911
6912 /* dwarf2_full_name might have already finished building the DIE's
6913 type. If so, there is no need to continue. */
6914 if (get_die_type (die, cu) != NULL)
6915 return get_die_type (die, cu);
6916
6917 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
6918 if (die->tag == DW_TAG_structure_type
6919 || die->tag == DW_TAG_class_type)
6920 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
6921 }
6922 else
6923 {
d8151005
DJ
6924 /* The name is already allocated along with this objfile, so
6925 we don't need to duplicate it for the type. */
94af9270
KS
6926 TYPE_TAG_NAME (type) = (char *) name;
6927 if (die->tag == DW_TAG_class_type)
6928 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 6929 }
c906108c
SS
6930 }
6931
6932 if (die->tag == DW_TAG_structure_type)
6933 {
6934 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6935 }
6936 else if (die->tag == DW_TAG_union_type)
6937 {
6938 TYPE_CODE (type) = TYPE_CODE_UNION;
6939 }
6940 else
6941 {
c906108c
SS
6942 TYPE_CODE (type) = TYPE_CODE_CLASS;
6943 }
6944
0cc2414c
TT
6945 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6946 TYPE_DECLARED_CLASS (type) = 1;
6947
e142c38c 6948 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6949 if (attr)
6950 {
6951 TYPE_LENGTH (type) = DW_UNSND (attr);
6952 }
6953 else
6954 {
6955 TYPE_LENGTH (type) = 0;
6956 }
6957
876cecd0 6958 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 6959 if (die_is_declaration (die, cu))
876cecd0 6960 TYPE_STUB (type) = 1;
a6c727b2
DJ
6961 else if (attr == NULL && die->child == NULL
6962 && producer_is_realview (cu->producer))
6963 /* RealView does not output the required DW_AT_declaration
6964 on incomplete types. */
6965 TYPE_STUB (type) = 1;
dc718098 6966
c906108c
SS
6967 /* We need to add the type field to the die immediately so we don't
6968 infinitely recurse when dealing with pointers to the structure
0963b4bd 6969 type within the structure itself. */
1c379e20 6970 set_die_type (die, type, cu);
c906108c 6971
7e314c57
JK
6972 /* set_die_type should be already done. */
6973 set_descriptive_type (type, die, cu);
6974
c767944b
DJ
6975 return type;
6976}
6977
6978/* Finish creating a structure or union type, including filling in
6979 its members and creating a symbol for it. */
6980
6981static void
6982process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6983{
6984 struct objfile *objfile = cu->objfile;
6985 struct die_info *child_die = die->child;
6986 struct type *type;
6987
6988 type = get_die_type (die, cu);
6989 if (type == NULL)
6990 type = read_structure_type (die, cu);
6991
e142c38c 6992 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
6993 {
6994 struct field_info fi;
6995 struct die_info *child_die;
34eaf542 6996 VEC (symbolp) *template_args = NULL;
c767944b 6997 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
6998
6999 memset (&fi, 0, sizeof (struct field_info));
7000
639d11d3 7001 child_die = die->child;
c906108c
SS
7002
7003 while (child_die && child_die->tag)
7004 {
a9a9bd0f
DC
7005 if (child_die->tag == DW_TAG_member
7006 || child_die->tag == DW_TAG_variable)
c906108c 7007 {
a9a9bd0f
DC
7008 /* NOTE: carlton/2002-11-05: A C++ static data member
7009 should be a DW_TAG_member that is a declaration, but
7010 all versions of G++ as of this writing (so through at
7011 least 3.2.1) incorrectly generate DW_TAG_variable
7012 tags for them instead. */
e7c27a73 7013 dwarf2_add_field (&fi, child_die, cu);
c906108c 7014 }
8713b1b1 7015 else if (child_die->tag == DW_TAG_subprogram)
c906108c 7016 {
0963b4bd 7017 /* C++ member function. */
e7c27a73 7018 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
7019 }
7020 else if (child_die->tag == DW_TAG_inheritance)
7021 {
7022 /* C++ base class field. */
e7c27a73 7023 dwarf2_add_field (&fi, child_die, cu);
c906108c 7024 }
98751a41
JK
7025 else if (child_die->tag == DW_TAG_typedef)
7026 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
7027 else if (child_die->tag == DW_TAG_template_type_param
7028 || child_die->tag == DW_TAG_template_value_param)
7029 {
7030 struct symbol *arg = new_symbol (child_die, NULL, cu);
7031
f1078f66
DJ
7032 if (arg != NULL)
7033 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
7034 }
7035
c906108c
SS
7036 child_die = sibling_die (child_die);
7037 }
7038
34eaf542
TT
7039 /* Attach template arguments to type. */
7040 if (! VEC_empty (symbolp, template_args))
7041 {
7042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7043 TYPE_N_TEMPLATE_ARGUMENTS (type)
7044 = VEC_length (symbolp, template_args);
7045 TYPE_TEMPLATE_ARGUMENTS (type)
7046 = obstack_alloc (&objfile->objfile_obstack,
7047 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7048 * sizeof (struct symbol *)));
7049 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7050 VEC_address (symbolp, template_args),
7051 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7052 * sizeof (struct symbol *)));
7053 VEC_free (symbolp, template_args);
7054 }
7055
c906108c
SS
7056 /* Attach fields and member functions to the type. */
7057 if (fi.nfields)
e7c27a73 7058 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
7059 if (fi.nfnfields)
7060 {
e7c27a73 7061 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 7062
c5aa993b 7063 /* Get the type which refers to the base class (possibly this
c906108c 7064 class itself) which contains the vtable pointer for the current
0d564a31
DJ
7065 class from the DW_AT_containing_type attribute. This use of
7066 DW_AT_containing_type is a GNU extension. */
c906108c 7067
e142c38c 7068 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 7069 {
e7c27a73 7070 struct type *t = die_containing_type (die, cu);
c906108c
SS
7071
7072 TYPE_VPTR_BASETYPE (type) = t;
7073 if (type == t)
7074 {
c906108c
SS
7075 int i;
7076
7077 /* Our own class provides vtbl ptr. */
7078 for (i = TYPE_NFIELDS (t) - 1;
7079 i >= TYPE_N_BASECLASSES (t);
7080 --i)
7081 {
7082 char *fieldname = TYPE_FIELD_NAME (t, i);
7083
1168df01 7084 if (is_vtable_name (fieldname, cu))
c906108c
SS
7085 {
7086 TYPE_VPTR_FIELDNO (type) = i;
7087 break;
7088 }
7089 }
7090
7091 /* Complain if virtual function table field not found. */
7092 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 7093 complaint (&symfile_complaints,
3e43a32a
MS
7094 _("virtual function table pointer "
7095 "not found when defining class '%s'"),
4d3c2250
KB
7096 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7097 "");
c906108c
SS
7098 }
7099 else
7100 {
7101 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7102 }
7103 }
f6235d4c
EZ
7104 else if (cu->producer
7105 && strncmp (cu->producer,
7106 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7107 {
7108 /* The IBM XLC compiler does not provide direct indication
7109 of the containing type, but the vtable pointer is
7110 always named __vfp. */
7111
7112 int i;
7113
7114 for (i = TYPE_NFIELDS (type) - 1;
7115 i >= TYPE_N_BASECLASSES (type);
7116 --i)
7117 {
7118 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7119 {
7120 TYPE_VPTR_FIELDNO (type) = i;
7121 TYPE_VPTR_BASETYPE (type) = type;
7122 break;
7123 }
7124 }
7125 }
c906108c 7126 }
98751a41
JK
7127
7128 /* Copy fi.typedef_field_list linked list elements content into the
7129 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7130 if (fi.typedef_field_list)
7131 {
7132 int i = fi.typedef_field_list_count;
7133
a0d7a4ff 7134 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
7135 TYPE_TYPEDEF_FIELD_ARRAY (type)
7136 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7137 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7138
7139 /* Reverse the list order to keep the debug info elements order. */
7140 while (--i >= 0)
7141 {
7142 struct typedef_field *dest, *src;
6e70227d 7143
98751a41
JK
7144 dest = &TYPE_TYPEDEF_FIELD (type, i);
7145 src = &fi.typedef_field_list->field;
7146 fi.typedef_field_list = fi.typedef_field_list->next;
7147 *dest = *src;
7148 }
7149 }
c767944b
DJ
7150
7151 do_cleanups (back_to);
c906108c 7152 }
63d06c5c 7153
0b92b5bb
TT
7154 quirk_gcc_member_function_pointer (type, cu->objfile);
7155
90aeadfc
DC
7156 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7157 snapshots) has been known to create a die giving a declaration
7158 for a class that has, as a child, a die giving a definition for a
7159 nested class. So we have to process our children even if the
7160 current die is a declaration. Normally, of course, a declaration
7161 won't have any children at all. */
134d01f1 7162
90aeadfc
DC
7163 while (child_die != NULL && child_die->tag)
7164 {
7165 if (child_die->tag == DW_TAG_member
7166 || child_die->tag == DW_TAG_variable
34eaf542
TT
7167 || child_die->tag == DW_TAG_inheritance
7168 || child_die->tag == DW_TAG_template_value_param
7169 || child_die->tag == DW_TAG_template_type_param)
134d01f1 7170 {
90aeadfc 7171 /* Do nothing. */
134d01f1 7172 }
90aeadfc
DC
7173 else
7174 process_die (child_die, cu);
134d01f1 7175
90aeadfc 7176 child_die = sibling_die (child_die);
134d01f1
DJ
7177 }
7178
fa4028e9
JB
7179 /* Do not consider external references. According to the DWARF standard,
7180 these DIEs are identified by the fact that they have no byte_size
7181 attribute, and a declaration attribute. */
7182 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7183 || !die_is_declaration (die, cu))
c767944b 7184 new_symbol (die, type, cu);
134d01f1
DJ
7185}
7186
7187/* Given a DW_AT_enumeration_type die, set its type. We do not
7188 complete the type's fields yet, or create any symbols. */
c906108c 7189
f792889a 7190static struct type *
134d01f1 7191read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7192{
e7c27a73 7193 struct objfile *objfile = cu->objfile;
c906108c 7194 struct type *type;
c906108c 7195 struct attribute *attr;
0114d602 7196 const char *name;
134d01f1 7197
348e048f
DE
7198 /* If the definition of this type lives in .debug_types, read that type.
7199 Don't follow DW_AT_specification though, that will take us back up
7200 the chain and we want to go down. */
7201 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7202 if (attr)
7203 {
7204 struct dwarf2_cu *type_cu = cu;
7205 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7206
348e048f 7207 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7208
7209 /* TYPE_CU may not be the same as CU.
7210 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7211 return set_die_type (die, type, cu);
7212 }
7213
c906108c
SS
7214 type = alloc_type (objfile);
7215
7216 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 7217 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 7218 if (name != NULL)
0114d602 7219 TYPE_TAG_NAME (type) = (char *) name;
c906108c 7220
e142c38c 7221 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7222 if (attr)
7223 {
7224 TYPE_LENGTH (type) = DW_UNSND (attr);
7225 }
7226 else
7227 {
7228 TYPE_LENGTH (type) = 0;
7229 }
7230
137033e9
JB
7231 /* The enumeration DIE can be incomplete. In Ada, any type can be
7232 declared as private in the package spec, and then defined only
7233 inside the package body. Such types are known as Taft Amendment
7234 Types. When another package uses such a type, an incomplete DIE
7235 may be generated by the compiler. */
02eb380e 7236 if (die_is_declaration (die, cu))
876cecd0 7237 TYPE_STUB (type) = 1;
02eb380e 7238
f792889a 7239 return set_die_type (die, type, cu);
134d01f1
DJ
7240}
7241
7242/* Given a pointer to a die which begins an enumeration, process all
7243 the dies that define the members of the enumeration, and create the
7244 symbol for the enumeration type.
7245
7246 NOTE: We reverse the order of the element list. */
7247
7248static void
7249process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7250{
f792889a 7251 struct type *this_type;
134d01f1 7252
f792889a
DJ
7253 this_type = get_die_type (die, cu);
7254 if (this_type == NULL)
7255 this_type = read_enumeration_type (die, cu);
9dc481d3 7256
639d11d3 7257 if (die->child != NULL)
c906108c 7258 {
9dc481d3
DE
7259 struct die_info *child_die;
7260 struct symbol *sym;
7261 struct field *fields = NULL;
7262 int num_fields = 0;
7263 int unsigned_enum = 1;
7264 char *name;
7265
639d11d3 7266 child_die = die->child;
c906108c
SS
7267 while (child_die && child_die->tag)
7268 {
7269 if (child_die->tag != DW_TAG_enumerator)
7270 {
e7c27a73 7271 process_die (child_die, cu);
c906108c
SS
7272 }
7273 else
7274 {
39cbfefa
DJ
7275 name = dwarf2_name (child_die, cu);
7276 if (name)
c906108c 7277 {
f792889a 7278 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
7279 if (SYMBOL_VALUE (sym) < 0)
7280 unsigned_enum = 0;
7281
7282 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7283 {
7284 fields = (struct field *)
7285 xrealloc (fields,
7286 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7287 * sizeof (struct field));
c906108c
SS
7288 }
7289
3567439c 7290 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 7291 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 7292 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
7293 FIELD_BITSIZE (fields[num_fields]) = 0;
7294
7295 num_fields++;
7296 }
7297 }
7298
7299 child_die = sibling_die (child_die);
7300 }
7301
7302 if (num_fields)
7303 {
f792889a
DJ
7304 TYPE_NFIELDS (this_type) = num_fields;
7305 TYPE_FIELDS (this_type) = (struct field *)
7306 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7307 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 7308 sizeof (struct field) * num_fields);
b8c9b27d 7309 xfree (fields);
c906108c
SS
7310 }
7311 if (unsigned_enum)
876cecd0 7312 TYPE_UNSIGNED (this_type) = 1;
c906108c 7313 }
134d01f1 7314
f792889a 7315 new_symbol (die, this_type, cu);
c906108c
SS
7316}
7317
7318/* Extract all information from a DW_TAG_array_type DIE and put it in
7319 the DIE's type field. For now, this only handles one dimensional
7320 arrays. */
7321
f792889a 7322static struct type *
e7c27a73 7323read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7324{
e7c27a73 7325 struct objfile *objfile = cu->objfile;
c906108c 7326 struct die_info *child_die;
7e314c57 7327 struct type *type;
c906108c
SS
7328 struct type *element_type, *range_type, *index_type;
7329 struct type **range_types = NULL;
7330 struct attribute *attr;
7331 int ndim = 0;
7332 struct cleanup *back_to;
39cbfefa 7333 char *name;
c906108c 7334
e7c27a73 7335 element_type = die_type (die, cu);
c906108c 7336
7e314c57
JK
7337 /* The die_type call above may have already set the type for this DIE. */
7338 type = get_die_type (die, cu);
7339 if (type)
7340 return type;
7341
c906108c
SS
7342 /* Irix 6.2 native cc creates array types without children for
7343 arrays with unspecified length. */
639d11d3 7344 if (die->child == NULL)
c906108c 7345 {
46bf5051 7346 index_type = objfile_type (objfile)->builtin_int;
c906108c 7347 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
7348 type = create_array_type (NULL, element_type, range_type);
7349 return set_die_type (die, type, cu);
c906108c
SS
7350 }
7351
7352 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 7353 child_die = die->child;
c906108c
SS
7354 while (child_die && child_die->tag)
7355 {
7356 if (child_die->tag == DW_TAG_subrange_type)
7357 {
f792889a 7358 struct type *child_type = read_type_die (child_die, cu);
9a619af0 7359
f792889a 7360 if (child_type != NULL)
a02abb62 7361 {
0963b4bd
MS
7362 /* The range type was succesfully read. Save it for the
7363 array type creation. */
a02abb62
JB
7364 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7365 {
7366 range_types = (struct type **)
7367 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7368 * sizeof (struct type *));
7369 if (ndim == 0)
7370 make_cleanup (free_current_contents, &range_types);
7371 }
f792889a 7372 range_types[ndim++] = child_type;
a02abb62 7373 }
c906108c
SS
7374 }
7375 child_die = sibling_die (child_die);
7376 }
7377
7378 /* Dwarf2 dimensions are output from left to right, create the
7379 necessary array types in backwards order. */
7ca2d3a3 7380
c906108c 7381 type = element_type;
7ca2d3a3
DL
7382
7383 if (read_array_order (die, cu) == DW_ORD_col_major)
7384 {
7385 int i = 0;
9a619af0 7386
7ca2d3a3
DL
7387 while (i < ndim)
7388 type = create_array_type (NULL, type, range_types[i++]);
7389 }
7390 else
7391 {
7392 while (ndim-- > 0)
7393 type = create_array_type (NULL, type, range_types[ndim]);
7394 }
c906108c 7395
f5f8a009
EZ
7396 /* Understand Dwarf2 support for vector types (like they occur on
7397 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7398 array type. This is not part of the Dwarf2/3 standard yet, but a
7399 custom vendor extension. The main difference between a regular
7400 array and the vector variant is that vectors are passed by value
7401 to functions. */
e142c38c 7402 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 7403 if (attr)
ea37ba09 7404 make_vector_type (type);
f5f8a009 7405
dbc98a8b
KW
7406 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7407 implementation may choose to implement triple vectors using this
7408 attribute. */
7409 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7410 if (attr)
7411 {
7412 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7413 TYPE_LENGTH (type) = DW_UNSND (attr);
7414 else
3e43a32a
MS
7415 complaint (&symfile_complaints,
7416 _("DW_AT_byte_size for array type smaller "
7417 "than the total size of elements"));
dbc98a8b
KW
7418 }
7419
39cbfefa
DJ
7420 name = dwarf2_name (die, cu);
7421 if (name)
7422 TYPE_NAME (type) = name;
6e70227d 7423
0963b4bd 7424 /* Install the type in the die. */
7e314c57
JK
7425 set_die_type (die, type, cu);
7426
7427 /* set_die_type should be already done. */
b4ba55a1
JB
7428 set_descriptive_type (type, die, cu);
7429
c906108c
SS
7430 do_cleanups (back_to);
7431
7e314c57 7432 return type;
c906108c
SS
7433}
7434
7ca2d3a3 7435static enum dwarf_array_dim_ordering
6e70227d 7436read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
7437{
7438 struct attribute *attr;
7439
7440 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7441
7442 if (attr) return DW_SND (attr);
7443
0963b4bd
MS
7444 /* GNU F77 is a special case, as at 08/2004 array type info is the
7445 opposite order to the dwarf2 specification, but data is still
7446 laid out as per normal fortran.
7ca2d3a3 7447
0963b4bd
MS
7448 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7449 version checking. */
7ca2d3a3 7450
905e0470
PM
7451 if (cu->language == language_fortran
7452 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
7453 {
7454 return DW_ORD_row_major;
7455 }
7456
6e70227d 7457 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
7458 {
7459 case array_column_major:
7460 return DW_ORD_col_major;
7461 case array_row_major:
7462 default:
7463 return DW_ORD_row_major;
7464 };
7465}
7466
72019c9c 7467/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 7468 the DIE's type field. */
72019c9c 7469
f792889a 7470static struct type *
72019c9c
GM
7471read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7472{
7e314c57
JK
7473 struct type *domain_type, *set_type;
7474 struct attribute *attr;
f792889a 7475
7e314c57
JK
7476 domain_type = die_type (die, cu);
7477
7478 /* The die_type call above may have already set the type for this DIE. */
7479 set_type = get_die_type (die, cu);
7480 if (set_type)
7481 return set_type;
7482
7483 set_type = create_set_type (NULL, domain_type);
7484
7485 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
7486 if (attr)
7487 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 7488
f792889a 7489 return set_die_type (die, set_type, cu);
72019c9c 7490}
7ca2d3a3 7491
c906108c
SS
7492/* First cut: install each common block member as a global variable. */
7493
7494static void
e7c27a73 7495read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7496{
7497 struct die_info *child_die;
7498 struct attribute *attr;
7499 struct symbol *sym;
7500 CORE_ADDR base = (CORE_ADDR) 0;
7501
e142c38c 7502 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7503 if (attr)
7504 {
0963b4bd 7505 /* Support the .debug_loc offsets. */
8e19ed76
PS
7506 if (attr_form_is_block (attr))
7507 {
e7c27a73 7508 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 7509 }
3690dd37 7510 else if (attr_form_is_section_offset (attr))
8e19ed76 7511 {
4d3c2250 7512 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7513 }
7514 else
7515 {
4d3c2250
KB
7516 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7517 "common block member");
8e19ed76 7518 }
c906108c 7519 }
639d11d3 7520 if (die->child != NULL)
c906108c 7521 {
639d11d3 7522 child_die = die->child;
c906108c
SS
7523 while (child_die && child_die->tag)
7524 {
e7c27a73 7525 sym = new_symbol (child_die, NULL, cu);
e142c38c 7526 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
f1078f66 7527 if (sym != NULL && attr != NULL)
c906108c 7528 {
d4b96c9a
JK
7529 CORE_ADDR byte_offset = 0;
7530
7531 if (attr_form_is_section_offset (attr))
7532 dwarf2_complex_location_expr_complaint ();
7533 else if (attr_form_is_constant (attr))
7534 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7535 else if (attr_form_is_block (attr))
7536 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7537 else
7538 dwarf2_complex_location_expr_complaint ();
7539
7540 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
7541 add_symbol_to_list (sym, &global_symbols);
7542 }
7543 child_die = sibling_die (child_die);
7544 }
7545 }
7546}
7547
0114d602 7548/* Create a type for a C++ namespace. */
d9fa45fe 7549
0114d602
DJ
7550static struct type *
7551read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 7552{
e7c27a73 7553 struct objfile *objfile = cu->objfile;
0114d602 7554 const char *previous_prefix, *name;
9219021c 7555 int is_anonymous;
0114d602
DJ
7556 struct type *type;
7557
7558 /* For extensions, reuse the type of the original namespace. */
7559 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7560 {
7561 struct die_info *ext_die;
7562 struct dwarf2_cu *ext_cu = cu;
9a619af0 7563
0114d602
DJ
7564 ext_die = dwarf2_extension (die, &ext_cu);
7565 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
7566
7567 /* EXT_CU may not be the same as CU.
7568 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
7569 return set_die_type (die, type, cu);
7570 }
9219021c 7571
e142c38c 7572 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
7573
7574 /* Now build the name of the current namespace. */
7575
0114d602
DJ
7576 previous_prefix = determine_prefix (die, cu);
7577 if (previous_prefix[0] != '\0')
7578 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 7579 previous_prefix, name, 0, cu);
0114d602
DJ
7580
7581 /* Create the type. */
7582 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7583 objfile);
7584 TYPE_NAME (type) = (char *) name;
7585 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7586
60531b24 7587 return set_die_type (die, type, cu);
0114d602
DJ
7588}
7589
7590/* Read a C++ namespace. */
7591
7592static void
7593read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7594{
7595 struct objfile *objfile = cu->objfile;
0114d602 7596 int is_anonymous;
9219021c 7597
5c4e30ca
DC
7598 /* Add a symbol associated to this if we haven't seen the namespace
7599 before. Also, add a using directive if it's an anonymous
7600 namespace. */
9219021c 7601
f2f0e013 7602 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
7603 {
7604 struct type *type;
7605
0114d602 7606 type = read_type_die (die, cu);
e7c27a73 7607 new_symbol (die, type, cu);
5c4e30ca 7608
e8e80198 7609 namespace_name (die, &is_anonymous, cu);
5c4e30ca 7610 if (is_anonymous)
0114d602
DJ
7611 {
7612 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 7613
c0cc3a76 7614 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 7615 NULL, &objfile->objfile_obstack);
0114d602 7616 }
5c4e30ca 7617 }
9219021c 7618
639d11d3 7619 if (die->child != NULL)
d9fa45fe 7620 {
639d11d3 7621 struct die_info *child_die = die->child;
6e70227d 7622
d9fa45fe
DC
7623 while (child_die && child_die->tag)
7624 {
e7c27a73 7625 process_die (child_die, cu);
d9fa45fe
DC
7626 child_die = sibling_die (child_die);
7627 }
7628 }
38d518c9
EZ
7629}
7630
f55ee35c
JK
7631/* Read a Fortran module as type. This DIE can be only a declaration used for
7632 imported module. Still we need that type as local Fortran "use ... only"
7633 declaration imports depend on the created type in determine_prefix. */
7634
7635static struct type *
7636read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7637{
7638 struct objfile *objfile = cu->objfile;
7639 char *module_name;
7640 struct type *type;
7641
7642 module_name = dwarf2_name (die, cu);
7643 if (!module_name)
3e43a32a
MS
7644 complaint (&symfile_complaints,
7645 _("DW_TAG_module has no name, offset 0x%x"),
f55ee35c
JK
7646 die->offset);
7647 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7648
7649 /* determine_prefix uses TYPE_TAG_NAME. */
7650 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7651
7652 return set_die_type (die, type, cu);
7653}
7654
5d7cb8df
JK
7655/* Read a Fortran module. */
7656
7657static void
7658read_module (struct die_info *die, struct dwarf2_cu *cu)
7659{
7660 struct die_info *child_die = die->child;
7661
5d7cb8df
JK
7662 while (child_die && child_die->tag)
7663 {
7664 process_die (child_die, cu);
7665 child_die = sibling_die (child_die);
7666 }
7667}
7668
38d518c9
EZ
7669/* Return the name of the namespace represented by DIE. Set
7670 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7671 namespace. */
7672
7673static const char *
e142c38c 7674namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
7675{
7676 struct die_info *current_die;
7677 const char *name = NULL;
7678
7679 /* Loop through the extensions until we find a name. */
7680
7681 for (current_die = die;
7682 current_die != NULL;
f2f0e013 7683 current_die = dwarf2_extension (die, &cu))
38d518c9 7684 {
e142c38c 7685 name = dwarf2_name (current_die, cu);
38d518c9
EZ
7686 if (name != NULL)
7687 break;
7688 }
7689
7690 /* Is it an anonymous namespace? */
7691
7692 *is_anonymous = (name == NULL);
7693 if (*is_anonymous)
7694 name = "(anonymous namespace)";
7695
7696 return name;
d9fa45fe
DC
7697}
7698
c906108c
SS
7699/* Extract all information from a DW_TAG_pointer_type DIE and add to
7700 the user defined type vector. */
7701
f792889a 7702static struct type *
e7c27a73 7703read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7704{
5e2b427d 7705 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 7706 struct comp_unit_head *cu_header = &cu->header;
c906108c 7707 struct type *type;
8b2dbe47
KB
7708 struct attribute *attr_byte_size;
7709 struct attribute *attr_address_class;
7710 int byte_size, addr_class;
7e314c57
JK
7711 struct type *target_type;
7712
7713 target_type = die_type (die, cu);
c906108c 7714
7e314c57
JK
7715 /* The die_type call above may have already set the type for this DIE. */
7716 type = get_die_type (die, cu);
7717 if (type)
7718 return type;
7719
7720 type = lookup_pointer_type (target_type);
8b2dbe47 7721
e142c38c 7722 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
7723 if (attr_byte_size)
7724 byte_size = DW_UNSND (attr_byte_size);
c906108c 7725 else
8b2dbe47
KB
7726 byte_size = cu_header->addr_size;
7727
e142c38c 7728 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
7729 if (attr_address_class)
7730 addr_class = DW_UNSND (attr_address_class);
7731 else
7732 addr_class = DW_ADDR_none;
7733
7734 /* If the pointer size or address class is different than the
7735 default, create a type variant marked as such and set the
7736 length accordingly. */
7737 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 7738 {
5e2b427d 7739 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
7740 {
7741 int type_flags;
7742
849957d9 7743 type_flags = gdbarch_address_class_type_flags
5e2b427d 7744 (gdbarch, byte_size, addr_class);
876cecd0
TT
7745 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7746 == 0);
8b2dbe47
KB
7747 type = make_type_with_address_space (type, type_flags);
7748 }
7749 else if (TYPE_LENGTH (type) != byte_size)
7750 {
3e43a32a
MS
7751 complaint (&symfile_complaints,
7752 _("invalid pointer size %d"), byte_size);
8b2dbe47 7753 }
6e70227d 7754 else
9a619af0
MS
7755 {
7756 /* Should we also complain about unhandled address classes? */
7757 }
c906108c 7758 }
8b2dbe47
KB
7759
7760 TYPE_LENGTH (type) = byte_size;
f792889a 7761 return set_die_type (die, type, cu);
c906108c
SS
7762}
7763
7764/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7765 the user defined type vector. */
7766
f792889a 7767static struct type *
e7c27a73 7768read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7769{
7770 struct type *type;
7771 struct type *to_type;
7772 struct type *domain;
7773
e7c27a73
DJ
7774 to_type = die_type (die, cu);
7775 domain = die_containing_type (die, cu);
0d5de010 7776
7e314c57
JK
7777 /* The calls above may have already set the type for this DIE. */
7778 type = get_die_type (die, cu);
7779 if (type)
7780 return type;
7781
0d5de010
DJ
7782 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7783 type = lookup_methodptr_type (to_type);
7784 else
7785 type = lookup_memberptr_type (to_type, domain);
c906108c 7786
f792889a 7787 return set_die_type (die, type, cu);
c906108c
SS
7788}
7789
7790/* Extract all information from a DW_TAG_reference_type DIE and add to
7791 the user defined type vector. */
7792
f792889a 7793static struct type *
e7c27a73 7794read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7795{
e7c27a73 7796 struct comp_unit_head *cu_header = &cu->header;
7e314c57 7797 struct type *type, *target_type;
c906108c
SS
7798 struct attribute *attr;
7799
7e314c57
JK
7800 target_type = die_type (die, cu);
7801
7802 /* The die_type call above may have already set the type for this DIE. */
7803 type = get_die_type (die, cu);
7804 if (type)
7805 return type;
7806
7807 type = lookup_reference_type (target_type);
e142c38c 7808 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7809 if (attr)
7810 {
7811 TYPE_LENGTH (type) = DW_UNSND (attr);
7812 }
7813 else
7814 {
107d2387 7815 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 7816 }
f792889a 7817 return set_die_type (die, type, cu);
c906108c
SS
7818}
7819
f792889a 7820static struct type *
e7c27a73 7821read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7822{
f792889a 7823 struct type *base_type, *cv_type;
c906108c 7824
e7c27a73 7825 base_type = die_type (die, cu);
7e314c57
JK
7826
7827 /* The die_type call above may have already set the type for this DIE. */
7828 cv_type = get_die_type (die, cu);
7829 if (cv_type)
7830 return cv_type;
7831
2f608a3a
KW
7832 /* In case the const qualifier is applied to an array type, the element type
7833 is so qualified, not the array type (section 6.7.3 of C99). */
7834 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7835 {
7836 struct type *el_type, *inner_array;
7837
7838 base_type = copy_type (base_type);
7839 inner_array = base_type;
7840
7841 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7842 {
7843 TYPE_TARGET_TYPE (inner_array) =
7844 copy_type (TYPE_TARGET_TYPE (inner_array));
7845 inner_array = TYPE_TARGET_TYPE (inner_array);
7846 }
7847
7848 el_type = TYPE_TARGET_TYPE (inner_array);
7849 TYPE_TARGET_TYPE (inner_array) =
7850 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7851
7852 return set_die_type (die, base_type, cu);
7853 }
7854
f792889a
DJ
7855 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7856 return set_die_type (die, cv_type, cu);
c906108c
SS
7857}
7858
f792889a 7859static struct type *
e7c27a73 7860read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7861{
f792889a 7862 struct type *base_type, *cv_type;
c906108c 7863
e7c27a73 7864 base_type = die_type (die, cu);
7e314c57
JK
7865
7866 /* The die_type call above may have already set the type for this DIE. */
7867 cv_type = get_die_type (die, cu);
7868 if (cv_type)
7869 return cv_type;
7870
f792889a
DJ
7871 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7872 return set_die_type (die, cv_type, cu);
c906108c
SS
7873}
7874
7875/* Extract all information from a DW_TAG_string_type DIE and add to
7876 the user defined type vector. It isn't really a user defined type,
7877 but it behaves like one, with other DIE's using an AT_user_def_type
7878 attribute to reference it. */
7879
f792889a 7880static struct type *
e7c27a73 7881read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7882{
e7c27a73 7883 struct objfile *objfile = cu->objfile;
3b7538c0 7884 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
7885 struct type *type, *range_type, *index_type, *char_type;
7886 struct attribute *attr;
7887 unsigned int length;
7888
e142c38c 7889 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
7890 if (attr)
7891 {
7892 length = DW_UNSND (attr);
7893 }
7894 else
7895 {
0963b4bd 7896 /* Check for the DW_AT_byte_size attribute. */
e142c38c 7897 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
7898 if (attr)
7899 {
7900 length = DW_UNSND (attr);
7901 }
7902 else
7903 {
7904 length = 1;
7905 }
c906108c 7906 }
6ccb9162 7907
46bf5051 7908 index_type = objfile_type (objfile)->builtin_int;
c906108c 7909 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
7910 char_type = language_string_char_type (cu->language_defn, gdbarch);
7911 type = create_string_type (NULL, char_type, range_type);
6ccb9162 7912
f792889a 7913 return set_die_type (die, type, cu);
c906108c
SS
7914}
7915
7916/* Handle DIES due to C code like:
7917
7918 struct foo
c5aa993b
JM
7919 {
7920 int (*funcp)(int a, long l);
7921 int b;
7922 };
c906108c 7923
0963b4bd 7924 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 7925
f792889a 7926static struct type *
e7c27a73 7927read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7928{
0963b4bd
MS
7929 struct type *type; /* Type that this function returns. */
7930 struct type *ftype; /* Function that returns above type. */
c906108c
SS
7931 struct attribute *attr;
7932
e7c27a73 7933 type = die_type (die, cu);
7e314c57
JK
7934
7935 /* The die_type call above may have already set the type for this DIE. */
7936 ftype = get_die_type (die, cu);
7937 if (ftype)
7938 return ftype;
7939
0c8b41f1 7940 ftype = lookup_function_type (type);
c906108c 7941
5b8101ae 7942 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 7943 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 7944 if ((attr && (DW_UNSND (attr) != 0))
987504bb 7945 || cu->language == language_cplus
5b8101ae
PM
7946 || cu->language == language_java
7947 || cu->language == language_pascal)
876cecd0 7948 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
7949 else if (producer_is_realview (cu->producer))
7950 /* RealView does not emit DW_AT_prototyped. We can not
7951 distinguish prototyped and unprototyped functions; default to
7952 prototyped, since that is more common in modern code (and
7953 RealView warns about unprototyped functions). */
7954 TYPE_PROTOTYPED (ftype) = 1;
c906108c 7955
c055b101
CV
7956 /* Store the calling convention in the type if it's available in
7957 the subroutine die. Otherwise set the calling convention to
7958 the default value DW_CC_normal. */
7959 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
7960 if (attr)
7961 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
7962 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
7963 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
7964 else
7965 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
7966
7967 /* We need to add the subroutine type to the die immediately so
7968 we don't infinitely recurse when dealing with parameters
0963b4bd 7969 declared as the same subroutine type. */
76c10ea2 7970 set_die_type (die, ftype, cu);
6e70227d 7971
639d11d3 7972 if (die->child != NULL)
c906108c 7973 {
8072405b 7974 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 7975 struct die_info *child_die;
8072405b 7976 int nparams, iparams;
c906108c
SS
7977
7978 /* Count the number of parameters.
7979 FIXME: GDB currently ignores vararg functions, but knows about
7980 vararg member functions. */
8072405b 7981 nparams = 0;
639d11d3 7982 child_die = die->child;
c906108c
SS
7983 while (child_die && child_die->tag)
7984 {
7985 if (child_die->tag == DW_TAG_formal_parameter)
7986 nparams++;
7987 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 7988 TYPE_VARARGS (ftype) = 1;
c906108c
SS
7989 child_die = sibling_die (child_die);
7990 }
7991
7992 /* Allocate storage for parameters and fill them in. */
7993 TYPE_NFIELDS (ftype) = nparams;
7994 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 7995 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 7996
8072405b
JK
7997 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7998 even if we error out during the parameters reading below. */
7999 for (iparams = 0; iparams < nparams; iparams++)
8000 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8001
8002 iparams = 0;
639d11d3 8003 child_die = die->child;
c906108c
SS
8004 while (child_die && child_die->tag)
8005 {
8006 if (child_die->tag == DW_TAG_formal_parameter)
8007 {
3ce3b1ba
PA
8008 struct type *arg_type;
8009
8010 /* DWARF version 2 has no clean way to discern C++
8011 static and non-static member functions. G++ helps
8012 GDB by marking the first parameter for non-static
8013 member functions (which is the this pointer) as
8014 artificial. We pass this information to
8015 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8016
8017 DWARF version 3 added DW_AT_object_pointer, which GCC
8018 4.5 does not yet generate. */
e142c38c 8019 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
8020 if (attr)
8021 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8022 else
418835cc
KS
8023 {
8024 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8025
8026 /* GCC/43521: In java, the formal parameter
8027 "this" is sometimes not marked with DW_AT_artificial. */
8028 if (cu->language == language_java)
8029 {
8030 const char *name = dwarf2_name (child_die, cu);
9a619af0 8031
418835cc
KS
8032 if (name && !strcmp (name, "this"))
8033 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8034 }
8035 }
3ce3b1ba
PA
8036 arg_type = die_type (child_die, cu);
8037
8038 /* RealView does not mark THIS as const, which the testsuite
8039 expects. GCC marks THIS as const in method definitions,
8040 but not in the class specifications (GCC PR 43053). */
8041 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8042 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8043 {
8044 int is_this = 0;
8045 struct dwarf2_cu *arg_cu = cu;
8046 const char *name = dwarf2_name (child_die, cu);
8047
8048 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8049 if (attr)
8050 {
8051 /* If the compiler emits this, use it. */
8052 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8053 is_this = 1;
8054 }
8055 else if (name && strcmp (name, "this") == 0)
8056 /* Function definitions will have the argument names. */
8057 is_this = 1;
8058 else if (name == NULL && iparams == 0)
8059 /* Declarations may not have the names, so like
8060 elsewhere in GDB, assume an artificial first
8061 argument is "this". */
8062 is_this = 1;
8063
8064 if (is_this)
8065 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8066 arg_type, 0);
8067 }
8068
8069 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
8070 iparams++;
8071 }
8072 child_die = sibling_die (child_die);
8073 }
8074 }
8075
76c10ea2 8076 return ftype;
c906108c
SS
8077}
8078
f792889a 8079static struct type *
e7c27a73 8080read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8081{
e7c27a73 8082 struct objfile *objfile = cu->objfile;
0114d602 8083 const char *name = NULL;
f792889a 8084 struct type *this_type;
c906108c 8085
94af9270 8086 name = dwarf2_full_name (NULL, die, cu);
f792889a 8087 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
8088 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8089 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
8090 set_die_type (die, this_type, cu);
8091 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8092 return this_type;
c906108c
SS
8093}
8094
8095/* Find a representation of a given base type and install
8096 it in the TYPE field of the die. */
8097
f792889a 8098static struct type *
e7c27a73 8099read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8100{
e7c27a73 8101 struct objfile *objfile = cu->objfile;
c906108c
SS
8102 struct type *type;
8103 struct attribute *attr;
8104 int encoding = 0, size = 0;
39cbfefa 8105 char *name;
6ccb9162
UW
8106 enum type_code code = TYPE_CODE_INT;
8107 int type_flags = 0;
8108 struct type *target_type = NULL;
c906108c 8109
e142c38c 8110 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
8111 if (attr)
8112 {
8113 encoding = DW_UNSND (attr);
8114 }
e142c38c 8115 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8116 if (attr)
8117 {
8118 size = DW_UNSND (attr);
8119 }
39cbfefa 8120 name = dwarf2_name (die, cu);
6ccb9162 8121 if (!name)
c906108c 8122 {
6ccb9162
UW
8123 complaint (&symfile_complaints,
8124 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 8125 }
6ccb9162
UW
8126
8127 switch (encoding)
c906108c 8128 {
6ccb9162
UW
8129 case DW_ATE_address:
8130 /* Turn DW_ATE_address into a void * pointer. */
8131 code = TYPE_CODE_PTR;
8132 type_flags |= TYPE_FLAG_UNSIGNED;
8133 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8134 break;
8135 case DW_ATE_boolean:
8136 code = TYPE_CODE_BOOL;
8137 type_flags |= TYPE_FLAG_UNSIGNED;
8138 break;
8139 case DW_ATE_complex_float:
8140 code = TYPE_CODE_COMPLEX;
8141 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8142 break;
8143 case DW_ATE_decimal_float:
8144 code = TYPE_CODE_DECFLOAT;
8145 break;
8146 case DW_ATE_float:
8147 code = TYPE_CODE_FLT;
8148 break;
8149 case DW_ATE_signed:
8150 break;
8151 case DW_ATE_unsigned:
8152 type_flags |= TYPE_FLAG_UNSIGNED;
8153 break;
8154 case DW_ATE_signed_char:
6e70227d 8155 if (cu->language == language_ada || cu->language == language_m2
868a0084 8156 || cu->language == language_pascal)
6ccb9162
UW
8157 code = TYPE_CODE_CHAR;
8158 break;
8159 case DW_ATE_unsigned_char:
868a0084
PM
8160 if (cu->language == language_ada || cu->language == language_m2
8161 || cu->language == language_pascal)
6ccb9162
UW
8162 code = TYPE_CODE_CHAR;
8163 type_flags |= TYPE_FLAG_UNSIGNED;
8164 break;
75079b2b
TT
8165 case DW_ATE_UTF:
8166 /* We just treat this as an integer and then recognize the
8167 type by name elsewhere. */
8168 break;
8169
6ccb9162
UW
8170 default:
8171 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8172 dwarf_type_encoding_name (encoding));
8173 break;
c906108c 8174 }
6ccb9162 8175
0114d602
DJ
8176 type = init_type (code, size, type_flags, NULL, objfile);
8177 TYPE_NAME (type) = name;
6ccb9162
UW
8178 TYPE_TARGET_TYPE (type) = target_type;
8179
0114d602 8180 if (name && strcmp (name, "char") == 0)
876cecd0 8181 TYPE_NOSIGN (type) = 1;
0114d602 8182
f792889a 8183 return set_die_type (die, type, cu);
c906108c
SS
8184}
8185
a02abb62
JB
8186/* Read the given DW_AT_subrange DIE. */
8187
f792889a 8188static struct type *
a02abb62
JB
8189read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8190{
8191 struct type *base_type;
8192 struct type *range_type;
8193 struct attribute *attr;
43bbcdc2
PH
8194 LONGEST low = 0;
8195 LONGEST high = -1;
39cbfefa 8196 char *name;
43bbcdc2 8197 LONGEST negative_mask;
e77813c8 8198
a02abb62 8199 base_type = die_type (die, cu);
953ac07e
JK
8200 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8201 check_typedef (base_type);
a02abb62 8202
7e314c57
JK
8203 /* The die_type call above may have already set the type for this DIE. */
8204 range_type = get_die_type (die, cu);
8205 if (range_type)
8206 return range_type;
8207
e142c38c 8208 if (cu->language == language_fortran)
6e70227d 8209 {
a02abb62
JB
8210 /* FORTRAN implies a lower bound of 1, if not given. */
8211 low = 1;
8212 }
8213
dd5e6932
DJ
8214 /* FIXME: For variable sized arrays either of these could be
8215 a variable rather than a constant value. We'll allow it,
8216 but we don't know how to handle it. */
e142c38c 8217 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
8218 if (attr)
8219 low = dwarf2_get_attr_constant_value (attr, 0);
8220
e142c38c 8221 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 8222 if (attr)
6e70227d 8223 {
e77813c8 8224 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
a02abb62
JB
8225 {
8226 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 8227 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
8228 FIXME: GDB does not yet know how to handle dynamic
8229 arrays properly, treat them as arrays with unspecified
8230 length for now.
8231
8232 FIXME: jimb/2003-09-22: GDB does not really know
8233 how to handle arrays of unspecified length
8234 either; we just represent them as zero-length
8235 arrays. Choose an appropriate upper bound given
8236 the lower bound we've computed above. */
8237 high = low - 1;
8238 }
8239 else
8240 high = dwarf2_get_attr_constant_value (attr, 1);
8241 }
e77813c8
PM
8242 else
8243 {
8244 attr = dwarf2_attr (die, DW_AT_count, cu);
8245 if (attr)
8246 {
8247 int count = dwarf2_get_attr_constant_value (attr, 1);
8248 high = low + count - 1;
8249 }
c2ff108b
JK
8250 else
8251 {
8252 /* Unspecified array length. */
8253 high = low - 1;
8254 }
e77813c8
PM
8255 }
8256
8257 /* Dwarf-2 specifications explicitly allows to create subrange types
8258 without specifying a base type.
8259 In that case, the base type must be set to the type of
8260 the lower bound, upper bound or count, in that order, if any of these
8261 three attributes references an object that has a type.
8262 If no base type is found, the Dwarf-2 specifications say that
8263 a signed integer type of size equal to the size of an address should
8264 be used.
8265 For the following C code: `extern char gdb_int [];'
8266 GCC produces an empty range DIE.
8267 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 8268 high bound or count are not yet handled by this code. */
e77813c8
PM
8269 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8270 {
8271 struct objfile *objfile = cu->objfile;
8272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8273 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8274 struct type *int_type = objfile_type (objfile)->builtin_int;
8275
8276 /* Test "int", "long int", and "long long int" objfile types,
8277 and select the first one having a size above or equal to the
8278 architecture address size. */
8279 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8280 base_type = int_type;
8281 else
8282 {
8283 int_type = objfile_type (objfile)->builtin_long;
8284 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8285 base_type = int_type;
8286 else
8287 {
8288 int_type = objfile_type (objfile)->builtin_long_long;
8289 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8290 base_type = int_type;
8291 }
8292 }
8293 }
a02abb62 8294
6e70227d 8295 negative_mask =
43bbcdc2
PH
8296 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8297 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8298 low |= negative_mask;
8299 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8300 high |= negative_mask;
8301
a02abb62
JB
8302 range_type = create_range_type (NULL, base_type, low, high);
8303
bbb0eef6
JK
8304 /* Mark arrays with dynamic length at least as an array of unspecified
8305 length. GDB could check the boundary but before it gets implemented at
8306 least allow accessing the array elements. */
8307 if (attr && attr->form == DW_FORM_block1)
8308 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8309
c2ff108b
JK
8310 /* Ada expects an empty array on no boundary attributes. */
8311 if (attr == NULL && cu->language != language_ada)
8312 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8313
39cbfefa
DJ
8314 name = dwarf2_name (die, cu);
8315 if (name)
8316 TYPE_NAME (range_type) = name;
6e70227d 8317
e142c38c 8318 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
8319 if (attr)
8320 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8321
7e314c57
JK
8322 set_die_type (die, range_type, cu);
8323
8324 /* set_die_type should be already done. */
b4ba55a1
JB
8325 set_descriptive_type (range_type, die, cu);
8326
7e314c57 8327 return range_type;
a02abb62 8328}
6e70227d 8329
f792889a 8330static struct type *
81a17f79
JB
8331read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8332{
8333 struct type *type;
81a17f79 8334
81a17f79
JB
8335 /* For now, we only support the C meaning of an unspecified type: void. */
8336
0114d602
DJ
8337 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8338 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 8339
f792889a 8340 return set_die_type (die, type, cu);
81a17f79 8341}
a02abb62 8342
51545339
DJ
8343/* Trivial hash function for die_info: the hash value of a DIE
8344 is its offset in .debug_info for this objfile. */
8345
8346static hashval_t
8347die_hash (const void *item)
8348{
8349 const struct die_info *die = item;
9a619af0 8350
51545339
DJ
8351 return die->offset;
8352}
8353
8354/* Trivial comparison function for die_info structures: two DIEs
8355 are equal if they have the same offset. */
8356
8357static int
8358die_eq (const void *item_lhs, const void *item_rhs)
8359{
8360 const struct die_info *die_lhs = item_lhs;
8361 const struct die_info *die_rhs = item_rhs;
9a619af0 8362
51545339
DJ
8363 return die_lhs->offset == die_rhs->offset;
8364}
8365
c906108c
SS
8366/* Read a whole compilation unit into a linked list of dies. */
8367
f9aca02d 8368static struct die_info *
93311388 8369read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 8370{
93311388 8371 struct die_reader_specs reader_specs;
98bfdba5 8372 int read_abbrevs = 0;
1d9ec526 8373 struct cleanup *back_to = NULL;
98bfdba5
PA
8374 struct die_info *die;
8375
8376 if (cu->dwarf2_abbrevs == NULL)
8377 {
8378 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8379 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8380 read_abbrevs = 1;
8381 }
93311388 8382
348e048f 8383 gdb_assert (cu->die_hash == NULL);
51545339
DJ
8384 cu->die_hash
8385 = htab_create_alloc_ex (cu->header.length / 12,
8386 die_hash,
8387 die_eq,
8388 NULL,
8389 &cu->comp_unit_obstack,
8390 hashtab_obstack_allocate,
8391 dummy_obstack_deallocate);
8392
93311388
DE
8393 init_cu_die_reader (&reader_specs, cu);
8394
98bfdba5
PA
8395 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8396
8397 if (read_abbrevs)
8398 do_cleanups (back_to);
8399
8400 return die;
639d11d3
DC
8401}
8402
d97bc12b
DE
8403/* Main entry point for reading a DIE and all children.
8404 Read the DIE and dump it if requested. */
8405
8406static struct die_info *
93311388
DE
8407read_die_and_children (const struct die_reader_specs *reader,
8408 gdb_byte *info_ptr,
d97bc12b
DE
8409 gdb_byte **new_info_ptr,
8410 struct die_info *parent)
8411{
93311388 8412 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
8413 new_info_ptr, parent);
8414
8415 if (dwarf2_die_debug)
8416 {
348e048f
DE
8417 fprintf_unfiltered (gdb_stdlog,
8418 "\nRead die from %s of %s:\n",
8419 reader->buffer == dwarf2_per_objfile->info.buffer
8420 ? ".debug_info"
8421 : reader->buffer == dwarf2_per_objfile->types.buffer
8422 ? ".debug_types"
8423 : "unknown section",
8424 reader->abfd->filename);
d97bc12b
DE
8425 dump_die (result, dwarf2_die_debug);
8426 }
8427
8428 return result;
8429}
8430
639d11d3
DC
8431/* Read a single die and all its descendents. Set the die's sibling
8432 field to NULL; set other fields in the die correctly, and set all
8433 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8434 location of the info_ptr after reading all of those dies. PARENT
8435 is the parent of the die in question. */
8436
8437static struct die_info *
93311388
DE
8438read_die_and_children_1 (const struct die_reader_specs *reader,
8439 gdb_byte *info_ptr,
d97bc12b
DE
8440 gdb_byte **new_info_ptr,
8441 struct die_info *parent)
639d11d3
DC
8442{
8443 struct die_info *die;
fe1b8b76 8444 gdb_byte *cur_ptr;
639d11d3
DC
8445 int has_children;
8446
93311388 8447 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
8448 if (die == NULL)
8449 {
8450 *new_info_ptr = cur_ptr;
8451 return NULL;
8452 }
93311388 8453 store_in_ref_table (die, reader->cu);
639d11d3
DC
8454
8455 if (has_children)
348e048f 8456 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
8457 else
8458 {
8459 die->child = NULL;
8460 *new_info_ptr = cur_ptr;
8461 }
8462
8463 die->sibling = NULL;
8464 die->parent = parent;
8465 return die;
8466}
8467
8468/* Read a die, all of its descendents, and all of its siblings; set
8469 all of the fields of all of the dies correctly. Arguments are as
8470 in read_die_and_children. */
8471
8472static struct die_info *
93311388
DE
8473read_die_and_siblings (const struct die_reader_specs *reader,
8474 gdb_byte *info_ptr,
fe1b8b76 8475 gdb_byte **new_info_ptr,
639d11d3
DC
8476 struct die_info *parent)
8477{
8478 struct die_info *first_die, *last_sibling;
fe1b8b76 8479 gdb_byte *cur_ptr;
639d11d3 8480
c906108c 8481 cur_ptr = info_ptr;
639d11d3
DC
8482 first_die = last_sibling = NULL;
8483
8484 while (1)
c906108c 8485 {
639d11d3 8486 struct die_info *die
93311388 8487 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 8488
1d325ec1 8489 if (die == NULL)
c906108c 8490 {
639d11d3
DC
8491 *new_info_ptr = cur_ptr;
8492 return first_die;
c906108c 8493 }
1d325ec1
DJ
8494
8495 if (!first_die)
8496 first_die = die;
c906108c 8497 else
1d325ec1
DJ
8498 last_sibling->sibling = die;
8499
8500 last_sibling = die;
c906108c 8501 }
c906108c
SS
8502}
8503
93311388
DE
8504/* Read the die from the .debug_info section buffer. Set DIEP to
8505 point to a newly allocated die with its information, except for its
8506 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8507 whether the die has children or not. */
8508
8509static gdb_byte *
8510read_full_die (const struct die_reader_specs *reader,
8511 struct die_info **diep, gdb_byte *info_ptr,
8512 int *has_children)
8513{
8514 unsigned int abbrev_number, bytes_read, i, offset;
8515 struct abbrev_info *abbrev;
8516 struct die_info *die;
8517 struct dwarf2_cu *cu = reader->cu;
8518 bfd *abfd = reader->abfd;
8519
8520 offset = info_ptr - reader->buffer;
8521 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8522 info_ptr += bytes_read;
8523 if (!abbrev_number)
8524 {
8525 *diep = NULL;
8526 *has_children = 0;
8527 return info_ptr;
8528 }
8529
8530 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8531 if (!abbrev)
348e048f
DE
8532 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8533 abbrev_number,
8534 bfd_get_filename (abfd));
8535
93311388
DE
8536 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8537 die->offset = offset;
8538 die->tag = abbrev->tag;
8539 die->abbrev = abbrev_number;
8540
8541 die->num_attrs = abbrev->num_attrs;
8542
8543 for (i = 0; i < abbrev->num_attrs; ++i)
8544 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8545 abfd, info_ptr, cu);
8546
8547 *diep = die;
8548 *has_children = abbrev->has_children;
8549 return info_ptr;
8550}
8551
c906108c
SS
8552/* In DWARF version 2, the description of the debugging information is
8553 stored in a separate .debug_abbrev section. Before we read any
8554 dies from a section we read in all abbreviations and install them
72bf9492
DJ
8555 in a hash table. This function also sets flags in CU describing
8556 the data found in the abbrev table. */
c906108c
SS
8557
8558static void
e7c27a73 8559dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 8560{
e7c27a73 8561 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 8562 gdb_byte *abbrev_ptr;
c906108c
SS
8563 struct abbrev_info *cur_abbrev;
8564 unsigned int abbrev_number, bytes_read, abbrev_name;
8565 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
8566 struct attr_abbrev *cur_attrs;
8567 unsigned int allocated_attrs;
c906108c 8568
0963b4bd 8569 /* Initialize dwarf2 abbrevs. */
f3dd6933
DJ
8570 obstack_init (&cu->abbrev_obstack);
8571 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8572 (ABBREV_HASH_SIZE
8573 * sizeof (struct abbrev_info *)));
8574 memset (cu->dwarf2_abbrevs, 0,
8575 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 8576
be391dca
TT
8577 dwarf2_read_section (dwarf2_per_objfile->objfile,
8578 &dwarf2_per_objfile->abbrev);
dce234bc 8579 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
8580 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8581 abbrev_ptr += bytes_read;
8582
f3dd6933
DJ
8583 allocated_attrs = ATTR_ALLOC_CHUNK;
8584 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 8585
0963b4bd 8586 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
8587 while (abbrev_number)
8588 {
f3dd6933 8589 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
8590
8591 /* read in abbrev header */
8592 cur_abbrev->number = abbrev_number;
8593 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8594 abbrev_ptr += bytes_read;
8595 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8596 abbrev_ptr += 1;
8597
72bf9492
DJ
8598 if (cur_abbrev->tag == DW_TAG_namespace)
8599 cu->has_namespace_info = 1;
8600
c906108c
SS
8601 /* now read in declarations */
8602 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8603 abbrev_ptr += bytes_read;
8604 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8605 abbrev_ptr += bytes_read;
8606 while (abbrev_name)
8607 {
f3dd6933 8608 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 8609 {
f3dd6933
DJ
8610 allocated_attrs += ATTR_ALLOC_CHUNK;
8611 cur_attrs
8612 = xrealloc (cur_attrs, (allocated_attrs
8613 * sizeof (struct attr_abbrev)));
c906108c 8614 }
ae038cb0
DJ
8615
8616 /* Record whether this compilation unit might have
8617 inter-compilation-unit references. If we don't know what form
8618 this attribute will have, then it might potentially be a
8619 DW_FORM_ref_addr, so we conservatively expect inter-CU
8620 references. */
8621
8622 if (abbrev_form == DW_FORM_ref_addr
8623 || abbrev_form == DW_FORM_indirect)
8624 cu->has_form_ref_addr = 1;
8625
f3dd6933
DJ
8626 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8627 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
8628 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8629 abbrev_ptr += bytes_read;
8630 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8631 abbrev_ptr += bytes_read;
8632 }
8633
f3dd6933
DJ
8634 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8635 (cur_abbrev->num_attrs
8636 * sizeof (struct attr_abbrev)));
8637 memcpy (cur_abbrev->attrs, cur_attrs,
8638 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8639
c906108c 8640 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
8641 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8642 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
8643
8644 /* Get next abbreviation.
8645 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
8646 always properly terminated with an abbrev number of 0.
8647 Exit loop if we encounter an abbreviation which we have
8648 already read (which means we are about to read the abbreviations
8649 for the next compile unit) or if the end of the abbreviation
8650 table is reached. */
dce234bc
PP
8651 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8652 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
8653 break;
8654 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8655 abbrev_ptr += bytes_read;
e7c27a73 8656 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
8657 break;
8658 }
f3dd6933
DJ
8659
8660 xfree (cur_attrs);
c906108c
SS
8661}
8662
f3dd6933 8663/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 8664
c906108c 8665static void
f3dd6933 8666dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 8667{
f3dd6933 8668 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 8669
f3dd6933
DJ
8670 obstack_free (&cu->abbrev_obstack, NULL);
8671 cu->dwarf2_abbrevs = NULL;
c906108c
SS
8672}
8673
8674/* Lookup an abbrev_info structure in the abbrev hash table. */
8675
8676static struct abbrev_info *
e7c27a73 8677dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
8678{
8679 unsigned int hash_number;
8680 struct abbrev_info *abbrev;
8681
8682 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 8683 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
8684
8685 while (abbrev)
8686 {
8687 if (abbrev->number == number)
8688 return abbrev;
8689 else
8690 abbrev = abbrev->next;
8691 }
8692 return NULL;
8693}
8694
72bf9492
DJ
8695/* Returns nonzero if TAG represents a type that we might generate a partial
8696 symbol for. */
8697
8698static int
8699is_type_tag_for_partial (int tag)
8700{
8701 switch (tag)
8702 {
8703#if 0
8704 /* Some types that would be reasonable to generate partial symbols for,
8705 that we don't at present. */
8706 case DW_TAG_array_type:
8707 case DW_TAG_file_type:
8708 case DW_TAG_ptr_to_member_type:
8709 case DW_TAG_set_type:
8710 case DW_TAG_string_type:
8711 case DW_TAG_subroutine_type:
8712#endif
8713 case DW_TAG_base_type:
8714 case DW_TAG_class_type:
680b30c7 8715 case DW_TAG_interface_type:
72bf9492
DJ
8716 case DW_TAG_enumeration_type:
8717 case DW_TAG_structure_type:
8718 case DW_TAG_subrange_type:
8719 case DW_TAG_typedef:
8720 case DW_TAG_union_type:
8721 return 1;
8722 default:
8723 return 0;
8724 }
8725}
8726
8727/* Load all DIEs that are interesting for partial symbols into memory. */
8728
8729static struct partial_die_info *
93311388
DE
8730load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8731 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
8732{
8733 struct partial_die_info *part_die;
8734 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8735 struct abbrev_info *abbrev;
8736 unsigned int bytes_read;
5afb4e99 8737 unsigned int load_all = 0;
72bf9492
DJ
8738
8739 int nesting_level = 1;
8740
8741 parent_die = NULL;
8742 last_die = NULL;
8743
5afb4e99
DJ
8744 if (cu->per_cu && cu->per_cu->load_all_dies)
8745 load_all = 1;
8746
72bf9492
DJ
8747 cu->partial_dies
8748 = htab_create_alloc_ex (cu->header.length / 12,
8749 partial_die_hash,
8750 partial_die_eq,
8751 NULL,
8752 &cu->comp_unit_obstack,
8753 hashtab_obstack_allocate,
8754 dummy_obstack_deallocate);
8755
8756 part_die = obstack_alloc (&cu->comp_unit_obstack,
8757 sizeof (struct partial_die_info));
8758
8759 while (1)
8760 {
8761 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8762
8763 /* A NULL abbrev means the end of a series of children. */
8764 if (abbrev == NULL)
8765 {
8766 if (--nesting_level == 0)
8767 {
8768 /* PART_DIE was probably the last thing allocated on the
8769 comp_unit_obstack, so we could call obstack_free
8770 here. We don't do that because the waste is small,
8771 and will be cleaned up when we're done with this
8772 compilation unit. This way, we're also more robust
8773 against other users of the comp_unit_obstack. */
8774 return first_die;
8775 }
8776 info_ptr += bytes_read;
8777 last_die = parent_die;
8778 parent_die = parent_die->die_parent;
8779 continue;
8780 }
8781
98bfdba5
PA
8782 /* Check for template arguments. We never save these; if
8783 they're seen, we just mark the parent, and go on our way. */
8784 if (parent_die != NULL
8785 && cu->language == language_cplus
8786 && (abbrev->tag == DW_TAG_template_type_param
8787 || abbrev->tag == DW_TAG_template_value_param))
8788 {
8789 parent_die->has_template_arguments = 1;
8790
8791 if (!load_all)
8792 {
8793 /* We don't need a partial DIE for the template argument. */
8794 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8795 cu);
8796 continue;
8797 }
8798 }
8799
8800 /* We only recurse into subprograms looking for template arguments.
8801 Skip their other children. */
8802 if (!load_all
8803 && cu->language == language_cplus
8804 && parent_die != NULL
8805 && parent_die->tag == DW_TAG_subprogram)
8806 {
8807 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8808 continue;
8809 }
8810
5afb4e99
DJ
8811 /* Check whether this DIE is interesting enough to save. Normally
8812 we would not be interested in members here, but there may be
8813 later variables referencing them via DW_AT_specification (for
8814 static members). */
8815 if (!load_all
8816 && !is_type_tag_for_partial (abbrev->tag)
72929c62 8817 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
8818 && abbrev->tag != DW_TAG_enumerator
8819 && abbrev->tag != DW_TAG_subprogram
bc30ff58 8820 && abbrev->tag != DW_TAG_lexical_block
72bf9492 8821 && abbrev->tag != DW_TAG_variable
5afb4e99 8822 && abbrev->tag != DW_TAG_namespace
f55ee35c 8823 && abbrev->tag != DW_TAG_module
5afb4e99 8824 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
8825 {
8826 /* Otherwise we skip to the next sibling, if any. */
93311388 8827 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
8828 continue;
8829 }
8830
93311388
DE
8831 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8832 buffer, info_ptr, cu);
72bf9492
DJ
8833
8834 /* This two-pass algorithm for processing partial symbols has a
8835 high cost in cache pressure. Thus, handle some simple cases
8836 here which cover the majority of C partial symbols. DIEs
8837 which neither have specification tags in them, nor could have
8838 specification tags elsewhere pointing at them, can simply be
8839 processed and discarded.
8840
8841 This segment is also optional; scan_partial_symbols and
8842 add_partial_symbol will handle these DIEs if we chain
8843 them in normally. When compilers which do not emit large
8844 quantities of duplicate debug information are more common,
8845 this code can probably be removed. */
8846
8847 /* Any complete simple types at the top level (pretty much all
8848 of them, for a language without namespaces), can be processed
8849 directly. */
8850 if (parent_die == NULL
8851 && part_die->has_specification == 0
8852 && part_die->is_declaration == 0
8853 && (part_die->tag == DW_TAG_typedef
8854 || part_die->tag == DW_TAG_base_type
8855 || part_die->tag == DW_TAG_subrange_type))
8856 {
8857 if (building_psymtab && part_die->name != NULL)
04a679b8 8858 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
8859 VAR_DOMAIN, LOC_TYPEDEF,
8860 &cu->objfile->static_psymbols,
8861 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 8862 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8863 continue;
8864 }
8865
8866 /* If we're at the second level, and we're an enumerator, and
8867 our parent has no specification (meaning possibly lives in a
8868 namespace elsewhere), then we can add the partial symbol now
8869 instead of queueing it. */
8870 if (part_die->tag == DW_TAG_enumerator
8871 && parent_die != NULL
8872 && parent_die->die_parent == NULL
8873 && parent_die->tag == DW_TAG_enumeration_type
8874 && parent_die->has_specification == 0)
8875 {
8876 if (part_die->name == NULL)
3e43a32a
MS
8877 complaint (&symfile_complaints,
8878 _("malformed enumerator DIE ignored"));
72bf9492 8879 else if (building_psymtab)
04a679b8 8880 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 8881 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
8882 (cu->language == language_cplus
8883 || cu->language == language_java)
72bf9492
DJ
8884 ? &cu->objfile->global_psymbols
8885 : &cu->objfile->static_psymbols,
8886 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8887
93311388 8888 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8889 continue;
8890 }
8891
8892 /* We'll save this DIE so link it in. */
8893 part_die->die_parent = parent_die;
8894 part_die->die_sibling = NULL;
8895 part_die->die_child = NULL;
8896
8897 if (last_die && last_die == parent_die)
8898 last_die->die_child = part_die;
8899 else if (last_die)
8900 last_die->die_sibling = part_die;
8901
8902 last_die = part_die;
8903
8904 if (first_die == NULL)
8905 first_die = part_die;
8906
8907 /* Maybe add the DIE to the hash table. Not all DIEs that we
8908 find interesting need to be in the hash table, because we
8909 also have the parent/sibling/child chains; only those that we
8910 might refer to by offset later during partial symbol reading.
8911
8912 For now this means things that might have be the target of a
8913 DW_AT_specification, DW_AT_abstract_origin, or
8914 DW_AT_extension. DW_AT_extension will refer only to
8915 namespaces; DW_AT_abstract_origin refers to functions (and
8916 many things under the function DIE, but we do not recurse
8917 into function DIEs during partial symbol reading) and
8918 possibly variables as well; DW_AT_specification refers to
8919 declarations. Declarations ought to have the DW_AT_declaration
8920 flag. It happens that GCC forgets to put it in sometimes, but
8921 only for functions, not for types.
8922
8923 Adding more things than necessary to the hash table is harmless
8924 except for the performance cost. Adding too few will result in
5afb4e99
DJ
8925 wasted time in find_partial_die, when we reread the compilation
8926 unit with load_all_dies set. */
72bf9492 8927
5afb4e99 8928 if (load_all
72929c62 8929 || abbrev->tag == DW_TAG_constant
5afb4e99 8930 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
8931 || abbrev->tag == DW_TAG_variable
8932 || abbrev->tag == DW_TAG_namespace
8933 || part_die->is_declaration)
8934 {
8935 void **slot;
8936
8937 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8938 part_die->offset, INSERT);
8939 *slot = part_die;
8940 }
8941
8942 part_die = obstack_alloc (&cu->comp_unit_obstack,
8943 sizeof (struct partial_die_info));
8944
8945 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 8946 we have no reason to follow the children of structures; for other
98bfdba5
PA
8947 languages we have to, so that we can get at method physnames
8948 to infer fully qualified class names, for DW_AT_specification,
8949 and for C++ template arguments. For C++, we also look one level
8950 inside functions to find template arguments (if the name of the
8951 function does not already contain the template arguments).
bc30ff58
JB
8952
8953 For Ada, we need to scan the children of subprograms and lexical
8954 blocks as well because Ada allows the definition of nested
8955 entities that could be interesting for the debugger, such as
8956 nested subprograms for instance. */
72bf9492 8957 if (last_die->has_children
5afb4e99
DJ
8958 && (load_all
8959 || last_die->tag == DW_TAG_namespace
f55ee35c 8960 || last_die->tag == DW_TAG_module
72bf9492 8961 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
8962 || (cu->language == language_cplus
8963 && last_die->tag == DW_TAG_subprogram
8964 && (last_die->name == NULL
8965 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
8966 || (cu->language != language_c
8967 && (last_die->tag == DW_TAG_class_type
680b30c7 8968 || last_die->tag == DW_TAG_interface_type
72bf9492 8969 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
8970 || last_die->tag == DW_TAG_union_type))
8971 || (cu->language == language_ada
8972 && (last_die->tag == DW_TAG_subprogram
8973 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
8974 {
8975 nesting_level++;
8976 parent_die = last_die;
8977 continue;
8978 }
8979
8980 /* Otherwise we skip to the next sibling, if any. */
93311388 8981 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8982
8983 /* Back to the top, do it again. */
8984 }
8985}
8986
c906108c
SS
8987/* Read a minimal amount of information into the minimal die structure. */
8988
fe1b8b76 8989static gdb_byte *
72bf9492
DJ
8990read_partial_die (struct partial_die_info *part_die,
8991 struct abbrev_info *abbrev,
8992 unsigned int abbrev_len, bfd *abfd,
93311388
DE
8993 gdb_byte *buffer, gdb_byte *info_ptr,
8994 struct dwarf2_cu *cu)
c906108c 8995{
fa238c03 8996 unsigned int i;
c906108c 8997 struct attribute attr;
c5aa993b 8998 int has_low_pc_attr = 0;
c906108c
SS
8999 int has_high_pc_attr = 0;
9000
72bf9492 9001 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 9002
93311388 9003 part_die->offset = info_ptr - buffer;
72bf9492
DJ
9004
9005 info_ptr += abbrev_len;
9006
9007 if (abbrev == NULL)
9008 return info_ptr;
9009
c906108c
SS
9010 part_die->tag = abbrev->tag;
9011 part_die->has_children = abbrev->has_children;
c906108c
SS
9012
9013 for (i = 0; i < abbrev->num_attrs; ++i)
9014 {
e7c27a73 9015 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
9016
9017 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 9018 partial symbol table. */
c906108c
SS
9019 switch (attr.name)
9020 {
9021 case DW_AT_name:
71c25dea
TT
9022 switch (part_die->tag)
9023 {
9024 case DW_TAG_compile_unit:
348e048f 9025 case DW_TAG_type_unit:
71c25dea
TT
9026 /* Compilation units have a DW_AT_name that is a filename, not
9027 a source language identifier. */
9028 case DW_TAG_enumeration_type:
9029 case DW_TAG_enumerator:
9030 /* These tags always have simple identifiers already; no need
9031 to canonicalize them. */
9032 part_die->name = DW_STRING (&attr);
9033 break;
9034 default:
9035 part_die->name
9036 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 9037 &cu->objfile->objfile_obstack);
71c25dea
TT
9038 break;
9039 }
c906108c 9040 break;
31ef98ae 9041 case DW_AT_linkage_name:
c906108c 9042 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
9043 /* Note that both forms of linkage name might appear. We
9044 assume they will be the same, and we only store the last
9045 one we see. */
94af9270
KS
9046 if (cu->language == language_ada)
9047 part_die->name = DW_STRING (&attr);
abc72ce4 9048 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
9049 break;
9050 case DW_AT_low_pc:
9051 has_low_pc_attr = 1;
9052 part_die->lowpc = DW_ADDR (&attr);
9053 break;
9054 case DW_AT_high_pc:
9055 has_high_pc_attr = 1;
9056 part_die->highpc = DW_ADDR (&attr);
9057 break;
9058 case DW_AT_location:
0963b4bd 9059 /* Support the .debug_loc offsets. */
8e19ed76
PS
9060 if (attr_form_is_block (&attr))
9061 {
9062 part_die->locdesc = DW_BLOCK (&attr);
9063 }
3690dd37 9064 else if (attr_form_is_section_offset (&attr))
8e19ed76 9065 {
4d3c2250 9066 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
9067 }
9068 else
9069 {
4d3c2250
KB
9070 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9071 "partial symbol information");
8e19ed76 9072 }
c906108c 9073 break;
c906108c
SS
9074 case DW_AT_external:
9075 part_die->is_external = DW_UNSND (&attr);
9076 break;
9077 case DW_AT_declaration:
9078 part_die->is_declaration = DW_UNSND (&attr);
9079 break;
9080 case DW_AT_type:
9081 part_die->has_type = 1;
9082 break;
9083 case DW_AT_abstract_origin:
9084 case DW_AT_specification:
72bf9492
DJ
9085 case DW_AT_extension:
9086 part_die->has_specification = 1;
c764a876 9087 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
9088 break;
9089 case DW_AT_sibling:
9090 /* Ignore absolute siblings, they might point outside of
9091 the current compile unit. */
9092 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
9093 complaint (&symfile_complaints,
9094 _("ignoring absolute DW_AT_sibling"));
c906108c 9095 else
93311388 9096 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 9097 break;
fa4028e9
JB
9098 case DW_AT_byte_size:
9099 part_die->has_byte_size = 1;
9100 break;
68511cec
CES
9101 case DW_AT_calling_convention:
9102 /* DWARF doesn't provide a way to identify a program's source-level
9103 entry point. DW_AT_calling_convention attributes are only meant
9104 to describe functions' calling conventions.
9105
9106 However, because it's a necessary piece of information in
9107 Fortran, and because DW_CC_program is the only piece of debugging
9108 information whose definition refers to a 'main program' at all,
9109 several compilers have begun marking Fortran main programs with
9110 DW_CC_program --- even when those functions use the standard
9111 calling conventions.
9112
9113 So until DWARF specifies a way to provide this information and
9114 compilers pick up the new representation, we'll support this
9115 practice. */
9116 if (DW_UNSND (&attr) == DW_CC_program
9117 && cu->language == language_fortran)
01f8c46d
JK
9118 {
9119 set_main_name (part_die->name);
9120
9121 /* As this DIE has a static linkage the name would be difficult
9122 to look up later. */
9123 language_of_main = language_fortran;
9124 }
68511cec 9125 break;
c906108c
SS
9126 default:
9127 break;
9128 }
9129 }
9130
9373cf26
JK
9131 if (has_low_pc_attr && has_high_pc_attr)
9132 {
9133 /* When using the GNU linker, .gnu.linkonce. sections are used to
9134 eliminate duplicate copies of functions and vtables and such.
9135 The linker will arbitrarily choose one and discard the others.
9136 The AT_*_pc values for such functions refer to local labels in
9137 these sections. If the section from that file was discarded, the
9138 labels are not in the output, so the relocs get a value of 0.
9139 If this is a discarded function, mark the pc bounds as invalid,
9140 so that GDB will ignore it. */
9141 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9142 {
9143 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9144
9145 complaint (&symfile_complaints,
9146 _("DW_AT_low_pc %s is zero "
9147 "for DIE at 0x%x [in module %s]"),
9148 paddress (gdbarch, part_die->lowpc),
9149 part_die->offset, cu->objfile->name);
9150 }
9151 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9152 else if (part_die->lowpc >= part_die->highpc)
9153 {
9154 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9155
9156 complaint (&symfile_complaints,
9157 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9158 "for DIE at 0x%x [in module %s]"),
9159 paddress (gdbarch, part_die->lowpc),
9160 paddress (gdbarch, part_die->highpc),
9161 part_die->offset, cu->objfile->name);
9162 }
9163 else
9164 part_die->has_pc_info = 1;
9165 }
85cbf3d3 9166
c906108c
SS
9167 return info_ptr;
9168}
9169
72bf9492
DJ
9170/* Find a cached partial DIE at OFFSET in CU. */
9171
9172static struct partial_die_info *
c764a876 9173find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
9174{
9175 struct partial_die_info *lookup_die = NULL;
9176 struct partial_die_info part_die;
9177
9178 part_die.offset = offset;
9179 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9180
72bf9492
DJ
9181 return lookup_die;
9182}
9183
348e048f
DE
9184/* Find a partial DIE at OFFSET, which may or may not be in CU,
9185 except in the case of .debug_types DIEs which do not reference
9186 outside their CU (they do however referencing other types via
55f1336d 9187 DW_FORM_ref_sig8). */
72bf9492
DJ
9188
9189static struct partial_die_info *
c764a876 9190find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 9191{
5afb4e99
DJ
9192 struct dwarf2_per_cu_data *per_cu = NULL;
9193 struct partial_die_info *pd = NULL;
72bf9492 9194
348e048f
DE
9195 if (cu->per_cu->from_debug_types)
9196 {
9197 pd = find_partial_die_in_comp_unit (offset, cu);
9198 if (pd != NULL)
9199 return pd;
9200 goto not_found;
9201 }
9202
45452591 9203 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
9204 {
9205 pd = find_partial_die_in_comp_unit (offset, cu);
9206 if (pd != NULL)
9207 return pd;
9208 }
72bf9492 9209
ae038cb0
DJ
9210 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9211
98bfdba5
PA
9212 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9213 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
9214
9215 per_cu->cu->last_used = 0;
5afb4e99
DJ
9216 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9217
9218 if (pd == NULL && per_cu->load_all_dies == 0)
9219 {
9220 struct cleanup *back_to;
9221 struct partial_die_info comp_unit_die;
9222 struct abbrev_info *abbrev;
9223 unsigned int bytes_read;
9224 char *info_ptr;
9225
9226 per_cu->load_all_dies = 1;
9227
9228 /* Re-read the DIEs. */
9229 back_to = make_cleanup (null_cleanup, 0);
9230 if (per_cu->cu->dwarf2_abbrevs == NULL)
9231 {
9232 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 9233 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 9234 }
dce234bc 9235 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
9236 + per_cu->cu->header.offset
9237 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
9238 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9239 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
9240 per_cu->cu->objfile->obfd,
9241 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
9242 per_cu->cu);
9243 if (comp_unit_die.has_children)
93311388
DE
9244 load_partial_dies (per_cu->cu->objfile->obfd,
9245 dwarf2_per_objfile->info.buffer, info_ptr,
9246 0, per_cu->cu);
5afb4e99
DJ
9247 do_cleanups (back_to);
9248
9249 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9250 }
9251
348e048f
DE
9252 not_found:
9253
5afb4e99
DJ
9254 if (pd == NULL)
9255 internal_error (__FILE__, __LINE__,
3e43a32a
MS
9256 _("could not find partial DIE 0x%x "
9257 "in cache [from module %s]\n"),
5afb4e99
DJ
9258 offset, bfd_get_filename (cu->objfile->obfd));
9259 return pd;
72bf9492
DJ
9260}
9261
abc72ce4
DE
9262/* See if we can figure out if the class lives in a namespace. We do
9263 this by looking for a member function; its demangled name will
9264 contain namespace info, if there is any. */
9265
9266static void
9267guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9268 struct dwarf2_cu *cu)
9269{
9270 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9271 what template types look like, because the demangler
9272 frequently doesn't give the same name as the debug info. We
9273 could fix this by only using the demangled name to get the
9274 prefix (but see comment in read_structure_type). */
9275
9276 struct partial_die_info *real_pdi;
9277 struct partial_die_info *child_pdi;
9278
9279 /* If this DIE (this DIE's specification, if any) has a parent, then
9280 we should not do this. We'll prepend the parent's fully qualified
9281 name when we create the partial symbol. */
9282
9283 real_pdi = struct_pdi;
9284 while (real_pdi->has_specification)
9285 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9286
9287 if (real_pdi->die_parent != NULL)
9288 return;
9289
9290 for (child_pdi = struct_pdi->die_child;
9291 child_pdi != NULL;
9292 child_pdi = child_pdi->die_sibling)
9293 {
9294 if (child_pdi->tag == DW_TAG_subprogram
9295 && child_pdi->linkage_name != NULL)
9296 {
9297 char *actual_class_name
9298 = language_class_name_from_physname (cu->language_defn,
9299 child_pdi->linkage_name);
9300 if (actual_class_name != NULL)
9301 {
9302 struct_pdi->name
9303 = obsavestring (actual_class_name,
9304 strlen (actual_class_name),
9305 &cu->objfile->objfile_obstack);
9306 xfree (actual_class_name);
9307 }
9308 break;
9309 }
9310 }
9311}
9312
72bf9492
DJ
9313/* Adjust PART_DIE before generating a symbol for it. This function
9314 may set the is_external flag or change the DIE's name. */
9315
9316static void
9317fixup_partial_die (struct partial_die_info *part_die,
9318 struct dwarf2_cu *cu)
9319{
abc72ce4
DE
9320 /* Once we've fixed up a die, there's no point in doing so again.
9321 This also avoids a memory leak if we were to call
9322 guess_partial_die_structure_name multiple times. */
9323 if (part_die->fixup_called)
9324 return;
9325
72bf9492
DJ
9326 /* If we found a reference attribute and the DIE has no name, try
9327 to find a name in the referred to DIE. */
9328
9329 if (part_die->name == NULL && part_die->has_specification)
9330 {
9331 struct partial_die_info *spec_die;
72bf9492 9332
10b3939b 9333 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 9334
10b3939b 9335 fixup_partial_die (spec_die, cu);
72bf9492
DJ
9336
9337 if (spec_die->name)
9338 {
9339 part_die->name = spec_die->name;
9340
9341 /* Copy DW_AT_external attribute if it is set. */
9342 if (spec_die->is_external)
9343 part_die->is_external = spec_die->is_external;
9344 }
9345 }
9346
9347 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
9348
9349 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9350 part_die->name = "(anonymous namespace)";
9351
abc72ce4
DE
9352 /* If there is no parent die to provide a namespace, and there are
9353 children, see if we can determine the namespace from their linkage
9354 name.
9355 NOTE: We need to do this even if cu->has_namespace_info != 0.
9356 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9357 if (cu->language == language_cplus
9358 && dwarf2_per_objfile->types.asection != NULL
9359 && part_die->die_parent == NULL
9360 && part_die->has_children
9361 && (part_die->tag == DW_TAG_class_type
9362 || part_die->tag == DW_TAG_structure_type
9363 || part_die->tag == DW_TAG_union_type))
9364 guess_partial_die_structure_name (part_die, cu);
9365
53832f31
TT
9366 /* GCC might emit a nameless struct or union that has a linkage
9367 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
9368 if (part_die->name == NULL
9369 && (part_die->tag == DW_TAG_structure_type
9370 || part_die->tag == DW_TAG_union_type
9371 || part_die->tag == DW_TAG_class_type)
9372 && part_die->linkage_name != NULL)
9373 {
9374 char *demangled;
9375
9376 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
9377 if (demangled)
9378 {
9379 part_die->name = obsavestring (demangled, strlen (demangled),
9380 &cu->objfile->objfile_obstack);
9381 xfree (demangled);
9382 }
9383 }
9384
abc72ce4 9385 part_die->fixup_called = 1;
72bf9492
DJ
9386}
9387
a8329558 9388/* Read an attribute value described by an attribute form. */
c906108c 9389
fe1b8b76 9390static gdb_byte *
a8329558 9391read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 9392 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 9393 struct dwarf2_cu *cu)
c906108c 9394{
e7c27a73 9395 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9396 unsigned int bytes_read;
9397 struct dwarf_block *blk;
9398
a8329558
KW
9399 attr->form = form;
9400 switch (form)
c906108c 9401 {
c906108c 9402 case DW_FORM_ref_addr:
ae411497
TT
9403 if (cu->header.version == 2)
9404 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9405 else
3e43a32a
MS
9406 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9407 &cu->header, &bytes_read);
ae411497
TT
9408 info_ptr += bytes_read;
9409 break;
9410 case DW_FORM_addr:
e7c27a73 9411 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 9412 info_ptr += bytes_read;
c906108c
SS
9413 break;
9414 case DW_FORM_block2:
7b5a2f43 9415 blk = dwarf_alloc_block (cu);
c906108c
SS
9416 blk->size = read_2_bytes (abfd, info_ptr);
9417 info_ptr += 2;
9418 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9419 info_ptr += blk->size;
9420 DW_BLOCK (attr) = blk;
9421 break;
9422 case DW_FORM_block4:
7b5a2f43 9423 blk = dwarf_alloc_block (cu);
c906108c
SS
9424 blk->size = read_4_bytes (abfd, info_ptr);
9425 info_ptr += 4;
9426 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9427 info_ptr += blk->size;
9428 DW_BLOCK (attr) = blk;
9429 break;
9430 case DW_FORM_data2:
9431 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9432 info_ptr += 2;
9433 break;
9434 case DW_FORM_data4:
9435 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9436 info_ptr += 4;
9437 break;
9438 case DW_FORM_data8:
9439 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9440 info_ptr += 8;
9441 break;
2dc7f7b3
TT
9442 case DW_FORM_sec_offset:
9443 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9444 info_ptr += bytes_read;
9445 break;
c906108c 9446 case DW_FORM_string:
9b1c24c8 9447 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 9448 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
9449 info_ptr += bytes_read;
9450 break;
4bdf3d34
JJ
9451 case DW_FORM_strp:
9452 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9453 &bytes_read);
8285870a 9454 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
9455 info_ptr += bytes_read;
9456 break;
2dc7f7b3 9457 case DW_FORM_exprloc:
c906108c 9458 case DW_FORM_block:
7b5a2f43 9459 blk = dwarf_alloc_block (cu);
c906108c
SS
9460 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9461 info_ptr += bytes_read;
9462 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9463 info_ptr += blk->size;
9464 DW_BLOCK (attr) = blk;
9465 break;
9466 case DW_FORM_block1:
7b5a2f43 9467 blk = dwarf_alloc_block (cu);
c906108c
SS
9468 blk->size = read_1_byte (abfd, info_ptr);
9469 info_ptr += 1;
9470 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9471 info_ptr += blk->size;
9472 DW_BLOCK (attr) = blk;
9473 break;
9474 case DW_FORM_data1:
9475 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9476 info_ptr += 1;
9477 break;
9478 case DW_FORM_flag:
9479 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9480 info_ptr += 1;
9481 break;
2dc7f7b3
TT
9482 case DW_FORM_flag_present:
9483 DW_UNSND (attr) = 1;
9484 break;
c906108c
SS
9485 case DW_FORM_sdata:
9486 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9487 info_ptr += bytes_read;
9488 break;
9489 case DW_FORM_udata:
9490 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9491 info_ptr += bytes_read;
9492 break;
9493 case DW_FORM_ref1:
10b3939b 9494 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
9495 info_ptr += 1;
9496 break;
9497 case DW_FORM_ref2:
10b3939b 9498 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
9499 info_ptr += 2;
9500 break;
9501 case DW_FORM_ref4:
10b3939b 9502 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
9503 info_ptr += 4;
9504 break;
613e1657 9505 case DW_FORM_ref8:
10b3939b 9506 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
9507 info_ptr += 8;
9508 break;
55f1336d 9509 case DW_FORM_ref_sig8:
348e048f
DE
9510 /* Convert the signature to something we can record in DW_UNSND
9511 for later lookup.
9512 NOTE: This is NULL if the type wasn't found. */
9513 DW_SIGNATURED_TYPE (attr) =
9514 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9515 info_ptr += 8;
9516 break;
c906108c 9517 case DW_FORM_ref_udata:
10b3939b
DJ
9518 DW_ADDR (attr) = (cu->header.offset
9519 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
9520 info_ptr += bytes_read;
9521 break;
c906108c 9522 case DW_FORM_indirect:
a8329558
KW
9523 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9524 info_ptr += bytes_read;
e7c27a73 9525 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 9526 break;
c906108c 9527 default:
8a3fe4f8 9528 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
9529 dwarf_form_name (form),
9530 bfd_get_filename (abfd));
c906108c 9531 }
28e94949
JB
9532
9533 /* We have seen instances where the compiler tried to emit a byte
9534 size attribute of -1 which ended up being encoded as an unsigned
9535 0xffffffff. Although 0xffffffff is technically a valid size value,
9536 an object of this size seems pretty unlikely so we can relatively
9537 safely treat these cases as if the size attribute was invalid and
9538 treat them as zero by default. */
9539 if (attr->name == DW_AT_byte_size
9540 && form == DW_FORM_data4
9541 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
9542 {
9543 complaint
9544 (&symfile_complaints,
43bbcdc2
PH
9545 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9546 hex_string (DW_UNSND (attr)));
01c66ae6
JB
9547 DW_UNSND (attr) = 0;
9548 }
28e94949 9549
c906108c
SS
9550 return info_ptr;
9551}
9552
a8329558
KW
9553/* Read an attribute described by an abbreviated attribute. */
9554
fe1b8b76 9555static gdb_byte *
a8329558 9556read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 9557 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
9558{
9559 attr->name = abbrev->name;
e7c27a73 9560 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
9561}
9562
0963b4bd 9563/* Read dwarf information from a buffer. */
c906108c
SS
9564
9565static unsigned int
fe1b8b76 9566read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 9567{
fe1b8b76 9568 return bfd_get_8 (abfd, buf);
c906108c
SS
9569}
9570
9571static int
fe1b8b76 9572read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 9573{
fe1b8b76 9574 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
9575}
9576
9577static unsigned int
fe1b8b76 9578read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9579{
fe1b8b76 9580 return bfd_get_16 (abfd, buf);
c906108c
SS
9581}
9582
9583static int
fe1b8b76 9584read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9585{
fe1b8b76 9586 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
9587}
9588
9589static unsigned int
fe1b8b76 9590read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9591{
fe1b8b76 9592 return bfd_get_32 (abfd, buf);
c906108c
SS
9593}
9594
9595static int
fe1b8b76 9596read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9597{
fe1b8b76 9598 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
9599}
9600
93311388 9601static ULONGEST
fe1b8b76 9602read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9603{
fe1b8b76 9604 return bfd_get_64 (abfd, buf);
c906108c
SS
9605}
9606
9607static CORE_ADDR
fe1b8b76 9608read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 9609 unsigned int *bytes_read)
c906108c 9610{
e7c27a73 9611 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9612 CORE_ADDR retval = 0;
9613
107d2387 9614 if (cu_header->signed_addr_p)
c906108c 9615 {
107d2387
AC
9616 switch (cu_header->addr_size)
9617 {
9618 case 2:
fe1b8b76 9619 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
9620 break;
9621 case 4:
fe1b8b76 9622 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
9623 break;
9624 case 8:
fe1b8b76 9625 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
9626 break;
9627 default:
8e65ff28 9628 internal_error (__FILE__, __LINE__,
e2e0b3e5 9629 _("read_address: bad switch, signed [in module %s]"),
659b0389 9630 bfd_get_filename (abfd));
107d2387
AC
9631 }
9632 }
9633 else
9634 {
9635 switch (cu_header->addr_size)
9636 {
9637 case 2:
fe1b8b76 9638 retval = bfd_get_16 (abfd, buf);
107d2387
AC
9639 break;
9640 case 4:
fe1b8b76 9641 retval = bfd_get_32 (abfd, buf);
107d2387
AC
9642 break;
9643 case 8:
fe1b8b76 9644 retval = bfd_get_64 (abfd, buf);
107d2387
AC
9645 break;
9646 default:
8e65ff28 9647 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
9648 _("read_address: bad switch, "
9649 "unsigned [in module %s]"),
659b0389 9650 bfd_get_filename (abfd));
107d2387 9651 }
c906108c 9652 }
64367e0a 9653
107d2387
AC
9654 *bytes_read = cu_header->addr_size;
9655 return retval;
c906108c
SS
9656}
9657
f7ef9339 9658/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
9659 specification allows the initial length to take up either 4 bytes
9660 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9661 bytes describe the length and all offsets will be 8 bytes in length
9662 instead of 4.
9663
f7ef9339
KB
9664 An older, non-standard 64-bit format is also handled by this
9665 function. The older format in question stores the initial length
9666 as an 8-byte quantity without an escape value. Lengths greater
9667 than 2^32 aren't very common which means that the initial 4 bytes
9668 is almost always zero. Since a length value of zero doesn't make
9669 sense for the 32-bit format, this initial zero can be considered to
9670 be an escape value which indicates the presence of the older 64-bit
9671 format. As written, the code can't detect (old format) lengths
917c78fc
MK
9672 greater than 4GB. If it becomes necessary to handle lengths
9673 somewhat larger than 4GB, we could allow other small values (such
9674 as the non-sensical values of 1, 2, and 3) to also be used as
9675 escape values indicating the presence of the old format.
f7ef9339 9676
917c78fc
MK
9677 The value returned via bytes_read should be used to increment the
9678 relevant pointer after calling read_initial_length().
c764a876 9679
613e1657
KB
9680 [ Note: read_initial_length() and read_offset() are based on the
9681 document entitled "DWARF Debugging Information Format", revision
f7ef9339 9682 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
9683 from:
9684
f7ef9339 9685 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 9686
613e1657
KB
9687 This document is only a draft and is subject to change. (So beware.)
9688
f7ef9339 9689 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
9690 determined empirically by examining 64-bit ELF files produced by
9691 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
9692
9693 - Kevin, July 16, 2002
613e1657
KB
9694 ] */
9695
9696static LONGEST
c764a876 9697read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 9698{
fe1b8b76 9699 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 9700
dd373385 9701 if (length == 0xffffffff)
613e1657 9702 {
fe1b8b76 9703 length = bfd_get_64 (abfd, buf + 4);
613e1657 9704 *bytes_read = 12;
613e1657 9705 }
dd373385 9706 else if (length == 0)
f7ef9339 9707 {
dd373385 9708 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 9709 length = bfd_get_64 (abfd, buf);
f7ef9339 9710 *bytes_read = 8;
f7ef9339 9711 }
613e1657
KB
9712 else
9713 {
9714 *bytes_read = 4;
613e1657
KB
9715 }
9716
c764a876
DE
9717 return length;
9718}
dd373385 9719
c764a876
DE
9720/* Cover function for read_initial_length.
9721 Returns the length of the object at BUF, and stores the size of the
9722 initial length in *BYTES_READ and stores the size that offsets will be in
9723 *OFFSET_SIZE.
9724 If the initial length size is not equivalent to that specified in
9725 CU_HEADER then issue a complaint.
9726 This is useful when reading non-comp-unit headers. */
dd373385 9727
c764a876
DE
9728static LONGEST
9729read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9730 const struct comp_unit_head *cu_header,
9731 unsigned int *bytes_read,
9732 unsigned int *offset_size)
9733{
9734 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9735
9736 gdb_assert (cu_header->initial_length_size == 4
9737 || cu_header->initial_length_size == 8
9738 || cu_header->initial_length_size == 12);
9739
9740 if (cu_header->initial_length_size != *bytes_read)
9741 complaint (&symfile_complaints,
9742 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 9743
c764a876 9744 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 9745 return length;
613e1657
KB
9746}
9747
9748/* Read an offset from the data stream. The size of the offset is
917c78fc 9749 given by cu_header->offset_size. */
613e1657
KB
9750
9751static LONGEST
fe1b8b76 9752read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 9753 unsigned int *bytes_read)
c764a876
DE
9754{
9755 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 9756
c764a876
DE
9757 *bytes_read = cu_header->offset_size;
9758 return offset;
9759}
9760
9761/* Read an offset from the data stream. */
9762
9763static LONGEST
9764read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
9765{
9766 LONGEST retval = 0;
9767
c764a876 9768 switch (offset_size)
613e1657
KB
9769 {
9770 case 4:
fe1b8b76 9771 retval = bfd_get_32 (abfd, buf);
613e1657
KB
9772 break;
9773 case 8:
fe1b8b76 9774 retval = bfd_get_64 (abfd, buf);
613e1657
KB
9775 break;
9776 default:
8e65ff28 9777 internal_error (__FILE__, __LINE__,
c764a876 9778 _("read_offset_1: bad switch [in module %s]"),
659b0389 9779 bfd_get_filename (abfd));
613e1657
KB
9780 }
9781
917c78fc 9782 return retval;
613e1657
KB
9783}
9784
fe1b8b76
JB
9785static gdb_byte *
9786read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
9787{
9788 /* If the size of a host char is 8 bits, we can return a pointer
9789 to the buffer, otherwise we have to copy the data to a buffer
9790 allocated on the temporary obstack. */
4bdf3d34 9791 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 9792 return buf;
c906108c
SS
9793}
9794
9795static char *
9b1c24c8 9796read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
9797{
9798 /* If the size of a host char is 8 bits, we can return a pointer
9799 to the string, otherwise we have to copy the string to a buffer
9800 allocated on the temporary obstack. */
4bdf3d34 9801 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
9802 if (*buf == '\0')
9803 {
9804 *bytes_read_ptr = 1;
9805 return NULL;
9806 }
fe1b8b76
JB
9807 *bytes_read_ptr = strlen ((char *) buf) + 1;
9808 return (char *) buf;
4bdf3d34
JJ
9809}
9810
9811static char *
fe1b8b76 9812read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
9813 const struct comp_unit_head *cu_header,
9814 unsigned int *bytes_read_ptr)
9815{
c764a876 9816 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 9817
be391dca 9818 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 9819 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 9820 {
8a3fe4f8 9821 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 9822 bfd_get_filename (abfd));
4bdf3d34 9823 return NULL;
c906108c 9824 }
dce234bc 9825 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 9826 {
3e43a32a
MS
9827 error (_("DW_FORM_strp pointing outside of "
9828 ".debug_str section [in module %s]"),
9829 bfd_get_filename (abfd));
c906108c
SS
9830 return NULL;
9831 }
4bdf3d34 9832 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 9833 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 9834 return NULL;
dce234bc 9835 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
9836}
9837
ce5d95e1 9838static unsigned long
fe1b8b76 9839read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9840{
ce5d95e1
JB
9841 unsigned long result;
9842 unsigned int num_read;
c906108c
SS
9843 int i, shift;
9844 unsigned char byte;
9845
9846 result = 0;
9847 shift = 0;
9848 num_read = 0;
9849 i = 0;
9850 while (1)
9851 {
fe1b8b76 9852 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9853 buf++;
9854 num_read++;
ce5d95e1 9855 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
9856 if ((byte & 128) == 0)
9857 {
9858 break;
9859 }
9860 shift += 7;
9861 }
9862 *bytes_read_ptr = num_read;
9863 return result;
9864}
9865
ce5d95e1 9866static long
fe1b8b76 9867read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9868{
ce5d95e1 9869 long result;
77e0b926 9870 int i, shift, num_read;
c906108c
SS
9871 unsigned char byte;
9872
9873 result = 0;
9874 shift = 0;
c906108c
SS
9875 num_read = 0;
9876 i = 0;
9877 while (1)
9878 {
fe1b8b76 9879 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9880 buf++;
9881 num_read++;
ce5d95e1 9882 result |= ((long)(byte & 127) << shift);
c906108c
SS
9883 shift += 7;
9884 if ((byte & 128) == 0)
9885 {
9886 break;
9887 }
9888 }
77e0b926
DJ
9889 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9890 result |= -(((long)1) << shift);
c906108c
SS
9891 *bytes_read_ptr = num_read;
9892 return result;
9893}
9894
4bb7a0a7
DJ
9895/* Return a pointer to just past the end of an LEB128 number in BUF. */
9896
fe1b8b76
JB
9897static gdb_byte *
9898skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
9899{
9900 int byte;
9901
9902 while (1)
9903 {
fe1b8b76 9904 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
9905 buf++;
9906 if ((byte & 128) == 0)
9907 return buf;
9908 }
9909}
9910
c906108c 9911static void
e142c38c 9912set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
9913{
9914 switch (lang)
9915 {
9916 case DW_LANG_C89:
76bee0cc 9917 case DW_LANG_C99:
c906108c 9918 case DW_LANG_C:
e142c38c 9919 cu->language = language_c;
c906108c
SS
9920 break;
9921 case DW_LANG_C_plus_plus:
e142c38c 9922 cu->language = language_cplus;
c906108c 9923 break;
6aecb9c2
JB
9924 case DW_LANG_D:
9925 cu->language = language_d;
9926 break;
c906108c
SS
9927 case DW_LANG_Fortran77:
9928 case DW_LANG_Fortran90:
b21b22e0 9929 case DW_LANG_Fortran95:
e142c38c 9930 cu->language = language_fortran;
c906108c
SS
9931 break;
9932 case DW_LANG_Mips_Assembler:
e142c38c 9933 cu->language = language_asm;
c906108c 9934 break;
bebd888e 9935 case DW_LANG_Java:
e142c38c 9936 cu->language = language_java;
bebd888e 9937 break;
c906108c 9938 case DW_LANG_Ada83:
8aaf0b47 9939 case DW_LANG_Ada95:
bc5f45f8
JB
9940 cu->language = language_ada;
9941 break;
72019c9c
GM
9942 case DW_LANG_Modula2:
9943 cu->language = language_m2;
9944 break;
fe8e67fd
PM
9945 case DW_LANG_Pascal83:
9946 cu->language = language_pascal;
9947 break;
22566fbd
DJ
9948 case DW_LANG_ObjC:
9949 cu->language = language_objc;
9950 break;
c906108c
SS
9951 case DW_LANG_Cobol74:
9952 case DW_LANG_Cobol85:
c906108c 9953 default:
e142c38c 9954 cu->language = language_minimal;
c906108c
SS
9955 break;
9956 }
e142c38c 9957 cu->language_defn = language_def (cu->language);
c906108c
SS
9958}
9959
9960/* Return the named attribute or NULL if not there. */
9961
9962static struct attribute *
e142c38c 9963dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
9964{
9965 unsigned int i;
9966 struct attribute *spec = NULL;
9967
9968 for (i = 0; i < die->num_attrs; ++i)
9969 {
9970 if (die->attrs[i].name == name)
10b3939b 9971 return &die->attrs[i];
c906108c
SS
9972 if (die->attrs[i].name == DW_AT_specification
9973 || die->attrs[i].name == DW_AT_abstract_origin)
9974 spec = &die->attrs[i];
9975 }
c906108c 9976
10b3939b 9977 if (spec)
f2f0e013
DJ
9978 {
9979 die = follow_die_ref (die, spec, &cu);
9980 return dwarf2_attr (die, name, cu);
9981 }
c5aa993b 9982
c906108c
SS
9983 return NULL;
9984}
9985
348e048f
DE
9986/* Return the named attribute or NULL if not there,
9987 but do not follow DW_AT_specification, etc.
9988 This is for use in contexts where we're reading .debug_types dies.
9989 Following DW_AT_specification, DW_AT_abstract_origin will take us
9990 back up the chain, and we want to go down. */
9991
9992static struct attribute *
9993dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9994 struct dwarf2_cu *cu)
9995{
9996 unsigned int i;
9997
9998 for (i = 0; i < die->num_attrs; ++i)
9999 if (die->attrs[i].name == name)
10000 return &die->attrs[i];
10001
10002 return NULL;
10003}
10004
05cf31d1
JB
10005/* Return non-zero iff the attribute NAME is defined for the given DIE,
10006 and holds a non-zero value. This function should only be used for
2dc7f7b3 10007 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
10008
10009static int
10010dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10011{
10012 struct attribute *attr = dwarf2_attr (die, name, cu);
10013
10014 return (attr && DW_UNSND (attr));
10015}
10016
3ca72b44 10017static int
e142c38c 10018die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 10019{
05cf31d1
JB
10020 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10021 which value is non-zero. However, we have to be careful with
10022 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10023 (via dwarf2_flag_true_p) follows this attribute. So we may
10024 end up accidently finding a declaration attribute that belongs
10025 to a different DIE referenced by the specification attribute,
10026 even though the given DIE does not have a declaration attribute. */
10027 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10028 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
10029}
10030
63d06c5c 10031/* Return the die giving the specification for DIE, if there is
f2f0e013 10032 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
10033 containing the return value on output. If there is no
10034 specification, but there is an abstract origin, that is
10035 returned. */
63d06c5c
DC
10036
10037static struct die_info *
f2f0e013 10038die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 10039{
f2f0e013
DJ
10040 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10041 *spec_cu);
63d06c5c 10042
edb3359d
DJ
10043 if (spec_attr == NULL)
10044 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10045
63d06c5c
DC
10046 if (spec_attr == NULL)
10047 return NULL;
10048 else
f2f0e013 10049 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 10050}
c906108c 10051
debd256d 10052/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
10053 refers to.
10054 NOTE: This is also used as a "cleanup" function. */
10055
debd256d
JB
10056static void
10057free_line_header (struct line_header *lh)
10058{
10059 if (lh->standard_opcode_lengths)
a8bc7b56 10060 xfree (lh->standard_opcode_lengths);
debd256d
JB
10061
10062 /* Remember that all the lh->file_names[i].name pointers are
10063 pointers into debug_line_buffer, and don't need to be freed. */
10064 if (lh->file_names)
a8bc7b56 10065 xfree (lh->file_names);
debd256d
JB
10066
10067 /* Similarly for the include directory names. */
10068 if (lh->include_dirs)
a8bc7b56 10069 xfree (lh->include_dirs);
debd256d 10070
a8bc7b56 10071 xfree (lh);
debd256d
JB
10072}
10073
debd256d 10074/* Add an entry to LH's include directory table. */
ae2de4f8 10075
debd256d
JB
10076static void
10077add_include_dir (struct line_header *lh, char *include_dir)
c906108c 10078{
debd256d
JB
10079 /* Grow the array if necessary. */
10080 if (lh->include_dirs_size == 0)
c5aa993b 10081 {
debd256d
JB
10082 lh->include_dirs_size = 1; /* for testing */
10083 lh->include_dirs = xmalloc (lh->include_dirs_size
10084 * sizeof (*lh->include_dirs));
10085 }
10086 else if (lh->num_include_dirs >= lh->include_dirs_size)
10087 {
10088 lh->include_dirs_size *= 2;
10089 lh->include_dirs = xrealloc (lh->include_dirs,
10090 (lh->include_dirs_size
10091 * sizeof (*lh->include_dirs)));
c5aa993b 10092 }
c906108c 10093
debd256d
JB
10094 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10095}
6e70227d 10096
debd256d 10097/* Add an entry to LH's file name table. */
ae2de4f8 10098
debd256d
JB
10099static void
10100add_file_name (struct line_header *lh,
10101 char *name,
10102 unsigned int dir_index,
10103 unsigned int mod_time,
10104 unsigned int length)
10105{
10106 struct file_entry *fe;
10107
10108 /* Grow the array if necessary. */
10109 if (lh->file_names_size == 0)
10110 {
10111 lh->file_names_size = 1; /* for testing */
10112 lh->file_names = xmalloc (lh->file_names_size
10113 * sizeof (*lh->file_names));
10114 }
10115 else if (lh->num_file_names >= lh->file_names_size)
10116 {
10117 lh->file_names_size *= 2;
10118 lh->file_names = xrealloc (lh->file_names,
10119 (lh->file_names_size
10120 * sizeof (*lh->file_names)));
10121 }
10122
10123 fe = &lh->file_names[lh->num_file_names++];
10124 fe->name = name;
10125 fe->dir_index = dir_index;
10126 fe->mod_time = mod_time;
10127 fe->length = length;
aaa75496 10128 fe->included_p = 0;
cb1df416 10129 fe->symtab = NULL;
debd256d 10130}
6e70227d 10131
debd256d 10132/* Read the statement program header starting at OFFSET in
6502dd73
DJ
10133 .debug_line, according to the endianness of ABFD. Return a pointer
10134 to a struct line_header, allocated using xmalloc.
debd256d
JB
10135
10136 NOTE: the strings in the include directory and file name tables of
10137 the returned object point into debug_line_buffer, and must not be
10138 freed. */
ae2de4f8 10139
debd256d
JB
10140static struct line_header *
10141dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 10142 struct dwarf2_cu *cu)
debd256d
JB
10143{
10144 struct cleanup *back_to;
10145 struct line_header *lh;
fe1b8b76 10146 gdb_byte *line_ptr;
c764a876 10147 unsigned int bytes_read, offset_size;
debd256d
JB
10148 int i;
10149 char *cur_dir, *cur_file;
10150
be391dca 10151 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 10152 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 10153 {
e2e0b3e5 10154 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
10155 return 0;
10156 }
10157
a738430d
MK
10158 /* Make sure that at least there's room for the total_length field.
10159 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 10160 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 10161 {
4d3c2250 10162 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10163 return 0;
10164 }
10165
10166 lh = xmalloc (sizeof (*lh));
10167 memset (lh, 0, sizeof (*lh));
10168 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10169 (void *) lh);
10170
dce234bc 10171 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 10172
a738430d 10173 /* Read in the header. */
6e70227d 10174 lh->total_length =
c764a876
DE
10175 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10176 &bytes_read, &offset_size);
debd256d 10177 line_ptr += bytes_read;
dce234bc
PP
10178 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10179 + dwarf2_per_objfile->line.size))
debd256d 10180 {
4d3c2250 10181 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10182 return 0;
10183 }
10184 lh->statement_program_end = line_ptr + lh->total_length;
10185 lh->version = read_2_bytes (abfd, line_ptr);
10186 line_ptr += 2;
c764a876
DE
10187 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10188 line_ptr += offset_size;
debd256d
JB
10189 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10190 line_ptr += 1;
2dc7f7b3
TT
10191 if (lh->version >= 4)
10192 {
10193 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10194 line_ptr += 1;
10195 }
10196 else
10197 lh->maximum_ops_per_instruction = 1;
10198
10199 if (lh->maximum_ops_per_instruction == 0)
10200 {
10201 lh->maximum_ops_per_instruction = 1;
10202 complaint (&symfile_complaints,
3e43a32a
MS
10203 _("invalid maximum_ops_per_instruction "
10204 "in `.debug_line' section"));
2dc7f7b3
TT
10205 }
10206
debd256d
JB
10207 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10208 line_ptr += 1;
10209 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10210 line_ptr += 1;
10211 lh->line_range = read_1_byte (abfd, line_ptr);
10212 line_ptr += 1;
10213 lh->opcode_base = read_1_byte (abfd, line_ptr);
10214 line_ptr += 1;
10215 lh->standard_opcode_lengths
fe1b8b76 10216 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
10217
10218 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10219 for (i = 1; i < lh->opcode_base; ++i)
10220 {
10221 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10222 line_ptr += 1;
10223 }
10224
a738430d 10225 /* Read directory table. */
9b1c24c8 10226 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10227 {
10228 line_ptr += bytes_read;
10229 add_include_dir (lh, cur_dir);
10230 }
10231 line_ptr += bytes_read;
10232
a738430d 10233 /* Read file name table. */
9b1c24c8 10234 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10235 {
10236 unsigned int dir_index, mod_time, length;
10237
10238 line_ptr += bytes_read;
10239 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10240 line_ptr += bytes_read;
10241 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10242 line_ptr += bytes_read;
10243 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10244 line_ptr += bytes_read;
10245
10246 add_file_name (lh, cur_file, dir_index, mod_time, length);
10247 }
10248 line_ptr += bytes_read;
6e70227d 10249 lh->statement_program_start = line_ptr;
debd256d 10250
dce234bc
PP
10251 if (line_ptr > (dwarf2_per_objfile->line.buffer
10252 + dwarf2_per_objfile->line.size))
4d3c2250 10253 complaint (&symfile_complaints,
3e43a32a
MS
10254 _("line number info header doesn't "
10255 "fit in `.debug_line' section"));
debd256d
JB
10256
10257 discard_cleanups (back_to);
10258 return lh;
10259}
c906108c 10260
5fb290d7
DJ
10261/* This function exists to work around a bug in certain compilers
10262 (particularly GCC 2.95), in which the first line number marker of a
10263 function does not show up until after the prologue, right before
10264 the second line number marker. This function shifts ADDRESS down
10265 to the beginning of the function if necessary, and is called on
10266 addresses passed to record_line. */
10267
10268static CORE_ADDR
e142c38c 10269check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
10270{
10271 struct function_range *fn;
10272
10273 /* Find the function_range containing address. */
e142c38c 10274 if (!cu->first_fn)
5fb290d7
DJ
10275 return address;
10276
e142c38c
DJ
10277 if (!cu->cached_fn)
10278 cu->cached_fn = cu->first_fn;
5fb290d7 10279
e142c38c 10280 fn = cu->cached_fn;
5fb290d7
DJ
10281 while (fn)
10282 if (fn->lowpc <= address && fn->highpc > address)
10283 goto found;
10284 else
10285 fn = fn->next;
10286
e142c38c
DJ
10287 fn = cu->first_fn;
10288 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
10289 if (fn->lowpc <= address && fn->highpc > address)
10290 goto found;
10291 else
10292 fn = fn->next;
10293
10294 return address;
10295
10296 found:
10297 if (fn->seen_line)
10298 return address;
10299 if (address != fn->lowpc)
4d3c2250 10300 complaint (&symfile_complaints,
e2e0b3e5 10301 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 10302 (unsigned long) address, fn->name);
5fb290d7
DJ
10303 fn->seen_line = 1;
10304 return fn->lowpc;
10305}
10306
c6da4cef
DE
10307/* Subroutine of dwarf_decode_lines to simplify it.
10308 Return the file name of the psymtab for included file FILE_INDEX
10309 in line header LH of PST.
10310 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10311 If space for the result is malloc'd, it will be freed by a cleanup.
10312 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10313
10314static char *
10315psymtab_include_file_name (const struct line_header *lh, int file_index,
10316 const struct partial_symtab *pst,
10317 const char *comp_dir)
10318{
10319 const struct file_entry fe = lh->file_names [file_index];
10320 char *include_name = fe.name;
10321 char *include_name_to_compare = include_name;
10322 char *dir_name = NULL;
72b9f47f
TT
10323 const char *pst_filename;
10324 char *copied_name = NULL;
c6da4cef
DE
10325 int file_is_pst;
10326
10327 if (fe.dir_index)
10328 dir_name = lh->include_dirs[fe.dir_index - 1];
10329
10330 if (!IS_ABSOLUTE_PATH (include_name)
10331 && (dir_name != NULL || comp_dir != NULL))
10332 {
10333 /* Avoid creating a duplicate psymtab for PST.
10334 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10335 Before we do the comparison, however, we need to account
10336 for DIR_NAME and COMP_DIR.
10337 First prepend dir_name (if non-NULL). If we still don't
10338 have an absolute path prepend comp_dir (if non-NULL).
10339 However, the directory we record in the include-file's
10340 psymtab does not contain COMP_DIR (to match the
10341 corresponding symtab(s)).
10342
10343 Example:
10344
10345 bash$ cd /tmp
10346 bash$ gcc -g ./hello.c
10347 include_name = "hello.c"
10348 dir_name = "."
10349 DW_AT_comp_dir = comp_dir = "/tmp"
10350 DW_AT_name = "./hello.c" */
10351
10352 if (dir_name != NULL)
10353 {
10354 include_name = concat (dir_name, SLASH_STRING,
10355 include_name, (char *)NULL);
10356 include_name_to_compare = include_name;
10357 make_cleanup (xfree, include_name);
10358 }
10359 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10360 {
10361 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10362 include_name, (char *)NULL);
10363 }
10364 }
10365
10366 pst_filename = pst->filename;
10367 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10368 {
72b9f47f
TT
10369 copied_name = concat (pst->dirname, SLASH_STRING,
10370 pst_filename, (char *)NULL);
10371 pst_filename = copied_name;
c6da4cef
DE
10372 }
10373
1e3fad37 10374 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
10375
10376 if (include_name_to_compare != include_name)
10377 xfree (include_name_to_compare);
72b9f47f
TT
10378 if (copied_name != NULL)
10379 xfree (copied_name);
c6da4cef
DE
10380
10381 if (file_is_pst)
10382 return NULL;
10383 return include_name;
10384}
10385
c91513d8
PP
10386/* Ignore this record_line request. */
10387
10388static void
10389noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
10390{
10391 return;
10392}
10393
aaa75496
JB
10394/* Decode the Line Number Program (LNP) for the given line_header
10395 structure and CU. The actual information extracted and the type
10396 of structures created from the LNP depends on the value of PST.
10397
10398 1. If PST is NULL, then this procedure uses the data from the program
10399 to create all necessary symbol tables, and their linetables.
6e70227d 10400
aaa75496
JB
10401 2. If PST is not NULL, this procedure reads the program to determine
10402 the list of files included by the unit represented by PST, and
c6da4cef
DE
10403 builds all the associated partial symbol tables.
10404
10405 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10406 It is used for relative paths in the line table.
10407 NOTE: When processing partial symtabs (pst != NULL),
10408 comp_dir == pst->dirname.
10409
10410 NOTE: It is important that psymtabs have the same file name (via strcmp)
10411 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10412 symtab we don't use it in the name of the psymtabs we create.
10413 E.g. expand_line_sal requires this when finding psymtabs to expand.
10414 A good testcase for this is mb-inline.exp. */
debd256d 10415
c906108c 10416static void
72b9f47f 10417dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
aaa75496 10418 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 10419{
a8c50c1f 10420 gdb_byte *line_ptr, *extended_end;
fe1b8b76 10421 gdb_byte *line_end;
a8c50c1f 10422 unsigned int bytes_read, extended_len;
c906108c 10423 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
10424 CORE_ADDR baseaddr;
10425 struct objfile *objfile = cu->objfile;
fbf65064 10426 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 10427 const int decode_for_pst_p = (pst != NULL);
cb1df416 10428 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
c91513d8
PP
10429 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
10430 = record_line;
e142c38c
DJ
10431
10432 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10433
debd256d
JB
10434 line_ptr = lh->statement_program_start;
10435 line_end = lh->statement_program_end;
c906108c
SS
10436
10437 /* Read the statement sequences until there's nothing left. */
10438 while (line_ptr < line_end)
10439 {
10440 /* state machine registers */
10441 CORE_ADDR address = 0;
10442 unsigned int file = 1;
10443 unsigned int line = 1;
10444 unsigned int column = 0;
debd256d 10445 int is_stmt = lh->default_is_stmt;
c906108c
SS
10446 int basic_block = 0;
10447 int end_sequence = 0;
fbf65064 10448 CORE_ADDR addr;
2dc7f7b3 10449 unsigned char op_index = 0;
c906108c 10450
aaa75496 10451 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 10452 {
aaa75496 10453 /* Start a subfile for the current file of the state machine. */
debd256d
JB
10454 /* lh->include_dirs and lh->file_names are 0-based, but the
10455 directory and file name numbers in the statement program
10456 are 1-based. */
10457 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 10458 char *dir = NULL;
a738430d 10459
debd256d
JB
10460 if (fe->dir_index)
10461 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
10462
10463 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
10464 }
10465
a738430d 10466 /* Decode the table. */
c5aa993b 10467 while (!end_sequence)
c906108c
SS
10468 {
10469 op_code = read_1_byte (abfd, line_ptr);
10470 line_ptr += 1;
59205f5a
JB
10471 if (line_ptr > line_end)
10472 {
10473 dwarf2_debug_line_missing_end_sequence_complaint ();
10474 break;
10475 }
9aa1fe7e 10476
debd256d 10477 if (op_code >= lh->opcode_base)
6e70227d 10478 {
a738430d 10479 /* Special operand. */
debd256d 10480 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
10481 address += (((op_index + (adj_opcode / lh->line_range))
10482 / lh->maximum_ops_per_instruction)
10483 * lh->minimum_instruction_length);
10484 op_index = ((op_index + (adj_opcode / lh->line_range))
10485 % lh->maximum_ops_per_instruction);
debd256d 10486 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 10487 if (lh->num_file_names < file || file == 0)
25e43795 10488 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
10489 /* For now we ignore lines not starting on an
10490 instruction boundary. */
10491 else if (op_index == 0)
25e43795
DJ
10492 {
10493 lh->file_names[file - 1].included_p = 1;
ca5f395d 10494 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10495 {
10496 if (last_subfile != current_subfile)
10497 {
10498 addr = gdbarch_addr_bits_remove (gdbarch, address);
10499 if (last_subfile)
c91513d8 10500 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
10501 last_subfile = current_subfile;
10502 }
25e43795 10503 /* Append row to matrix using current values. */
fbf65064
UW
10504 addr = check_cu_functions (address, cu);
10505 addr = gdbarch_addr_bits_remove (gdbarch, addr);
c91513d8 10506 (*p_record_line) (current_subfile, line, addr);
366da635 10507 }
25e43795 10508 }
ca5f395d 10509 basic_block = 0;
9aa1fe7e
GK
10510 }
10511 else switch (op_code)
c906108c
SS
10512 {
10513 case DW_LNS_extended_op:
3e43a32a
MS
10514 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10515 &bytes_read);
473b7be6 10516 line_ptr += bytes_read;
a8c50c1f 10517 extended_end = line_ptr + extended_len;
c906108c
SS
10518 extended_op = read_1_byte (abfd, line_ptr);
10519 line_ptr += 1;
10520 switch (extended_op)
10521 {
10522 case DW_LNE_end_sequence:
c91513d8 10523 p_record_line = record_line;
c906108c 10524 end_sequence = 1;
c906108c
SS
10525 break;
10526 case DW_LNE_set_address:
e7c27a73 10527 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
10528
10529 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
10530 {
10531 /* This line table is for a function which has been
10532 GCd by the linker. Ignore it. PR gdb/12528 */
10533
10534 long line_offset
10535 = line_ptr - dwarf2_per_objfile->line.buffer;
10536
10537 complaint (&symfile_complaints,
10538 _(".debug_line address at offset 0x%lx is 0 "
10539 "[in module %s]"),
10540 line_offset, cu->objfile->name);
10541 p_record_line = noop_record_line;
10542 }
10543
2dc7f7b3 10544 op_index = 0;
107d2387
AC
10545 line_ptr += bytes_read;
10546 address += baseaddr;
c906108c
SS
10547 break;
10548 case DW_LNE_define_file:
debd256d
JB
10549 {
10550 char *cur_file;
10551 unsigned int dir_index, mod_time, length;
6e70227d 10552
3e43a32a
MS
10553 cur_file = read_direct_string (abfd, line_ptr,
10554 &bytes_read);
debd256d
JB
10555 line_ptr += bytes_read;
10556 dir_index =
10557 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10558 line_ptr += bytes_read;
10559 mod_time =
10560 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10561 line_ptr += bytes_read;
10562 length =
10563 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10564 line_ptr += bytes_read;
10565 add_file_name (lh, cur_file, dir_index, mod_time, length);
10566 }
c906108c 10567 break;
d0c6ba3d
CC
10568 case DW_LNE_set_discriminator:
10569 /* The discriminator is not interesting to the debugger;
10570 just ignore it. */
10571 line_ptr = extended_end;
10572 break;
c906108c 10573 default:
4d3c2250 10574 complaint (&symfile_complaints,
e2e0b3e5 10575 _("mangled .debug_line section"));
debd256d 10576 return;
c906108c 10577 }
a8c50c1f
DJ
10578 /* Make sure that we parsed the extended op correctly. If e.g.
10579 we expected a different address size than the producer used,
10580 we may have read the wrong number of bytes. */
10581 if (line_ptr != extended_end)
10582 {
10583 complaint (&symfile_complaints,
10584 _("mangled .debug_line section"));
10585 return;
10586 }
c906108c
SS
10587 break;
10588 case DW_LNS_copy:
59205f5a 10589 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10590 dwarf2_debug_line_missing_file_complaint ();
10591 else
366da635 10592 {
25e43795 10593 lh->file_names[file - 1].included_p = 1;
ca5f395d 10594 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10595 {
10596 if (last_subfile != current_subfile)
10597 {
10598 addr = gdbarch_addr_bits_remove (gdbarch, address);
10599 if (last_subfile)
c91513d8 10600 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
10601 last_subfile = current_subfile;
10602 }
10603 addr = check_cu_functions (address, cu);
10604 addr = gdbarch_addr_bits_remove (gdbarch, addr);
c91513d8 10605 (*p_record_line) (current_subfile, line, addr);
fbf65064 10606 }
366da635 10607 }
c906108c
SS
10608 basic_block = 0;
10609 break;
10610 case DW_LNS_advance_pc:
2dc7f7b3
TT
10611 {
10612 CORE_ADDR adjust
10613 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10614
10615 address += (((op_index + adjust)
10616 / lh->maximum_ops_per_instruction)
10617 * lh->minimum_instruction_length);
10618 op_index = ((op_index + adjust)
10619 % lh->maximum_ops_per_instruction);
10620 line_ptr += bytes_read;
10621 }
c906108c
SS
10622 break;
10623 case DW_LNS_advance_line:
10624 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10625 line_ptr += bytes_read;
10626 break;
10627 case DW_LNS_set_file:
debd256d 10628 {
a738430d
MK
10629 /* The arrays lh->include_dirs and lh->file_names are
10630 0-based, but the directory and file name numbers in
10631 the statement program are 1-based. */
debd256d 10632 struct file_entry *fe;
4f1520fb 10633 char *dir = NULL;
a738430d 10634
debd256d
JB
10635 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10636 line_ptr += bytes_read;
59205f5a 10637 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10638 dwarf2_debug_line_missing_file_complaint ();
10639 else
10640 {
10641 fe = &lh->file_names[file - 1];
10642 if (fe->dir_index)
10643 dir = lh->include_dirs[fe->dir_index - 1];
10644 if (!decode_for_pst_p)
10645 {
10646 last_subfile = current_subfile;
10647 dwarf2_start_subfile (fe->name, dir, comp_dir);
10648 }
10649 }
debd256d 10650 }
c906108c
SS
10651 break;
10652 case DW_LNS_set_column:
10653 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10654 line_ptr += bytes_read;
10655 break;
10656 case DW_LNS_negate_stmt:
10657 is_stmt = (!is_stmt);
10658 break;
10659 case DW_LNS_set_basic_block:
10660 basic_block = 1;
10661 break;
c2c6d25f
JM
10662 /* Add to the address register of the state machine the
10663 address increment value corresponding to special opcode
a738430d
MK
10664 255. I.e., this value is scaled by the minimum
10665 instruction length since special opcode 255 would have
b021a221 10666 scaled the increment. */
c906108c 10667 case DW_LNS_const_add_pc:
2dc7f7b3
TT
10668 {
10669 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10670
10671 address += (((op_index + adjust)
10672 / lh->maximum_ops_per_instruction)
10673 * lh->minimum_instruction_length);
10674 op_index = ((op_index + adjust)
10675 % lh->maximum_ops_per_instruction);
10676 }
c906108c
SS
10677 break;
10678 case DW_LNS_fixed_advance_pc:
10679 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 10680 op_index = 0;
c906108c
SS
10681 line_ptr += 2;
10682 break;
9aa1fe7e 10683 default:
a738430d
MK
10684 {
10685 /* Unknown standard opcode, ignore it. */
9aa1fe7e 10686 int i;
a738430d 10687
debd256d 10688 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
10689 {
10690 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10691 line_ptr += bytes_read;
10692 }
10693 }
c906108c
SS
10694 }
10695 }
59205f5a
JB
10696 if (lh->num_file_names < file || file == 0)
10697 dwarf2_debug_line_missing_file_complaint ();
10698 else
10699 {
10700 lh->file_names[file - 1].included_p = 1;
10701 if (!decode_for_pst_p)
fbf65064
UW
10702 {
10703 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 10704 (*p_record_line) (current_subfile, 0, addr);
fbf65064 10705 }
59205f5a 10706 }
c906108c 10707 }
aaa75496
JB
10708
10709 if (decode_for_pst_p)
10710 {
10711 int file_index;
10712
10713 /* Now that we're done scanning the Line Header Program, we can
10714 create the psymtab of each included file. */
10715 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10716 if (lh->file_names[file_index].included_p == 1)
10717 {
c6da4cef
DE
10718 char *include_name =
10719 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10720 if (include_name != NULL)
aaa75496
JB
10721 dwarf2_create_include_psymtab (include_name, pst, objfile);
10722 }
10723 }
cb1df416
DJ
10724 else
10725 {
10726 /* Make sure a symtab is created for every file, even files
10727 which contain only variables (i.e. no code with associated
10728 line numbers). */
10729
10730 int i;
10731 struct file_entry *fe;
10732
10733 for (i = 0; i < lh->num_file_names; i++)
10734 {
10735 char *dir = NULL;
9a619af0 10736
cb1df416
DJ
10737 fe = &lh->file_names[i];
10738 if (fe->dir_index)
10739 dir = lh->include_dirs[fe->dir_index - 1];
10740 dwarf2_start_subfile (fe->name, dir, comp_dir);
10741
10742 /* Skip the main file; we don't need it, and it must be
10743 allocated last, so that it will show up before the
10744 non-primary symtabs in the objfile's symtab list. */
10745 if (current_subfile == first_subfile)
10746 continue;
10747
10748 if (current_subfile->symtab == NULL)
10749 current_subfile->symtab = allocate_symtab (current_subfile->name,
10750 cu->objfile);
10751 fe->symtab = current_subfile->symtab;
10752 }
10753 }
c906108c
SS
10754}
10755
10756/* Start a subfile for DWARF. FILENAME is the name of the file and
10757 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
10758 or NULL if not known. COMP_DIR is the compilation directory for the
10759 linetable's compilation unit or NULL if not known.
c906108c
SS
10760 This routine tries to keep line numbers from identical absolute and
10761 relative file names in a common subfile.
10762
10763 Using the `list' example from the GDB testsuite, which resides in
10764 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10765 of /srcdir/list0.c yields the following debugging information for list0.c:
10766
c5aa993b
JM
10767 DW_AT_name: /srcdir/list0.c
10768 DW_AT_comp_dir: /compdir
357e46e7 10769 files.files[0].name: list0.h
c5aa993b 10770 files.files[0].dir: /srcdir
357e46e7 10771 files.files[1].name: list0.c
c5aa993b 10772 files.files[1].dir: /srcdir
c906108c
SS
10773
10774 The line number information for list0.c has to end up in a single
4f1520fb
FR
10775 subfile, so that `break /srcdir/list0.c:1' works as expected.
10776 start_subfile will ensure that this happens provided that we pass the
10777 concatenation of files.files[1].dir and files.files[1].name as the
10778 subfile's name. */
c906108c
SS
10779
10780static void
3e43a32a
MS
10781dwarf2_start_subfile (char *filename, const char *dirname,
10782 const char *comp_dir)
c906108c 10783{
4f1520fb
FR
10784 char *fullname;
10785
10786 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10787 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10788 second argument to start_subfile. To be consistent, we do the
10789 same here. In order not to lose the line information directory,
10790 we concatenate it to the filename when it makes sense.
10791 Note that the Dwarf3 standard says (speaking of filenames in line
10792 information): ``The directory index is ignored for file names
10793 that represent full path names''. Thus ignoring dirname in the
10794 `else' branch below isn't an issue. */
c906108c 10795
d5166ae1 10796 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
10797 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10798 else
10799 fullname = filename;
c906108c 10800
4f1520fb
FR
10801 start_subfile (fullname, comp_dir);
10802
10803 if (fullname != filename)
10804 xfree (fullname);
c906108c
SS
10805}
10806
4c2df51b
DJ
10807static void
10808var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 10809 struct dwarf2_cu *cu)
4c2df51b 10810{
e7c27a73
DJ
10811 struct objfile *objfile = cu->objfile;
10812 struct comp_unit_head *cu_header = &cu->header;
10813
4c2df51b
DJ
10814 /* NOTE drow/2003-01-30: There used to be a comment and some special
10815 code here to turn a symbol with DW_AT_external and a
10816 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10817 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10818 with some versions of binutils) where shared libraries could have
10819 relocations against symbols in their debug information - the
10820 minimal symbol would have the right address, but the debug info
10821 would not. It's no longer necessary, because we will explicitly
10822 apply relocations when we read in the debug information now. */
10823
10824 /* A DW_AT_location attribute with no contents indicates that a
10825 variable has been optimized away. */
10826 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10827 {
10828 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10829 return;
10830 }
10831
10832 /* Handle one degenerate form of location expression specially, to
10833 preserve GDB's previous behavior when section offsets are
10834 specified. If this is just a DW_OP_addr then mark this symbol
10835 as LOC_STATIC. */
10836
10837 if (attr_form_is_block (attr)
10838 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10839 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10840 {
891d2f0b 10841 unsigned int dummy;
4c2df51b
DJ
10842
10843 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 10844 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 10845 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
10846 fixup_symbol_section (sym, objfile);
10847 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10848 SYMBOL_SECTION (sym));
4c2df51b
DJ
10849 return;
10850 }
10851
10852 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10853 expression evaluator, and use LOC_COMPUTED only when necessary
10854 (i.e. when the value of a register or memory location is
10855 referenced, or a thread-local block, etc.). Then again, it might
10856 not be worthwhile. I'm assuming that it isn't unless performance
10857 or memory numbers show me otherwise. */
10858
e7c27a73 10859 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
10860 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10861}
10862
c906108c
SS
10863/* Given a pointer to a DWARF information entry, figure out if we need
10864 to make a symbol table entry for it, and if so, create a new entry
10865 and return a pointer to it.
10866 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
10867 used the passed type.
10868 If SPACE is not NULL, use it to hold the new symbol. If it is
10869 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
10870
10871static struct symbol *
34eaf542
TT
10872new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10873 struct symbol *space)
c906108c 10874{
e7c27a73 10875 struct objfile *objfile = cu->objfile;
c906108c
SS
10876 struct symbol *sym = NULL;
10877 char *name;
10878 struct attribute *attr = NULL;
10879 struct attribute *attr2 = NULL;
e142c38c 10880 CORE_ADDR baseaddr;
e37fd15a
SW
10881 struct pending **list_to_add = NULL;
10882
edb3359d 10883 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
10884
10885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10886
94af9270 10887 name = dwarf2_name (die, cu);
c906108c
SS
10888 if (name)
10889 {
94af9270 10890 const char *linkagename;
34eaf542 10891 int suppress_add = 0;
94af9270 10892
34eaf542
TT
10893 if (space)
10894 sym = space;
10895 else
10896 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 10897 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
10898
10899 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 10900 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
10901 linkagename = dwarf2_physname (name, die, cu);
10902 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 10903
f55ee35c
JK
10904 /* Fortran does not have mangling standard and the mangling does differ
10905 between gfortran, iFort etc. */
10906 if (cu->language == language_fortran
b250c185 10907 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
10908 symbol_set_demangled_name (&(sym->ginfo),
10909 (char *) dwarf2_full_name (name, die, cu),
10910 NULL);
f55ee35c 10911
c906108c 10912 /* Default assumptions.
c5aa993b 10913 Use the passed type or decode it from the die. */
176620f1 10914 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 10915 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
10916 if (type != NULL)
10917 SYMBOL_TYPE (sym) = type;
10918 else
e7c27a73 10919 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
10920 attr = dwarf2_attr (die,
10921 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10922 cu);
c906108c
SS
10923 if (attr)
10924 {
10925 SYMBOL_LINE (sym) = DW_UNSND (attr);
10926 }
cb1df416 10927
edb3359d
DJ
10928 attr = dwarf2_attr (die,
10929 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10930 cu);
cb1df416
DJ
10931 if (attr)
10932 {
10933 int file_index = DW_UNSND (attr);
9a619af0 10934
cb1df416
DJ
10935 if (cu->line_header == NULL
10936 || file_index > cu->line_header->num_file_names)
10937 complaint (&symfile_complaints,
10938 _("file index out of range"));
1c3d648d 10939 else if (file_index > 0)
cb1df416
DJ
10940 {
10941 struct file_entry *fe;
9a619af0 10942
cb1df416
DJ
10943 fe = &cu->line_header->file_names[file_index - 1];
10944 SYMBOL_SYMTAB (sym) = fe->symtab;
10945 }
10946 }
10947
c906108c
SS
10948 switch (die->tag)
10949 {
10950 case DW_TAG_label:
e142c38c 10951 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
10952 if (attr)
10953 {
10954 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10955 }
0f5238ed
TT
10956 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10957 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 10958 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 10959 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
10960 break;
10961 case DW_TAG_subprogram:
10962 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10963 finish_block. */
10964 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 10965 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
10966 if ((attr2 && (DW_UNSND (attr2) != 0))
10967 || cu->language == language_ada)
c906108c 10968 {
2cfa0c8d
JB
10969 /* Subprograms marked external are stored as a global symbol.
10970 Ada subprograms, whether marked external or not, are always
10971 stored as a global symbol, because we want to be able to
10972 access them globally. For instance, we want to be able
10973 to break on a nested subprogram without having to
10974 specify the context. */
e37fd15a 10975 list_to_add = &global_symbols;
c906108c
SS
10976 }
10977 else
10978 {
e37fd15a 10979 list_to_add = cu->list_in_scope;
c906108c
SS
10980 }
10981 break;
edb3359d
DJ
10982 case DW_TAG_inlined_subroutine:
10983 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10984 finish_block. */
10985 SYMBOL_CLASS (sym) = LOC_BLOCK;
10986 SYMBOL_INLINED (sym) = 1;
10987 /* Do not add the symbol to any lists. It will be found via
10988 BLOCK_FUNCTION from the blockvector. */
10989 break;
34eaf542
TT
10990 case DW_TAG_template_value_param:
10991 suppress_add = 1;
10992 /* Fall through. */
72929c62 10993 case DW_TAG_constant:
c906108c 10994 case DW_TAG_variable:
254e6b9e 10995 case DW_TAG_member:
0963b4bd
MS
10996 /* Compilation with minimal debug info may result in
10997 variables with missing type entries. Change the
10998 misleading `void' type to something sensible. */
c906108c 10999 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 11000 SYMBOL_TYPE (sym)
46bf5051 11001 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 11002
e142c38c 11003 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
11004 /* In the case of DW_TAG_member, we should only be called for
11005 static const members. */
11006 if (die->tag == DW_TAG_member)
11007 {
3863f96c
DE
11008 /* dwarf2_add_field uses die_is_declaration,
11009 so we do the same. */
254e6b9e
DE
11010 gdb_assert (die_is_declaration (die, cu));
11011 gdb_assert (attr);
11012 }
c906108c
SS
11013 if (attr)
11014 {
e7c27a73 11015 dwarf2_const_value (attr, sym, cu);
e142c38c 11016 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 11017 if (!suppress_add)
34eaf542
TT
11018 {
11019 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 11020 list_to_add = &global_symbols;
34eaf542 11021 else
e37fd15a 11022 list_to_add = cu->list_in_scope;
34eaf542 11023 }
c906108c
SS
11024 break;
11025 }
e142c38c 11026 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
11027 if (attr)
11028 {
e7c27a73 11029 var_decode_location (attr, sym, cu);
e142c38c 11030 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
11031 if (SYMBOL_CLASS (sym) == LOC_STATIC
11032 && SYMBOL_VALUE_ADDRESS (sym) == 0
11033 && !dwarf2_per_objfile->has_section_at_zero)
11034 {
11035 /* When a static variable is eliminated by the linker,
11036 the corresponding debug information is not stripped
11037 out, but the variable address is set to null;
11038 do not add such variables into symbol table. */
11039 }
11040 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 11041 {
f55ee35c
JK
11042 /* Workaround gfortran PR debug/40040 - it uses
11043 DW_AT_location for variables in -fPIC libraries which may
11044 get overriden by other libraries/executable and get
11045 a different address. Resolve it by the minimal symbol
11046 which may come from inferior's executable using copy
11047 relocation. Make this workaround only for gfortran as for
11048 other compilers GDB cannot guess the minimal symbol
11049 Fortran mangling kind. */
11050 if (cu->language == language_fortran && die->parent
11051 && die->parent->tag == DW_TAG_module
11052 && cu->producer
11053 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11054 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11055
1c809c68
TT
11056 /* A variable with DW_AT_external is never static,
11057 but it may be block-scoped. */
11058 list_to_add = (cu->list_in_scope == &file_symbols
11059 ? &global_symbols : cu->list_in_scope);
1c809c68 11060 }
c906108c 11061 else
e37fd15a 11062 list_to_add = cu->list_in_scope;
c906108c
SS
11063 }
11064 else
11065 {
11066 /* We do not know the address of this symbol.
c5aa993b
JM
11067 If it is an external symbol and we have type information
11068 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11069 The address of the variable will then be determined from
11070 the minimal symbol table whenever the variable is
11071 referenced. */
e142c38c 11072 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 11073 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 11074 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 11075 {
0fe7935b
DJ
11076 /* A variable with DW_AT_external is never static, but it
11077 may be block-scoped. */
11078 list_to_add = (cu->list_in_scope == &file_symbols
11079 ? &global_symbols : cu->list_in_scope);
11080
c906108c 11081 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 11082 }
442ddf59
JK
11083 else if (!die_is_declaration (die, cu))
11084 {
11085 /* Use the default LOC_OPTIMIZED_OUT class. */
11086 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
11087 if (!suppress_add)
11088 list_to_add = cu->list_in_scope;
442ddf59 11089 }
c906108c
SS
11090 }
11091 break;
11092 case DW_TAG_formal_parameter:
edb3359d
DJ
11093 /* If we are inside a function, mark this as an argument. If
11094 not, we might be looking at an argument to an inlined function
11095 when we do not have enough information to show inlined frames;
11096 pretend it's a local variable in that case so that the user can
11097 still see it. */
11098 if (context_stack_depth > 0
11099 && context_stack[context_stack_depth - 1].name != NULL)
11100 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 11101 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
11102 if (attr)
11103 {
e7c27a73 11104 var_decode_location (attr, sym, cu);
c906108c 11105 }
e142c38c 11106 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11107 if (attr)
11108 {
e7c27a73 11109 dwarf2_const_value (attr, sym, cu);
c906108c 11110 }
f346a30d
PM
11111 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
11112 if (attr && DW_UNSND (attr))
11113 {
11114 struct type *ref_type;
11115
11116 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
11117 SYMBOL_TYPE (sym) = ref_type;
11118 }
11119
e37fd15a 11120 list_to_add = cu->list_in_scope;
c906108c
SS
11121 break;
11122 case DW_TAG_unspecified_parameters:
11123 /* From varargs functions; gdb doesn't seem to have any
11124 interest in this information, so just ignore it for now.
11125 (FIXME?) */
11126 break;
34eaf542
TT
11127 case DW_TAG_template_type_param:
11128 suppress_add = 1;
11129 /* Fall through. */
c906108c 11130 case DW_TAG_class_type:
680b30c7 11131 case DW_TAG_interface_type:
c906108c
SS
11132 case DW_TAG_structure_type:
11133 case DW_TAG_union_type:
72019c9c 11134 case DW_TAG_set_type:
c906108c
SS
11135 case DW_TAG_enumeration_type:
11136 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11137 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 11138
63d06c5c 11139 {
987504bb 11140 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
11141 really ever be static objects: otherwise, if you try
11142 to, say, break of a class's method and you're in a file
11143 which doesn't mention that class, it won't work unless
11144 the check for all static symbols in lookup_symbol_aux
11145 saves you. See the OtherFileClass tests in
11146 gdb.c++/namespace.exp. */
11147
e37fd15a 11148 if (!suppress_add)
34eaf542 11149 {
34eaf542
TT
11150 list_to_add = (cu->list_in_scope == &file_symbols
11151 && (cu->language == language_cplus
11152 || cu->language == language_java)
11153 ? &global_symbols : cu->list_in_scope);
63d06c5c 11154
64382290
TT
11155 /* The semantics of C++ state that "struct foo {
11156 ... }" also defines a typedef for "foo". A Java
11157 class declaration also defines a typedef for the
11158 class. */
11159 if (cu->language == language_cplus
11160 || cu->language == language_java
11161 || cu->language == language_ada)
11162 {
11163 /* The symbol's name is already allocated along
11164 with this objfile, so we don't need to
11165 duplicate it for the type. */
11166 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11167 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11168 }
63d06c5c
DC
11169 }
11170 }
c906108c
SS
11171 break;
11172 case DW_TAG_typedef:
63d06c5c
DC
11173 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11174 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11175 list_to_add = cu->list_in_scope;
63d06c5c 11176 break;
c906108c 11177 case DW_TAG_base_type:
a02abb62 11178 case DW_TAG_subrange_type:
c906108c 11179 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11180 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11181 list_to_add = cu->list_in_scope;
c906108c
SS
11182 break;
11183 case DW_TAG_enumerator:
e142c38c 11184 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11185 if (attr)
11186 {
e7c27a73 11187 dwarf2_const_value (attr, sym, cu);
c906108c 11188 }
63d06c5c
DC
11189 {
11190 /* NOTE: carlton/2003-11-10: See comment above in the
11191 DW_TAG_class_type, etc. block. */
11192
e142c38c 11193 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
11194 && (cu->language == language_cplus
11195 || cu->language == language_java)
e142c38c 11196 ? &global_symbols : cu->list_in_scope);
63d06c5c 11197 }
c906108c 11198 break;
5c4e30ca
DC
11199 case DW_TAG_namespace:
11200 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 11201 list_to_add = &global_symbols;
5c4e30ca 11202 break;
c906108c
SS
11203 default:
11204 /* Not a tag we recognize. Hopefully we aren't processing
11205 trash data, but since we must specifically ignore things
11206 we don't recognize, there is nothing else we should do at
0963b4bd 11207 this point. */
e2e0b3e5 11208 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 11209 dwarf_tag_name (die->tag));
c906108c
SS
11210 break;
11211 }
df8a16a1 11212
e37fd15a
SW
11213 if (suppress_add)
11214 {
11215 sym->hash_next = objfile->template_symbols;
11216 objfile->template_symbols = sym;
11217 list_to_add = NULL;
11218 }
11219
11220 if (list_to_add != NULL)
11221 add_symbol_to_list (sym, list_to_add);
11222
df8a16a1
DJ
11223 /* For the benefit of old versions of GCC, check for anonymous
11224 namespaces based on the demangled name. */
11225 if (!processing_has_namespace_info
94af9270 11226 && cu->language == language_cplus)
df8a16a1 11227 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
11228 }
11229 return (sym);
11230}
11231
34eaf542
TT
11232/* A wrapper for new_symbol_full that always allocates a new symbol. */
11233
11234static struct symbol *
11235new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11236{
11237 return new_symbol_full (die, type, cu, NULL);
11238}
11239
98bfdba5
PA
11240/* Given an attr with a DW_FORM_dataN value in host byte order,
11241 zero-extend it as appropriate for the symbol's type. The DWARF
11242 standard (v4) is not entirely clear about the meaning of using
11243 DW_FORM_dataN for a constant with a signed type, where the type is
11244 wider than the data. The conclusion of a discussion on the DWARF
11245 list was that this is unspecified. We choose to always zero-extend
11246 because that is the interpretation long in use by GCC. */
c906108c 11247
98bfdba5
PA
11248static gdb_byte *
11249dwarf2_const_value_data (struct attribute *attr, struct type *type,
11250 const char *name, struct obstack *obstack,
11251 struct dwarf2_cu *cu, long *value, int bits)
c906108c 11252{
e7c27a73 11253 struct objfile *objfile = cu->objfile;
e17a4113
UW
11254 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11255 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
11256 LONGEST l = DW_UNSND (attr);
11257
11258 if (bits < sizeof (*value) * 8)
11259 {
11260 l &= ((LONGEST) 1 << bits) - 1;
11261 *value = l;
11262 }
11263 else if (bits == sizeof (*value) * 8)
11264 *value = l;
11265 else
11266 {
11267 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11268 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11269 return bytes;
11270 }
11271
11272 return NULL;
11273}
11274
11275/* Read a constant value from an attribute. Either set *VALUE, or if
11276 the value does not fit in *VALUE, set *BYTES - either already
11277 allocated on the objfile obstack, or newly allocated on OBSTACK,
11278 or, set *BATON, if we translated the constant to a location
11279 expression. */
11280
11281static void
11282dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11283 const char *name, struct obstack *obstack,
11284 struct dwarf2_cu *cu,
11285 long *value, gdb_byte **bytes,
11286 struct dwarf2_locexpr_baton **baton)
11287{
11288 struct objfile *objfile = cu->objfile;
11289 struct comp_unit_head *cu_header = &cu->header;
c906108c 11290 struct dwarf_block *blk;
98bfdba5
PA
11291 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11292 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11293
11294 *value = 0;
11295 *bytes = NULL;
11296 *baton = NULL;
c906108c
SS
11297
11298 switch (attr->form)
11299 {
11300 case DW_FORM_addr:
ac56253d 11301 {
ac56253d
TT
11302 gdb_byte *data;
11303
98bfdba5
PA
11304 if (TYPE_LENGTH (type) != cu_header->addr_size)
11305 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 11306 cu_header->addr_size,
98bfdba5 11307 TYPE_LENGTH (type));
ac56253d
TT
11308 /* Symbols of this form are reasonably rare, so we just
11309 piggyback on the existing location code rather than writing
11310 a new implementation of symbol_computed_ops. */
98bfdba5
PA
11311 *baton = obstack_alloc (&objfile->objfile_obstack,
11312 sizeof (struct dwarf2_locexpr_baton));
11313 (*baton)->per_cu = cu->per_cu;
11314 gdb_assert ((*baton)->per_cu);
ac56253d 11315
98bfdba5
PA
11316 (*baton)->size = 2 + cu_header->addr_size;
11317 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11318 (*baton)->data = data;
ac56253d
TT
11319
11320 data[0] = DW_OP_addr;
11321 store_unsigned_integer (&data[1], cu_header->addr_size,
11322 byte_order, DW_ADDR (attr));
11323 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 11324 }
c906108c 11325 break;
4ac36638 11326 case DW_FORM_string:
93b5768b 11327 case DW_FORM_strp:
98bfdba5
PA
11328 /* DW_STRING is already allocated on the objfile obstack, point
11329 directly to it. */
11330 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 11331 break;
c906108c
SS
11332 case DW_FORM_block1:
11333 case DW_FORM_block2:
11334 case DW_FORM_block4:
11335 case DW_FORM_block:
2dc7f7b3 11336 case DW_FORM_exprloc:
c906108c 11337 blk = DW_BLOCK (attr);
98bfdba5
PA
11338 if (TYPE_LENGTH (type) != blk->size)
11339 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11340 TYPE_LENGTH (type));
11341 *bytes = blk->data;
c906108c 11342 break;
2df3850c
JM
11343
11344 /* The DW_AT_const_value attributes are supposed to carry the
11345 symbol's value "represented as it would be on the target
11346 architecture." By the time we get here, it's already been
11347 converted to host endianness, so we just need to sign- or
11348 zero-extend it as appropriate. */
11349 case DW_FORM_data1:
3e43a32a
MS
11350 *bytes = dwarf2_const_value_data (attr, type, name,
11351 obstack, cu, value, 8);
2df3850c 11352 break;
c906108c 11353 case DW_FORM_data2:
3e43a32a
MS
11354 *bytes = dwarf2_const_value_data (attr, type, name,
11355 obstack, cu, value, 16);
2df3850c 11356 break;
c906108c 11357 case DW_FORM_data4:
3e43a32a
MS
11358 *bytes = dwarf2_const_value_data (attr, type, name,
11359 obstack, cu, value, 32);
2df3850c 11360 break;
c906108c 11361 case DW_FORM_data8:
3e43a32a
MS
11362 *bytes = dwarf2_const_value_data (attr, type, name,
11363 obstack, cu, value, 64);
2df3850c
JM
11364 break;
11365
c906108c 11366 case DW_FORM_sdata:
98bfdba5 11367 *value = DW_SND (attr);
2df3850c
JM
11368 break;
11369
c906108c 11370 case DW_FORM_udata:
98bfdba5 11371 *value = DW_UNSND (attr);
c906108c 11372 break;
2df3850c 11373
c906108c 11374 default:
4d3c2250 11375 complaint (&symfile_complaints,
e2e0b3e5 11376 _("unsupported const value attribute form: '%s'"),
4d3c2250 11377 dwarf_form_name (attr->form));
98bfdba5 11378 *value = 0;
c906108c
SS
11379 break;
11380 }
11381}
11382
2df3850c 11383
98bfdba5
PA
11384/* Copy constant value from an attribute to a symbol. */
11385
2df3850c 11386static void
98bfdba5
PA
11387dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11388 struct dwarf2_cu *cu)
2df3850c 11389{
98bfdba5
PA
11390 struct objfile *objfile = cu->objfile;
11391 struct comp_unit_head *cu_header = &cu->header;
11392 long value;
11393 gdb_byte *bytes;
11394 struct dwarf2_locexpr_baton *baton;
2df3850c 11395
98bfdba5
PA
11396 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11397 SYMBOL_PRINT_NAME (sym),
11398 &objfile->objfile_obstack, cu,
11399 &value, &bytes, &baton);
2df3850c 11400
98bfdba5
PA
11401 if (baton != NULL)
11402 {
11403 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11404 SYMBOL_LOCATION_BATON (sym) = baton;
11405 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11406 }
11407 else if (bytes != NULL)
11408 {
11409 SYMBOL_VALUE_BYTES (sym) = bytes;
11410 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11411 }
11412 else
11413 {
11414 SYMBOL_VALUE (sym) = value;
11415 SYMBOL_CLASS (sym) = LOC_CONST;
11416 }
2df3850c
JM
11417}
11418
c906108c
SS
11419/* Return the type of the die in question using its DW_AT_type attribute. */
11420
11421static struct type *
e7c27a73 11422die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11423{
c906108c 11424 struct attribute *type_attr;
c906108c 11425
e142c38c 11426 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
11427 if (!type_attr)
11428 {
11429 /* A missing DW_AT_type represents a void type. */
46bf5051 11430 return objfile_type (cu->objfile)->builtin_void;
c906108c 11431 }
348e048f 11432
673bfd45 11433 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11434}
11435
b4ba55a1
JB
11436/* True iff CU's producer generates GNAT Ada auxiliary information
11437 that allows to find parallel types through that information instead
11438 of having to do expensive parallel lookups by type name. */
11439
11440static int
11441need_gnat_info (struct dwarf2_cu *cu)
11442{
11443 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11444 of GNAT produces this auxiliary information, without any indication
11445 that it is produced. Part of enhancing the FSF version of GNAT
11446 to produce that information will be to put in place an indicator
11447 that we can use in order to determine whether the descriptive type
11448 info is available or not. One suggestion that has been made is
11449 to use a new attribute, attached to the CU die. For now, assume
11450 that the descriptive type info is not available. */
11451 return 0;
11452}
11453
b4ba55a1
JB
11454/* Return the auxiliary type of the die in question using its
11455 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11456 attribute is not present. */
11457
11458static struct type *
11459die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11460{
b4ba55a1 11461 struct attribute *type_attr;
b4ba55a1
JB
11462
11463 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11464 if (!type_attr)
11465 return NULL;
11466
673bfd45 11467 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
11468}
11469
11470/* If DIE has a descriptive_type attribute, then set the TYPE's
11471 descriptive type accordingly. */
11472
11473static void
11474set_descriptive_type (struct type *type, struct die_info *die,
11475 struct dwarf2_cu *cu)
11476{
11477 struct type *descriptive_type = die_descriptive_type (die, cu);
11478
11479 if (descriptive_type)
11480 {
11481 ALLOCATE_GNAT_AUX_TYPE (type);
11482 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11483 }
11484}
11485
c906108c
SS
11486/* Return the containing type of the die in question using its
11487 DW_AT_containing_type attribute. */
11488
11489static struct type *
e7c27a73 11490die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11491{
c906108c 11492 struct attribute *type_attr;
c906108c 11493
e142c38c 11494 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
11495 if (!type_attr)
11496 error (_("Dwarf Error: Problem turning containing type into gdb type "
11497 "[in module %s]"), cu->objfile->name);
11498
673bfd45 11499 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11500}
11501
673bfd45
DE
11502/* Look up the type of DIE in CU using its type attribute ATTR.
11503 If there is no type substitute an error marker. */
11504
c906108c 11505static struct type *
673bfd45
DE
11506lookup_die_type (struct die_info *die, struct attribute *attr,
11507 struct dwarf2_cu *cu)
c906108c 11508{
f792889a
DJ
11509 struct type *this_type;
11510
673bfd45
DE
11511 /* First see if we have it cached. */
11512
11513 if (is_ref_attr (attr))
11514 {
11515 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11516
11517 this_type = get_die_type_at_offset (offset, cu->per_cu);
11518 }
55f1336d 11519 else if (attr->form == DW_FORM_ref_sig8)
673bfd45
DE
11520 {
11521 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11522 struct dwarf2_cu *sig_cu;
11523 unsigned int offset;
11524
11525 /* sig_type will be NULL if the signatured type is missing from
11526 the debug info. */
11527 if (sig_type == NULL)
11528 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11529 "at 0x%x [in module %s]"),
11530 die->offset, cu->objfile->name);
11531
11532 gdb_assert (sig_type->per_cu.from_debug_types);
11533 offset = sig_type->offset + sig_type->type_offset;
11534 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11535 }
11536 else
11537 {
11538 dump_die_for_error (die);
11539 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11540 dwarf_attr_name (attr->name), cu->objfile->name);
11541 }
11542
11543 /* If not cached we need to read it in. */
11544
11545 if (this_type == NULL)
11546 {
11547 struct die_info *type_die;
11548 struct dwarf2_cu *type_cu = cu;
11549
11550 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11551 /* If the type is cached, we should have found it above. */
11552 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11553 this_type = read_type_die_1 (type_die, type_cu);
11554 }
11555
11556 /* If we still don't have a type use an error marker. */
11557
11558 if (this_type == NULL)
c906108c 11559 {
b00fdb78
TT
11560 char *message, *saved;
11561
11562 /* read_type_die already issued a complaint. */
11563 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11564 cu->objfile->name,
11565 cu->header.offset,
11566 die->offset);
11567 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11568 message, strlen (message));
11569 xfree (message);
11570
11571 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 11572 }
673bfd45 11573
f792889a 11574 return this_type;
c906108c
SS
11575}
11576
673bfd45
DE
11577/* Return the type in DIE, CU.
11578 Returns NULL for invalid types.
11579
11580 This first does a lookup in the appropriate type_hash table,
11581 and only reads the die in if necessary.
11582
11583 NOTE: This can be called when reading in partial or full symbols. */
11584
f792889a 11585static struct type *
e7c27a73 11586read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11587{
f792889a
DJ
11588 struct type *this_type;
11589
11590 this_type = get_die_type (die, cu);
11591 if (this_type)
11592 return this_type;
11593
673bfd45
DE
11594 return read_type_die_1 (die, cu);
11595}
11596
11597/* Read the type in DIE, CU.
11598 Returns NULL for invalid types. */
11599
11600static struct type *
11601read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11602{
11603 struct type *this_type = NULL;
11604
c906108c
SS
11605 switch (die->tag)
11606 {
11607 case DW_TAG_class_type:
680b30c7 11608 case DW_TAG_interface_type:
c906108c
SS
11609 case DW_TAG_structure_type:
11610 case DW_TAG_union_type:
f792889a 11611 this_type = read_structure_type (die, cu);
c906108c
SS
11612 break;
11613 case DW_TAG_enumeration_type:
f792889a 11614 this_type = read_enumeration_type (die, cu);
c906108c
SS
11615 break;
11616 case DW_TAG_subprogram:
11617 case DW_TAG_subroutine_type:
edb3359d 11618 case DW_TAG_inlined_subroutine:
f792889a 11619 this_type = read_subroutine_type (die, cu);
c906108c
SS
11620 break;
11621 case DW_TAG_array_type:
f792889a 11622 this_type = read_array_type (die, cu);
c906108c 11623 break;
72019c9c 11624 case DW_TAG_set_type:
f792889a 11625 this_type = read_set_type (die, cu);
72019c9c 11626 break;
c906108c 11627 case DW_TAG_pointer_type:
f792889a 11628 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
11629 break;
11630 case DW_TAG_ptr_to_member_type:
f792889a 11631 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
11632 break;
11633 case DW_TAG_reference_type:
f792889a 11634 this_type = read_tag_reference_type (die, cu);
c906108c
SS
11635 break;
11636 case DW_TAG_const_type:
f792889a 11637 this_type = read_tag_const_type (die, cu);
c906108c
SS
11638 break;
11639 case DW_TAG_volatile_type:
f792889a 11640 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
11641 break;
11642 case DW_TAG_string_type:
f792889a 11643 this_type = read_tag_string_type (die, cu);
c906108c
SS
11644 break;
11645 case DW_TAG_typedef:
f792889a 11646 this_type = read_typedef (die, cu);
c906108c 11647 break;
a02abb62 11648 case DW_TAG_subrange_type:
f792889a 11649 this_type = read_subrange_type (die, cu);
a02abb62 11650 break;
c906108c 11651 case DW_TAG_base_type:
f792889a 11652 this_type = read_base_type (die, cu);
c906108c 11653 break;
81a17f79 11654 case DW_TAG_unspecified_type:
f792889a 11655 this_type = read_unspecified_type (die, cu);
81a17f79 11656 break;
0114d602
DJ
11657 case DW_TAG_namespace:
11658 this_type = read_namespace_type (die, cu);
11659 break;
f55ee35c
JK
11660 case DW_TAG_module:
11661 this_type = read_module_type (die, cu);
11662 break;
c906108c 11663 default:
3e43a32a
MS
11664 complaint (&symfile_complaints,
11665 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 11666 dwarf_tag_name (die->tag));
c906108c
SS
11667 break;
11668 }
63d06c5c 11669
f792889a 11670 return this_type;
63d06c5c
DC
11671}
11672
abc72ce4
DE
11673/* See if we can figure out if the class lives in a namespace. We do
11674 this by looking for a member function; its demangled name will
11675 contain namespace info, if there is any.
11676 Return the computed name or NULL.
11677 Space for the result is allocated on the objfile's obstack.
11678 This is the full-die version of guess_partial_die_structure_name.
11679 In this case we know DIE has no useful parent. */
11680
11681static char *
11682guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11683{
11684 struct die_info *spec_die;
11685 struct dwarf2_cu *spec_cu;
11686 struct die_info *child;
11687
11688 spec_cu = cu;
11689 spec_die = die_specification (die, &spec_cu);
11690 if (spec_die != NULL)
11691 {
11692 die = spec_die;
11693 cu = spec_cu;
11694 }
11695
11696 for (child = die->child;
11697 child != NULL;
11698 child = child->sibling)
11699 {
11700 if (child->tag == DW_TAG_subprogram)
11701 {
11702 struct attribute *attr;
11703
11704 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11705 if (attr == NULL)
11706 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11707 if (attr != NULL)
11708 {
11709 char *actual_name
11710 = language_class_name_from_physname (cu->language_defn,
11711 DW_STRING (attr));
11712 char *name = NULL;
11713
11714 if (actual_name != NULL)
11715 {
11716 char *die_name = dwarf2_name (die, cu);
11717
11718 if (die_name != NULL
11719 && strcmp (die_name, actual_name) != 0)
11720 {
11721 /* Strip off the class name from the full name.
11722 We want the prefix. */
11723 int die_name_len = strlen (die_name);
11724 int actual_name_len = strlen (actual_name);
11725
11726 /* Test for '::' as a sanity check. */
11727 if (actual_name_len > die_name_len + 2
3e43a32a
MS
11728 && actual_name[actual_name_len
11729 - die_name_len - 1] == ':')
abc72ce4
DE
11730 name =
11731 obsavestring (actual_name,
11732 actual_name_len - die_name_len - 2,
11733 &cu->objfile->objfile_obstack);
11734 }
11735 }
11736 xfree (actual_name);
11737 return name;
11738 }
11739 }
11740 }
11741
11742 return NULL;
11743}
11744
fdde2d81 11745/* Return the name of the namespace/class that DIE is defined within,
0114d602 11746 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 11747
0114d602
DJ
11748 For example, if we're within the method foo() in the following
11749 code:
11750
11751 namespace N {
11752 class C {
11753 void foo () {
11754 }
11755 };
11756 }
11757
11758 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
11759
11760static char *
e142c38c 11761determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 11762{
0114d602
DJ
11763 struct die_info *parent, *spec_die;
11764 struct dwarf2_cu *spec_cu;
11765 struct type *parent_type;
63d06c5c 11766
f55ee35c
JK
11767 if (cu->language != language_cplus && cu->language != language_java
11768 && cu->language != language_fortran)
0114d602
DJ
11769 return "";
11770
11771 /* We have to be careful in the presence of DW_AT_specification.
11772 For example, with GCC 3.4, given the code
11773
11774 namespace N {
11775 void foo() {
11776 // Definition of N::foo.
11777 }
11778 }
11779
11780 then we'll have a tree of DIEs like this:
11781
11782 1: DW_TAG_compile_unit
11783 2: DW_TAG_namespace // N
11784 3: DW_TAG_subprogram // declaration of N::foo
11785 4: DW_TAG_subprogram // definition of N::foo
11786 DW_AT_specification // refers to die #3
11787
11788 Thus, when processing die #4, we have to pretend that we're in
11789 the context of its DW_AT_specification, namely the contex of die
11790 #3. */
11791 spec_cu = cu;
11792 spec_die = die_specification (die, &spec_cu);
11793 if (spec_die == NULL)
11794 parent = die->parent;
11795 else
63d06c5c 11796 {
0114d602
DJ
11797 parent = spec_die->parent;
11798 cu = spec_cu;
63d06c5c 11799 }
0114d602
DJ
11800
11801 if (parent == NULL)
11802 return "";
98bfdba5
PA
11803 else if (parent->building_fullname)
11804 {
11805 const char *name;
11806 const char *parent_name;
11807
11808 /* It has been seen on RealView 2.2 built binaries,
11809 DW_TAG_template_type_param types actually _defined_ as
11810 children of the parent class:
11811
11812 enum E {};
11813 template class <class Enum> Class{};
11814 Class<enum E> class_e;
11815
11816 1: DW_TAG_class_type (Class)
11817 2: DW_TAG_enumeration_type (E)
11818 3: DW_TAG_enumerator (enum1:0)
11819 3: DW_TAG_enumerator (enum2:1)
11820 ...
11821 2: DW_TAG_template_type_param
11822 DW_AT_type DW_FORM_ref_udata (E)
11823
11824 Besides being broken debug info, it can put GDB into an
11825 infinite loop. Consider:
11826
11827 When we're building the full name for Class<E>, we'll start
11828 at Class, and go look over its template type parameters,
11829 finding E. We'll then try to build the full name of E, and
11830 reach here. We're now trying to build the full name of E,
11831 and look over the parent DIE for containing scope. In the
11832 broken case, if we followed the parent DIE of E, we'd again
11833 find Class, and once again go look at its template type
11834 arguments, etc., etc. Simply don't consider such parent die
11835 as source-level parent of this die (it can't be, the language
11836 doesn't allow it), and break the loop here. */
11837 name = dwarf2_name (die, cu);
11838 parent_name = dwarf2_name (parent, cu);
11839 complaint (&symfile_complaints,
11840 _("template param type '%s' defined within parent '%s'"),
11841 name ? name : "<unknown>",
11842 parent_name ? parent_name : "<unknown>");
11843 return "";
11844 }
63d06c5c 11845 else
0114d602
DJ
11846 switch (parent->tag)
11847 {
63d06c5c 11848 case DW_TAG_namespace:
0114d602 11849 parent_type = read_type_die (parent, cu);
acebe513
UW
11850 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11851 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11852 Work around this problem here. */
11853 if (cu->language == language_cplus
11854 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11855 return "";
0114d602
DJ
11856 /* We give a name to even anonymous namespaces. */
11857 return TYPE_TAG_NAME (parent_type);
63d06c5c 11858 case DW_TAG_class_type:
680b30c7 11859 case DW_TAG_interface_type:
63d06c5c 11860 case DW_TAG_structure_type:
0114d602 11861 case DW_TAG_union_type:
f55ee35c 11862 case DW_TAG_module:
0114d602
DJ
11863 parent_type = read_type_die (parent, cu);
11864 if (TYPE_TAG_NAME (parent_type) != NULL)
11865 return TYPE_TAG_NAME (parent_type);
11866 else
11867 /* An anonymous structure is only allowed non-static data
11868 members; no typedefs, no member functions, et cetera.
11869 So it does not need a prefix. */
11870 return "";
abc72ce4
DE
11871 case DW_TAG_compile_unit:
11872 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11873 if (cu->language == language_cplus
11874 && dwarf2_per_objfile->types.asection != NULL
11875 && die->child != NULL
11876 && (die->tag == DW_TAG_class_type
11877 || die->tag == DW_TAG_structure_type
11878 || die->tag == DW_TAG_union_type))
11879 {
11880 char *name = guess_full_die_structure_name (die, cu);
11881 if (name != NULL)
11882 return name;
11883 }
11884 return "";
63d06c5c 11885 default:
8176b9b8 11886 return determine_prefix (parent, cu);
63d06c5c 11887 }
63d06c5c
DC
11888}
11889
3e43a32a
MS
11890/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11891 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11892 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11893 an obconcat, otherwise allocate storage for the result. The CU argument is
11894 used to determine the language and hence, the appropriate separator. */
987504bb 11895
f55ee35c 11896#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
11897
11898static char *
f55ee35c
JK
11899typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11900 int physname, struct dwarf2_cu *cu)
63d06c5c 11901{
f55ee35c 11902 const char *lead = "";
5c315b68 11903 const char *sep;
63d06c5c 11904
3e43a32a
MS
11905 if (suffix == NULL || suffix[0] == '\0'
11906 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
11907 sep = "";
11908 else if (cu->language == language_java)
11909 sep = ".";
f55ee35c
JK
11910 else if (cu->language == language_fortran && physname)
11911 {
11912 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11913 DW_AT_MIPS_linkage_name is preferred and used instead. */
11914
11915 lead = "__";
11916 sep = "_MOD_";
11917 }
987504bb
JJ
11918 else
11919 sep = "::";
63d06c5c 11920
6dd47d34
DE
11921 if (prefix == NULL)
11922 prefix = "";
11923 if (suffix == NULL)
11924 suffix = "";
11925
987504bb
JJ
11926 if (obs == NULL)
11927 {
3e43a32a
MS
11928 char *retval
11929 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 11930
f55ee35c
JK
11931 strcpy (retval, lead);
11932 strcat (retval, prefix);
6dd47d34
DE
11933 strcat (retval, sep);
11934 strcat (retval, suffix);
63d06c5c
DC
11935 return retval;
11936 }
987504bb
JJ
11937 else
11938 {
11939 /* We have an obstack. */
f55ee35c 11940 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 11941 }
63d06c5c
DC
11942}
11943
c906108c
SS
11944/* Return sibling of die, NULL if no sibling. */
11945
f9aca02d 11946static struct die_info *
fba45db2 11947sibling_die (struct die_info *die)
c906108c 11948{
639d11d3 11949 return die->sibling;
c906108c
SS
11950}
11951
71c25dea
TT
11952/* Get name of a die, return NULL if not found. */
11953
11954static char *
11955dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11956 struct obstack *obstack)
11957{
11958 if (name && cu->language == language_cplus)
11959 {
11960 char *canon_name = cp_canonicalize_string (name);
11961
11962 if (canon_name != NULL)
11963 {
11964 if (strcmp (canon_name, name) != 0)
11965 name = obsavestring (canon_name, strlen (canon_name),
11966 obstack);
11967 xfree (canon_name);
11968 }
11969 }
11970
11971 return name;
c906108c
SS
11972}
11973
9219021c
DC
11974/* Get name of a die, return NULL if not found. */
11975
11976static char *
e142c38c 11977dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
11978{
11979 struct attribute *attr;
11980
e142c38c 11981 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
11982 if ((!attr || !DW_STRING (attr))
11983 && die->tag != DW_TAG_class_type
11984 && die->tag != DW_TAG_interface_type
11985 && die->tag != DW_TAG_structure_type
11986 && die->tag != DW_TAG_union_type)
71c25dea
TT
11987 return NULL;
11988
11989 switch (die->tag)
11990 {
11991 case DW_TAG_compile_unit:
11992 /* Compilation units have a DW_AT_name that is a filename, not
11993 a source language identifier. */
11994 case DW_TAG_enumeration_type:
11995 case DW_TAG_enumerator:
11996 /* These tags always have simple identifiers already; no need
11997 to canonicalize them. */
11998 return DW_STRING (attr);
907af001 11999
418835cc
KS
12000 case DW_TAG_subprogram:
12001 /* Java constructors will all be named "<init>", so return
12002 the class name when we see this special case. */
12003 if (cu->language == language_java
12004 && DW_STRING (attr) != NULL
12005 && strcmp (DW_STRING (attr), "<init>") == 0)
12006 {
12007 struct dwarf2_cu *spec_cu = cu;
12008 struct die_info *spec_die;
12009
12010 /* GCJ will output '<init>' for Java constructor names.
12011 For this special case, return the name of the parent class. */
12012
12013 /* GCJ may output suprogram DIEs with AT_specification set.
12014 If so, use the name of the specified DIE. */
12015 spec_die = die_specification (die, &spec_cu);
12016 if (spec_die != NULL)
12017 return dwarf2_name (spec_die, spec_cu);
12018
12019 do
12020 {
12021 die = die->parent;
12022 if (die->tag == DW_TAG_class_type)
12023 return dwarf2_name (die, cu);
12024 }
12025 while (die->tag != DW_TAG_compile_unit);
12026 }
907af001
UW
12027 break;
12028
12029 case DW_TAG_class_type:
12030 case DW_TAG_interface_type:
12031 case DW_TAG_structure_type:
12032 case DW_TAG_union_type:
12033 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12034 structures or unions. These were of the form "._%d" in GCC 4.1,
12035 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12036 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
12037 if (attr && DW_STRING (attr)
12038 && (strncmp (DW_STRING (attr), "._", 2) == 0
12039 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 12040 return NULL;
53832f31
TT
12041
12042 /* GCC might emit a nameless typedef that has a linkage name. See
12043 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12044 if (!attr || DW_STRING (attr) == NULL)
12045 {
12046 char *demangled;
12047
12048 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12049 if (attr == NULL)
12050 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12051
12052 if (attr == NULL || DW_STRING (attr) == NULL)
12053 return NULL;
12054
12055 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12056
12057 if (demangled)
12058 {
12059 /* FIXME: we already did this for the partial symbol... */
12060 DW_STRING (attr)
12061 = obsavestring (demangled, strlen (demangled),
12062 &cu->objfile->objfile_obstack);
12063 DW_STRING_IS_CANONICAL (attr) = 1;
12064 xfree (demangled);
12065 }
12066 }
907af001
UW
12067 break;
12068
71c25dea 12069 default:
907af001
UW
12070 break;
12071 }
12072
12073 if (!DW_STRING_IS_CANONICAL (attr))
12074 {
12075 DW_STRING (attr)
12076 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12077 &cu->objfile->objfile_obstack);
12078 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 12079 }
907af001 12080 return DW_STRING (attr);
9219021c
DC
12081}
12082
12083/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
12084 is none. *EXT_CU is the CU containing DIE on input, and the CU
12085 containing the return value on output. */
9219021c
DC
12086
12087static struct die_info *
f2f0e013 12088dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
12089{
12090 struct attribute *attr;
9219021c 12091
f2f0e013 12092 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
12093 if (attr == NULL)
12094 return NULL;
12095
f2f0e013 12096 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
12097}
12098
c906108c
SS
12099/* Convert a DIE tag into its string name. */
12100
12101static char *
aa1ee363 12102dwarf_tag_name (unsigned tag)
c906108c
SS
12103{
12104 switch (tag)
12105 {
12106 case DW_TAG_padding:
12107 return "DW_TAG_padding";
12108 case DW_TAG_array_type:
12109 return "DW_TAG_array_type";
12110 case DW_TAG_class_type:
12111 return "DW_TAG_class_type";
12112 case DW_TAG_entry_point:
12113 return "DW_TAG_entry_point";
12114 case DW_TAG_enumeration_type:
12115 return "DW_TAG_enumeration_type";
12116 case DW_TAG_formal_parameter:
12117 return "DW_TAG_formal_parameter";
12118 case DW_TAG_imported_declaration:
12119 return "DW_TAG_imported_declaration";
12120 case DW_TAG_label:
12121 return "DW_TAG_label";
12122 case DW_TAG_lexical_block:
12123 return "DW_TAG_lexical_block";
12124 case DW_TAG_member:
12125 return "DW_TAG_member";
12126 case DW_TAG_pointer_type:
12127 return "DW_TAG_pointer_type";
12128 case DW_TAG_reference_type:
12129 return "DW_TAG_reference_type";
12130 case DW_TAG_compile_unit:
12131 return "DW_TAG_compile_unit";
12132 case DW_TAG_string_type:
12133 return "DW_TAG_string_type";
12134 case DW_TAG_structure_type:
12135 return "DW_TAG_structure_type";
12136 case DW_TAG_subroutine_type:
12137 return "DW_TAG_subroutine_type";
12138 case DW_TAG_typedef:
12139 return "DW_TAG_typedef";
12140 case DW_TAG_union_type:
12141 return "DW_TAG_union_type";
12142 case DW_TAG_unspecified_parameters:
12143 return "DW_TAG_unspecified_parameters";
12144 case DW_TAG_variant:
12145 return "DW_TAG_variant";
12146 case DW_TAG_common_block:
12147 return "DW_TAG_common_block";
12148 case DW_TAG_common_inclusion:
12149 return "DW_TAG_common_inclusion";
12150 case DW_TAG_inheritance:
12151 return "DW_TAG_inheritance";
12152 case DW_TAG_inlined_subroutine:
12153 return "DW_TAG_inlined_subroutine";
12154 case DW_TAG_module:
12155 return "DW_TAG_module";
12156 case DW_TAG_ptr_to_member_type:
12157 return "DW_TAG_ptr_to_member_type";
12158 case DW_TAG_set_type:
12159 return "DW_TAG_set_type";
12160 case DW_TAG_subrange_type:
12161 return "DW_TAG_subrange_type";
12162 case DW_TAG_with_stmt:
12163 return "DW_TAG_with_stmt";
12164 case DW_TAG_access_declaration:
12165 return "DW_TAG_access_declaration";
12166 case DW_TAG_base_type:
12167 return "DW_TAG_base_type";
12168 case DW_TAG_catch_block:
12169 return "DW_TAG_catch_block";
12170 case DW_TAG_const_type:
12171 return "DW_TAG_const_type";
12172 case DW_TAG_constant:
12173 return "DW_TAG_constant";
12174 case DW_TAG_enumerator:
12175 return "DW_TAG_enumerator";
12176 case DW_TAG_file_type:
12177 return "DW_TAG_file_type";
12178 case DW_TAG_friend:
12179 return "DW_TAG_friend";
12180 case DW_TAG_namelist:
12181 return "DW_TAG_namelist";
12182 case DW_TAG_namelist_item:
12183 return "DW_TAG_namelist_item";
12184 case DW_TAG_packed_type:
12185 return "DW_TAG_packed_type";
12186 case DW_TAG_subprogram:
12187 return "DW_TAG_subprogram";
12188 case DW_TAG_template_type_param:
12189 return "DW_TAG_template_type_param";
12190 case DW_TAG_template_value_param:
12191 return "DW_TAG_template_value_param";
12192 case DW_TAG_thrown_type:
12193 return "DW_TAG_thrown_type";
12194 case DW_TAG_try_block:
12195 return "DW_TAG_try_block";
12196 case DW_TAG_variant_part:
12197 return "DW_TAG_variant_part";
12198 case DW_TAG_variable:
12199 return "DW_TAG_variable";
12200 case DW_TAG_volatile_type:
12201 return "DW_TAG_volatile_type";
d9fa45fe
DC
12202 case DW_TAG_dwarf_procedure:
12203 return "DW_TAG_dwarf_procedure";
12204 case DW_TAG_restrict_type:
12205 return "DW_TAG_restrict_type";
12206 case DW_TAG_interface_type:
12207 return "DW_TAG_interface_type";
12208 case DW_TAG_namespace:
12209 return "DW_TAG_namespace";
12210 case DW_TAG_imported_module:
12211 return "DW_TAG_imported_module";
12212 case DW_TAG_unspecified_type:
12213 return "DW_TAG_unspecified_type";
12214 case DW_TAG_partial_unit:
12215 return "DW_TAG_partial_unit";
12216 case DW_TAG_imported_unit:
12217 return "DW_TAG_imported_unit";
b7619582
GF
12218 case DW_TAG_condition:
12219 return "DW_TAG_condition";
12220 case DW_TAG_shared_type:
12221 return "DW_TAG_shared_type";
348e048f
DE
12222 case DW_TAG_type_unit:
12223 return "DW_TAG_type_unit";
c906108c
SS
12224 case DW_TAG_MIPS_loop:
12225 return "DW_TAG_MIPS_loop";
b7619582
GF
12226 case DW_TAG_HP_array_descriptor:
12227 return "DW_TAG_HP_array_descriptor";
c906108c
SS
12228 case DW_TAG_format_label:
12229 return "DW_TAG_format_label";
12230 case DW_TAG_function_template:
12231 return "DW_TAG_function_template";
12232 case DW_TAG_class_template:
12233 return "DW_TAG_class_template";
b7619582
GF
12234 case DW_TAG_GNU_BINCL:
12235 return "DW_TAG_GNU_BINCL";
12236 case DW_TAG_GNU_EINCL:
12237 return "DW_TAG_GNU_EINCL";
12238 case DW_TAG_upc_shared_type:
12239 return "DW_TAG_upc_shared_type";
12240 case DW_TAG_upc_strict_type:
12241 return "DW_TAG_upc_strict_type";
12242 case DW_TAG_upc_relaxed_type:
12243 return "DW_TAG_upc_relaxed_type";
12244 case DW_TAG_PGI_kanji_type:
12245 return "DW_TAG_PGI_kanji_type";
12246 case DW_TAG_PGI_interface_block:
12247 return "DW_TAG_PGI_interface_block";
c906108c
SS
12248 default:
12249 return "DW_TAG_<unknown>";
12250 }
12251}
12252
12253/* Convert a DWARF attribute code into its string name. */
12254
12255static char *
aa1ee363 12256dwarf_attr_name (unsigned attr)
c906108c
SS
12257{
12258 switch (attr)
12259 {
12260 case DW_AT_sibling:
12261 return "DW_AT_sibling";
12262 case DW_AT_location:
12263 return "DW_AT_location";
12264 case DW_AT_name:
12265 return "DW_AT_name";
12266 case DW_AT_ordering:
12267 return "DW_AT_ordering";
12268 case DW_AT_subscr_data:
12269 return "DW_AT_subscr_data";
12270 case DW_AT_byte_size:
12271 return "DW_AT_byte_size";
12272 case DW_AT_bit_offset:
12273 return "DW_AT_bit_offset";
12274 case DW_AT_bit_size:
12275 return "DW_AT_bit_size";
12276 case DW_AT_element_list:
12277 return "DW_AT_element_list";
12278 case DW_AT_stmt_list:
12279 return "DW_AT_stmt_list";
12280 case DW_AT_low_pc:
12281 return "DW_AT_low_pc";
12282 case DW_AT_high_pc:
12283 return "DW_AT_high_pc";
12284 case DW_AT_language:
12285 return "DW_AT_language";
12286 case DW_AT_member:
12287 return "DW_AT_member";
12288 case DW_AT_discr:
12289 return "DW_AT_discr";
12290 case DW_AT_discr_value:
12291 return "DW_AT_discr_value";
12292 case DW_AT_visibility:
12293 return "DW_AT_visibility";
12294 case DW_AT_import:
12295 return "DW_AT_import";
12296 case DW_AT_string_length:
12297 return "DW_AT_string_length";
12298 case DW_AT_common_reference:
12299 return "DW_AT_common_reference";
12300 case DW_AT_comp_dir:
12301 return "DW_AT_comp_dir";
12302 case DW_AT_const_value:
12303 return "DW_AT_const_value";
12304 case DW_AT_containing_type:
12305 return "DW_AT_containing_type";
12306 case DW_AT_default_value:
12307 return "DW_AT_default_value";
12308 case DW_AT_inline:
12309 return "DW_AT_inline";
12310 case DW_AT_is_optional:
12311 return "DW_AT_is_optional";
12312 case DW_AT_lower_bound:
12313 return "DW_AT_lower_bound";
12314 case DW_AT_producer:
12315 return "DW_AT_producer";
12316 case DW_AT_prototyped:
12317 return "DW_AT_prototyped";
12318 case DW_AT_return_addr:
12319 return "DW_AT_return_addr";
12320 case DW_AT_start_scope:
12321 return "DW_AT_start_scope";
09fa0d7c
JK
12322 case DW_AT_bit_stride:
12323 return "DW_AT_bit_stride";
c906108c
SS
12324 case DW_AT_upper_bound:
12325 return "DW_AT_upper_bound";
12326 case DW_AT_abstract_origin:
12327 return "DW_AT_abstract_origin";
12328 case DW_AT_accessibility:
12329 return "DW_AT_accessibility";
12330 case DW_AT_address_class:
12331 return "DW_AT_address_class";
12332 case DW_AT_artificial:
12333 return "DW_AT_artificial";
12334 case DW_AT_base_types:
12335 return "DW_AT_base_types";
12336 case DW_AT_calling_convention:
12337 return "DW_AT_calling_convention";
12338 case DW_AT_count:
12339 return "DW_AT_count";
12340 case DW_AT_data_member_location:
12341 return "DW_AT_data_member_location";
12342 case DW_AT_decl_column:
12343 return "DW_AT_decl_column";
12344 case DW_AT_decl_file:
12345 return "DW_AT_decl_file";
12346 case DW_AT_decl_line:
12347 return "DW_AT_decl_line";
12348 case DW_AT_declaration:
12349 return "DW_AT_declaration";
12350 case DW_AT_discr_list:
12351 return "DW_AT_discr_list";
12352 case DW_AT_encoding:
12353 return "DW_AT_encoding";
12354 case DW_AT_external:
12355 return "DW_AT_external";
12356 case DW_AT_frame_base:
12357 return "DW_AT_frame_base";
12358 case DW_AT_friend:
12359 return "DW_AT_friend";
12360 case DW_AT_identifier_case:
12361 return "DW_AT_identifier_case";
12362 case DW_AT_macro_info:
12363 return "DW_AT_macro_info";
12364 case DW_AT_namelist_items:
12365 return "DW_AT_namelist_items";
12366 case DW_AT_priority:
12367 return "DW_AT_priority";
12368 case DW_AT_segment:
12369 return "DW_AT_segment";
12370 case DW_AT_specification:
12371 return "DW_AT_specification";
12372 case DW_AT_static_link:
12373 return "DW_AT_static_link";
12374 case DW_AT_type:
12375 return "DW_AT_type";
12376 case DW_AT_use_location:
12377 return "DW_AT_use_location";
12378 case DW_AT_variable_parameter:
12379 return "DW_AT_variable_parameter";
12380 case DW_AT_virtuality:
12381 return "DW_AT_virtuality";
12382 case DW_AT_vtable_elem_location:
12383 return "DW_AT_vtable_elem_location";
b7619582 12384 /* DWARF 3 values. */
d9fa45fe
DC
12385 case DW_AT_allocated:
12386 return "DW_AT_allocated";
12387 case DW_AT_associated:
12388 return "DW_AT_associated";
12389 case DW_AT_data_location:
12390 return "DW_AT_data_location";
09fa0d7c
JK
12391 case DW_AT_byte_stride:
12392 return "DW_AT_byte_stride";
d9fa45fe
DC
12393 case DW_AT_entry_pc:
12394 return "DW_AT_entry_pc";
12395 case DW_AT_use_UTF8:
12396 return "DW_AT_use_UTF8";
12397 case DW_AT_extension:
12398 return "DW_AT_extension";
12399 case DW_AT_ranges:
12400 return "DW_AT_ranges";
12401 case DW_AT_trampoline:
12402 return "DW_AT_trampoline";
12403 case DW_AT_call_column:
12404 return "DW_AT_call_column";
12405 case DW_AT_call_file:
12406 return "DW_AT_call_file";
12407 case DW_AT_call_line:
12408 return "DW_AT_call_line";
b7619582
GF
12409 case DW_AT_description:
12410 return "DW_AT_description";
12411 case DW_AT_binary_scale:
12412 return "DW_AT_binary_scale";
12413 case DW_AT_decimal_scale:
12414 return "DW_AT_decimal_scale";
12415 case DW_AT_small:
12416 return "DW_AT_small";
12417 case DW_AT_decimal_sign:
12418 return "DW_AT_decimal_sign";
12419 case DW_AT_digit_count:
12420 return "DW_AT_digit_count";
12421 case DW_AT_picture_string:
12422 return "DW_AT_picture_string";
12423 case DW_AT_mutable:
12424 return "DW_AT_mutable";
12425 case DW_AT_threads_scaled:
12426 return "DW_AT_threads_scaled";
12427 case DW_AT_explicit:
12428 return "DW_AT_explicit";
12429 case DW_AT_object_pointer:
12430 return "DW_AT_object_pointer";
12431 case DW_AT_endianity:
12432 return "DW_AT_endianity";
12433 case DW_AT_elemental:
12434 return "DW_AT_elemental";
12435 case DW_AT_pure:
12436 return "DW_AT_pure";
12437 case DW_AT_recursive:
12438 return "DW_AT_recursive";
348e048f
DE
12439 /* DWARF 4 values. */
12440 case DW_AT_signature:
12441 return "DW_AT_signature";
31ef98ae
TT
12442 case DW_AT_linkage_name:
12443 return "DW_AT_linkage_name";
b7619582 12444 /* SGI/MIPS extensions. */
c764a876 12445#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
12446 case DW_AT_MIPS_fde:
12447 return "DW_AT_MIPS_fde";
c764a876 12448#endif
c906108c
SS
12449 case DW_AT_MIPS_loop_begin:
12450 return "DW_AT_MIPS_loop_begin";
12451 case DW_AT_MIPS_tail_loop_begin:
12452 return "DW_AT_MIPS_tail_loop_begin";
12453 case DW_AT_MIPS_epilog_begin:
12454 return "DW_AT_MIPS_epilog_begin";
12455 case DW_AT_MIPS_loop_unroll_factor:
12456 return "DW_AT_MIPS_loop_unroll_factor";
12457 case DW_AT_MIPS_software_pipeline_depth:
12458 return "DW_AT_MIPS_software_pipeline_depth";
12459 case DW_AT_MIPS_linkage_name:
12460 return "DW_AT_MIPS_linkage_name";
b7619582
GF
12461 case DW_AT_MIPS_stride:
12462 return "DW_AT_MIPS_stride";
12463 case DW_AT_MIPS_abstract_name:
12464 return "DW_AT_MIPS_abstract_name";
12465 case DW_AT_MIPS_clone_origin:
12466 return "DW_AT_MIPS_clone_origin";
12467 case DW_AT_MIPS_has_inlines:
12468 return "DW_AT_MIPS_has_inlines";
b7619582 12469 /* HP extensions. */
c764a876 12470#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
12471 case DW_AT_HP_block_index:
12472 return "DW_AT_HP_block_index";
c764a876 12473#endif
b7619582
GF
12474 case DW_AT_HP_unmodifiable:
12475 return "DW_AT_HP_unmodifiable";
12476 case DW_AT_HP_actuals_stmt_list:
12477 return "DW_AT_HP_actuals_stmt_list";
12478 case DW_AT_HP_proc_per_section:
12479 return "DW_AT_HP_proc_per_section";
12480 case DW_AT_HP_raw_data_ptr:
12481 return "DW_AT_HP_raw_data_ptr";
12482 case DW_AT_HP_pass_by_reference:
12483 return "DW_AT_HP_pass_by_reference";
12484 case DW_AT_HP_opt_level:
12485 return "DW_AT_HP_opt_level";
12486 case DW_AT_HP_prof_version_id:
12487 return "DW_AT_HP_prof_version_id";
12488 case DW_AT_HP_opt_flags:
12489 return "DW_AT_HP_opt_flags";
12490 case DW_AT_HP_cold_region_low_pc:
12491 return "DW_AT_HP_cold_region_low_pc";
12492 case DW_AT_HP_cold_region_high_pc:
12493 return "DW_AT_HP_cold_region_high_pc";
12494 case DW_AT_HP_all_variables_modifiable:
12495 return "DW_AT_HP_all_variables_modifiable";
12496 case DW_AT_HP_linkage_name:
12497 return "DW_AT_HP_linkage_name";
12498 case DW_AT_HP_prof_flags:
12499 return "DW_AT_HP_prof_flags";
12500 /* GNU extensions. */
c906108c
SS
12501 case DW_AT_sf_names:
12502 return "DW_AT_sf_names";
12503 case DW_AT_src_info:
12504 return "DW_AT_src_info";
12505 case DW_AT_mac_info:
12506 return "DW_AT_mac_info";
12507 case DW_AT_src_coords:
12508 return "DW_AT_src_coords";
12509 case DW_AT_body_begin:
12510 return "DW_AT_body_begin";
12511 case DW_AT_body_end:
12512 return "DW_AT_body_end";
f5f8a009
EZ
12513 case DW_AT_GNU_vector:
12514 return "DW_AT_GNU_vector";
2de00c64
DE
12515 case DW_AT_GNU_odr_signature:
12516 return "DW_AT_GNU_odr_signature";
b7619582
GF
12517 /* VMS extensions. */
12518 case DW_AT_VMS_rtnbeg_pd_address:
12519 return "DW_AT_VMS_rtnbeg_pd_address";
12520 /* UPC extension. */
12521 case DW_AT_upc_threads_scaled:
12522 return "DW_AT_upc_threads_scaled";
12523 /* PGI (STMicroelectronics) extensions. */
12524 case DW_AT_PGI_lbase:
12525 return "DW_AT_PGI_lbase";
12526 case DW_AT_PGI_soffset:
12527 return "DW_AT_PGI_soffset";
12528 case DW_AT_PGI_lstride:
12529 return "DW_AT_PGI_lstride";
c906108c
SS
12530 default:
12531 return "DW_AT_<unknown>";
12532 }
12533}
12534
12535/* Convert a DWARF value form code into its string name. */
12536
12537static char *
aa1ee363 12538dwarf_form_name (unsigned form)
c906108c
SS
12539{
12540 switch (form)
12541 {
12542 case DW_FORM_addr:
12543 return "DW_FORM_addr";
12544 case DW_FORM_block2:
12545 return "DW_FORM_block2";
12546 case DW_FORM_block4:
12547 return "DW_FORM_block4";
12548 case DW_FORM_data2:
12549 return "DW_FORM_data2";
12550 case DW_FORM_data4:
12551 return "DW_FORM_data4";
12552 case DW_FORM_data8:
12553 return "DW_FORM_data8";
12554 case DW_FORM_string:
12555 return "DW_FORM_string";
12556 case DW_FORM_block:
12557 return "DW_FORM_block";
12558 case DW_FORM_block1:
12559 return "DW_FORM_block1";
12560 case DW_FORM_data1:
12561 return "DW_FORM_data1";
12562 case DW_FORM_flag:
12563 return "DW_FORM_flag";
12564 case DW_FORM_sdata:
12565 return "DW_FORM_sdata";
12566 case DW_FORM_strp:
12567 return "DW_FORM_strp";
12568 case DW_FORM_udata:
12569 return "DW_FORM_udata";
12570 case DW_FORM_ref_addr:
12571 return "DW_FORM_ref_addr";
12572 case DW_FORM_ref1:
12573 return "DW_FORM_ref1";
12574 case DW_FORM_ref2:
12575 return "DW_FORM_ref2";
12576 case DW_FORM_ref4:
12577 return "DW_FORM_ref4";
12578 case DW_FORM_ref8:
12579 return "DW_FORM_ref8";
12580 case DW_FORM_ref_udata:
12581 return "DW_FORM_ref_udata";
12582 case DW_FORM_indirect:
12583 return "DW_FORM_indirect";
348e048f
DE
12584 case DW_FORM_sec_offset:
12585 return "DW_FORM_sec_offset";
12586 case DW_FORM_exprloc:
12587 return "DW_FORM_exprloc";
12588 case DW_FORM_flag_present:
12589 return "DW_FORM_flag_present";
55f1336d
TT
12590 case DW_FORM_ref_sig8:
12591 return "DW_FORM_ref_sig8";
c906108c
SS
12592 default:
12593 return "DW_FORM_<unknown>";
12594 }
12595}
12596
12597/* Convert a DWARF stack opcode into its string name. */
12598
9eae7c52 12599const char *
b1bfef65 12600dwarf_stack_op_name (unsigned op)
c906108c
SS
12601{
12602 switch (op)
12603 {
12604 case DW_OP_addr:
12605 return "DW_OP_addr";
12606 case DW_OP_deref:
12607 return "DW_OP_deref";
12608 case DW_OP_const1u:
12609 return "DW_OP_const1u";
12610 case DW_OP_const1s:
12611 return "DW_OP_const1s";
12612 case DW_OP_const2u:
12613 return "DW_OP_const2u";
12614 case DW_OP_const2s:
12615 return "DW_OP_const2s";
12616 case DW_OP_const4u:
12617 return "DW_OP_const4u";
12618 case DW_OP_const4s:
12619 return "DW_OP_const4s";
12620 case DW_OP_const8u:
12621 return "DW_OP_const8u";
12622 case DW_OP_const8s:
12623 return "DW_OP_const8s";
12624 case DW_OP_constu:
12625 return "DW_OP_constu";
12626 case DW_OP_consts:
12627 return "DW_OP_consts";
12628 case DW_OP_dup:
12629 return "DW_OP_dup";
12630 case DW_OP_drop:
12631 return "DW_OP_drop";
12632 case DW_OP_over:
12633 return "DW_OP_over";
12634 case DW_OP_pick:
12635 return "DW_OP_pick";
12636 case DW_OP_swap:
12637 return "DW_OP_swap";
12638 case DW_OP_rot:
12639 return "DW_OP_rot";
12640 case DW_OP_xderef:
12641 return "DW_OP_xderef";
12642 case DW_OP_abs:
12643 return "DW_OP_abs";
12644 case DW_OP_and:
12645 return "DW_OP_and";
12646 case DW_OP_div:
12647 return "DW_OP_div";
12648 case DW_OP_minus:
12649 return "DW_OP_minus";
12650 case DW_OP_mod:
12651 return "DW_OP_mod";
12652 case DW_OP_mul:
12653 return "DW_OP_mul";
12654 case DW_OP_neg:
12655 return "DW_OP_neg";
12656 case DW_OP_not:
12657 return "DW_OP_not";
12658 case DW_OP_or:
12659 return "DW_OP_or";
12660 case DW_OP_plus:
12661 return "DW_OP_plus";
12662 case DW_OP_plus_uconst:
12663 return "DW_OP_plus_uconst";
12664 case DW_OP_shl:
12665 return "DW_OP_shl";
12666 case DW_OP_shr:
12667 return "DW_OP_shr";
12668 case DW_OP_shra:
12669 return "DW_OP_shra";
12670 case DW_OP_xor:
12671 return "DW_OP_xor";
12672 case DW_OP_bra:
12673 return "DW_OP_bra";
12674 case DW_OP_eq:
12675 return "DW_OP_eq";
12676 case DW_OP_ge:
12677 return "DW_OP_ge";
12678 case DW_OP_gt:
12679 return "DW_OP_gt";
12680 case DW_OP_le:
12681 return "DW_OP_le";
12682 case DW_OP_lt:
12683 return "DW_OP_lt";
12684 case DW_OP_ne:
12685 return "DW_OP_ne";
12686 case DW_OP_skip:
12687 return "DW_OP_skip";
12688 case DW_OP_lit0:
12689 return "DW_OP_lit0";
12690 case DW_OP_lit1:
12691 return "DW_OP_lit1";
12692 case DW_OP_lit2:
12693 return "DW_OP_lit2";
12694 case DW_OP_lit3:
12695 return "DW_OP_lit3";
12696 case DW_OP_lit4:
12697 return "DW_OP_lit4";
12698 case DW_OP_lit5:
12699 return "DW_OP_lit5";
12700 case DW_OP_lit6:
12701 return "DW_OP_lit6";
12702 case DW_OP_lit7:
12703 return "DW_OP_lit7";
12704 case DW_OP_lit8:
12705 return "DW_OP_lit8";
12706 case DW_OP_lit9:
12707 return "DW_OP_lit9";
12708 case DW_OP_lit10:
12709 return "DW_OP_lit10";
12710 case DW_OP_lit11:
12711 return "DW_OP_lit11";
12712 case DW_OP_lit12:
12713 return "DW_OP_lit12";
12714 case DW_OP_lit13:
12715 return "DW_OP_lit13";
12716 case DW_OP_lit14:
12717 return "DW_OP_lit14";
12718 case DW_OP_lit15:
12719 return "DW_OP_lit15";
12720 case DW_OP_lit16:
12721 return "DW_OP_lit16";
12722 case DW_OP_lit17:
12723 return "DW_OP_lit17";
12724 case DW_OP_lit18:
12725 return "DW_OP_lit18";
12726 case DW_OP_lit19:
12727 return "DW_OP_lit19";
12728 case DW_OP_lit20:
12729 return "DW_OP_lit20";
12730 case DW_OP_lit21:
12731 return "DW_OP_lit21";
12732 case DW_OP_lit22:
12733 return "DW_OP_lit22";
12734 case DW_OP_lit23:
12735 return "DW_OP_lit23";
12736 case DW_OP_lit24:
12737 return "DW_OP_lit24";
12738 case DW_OP_lit25:
12739 return "DW_OP_lit25";
12740 case DW_OP_lit26:
12741 return "DW_OP_lit26";
12742 case DW_OP_lit27:
12743 return "DW_OP_lit27";
12744 case DW_OP_lit28:
12745 return "DW_OP_lit28";
12746 case DW_OP_lit29:
12747 return "DW_OP_lit29";
12748 case DW_OP_lit30:
12749 return "DW_OP_lit30";
12750 case DW_OP_lit31:
12751 return "DW_OP_lit31";
12752 case DW_OP_reg0:
12753 return "DW_OP_reg0";
12754 case DW_OP_reg1:
12755 return "DW_OP_reg1";
12756 case DW_OP_reg2:
12757 return "DW_OP_reg2";
12758 case DW_OP_reg3:
12759 return "DW_OP_reg3";
12760 case DW_OP_reg4:
12761 return "DW_OP_reg4";
12762 case DW_OP_reg5:
12763 return "DW_OP_reg5";
12764 case DW_OP_reg6:
12765 return "DW_OP_reg6";
12766 case DW_OP_reg7:
12767 return "DW_OP_reg7";
12768 case DW_OP_reg8:
12769 return "DW_OP_reg8";
12770 case DW_OP_reg9:
12771 return "DW_OP_reg9";
12772 case DW_OP_reg10:
12773 return "DW_OP_reg10";
12774 case DW_OP_reg11:
12775 return "DW_OP_reg11";
12776 case DW_OP_reg12:
12777 return "DW_OP_reg12";
12778 case DW_OP_reg13:
12779 return "DW_OP_reg13";
12780 case DW_OP_reg14:
12781 return "DW_OP_reg14";
12782 case DW_OP_reg15:
12783 return "DW_OP_reg15";
12784 case DW_OP_reg16:
12785 return "DW_OP_reg16";
12786 case DW_OP_reg17:
12787 return "DW_OP_reg17";
12788 case DW_OP_reg18:
12789 return "DW_OP_reg18";
12790 case DW_OP_reg19:
12791 return "DW_OP_reg19";
12792 case DW_OP_reg20:
12793 return "DW_OP_reg20";
12794 case DW_OP_reg21:
12795 return "DW_OP_reg21";
12796 case DW_OP_reg22:
12797 return "DW_OP_reg22";
12798 case DW_OP_reg23:
12799 return "DW_OP_reg23";
12800 case DW_OP_reg24:
12801 return "DW_OP_reg24";
12802 case DW_OP_reg25:
12803 return "DW_OP_reg25";
12804 case DW_OP_reg26:
12805 return "DW_OP_reg26";
12806 case DW_OP_reg27:
12807 return "DW_OP_reg27";
12808 case DW_OP_reg28:
12809 return "DW_OP_reg28";
12810 case DW_OP_reg29:
12811 return "DW_OP_reg29";
12812 case DW_OP_reg30:
12813 return "DW_OP_reg30";
12814 case DW_OP_reg31:
12815 return "DW_OP_reg31";
12816 case DW_OP_breg0:
12817 return "DW_OP_breg0";
12818 case DW_OP_breg1:
12819 return "DW_OP_breg1";
12820 case DW_OP_breg2:
12821 return "DW_OP_breg2";
12822 case DW_OP_breg3:
12823 return "DW_OP_breg3";
12824 case DW_OP_breg4:
12825 return "DW_OP_breg4";
12826 case DW_OP_breg5:
12827 return "DW_OP_breg5";
12828 case DW_OP_breg6:
12829 return "DW_OP_breg6";
12830 case DW_OP_breg7:
12831 return "DW_OP_breg7";
12832 case DW_OP_breg8:
12833 return "DW_OP_breg8";
12834 case DW_OP_breg9:
12835 return "DW_OP_breg9";
12836 case DW_OP_breg10:
12837 return "DW_OP_breg10";
12838 case DW_OP_breg11:
12839 return "DW_OP_breg11";
12840 case DW_OP_breg12:
12841 return "DW_OP_breg12";
12842 case DW_OP_breg13:
12843 return "DW_OP_breg13";
12844 case DW_OP_breg14:
12845 return "DW_OP_breg14";
12846 case DW_OP_breg15:
12847 return "DW_OP_breg15";
12848 case DW_OP_breg16:
12849 return "DW_OP_breg16";
12850 case DW_OP_breg17:
12851 return "DW_OP_breg17";
12852 case DW_OP_breg18:
12853 return "DW_OP_breg18";
12854 case DW_OP_breg19:
12855 return "DW_OP_breg19";
12856 case DW_OP_breg20:
12857 return "DW_OP_breg20";
12858 case DW_OP_breg21:
12859 return "DW_OP_breg21";
12860 case DW_OP_breg22:
12861 return "DW_OP_breg22";
12862 case DW_OP_breg23:
12863 return "DW_OP_breg23";
12864 case DW_OP_breg24:
12865 return "DW_OP_breg24";
12866 case DW_OP_breg25:
12867 return "DW_OP_breg25";
12868 case DW_OP_breg26:
12869 return "DW_OP_breg26";
12870 case DW_OP_breg27:
12871 return "DW_OP_breg27";
12872 case DW_OP_breg28:
12873 return "DW_OP_breg28";
12874 case DW_OP_breg29:
12875 return "DW_OP_breg29";
12876 case DW_OP_breg30:
12877 return "DW_OP_breg30";
12878 case DW_OP_breg31:
12879 return "DW_OP_breg31";
12880 case DW_OP_regx:
12881 return "DW_OP_regx";
12882 case DW_OP_fbreg:
12883 return "DW_OP_fbreg";
12884 case DW_OP_bregx:
12885 return "DW_OP_bregx";
12886 case DW_OP_piece:
12887 return "DW_OP_piece";
12888 case DW_OP_deref_size:
12889 return "DW_OP_deref_size";
12890 case DW_OP_xderef_size:
12891 return "DW_OP_xderef_size";
12892 case DW_OP_nop:
12893 return "DW_OP_nop";
b7619582 12894 /* DWARF 3 extensions. */
ed348acc
EZ
12895 case DW_OP_push_object_address:
12896 return "DW_OP_push_object_address";
12897 case DW_OP_call2:
12898 return "DW_OP_call2";
12899 case DW_OP_call4:
12900 return "DW_OP_call4";
12901 case DW_OP_call_ref:
12902 return "DW_OP_call_ref";
b7619582
GF
12903 case DW_OP_form_tls_address:
12904 return "DW_OP_form_tls_address";
12905 case DW_OP_call_frame_cfa:
12906 return "DW_OP_call_frame_cfa";
12907 case DW_OP_bit_piece:
12908 return "DW_OP_bit_piece";
9eae7c52
TT
12909 /* DWARF 4 extensions. */
12910 case DW_OP_implicit_value:
12911 return "DW_OP_implicit_value";
12912 case DW_OP_stack_value:
12913 return "DW_OP_stack_value";
12914 /* GNU extensions. */
ed348acc
EZ
12915 case DW_OP_GNU_push_tls_address:
12916 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
12917 case DW_OP_GNU_uninit:
12918 return "DW_OP_GNU_uninit";
8cf6f0b1
TT
12919 case DW_OP_GNU_implicit_pointer:
12920 return "DW_OP_GNU_implicit_pointer";
c906108c 12921 default:
b1bfef65 12922 return NULL;
c906108c
SS
12923 }
12924}
12925
12926static char *
fba45db2 12927dwarf_bool_name (unsigned mybool)
c906108c
SS
12928{
12929 if (mybool)
12930 return "TRUE";
12931 else
12932 return "FALSE";
12933}
12934
12935/* Convert a DWARF type code into its string name. */
12936
12937static char *
aa1ee363 12938dwarf_type_encoding_name (unsigned enc)
c906108c
SS
12939{
12940 switch (enc)
12941 {
b7619582
GF
12942 case DW_ATE_void:
12943 return "DW_ATE_void";
c906108c
SS
12944 case DW_ATE_address:
12945 return "DW_ATE_address";
12946 case DW_ATE_boolean:
12947 return "DW_ATE_boolean";
12948 case DW_ATE_complex_float:
12949 return "DW_ATE_complex_float";
12950 case DW_ATE_float:
12951 return "DW_ATE_float";
12952 case DW_ATE_signed:
12953 return "DW_ATE_signed";
12954 case DW_ATE_signed_char:
12955 return "DW_ATE_signed_char";
12956 case DW_ATE_unsigned:
12957 return "DW_ATE_unsigned";
12958 case DW_ATE_unsigned_char:
12959 return "DW_ATE_unsigned_char";
b7619582 12960 /* DWARF 3. */
d9fa45fe
DC
12961 case DW_ATE_imaginary_float:
12962 return "DW_ATE_imaginary_float";
b7619582
GF
12963 case DW_ATE_packed_decimal:
12964 return "DW_ATE_packed_decimal";
12965 case DW_ATE_numeric_string:
12966 return "DW_ATE_numeric_string";
12967 case DW_ATE_edited:
12968 return "DW_ATE_edited";
12969 case DW_ATE_signed_fixed:
12970 return "DW_ATE_signed_fixed";
12971 case DW_ATE_unsigned_fixed:
12972 return "DW_ATE_unsigned_fixed";
12973 case DW_ATE_decimal_float:
12974 return "DW_ATE_decimal_float";
75079b2b
TT
12975 /* DWARF 4. */
12976 case DW_ATE_UTF:
12977 return "DW_ATE_UTF";
b7619582
GF
12978 /* HP extensions. */
12979 case DW_ATE_HP_float80:
12980 return "DW_ATE_HP_float80";
12981 case DW_ATE_HP_complex_float80:
12982 return "DW_ATE_HP_complex_float80";
12983 case DW_ATE_HP_float128:
12984 return "DW_ATE_HP_float128";
12985 case DW_ATE_HP_complex_float128:
12986 return "DW_ATE_HP_complex_float128";
12987 case DW_ATE_HP_floathpintel:
12988 return "DW_ATE_HP_floathpintel";
12989 case DW_ATE_HP_imaginary_float80:
12990 return "DW_ATE_HP_imaginary_float80";
12991 case DW_ATE_HP_imaginary_float128:
12992 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
12993 default:
12994 return "DW_ATE_<unknown>";
12995 }
12996}
12997
0963b4bd 12998/* Convert a DWARF call frame info operation to its string name. */
c906108c
SS
12999
13000#if 0
13001static char *
aa1ee363 13002dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
13003{
13004 switch (cfi_opc)
13005 {
13006 case DW_CFA_advance_loc:
13007 return "DW_CFA_advance_loc";
13008 case DW_CFA_offset:
13009 return "DW_CFA_offset";
13010 case DW_CFA_restore:
13011 return "DW_CFA_restore";
13012 case DW_CFA_nop:
13013 return "DW_CFA_nop";
13014 case DW_CFA_set_loc:
13015 return "DW_CFA_set_loc";
13016 case DW_CFA_advance_loc1:
13017 return "DW_CFA_advance_loc1";
13018 case DW_CFA_advance_loc2:
13019 return "DW_CFA_advance_loc2";
13020 case DW_CFA_advance_loc4:
13021 return "DW_CFA_advance_loc4";
13022 case DW_CFA_offset_extended:
13023 return "DW_CFA_offset_extended";
13024 case DW_CFA_restore_extended:
13025 return "DW_CFA_restore_extended";
13026 case DW_CFA_undefined:
13027 return "DW_CFA_undefined";
13028 case DW_CFA_same_value:
13029 return "DW_CFA_same_value";
13030 case DW_CFA_register:
13031 return "DW_CFA_register";
13032 case DW_CFA_remember_state:
13033 return "DW_CFA_remember_state";
13034 case DW_CFA_restore_state:
13035 return "DW_CFA_restore_state";
13036 case DW_CFA_def_cfa:
13037 return "DW_CFA_def_cfa";
13038 case DW_CFA_def_cfa_register:
13039 return "DW_CFA_def_cfa_register";
13040 case DW_CFA_def_cfa_offset:
13041 return "DW_CFA_def_cfa_offset";
b7619582 13042 /* DWARF 3. */
985cb1a3
JM
13043 case DW_CFA_def_cfa_expression:
13044 return "DW_CFA_def_cfa_expression";
13045 case DW_CFA_expression:
13046 return "DW_CFA_expression";
13047 case DW_CFA_offset_extended_sf:
13048 return "DW_CFA_offset_extended_sf";
13049 case DW_CFA_def_cfa_sf:
13050 return "DW_CFA_def_cfa_sf";
13051 case DW_CFA_def_cfa_offset_sf:
13052 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
13053 case DW_CFA_val_offset:
13054 return "DW_CFA_val_offset";
13055 case DW_CFA_val_offset_sf:
13056 return "DW_CFA_val_offset_sf";
13057 case DW_CFA_val_expression:
13058 return "DW_CFA_val_expression";
13059 /* SGI/MIPS specific. */
c906108c
SS
13060 case DW_CFA_MIPS_advance_loc8:
13061 return "DW_CFA_MIPS_advance_loc8";
b7619582 13062 /* GNU extensions. */
985cb1a3
JM
13063 case DW_CFA_GNU_window_save:
13064 return "DW_CFA_GNU_window_save";
13065 case DW_CFA_GNU_args_size:
13066 return "DW_CFA_GNU_args_size";
13067 case DW_CFA_GNU_negative_offset_extended:
13068 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
13069 default:
13070 return "DW_CFA_<unknown>";
13071 }
13072}
13073#endif
13074
f9aca02d 13075static void
d97bc12b 13076dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
13077{
13078 unsigned int i;
13079
d97bc12b
DE
13080 print_spaces (indent, f);
13081 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 13082 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
13083
13084 if (die->parent != NULL)
13085 {
13086 print_spaces (indent, f);
13087 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13088 die->parent->offset);
13089 }
13090
13091 print_spaces (indent, f);
13092 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 13093 dwarf_bool_name (die->child != NULL));
c906108c 13094
d97bc12b
DE
13095 print_spaces (indent, f);
13096 fprintf_unfiltered (f, " attributes:\n");
13097
c906108c
SS
13098 for (i = 0; i < die->num_attrs; ++i)
13099 {
d97bc12b
DE
13100 print_spaces (indent, f);
13101 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
13102 dwarf_attr_name (die->attrs[i].name),
13103 dwarf_form_name (die->attrs[i].form));
d97bc12b 13104
c906108c
SS
13105 switch (die->attrs[i].form)
13106 {
13107 case DW_FORM_ref_addr:
13108 case DW_FORM_addr:
d97bc12b 13109 fprintf_unfiltered (f, "address: ");
5af949e3 13110 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
13111 break;
13112 case DW_FORM_block2:
13113 case DW_FORM_block4:
13114 case DW_FORM_block:
13115 case DW_FORM_block1:
3e43a32a
MS
13116 fprintf_unfiltered (f, "block: size %d",
13117 DW_BLOCK (&die->attrs[i])->size);
c906108c 13118 break;
2dc7f7b3
TT
13119 case DW_FORM_exprloc:
13120 fprintf_unfiltered (f, "expression: size %u",
13121 DW_BLOCK (&die->attrs[i])->size);
13122 break;
10b3939b
DJ
13123 case DW_FORM_ref1:
13124 case DW_FORM_ref2:
13125 case DW_FORM_ref4:
d97bc12b 13126 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
13127 (long) (DW_ADDR (&die->attrs[i])));
13128 break;
c906108c
SS
13129 case DW_FORM_data1:
13130 case DW_FORM_data2:
13131 case DW_FORM_data4:
ce5d95e1 13132 case DW_FORM_data8:
c906108c
SS
13133 case DW_FORM_udata:
13134 case DW_FORM_sdata:
43bbcdc2
PH
13135 fprintf_unfiltered (f, "constant: %s",
13136 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 13137 break;
2dc7f7b3
TT
13138 case DW_FORM_sec_offset:
13139 fprintf_unfiltered (f, "section offset: %s",
13140 pulongest (DW_UNSND (&die->attrs[i])));
13141 break;
55f1336d 13142 case DW_FORM_ref_sig8:
348e048f
DE
13143 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13144 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13145 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
13146 else
13147 fprintf_unfiltered (f, "signatured type, offset: unknown");
13148 break;
c906108c 13149 case DW_FORM_string:
4bdf3d34 13150 case DW_FORM_strp:
8285870a 13151 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 13152 DW_STRING (&die->attrs[i])
8285870a
JK
13153 ? DW_STRING (&die->attrs[i]) : "",
13154 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
13155 break;
13156 case DW_FORM_flag:
13157 if (DW_UNSND (&die->attrs[i]))
d97bc12b 13158 fprintf_unfiltered (f, "flag: TRUE");
c906108c 13159 else
d97bc12b 13160 fprintf_unfiltered (f, "flag: FALSE");
c906108c 13161 break;
2dc7f7b3
TT
13162 case DW_FORM_flag_present:
13163 fprintf_unfiltered (f, "flag: TRUE");
13164 break;
a8329558 13165 case DW_FORM_indirect:
0963b4bd
MS
13166 /* The reader will have reduced the indirect form to
13167 the "base form" so this form should not occur. */
3e43a32a
MS
13168 fprintf_unfiltered (f,
13169 "unexpected attribute form: DW_FORM_indirect");
a8329558 13170 break;
c906108c 13171 default:
d97bc12b 13172 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 13173 die->attrs[i].form);
d97bc12b 13174 break;
c906108c 13175 }
d97bc12b 13176 fprintf_unfiltered (f, "\n");
c906108c
SS
13177 }
13178}
13179
f9aca02d 13180static void
d97bc12b 13181dump_die_for_error (struct die_info *die)
c906108c 13182{
d97bc12b
DE
13183 dump_die_shallow (gdb_stderr, 0, die);
13184}
13185
13186static void
13187dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13188{
13189 int indent = level * 4;
13190
13191 gdb_assert (die != NULL);
13192
13193 if (level >= max_level)
13194 return;
13195
13196 dump_die_shallow (f, indent, die);
13197
13198 if (die->child != NULL)
c906108c 13199 {
d97bc12b
DE
13200 print_spaces (indent, f);
13201 fprintf_unfiltered (f, " Children:");
13202 if (level + 1 < max_level)
13203 {
13204 fprintf_unfiltered (f, "\n");
13205 dump_die_1 (f, level + 1, max_level, die->child);
13206 }
13207 else
13208 {
3e43a32a
MS
13209 fprintf_unfiltered (f,
13210 " [not printed, max nesting level reached]\n");
d97bc12b
DE
13211 }
13212 }
13213
13214 if (die->sibling != NULL && level > 0)
13215 {
13216 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
13217 }
13218}
13219
d97bc12b
DE
13220/* This is called from the pdie macro in gdbinit.in.
13221 It's not static so gcc will keep a copy callable from gdb. */
13222
13223void
13224dump_die (struct die_info *die, int max_level)
13225{
13226 dump_die_1 (gdb_stdlog, 0, max_level, die);
13227}
13228
f9aca02d 13229static void
51545339 13230store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13231{
51545339 13232 void **slot;
c906108c 13233
51545339
DJ
13234 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13235
13236 *slot = die;
c906108c
SS
13237}
13238
93311388
DE
13239static int
13240is_ref_attr (struct attribute *attr)
c906108c 13241{
c906108c
SS
13242 switch (attr->form)
13243 {
13244 case DW_FORM_ref_addr:
c906108c
SS
13245 case DW_FORM_ref1:
13246 case DW_FORM_ref2:
13247 case DW_FORM_ref4:
613e1657 13248 case DW_FORM_ref8:
c906108c 13249 case DW_FORM_ref_udata:
93311388 13250 return 1;
c906108c 13251 default:
93311388 13252 return 0;
c906108c 13253 }
93311388
DE
13254}
13255
13256static unsigned int
13257dwarf2_get_ref_die_offset (struct attribute *attr)
13258{
13259 if (is_ref_attr (attr))
13260 return DW_ADDR (attr);
13261
13262 complaint (&symfile_complaints,
13263 _("unsupported die ref attribute form: '%s'"),
13264 dwarf_form_name (attr->form));
13265 return 0;
c906108c
SS
13266}
13267
43bbcdc2
PH
13268/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13269 * the value held by the attribute is not constant. */
a02abb62 13270
43bbcdc2 13271static LONGEST
a02abb62
JB
13272dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13273{
13274 if (attr->form == DW_FORM_sdata)
13275 return DW_SND (attr);
13276 else if (attr->form == DW_FORM_udata
13277 || attr->form == DW_FORM_data1
13278 || attr->form == DW_FORM_data2
13279 || attr->form == DW_FORM_data4
13280 || attr->form == DW_FORM_data8)
13281 return DW_UNSND (attr);
13282 else
13283 {
3e43a32a
MS
13284 complaint (&symfile_complaints,
13285 _("Attribute value is not a constant (%s)"),
a02abb62
JB
13286 dwarf_form_name (attr->form));
13287 return default_value;
13288 }
13289}
13290
03dd20cc 13291/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
13292 unit and add it to our queue.
13293 The result is non-zero if PER_CU was queued, otherwise the result is zero
13294 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 13295
348e048f 13296static int
03dd20cc
DJ
13297maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13298 struct dwarf2_per_cu_data *per_cu)
13299{
98bfdba5
PA
13300 /* We may arrive here during partial symbol reading, if we need full
13301 DIEs to process an unusual case (e.g. template arguments). Do
13302 not queue PER_CU, just tell our caller to load its DIEs. */
13303 if (dwarf2_per_objfile->reading_partial_symbols)
13304 {
13305 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13306 return 1;
13307 return 0;
13308 }
13309
03dd20cc
DJ
13310 /* Mark the dependence relation so that we don't flush PER_CU
13311 too early. */
13312 dwarf2_add_dependence (this_cu, per_cu);
13313
13314 /* If it's already on the queue, we have nothing to do. */
13315 if (per_cu->queued)
348e048f 13316 return 0;
03dd20cc
DJ
13317
13318 /* If the compilation unit is already loaded, just mark it as
13319 used. */
13320 if (per_cu->cu != NULL)
13321 {
13322 per_cu->cu->last_used = 0;
348e048f 13323 return 0;
03dd20cc
DJ
13324 }
13325
13326 /* Add it to the queue. */
13327 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
13328
13329 return 1;
13330}
13331
13332/* Follow reference or signature attribute ATTR of SRC_DIE.
13333 On entry *REF_CU is the CU of SRC_DIE.
13334 On exit *REF_CU is the CU of the result. */
13335
13336static struct die_info *
13337follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13338 struct dwarf2_cu **ref_cu)
13339{
13340 struct die_info *die;
13341
13342 if (is_ref_attr (attr))
13343 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 13344 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
13345 die = follow_die_sig (src_die, attr, ref_cu);
13346 else
13347 {
13348 dump_die_for_error (src_die);
13349 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13350 (*ref_cu)->objfile->name);
13351 }
13352
13353 return die;
03dd20cc
DJ
13354}
13355
5c631832 13356/* Follow reference OFFSET.
673bfd45
DE
13357 On entry *REF_CU is the CU of the source die referencing OFFSET.
13358 On exit *REF_CU is the CU of the result.
13359 Returns NULL if OFFSET is invalid. */
f504f079 13360
f9aca02d 13361static struct die_info *
5c631832 13362follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 13363{
10b3939b 13364 struct die_info temp_die;
f2f0e013 13365 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 13366
348e048f
DE
13367 gdb_assert (cu->per_cu != NULL);
13368
98bfdba5
PA
13369 target_cu = cu;
13370
348e048f
DE
13371 if (cu->per_cu->from_debug_types)
13372 {
13373 /* .debug_types CUs cannot reference anything outside their CU.
13374 If they need to, they have to reference a signatured type via
55f1336d 13375 DW_FORM_ref_sig8. */
348e048f 13376 if (! offset_in_cu_p (&cu->header, offset))
5c631832 13377 return NULL;
348e048f
DE
13378 }
13379 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
13380 {
13381 struct dwarf2_per_cu_data *per_cu;
9a619af0 13382
45452591 13383 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
13384
13385 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
13386 if (maybe_queue_comp_unit (cu, per_cu))
13387 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 13388
10b3939b
DJ
13389 target_cu = per_cu->cu;
13390 }
98bfdba5
PA
13391 else if (cu->dies == NULL)
13392 {
13393 /* We're loading full DIEs during partial symbol reading. */
13394 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13395 load_full_comp_unit (cu->per_cu, cu->objfile);
13396 }
c906108c 13397
f2f0e013 13398 *ref_cu = target_cu;
51545339 13399 temp_die.offset = offset;
5c631832
JK
13400 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13401}
10b3939b 13402
5c631832
JK
13403/* Follow reference attribute ATTR of SRC_DIE.
13404 On entry *REF_CU is the CU of SRC_DIE.
13405 On exit *REF_CU is the CU of the result. */
13406
13407static struct die_info *
13408follow_die_ref (struct die_info *src_die, struct attribute *attr,
13409 struct dwarf2_cu **ref_cu)
13410{
13411 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13412 struct dwarf2_cu *cu = *ref_cu;
13413 struct die_info *die;
13414
13415 die = follow_die_offset (offset, ref_cu);
13416 if (!die)
13417 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13418 "at 0x%x [in module %s]"),
13419 offset, src_die->offset, cu->objfile->name);
348e048f 13420
5c631832
JK
13421 return die;
13422}
13423
13424/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13425 value is intended for DW_OP_call*. */
13426
13427struct dwarf2_locexpr_baton
13428dwarf2_fetch_die_location_block (unsigned int offset,
8cf6f0b1
TT
13429 struct dwarf2_per_cu_data *per_cu,
13430 CORE_ADDR (*get_frame_pc) (void *baton),
13431 void *baton)
5c631832
JK
13432{
13433 struct dwarf2_cu *cu = per_cu->cu;
13434 struct die_info *die;
13435 struct attribute *attr;
13436 struct dwarf2_locexpr_baton retval;
13437
8cf6f0b1
TT
13438 dw2_setup (per_cu->objfile);
13439
5c631832
JK
13440 die = follow_die_offset (offset, &cu);
13441 if (!die)
13442 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13443 offset, per_cu->cu->objfile->name);
13444
13445 attr = dwarf2_attr (die, DW_AT_location, cu);
13446 if (!attr)
13447 {
13448 /* DWARF: "If there is no such attribute, then there is no effect.". */
13449
13450 retval.data = NULL;
13451 retval.size = 0;
13452 }
8cf6f0b1
TT
13453 else if (attr_form_is_section_offset (attr))
13454 {
13455 struct dwarf2_loclist_baton loclist_baton;
13456 CORE_ADDR pc = (*get_frame_pc) (baton);
13457 size_t size;
13458
13459 fill_in_loclist_baton (cu, &loclist_baton, attr);
13460
13461 retval.data = dwarf2_find_location_expression (&loclist_baton,
13462 &size, pc);
13463 retval.size = size;
13464 }
5c631832
JK
13465 else
13466 {
13467 if (!attr_form_is_block (attr))
13468 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13469 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13470 offset, per_cu->cu->objfile->name);
13471
13472 retval.data = DW_BLOCK (attr)->data;
13473 retval.size = DW_BLOCK (attr)->size;
13474 }
13475 retval.per_cu = cu->per_cu;
13476 return retval;
348e048f
DE
13477}
13478
13479/* Follow the signature attribute ATTR in SRC_DIE.
13480 On entry *REF_CU is the CU of SRC_DIE.
13481 On exit *REF_CU is the CU of the result. */
13482
13483static struct die_info *
13484follow_die_sig (struct die_info *src_die, struct attribute *attr,
13485 struct dwarf2_cu **ref_cu)
13486{
13487 struct objfile *objfile = (*ref_cu)->objfile;
13488 struct die_info temp_die;
13489 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13490 struct dwarf2_cu *sig_cu;
13491 struct die_info *die;
13492
13493 /* sig_type will be NULL if the signatured type is missing from
13494 the debug info. */
13495 if (sig_type == NULL)
13496 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13497 "at 0x%x [in module %s]"),
13498 src_die->offset, objfile->name);
13499
13500 /* If necessary, add it to the queue and load its DIEs. */
13501
13502 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13503 read_signatured_type (objfile, sig_type);
13504
13505 gdb_assert (sig_type->per_cu.cu != NULL);
13506
13507 sig_cu = sig_type->per_cu.cu;
13508 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13509 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13510 if (die)
13511 {
13512 *ref_cu = sig_cu;
13513 return die;
13514 }
13515
3e43a32a
MS
13516 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13517 "from DIE at 0x%x [in module %s]"),
348e048f
DE
13518 sig_type->type_offset, src_die->offset, objfile->name);
13519}
13520
13521/* Given an offset of a signatured type, return its signatured_type. */
13522
13523static struct signatured_type *
13524lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13525{
13526 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13527 unsigned int length, initial_length_size;
13528 unsigned int sig_offset;
13529 struct signatured_type find_entry, *type_sig;
13530
13531 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13532 sig_offset = (initial_length_size
13533 + 2 /*version*/
13534 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13535 + 1 /*address_size*/);
13536 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13537 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13538
13539 /* This is only used to lookup previously recorded types.
13540 If we didn't find it, it's our bug. */
13541 gdb_assert (type_sig != NULL);
13542 gdb_assert (offset == type_sig->offset);
13543
13544 return type_sig;
13545}
13546
13547/* Read in signatured type at OFFSET and build its CU and die(s). */
13548
13549static void
13550read_signatured_type_at_offset (struct objfile *objfile,
13551 unsigned int offset)
13552{
13553 struct signatured_type *type_sig;
13554
be391dca
TT
13555 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13556
348e048f
DE
13557 /* We have the section offset, but we need the signature to do the
13558 hash table lookup. */
13559 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13560
13561 gdb_assert (type_sig->per_cu.cu == NULL);
13562
13563 read_signatured_type (objfile, type_sig);
13564
13565 gdb_assert (type_sig->per_cu.cu != NULL);
13566}
13567
13568/* Read in a signatured type and build its CU and DIEs. */
13569
13570static void
13571read_signatured_type (struct objfile *objfile,
13572 struct signatured_type *type_sig)
13573{
1fd400ff 13574 gdb_byte *types_ptr;
348e048f
DE
13575 struct die_reader_specs reader_specs;
13576 struct dwarf2_cu *cu;
13577 ULONGEST signature;
13578 struct cleanup *back_to, *free_cu_cleanup;
348e048f 13579
1fd400ff
TT
13580 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13581 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13582
348e048f
DE
13583 gdb_assert (type_sig->per_cu.cu == NULL);
13584
9816fde3
JK
13585 cu = xmalloc (sizeof (*cu));
13586 init_one_comp_unit (cu, objfile);
13587
348e048f
DE
13588 type_sig->per_cu.cu = cu;
13589 cu->per_cu = &type_sig->per_cu;
13590
13591 /* If an error occurs while loading, release our storage. */
13592 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13593
13594 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13595 types_ptr, objfile->obfd);
13596 gdb_assert (signature == type_sig->signature);
13597
13598 cu->die_hash
13599 = htab_create_alloc_ex (cu->header.length / 12,
13600 die_hash,
13601 die_eq,
13602 NULL,
13603 &cu->comp_unit_obstack,
13604 hashtab_obstack_allocate,
13605 dummy_obstack_deallocate);
13606
13607 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13608 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13609
13610 init_cu_die_reader (&reader_specs, cu);
13611
13612 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13613 NULL /*parent*/);
13614
13615 /* We try not to read any attributes in this function, because not
13616 all objfiles needed for references have been loaded yet, and symbol
13617 table processing isn't initialized. But we have to set the CU language,
13618 or we won't be able to build types correctly. */
9816fde3 13619 prepare_one_comp_unit (cu, cu->dies);
348e048f
DE
13620
13621 do_cleanups (back_to);
13622
13623 /* We've successfully allocated this compilation unit. Let our caller
13624 clean it up when finished with it. */
13625 discard_cleanups (free_cu_cleanup);
13626
13627 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13628 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
13629}
13630
c906108c
SS
13631/* Decode simple location descriptions.
13632 Given a pointer to a dwarf block that defines a location, compute
13633 the location and return the value.
13634
4cecd739
DJ
13635 NOTE drow/2003-11-18: This function is called in two situations
13636 now: for the address of static or global variables (partial symbols
13637 only) and for offsets into structures which are expected to be
13638 (more or less) constant. The partial symbol case should go away,
13639 and only the constant case should remain. That will let this
13640 function complain more accurately. A few special modes are allowed
13641 without complaint for global variables (for instance, global
13642 register values and thread-local values).
c906108c
SS
13643
13644 A location description containing no operations indicates that the
4cecd739 13645 object is optimized out. The return value is 0 for that case.
6b992462
DJ
13646 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13647 callers will only want a very basic result and this can become a
13648 complaint.
c906108c 13649
d53d4ac5 13650 Note that stack[0] is unused except as a default error return. */
c906108c
SS
13651
13652static CORE_ADDR
e7c27a73 13653decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 13654{
e7c27a73 13655 struct objfile *objfile = cu->objfile;
c906108c
SS
13656 int i;
13657 int size = blk->size;
fe1b8b76 13658 gdb_byte *data = blk->data;
c906108c
SS
13659 CORE_ADDR stack[64];
13660 int stacki;
13661 unsigned int bytes_read, unsnd;
fe1b8b76 13662 gdb_byte op;
c906108c
SS
13663
13664 i = 0;
13665 stacki = 0;
13666 stack[stacki] = 0;
d53d4ac5 13667 stack[++stacki] = 0;
c906108c
SS
13668
13669 while (i < size)
13670 {
c906108c
SS
13671 op = data[i++];
13672 switch (op)
13673 {
f1bea926
JM
13674 case DW_OP_lit0:
13675 case DW_OP_lit1:
13676 case DW_OP_lit2:
13677 case DW_OP_lit3:
13678 case DW_OP_lit4:
13679 case DW_OP_lit5:
13680 case DW_OP_lit6:
13681 case DW_OP_lit7:
13682 case DW_OP_lit8:
13683 case DW_OP_lit9:
13684 case DW_OP_lit10:
13685 case DW_OP_lit11:
13686 case DW_OP_lit12:
13687 case DW_OP_lit13:
13688 case DW_OP_lit14:
13689 case DW_OP_lit15:
13690 case DW_OP_lit16:
13691 case DW_OP_lit17:
13692 case DW_OP_lit18:
13693 case DW_OP_lit19:
13694 case DW_OP_lit20:
13695 case DW_OP_lit21:
13696 case DW_OP_lit22:
13697 case DW_OP_lit23:
13698 case DW_OP_lit24:
13699 case DW_OP_lit25:
13700 case DW_OP_lit26:
13701 case DW_OP_lit27:
13702 case DW_OP_lit28:
13703 case DW_OP_lit29:
13704 case DW_OP_lit30:
13705 case DW_OP_lit31:
13706 stack[++stacki] = op - DW_OP_lit0;
13707 break;
13708
c906108c
SS
13709 case DW_OP_reg0:
13710 case DW_OP_reg1:
13711 case DW_OP_reg2:
13712 case DW_OP_reg3:
13713 case DW_OP_reg4:
13714 case DW_OP_reg5:
13715 case DW_OP_reg6:
13716 case DW_OP_reg7:
13717 case DW_OP_reg8:
13718 case DW_OP_reg9:
13719 case DW_OP_reg10:
13720 case DW_OP_reg11:
13721 case DW_OP_reg12:
13722 case DW_OP_reg13:
13723 case DW_OP_reg14:
13724 case DW_OP_reg15:
13725 case DW_OP_reg16:
13726 case DW_OP_reg17:
13727 case DW_OP_reg18:
13728 case DW_OP_reg19:
13729 case DW_OP_reg20:
13730 case DW_OP_reg21:
13731 case DW_OP_reg22:
13732 case DW_OP_reg23:
13733 case DW_OP_reg24:
13734 case DW_OP_reg25:
13735 case DW_OP_reg26:
13736 case DW_OP_reg27:
13737 case DW_OP_reg28:
13738 case DW_OP_reg29:
13739 case DW_OP_reg30:
13740 case DW_OP_reg31:
c906108c 13741 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
13742 if (i < size)
13743 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13744 break;
13745
13746 case DW_OP_regx:
c906108c
SS
13747 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13748 i += bytes_read;
c906108c 13749 stack[++stacki] = unsnd;
4cecd739
DJ
13750 if (i < size)
13751 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13752 break;
13753
13754 case DW_OP_addr:
107d2387 13755 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 13756 cu, &bytes_read);
107d2387 13757 i += bytes_read;
c906108c
SS
13758 break;
13759
13760 case DW_OP_const1u:
13761 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13762 i += 1;
13763 break;
13764
13765 case DW_OP_const1s:
13766 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13767 i += 1;
13768 break;
13769
13770 case DW_OP_const2u:
13771 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13772 i += 2;
13773 break;
13774
13775 case DW_OP_const2s:
13776 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13777 i += 2;
13778 break;
13779
13780 case DW_OP_const4u:
13781 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13782 i += 4;
13783 break;
13784
13785 case DW_OP_const4s:
13786 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13787 i += 4;
13788 break;
13789
13790 case DW_OP_constu:
13791 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 13792 &bytes_read);
c906108c
SS
13793 i += bytes_read;
13794 break;
13795
13796 case DW_OP_consts:
13797 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13798 i += bytes_read;
13799 break;
13800
f1bea926
JM
13801 case DW_OP_dup:
13802 stack[stacki + 1] = stack[stacki];
13803 stacki++;
13804 break;
13805
c906108c
SS
13806 case DW_OP_plus:
13807 stack[stacki - 1] += stack[stacki];
13808 stacki--;
13809 break;
13810
13811 case DW_OP_plus_uconst:
3e43a32a
MS
13812 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13813 &bytes_read);
c906108c
SS
13814 i += bytes_read;
13815 break;
13816
13817 case DW_OP_minus:
f1bea926 13818 stack[stacki - 1] -= stack[stacki];
c906108c
SS
13819 stacki--;
13820 break;
13821
7a292a7a 13822 case DW_OP_deref:
7a292a7a 13823 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
13824 this using GDB's address_class enum. This is valid for partial
13825 global symbols, although the variable's address will be bogus
13826 in the psymtab. */
7a292a7a 13827 if (i < size)
4d3c2250 13828 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
13829 break;
13830
9d774e44 13831 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
13832 /* The top of the stack has the offset from the beginning
13833 of the thread control block at which the variable is located. */
13834 /* Nothing should follow this operator, so the top of stack would
13835 be returned. */
4cecd739
DJ
13836 /* This is valid for partial global symbols, but the variable's
13837 address will be bogus in the psymtab. */
9d774e44 13838 if (i < size)
4d3c2250 13839 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
13840 break;
13841
42be36b3
CT
13842 case DW_OP_GNU_uninit:
13843 break;
13844
c906108c 13845 default:
b1bfef65
TT
13846 {
13847 const char *name = dwarf_stack_op_name (op);
13848
13849 if (name)
13850 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13851 name);
13852 else
13853 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
13854 op);
13855 }
13856
c906108c
SS
13857 return (stack[stacki]);
13858 }
d53d4ac5
TT
13859
13860 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13861 outside of the allocated space. Also enforce minimum>0. */
13862 if (stacki >= ARRAY_SIZE (stack) - 1)
13863 {
13864 complaint (&symfile_complaints,
13865 _("location description stack overflow"));
13866 return 0;
13867 }
13868
13869 if (stacki <= 0)
13870 {
13871 complaint (&symfile_complaints,
13872 _("location description stack underflow"));
13873 return 0;
13874 }
c906108c
SS
13875 }
13876 return (stack[stacki]);
13877}
13878
13879/* memory allocation interface */
13880
c906108c 13881static struct dwarf_block *
7b5a2f43 13882dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
13883{
13884 struct dwarf_block *blk;
13885
13886 blk = (struct dwarf_block *)
7b5a2f43 13887 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
13888 return (blk);
13889}
13890
13891static struct abbrev_info *
f3dd6933 13892dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
13893{
13894 struct abbrev_info *abbrev;
13895
f3dd6933
DJ
13896 abbrev = (struct abbrev_info *)
13897 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
13898 memset (abbrev, 0, sizeof (struct abbrev_info));
13899 return (abbrev);
13900}
13901
13902static struct die_info *
b60c80d6 13903dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
13904{
13905 struct die_info *die;
b60c80d6
DJ
13906 size_t size = sizeof (struct die_info);
13907
13908 if (num_attrs > 1)
13909 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 13910
b60c80d6 13911 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
13912 memset (die, 0, sizeof (struct die_info));
13913 return (die);
13914}
2e276125
JB
13915
13916\f
13917/* Macro support. */
13918
2e276125
JB
13919/* Return the full name of file number I in *LH's file name table.
13920 Use COMP_DIR as the name of the current directory of the
13921 compilation. The result is allocated using xmalloc; the caller is
13922 responsible for freeing it. */
13923static char *
13924file_full_name (int file, struct line_header *lh, const char *comp_dir)
13925{
6a83a1e6
EZ
13926 /* Is the file number a valid index into the line header's file name
13927 table? Remember that file numbers start with one, not zero. */
13928 if (1 <= file && file <= lh->num_file_names)
13929 {
13930 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 13931
6a83a1e6
EZ
13932 if (IS_ABSOLUTE_PATH (fe->name))
13933 return xstrdup (fe->name);
13934 else
13935 {
13936 const char *dir;
13937 int dir_len;
13938 char *full_name;
13939
13940 if (fe->dir_index)
13941 dir = lh->include_dirs[fe->dir_index - 1];
13942 else
13943 dir = comp_dir;
13944
13945 if (dir)
13946 {
13947 dir_len = strlen (dir);
13948 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13949 strcpy (full_name, dir);
13950 full_name[dir_len] = '/';
13951 strcpy (full_name + dir_len + 1, fe->name);
13952 return full_name;
13953 }
13954 else
13955 return xstrdup (fe->name);
13956 }
13957 }
2e276125
JB
13958 else
13959 {
6a83a1e6
EZ
13960 /* The compiler produced a bogus file number. We can at least
13961 record the macro definitions made in the file, even if we
13962 won't be able to find the file by name. */
13963 char fake_name[80];
9a619af0 13964
6a83a1e6 13965 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 13966
6e70227d 13967 complaint (&symfile_complaints,
6a83a1e6
EZ
13968 _("bad file number in macro information (%d)"),
13969 file);
2e276125 13970
6a83a1e6 13971 return xstrdup (fake_name);
2e276125
JB
13972 }
13973}
13974
13975
13976static struct macro_source_file *
13977macro_start_file (int file, int line,
13978 struct macro_source_file *current_file,
13979 const char *comp_dir,
13980 struct line_header *lh, struct objfile *objfile)
13981{
13982 /* The full name of this source file. */
13983 char *full_name = file_full_name (file, lh, comp_dir);
13984
13985 /* We don't create a macro table for this compilation unit
13986 at all until we actually get a filename. */
13987 if (! pending_macros)
4a146b47 13988 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 13989 objfile->macro_cache);
2e276125
JB
13990
13991 if (! current_file)
13992 /* If we have no current file, then this must be the start_file
13993 directive for the compilation unit's main source file. */
13994 current_file = macro_set_main (pending_macros, full_name);
13995 else
13996 current_file = macro_include (current_file, line, full_name);
13997
13998 xfree (full_name);
6e70227d 13999
2e276125
JB
14000 return current_file;
14001}
14002
14003
14004/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14005 followed by a null byte. */
14006static char *
14007copy_string (const char *buf, int len)
14008{
14009 char *s = xmalloc (len + 1);
9a619af0 14010
2e276125
JB
14011 memcpy (s, buf, len);
14012 s[len] = '\0';
2e276125
JB
14013 return s;
14014}
14015
14016
14017static const char *
14018consume_improper_spaces (const char *p, const char *body)
14019{
14020 if (*p == ' ')
14021 {
4d3c2250 14022 complaint (&symfile_complaints,
3e43a32a
MS
14023 _("macro definition contains spaces "
14024 "in formal argument list:\n`%s'"),
4d3c2250 14025 body);
2e276125
JB
14026
14027 while (*p == ' ')
14028 p++;
14029 }
14030
14031 return p;
14032}
14033
14034
14035static void
14036parse_macro_definition (struct macro_source_file *file, int line,
14037 const char *body)
14038{
14039 const char *p;
14040
14041 /* The body string takes one of two forms. For object-like macro
14042 definitions, it should be:
14043
14044 <macro name> " " <definition>
14045
14046 For function-like macro definitions, it should be:
14047
14048 <macro name> "() " <definition>
14049 or
14050 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14051
14052 Spaces may appear only where explicitly indicated, and in the
14053 <definition>.
14054
14055 The Dwarf 2 spec says that an object-like macro's name is always
14056 followed by a space, but versions of GCC around March 2002 omit
6e70227d 14057 the space when the macro's definition is the empty string.
2e276125
JB
14058
14059 The Dwarf 2 spec says that there should be no spaces between the
14060 formal arguments in a function-like macro's formal argument list,
14061 but versions of GCC around March 2002 include spaces after the
14062 commas. */
14063
14064
14065 /* Find the extent of the macro name. The macro name is terminated
14066 by either a space or null character (for an object-like macro) or
14067 an opening paren (for a function-like macro). */
14068 for (p = body; *p; p++)
14069 if (*p == ' ' || *p == '(')
14070 break;
14071
14072 if (*p == ' ' || *p == '\0')
14073 {
14074 /* It's an object-like macro. */
14075 int name_len = p - body;
14076 char *name = copy_string (body, name_len);
14077 const char *replacement;
14078
14079 if (*p == ' ')
14080 replacement = body + name_len + 1;
14081 else
14082 {
4d3c2250 14083 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14084 replacement = body + name_len;
14085 }
6e70227d 14086
2e276125
JB
14087 macro_define_object (file, line, name, replacement);
14088
14089 xfree (name);
14090 }
14091 else if (*p == '(')
14092 {
14093 /* It's a function-like macro. */
14094 char *name = copy_string (body, p - body);
14095 int argc = 0;
14096 int argv_size = 1;
14097 char **argv = xmalloc (argv_size * sizeof (*argv));
14098
14099 p++;
14100
14101 p = consume_improper_spaces (p, body);
14102
14103 /* Parse the formal argument list. */
14104 while (*p && *p != ')')
14105 {
14106 /* Find the extent of the current argument name. */
14107 const char *arg_start = p;
14108
14109 while (*p && *p != ',' && *p != ')' && *p != ' ')
14110 p++;
14111
14112 if (! *p || p == arg_start)
4d3c2250 14113 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14114 else
14115 {
14116 /* Make sure argv has room for the new argument. */
14117 if (argc >= argv_size)
14118 {
14119 argv_size *= 2;
14120 argv = xrealloc (argv, argv_size * sizeof (*argv));
14121 }
14122
14123 argv[argc++] = copy_string (arg_start, p - arg_start);
14124 }
14125
14126 p = consume_improper_spaces (p, body);
14127
14128 /* Consume the comma, if present. */
14129 if (*p == ',')
14130 {
14131 p++;
14132
14133 p = consume_improper_spaces (p, body);
14134 }
14135 }
14136
14137 if (*p == ')')
14138 {
14139 p++;
14140
14141 if (*p == ' ')
14142 /* Perfectly formed definition, no complaints. */
14143 macro_define_function (file, line, name,
6e70227d 14144 argc, (const char **) argv,
2e276125
JB
14145 p + 1);
14146 else if (*p == '\0')
14147 {
14148 /* Complain, but do define it. */
4d3c2250 14149 dwarf2_macro_malformed_definition_complaint (body);
2e276125 14150 macro_define_function (file, line, name,
6e70227d 14151 argc, (const char **) argv,
2e276125
JB
14152 p);
14153 }
14154 else
14155 /* Just complain. */
4d3c2250 14156 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14157 }
14158 else
14159 /* Just complain. */
4d3c2250 14160 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14161
14162 xfree (name);
14163 {
14164 int i;
14165
14166 for (i = 0; i < argc; i++)
14167 xfree (argv[i]);
14168 }
14169 xfree (argv);
14170 }
14171 else
4d3c2250 14172 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14173}
14174
14175
14176static void
14177dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14178 char *comp_dir, bfd *abfd,
e7c27a73 14179 struct dwarf2_cu *cu)
2e276125 14180{
fe1b8b76 14181 gdb_byte *mac_ptr, *mac_end;
2e276125 14182 struct macro_source_file *current_file = 0;
757a13d0
JK
14183 enum dwarf_macinfo_record_type macinfo_type;
14184 int at_commandline;
2e276125 14185
be391dca
TT
14186 dwarf2_read_section (dwarf2_per_objfile->objfile,
14187 &dwarf2_per_objfile->macinfo);
dce234bc 14188 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 14189 {
e2e0b3e5 14190 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
14191 return;
14192 }
14193
757a13d0
JK
14194 /* First pass: Find the name of the base filename.
14195 This filename is needed in order to process all macros whose definition
14196 (or undefinition) comes from the command line. These macros are defined
14197 before the first DW_MACINFO_start_file entry, and yet still need to be
14198 associated to the base file.
14199
14200 To determine the base file name, we scan the macro definitions until we
14201 reach the first DW_MACINFO_start_file entry. We then initialize
14202 CURRENT_FILE accordingly so that any macro definition found before the
14203 first DW_MACINFO_start_file can still be associated to the base file. */
14204
dce234bc
PP
14205 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14206 mac_end = dwarf2_per_objfile->macinfo.buffer
14207 + dwarf2_per_objfile->macinfo.size;
2e276125 14208
757a13d0 14209 do
2e276125 14210 {
2e276125
JB
14211 /* Do we at least have room for a macinfo type byte? */
14212 if (mac_ptr >= mac_end)
14213 {
757a13d0 14214 /* Complaint is printed during the second pass as GDB will probably
3e43a32a
MS
14215 stop the first pass earlier upon finding
14216 DW_MACINFO_start_file. */
757a13d0 14217 break;
2e276125
JB
14218 }
14219
14220 macinfo_type = read_1_byte (abfd, mac_ptr);
14221 mac_ptr++;
14222
14223 switch (macinfo_type)
14224 {
14225 /* A zero macinfo type indicates the end of the macro
14226 information. */
14227 case 0:
757a13d0
JK
14228 break;
14229
14230 case DW_MACINFO_define:
14231 case DW_MACINFO_undef:
14232 /* Only skip the data by MAC_PTR. */
14233 {
14234 unsigned int bytes_read;
14235
14236 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14237 mac_ptr += bytes_read;
9b1c24c8 14238 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14239 mac_ptr += bytes_read;
14240 }
14241 break;
14242
14243 case DW_MACINFO_start_file:
14244 {
14245 unsigned int bytes_read;
14246 int line, file;
14247
14248 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14249 mac_ptr += bytes_read;
14250 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14251 mac_ptr += bytes_read;
14252
3e43a32a
MS
14253 current_file = macro_start_file (file, line, current_file,
14254 comp_dir, lh, cu->objfile);
757a13d0
JK
14255 }
14256 break;
14257
14258 case DW_MACINFO_end_file:
14259 /* No data to skip by MAC_PTR. */
14260 break;
14261
14262 case DW_MACINFO_vendor_ext:
14263 /* Only skip the data by MAC_PTR. */
14264 {
14265 unsigned int bytes_read;
14266
14267 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14268 mac_ptr += bytes_read;
9b1c24c8 14269 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14270 mac_ptr += bytes_read;
14271 }
14272 break;
14273
14274 default:
14275 break;
14276 }
14277 } while (macinfo_type != 0 && current_file == NULL);
14278
14279 /* Second pass: Process all entries.
14280
14281 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14282 command-line macro definitions/undefinitions. This flag is unset when we
14283 reach the first DW_MACINFO_start_file entry. */
14284
dce234bc 14285 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
14286
14287 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14288 GDB is still reading the definitions from command line. First
14289 DW_MACINFO_start_file will need to be ignored as it was already executed
14290 to create CURRENT_FILE for the main source holding also the command line
14291 definitions. On first met DW_MACINFO_start_file this flag is reset to
14292 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14293
14294 at_commandline = 1;
14295
14296 do
14297 {
14298 /* Do we at least have room for a macinfo type byte? */
14299 if (mac_ptr >= mac_end)
14300 {
14301 dwarf2_macros_too_long_complaint ();
14302 break;
14303 }
14304
14305 macinfo_type = read_1_byte (abfd, mac_ptr);
14306 mac_ptr++;
14307
14308 switch (macinfo_type)
14309 {
14310 /* A zero macinfo type indicates the end of the macro
14311 information. */
14312 case 0:
14313 break;
2e276125
JB
14314
14315 case DW_MACINFO_define:
14316 case DW_MACINFO_undef:
14317 {
891d2f0b 14318 unsigned int bytes_read;
2e276125
JB
14319 int line;
14320 char *body;
14321
14322 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14323 mac_ptr += bytes_read;
9b1c24c8 14324 body = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14325 mac_ptr += bytes_read;
14326
14327 if (! current_file)
757a13d0
JK
14328 {
14329 /* DWARF violation as no main source is present. */
14330 complaint (&symfile_complaints,
14331 _("debug info with no main source gives macro %s "
14332 "on line %d: %s"),
6e70227d
DE
14333 macinfo_type == DW_MACINFO_define ?
14334 _("definition") :
905e0470
PM
14335 macinfo_type == DW_MACINFO_undef ?
14336 _("undefinition") :
14337 _("something-or-other"), line, body);
757a13d0
JK
14338 break;
14339 }
3e43a32a
MS
14340 if ((line == 0 && !at_commandline)
14341 || (line != 0 && at_commandline))
4d3c2250 14342 complaint (&symfile_complaints,
757a13d0
JK
14343 _("debug info gives %s macro %s with %s line %d: %s"),
14344 at_commandline ? _("command-line") : _("in-file"),
905e0470 14345 macinfo_type == DW_MACINFO_define ?
6e70227d 14346 _("definition") :
905e0470
PM
14347 macinfo_type == DW_MACINFO_undef ?
14348 _("undefinition") :
14349 _("something-or-other"),
757a13d0
JK
14350 line == 0 ? _("zero") : _("non-zero"), line, body);
14351
14352 if (macinfo_type == DW_MACINFO_define)
14353 parse_macro_definition (current_file, line, body);
14354 else if (macinfo_type == DW_MACINFO_undef)
14355 macro_undef (current_file, line, body);
2e276125
JB
14356 }
14357 break;
14358
14359 case DW_MACINFO_start_file:
14360 {
891d2f0b 14361 unsigned int bytes_read;
2e276125
JB
14362 int line, file;
14363
14364 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14365 mac_ptr += bytes_read;
14366 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14367 mac_ptr += bytes_read;
14368
3e43a32a
MS
14369 if ((line == 0 && !at_commandline)
14370 || (line != 0 && at_commandline))
757a13d0
JK
14371 complaint (&symfile_complaints,
14372 _("debug info gives source %d included "
14373 "from %s at %s line %d"),
14374 file, at_commandline ? _("command-line") : _("file"),
14375 line == 0 ? _("zero") : _("non-zero"), line);
14376
14377 if (at_commandline)
14378 {
14379 /* This DW_MACINFO_start_file was executed in the pass one. */
14380 at_commandline = 0;
14381 }
14382 else
14383 current_file = macro_start_file (file, line,
14384 current_file, comp_dir,
14385 lh, cu->objfile);
2e276125
JB
14386 }
14387 break;
14388
14389 case DW_MACINFO_end_file:
14390 if (! current_file)
4d3c2250 14391 complaint (&symfile_complaints,
3e43a32a
MS
14392 _("macro debug info has an unmatched "
14393 "`close_file' directive"));
2e276125
JB
14394 else
14395 {
14396 current_file = current_file->included_by;
14397 if (! current_file)
14398 {
14399 enum dwarf_macinfo_record_type next_type;
14400
14401 /* GCC circa March 2002 doesn't produce the zero
14402 type byte marking the end of the compilation
14403 unit. Complain if it's not there, but exit no
14404 matter what. */
14405
14406 /* Do we at least have room for a macinfo type byte? */
14407 if (mac_ptr >= mac_end)
14408 {
4d3c2250 14409 dwarf2_macros_too_long_complaint ();
2e276125
JB
14410 return;
14411 }
14412
14413 /* We don't increment mac_ptr here, so this is just
14414 a look-ahead. */
14415 next_type = read_1_byte (abfd, mac_ptr);
14416 if (next_type != 0)
4d3c2250 14417 complaint (&symfile_complaints,
3e43a32a
MS
14418 _("no terminating 0-type entry for "
14419 "macros in `.debug_macinfo' section"));
2e276125
JB
14420
14421 return;
14422 }
14423 }
14424 break;
14425
14426 case DW_MACINFO_vendor_ext:
14427 {
891d2f0b 14428 unsigned int bytes_read;
2e276125 14429 int constant;
2e276125
JB
14430
14431 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14432 mac_ptr += bytes_read;
e8e80198 14433 read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14434 mac_ptr += bytes_read;
14435
14436 /* We don't recognize any vendor extensions. */
14437 }
14438 break;
14439 }
757a13d0 14440 } while (macinfo_type != 0);
2e276125 14441}
8e19ed76
PS
14442
14443/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 14444 if so return true else false. */
8e19ed76
PS
14445static int
14446attr_form_is_block (struct attribute *attr)
14447{
14448 return (attr == NULL ? 0 :
14449 attr->form == DW_FORM_block1
14450 || attr->form == DW_FORM_block2
14451 || attr->form == DW_FORM_block4
2dc7f7b3
TT
14452 || attr->form == DW_FORM_block
14453 || attr->form == DW_FORM_exprloc);
8e19ed76 14454}
4c2df51b 14455
c6a0999f
JB
14456/* Return non-zero if ATTR's value is a section offset --- classes
14457 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14458 You may use DW_UNSND (attr) to retrieve such offsets.
14459
14460 Section 7.5.4, "Attribute Encodings", explains that no attribute
14461 may have a value that belongs to more than one of these classes; it
14462 would be ambiguous if we did, because we use the same forms for all
14463 of them. */
3690dd37
JB
14464static int
14465attr_form_is_section_offset (struct attribute *attr)
14466{
14467 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
14468 || attr->form == DW_FORM_data8
14469 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
14470}
14471
14472
14473/* Return non-zero if ATTR's value falls in the 'constant' class, or
14474 zero otherwise. When this function returns true, you can apply
14475 dwarf2_get_attr_constant_value to it.
14476
14477 However, note that for some attributes you must check
14478 attr_form_is_section_offset before using this test. DW_FORM_data4
14479 and DW_FORM_data8 are members of both the constant class, and of
14480 the classes that contain offsets into other debug sections
14481 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14482 that, if an attribute's can be either a constant or one of the
14483 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14484 taken as section offsets, not constants. */
14485static int
14486attr_form_is_constant (struct attribute *attr)
14487{
14488 switch (attr->form)
14489 {
14490 case DW_FORM_sdata:
14491 case DW_FORM_udata:
14492 case DW_FORM_data1:
14493 case DW_FORM_data2:
14494 case DW_FORM_data4:
14495 case DW_FORM_data8:
14496 return 1;
14497 default:
14498 return 0;
14499 }
14500}
14501
8cf6f0b1
TT
14502/* A helper function that fills in a dwarf2_loclist_baton. */
14503
14504static void
14505fill_in_loclist_baton (struct dwarf2_cu *cu,
14506 struct dwarf2_loclist_baton *baton,
14507 struct attribute *attr)
14508{
14509 dwarf2_read_section (dwarf2_per_objfile->objfile,
14510 &dwarf2_per_objfile->loc);
14511
14512 baton->per_cu = cu->per_cu;
14513 gdb_assert (baton->per_cu);
14514 /* We don't know how long the location list is, but make sure we
14515 don't run off the edge of the section. */
14516 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14517 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14518 baton->base_address = cu->base_address;
14519}
14520
4c2df51b
DJ
14521static void
14522dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 14523 struct dwarf2_cu *cu)
4c2df51b 14524{
3690dd37 14525 if (attr_form_is_section_offset (attr)
99bcc461
DJ
14526 /* ".debug_loc" may not exist at all, or the offset may be outside
14527 the section. If so, fall through to the complaint in the
14528 other branch. */
9e0ac564
TT
14529 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
14530 &dwarf2_per_objfile->loc))
4c2df51b 14531 {
0d53c4c4 14532 struct dwarf2_loclist_baton *baton;
4c2df51b 14533
4a146b47 14534 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14535 sizeof (struct dwarf2_loclist_baton));
4c2df51b 14536
8cf6f0b1 14537 fill_in_loclist_baton (cu, baton, attr);
be391dca 14538
d00adf39 14539 if (cu->base_known == 0)
0d53c4c4 14540 complaint (&symfile_complaints,
3e43a32a
MS
14541 _("Location list used without "
14542 "specifying the CU base address."));
4c2df51b 14543
768a979c 14544 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
14545 SYMBOL_LOCATION_BATON (sym) = baton;
14546 }
14547 else
14548 {
14549 struct dwarf2_locexpr_baton *baton;
14550
4a146b47 14551 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14552 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
14553 baton->per_cu = cu->per_cu;
14554 gdb_assert (baton->per_cu);
0d53c4c4
DJ
14555
14556 if (attr_form_is_block (attr))
14557 {
14558 /* Note that we're just copying the block's data pointer
14559 here, not the actual data. We're still pointing into the
6502dd73
DJ
14560 info_buffer for SYM's objfile; right now we never release
14561 that buffer, but when we do clean up properly this may
14562 need to change. */
0d53c4c4
DJ
14563 baton->size = DW_BLOCK (attr)->size;
14564 baton->data = DW_BLOCK (attr)->data;
14565 }
14566 else
14567 {
14568 dwarf2_invalid_attrib_class_complaint ("location description",
14569 SYMBOL_NATURAL_NAME (sym));
14570 baton->size = 0;
14571 baton->data = NULL;
14572 }
6e70227d 14573
768a979c 14574 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
14575 SYMBOL_LOCATION_BATON (sym) = baton;
14576 }
4c2df51b 14577}
6502dd73 14578
9aa1f1e3
TT
14579/* Return the OBJFILE associated with the compilation unit CU. If CU
14580 came from a separate debuginfo file, then the master objfile is
14581 returned. */
ae0d2f24
UW
14582
14583struct objfile *
14584dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14585{
9291a0cd 14586 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14587
14588 /* Return the master objfile, so that we can report and look up the
14589 correct file containing this variable. */
14590 if (objfile->separate_debug_objfile_backlink)
14591 objfile = objfile->separate_debug_objfile_backlink;
14592
14593 return objfile;
14594}
14595
14596/* Return the address size given in the compilation unit header for CU. */
14597
14598CORE_ADDR
14599dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14600{
14601 if (per_cu->cu)
14602 return per_cu->cu->header.addr_size;
14603 else
14604 {
14605 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14606 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14607 struct dwarf2_per_objfile *per_objfile
14608 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 14609 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 14610 struct comp_unit_head cu_header;
9a619af0 14611
ae0d2f24
UW
14612 memset (&cu_header, 0, sizeof cu_header);
14613 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14614 return cu_header.addr_size;
14615 }
14616}
14617
9eae7c52
TT
14618/* Return the offset size given in the compilation unit header for CU. */
14619
14620int
14621dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14622{
14623 if (per_cu->cu)
14624 return per_cu->cu->header.offset_size;
14625 else
14626 {
14627 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14628 struct objfile *objfile = per_cu->objfile;
9eae7c52
TT
14629 struct dwarf2_per_objfile *per_objfile
14630 = objfile_data (objfile, dwarf2_objfile_data_key);
14631 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14632 struct comp_unit_head cu_header;
14633
14634 memset (&cu_header, 0, sizeof cu_header);
14635 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14636 return cu_header.offset_size;
14637 }
14638}
14639
9aa1f1e3
TT
14640/* Return the text offset of the CU. The returned offset comes from
14641 this CU's objfile. If this objfile came from a separate debuginfo
14642 file, then the offset may be different from the corresponding
14643 offset in the parent objfile. */
14644
14645CORE_ADDR
14646dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14647{
bb3fa9d0 14648 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
14649
14650 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14651}
14652
348e048f
DE
14653/* Locate the .debug_info compilation unit from CU's objfile which contains
14654 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
14655
14656static struct dwarf2_per_cu_data *
c764a876 14657dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
14658 struct objfile *objfile)
14659{
14660 struct dwarf2_per_cu_data *this_cu;
14661 int low, high;
14662
ae038cb0
DJ
14663 low = 0;
14664 high = dwarf2_per_objfile->n_comp_units - 1;
14665 while (high > low)
14666 {
14667 int mid = low + (high - low) / 2;
9a619af0 14668
ae038cb0
DJ
14669 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14670 high = mid;
14671 else
14672 low = mid + 1;
14673 }
14674 gdb_assert (low == high);
14675 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14676 {
10b3939b 14677 if (low == 0)
8a3fe4f8
AC
14678 error (_("Dwarf Error: could not find partial DIE containing "
14679 "offset 0x%lx [in module %s]"),
10b3939b
DJ
14680 (long) offset, bfd_get_filename (objfile->obfd));
14681
ae038cb0
DJ
14682 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14683 return dwarf2_per_objfile->all_comp_units[low-1];
14684 }
14685 else
14686 {
14687 this_cu = dwarf2_per_objfile->all_comp_units[low];
14688 if (low == dwarf2_per_objfile->n_comp_units - 1
14689 && offset >= this_cu->offset + this_cu->length)
c764a876 14690 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
14691 gdb_assert (offset < this_cu->offset + this_cu->length);
14692 return this_cu;
14693 }
14694}
14695
10b3939b
DJ
14696/* Locate the compilation unit from OBJFILE which is located at exactly
14697 OFFSET. Raises an error on failure. */
14698
ae038cb0 14699static struct dwarf2_per_cu_data *
c764a876 14700dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
14701{
14702 struct dwarf2_per_cu_data *this_cu;
9a619af0 14703
ae038cb0
DJ
14704 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14705 if (this_cu->offset != offset)
c764a876 14706 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
14707 return this_cu;
14708}
14709
9816fde3 14710/* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
93311388 14711
9816fde3
JK
14712static void
14713init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
93311388 14714{
9816fde3 14715 memset (cu, 0, sizeof (*cu));
93311388
DE
14716 cu->objfile = objfile;
14717 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
14718}
14719
14720/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14721
14722static void
14723prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14724{
14725 struct attribute *attr;
14726
14727 /* Set the language we're debugging. */
14728 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14729 if (attr)
14730 set_cu_language (DW_UNSND (attr), cu);
14731 else
9cded63f
TT
14732 {
14733 cu->language = language_minimal;
14734 cu->language_defn = language_def (cu->language);
14735 }
93311388
DE
14736}
14737
ae038cb0
DJ
14738/* Release one cached compilation unit, CU. We unlink it from the tree
14739 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
14740 the caller is responsible for that.
14741 NOTE: DATA is a void * because this function is also used as a
14742 cleanup routine. */
ae038cb0
DJ
14743
14744static void
14745free_one_comp_unit (void *data)
14746{
14747 struct dwarf2_cu *cu = data;
14748
14749 if (cu->per_cu != NULL)
14750 cu->per_cu->cu = NULL;
14751 cu->per_cu = NULL;
14752
14753 obstack_free (&cu->comp_unit_obstack, NULL);
14754
14755 xfree (cu);
14756}
14757
72bf9492 14758/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
14759 when we're finished with it. We can't free the pointer itself, but be
14760 sure to unlink it from the cache. Also release any associated storage
14761 and perform cache maintenance.
72bf9492
DJ
14762
14763 Only used during partial symbol parsing. */
14764
14765static void
14766free_stack_comp_unit (void *data)
14767{
14768 struct dwarf2_cu *cu = data;
14769
14770 obstack_free (&cu->comp_unit_obstack, NULL);
14771 cu->partial_dies = NULL;
ae038cb0
DJ
14772
14773 if (cu->per_cu != NULL)
14774 {
14775 /* This compilation unit is on the stack in our caller, so we
14776 should not xfree it. Just unlink it. */
14777 cu->per_cu->cu = NULL;
14778 cu->per_cu = NULL;
14779
14780 /* If we had a per-cu pointer, then we may have other compilation
14781 units loaded, so age them now. */
14782 age_cached_comp_units ();
14783 }
14784}
14785
14786/* Free all cached compilation units. */
14787
14788static void
14789free_cached_comp_units (void *data)
14790{
14791 struct dwarf2_per_cu_data *per_cu, **last_chain;
14792
14793 per_cu = dwarf2_per_objfile->read_in_chain;
14794 last_chain = &dwarf2_per_objfile->read_in_chain;
14795 while (per_cu != NULL)
14796 {
14797 struct dwarf2_per_cu_data *next_cu;
14798
14799 next_cu = per_cu->cu->read_in_chain;
14800
14801 free_one_comp_unit (per_cu->cu);
14802 *last_chain = next_cu;
14803
14804 per_cu = next_cu;
14805 }
14806}
14807
14808/* Increase the age counter on each cached compilation unit, and free
14809 any that are too old. */
14810
14811static void
14812age_cached_comp_units (void)
14813{
14814 struct dwarf2_per_cu_data *per_cu, **last_chain;
14815
14816 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14817 per_cu = dwarf2_per_objfile->read_in_chain;
14818 while (per_cu != NULL)
14819 {
14820 per_cu->cu->last_used ++;
14821 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14822 dwarf2_mark (per_cu->cu);
14823 per_cu = per_cu->cu->read_in_chain;
14824 }
14825
14826 per_cu = dwarf2_per_objfile->read_in_chain;
14827 last_chain = &dwarf2_per_objfile->read_in_chain;
14828 while (per_cu != NULL)
14829 {
14830 struct dwarf2_per_cu_data *next_cu;
14831
14832 next_cu = per_cu->cu->read_in_chain;
14833
14834 if (!per_cu->cu->mark)
14835 {
14836 free_one_comp_unit (per_cu->cu);
14837 *last_chain = next_cu;
14838 }
14839 else
14840 last_chain = &per_cu->cu->read_in_chain;
14841
14842 per_cu = next_cu;
14843 }
14844}
14845
14846/* Remove a single compilation unit from the cache. */
14847
14848static void
14849free_one_cached_comp_unit (void *target_cu)
14850{
14851 struct dwarf2_per_cu_data *per_cu, **last_chain;
14852
14853 per_cu = dwarf2_per_objfile->read_in_chain;
14854 last_chain = &dwarf2_per_objfile->read_in_chain;
14855 while (per_cu != NULL)
14856 {
14857 struct dwarf2_per_cu_data *next_cu;
14858
14859 next_cu = per_cu->cu->read_in_chain;
14860
14861 if (per_cu->cu == target_cu)
14862 {
14863 free_one_comp_unit (per_cu->cu);
14864 *last_chain = next_cu;
14865 break;
14866 }
14867 else
14868 last_chain = &per_cu->cu->read_in_chain;
14869
14870 per_cu = next_cu;
14871 }
14872}
14873
fe3e1990
DJ
14874/* Release all extra memory associated with OBJFILE. */
14875
14876void
14877dwarf2_free_objfile (struct objfile *objfile)
14878{
14879 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14880
14881 if (dwarf2_per_objfile == NULL)
14882 return;
14883
14884 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14885 free_cached_comp_units (NULL);
14886
7b9f3c50
DE
14887 if (dwarf2_per_objfile->quick_file_names_table)
14888 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 14889
fe3e1990
DJ
14890 /* Everything else should be on the objfile obstack. */
14891}
14892
1c379e20
DJ
14893/* A pair of DIE offset and GDB type pointer. We store these
14894 in a hash table separate from the DIEs, and preserve them
14895 when the DIEs are flushed out of cache. */
14896
14897struct dwarf2_offset_and_type
14898{
14899 unsigned int offset;
14900 struct type *type;
14901};
14902
14903/* Hash function for a dwarf2_offset_and_type. */
14904
14905static hashval_t
14906offset_and_type_hash (const void *item)
14907{
14908 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 14909
1c379e20
DJ
14910 return ofs->offset;
14911}
14912
14913/* Equality function for a dwarf2_offset_and_type. */
14914
14915static int
14916offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14917{
14918 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14919 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 14920
1c379e20
DJ
14921 return ofs_lhs->offset == ofs_rhs->offset;
14922}
14923
14924/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
14925 table if necessary. For convenience, return TYPE.
14926
14927 The DIEs reading must have careful ordering to:
14928 * Not cause infite loops trying to read in DIEs as a prerequisite for
14929 reading current DIE.
14930 * Not trying to dereference contents of still incompletely read in types
14931 while reading in other DIEs.
14932 * Enable referencing still incompletely read in types just by a pointer to
14933 the type without accessing its fields.
14934
14935 Therefore caller should follow these rules:
14936 * Try to fetch any prerequisite types we may need to build this DIE type
14937 before building the type and calling set_die_type.
e71ec853 14938 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
14939 possible before fetching more types to complete the current type.
14940 * Make the type as complete as possible before fetching more types. */
1c379e20 14941
f792889a 14942static struct type *
1c379e20
DJ
14943set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14944{
14945 struct dwarf2_offset_and_type **slot, ofs;
673bfd45
DE
14946 struct objfile *objfile = cu->objfile;
14947 htab_t *type_hash_ptr;
1c379e20 14948
b4ba55a1
JB
14949 /* For Ada types, make sure that the gnat-specific data is always
14950 initialized (if not already set). There are a few types where
14951 we should not be doing so, because the type-specific area is
14952 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14953 where the type-specific area is used to store the floatformat).
14954 But this is not a problem, because the gnat-specific information
14955 is actually not needed for these types. */
14956 if (need_gnat_info (cu)
14957 && TYPE_CODE (type) != TYPE_CODE_FUNC
14958 && TYPE_CODE (type) != TYPE_CODE_FLT
14959 && !HAVE_GNAT_AUX_INFO (type))
14960 INIT_GNAT_SPECIFIC (type);
14961
673bfd45
DE
14962 if (cu->per_cu->from_debug_types)
14963 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14964 else
14965 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14966
14967 if (*type_hash_ptr == NULL)
f792889a 14968 {
673bfd45
DE
14969 *type_hash_ptr
14970 = htab_create_alloc_ex (127,
f792889a
DJ
14971 offset_and_type_hash,
14972 offset_and_type_eq,
14973 NULL,
673bfd45 14974 &objfile->objfile_obstack,
f792889a
DJ
14975 hashtab_obstack_allocate,
14976 dummy_obstack_deallocate);
f792889a 14977 }
1c379e20
DJ
14978
14979 ofs.offset = die->offset;
14980 ofs.type = type;
14981 slot = (struct dwarf2_offset_and_type **)
673bfd45 14982 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
7e314c57
JK
14983 if (*slot)
14984 complaint (&symfile_complaints,
14985 _("A problem internal to GDB: DIE 0x%x has type already set"),
14986 die->offset);
673bfd45 14987 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 14988 **slot = ofs;
f792889a 14989 return type;
1c379e20
DJ
14990}
14991
673bfd45
DE
14992/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14993 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
14994
14995static struct type *
673bfd45
DE
14996get_die_type_at_offset (unsigned int offset,
14997 struct dwarf2_per_cu_data *per_cu)
1c379e20
DJ
14998{
14999 struct dwarf2_offset_and_type *slot, ofs;
673bfd45 15000 htab_t type_hash;
f792889a 15001
673bfd45
DE
15002 if (per_cu->from_debug_types)
15003 type_hash = dwarf2_per_objfile->debug_types_type_hash;
15004 else
15005 type_hash = dwarf2_per_objfile->debug_info_type_hash;
f792889a
DJ
15006 if (type_hash == NULL)
15007 return NULL;
1c379e20 15008
673bfd45 15009 ofs.offset = offset;
1c379e20
DJ
15010 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
15011 if (slot)
15012 return slot->type;
15013 else
15014 return NULL;
15015}
15016
673bfd45
DE
15017/* Look up the type for DIE in the appropriate type_hash table,
15018 or return NULL if DIE does not have a saved type. */
15019
15020static struct type *
15021get_die_type (struct die_info *die, struct dwarf2_cu *cu)
15022{
15023 return get_die_type_at_offset (die->offset, cu->per_cu);
15024}
15025
10b3939b
DJ
15026/* Add a dependence relationship from CU to REF_PER_CU. */
15027
15028static void
15029dwarf2_add_dependence (struct dwarf2_cu *cu,
15030 struct dwarf2_per_cu_data *ref_per_cu)
15031{
15032 void **slot;
15033
15034 if (cu->dependencies == NULL)
15035 cu->dependencies
15036 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
15037 NULL, &cu->comp_unit_obstack,
15038 hashtab_obstack_allocate,
15039 dummy_obstack_deallocate);
15040
15041 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
15042 if (*slot == NULL)
15043 *slot = ref_per_cu;
15044}
1c379e20 15045
f504f079
DE
15046/* Subroutine of dwarf2_mark to pass to htab_traverse.
15047 Set the mark field in every compilation unit in the
ae038cb0
DJ
15048 cache that we must keep because we are keeping CU. */
15049
10b3939b
DJ
15050static int
15051dwarf2_mark_helper (void **slot, void *data)
15052{
15053 struct dwarf2_per_cu_data *per_cu;
15054
15055 per_cu = (struct dwarf2_per_cu_data *) *slot;
15056 if (per_cu->cu->mark)
15057 return 1;
15058 per_cu->cu->mark = 1;
15059
15060 if (per_cu->cu->dependencies != NULL)
15061 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
15062
15063 return 1;
15064}
15065
f504f079
DE
15066/* Set the mark field in CU and in every other compilation unit in the
15067 cache that we must keep because we are keeping CU. */
15068
ae038cb0
DJ
15069static void
15070dwarf2_mark (struct dwarf2_cu *cu)
15071{
15072 if (cu->mark)
15073 return;
15074 cu->mark = 1;
10b3939b
DJ
15075 if (cu->dependencies != NULL)
15076 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
15077}
15078
15079static void
15080dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
15081{
15082 while (per_cu)
15083 {
15084 per_cu->cu->mark = 0;
15085 per_cu = per_cu->cu->read_in_chain;
15086 }
72bf9492
DJ
15087}
15088
72bf9492
DJ
15089/* Trivial hash function for partial_die_info: the hash value of a DIE
15090 is its offset in .debug_info for this objfile. */
15091
15092static hashval_t
15093partial_die_hash (const void *item)
15094{
15095 const struct partial_die_info *part_die = item;
9a619af0 15096
72bf9492
DJ
15097 return part_die->offset;
15098}
15099
15100/* Trivial comparison function for partial_die_info structures: two DIEs
15101 are equal if they have the same offset. */
15102
15103static int
15104partial_die_eq (const void *item_lhs, const void *item_rhs)
15105{
15106 const struct partial_die_info *part_die_lhs = item_lhs;
15107 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 15108
72bf9492
DJ
15109 return part_die_lhs->offset == part_die_rhs->offset;
15110}
15111
ae038cb0
DJ
15112static struct cmd_list_element *set_dwarf2_cmdlist;
15113static struct cmd_list_element *show_dwarf2_cmdlist;
15114
15115static void
15116set_dwarf2_cmd (char *args, int from_tty)
15117{
15118 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
15119}
15120
15121static void
15122show_dwarf2_cmd (char *args, int from_tty)
6e70227d 15123{
ae038cb0
DJ
15124 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
15125}
15126
dce234bc
PP
15127/* If section described by INFO was mmapped, munmap it now. */
15128
15129static void
15130munmap_section_buffer (struct dwarf2_section_info *info)
15131{
15132 if (info->was_mmapped)
15133 {
15134#ifdef HAVE_MMAP
15135 intptr_t begin = (intptr_t) info->buffer;
15136 intptr_t map_begin = begin & ~(pagesize - 1);
15137 size_t map_length = info->size + begin - map_begin;
9a619af0 15138
dce234bc
PP
15139 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
15140#else
15141 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 15142 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
15143#endif
15144 }
15145}
15146
15147/* munmap debug sections for OBJFILE, if necessary. */
15148
15149static void
c1bd65d0 15150dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
15151{
15152 struct dwarf2_per_objfile *data = d;
9a619af0 15153
16be1145
DE
15154 /* This is sorted according to the order they're defined in to make it easier
15155 to keep in sync. */
dce234bc
PP
15156 munmap_section_buffer (&data->info);
15157 munmap_section_buffer (&data->abbrev);
15158 munmap_section_buffer (&data->line);
16be1145 15159 munmap_section_buffer (&data->loc);
dce234bc 15160 munmap_section_buffer (&data->macinfo);
16be1145 15161 munmap_section_buffer (&data->str);
dce234bc 15162 munmap_section_buffer (&data->ranges);
16be1145 15163 munmap_section_buffer (&data->types);
dce234bc
PP
15164 munmap_section_buffer (&data->frame);
15165 munmap_section_buffer (&data->eh_frame);
9291a0cd
TT
15166 munmap_section_buffer (&data->gdb_index);
15167}
15168
15169\f
ae2de4f8 15170/* The "save gdb-index" command. */
9291a0cd
TT
15171
15172/* The contents of the hash table we create when building the string
15173 table. */
15174struct strtab_entry
15175{
15176 offset_type offset;
15177 const char *str;
15178};
15179
15180/* Hash function for a strtab_entry. */
b89be57b 15181
9291a0cd
TT
15182static hashval_t
15183hash_strtab_entry (const void *e)
15184{
15185 const struct strtab_entry *entry = e;
15186 return mapped_index_string_hash (entry->str);
15187}
15188
15189/* Equality function for a strtab_entry. */
b89be57b 15190
9291a0cd
TT
15191static int
15192eq_strtab_entry (const void *a, const void *b)
15193{
15194 const struct strtab_entry *ea = a;
15195 const struct strtab_entry *eb = b;
15196 return !strcmp (ea->str, eb->str);
15197}
15198
15199/* Create a strtab_entry hash table. */
b89be57b 15200
9291a0cd
TT
15201static htab_t
15202create_strtab (void)
15203{
15204 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15205 xfree, xcalloc, xfree);
15206}
15207
15208/* Add a string to the constant pool. Return the string's offset in
15209 host order. */
b89be57b 15210
9291a0cd
TT
15211static offset_type
15212add_string (htab_t table, struct obstack *cpool, const char *str)
15213{
15214 void **slot;
15215 struct strtab_entry entry;
15216 struct strtab_entry *result;
15217
15218 entry.str = str;
15219 slot = htab_find_slot (table, &entry, INSERT);
15220 if (*slot)
15221 result = *slot;
15222 else
15223 {
15224 result = XNEW (struct strtab_entry);
15225 result->offset = obstack_object_size (cpool);
15226 result->str = str;
15227 obstack_grow_str0 (cpool, str);
15228 *slot = result;
15229 }
15230 return result->offset;
15231}
15232
15233/* An entry in the symbol table. */
15234struct symtab_index_entry
15235{
15236 /* The name of the symbol. */
15237 const char *name;
15238 /* The offset of the name in the constant pool. */
15239 offset_type index_offset;
15240 /* A sorted vector of the indices of all the CUs that hold an object
15241 of this name. */
15242 VEC (offset_type) *cu_indices;
15243};
15244
15245/* The symbol table. This is a power-of-2-sized hash table. */
15246struct mapped_symtab
15247{
15248 offset_type n_elements;
15249 offset_type size;
15250 struct symtab_index_entry **data;
15251};
15252
15253/* Hash function for a symtab_index_entry. */
b89be57b 15254
9291a0cd
TT
15255static hashval_t
15256hash_symtab_entry (const void *e)
15257{
15258 const struct symtab_index_entry *entry = e;
15259 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15260 sizeof (offset_type) * VEC_length (offset_type,
15261 entry->cu_indices),
15262 0);
15263}
15264
15265/* Equality function for a symtab_index_entry. */
b89be57b 15266
9291a0cd
TT
15267static int
15268eq_symtab_entry (const void *a, const void *b)
15269{
15270 const struct symtab_index_entry *ea = a;
15271 const struct symtab_index_entry *eb = b;
15272 int len = VEC_length (offset_type, ea->cu_indices);
15273 if (len != VEC_length (offset_type, eb->cu_indices))
15274 return 0;
15275 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15276 VEC_address (offset_type, eb->cu_indices),
15277 sizeof (offset_type) * len);
15278}
15279
15280/* Destroy a symtab_index_entry. */
b89be57b 15281
9291a0cd
TT
15282static void
15283delete_symtab_entry (void *p)
15284{
15285 struct symtab_index_entry *entry = p;
15286 VEC_free (offset_type, entry->cu_indices);
15287 xfree (entry);
15288}
15289
15290/* Create a hash table holding symtab_index_entry objects. */
b89be57b 15291
9291a0cd 15292static htab_t
3876f04e 15293create_symbol_hash_table (void)
9291a0cd
TT
15294{
15295 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15296 delete_symtab_entry, xcalloc, xfree);
15297}
15298
15299/* Create a new mapped symtab object. */
b89be57b 15300
9291a0cd
TT
15301static struct mapped_symtab *
15302create_mapped_symtab (void)
15303{
15304 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15305 symtab->n_elements = 0;
15306 symtab->size = 1024;
15307 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15308 return symtab;
15309}
15310
15311/* Destroy a mapped_symtab. */
b89be57b 15312
9291a0cd
TT
15313static void
15314cleanup_mapped_symtab (void *p)
15315{
15316 struct mapped_symtab *symtab = p;
15317 /* The contents of the array are freed when the other hash table is
15318 destroyed. */
15319 xfree (symtab->data);
15320 xfree (symtab);
15321}
15322
15323/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15324 the slot. */
b89be57b 15325
9291a0cd
TT
15326static struct symtab_index_entry **
15327find_slot (struct mapped_symtab *symtab, const char *name)
15328{
15329 offset_type index, step, hash = mapped_index_string_hash (name);
15330
15331 index = hash & (symtab->size - 1);
15332 step = ((hash * 17) & (symtab->size - 1)) | 1;
15333
15334 for (;;)
15335 {
15336 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15337 return &symtab->data[index];
15338 index = (index + step) & (symtab->size - 1);
15339 }
15340}
15341
15342/* Expand SYMTAB's hash table. */
b89be57b 15343
9291a0cd
TT
15344static void
15345hash_expand (struct mapped_symtab *symtab)
15346{
15347 offset_type old_size = symtab->size;
15348 offset_type i;
15349 struct symtab_index_entry **old_entries = symtab->data;
15350
15351 symtab->size *= 2;
15352 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15353
15354 for (i = 0; i < old_size; ++i)
15355 {
15356 if (old_entries[i])
15357 {
15358 struct symtab_index_entry **slot = find_slot (symtab,
15359 old_entries[i]->name);
15360 *slot = old_entries[i];
15361 }
15362 }
15363
15364 xfree (old_entries);
15365}
15366
15367/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15368 is the index of the CU in which the symbol appears. */
b89be57b 15369
9291a0cd
TT
15370static void
15371add_index_entry (struct mapped_symtab *symtab, const char *name,
15372 offset_type cu_index)
15373{
15374 struct symtab_index_entry **slot;
15375
15376 ++symtab->n_elements;
15377 if (4 * symtab->n_elements / 3 >= symtab->size)
15378 hash_expand (symtab);
15379
15380 slot = find_slot (symtab, name);
15381 if (!*slot)
15382 {
15383 *slot = XNEW (struct symtab_index_entry);
15384 (*slot)->name = name;
15385 (*slot)->cu_indices = NULL;
15386 }
15387 /* Don't push an index twice. Due to how we add entries we only
15388 have to check the last one. */
15389 if (VEC_empty (offset_type, (*slot)->cu_indices)
15390 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15391 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15392}
15393
15394/* Add a vector of indices to the constant pool. */
b89be57b 15395
9291a0cd 15396static offset_type
3876f04e 15397add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
15398 struct symtab_index_entry *entry)
15399{
15400 void **slot;
15401
3876f04e 15402 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
15403 if (!*slot)
15404 {
15405 offset_type len = VEC_length (offset_type, entry->cu_indices);
15406 offset_type val = MAYBE_SWAP (len);
15407 offset_type iter;
15408 int i;
15409
15410 *slot = entry;
15411 entry->index_offset = obstack_object_size (cpool);
15412
15413 obstack_grow (cpool, &val, sizeof (val));
15414 for (i = 0;
15415 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15416 ++i)
15417 {
15418 val = MAYBE_SWAP (iter);
15419 obstack_grow (cpool, &val, sizeof (val));
15420 }
15421 }
15422 else
15423 {
15424 struct symtab_index_entry *old_entry = *slot;
15425 entry->index_offset = old_entry->index_offset;
15426 entry = old_entry;
15427 }
15428 return entry->index_offset;
15429}
15430
15431/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15432 constant pool entries going into the obstack CPOOL. */
b89be57b 15433
9291a0cd
TT
15434static void
15435write_hash_table (struct mapped_symtab *symtab,
15436 struct obstack *output, struct obstack *cpool)
15437{
15438 offset_type i;
3876f04e 15439 htab_t symbol_hash_table;
9291a0cd
TT
15440 htab_t str_table;
15441
3876f04e 15442 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 15443 str_table = create_strtab ();
3876f04e 15444
9291a0cd
TT
15445 /* We add all the index vectors to the constant pool first, to
15446 ensure alignment is ok. */
15447 for (i = 0; i < symtab->size; ++i)
15448 {
15449 if (symtab->data[i])
3876f04e 15450 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
15451 }
15452
15453 /* Now write out the hash table. */
15454 for (i = 0; i < symtab->size; ++i)
15455 {
15456 offset_type str_off, vec_off;
15457
15458 if (symtab->data[i])
15459 {
15460 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15461 vec_off = symtab->data[i]->index_offset;
15462 }
15463 else
15464 {
15465 /* While 0 is a valid constant pool index, it is not valid
15466 to have 0 for both offsets. */
15467 str_off = 0;
15468 vec_off = 0;
15469 }
15470
15471 str_off = MAYBE_SWAP (str_off);
15472 vec_off = MAYBE_SWAP (vec_off);
15473
15474 obstack_grow (output, &str_off, sizeof (str_off));
15475 obstack_grow (output, &vec_off, sizeof (vec_off));
15476 }
15477
15478 htab_delete (str_table);
3876f04e 15479 htab_delete (symbol_hash_table);
9291a0cd
TT
15480}
15481
0a5429f6
DE
15482/* Struct to map psymtab to CU index in the index file. */
15483struct psymtab_cu_index_map
15484{
15485 struct partial_symtab *psymtab;
15486 unsigned int cu_index;
15487};
15488
15489static hashval_t
15490hash_psymtab_cu_index (const void *item)
15491{
15492 const struct psymtab_cu_index_map *map = item;
15493
15494 return htab_hash_pointer (map->psymtab);
15495}
15496
15497static int
15498eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15499{
15500 const struct psymtab_cu_index_map *lhs = item_lhs;
15501 const struct psymtab_cu_index_map *rhs = item_rhs;
15502
15503 return lhs->psymtab == rhs->psymtab;
15504}
15505
15506/* Helper struct for building the address table. */
15507struct addrmap_index_data
15508{
15509 struct objfile *objfile;
15510 struct obstack *addr_obstack;
15511 htab_t cu_index_htab;
15512
15513 /* Non-zero if the previous_* fields are valid.
15514 We can't write an entry until we see the next entry (since it is only then
15515 that we know the end of the entry). */
15516 int previous_valid;
15517 /* Index of the CU in the table of all CUs in the index file. */
15518 unsigned int previous_cu_index;
0963b4bd 15519 /* Start address of the CU. */
0a5429f6
DE
15520 CORE_ADDR previous_cu_start;
15521};
15522
15523/* Write an address entry to OBSTACK. */
b89be57b 15524
9291a0cd 15525static void
0a5429f6
DE
15526add_address_entry (struct objfile *objfile, struct obstack *obstack,
15527 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 15528{
0a5429f6 15529 offset_type cu_index_to_write;
9291a0cd
TT
15530 char addr[8];
15531 CORE_ADDR baseaddr;
15532
15533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15534
0a5429f6
DE
15535 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15536 obstack_grow (obstack, addr, 8);
15537 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15538 obstack_grow (obstack, addr, 8);
15539 cu_index_to_write = MAYBE_SWAP (cu_index);
15540 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15541}
15542
15543/* Worker function for traversing an addrmap to build the address table. */
15544
15545static int
15546add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15547{
15548 struct addrmap_index_data *data = datap;
15549 struct partial_symtab *pst = obj;
15550 offset_type cu_index;
15551 void **slot;
15552
15553 if (data->previous_valid)
15554 add_address_entry (data->objfile, data->addr_obstack,
15555 data->previous_cu_start, start_addr,
15556 data->previous_cu_index);
15557
15558 data->previous_cu_start = start_addr;
15559 if (pst != NULL)
15560 {
15561 struct psymtab_cu_index_map find_map, *map;
15562 find_map.psymtab = pst;
15563 map = htab_find (data->cu_index_htab, &find_map);
15564 gdb_assert (map != NULL);
15565 data->previous_cu_index = map->cu_index;
15566 data->previous_valid = 1;
15567 }
15568 else
15569 data->previous_valid = 0;
15570
15571 return 0;
15572}
15573
15574/* Write OBJFILE's address map to OBSTACK.
15575 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15576 in the index file. */
15577
15578static void
15579write_address_map (struct objfile *objfile, struct obstack *obstack,
15580 htab_t cu_index_htab)
15581{
15582 struct addrmap_index_data addrmap_index_data;
15583
15584 /* When writing the address table, we have to cope with the fact that
15585 the addrmap iterator only provides the start of a region; we have to
15586 wait until the next invocation to get the start of the next region. */
15587
15588 addrmap_index_data.objfile = objfile;
15589 addrmap_index_data.addr_obstack = obstack;
15590 addrmap_index_data.cu_index_htab = cu_index_htab;
15591 addrmap_index_data.previous_valid = 0;
15592
15593 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15594 &addrmap_index_data);
15595
15596 /* It's highly unlikely the last entry (end address = 0xff...ff)
15597 is valid, but we should still handle it.
15598 The end address is recorded as the start of the next region, but that
15599 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15600 anyway. */
15601 if (addrmap_index_data.previous_valid)
15602 add_address_entry (objfile, obstack,
15603 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15604 addrmap_index_data.previous_cu_index);
9291a0cd
TT
15605}
15606
15607/* Add a list of partial symbols to SYMTAB. */
b89be57b 15608
9291a0cd
TT
15609static void
15610write_psymbols (struct mapped_symtab *symtab,
987d643c 15611 htab_t psyms_seen,
9291a0cd
TT
15612 struct partial_symbol **psymp,
15613 int count,
987d643c
TT
15614 offset_type cu_index,
15615 int is_static)
9291a0cd
TT
15616{
15617 for (; count-- > 0; ++psymp)
15618 {
987d643c
TT
15619 void **slot, *lookup;
15620
9291a0cd
TT
15621 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15622 error (_("Ada is not currently supported by the index"));
987d643c
TT
15623
15624 /* We only want to add a given psymbol once. However, we also
15625 want to account for whether it is global or static. So, we
15626 may add it twice, using slightly different values. */
15627 if (is_static)
15628 {
15629 uintptr_t val = 1 | (uintptr_t) *psymp;
15630
15631 lookup = (void *) val;
15632 }
15633 else
15634 lookup = *psymp;
15635
15636 /* Only add a given psymbol once. */
15637 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15638 if (!*slot)
15639 {
15640 *slot = lookup;
15641 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15642 }
9291a0cd
TT
15643 }
15644}
15645
15646/* Write the contents of an ("unfinished") obstack to FILE. Throw an
15647 exception if there is an error. */
b89be57b 15648
9291a0cd
TT
15649static void
15650write_obstack (FILE *file, struct obstack *obstack)
15651{
15652 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15653 file)
15654 != obstack_object_size (obstack))
15655 error (_("couldn't data write to file"));
15656}
15657
15658/* Unlink a file if the argument is not NULL. */
b89be57b 15659
9291a0cd
TT
15660static void
15661unlink_if_set (void *p)
15662{
15663 char **filename = p;
15664 if (*filename)
15665 unlink (*filename);
15666}
15667
1fd400ff
TT
15668/* A helper struct used when iterating over debug_types. */
15669struct signatured_type_index_data
15670{
15671 struct objfile *objfile;
15672 struct mapped_symtab *symtab;
15673 struct obstack *types_list;
987d643c 15674 htab_t psyms_seen;
1fd400ff
TT
15675 int cu_index;
15676};
15677
15678/* A helper function that writes a single signatured_type to an
15679 obstack. */
b89be57b 15680
1fd400ff
TT
15681static int
15682write_one_signatured_type (void **slot, void *d)
15683{
15684 struct signatured_type_index_data *info = d;
15685 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
15686 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15687 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
15688 gdb_byte val[8];
15689
15690 write_psymbols (info->symtab,
987d643c 15691 info->psyms_seen,
3e43a32a
MS
15692 info->objfile->global_psymbols.list
15693 + psymtab->globals_offset,
987d643c
TT
15694 psymtab->n_global_syms, info->cu_index,
15695 0);
1fd400ff 15696 write_psymbols (info->symtab,
987d643c 15697 info->psyms_seen,
3e43a32a
MS
15698 info->objfile->static_psymbols.list
15699 + psymtab->statics_offset,
987d643c
TT
15700 psymtab->n_static_syms, info->cu_index,
15701 1);
1fd400ff
TT
15702
15703 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15704 obstack_grow (info->types_list, val, 8);
15705 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15706 obstack_grow (info->types_list, val, 8);
15707 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15708 obstack_grow (info->types_list, val, 8);
15709
15710 ++info->cu_index;
15711
15712 return 1;
15713}
15714
987d643c
TT
15715/* A cleanup function for an htab_t. */
15716
15717static void
15718cleanup_htab (void *arg)
15719{
15720 htab_delete (arg);
15721}
15722
9291a0cd 15723/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 15724
9291a0cd
TT
15725static void
15726write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15727{
15728 struct cleanup *cleanup;
15729 char *filename, *cleanup_filename;
1fd400ff
TT
15730 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15731 struct obstack cu_list, types_cu_list;
9291a0cd
TT
15732 int i;
15733 FILE *out_file;
15734 struct mapped_symtab *symtab;
15735 offset_type val, size_of_contents, total_len;
15736 struct stat st;
15737 char buf[8];
987d643c 15738 htab_t psyms_seen;
0a5429f6
DE
15739 htab_t cu_index_htab;
15740 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd
TT
15741
15742 if (!objfile->psymtabs)
15743 return;
15744 if (dwarf2_per_objfile->using_index)
15745 error (_("Cannot use an index to create the index"));
15746
15747 if (stat (objfile->name, &st) < 0)
7e17e088 15748 perror_with_name (objfile->name);
9291a0cd
TT
15749
15750 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15751 INDEX_SUFFIX, (char *) NULL);
15752 cleanup = make_cleanup (xfree, filename);
15753
15754 out_file = fopen (filename, "wb");
15755 if (!out_file)
15756 error (_("Can't open `%s' for writing"), filename);
15757
15758 cleanup_filename = filename;
15759 make_cleanup (unlink_if_set, &cleanup_filename);
15760
15761 symtab = create_mapped_symtab ();
15762 make_cleanup (cleanup_mapped_symtab, symtab);
15763
15764 obstack_init (&addr_obstack);
15765 make_cleanup_obstack_free (&addr_obstack);
15766
15767 obstack_init (&cu_list);
15768 make_cleanup_obstack_free (&cu_list);
15769
1fd400ff
TT
15770 obstack_init (&types_cu_list);
15771 make_cleanup_obstack_free (&types_cu_list);
15772
987d643c
TT
15773 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15774 NULL, xcalloc, xfree);
15775 make_cleanup (cleanup_htab, psyms_seen);
15776
0a5429f6
DE
15777 /* While we're scanning CU's create a table that maps a psymtab pointer
15778 (which is what addrmap records) to its index (which is what is recorded
15779 in the index file). This will later be needed to write the address
15780 table. */
15781 cu_index_htab = htab_create_alloc (100,
15782 hash_psymtab_cu_index,
15783 eq_psymtab_cu_index,
15784 NULL, xcalloc, xfree);
15785 make_cleanup (cleanup_htab, cu_index_htab);
15786 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15787 xmalloc (sizeof (struct psymtab_cu_index_map)
15788 * dwarf2_per_objfile->n_comp_units);
15789 make_cleanup (xfree, psymtab_cu_index_map);
15790
15791 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
15792 work here. Also, the debug_types entries do not appear in
15793 all_comp_units, but only in their own hash table. */
9291a0cd
TT
15794 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15795 {
3e43a32a
MS
15796 struct dwarf2_per_cu_data *per_cu
15797 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 15798 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 15799 gdb_byte val[8];
0a5429f6
DE
15800 struct psymtab_cu_index_map *map;
15801 void **slot;
9291a0cd
TT
15802
15803 write_psymbols (symtab,
987d643c 15804 psyms_seen,
9291a0cd 15805 objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
15806 psymtab->n_global_syms, i,
15807 0);
9291a0cd 15808 write_psymbols (symtab,
987d643c 15809 psyms_seen,
9291a0cd 15810 objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
15811 psymtab->n_static_syms, i,
15812 1);
9291a0cd 15813
0a5429f6
DE
15814 map = &psymtab_cu_index_map[i];
15815 map->psymtab = psymtab;
15816 map->cu_index = i;
15817 slot = htab_find_slot (cu_index_htab, map, INSERT);
15818 gdb_assert (slot != NULL);
15819 gdb_assert (*slot == NULL);
15820 *slot = map;
9291a0cd 15821
e254ef6a 15822 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
9291a0cd 15823 obstack_grow (&cu_list, val, 8);
e254ef6a 15824 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
15825 obstack_grow (&cu_list, val, 8);
15826 }
15827
0a5429f6
DE
15828 /* Dump the address map. */
15829 write_address_map (objfile, &addr_obstack, cu_index_htab);
15830
1fd400ff
TT
15831 /* Write out the .debug_type entries, if any. */
15832 if (dwarf2_per_objfile->signatured_types)
15833 {
15834 struct signatured_type_index_data sig_data;
15835
15836 sig_data.objfile = objfile;
15837 sig_data.symtab = symtab;
15838 sig_data.types_list = &types_cu_list;
987d643c 15839 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
15840 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15841 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15842 write_one_signatured_type, &sig_data);
15843 }
15844
9291a0cd
TT
15845 obstack_init (&constant_pool);
15846 make_cleanup_obstack_free (&constant_pool);
15847 obstack_init (&symtab_obstack);
15848 make_cleanup_obstack_free (&symtab_obstack);
15849 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15850
15851 obstack_init (&contents);
15852 make_cleanup_obstack_free (&contents);
1fd400ff 15853 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
15854 total_len = size_of_contents;
15855
15856 /* The version number. */
831adc1f 15857 val = MAYBE_SWAP (4);
9291a0cd
TT
15858 obstack_grow (&contents, &val, sizeof (val));
15859
15860 /* The offset of the CU list from the start of the file. */
15861 val = MAYBE_SWAP (total_len);
15862 obstack_grow (&contents, &val, sizeof (val));
15863 total_len += obstack_object_size (&cu_list);
15864
1fd400ff
TT
15865 /* The offset of the types CU list from the start of the file. */
15866 val = MAYBE_SWAP (total_len);
15867 obstack_grow (&contents, &val, sizeof (val));
15868 total_len += obstack_object_size (&types_cu_list);
15869
9291a0cd
TT
15870 /* The offset of the address table from the start of the file. */
15871 val = MAYBE_SWAP (total_len);
15872 obstack_grow (&contents, &val, sizeof (val));
15873 total_len += obstack_object_size (&addr_obstack);
15874
15875 /* The offset of the symbol table from the start of the file. */
15876 val = MAYBE_SWAP (total_len);
15877 obstack_grow (&contents, &val, sizeof (val));
15878 total_len += obstack_object_size (&symtab_obstack);
15879
15880 /* The offset of the constant pool from the start of the file. */
15881 val = MAYBE_SWAP (total_len);
15882 obstack_grow (&contents, &val, sizeof (val));
15883 total_len += obstack_object_size (&constant_pool);
15884
15885 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15886
15887 write_obstack (out_file, &contents);
15888 write_obstack (out_file, &cu_list);
1fd400ff 15889 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
15890 write_obstack (out_file, &addr_obstack);
15891 write_obstack (out_file, &symtab_obstack);
15892 write_obstack (out_file, &constant_pool);
15893
15894 fclose (out_file);
15895
15896 /* We want to keep the file, so we set cleanup_filename to NULL
15897 here. See unlink_if_set. */
15898 cleanup_filename = NULL;
15899
15900 do_cleanups (cleanup);
15901}
15902
15903/* The mapped index file format is designed to be directly mmap()able
15904 on any architecture. In most cases, a datum is represented using a
15905 little-endian 32-bit integer value, called an offset_type. Big
15906 endian machines must byte-swap the values before using them.
15907 Exceptions to this rule are noted. The data is laid out such that
15908 alignment is always respected.
15909
15910 A mapped index consists of several sections.
15911
15912 1. The file header. This is a sequence of values, of offset_type
15913 unless otherwise noted:
987d643c 15914
831adc1f 15915 [0] The version number, currently 4. Versions 1, 2 and 3 are
987d643c 15916 obsolete.
9291a0cd 15917 [1] The offset, from the start of the file, of the CU list.
987d643c
TT
15918 [2] The offset, from the start of the file, of the types CU list.
15919 Note that this section can be empty, in which case this offset will
15920 be equal to the next offset.
15921 [3] The offset, from the start of the file, of the address section.
15922 [4] The offset, from the start of the file, of the symbol table.
15923 [5] The offset, from the start of the file, of the constant pool.
9291a0cd
TT
15924
15925 2. The CU list. This is a sequence of pairs of 64-bit
1fd400ff
TT
15926 little-endian values, sorted by the CU offset. The first element
15927 in each pair is the offset of a CU in the .debug_info section. The
15928 second element in each pair is the length of that CU. References
15929 to a CU elsewhere in the map are done using a CU index, which is
15930 just the 0-based index into this table. Note that if there are
15931 type CUs, then conceptually CUs and type CUs form a single list for
15932 the purposes of CU indices.
15933
987d643c
TT
15934 3. The types CU list. This is a sequence of triplets of 64-bit
15935 little-endian values. In a triplet, the first value is the CU
15936 offset, the second value is the type offset in the CU, and the
15937 third value is the type signature. The types CU list is not
15938 sorted.
9291a0cd 15939
987d643c 15940 4. The address section. The address section consists of a sequence
9291a0cd
TT
15941 of address entries. Each address entry has three elements.
15942 [0] The low address. This is a 64-bit little-endian value.
15943 [1] The high address. This is a 64-bit little-endian value.
148c11bf 15944 Like DW_AT_high_pc, the value is one byte beyond the end.
9291a0cd
TT
15945 [2] The CU index. This is an offset_type value.
15946
987d643c 15947 5. The symbol table. This is a hash table. The size of the hash
9291a0cd
TT
15948 table is always a power of 2. The initial hash and the step are
15949 currently defined by the `find_slot' function.
15950
15951 Each slot in the hash table consists of a pair of offset_type
15952 values. The first value is the offset of the symbol's name in the
15953 constant pool. The second value is the offset of the CU vector in
15954 the constant pool.
15955
15956 If both values are 0, then this slot in the hash table is empty.
15957 This is ok because while 0 is a valid constant pool index, it
15958 cannot be a valid index for both a string and a CU vector.
15959
15960 A string in the constant pool is stored as a \0-terminated string,
15961 as you'd expect.
15962
15963 A CU vector in the constant pool is a sequence of offset_type
15964 values. The first value is the number of CU indices in the vector.
15965 Each subsequent value is the index of a CU in the CU list. This
15966 element in the hash table is used to indicate which CUs define the
15967 symbol.
15968
987d643c 15969 6. The constant pool. This is simply a bunch of bytes. It is
9291a0cd
TT
15970 organized so that alignment is correct: CU vectors are stored
15971 first, followed by strings. */
11570e71 15972
9291a0cd
TT
15973static void
15974save_gdb_index_command (char *arg, int from_tty)
15975{
15976 struct objfile *objfile;
15977
15978 if (!arg || !*arg)
96d19272 15979 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
15980
15981 ALL_OBJFILES (objfile)
15982 {
15983 struct stat st;
15984
15985 /* If the objfile does not correspond to an actual file, skip it. */
15986 if (stat (objfile->name, &st) < 0)
15987 continue;
15988
15989 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15990 if (dwarf2_per_objfile)
15991 {
15992 volatile struct gdb_exception except;
15993
15994 TRY_CATCH (except, RETURN_MASK_ERROR)
15995 {
15996 write_psymtabs_to_index (objfile, arg);
15997 }
15998 if (except.reason < 0)
15999 exception_fprintf (gdb_stderr, except,
16000 _("Error while writing index for `%s': "),
16001 objfile->name);
16002 }
16003 }
dce234bc
PP
16004}
16005
9291a0cd
TT
16006\f
16007
9eae7c52
TT
16008int dwarf2_always_disassemble;
16009
16010static void
16011show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
16012 struct cmd_list_element *c, const char *value)
16013{
3e43a32a
MS
16014 fprintf_filtered (file,
16015 _("Whether to always disassemble "
16016 "DWARF expressions is %s.\n"),
9eae7c52
TT
16017 value);
16018}
16019
6502dd73
DJ
16020void _initialize_dwarf2_read (void);
16021
16022void
16023_initialize_dwarf2_read (void)
16024{
96d19272
JK
16025 struct cmd_list_element *c;
16026
dce234bc 16027 dwarf2_objfile_data_key
c1bd65d0 16028 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 16029
1bedd215
AC
16030 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
16031Set DWARF 2 specific variables.\n\
16032Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
16033 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
16034 0/*allow-unknown*/, &maintenance_set_cmdlist);
16035
1bedd215
AC
16036 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
16037Show DWARF 2 specific variables\n\
16038Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
16039 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
16040 0/*allow-unknown*/, &maintenance_show_cmdlist);
16041
16042 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
16043 &dwarf2_max_cache_age, _("\
16044Set the upper bound on the age of cached dwarf2 compilation units."), _("\
16045Show the upper bound on the age of cached dwarf2 compilation units."), _("\
16046A higher limit means that cached compilation units will be stored\n\
16047in memory longer, and more total memory will be used. Zero disables\n\
16048caching, which can slow down startup."),
2c5b56ce 16049 NULL,
920d2a44 16050 show_dwarf2_max_cache_age,
2c5b56ce 16051 &set_dwarf2_cmdlist,
ae038cb0 16052 &show_dwarf2_cmdlist);
d97bc12b 16053
9eae7c52
TT
16054 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
16055 &dwarf2_always_disassemble, _("\
16056Set whether `info address' always disassembles DWARF expressions."), _("\
16057Show whether `info address' always disassembles DWARF expressions."), _("\
16058When enabled, DWARF expressions are always printed in an assembly-like\n\
16059syntax. When disabled, expressions will be printed in a more\n\
16060conversational style, when possible."),
16061 NULL,
16062 show_dwarf2_always_disassemble,
16063 &set_dwarf2_cmdlist,
16064 &show_dwarf2_cmdlist);
16065
d97bc12b
DE
16066 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
16067Set debugging of the dwarf2 DIE reader."), _("\
16068Show debugging of the dwarf2 DIE reader."), _("\
16069When enabled (non-zero), DIEs are dumped after they are read in.\n\
16070The value is the maximum depth to print."),
16071 NULL,
16072 NULL,
16073 &setdebuglist, &showdebuglist);
9291a0cd 16074
96d19272 16075 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 16076 _("\
fc1a9d6e 16077Save a gdb-index file.\n\
11570e71 16078Usage: save gdb-index DIRECTORY"),
96d19272
JK
16079 &save_cmdlist);
16080 set_cmd_completer (c, filename_completer);
6502dd73 16081}
This page took 2.038962 seconds and 4 git commands to generate.