Use an accessor function for general_symbol_info::language
[deliverable/binutils-gdb.git] / gdb / ft32-tdep.c
CommitLineData
49d45b20
JB
1/* Target-dependent code for FT32.
2
42a4f53d 3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
49d45b20
JB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
d55e5aa6 21#include "frame.h"
4de283e4
TT
22#include "frame-unwind.h"
23#include "frame-base.h"
24#include "symtab.h"
25#include "gdbtypes.h"
49d45b20
JB
26#include "gdbcmd.h"
27#include "gdbcore.h"
4de283e4 28#include "value.h"
49d45b20 29#include "inferior.h"
4de283e4 30#include "symfile.h"
49d45b20
JB
31#include "objfiles.h"
32#include "osabi.h"
4de283e4
TT
33#include "language.h"
34#include "arch-utils.h"
49d45b20
JB
35#include "regcache.h"
36#include "trad-frame.h"
4de283e4
TT
37#include "dis-asm.h"
38#include "record.h"
39
40#include "opcode/ft32.h"
41
42#include "ft32-tdep.h"
43#include "gdb/sim-ft32.h"
44#include <algorithm>
49d45b20
JB
45
46#define RAM_BIAS 0x800000 /* Bias added to RAM addresses. */
47
49d45b20
JB
48/* Use an invalid address -1 as 'not available' marker. */
49enum { REG_UNAVAIL = (CORE_ADDR) (-1) };
50
51struct ft32_frame_cache
52{
53 /* Base address of the frame */
54 CORE_ADDR base;
55 /* Function this frame belongs to */
56 CORE_ADDR pc;
57 /* Total size of this frame */
58 LONGEST framesize;
59 /* Saved registers in this frame */
60 CORE_ADDR saved_regs[FT32_NUM_REGS];
61 /* Saved SP in this frame */
62 CORE_ADDR saved_sp;
63 /* Has the new frame been LINKed. */
64 bfd_boolean established;
65};
66
67/* Implement the "frame_align" gdbarch method. */
68
69static CORE_ADDR
70ft32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
71{
72 /* Align to the size of an instruction (so that they can safely be
73 pushed onto the stack. */
74 return sp & ~1;
75}
76
49d45b20 77
04180708 78constexpr gdb_byte ft32_break_insn[] = { 0x02, 0x00, 0x34, 0x00 };
49d45b20 79
04180708 80typedef BP_MANIPULATION (ft32_break_insn) ft32_breakpoint;
49d45b20
JB
81
82/* FT32 register names. */
83
84static const char *const ft32_register_names[] =
85{
86 "fp", "sp",
87 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
88 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
89 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
90 "r24", "r25", "r26", "r27", "r28", "cc",
91 "pc"
92};
93
94/* Implement the "register_name" gdbarch method. */
95
96static const char *
97ft32_register_name (struct gdbarch *gdbarch, int reg_nr)
98{
99 if (reg_nr < 0)
100 return NULL;
101 if (reg_nr >= FT32_NUM_REGS)
102 return NULL;
103 return ft32_register_names[reg_nr];
104}
105
106/* Implement the "register_type" gdbarch method. */
107
108static struct type *
109ft32_register_type (struct gdbarch *gdbarch, int reg_nr)
110{
111 if (reg_nr == FT32_PC_REGNUM)
623fb775 112 return gdbarch_tdep (gdbarch)->pc_type;
49d45b20
JB
113 else if (reg_nr == FT32_SP_REGNUM || reg_nr == FT32_FP_REGNUM)
114 return builtin_type (gdbarch)->builtin_data_ptr;
115 else
116 return builtin_type (gdbarch)->builtin_int32;
117}
118
119/* Write into appropriate registers a function return value
120 of type TYPE, given in virtual format. */
121
122static void
123ft32_store_return_value (struct type *type, struct regcache *regcache,
124 const gdb_byte *valbuf)
125{
ac7936df 126 struct gdbarch *gdbarch = regcache->arch ();
49d45b20
JB
127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
128 CORE_ADDR regval;
129 int len = TYPE_LENGTH (type);
130
131 /* Things always get returned in RET1_REGNUM, RET2_REGNUM. */
132 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
133 regcache_cooked_write_unsigned (regcache, FT32_R0_REGNUM, regval);
134 if (len > 4)
135 {
136 regval = extract_unsigned_integer (valbuf + 4,
137 len - 4, byte_order);
138 regcache_cooked_write_unsigned (regcache, FT32_R1_REGNUM, regval);
139 }
140}
141
dcc31d28
JB
142/* Fetch a single 32-bit instruction from address a. If memory contains
143 a compressed instruction pair, return the expanded instruction. */
144
145static ULONGEST
146ft32_fetch_instruction (CORE_ADDR a, int *isize,
147 enum bfd_endian byte_order)
148{
149 unsigned int sc[2];
150 ULONGEST inst;
151
152 CORE_ADDR a4 = a & ~3;
153 inst = read_code_unsigned_integer (a4, 4, byte_order);
154 *isize = ft32_decode_shortcode (a4, inst, sc) ? 2 : 4;
155 if (*isize == 2)
156 return sc[1 & (a >> 1)];
157 else
158 return inst;
159}
160
49d45b20
JB
161/* Decode the instructions within the given address range. Decide
162 when we must have reached the end of the function prologue. If a
163 frame_info pointer is provided, fill in its saved_regs etc.
164
165 Returns the address of the first instruction after the prologue. */
166
49d45b20
JB
167static CORE_ADDR
168ft32_analyze_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr,
169 struct ft32_frame_cache *cache,
170 struct gdbarch *gdbarch)
171{
172 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
173 CORE_ADDR next_addr;
870f88f7 174 ULONGEST inst;
dcc31d28 175 int isize = 0;
ae4e2501 176 int regnum, pushreg;
177 struct bound_minimal_symbol msymbol;
178 const int first_saved_reg = 13; /* The first saved register. */
179 /* PROLOGS are addresses of the subroutine prologs, PROLOGS[n]
180 is the address of __prolog_$rN.
181 __prolog_$rN pushes registers from 13 through n inclusive.
182 So for example CALL __prolog_$r15 is equivalent to:
183 PUSH $r13
184 PUSH $r14
185 PUSH $r15
186 Note that PROLOGS[0] through PROLOGS[12] are unused. */
187 CORE_ADDR prologs[32];
49d45b20
JB
188
189 cache->saved_regs[FT32_PC_REGNUM] = 0;
190 cache->framesize = 0;
191
ae4e2501 192 for (regnum = first_saved_reg; regnum < 32; regnum++)
193 {
194 char prolog_symbol[32];
195
196 snprintf (prolog_symbol, sizeof (prolog_symbol), "__prolog_$r%02d",
197 regnum);
198 msymbol = lookup_minimal_symbol (prolog_symbol, NULL, NULL);
199 if (msymbol.minsym)
200 prologs[regnum] = BMSYMBOL_VALUE_ADDRESS (msymbol);
201 else
202 prologs[regnum] = 0;
203 }
204
49d45b20 205 if (start_addr >= end_addr)
ae4e2501 206 return end_addr;
49d45b20
JB
207
208 cache->established = 0;
dcc31d28 209 for (next_addr = start_addr; next_addr < end_addr; next_addr += isize)
49d45b20 210 {
dcc31d28 211 inst = ft32_fetch_instruction (next_addr, &isize, byte_order);
49d45b20 212
86feccb9 213 if (FT32_IS_PUSH (inst))
49d45b20 214 {
ae4e2501 215 pushreg = FT32_PUSH_REG (inst);
49d45b20 216 cache->framesize += 4;
ae4e2501 217 cache->saved_regs[FT32_R0_REGNUM + pushreg] = cache->framesize;
49d45b20 218 }
ae4e2501 219 else if (FT32_IS_CALL (inst))
220 {
221 for (regnum = first_saved_reg; regnum < 32; regnum++)
222 {
223 if ((4 * (inst & 0x3ffff)) == prologs[regnum])
224 {
225 for (pushreg = first_saved_reg; pushreg <= regnum;
226 pushreg++)
227 {
228 cache->framesize += 4;
229 cache->saved_regs[FT32_R0_REGNUM + pushreg] =
230 cache->framesize;
231 }
ae4e2501 232 }
233 }
234 break;
235 }
49d45b20
JB
236 else
237 break;
238 }
239 for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++)
240 {
241 if (cache->saved_regs[regnum] != REG_UNAVAIL)
ae4e2501 242 cache->saved_regs[regnum] =
243 cache->framesize - cache->saved_regs[regnum];
49d45b20
JB
244 }
245 cache->saved_regs[FT32_PC_REGNUM] = cache->framesize;
246
247 /* It is a LINK? */
248 if (next_addr < end_addr)
249 {
dcc31d28 250 inst = ft32_fetch_instruction (next_addr, &isize, byte_order);
86feccb9 251 if (FT32_IS_LINK (inst))
49d45b20
JB
252 {
253 cache->established = 1;
254 for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++)
255 {
256 if (cache->saved_regs[regnum] != REG_UNAVAIL)
257 cache->saved_regs[regnum] += 4;
258 }
259 cache->saved_regs[FT32_PC_REGNUM] = cache->framesize + 4;
260 cache->saved_regs[FT32_FP_REGNUM] = 0;
86feccb9 261 cache->framesize += FT32_LINK_SIZE (inst);
dcc31d28 262 next_addr += isize;
49d45b20
JB
263 }
264 }
265
266 return next_addr;
267}
268
269/* Find the end of function prologue. */
270
271static CORE_ADDR
272ft32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
273{
274 CORE_ADDR func_addr = 0, func_end = 0;
275 const char *func_name;
276
277 /* See if we can determine the end of the prologue via the symbol table.
278 If so, then return either PC, or the PC after the prologue, whichever
279 is greater. */
280 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
281 {
282 CORE_ADDR post_prologue_pc
283 = skip_prologue_using_sal (gdbarch, func_addr);
284 if (post_prologue_pc != 0)
325fac50 285 return std::max (pc, post_prologue_pc);
49d45b20
JB
286 else
287 {
288 /* Can't determine prologue from the symbol table, need to examine
289 instructions. */
290 struct symtab_and_line sal;
291 struct symbol *sym;
292 struct ft32_frame_cache cache;
293 CORE_ADDR plg_end;
294
295 memset (&cache, 0, sizeof cache);
296
297 plg_end = ft32_analyze_prologue (func_addr,
298 func_end, &cache, gdbarch);
299 /* Found a function. */
835a09d9 300 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
49d45b20 301 /* Don't use line number debug info for assembly source files. */
c1b5c1eb 302 if ((sym != NULL) && sym->language () != language_asm)
49d45b20
JB
303 {
304 sal = find_pc_line (func_addr, 0);
305 if (sal.end && sal.end < func_end)
306 {
307 /* Found a line number, use it as end of prologue. */
308 return sal.end;
309 }
310 }
311 /* No useable line symbol. Use result of prologue parsing method. */
312 return plg_end;
313 }
314 }
315
316 /* No function symbol -- just return the PC. */
317 return pc;
318}
319
623fb775 320/* Implementation of `pointer_to_address' gdbarch method.
321
322 On FT32 address space zero is RAM, address space 1 is flash.
323 RAM appears at address RAM_BIAS, flash at address 0. */
324
325static CORE_ADDR
326ft32_pointer_to_address (struct gdbarch *gdbarch,
327 struct type *type, const gdb_byte *buf)
328{
329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
330 CORE_ADDR addr
331 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
332
333 if (TYPE_ADDRESS_CLASS_1 (type))
334 return addr;
335 else
336 return addr | RAM_BIAS;
337}
338
339/* Implementation of `address_class_type_flags' gdbarch method.
340
341 This method maps DW_AT_address_class attributes to a
342 type_instance_flag_value. */
343
344static int
345ft32_address_class_type_flags (int byte_size, int dwarf2_addr_class)
346{
347 /* The value 1 of the DW_AT_address_class attribute corresponds to the
348 __flash__ qualifier, meaning pointer to data in FT32 program memory.
349 */
350 if (dwarf2_addr_class == 1)
351 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
352 return 0;
353}
354
355/* Implementation of `address_class_type_flags_to_name' gdbarch method.
356
357 Convert a type_instance_flag_value to an address space qualifier. */
358
359static const char*
360ft32_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
361{
362 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
363 return "flash";
364 else
365 return NULL;
366}
367
368/* Implementation of `address_class_name_to_type_flags' gdbarch method.
369
370 Convert an address space qualifier to a type_instance_flag_value. */
371
372static int
373ft32_address_class_name_to_type_flags (struct gdbarch *gdbarch,
374 const char* name,
375 int *type_flags_ptr)
376{
377 if (strcmp (name, "flash") == 0)
378 {
379 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
380 return 1;
381 }
382 else
383 return 0;
384}
385
49d45b20
JB
386/* Given a return value in `regbuf' with a type `valtype',
387 extract and copy its value into `valbuf'. */
388
389static void
390ft32_extract_return_value (struct type *type, struct regcache *regcache,
391 gdb_byte *dst)
392{
ac7936df 393 struct gdbarch *gdbarch = regcache->arch ();
49d45b20
JB
394 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
395 bfd_byte *valbuf = dst;
396 int len = TYPE_LENGTH (type);
397 ULONGEST tmp;
398
399 /* By using store_unsigned_integer we avoid having to do
400 anything special for small big-endian values. */
401 regcache_cooked_read_unsigned (regcache, FT32_R0_REGNUM, &tmp);
402 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
403
404 /* Ignore return values more than 8 bytes in size because the ft32
405 returns anything more than 8 bytes in the stack. */
406 if (len > 4)
407 {
408 regcache_cooked_read_unsigned (regcache, FT32_R1_REGNUM, &tmp);
409 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
410 }
411}
412
413/* Implement the "return_value" gdbarch method. */
414
415static enum return_value_convention
416ft32_return_value (struct gdbarch *gdbarch, struct value *function,
417 struct type *valtype, struct regcache *regcache,
418 gdb_byte *readbuf, const gdb_byte *writebuf)
419{
420 if (TYPE_LENGTH (valtype) > 8)
421 return RETURN_VALUE_STRUCT_CONVENTION;
422 else
423 {
424 if (readbuf != NULL)
425 ft32_extract_return_value (valtype, regcache, readbuf);
426 if (writebuf != NULL)
427 ft32_store_return_value (valtype, regcache, writebuf);
428 return RETURN_VALUE_REGISTER_CONVENTION;
429 }
430}
431
432/* Allocate and initialize a ft32_frame_cache object. */
433
434static struct ft32_frame_cache *
435ft32_alloc_frame_cache (void)
436{
437 struct ft32_frame_cache *cache;
438 int i;
439
440 cache = FRAME_OBSTACK_ZALLOC (struct ft32_frame_cache);
441
442 for (i = 0; i < FT32_NUM_REGS; ++i)
443 cache->saved_regs[i] = REG_UNAVAIL;
444
445 return cache;
446}
447
448/* Populate a ft32_frame_cache object for this_frame. */
449
450static struct ft32_frame_cache *
451ft32_frame_cache (struct frame_info *this_frame, void **this_cache)
452{
453 struct ft32_frame_cache *cache;
454 CORE_ADDR current_pc;
455 int i;
456
457 if (*this_cache)
9a3c8263 458 return (struct ft32_frame_cache *) *this_cache;
49d45b20
JB
459
460 cache = ft32_alloc_frame_cache ();
461 *this_cache = cache;
462
463 cache->base = get_frame_register_unsigned (this_frame, FT32_FP_REGNUM);
464 if (cache->base == 0)
465 return cache;
466
467 cache->pc = get_frame_func (this_frame);
468 current_pc = get_frame_pc (this_frame);
469 if (cache->pc)
470 {
471 struct gdbarch *gdbarch = get_frame_arch (this_frame);
472
473 ft32_analyze_prologue (cache->pc, current_pc, cache, gdbarch);
474 if (!cache->established)
475 cache->base = get_frame_register_unsigned (this_frame, FT32_SP_REGNUM);
476 }
477
478 cache->saved_sp = cache->base - 4;
479
480 for (i = 0; i < FT32_NUM_REGS; ++i)
481 if (cache->saved_regs[i] != REG_UNAVAIL)
482 cache->saved_regs[i] = cache->base + cache->saved_regs[i];
483
484 return cache;
485}
486
49d45b20
JB
487/* Given a GDB frame, determine the address of the calling function's
488 frame. This will be used to create a new GDB frame struct. */
489
490static void
491ft32_frame_this_id (struct frame_info *this_frame,
492 void **this_prologue_cache, struct frame_id *this_id)
493{
494 struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
495 this_prologue_cache);
496
497 /* This marks the outermost frame. */
498 if (cache->base == 0)
499 return;
500
501 *this_id = frame_id_build (cache->saved_sp, cache->pc);
502}
503
504/* Get the value of register regnum in the previous stack frame. */
505
506static struct value *
507ft32_frame_prev_register (struct frame_info *this_frame,
508 void **this_prologue_cache, int regnum)
509{
510 struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
511 this_prologue_cache);
512
513 gdb_assert (regnum >= 0);
514
515 if (regnum == FT32_SP_REGNUM && cache->saved_sp)
516 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
517
518 if (regnum < FT32_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
519 return frame_unwind_got_memory (this_frame, regnum,
520 RAM_BIAS | cache->saved_regs[regnum]);
521
522 return frame_unwind_got_register (this_frame, regnum, regnum);
523}
524
525static const struct frame_unwind ft32_frame_unwind =
526{
527 NORMAL_FRAME,
528 default_frame_unwind_stop_reason,
529 ft32_frame_this_id,
530 ft32_frame_prev_register,
531 NULL,
532 default_frame_sniffer
533};
534
535/* Return the base address of this_frame. */
536
537static CORE_ADDR
538ft32_frame_base_address (struct frame_info *this_frame, void **this_cache)
539{
540 struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
541 this_cache);
542
543 return cache->base;
544}
545
546static const struct frame_base ft32_frame_base =
547{
548 &ft32_frame_unwind,
549 ft32_frame_base_address,
550 ft32_frame_base_address,
551 ft32_frame_base_address
552};
553
49d45b20
JB
554/* Allocate and initialize the ft32 gdbarch object. */
555
556static struct gdbarch *
557ft32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
558{
559 struct gdbarch *gdbarch;
560 struct gdbarch_tdep *tdep;
623fb775 561 struct type *void_type;
562 struct type *func_void_type;
49d45b20
JB
563
564 /* If there is already a candidate, use it. */
565 arches = gdbarch_list_lookup_by_info (arches, &info);
566 if (arches != NULL)
567 return arches->gdbarch;
568
569 /* Allocate space for the new architecture. */
cdd238da 570 tdep = XCNEW (struct gdbarch_tdep);
49d45b20
JB
571 gdbarch = gdbarch_alloc (&info, tdep);
572
623fb775 573 /* Create a type for PC. We can't use builtin types here, as they may not
574 be defined. */
77b7c781 575 void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
623fb775 576 func_void_type = make_function_type (void_type, NULL);
88dfca6c
UW
577 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
578 func_void_type);
623fb775 579 TYPE_INSTANCE_FLAGS (tdep->pc_type) |= TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
580
49d45b20
JB
581 set_gdbarch_num_regs (gdbarch, FT32_NUM_REGS);
582 set_gdbarch_sp_regnum (gdbarch, FT32_SP_REGNUM);
583 set_gdbarch_pc_regnum (gdbarch, FT32_PC_REGNUM);
584 set_gdbarch_register_name (gdbarch, ft32_register_name);
585 set_gdbarch_register_type (gdbarch, ft32_register_type);
586
587 set_gdbarch_return_value (gdbarch, ft32_return_value);
588
623fb775 589 set_gdbarch_pointer_to_address (gdbarch, ft32_pointer_to_address);
590
49d45b20
JB
591 set_gdbarch_skip_prologue (gdbarch, ft32_skip_prologue);
592 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
593 set_gdbarch_breakpoint_kind_from_pc (gdbarch, ft32_breakpoint::kind_from_pc);
594 set_gdbarch_sw_breakpoint_from_kind (gdbarch, ft32_breakpoint::bp_from_kind);
49d45b20
JB
595 set_gdbarch_frame_align (gdbarch, ft32_frame_align);
596
597 frame_base_set_default (gdbarch, &ft32_frame_base);
598
49d45b20
JB
599 /* Hook in ABI-specific overrides, if they have been registered. */
600 gdbarch_init_osabi (info, gdbarch);
601
602 /* Hook in the default unwinders. */
603 frame_unwind_append_unwinder (gdbarch, &ft32_frame_unwind);
604
605 /* Support simple overlay manager. */
606 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
607
623fb775 608 set_gdbarch_address_class_type_flags (gdbarch, ft32_address_class_type_flags);
609 set_gdbarch_address_class_name_to_type_flags
610 (gdbarch, ft32_address_class_name_to_type_flags);
611 set_gdbarch_address_class_type_flags_to_name
612 (gdbarch, ft32_address_class_type_flags_to_name);
613
49d45b20
JB
614 return gdbarch;
615}
616
617/* Register this machine's init routine. */
618
619void
620_initialize_ft32_tdep (void)
621{
622 register_gdbarch_init (bfd_arch_ft32, ft32_gdbarch_init);
623}
This page took 0.438763 seconds and 4 git commands to generate.