gdb/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532 24# environment.
0e05dfcb
DJ
25LANG=C ; export LANG
26LC_ALL=C ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 365
f9e9243a
UW
366# The ABI default bit-size and format for "half", "float", "double", and
367# "long double". These bit/format pairs should eventually be combined
368# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
f9e9243a
UW
372v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
373v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 374v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 376v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 378v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 379v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 380
52204a0b
DT
381# For most targets, a pointer on the target and its representation as an
382# address in GDB have the same size and "look the same". For such a
17a912b6 383# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
384# / addr_bit will be set from it.
385#
17a912b6 386# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
387# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
388# as well.
52204a0b
DT
389#
390# ptr_bit is the size of a pointer on the target
be7811ad 391v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 392# addr_bit is the size of a target address as represented in gdb
be7811ad 393v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 394#
4e409299 395# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 396v:int:char_signed:::1:-1:1
4e409299 397#
97030eea
UW
398F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
399F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
400# Function for getting target's idea of a frame pointer. FIXME: GDB's
401# whole scheme for dealing with "frames" and "frame pointers" needs a
402# serious shakedown.
a54fba4c 403m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 404#
97030eea
UW
405M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
406M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 407#
97030eea 408v:int:num_regs:::0:-1
0aba1244
EZ
409# This macro gives the number of pseudo-registers that live in the
410# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
411# These pseudo-registers may be aliases for other registers,
412# combinations of other registers, or they may be computed by GDB.
97030eea 413v:int:num_pseudo_regs:::0:0::0
c2169756
AC
414
415# GDB's standard (or well known) register numbers. These can map onto
416# a real register or a pseudo (computed) register or not be defined at
1200cd6e 417# all (-1).
3e8c568d 418# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
419v:int:sp_regnum:::-1:-1::0
420v:int:pc_regnum:::-1:-1::0
421v:int:ps_regnum:::-1:-1::0
422v:int:fp0_regnum:::0:-1::0
88c72b7d 423# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 424m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 426m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 427# Convert from an sdb register number to an internal gdb register number.
d3f73121 428m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 429# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 430m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 431m:const char *:register_name:int regnr:regnr::0
9c04cab7 432
7b9ee6a8
DJ
433# Return the type of a register specified by the architecture. Only
434# the register cache should call this function directly; others should
435# use "register_type".
97030eea 436M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 437
f3be58bc 438# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
439M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
440# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 441# deprecated_fp_regnum.
97030eea 442v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 443
a86c5fc9 444# See gdbint.texinfo. See infcall.c.
97030eea
UW
445M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
446v:int:call_dummy_location::::AT_ENTRY_POINT::0
447M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 448
97030eea
UW
449m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
450M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
451M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
452# MAP a GDB RAW register number onto a simulator register number. See
453# also include/...-sim.h.
e7faf938 454m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
455m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
456m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 457# setjmp/longjmp support.
97030eea 458F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 459#
97030eea 460v:int:believe_pcc_promotion:::::::
104c1213 461#
0abe36f5 462m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
463f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
464f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
465# Construct a value representing the contents of register REGNUM in
466# frame FRAME, interpreted as type TYPE. The routine needs to
467# allocate and return a struct value with all value attributes
468# (but not the value contents) filled in.
97030eea 469f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 470#
9898f801
UW
471m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
472m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 473M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 474
ea42b34a
JB
475# Return the return-value convention that will be used by FUNCTYPE
476# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
477# case the return convention is computed based only on VALTYPE.
478#
479# If READBUF is not NULL, extract the return value and save it in this buffer.
480#
481# If WRITEBUF is not NULL, it contains a return value which will be
482# stored into the appropriate register. This can be used when we want
483# to force the value returned by a function (see the "return" command
484# for instance).
c055b101 485M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 486
6093d2eb 487m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 488M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 489f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 490m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
491# Return the adjusted address and kind to use for Z0/Z1 packets.
492# KIND is usually the memory length of the breakpoint, but may have a
493# different target-specific meaning.
0e05dfcb 494m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 495M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
496m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
497m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 498v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
499
500# A function can be addressed by either it's "pointer" (possibly a
501# descriptor address) or "entry point" (first executable instruction).
502# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 503# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
504# a simplified subset of that functionality - the function's address
505# corresponds to the "function pointer" and the function's start
506# corresponds to the "function entry point" - and hence is redundant.
507
97030eea 508v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 509
123dc839
DJ
510# Return the remote protocol register number associated with this
511# register. Normally the identity mapping.
97030eea 512m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 513
b2756930 514# Fetch the target specific address used to represent a load module.
97030eea 515F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 516#
97030eea
UW
517v:CORE_ADDR:frame_args_skip:::0:::0
518M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
519M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
520# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
521# frame-base. Enable frame-base before frame-unwind.
97030eea 522F:int:frame_num_args:struct frame_info *frame:frame
104c1213 523#
97030eea
UW
524M:CORE_ADDR:frame_align:CORE_ADDR address:address
525m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
526v:int:frame_red_zone_size
f0d4cc9e 527#
97030eea 528m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
529# On some machines there are bits in addresses which are not really
530# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 531# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
532# we get a "real" address such as one would find in a symbol table.
533# This is used only for addresses of instructions, and even then I'm
534# not sure it's used in all contexts. It exists to deal with there
535# being a few stray bits in the PC which would mislead us, not as some
536# sort of generic thing to handle alignment or segmentation (it's
537# possible it should be in TARGET_READ_PC instead).
24568a2c 538m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 539# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 540# gdbarch_addr_bits_remove.
24568a2c 541m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
542
543# FIXME/cagney/2001-01-18: This should be split in two. A target method that
544# indicates if the target needs software single step. An ISA method to
545# implement it.
546#
547# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
548# breakpoints using the breakpoint system instead of blatting memory directly
549# (as with rs6000).
64c4637f 550#
e6590a1b
UW
551# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
552# target can single step. If not, then implement single step using breakpoints.
64c4637f 553#
e6590a1b
UW
554# A return value of 1 means that the software_single_step breakpoints
555# were inserted; 0 means they were not.
97030eea 556F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 557
3352ef37
AC
558# Return non-zero if the processor is executing a delay slot and a
559# further single-step is needed before the instruction finishes.
97030eea 560M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 561# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 562# disassembler. Perhaps objdump can handle it?
97030eea
UW
563f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
564f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
565
566
cfd8ab24 567# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
568# evaluates non-zero, this is the address where the debugger will place
569# a step-resume breakpoint to get us past the dynamic linker.
97030eea 570m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 571# Some systems also have trampoline code for returning from shared libs.
e17a4113 572m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 573
c12260ac
CV
574# A target might have problems with watchpoints as soon as the stack
575# frame of the current function has been destroyed. This mostly happens
576# as the first action in a funtion's epilogue. in_function_epilogue_p()
577# is defined to return a non-zero value if either the given addr is one
578# instruction after the stack destroying instruction up to the trailing
579# return instruction or if we can figure out that the stack frame has
580# already been invalidated regardless of the value of addr. Targets
581# which don't suffer from that problem could just let this functionality
582# untouched.
97030eea 583m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
584f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
585f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
586v:int:cannot_step_breakpoint:::0:0::0
587v:int:have_nonsteppable_watchpoint:::0:0::0
588F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
589M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
590M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 591# Is a register in a group
97030eea 592m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 593# Fetch the pointer to the ith function argument.
97030eea 594F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
595
596# Return the appropriate register set for a core file section with
597# name SECT_NAME and size SECT_SIZE.
97030eea 598M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 599
959b8724
PA
600# When creating core dumps, some systems encode the PID in addition
601# to the LWP id in core file register section names. In those cases, the
602# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
603# is set to true for such architectures; false if "XXX" represents an LWP
604# or thread id with no special encoding.
605v:int:core_reg_section_encodes_pid:::0:0::0
606
17ea7499
CES
607# Supported register notes in a core file.
608v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
609
de584861
PA
610# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
611# core file into buffer READBUF with length LEN.
97030eea 612M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 613
c0edd9ed 614# How the core target converts a PTID from a core file to a string.
28439f5e
PA
615M:char *:core_pid_to_str:ptid_t ptid:ptid
616
a78c2d62
UW
617# BFD target to use when generating a core file.
618V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
619
0d5de010
DJ
620# If the elements of C++ vtables are in-place function descriptors rather
621# than normal function pointers (which may point to code or a descriptor),
622# set this to one.
97030eea 623v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
624
625# Set if the least significant bit of the delta is used instead of the least
626# significant bit of the pfn for pointers to virtual member functions.
97030eea 627v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
628
629# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 630F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 631
237fc4c9
PA
632# The maximum length of an instruction on this architecture.
633V:ULONGEST:max_insn_length:::0:0
634
635# Copy the instruction at FROM to TO, and make any adjustments
636# necessary to single-step it at that address.
637#
638# REGS holds the state the thread's registers will have before
639# executing the copied instruction; the PC in REGS will refer to FROM,
640# not the copy at TO. The caller should update it to point at TO later.
641#
642# Return a pointer to data of the architecture's choice to be passed
643# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
644# the instruction's effects have been completely simulated, with the
645# resulting state written back to REGS.
646#
647# For a general explanation of displaced stepping and how GDB uses it,
648# see the comments in infrun.c.
649#
650# The TO area is only guaranteed to have space for
651# gdbarch_max_insn_length (arch) bytes, so this function must not
652# write more bytes than that to that area.
653#
654# If you do not provide this function, GDB assumes that the
655# architecture does not support displaced stepping.
656#
657# If your architecture doesn't need to adjust instructions before
658# single-stepping them, consider using simple_displaced_step_copy_insn
659# here.
660M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
661
99e40580
UW
662# Return true if GDB should use hardware single-stepping to execute
663# the displaced instruction identified by CLOSURE. If false,
664# GDB will simply restart execution at the displaced instruction
665# location, and it is up to the target to ensure GDB will receive
666# control again (e.g. by placing a software breakpoint instruction
667# into the displaced instruction buffer).
668#
669# The default implementation returns false on all targets that
670# provide a gdbarch_software_single_step routine, and true otherwise.
671m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
672
237fc4c9
PA
673# Fix up the state resulting from successfully single-stepping a
674# displaced instruction, to give the result we would have gotten from
675# stepping the instruction in its original location.
676#
677# REGS is the register state resulting from single-stepping the
678# displaced instruction.
679#
680# CLOSURE is the result from the matching call to
681# gdbarch_displaced_step_copy_insn.
682#
683# If you provide gdbarch_displaced_step_copy_insn.but not this
684# function, then GDB assumes that no fixup is needed after
685# single-stepping the instruction.
686#
687# For a general explanation of displaced stepping and how GDB uses it,
688# see the comments in infrun.c.
689M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
690
691# Free a closure returned by gdbarch_displaced_step_copy_insn.
692#
693# If you provide gdbarch_displaced_step_copy_insn, you must provide
694# this function as well.
695#
696# If your architecture uses closures that don't need to be freed, then
697# you can use simple_displaced_step_free_closure here.
698#
699# For a general explanation of displaced stepping and how GDB uses it,
700# see the comments in infrun.c.
701m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
702
703# Return the address of an appropriate place to put displaced
704# instructions while we step over them. There need only be one such
705# place, since we're only stepping one thread over a breakpoint at a
706# time.
707#
708# For a general explanation of displaced stepping and how GDB uses it,
709# see the comments in infrun.c.
710m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
711
dde08ee1
PA
712# Relocate an instruction to execute at a different address. OLDLOC
713# is the address in the inferior memory where the instruction to
714# relocate is currently at. On input, TO points to the destination
715# where we want the instruction to be copied (and possibly adjusted)
716# to. On output, it points to one past the end of the resulting
717# instruction(s). The effect of executing the instruction at TO shall
718# be the same as if executing it at FROM. For example, call
719# instructions that implicitly push the return address on the stack
720# should be adjusted to return to the instruction after OLDLOC;
721# relative branches, and other PC-relative instructions need the
722# offset adjusted; etc.
723M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
724
1c772458 725# Refresh overlay mapped state for section OSECT.
97030eea 726F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 727
97030eea 728M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
729
730# Handle special encoding of static variables in stabs debug info.
97030eea 731F:char *:static_transform_name:char *name:name
203c3895 732# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 733v:int:sofun_address_maybe_missing:::0:0::0
1cded358 734
0508c3ec
HZ
735# Parse the instruction at ADDR storing in the record execution log
736# the registers REGCACHE and memory ranges that will be affected when
737# the instruction executes, along with their current values.
738# Return -1 if something goes wrong, 0 otherwise.
739M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
740
3846b520
HZ
741# Save process state after a signal.
742# Return -1 if something goes wrong, 0 otherwise.
743M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
744
1cded358
AR
745# Signal translation: translate inferior's signal (host's) number into
746# GDB's representation.
747m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
748# Signal translation: translate GDB's signal number into inferior's host
749# signal number.
750m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 751
4aa995e1
PA
752# Extra signal info inspection.
753#
754# Return a type suitable to inspect extra signal information.
755M:struct type *:get_siginfo_type:void:
756
60c5725c
DJ
757# Record architecture-specific information from the symbol table.
758M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 759
a96d9b2e
SDJ
760# Function for the 'catch syscall' feature.
761
762# Get architecture-specific system calls information from registers.
763M:LONGEST:get_syscall_number:ptid_t ptid:ptid
764
50c71eaf
PA
765# True if the list of shared libraries is one and only for all
766# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
767# This usually means that all processes, although may or may not share
768# an address space, will see the same set of symbols at the same
769# addresses.
50c71eaf 770v:int:has_global_solist:::0:0::0
2567c7d9
PA
771
772# On some targets, even though each inferior has its own private
773# address space, the debug interface takes care of making breakpoints
774# visible to all address spaces automatically. For such cases,
775# this property should be set to true.
776v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
777
778# True if inferiors share an address space (e.g., uClinux).
779m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
780
781# True if a fast tracepoint can be set at an address.
782m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 783
f870a310
TT
784# Return the "auto" target charset.
785f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
786# Return the "auto" target wide charset.
787f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
788
789# If non-empty, this is a file extension that will be opened in place
790# of the file extension reported by the shared library list.
791#
792# This is most useful for toolchains that use a post-linker tool,
793# where the names of the files run on the target differ in extension
794# compared to the names of the files GDB should load for debug info.
795v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
796
797# If true, the target OS has DOS-based file system semantics. That
798# is, absolute paths include a drive name, and the backslash is
799# considered a directory separator.
800v:int:has_dos_based_file_system:::0:0::0
104c1213 801EOF
104c1213
JM
802}
803
0b8f9e4d
AC
804#
805# The .log file
806#
807exec > new-gdbarch.log
34620563 808function_list | while do_read
0b8f9e4d
AC
809do
810 cat <<EOF
2f9b146e 811${class} ${returntype} ${function} ($formal)
104c1213 812EOF
3d9a5942
AC
813 for r in ${read}
814 do
815 eval echo \"\ \ \ \ ${r}=\${${r}}\"
816 done
f0d4cc9e 817 if class_is_predicate_p && fallback_default_p
0b8f9e4d 818 then
66d659b1 819 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
820 kill $$
821 exit 1
822 fi
72e74a21 823 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
824 then
825 echo "Error: postdefault is useless when invalid_p=0" 1>&2
826 kill $$
827 exit 1
828 fi
a72293e2
AC
829 if class_is_multiarch_p
830 then
831 if class_is_predicate_p ; then :
832 elif test "x${predefault}" = "x"
833 then
2f9b146e 834 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
835 kill $$
836 exit 1
837 fi
838 fi
3d9a5942 839 echo ""
0b8f9e4d
AC
840done
841
842exec 1>&2
843compare_new gdbarch.log
844
104c1213
JM
845
846copyright ()
847{
848cat <<EOF
59233f88
AC
849/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
850
104c1213 851/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 852
f801e1e0
MS
853 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
854 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
855
856 This file is part of GDB.
857
858 This program is free software; you can redistribute it and/or modify
859 it under the terms of the GNU General Public License as published by
50efebf8 860 the Free Software Foundation; either version 3 of the License, or
104c1213 861 (at your option) any later version.
50efebf8 862
104c1213
JM
863 This program is distributed in the hope that it will be useful,
864 but WITHOUT ANY WARRANTY; without even the implied warranty of
865 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
866 GNU General Public License for more details.
50efebf8 867
104c1213 868 You should have received a copy of the GNU General Public License
50efebf8 869 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 870
104c1213
JM
871/* This file was created with the aid of \`\`gdbarch.sh''.
872
52204a0b 873 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
874 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
875 against the existing \`\`gdbarch.[hc]''. Any differences found
876 being reported.
877
878 If editing this file, please also run gdbarch.sh and merge any
52204a0b 879 changes into that script. Conversely, when making sweeping changes
104c1213
JM
880 to this file, modifying gdbarch.sh and using its output may prove
881 easier. */
882
883EOF
884}
885
886#
887# The .h file
888#
889
890exec > new-gdbarch.h
891copyright
892cat <<EOF
893#ifndef GDBARCH_H
894#define GDBARCH_H
895
da3331ec
AC
896struct floatformat;
897struct ui_file;
104c1213
JM
898struct frame_info;
899struct value;
b6af0555 900struct objfile;
1c772458 901struct obj_section;
a2cf933a 902struct minimal_symbol;
049ee0e4 903struct regcache;
b59ff9d5 904struct reggroup;
6ce6d90f 905struct regset;
a89aa300 906struct disassemble_info;
e2d0e7eb 907struct target_ops;
030f20e1 908struct obstack;
8181d85f 909struct bp_target_info;
424163ea 910struct target_desc;
237fc4c9 911struct displaced_step_closure;
17ea7499 912struct core_regset_section;
a96d9b2e 913struct syscall;
104c1213 914
9e2ace22
JB
915/* The architecture associated with the connection to the target.
916
917 The architecture vector provides some information that is really
918 a property of the target: The layout of certain packets, for instance;
919 or the solib_ops vector. Etc. To differentiate architecture accesses
920 to per-target properties from per-thread/per-frame/per-objfile properties,
921 accesses to per-target properties should be made through target_gdbarch.
922
923 Eventually, when support for multiple targets is implemented in
924 GDB, this global should be made target-specific. */
1cf3db46 925extern struct gdbarch *target_gdbarch;
104c1213
JM
926EOF
927
928# function typedef's
3d9a5942
AC
929printf "\n"
930printf "\n"
931printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 932function_list | while do_read
104c1213 933do
2ada493a
AC
934 if class_is_info_p
935 then
3d9a5942
AC
936 printf "\n"
937 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
938 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 939 fi
104c1213
JM
940done
941
942# function typedef's
3d9a5942
AC
943printf "\n"
944printf "\n"
945printf "/* The following are initialized by the target dependent code. */\n"
34620563 946function_list | while do_read
104c1213 947do
72e74a21 948 if [ -n "${comment}" ]
34620563
AC
949 then
950 echo "${comment}" | sed \
951 -e '2 s,#,/*,' \
952 -e '3,$ s,#, ,' \
953 -e '$ s,$, */,'
954 fi
412d5987
AC
955
956 if class_is_predicate_p
2ada493a 957 then
412d5987
AC
958 printf "\n"
959 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 960 fi
2ada493a
AC
961 if class_is_variable_p
962 then
3d9a5942
AC
963 printf "\n"
964 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
965 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
966 fi
967 if class_is_function_p
968 then
3d9a5942 969 printf "\n"
72e74a21 970 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
971 then
972 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
973 elif class_is_multiarch_p
974 then
975 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
976 else
977 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
978 fi
72e74a21 979 if [ "x${formal}" = "xvoid" ]
104c1213 980 then
3d9a5942 981 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 982 else
3d9a5942 983 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 984 fi
3d9a5942 985 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 986 fi
104c1213
JM
987done
988
989# close it off
990cat <<EOF
991
a96d9b2e
SDJ
992/* Definition for an unknown syscall, used basically in error-cases. */
993#define UNKNOWN_SYSCALL (-1)
994
104c1213
JM
995extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
996
997
998/* Mechanism for co-ordinating the selection of a specific
999 architecture.
1000
1001 GDB targets (*-tdep.c) can register an interest in a specific
1002 architecture. Other GDB components can register a need to maintain
1003 per-architecture data.
1004
1005 The mechanisms below ensures that there is only a loose connection
1006 between the set-architecture command and the various GDB
0fa6923a 1007 components. Each component can independently register their need
104c1213
JM
1008 to maintain architecture specific data with gdbarch.
1009
1010 Pragmatics:
1011
1012 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1013 didn't scale.
1014
1015 The more traditional mega-struct containing architecture specific
1016 data for all the various GDB components was also considered. Since
0fa6923a 1017 GDB is built from a variable number of (fairly independent)
104c1213
JM
1018 components it was determined that the global aproach was not
1019 applicable. */
1020
1021
1022/* Register a new architectural family with GDB.
1023
1024 Register support for the specified ARCHITECTURE with GDB. When
1025 gdbarch determines that the specified architecture has been
1026 selected, the corresponding INIT function is called.
1027
1028 --
1029
1030 The INIT function takes two parameters: INFO which contains the
1031 information available to gdbarch about the (possibly new)
1032 architecture; ARCHES which is a list of the previously created
1033 \`\`struct gdbarch'' for this architecture.
1034
0f79675b 1035 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1036 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1037
1038 The ARCHES parameter is a linked list (sorted most recently used)
1039 of all the previously created architures for this architecture
1040 family. The (possibly NULL) ARCHES->gdbarch can used to access
1041 values from the previously selected architecture for this
59837fe0 1042 architecture family.
104c1213
JM
1043
1044 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1045 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1046 gdbarch'' from the ARCHES list - indicating that the new
1047 architecture is just a synonym for an earlier architecture (see
1048 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1049 - that describes the selected architecture (see gdbarch_alloc()).
1050
1051 The DUMP_TDEP function shall print out all target specific values.
1052 Care should be taken to ensure that the function works in both the
1053 multi-arch and non- multi-arch cases. */
104c1213
JM
1054
1055struct gdbarch_list
1056{
1057 struct gdbarch *gdbarch;
1058 struct gdbarch_list *next;
1059};
1060
1061struct gdbarch_info
1062{
104c1213
JM
1063 /* Use default: NULL (ZERO). */
1064 const struct bfd_arch_info *bfd_arch_info;
1065
428721aa 1066 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1067 int byte_order;
1068
9d4fde75
SS
1069 int byte_order_for_code;
1070
104c1213
JM
1071 /* Use default: NULL (ZERO). */
1072 bfd *abfd;
1073
1074 /* Use default: NULL (ZERO). */
1075 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1076
1077 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1078 enum gdb_osabi osabi;
424163ea
DJ
1079
1080 /* Use default: NULL (ZERO). */
1081 const struct target_desc *target_desc;
104c1213
JM
1082};
1083
1084typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1085typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1086
4b9b3959 1087/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1088extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1089
4b9b3959
AC
1090extern void gdbarch_register (enum bfd_architecture architecture,
1091 gdbarch_init_ftype *,
1092 gdbarch_dump_tdep_ftype *);
1093
104c1213 1094
b4a20239
AC
1095/* Return a freshly allocated, NULL terminated, array of the valid
1096 architecture names. Since architectures are registered during the
1097 _initialize phase this function only returns useful information
1098 once initialization has been completed. */
1099
1100extern const char **gdbarch_printable_names (void);
1101
1102
104c1213
JM
1103/* Helper function. Search the list of ARCHES for a GDBARCH that
1104 matches the information provided by INFO. */
1105
424163ea 1106extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1107
1108
1109/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1110 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1111 parameters. set_gdbarch_*() functions are called to complete the
1112 initialization of the object. */
1113
1114extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1115
1116
4b9b3959
AC
1117/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1118 It is assumed that the caller freeds the \`\`struct
1119 gdbarch_tdep''. */
1120
058f20d5
JB
1121extern void gdbarch_free (struct gdbarch *);
1122
1123
aebd7893
AC
1124/* Helper function. Allocate memory from the \`\`struct gdbarch''
1125 obstack. The memory is freed when the corresponding architecture
1126 is also freed. */
1127
1128extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1129#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1130#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1131
1132
b732d07d 1133/* Helper function. Force an update of the current architecture.
104c1213 1134
b732d07d
AC
1135 The actual architecture selected is determined by INFO, \`\`(gdb) set
1136 architecture'' et.al., the existing architecture and BFD's default
1137 architecture. INFO should be initialized to zero and then selected
1138 fields should be updated.
104c1213 1139
16f33e29
AC
1140 Returns non-zero if the update succeeds */
1141
1142extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1143
1144
ebdba546
AC
1145/* Helper function. Find an architecture matching info.
1146
1147 INFO should be initialized using gdbarch_info_init, relevant fields
1148 set, and then finished using gdbarch_info_fill.
1149
1150 Returns the corresponding architecture, or NULL if no matching
59837fe0 1151 architecture was found. */
ebdba546
AC
1152
1153extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1154
1155
59837fe0 1156/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1157
1158 FIXME: kettenis/20031124: Of the functions that follow, only
1159 gdbarch_from_bfd is supposed to survive. The others will
1160 dissappear since in the future GDB will (hopefully) be truly
1161 multi-arch. However, for now we're still stuck with the concept of
1162 a single active architecture. */
1163
59837fe0 1164extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1165
104c1213
JM
1166
1167/* Register per-architecture data-pointer.
1168
1169 Reserve space for a per-architecture data-pointer. An identifier
1170 for the reserved data-pointer is returned. That identifer should
95160752 1171 be saved in a local static variable.
104c1213 1172
fcc1c85c
AC
1173 Memory for the per-architecture data shall be allocated using
1174 gdbarch_obstack_zalloc. That memory will be deleted when the
1175 corresponding architecture object is deleted.
104c1213 1176
95160752
AC
1177 When a previously created architecture is re-selected, the
1178 per-architecture data-pointer for that previous architecture is
76860b5f 1179 restored. INIT() is not re-called.
104c1213
JM
1180
1181 Multiple registrarants for any architecture are allowed (and
1182 strongly encouraged). */
1183
95160752 1184struct gdbarch_data;
104c1213 1185
030f20e1
AC
1186typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1187extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1188typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1189extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1190extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1191 struct gdbarch_data *data,
1192 void *pointer);
104c1213 1193
451fbdda 1194extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1195
1196
0fa6923a 1197/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1198 byte-order, ...) using information found in the BFD */
1199
1200extern void set_gdbarch_from_file (bfd *);
1201
1202
e514a9d6
JM
1203/* Initialize the current architecture to the "first" one we find on
1204 our list. */
1205
1206extern void initialize_current_architecture (void);
1207
104c1213
JM
1208/* gdbarch trace variable */
1209extern int gdbarch_debug;
1210
4b9b3959 1211extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1212
1213#endif
1214EOF
1215exec 1>&2
1216#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1217compare_new gdbarch.h
104c1213
JM
1218
1219
1220#
1221# C file
1222#
1223
1224exec > new-gdbarch.c
1225copyright
1226cat <<EOF
1227
1228#include "defs.h"
7355ddba 1229#include "arch-utils.h"
104c1213 1230
104c1213 1231#include "gdbcmd.h"
faaf634c 1232#include "inferior.h"
104c1213
JM
1233#include "symcat.h"
1234
f0d4cc9e 1235#include "floatformat.h"
104c1213 1236
95160752 1237#include "gdb_assert.h"
b66d6d2e 1238#include "gdb_string.h"
b59ff9d5 1239#include "reggroups.h"
4be87837 1240#include "osabi.h"
aebd7893 1241#include "gdb_obstack.h"
383f836e 1242#include "observer.h"
a3ecef73 1243#include "regcache.h"
95160752 1244
104c1213
JM
1245/* Static function declarations */
1246
b3cc3077 1247static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1248
104c1213
JM
1249/* Non-zero if we want to trace architecture code. */
1250
1251#ifndef GDBARCH_DEBUG
1252#define GDBARCH_DEBUG 0
1253#endif
1254int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1255static void
1256show_gdbarch_debug (struct ui_file *file, int from_tty,
1257 struct cmd_list_element *c, const char *value)
1258{
1259 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1260}
104c1213 1261
456fcf94 1262static const char *
8da61cc4 1263pformat (const struct floatformat **format)
456fcf94
AC
1264{
1265 if (format == NULL)
1266 return "(null)";
1267 else
8da61cc4
DJ
1268 /* Just print out one of them - this is only for diagnostics. */
1269 return format[0]->name;
456fcf94
AC
1270}
1271
08105857
PA
1272static const char *
1273pstring (const char *string)
1274{
1275 if (string == NULL)
1276 return "(null)";
1277 return string;
1278}
1279
104c1213
JM
1280EOF
1281
1282# gdbarch open the gdbarch object
3d9a5942
AC
1283printf "\n"
1284printf "/* Maintain the struct gdbarch object */\n"
1285printf "\n"
1286printf "struct gdbarch\n"
1287printf "{\n"
76860b5f
AC
1288printf " /* Has this architecture been fully initialized? */\n"
1289printf " int initialized_p;\n"
aebd7893
AC
1290printf "\n"
1291printf " /* An obstack bound to the lifetime of the architecture. */\n"
1292printf " struct obstack *obstack;\n"
1293printf "\n"
3d9a5942 1294printf " /* basic architectural information */\n"
34620563 1295function_list | while do_read
104c1213 1296do
2ada493a
AC
1297 if class_is_info_p
1298 then
3d9a5942 1299 printf " ${returntype} ${function};\n"
2ada493a 1300 fi
104c1213 1301done
3d9a5942
AC
1302printf "\n"
1303printf " /* target specific vector. */\n"
1304printf " struct gdbarch_tdep *tdep;\n"
1305printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1306printf "\n"
1307printf " /* per-architecture data-pointers */\n"
95160752 1308printf " unsigned nr_data;\n"
3d9a5942
AC
1309printf " void **data;\n"
1310printf "\n"
1311printf " /* per-architecture swap-regions */\n"
1312printf " struct gdbarch_swap *swap;\n"
1313printf "\n"
104c1213
JM
1314cat <<EOF
1315 /* Multi-arch values.
1316
1317 When extending this structure you must:
1318
1319 Add the field below.
1320
1321 Declare set/get functions and define the corresponding
1322 macro in gdbarch.h.
1323
1324 gdbarch_alloc(): If zero/NULL is not a suitable default,
1325 initialize the new field.
1326
1327 verify_gdbarch(): Confirm that the target updated the field
1328 correctly.
1329
7e73cedf 1330 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1331 field is dumped out
1332
c0e8c252 1333 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1334 variable (base values on the host's c-type system).
1335
1336 get_gdbarch(): Implement the set/get functions (probably using
1337 the macro's as shortcuts).
1338
1339 */
1340
1341EOF
34620563 1342function_list | while do_read
104c1213 1343do
2ada493a
AC
1344 if class_is_variable_p
1345 then
3d9a5942 1346 printf " ${returntype} ${function};\n"
2ada493a
AC
1347 elif class_is_function_p
1348 then
2f9b146e 1349 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1350 fi
104c1213 1351done
3d9a5942 1352printf "};\n"
104c1213
JM
1353
1354# A pre-initialized vector
3d9a5942
AC
1355printf "\n"
1356printf "\n"
104c1213
JM
1357cat <<EOF
1358/* The default architecture uses host values (for want of a better
1359 choice). */
1360EOF
3d9a5942
AC
1361printf "\n"
1362printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1363printf "\n"
1364printf "struct gdbarch startup_gdbarch =\n"
1365printf "{\n"
76860b5f 1366printf " 1, /* Always initialized. */\n"
aebd7893 1367printf " NULL, /* The obstack. */\n"
3d9a5942 1368printf " /* basic architecture information */\n"
4b9b3959 1369function_list | while do_read
104c1213 1370do
2ada493a
AC
1371 if class_is_info_p
1372 then
ec5cbaec 1373 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1374 fi
104c1213
JM
1375done
1376cat <<EOF
4b9b3959
AC
1377 /* target specific vector and its dump routine */
1378 NULL, NULL,
104c1213
JM
1379 /*per-architecture data-pointers and swap regions */
1380 0, NULL, NULL,
1381 /* Multi-arch values */
1382EOF
34620563 1383function_list | while do_read
104c1213 1384do
2ada493a
AC
1385 if class_is_function_p || class_is_variable_p
1386 then
ec5cbaec 1387 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1388 fi
104c1213
JM
1389done
1390cat <<EOF
c0e8c252 1391 /* startup_gdbarch() */
104c1213 1392};
4b9b3959 1393
1cf3db46 1394struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1395EOF
1396
1397# Create a new gdbarch struct
104c1213 1398cat <<EOF
7de2341d 1399
66b43ecb 1400/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1401 \`\`struct gdbarch_info''. */
1402EOF
3d9a5942 1403printf "\n"
104c1213
JM
1404cat <<EOF
1405struct gdbarch *
1406gdbarch_alloc (const struct gdbarch_info *info,
1407 struct gdbarch_tdep *tdep)
1408{
be7811ad 1409 struct gdbarch *gdbarch;
aebd7893
AC
1410
1411 /* Create an obstack for allocating all the per-architecture memory,
1412 then use that to allocate the architecture vector. */
1413 struct obstack *obstack = XMALLOC (struct obstack);
1414 obstack_init (obstack);
be7811ad
MD
1415 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1416 memset (gdbarch, 0, sizeof (*gdbarch));
1417 gdbarch->obstack = obstack;
85de9627 1418
be7811ad 1419 alloc_gdbarch_data (gdbarch);
85de9627 1420
be7811ad 1421 gdbarch->tdep = tdep;
104c1213 1422EOF
3d9a5942 1423printf "\n"
34620563 1424function_list | while do_read
104c1213 1425do
2ada493a
AC
1426 if class_is_info_p
1427 then
be7811ad 1428 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1429 fi
104c1213 1430done
3d9a5942
AC
1431printf "\n"
1432printf " /* Force the explicit initialization of these. */\n"
34620563 1433function_list | while do_read
104c1213 1434do
2ada493a
AC
1435 if class_is_function_p || class_is_variable_p
1436 then
72e74a21 1437 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1438 then
be7811ad 1439 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1440 fi
2ada493a 1441 fi
104c1213
JM
1442done
1443cat <<EOF
1444 /* gdbarch_alloc() */
1445
be7811ad 1446 return gdbarch;
104c1213
JM
1447}
1448EOF
1449
058f20d5 1450# Free a gdbarch struct.
3d9a5942
AC
1451printf "\n"
1452printf "\n"
058f20d5 1453cat <<EOF
aebd7893
AC
1454/* Allocate extra space using the per-architecture obstack. */
1455
1456void *
1457gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1458{
1459 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1460
aebd7893
AC
1461 memset (data, 0, size);
1462 return data;
1463}
1464
1465
058f20d5
JB
1466/* Free a gdbarch struct. This should never happen in normal
1467 operation --- once you've created a gdbarch, you keep it around.
1468 However, if an architecture's init function encounters an error
1469 building the structure, it may need to clean up a partially
1470 constructed gdbarch. */
4b9b3959 1471
058f20d5
JB
1472void
1473gdbarch_free (struct gdbarch *arch)
1474{
aebd7893 1475 struct obstack *obstack;
05c547f6 1476
95160752 1477 gdb_assert (arch != NULL);
aebd7893
AC
1478 gdb_assert (!arch->initialized_p);
1479 obstack = arch->obstack;
1480 obstack_free (obstack, 0); /* Includes the ARCH. */
1481 xfree (obstack);
058f20d5
JB
1482}
1483EOF
1484
104c1213 1485# verify a new architecture
104c1213 1486cat <<EOF
db446970
AC
1487
1488
1489/* Ensure that all values in a GDBARCH are reasonable. */
1490
104c1213 1491static void
be7811ad 1492verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1493{
f16a1923
AC
1494 struct ui_file *log;
1495 struct cleanup *cleanups;
759ef836 1496 long length;
f16a1923 1497 char *buf;
05c547f6 1498
f16a1923
AC
1499 log = mem_fileopen ();
1500 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1501 /* fundamental */
be7811ad 1502 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1503 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1504 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1505 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1506 /* Check those that need to be defined for the given multi-arch level. */
1507EOF
34620563 1508function_list | while do_read
104c1213 1509do
2ada493a
AC
1510 if class_is_function_p || class_is_variable_p
1511 then
72e74a21 1512 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1513 then
3d9a5942 1514 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1515 elif class_is_predicate_p
1516 then
3d9a5942 1517 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1518 # FIXME: See do_read for potential simplification
72e74a21 1519 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1520 then
3d9a5942 1521 printf " if (${invalid_p})\n"
be7811ad 1522 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1523 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1524 then
be7811ad
MD
1525 printf " if (gdbarch->${function} == ${predefault})\n"
1526 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1527 elif [ -n "${postdefault}" ]
f0d4cc9e 1528 then
be7811ad
MD
1529 printf " if (gdbarch->${function} == 0)\n"
1530 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1531 elif [ -n "${invalid_p}" ]
104c1213 1532 then
4d60522e 1533 printf " if (${invalid_p})\n"
f16a1923 1534 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1535 elif [ -n "${predefault}" ]
104c1213 1536 then
be7811ad 1537 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1538 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1539 fi
2ada493a 1540 fi
104c1213
JM
1541done
1542cat <<EOF
759ef836 1543 buf = ui_file_xstrdup (log, &length);
f16a1923 1544 make_cleanup (xfree, buf);
759ef836 1545 if (length > 0)
f16a1923 1546 internal_error (__FILE__, __LINE__,
85c07804 1547 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1548 buf);
1549 do_cleanups (cleanups);
104c1213
JM
1550}
1551EOF
1552
1553# dump the structure
3d9a5942
AC
1554printf "\n"
1555printf "\n"
104c1213 1556cat <<EOF
4b9b3959
AC
1557/* Print out the details of the current architecture. */
1558
104c1213 1559void
be7811ad 1560gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1561{
b78960be 1562 const char *gdb_nm_file = "<not-defined>";
05c547f6 1563
b78960be
AC
1564#if defined (GDB_NM_FILE)
1565 gdb_nm_file = GDB_NM_FILE;
1566#endif
1567 fprintf_unfiltered (file,
1568 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1569 gdb_nm_file);
104c1213 1570EOF
97030eea 1571function_list | sort -t: -k 3 | while do_read
104c1213 1572do
1e9f55d0
AC
1573 # First the predicate
1574 if class_is_predicate_p
1575 then
7996bcec 1576 printf " fprintf_unfiltered (file,\n"
48f7351b 1577 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1578 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1579 fi
48f7351b 1580 # Print the corresponding value.
283354d8 1581 if class_is_function_p
4b9b3959 1582 then
7996bcec 1583 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1584 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1585 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1586 else
48f7351b 1587 # It is a variable
2f9b146e
AC
1588 case "${print}:${returntype}" in
1589 :CORE_ADDR )
0b1553bc
UW
1590 fmt="%s"
1591 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1592 ;;
2f9b146e 1593 :* )
48f7351b 1594 fmt="%s"
623d3eb1 1595 print="plongest (gdbarch->${function})"
48f7351b
AC
1596 ;;
1597 * )
2f9b146e 1598 fmt="%s"
48f7351b
AC
1599 ;;
1600 esac
3d9a5942 1601 printf " fprintf_unfiltered (file,\n"
48f7351b 1602 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1603 printf " ${print});\n"
2ada493a 1604 fi
104c1213 1605done
381323f4 1606cat <<EOF
be7811ad
MD
1607 if (gdbarch->dump_tdep != NULL)
1608 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1609}
1610EOF
104c1213
JM
1611
1612
1613# GET/SET
3d9a5942 1614printf "\n"
104c1213
JM
1615cat <<EOF
1616struct gdbarch_tdep *
1617gdbarch_tdep (struct gdbarch *gdbarch)
1618{
1619 if (gdbarch_debug >= 2)
3d9a5942 1620 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1621 return gdbarch->tdep;
1622}
1623EOF
3d9a5942 1624printf "\n"
34620563 1625function_list | while do_read
104c1213 1626do
2ada493a
AC
1627 if class_is_predicate_p
1628 then
3d9a5942
AC
1629 printf "\n"
1630 printf "int\n"
1631 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1632 printf "{\n"
8de9bdc4 1633 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1634 printf " return ${predicate};\n"
3d9a5942 1635 printf "}\n"
2ada493a
AC
1636 fi
1637 if class_is_function_p
1638 then
3d9a5942
AC
1639 printf "\n"
1640 printf "${returntype}\n"
72e74a21 1641 if [ "x${formal}" = "xvoid" ]
104c1213 1642 then
3d9a5942 1643 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1644 else
3d9a5942 1645 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1646 fi
3d9a5942 1647 printf "{\n"
8de9bdc4 1648 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1649 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1650 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1651 then
1652 # Allow a call to a function with a predicate.
956ac328 1653 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1654 fi
3d9a5942
AC
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1657 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1658 then
1659 if class_is_multiarch_p
1660 then
1661 params="gdbarch"
1662 else
1663 params=""
1664 fi
1665 else
1666 if class_is_multiarch_p
1667 then
1668 params="gdbarch, ${actual}"
1669 else
1670 params="${actual}"
1671 fi
1672 fi
72e74a21 1673 if [ "x${returntype}" = "xvoid" ]
104c1213 1674 then
4a5c6a1d 1675 printf " gdbarch->${function} (${params});\n"
104c1213 1676 else
4a5c6a1d 1677 printf " return gdbarch->${function} (${params});\n"
104c1213 1678 fi
3d9a5942
AC
1679 printf "}\n"
1680 printf "\n"
1681 printf "void\n"
1682 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1683 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1684 printf "{\n"
1685 printf " gdbarch->${function} = ${function};\n"
1686 printf "}\n"
2ada493a
AC
1687 elif class_is_variable_p
1688 then
3d9a5942
AC
1689 printf "\n"
1690 printf "${returntype}\n"
1691 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1692 printf "{\n"
8de9bdc4 1693 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1694 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1695 then
3d9a5942 1696 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1697 elif [ -n "${invalid_p}" ]
104c1213 1698 then
956ac328
AC
1699 printf " /* Check variable is valid. */\n"
1700 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1701 elif [ -n "${predefault}" ]
104c1213 1702 then
956ac328
AC
1703 printf " /* Check variable changed from pre-default. */\n"
1704 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1705 fi
3d9a5942
AC
1706 printf " if (gdbarch_debug >= 2)\n"
1707 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1708 printf " return gdbarch->${function};\n"
1709 printf "}\n"
1710 printf "\n"
1711 printf "void\n"
1712 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1713 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1714 printf "{\n"
1715 printf " gdbarch->${function} = ${function};\n"
1716 printf "}\n"
2ada493a
AC
1717 elif class_is_info_p
1718 then
3d9a5942
AC
1719 printf "\n"
1720 printf "${returntype}\n"
1721 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1722 printf "{\n"
8de9bdc4 1723 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1724 printf " if (gdbarch_debug >= 2)\n"
1725 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1726 printf " return gdbarch->${function};\n"
1727 printf "}\n"
2ada493a 1728 fi
104c1213
JM
1729done
1730
1731# All the trailing guff
1732cat <<EOF
1733
1734
f44c642f 1735/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1736 modules. */
1737
1738struct gdbarch_data
1739{
95160752 1740 unsigned index;
76860b5f 1741 int init_p;
030f20e1
AC
1742 gdbarch_data_pre_init_ftype *pre_init;
1743 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1744};
1745
1746struct gdbarch_data_registration
1747{
104c1213
JM
1748 struct gdbarch_data *data;
1749 struct gdbarch_data_registration *next;
1750};
1751
f44c642f 1752struct gdbarch_data_registry
104c1213 1753{
95160752 1754 unsigned nr;
104c1213
JM
1755 struct gdbarch_data_registration *registrations;
1756};
1757
f44c642f 1758struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1759{
1760 0, NULL,
1761};
1762
030f20e1
AC
1763static struct gdbarch_data *
1764gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1765 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1766{
1767 struct gdbarch_data_registration **curr;
05c547f6
MS
1768
1769 /* Append the new registration. */
f44c642f 1770 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1771 (*curr) != NULL;
1772 curr = &(*curr)->next);
1773 (*curr) = XMALLOC (struct gdbarch_data_registration);
1774 (*curr)->next = NULL;
104c1213 1775 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1776 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1777 (*curr)->data->pre_init = pre_init;
1778 (*curr)->data->post_init = post_init;
76860b5f 1779 (*curr)->data->init_p = 1;
104c1213
JM
1780 return (*curr)->data;
1781}
1782
030f20e1
AC
1783struct gdbarch_data *
1784gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1785{
1786 return gdbarch_data_register (pre_init, NULL);
1787}
1788
1789struct gdbarch_data *
1790gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1791{
1792 return gdbarch_data_register (NULL, post_init);
1793}
104c1213 1794
b3cc3077 1795/* Create/delete the gdbarch data vector. */
95160752
AC
1796
1797static void
b3cc3077 1798alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1799{
b3cc3077
JB
1800 gdb_assert (gdbarch->data == NULL);
1801 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1802 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1803}
3c875b6f 1804
76860b5f 1805/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1806 data-pointer. */
1807
95160752 1808void
030f20e1
AC
1809deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1810 struct gdbarch_data *data,
1811 void *pointer)
95160752
AC
1812{
1813 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1814 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1815 gdb_assert (data->pre_init == NULL);
95160752
AC
1816 gdbarch->data[data->index] = pointer;
1817}
1818
104c1213
JM
1819/* Return the current value of the specified per-architecture
1820 data-pointer. */
1821
1822void *
451fbdda 1823gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1824{
451fbdda 1825 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1826 if (gdbarch->data[data->index] == NULL)
76860b5f 1827 {
030f20e1
AC
1828 /* The data-pointer isn't initialized, call init() to get a
1829 value. */
1830 if (data->pre_init != NULL)
1831 /* Mid architecture creation: pass just the obstack, and not
1832 the entire architecture, as that way it isn't possible for
1833 pre-init code to refer to undefined architecture
1834 fields. */
1835 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1836 else if (gdbarch->initialized_p
1837 && data->post_init != NULL)
1838 /* Post architecture creation: pass the entire architecture
1839 (as all fields are valid), but be careful to also detect
1840 recursive references. */
1841 {
1842 gdb_assert (data->init_p);
1843 data->init_p = 0;
1844 gdbarch->data[data->index] = data->post_init (gdbarch);
1845 data->init_p = 1;
1846 }
1847 else
1848 /* The architecture initialization hasn't completed - punt -
1849 hope that the caller knows what they are doing. Once
1850 deprecated_set_gdbarch_data has been initialized, this can be
1851 changed to an internal error. */
1852 return NULL;
76860b5f
AC
1853 gdb_assert (gdbarch->data[data->index] != NULL);
1854 }
451fbdda 1855 return gdbarch->data[data->index];
104c1213
JM
1856}
1857
1858
f44c642f 1859/* Keep a registry of the architectures known by GDB. */
104c1213 1860
4b9b3959 1861struct gdbarch_registration
104c1213
JM
1862{
1863 enum bfd_architecture bfd_architecture;
1864 gdbarch_init_ftype *init;
4b9b3959 1865 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1866 struct gdbarch_list *arches;
4b9b3959 1867 struct gdbarch_registration *next;
104c1213
JM
1868};
1869
f44c642f 1870static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1871
b4a20239
AC
1872static void
1873append_name (const char ***buf, int *nr, const char *name)
1874{
1875 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1876 (*buf)[*nr] = name;
1877 *nr += 1;
1878}
1879
1880const char **
1881gdbarch_printable_names (void)
1882{
7996bcec
AC
1883 /* Accumulate a list of names based on the registed list of
1884 architectures. */
7996bcec
AC
1885 int nr_arches = 0;
1886 const char **arches = NULL;
1887 struct gdbarch_registration *rego;
05c547f6 1888
7996bcec
AC
1889 for (rego = gdbarch_registry;
1890 rego != NULL;
1891 rego = rego->next)
b4a20239 1892 {
7996bcec
AC
1893 const struct bfd_arch_info *ap;
1894 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1895 if (ap == NULL)
1896 internal_error (__FILE__, __LINE__,
85c07804 1897 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1898 do
1899 {
1900 append_name (&arches, &nr_arches, ap->printable_name);
1901 ap = ap->next;
1902 }
1903 while (ap != NULL);
b4a20239 1904 }
7996bcec
AC
1905 append_name (&arches, &nr_arches, NULL);
1906 return arches;
b4a20239
AC
1907}
1908
1909
104c1213 1910void
4b9b3959
AC
1911gdbarch_register (enum bfd_architecture bfd_architecture,
1912 gdbarch_init_ftype *init,
1913 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1914{
4b9b3959 1915 struct gdbarch_registration **curr;
104c1213 1916 const struct bfd_arch_info *bfd_arch_info;
05c547f6 1917
ec3d358c 1918 /* Check that BFD recognizes this architecture */
104c1213
JM
1919 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1920 if (bfd_arch_info == NULL)
1921 {
8e65ff28 1922 internal_error (__FILE__, __LINE__,
85c07804 1923 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1924 bfd_architecture);
104c1213
JM
1925 }
1926 /* Check that we haven't seen this architecture before */
f44c642f 1927 for (curr = &gdbarch_registry;
104c1213
JM
1928 (*curr) != NULL;
1929 curr = &(*curr)->next)
1930 {
1931 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1932 internal_error (__FILE__, __LINE__,
85c07804 1933 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1934 bfd_arch_info->printable_name);
104c1213
JM
1935 }
1936 /* log it */
1937 if (gdbarch_debug)
30737ed9 1938 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1939 bfd_arch_info->printable_name,
30737ed9 1940 host_address_to_string (init));
104c1213 1941 /* Append it */
4b9b3959 1942 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1943 (*curr)->bfd_architecture = bfd_architecture;
1944 (*curr)->init = init;
4b9b3959 1945 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1946 (*curr)->arches = NULL;
1947 (*curr)->next = NULL;
4b9b3959
AC
1948}
1949
1950void
1951register_gdbarch_init (enum bfd_architecture bfd_architecture,
1952 gdbarch_init_ftype *init)
1953{
1954 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1955}
104c1213
JM
1956
1957
424163ea 1958/* Look for an architecture using gdbarch_info. */
104c1213
JM
1959
1960struct gdbarch_list *
1961gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1962 const struct gdbarch_info *info)
1963{
1964 for (; arches != NULL; arches = arches->next)
1965 {
1966 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1967 continue;
1968 if (info->byte_order != arches->gdbarch->byte_order)
1969 continue;
4be87837
DJ
1970 if (info->osabi != arches->gdbarch->osabi)
1971 continue;
424163ea
DJ
1972 if (info->target_desc != arches->gdbarch->target_desc)
1973 continue;
104c1213
JM
1974 return arches;
1975 }
1976 return NULL;
1977}
1978
1979
ebdba546 1980/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1981 architecture if needed. Return that new architecture. */
104c1213 1982
59837fe0
UW
1983struct gdbarch *
1984gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1985{
1986 struct gdbarch *new_gdbarch;
4b9b3959 1987 struct gdbarch_registration *rego;
104c1213 1988
b732d07d 1989 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1990 sources: "set ..."; INFOabfd supplied; and the global
1991 defaults. */
1992 gdbarch_info_fill (&info);
4be87837 1993
b732d07d
AC
1994 /* Must have found some sort of architecture. */
1995 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1996
1997 if (gdbarch_debug)
1998 {
1999 fprintf_unfiltered (gdb_stdlog,
59837fe0 2000 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2001 (info.bfd_arch_info != NULL
2002 ? info.bfd_arch_info->printable_name
2003 : "(null)"));
2004 fprintf_unfiltered (gdb_stdlog,
59837fe0 2005 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2006 info.byte_order,
d7449b42 2007 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2008 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2009 : "default"));
4be87837 2010 fprintf_unfiltered (gdb_stdlog,
59837fe0 2011 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2012 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2013 fprintf_unfiltered (gdb_stdlog,
59837fe0 2014 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2015 host_address_to_string (info.abfd));
104c1213 2016 fprintf_unfiltered (gdb_stdlog,
59837fe0 2017 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2018 host_address_to_string (info.tdep_info));
104c1213
JM
2019 }
2020
ebdba546 2021 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2022 for (rego = gdbarch_registry;
2023 rego != NULL;
2024 rego = rego->next)
2025 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2026 break;
2027 if (rego == NULL)
2028 {
2029 if (gdbarch_debug)
59837fe0 2030 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2031 "No matching architecture\n");
b732d07d
AC
2032 return 0;
2033 }
2034
ebdba546 2035 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2036 new_gdbarch = rego->init (info, rego->arches);
2037
ebdba546
AC
2038 /* Did the tdep code like it? No. Reject the change and revert to
2039 the old architecture. */
104c1213
JM
2040 if (new_gdbarch == NULL)
2041 {
2042 if (gdbarch_debug)
59837fe0 2043 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2044 "Target rejected architecture\n");
2045 return NULL;
104c1213
JM
2046 }
2047
ebdba546
AC
2048 /* Is this a pre-existing architecture (as determined by already
2049 being initialized)? Move it to the front of the architecture
2050 list (keeping the list sorted Most Recently Used). */
2051 if (new_gdbarch->initialized_p)
104c1213 2052 {
ebdba546
AC
2053 struct gdbarch_list **list;
2054 struct gdbarch_list *this;
104c1213 2055 if (gdbarch_debug)
59837fe0 2056 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2057 "Previous architecture %s (%s) selected\n",
2058 host_address_to_string (new_gdbarch),
104c1213 2059 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2060 /* Find the existing arch in the list. */
2061 for (list = &rego->arches;
2062 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2063 list = &(*list)->next);
2064 /* It had better be in the list of architectures. */
2065 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2066 /* Unlink THIS. */
2067 this = (*list);
2068 (*list) = this->next;
2069 /* Insert THIS at the front. */
2070 this->next = rego->arches;
2071 rego->arches = this;
2072 /* Return it. */
2073 return new_gdbarch;
104c1213
JM
2074 }
2075
ebdba546
AC
2076 /* It's a new architecture. */
2077 if (gdbarch_debug)
59837fe0 2078 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2079 "New architecture %s (%s) selected\n",
2080 host_address_to_string (new_gdbarch),
ebdba546
AC
2081 new_gdbarch->bfd_arch_info->printable_name);
2082
2083 /* Insert the new architecture into the front of the architecture
2084 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2085 {
2086 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2087 this->next = rego->arches;
2088 this->gdbarch = new_gdbarch;
2089 rego->arches = this;
2090 }
104c1213 2091
4b9b3959
AC
2092 /* Check that the newly installed architecture is valid. Plug in
2093 any post init values. */
2094 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2095 verify_gdbarch (new_gdbarch);
ebdba546 2096 new_gdbarch->initialized_p = 1;
104c1213 2097
4b9b3959 2098 if (gdbarch_debug)
ebdba546
AC
2099 gdbarch_dump (new_gdbarch, gdb_stdlog);
2100
2101 return new_gdbarch;
2102}
2103
e487cc15 2104/* Make the specified architecture current. */
ebdba546
AC
2105
2106void
59837fe0 2107deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2108{
2109 gdb_assert (new_gdbarch != NULL);
ebdba546 2110 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2111 target_gdbarch = new_gdbarch;
383f836e 2112 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2113 registers_changed ();
ebdba546 2114}
104c1213 2115
104c1213 2116extern void _initialize_gdbarch (void);
b4a20239 2117
104c1213 2118void
34620563 2119_initialize_gdbarch (void)
104c1213 2120{
85c07804
AC
2121 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2122Set architecture debugging."), _("\\
2123Show architecture debugging."), _("\\
2124When non-zero, architecture debugging is enabled."),
2125 NULL,
920d2a44 2126 show_gdbarch_debug,
85c07804 2127 &setdebuglist, &showdebuglist);
104c1213
JM
2128}
2129EOF
2130
2131# close things off
2132exec 1>&2
2133#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2134compare_new gdbarch.c
This page took 0.932347 seconds and 4 git commands to generate.