.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
adc11376
AC
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "frame.h"
29#include "bfd.h"
30#include "inferior.h"
31#include "value.h"
4e052eda 32#include "regcache.h"
e5d66720 33#include "completer.h"
d709c020 34#include "language.h"
59623e27 35#include "osabi.h"
a7ff40e7 36#include "gdb_assert.h"
65e82032 37#include "infttrace.h"
343af405 38#include "arch-utils.h"
c906108c
SS
39/* For argument passing to the inferior */
40#include "symtab.h"
04714b91 41#include "infcall.h"
fde2cceb 42#include "dis-asm.h"
26d08f08
AC
43#include "trad-frame.h"
44#include "frame-unwind.h"
45#include "frame-base.h"
c906108c
SS
46
47#ifdef USG
48#include <sys/types.h>
49#endif
50
51#include <dl.h>
52#include <sys/param.h>
53#include <signal.h>
54
55#include <sys/ptrace.h>
56#include <machine/save_state.h>
57
58#ifdef COFF_ENCAPSULATE
59#include "a.out.encap.h"
60#else
61#endif
62
c5aa993b 63/*#include <sys/user.h> After a.out.h */
c906108c
SS
64#include <sys/file.h>
65#include "gdb_stat.h"
03f2053f 66#include "gdb_wait.h"
c906108c
SS
67
68#include "gdbcore.h"
69#include "gdbcmd.h"
70#include "target.h"
71#include "symfile.h"
72#include "objfiles.h"
3ff7cf9e 73#include "hppa-tdep.h"
c906108c 74
60383d10 75/* Some local constants. */
3ff7cf9e
JB
76static const int hppa32_num_regs = 128;
77static const int hppa64_num_regs = 96;
78
79static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
80
81/* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
82 word on the target machine, not the size of an instruction. Since
83 a word on this target holds two instructions we have to divide the
84 instruction size by two to get the word size of the dummy. */
85static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
86static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
60383d10 87
e2ac8128
JB
88/* Get at various relevent fields of an instruction word. */
89#define MASK_5 0x1f
90#define MASK_11 0x7ff
91#define MASK_14 0x3fff
92#define MASK_21 0x1fffff
93
94/* Define offsets into the call dummy for the target function address.
95 See comments related to CALL_DUMMY for more info. */
96#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
97#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
98
99/* Define offsets into the call dummy for the _sr4export address.
100 See comments related to CALL_DUMMY for more info. */
101#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
102#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
103
c906108c
SS
104/* To support detection of the pseudo-initial frame
105 that threads have. */
106#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
107#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 108
e2ac8128
JB
109/* Sizes (in bytes) of the native unwind entries. */
110#define UNWIND_ENTRY_SIZE 16
111#define STUB_UNWIND_ENTRY_SIZE 8
112
113static int get_field (unsigned word, int from, int to);
114
a14ed312 115static int extract_5_load (unsigned int);
c906108c 116
a14ed312 117static unsigned extract_5R_store (unsigned int);
c906108c 118
a14ed312 119static unsigned extract_5r_store (unsigned int);
c906108c 120
343af405
AC
121static void hppa_frame_init_saved_regs (struct frame_info *frame);
122
43bd9a9e 123static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
c906108c 124
a14ed312 125static int find_proc_framesize (CORE_ADDR);
c906108c 126
a14ed312 127static int find_return_regnum (CORE_ADDR);
c906108c 128
a14ed312 129struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 130
a14ed312 131static int extract_17 (unsigned int);
c906108c 132
a14ed312 133static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 134
a14ed312 135static int extract_21 (unsigned);
c906108c 136
a14ed312 137static unsigned deposit_14 (int, unsigned int);
c906108c 138
a14ed312 139static int extract_14 (unsigned);
c906108c 140
a14ed312 141static void unwind_command (char *, int);
c906108c 142
a14ed312 143static int low_sign_extend (unsigned int, unsigned int);
c906108c 144
a14ed312 145static int sign_extend (unsigned int, unsigned int);
c906108c 146
43bd9a9e 147static int restore_pc_queue (CORE_ADDR *);
c906108c 148
a14ed312 149static int hppa_alignof (struct type *);
c906108c 150
a14ed312 151static int prologue_inst_adjust_sp (unsigned long);
c906108c 152
a14ed312 153static int is_branch (unsigned long);
c906108c 154
a14ed312 155static int inst_saves_gr (unsigned long);
c906108c 156
a14ed312 157static int inst_saves_fr (unsigned long);
c906108c 158
a14ed312 159static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 160
a14ed312 161static int pc_in_linker_stub (CORE_ADDR);
c906108c 162
a14ed312 163static int compare_unwind_entries (const void *, const void *);
c906108c 164
a14ed312 165static void read_unwind_info (struct objfile *);
c906108c 166
a14ed312
KB
167static void internalize_unwinds (struct objfile *,
168 struct unwind_table_entry *,
169 asection *, unsigned int,
170 unsigned int, CORE_ADDR);
171static void pa_print_registers (char *, int, int);
d9fcf2fb 172static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
173static void pa_register_look_aside (char *, int, long *);
174static void pa_print_fp_reg (int);
d9fcf2fb 175static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 176static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
177/* FIXME: brobecker 2002-11-07: We will likely be able to make the
178 following functions static, once we hppa is partially multiarched. */
179int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
60383d10
JB
180CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
181CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
182int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
183int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
184CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
d709c020 185int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
3ff7cf9e
JB
186CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
187CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
d709c020
JB
188int hppa_pc_requires_run_before_use (CORE_ADDR pc);
189int hppa_instruction_nullified (void);
60e1ff27 190int hppa_register_raw_size (int reg_nr);
d709c020 191int hppa_register_byte (int reg_nr);
3ff7cf9e
JB
192struct type * hppa32_register_virtual_type (int reg_nr);
193struct type * hppa64_register_virtual_type (int reg_nr);
d709c020 194void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
3ff7cf9e
JB
195void hppa32_extract_return_value (struct type *type, char *regbuf,
196 char *valbuf);
197void hppa64_extract_return_value (struct type *type, char *regbuf,
198 char *valbuf);
199int hppa32_use_struct_convention (int gcc_p, struct type *type);
200int hppa64_use_struct_convention (int gcc_p, struct type *type);
201void hppa32_store_return_value (struct type *type, char *valbuf);
202void hppa64_store_return_value (struct type *type, char *valbuf);
d709c020 203int hppa_cannot_store_register (int regnum);
60383d10
JB
204void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
205CORE_ADDR hppa_frame_chain (struct frame_info *frame);
206int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
207int hppa_frameless_function_invocation (struct frame_info *frame);
208CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
d709c020 209CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
60383d10 210int hppa_frame_num_args (struct frame_info *frame);
7daf4f5b 211void hppa_push_dummy_frame (void);
60383d10
JB
212void hppa_pop_frame (void);
213CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
214 int nargs, struct value **args,
215 struct type *type, int gcc_p);
216CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
217 int struct_return, CORE_ADDR struct_addr);
d709c020 218CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
60383d10
JB
219CORE_ADDR hppa_target_read_pc (ptid_t ptid);
220void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
221CORE_ADDR hppa_target_read_fp (void);
c906108c 222
c5aa993b
JM
223typedef struct
224 {
225 struct minimal_symbol *msym;
226 CORE_ADDR solib_handle;
a0b3c4fd 227 CORE_ADDR return_val;
c5aa993b
JM
228 }
229args_for_find_stub;
c906108c 230
4efb68b1 231static int cover_find_stub_with_shl_get (void *);
c906108c 232
c5aa993b 233static int is_pa_2 = 0; /* False */
c906108c 234
c5aa993b 235/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
236extern int hp_som_som_object_present;
237
238/* In breakpoint.c */
239extern int exception_catchpoints_are_fragile;
240
c906108c 241/* Should call_function allocate stack space for a struct return? */
d709c020 242
c906108c 243int
3ff7cf9e 244hppa32_use_struct_convention (int gcc_p, struct type *type)
c906108c 245{
b1e29e33 246 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
c906108c 247}
3ff7cf9e
JB
248
249/* Same as hppa32_use_struct_convention() for the PA64 ABI. */
250
251int
252hppa64_use_struct_convention (int gcc_p, struct type *type)
253{
254 /* RM: struct upto 128 bits are returned in registers */
255 return TYPE_LENGTH (type) > 16;
256}
c5aa993b 257
537987fc
AC
258/* Handle 32/64-bit struct return conventions. */
259
260static enum return_value_convention
261hppa32_return_value (struct gdbarch *gdbarch,
262 struct type *type, struct regcache *regcache,
263 void *readbuf, const void *writebuf)
264{
265 if (TYPE_CODE (type) == TYPE_CODE_FLT)
266 {
267 if (readbuf != NULL)
268 regcache_cooked_read_part (regcache, FP4_REGNUM, 0,
269 TYPE_LENGTH (type), readbuf);
270 if (writebuf != NULL)
271 regcache_cooked_write_part (regcache, FP4_REGNUM, 0,
272 TYPE_LENGTH (type), writebuf);
273 return RETURN_VALUE_REGISTER_CONVENTION;
274 }
275 if (TYPE_LENGTH (type) <= 2 * 4)
276 {
277 /* The value always lives in the right hand end of the register
278 (or register pair)? */
279 int b;
280 int reg = 28;
281 int part = TYPE_LENGTH (type) % 4;
282 /* The left hand register contains only part of the value,
283 transfer that first so that the rest can be xfered as entire
284 4-byte registers. */
285 if (part > 0)
286 {
287 if (readbuf != NULL)
288 regcache_cooked_read_part (regcache, reg, 4 - part,
289 part, readbuf);
290 if (writebuf != NULL)
291 regcache_cooked_write_part (regcache, reg, 4 - part,
292 part, writebuf);
293 reg++;
294 }
295 /* Now transfer the remaining register values. */
296 for (b = part; b < TYPE_LENGTH (type); b += 4)
297 {
298 if (readbuf != NULL)
299 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
300 if (writebuf != NULL)
301 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
302 reg++;
303 }
304 return RETURN_VALUE_REGISTER_CONVENTION;
305 }
306 else
307 return RETURN_VALUE_STRUCT_CONVENTION;
308}
309
310static enum return_value_convention
311hppa64_return_value (struct gdbarch *gdbarch,
312 struct type *type, struct regcache *regcache,
313 void *readbuf, const void *writebuf)
314{
315 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
316 are in r28, padded on the left. Aggregates less that 65 bits are
317 in r28, right padded. Aggregates upto 128 bits are in r28 and
318 r29, right padded. */
319 if (TYPE_CODE (type) == TYPE_CODE_FLT)
320 {
321 /* Floats are right aligned? */
322 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
323 if (readbuf != NULL)
324 regcache_cooked_read_part (regcache, FP4_REGNUM, offset,
325 TYPE_LENGTH (type), readbuf);
326 if (writebuf != NULL)
327 regcache_cooked_write_part (regcache, FP4_REGNUM, offset,
328 TYPE_LENGTH (type), writebuf);
329 return RETURN_VALUE_REGISTER_CONVENTION;
330 }
331 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
332 {
333 /* Integrals are right aligned. */
334 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
335 if (readbuf != NULL)
336 regcache_cooked_read_part (regcache, 28, offset,
337 TYPE_LENGTH (type), readbuf);
338 if (writebuf != NULL)
339 regcache_cooked_write_part (regcache, 28, offset,
340 TYPE_LENGTH (type), writebuf);
341 return RETURN_VALUE_REGISTER_CONVENTION;
342 }
343 else if (TYPE_LENGTH (type) <= 2 * 8)
344 {
345 /* Composite values are left aligned. */
346 int b;
347 for (b = 0; b < TYPE_LENGTH (type); b += 8)
348 {
349 int part = (TYPE_LENGTH (type) - b - 1) % 8 + 1;
350 if (readbuf != NULL)
351 regcache_cooked_read_part (regcache, 28, 0, part,
352 (char *) readbuf + b);
353 if (writebuf != NULL)
354 regcache_cooked_write_part (regcache, 28, 0, part,
355 (const char *) writebuf + b);
356 }
357 return RETURN_VALUE_REGISTER_CONVENTION;
358 }
359 else
360 return RETURN_VALUE_STRUCT_CONVENTION;
361}
362
c906108c
SS
363/* Routines to extract various sized constants out of hppa
364 instructions. */
365
366/* This assumes that no garbage lies outside of the lower bits of
367 value. */
368
369static int
fba45db2 370sign_extend (unsigned val, unsigned bits)
c906108c 371{
c5aa993b 372 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
373}
374
375/* For many immediate values the sign bit is the low bit! */
376
377static int
fba45db2 378low_sign_extend (unsigned val, unsigned bits)
c906108c 379{
c5aa993b 380 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
381}
382
e2ac8128
JB
383/* Extract the bits at positions between FROM and TO, using HP's numbering
384 (MSB = 0). */
385
386static int
387get_field (unsigned word, int from, int to)
388{
389 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
390}
391
c906108c
SS
392/* extract the immediate field from a ld{bhw}s instruction */
393
c906108c 394static int
fba45db2 395extract_5_load (unsigned word)
c906108c
SS
396{
397 return low_sign_extend (word >> 16 & MASK_5, 5);
398}
399
c906108c
SS
400/* extract the immediate field from a break instruction */
401
402static unsigned
fba45db2 403extract_5r_store (unsigned word)
c906108c
SS
404{
405 return (word & MASK_5);
406}
407
408/* extract the immediate field from a {sr}sm instruction */
409
410static unsigned
fba45db2 411extract_5R_store (unsigned word)
c906108c
SS
412{
413 return (word >> 16 & MASK_5);
414}
415
c906108c
SS
416/* extract a 14 bit immediate field */
417
418static int
fba45db2 419extract_14 (unsigned word)
c906108c
SS
420{
421 return low_sign_extend (word & MASK_14, 14);
422}
423
424/* deposit a 14 bit constant in a word */
425
426static unsigned
fba45db2 427deposit_14 (int opnd, unsigned word)
c906108c
SS
428{
429 unsigned sign = (opnd < 0 ? 1 : 0);
430
c5aa993b 431 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
432}
433
434/* extract a 21 bit constant */
435
436static int
fba45db2 437extract_21 (unsigned word)
c906108c
SS
438{
439 int val;
440
441 word &= MASK_21;
442 word <<= 11;
e2ac8128 443 val = get_field (word, 20, 20);
c906108c 444 val <<= 11;
e2ac8128 445 val |= get_field (word, 9, 19);
c906108c 446 val <<= 2;
e2ac8128 447 val |= get_field (word, 5, 6);
c906108c 448 val <<= 5;
e2ac8128 449 val |= get_field (word, 0, 4);
c906108c 450 val <<= 2;
e2ac8128 451 val |= get_field (word, 7, 8);
c906108c
SS
452 return sign_extend (val, 21) << 11;
453}
454
455/* deposit a 21 bit constant in a word. Although 21 bit constants are
456 usually the top 21 bits of a 32 bit constant, we assume that only
457 the low 21 bits of opnd are relevant */
458
459static unsigned
fba45db2 460deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
461{
462 unsigned val = 0;
463
e2ac8128 464 val |= get_field (opnd, 11 + 14, 11 + 18);
c906108c 465 val <<= 2;
e2ac8128 466 val |= get_field (opnd, 11 + 12, 11 + 13);
c906108c 467 val <<= 2;
e2ac8128 468 val |= get_field (opnd, 11 + 19, 11 + 20);
c906108c 469 val <<= 11;
e2ac8128 470 val |= get_field (opnd, 11 + 1, 11 + 11);
c906108c 471 val <<= 1;
e2ac8128 472 val |= get_field (opnd, 11 + 0, 11 + 0);
c906108c
SS
473 return word | val;
474}
475
c906108c
SS
476/* extract a 17 bit constant from branch instructions, returning the
477 19 bit signed value. */
478
479static int
fba45db2 480extract_17 (unsigned word)
c906108c 481{
e2ac8128
JB
482 return sign_extend (get_field (word, 19, 28) |
483 get_field (word, 29, 29) << 10 |
484 get_field (word, 11, 15) << 11 |
c906108c
SS
485 (word & 0x1) << 16, 17) << 2;
486}
487\f
488
489/* Compare the start address for two unwind entries returning 1 if
490 the first address is larger than the second, -1 if the second is
491 larger than the first, and zero if they are equal. */
492
493static int
fba45db2 494compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
495{
496 const struct unwind_table_entry *a = arg1;
497 const struct unwind_table_entry *b = arg2;
498
499 if (a->region_start > b->region_start)
500 return 1;
501 else if (a->region_start < b->region_start)
502 return -1;
503 else
504 return 0;
505}
506
53a5351d
JM
507static CORE_ADDR low_text_segment_address;
508
509static void
8fef05cc 510record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 511{
bf9c25dc 512 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
513 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
514 && section->vma < low_text_segment_address)
515 low_text_segment_address = section->vma;
516}
517
c906108c 518static void
fba45db2
KB
519internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
520 asection *section, unsigned int entries, unsigned int size,
521 CORE_ADDR text_offset)
c906108c
SS
522{
523 /* We will read the unwind entries into temporary memory, then
524 fill in the actual unwind table. */
525 if (size > 0)
526 {
527 unsigned long tmp;
528 unsigned i;
529 char *buf = alloca (size);
530
53a5351d
JM
531 low_text_segment_address = -1;
532
533 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
534 be segment relative offsets instead of absolute addresses.
535
536 Note that when loading a shared library (text_offset != 0) the
537 unwinds are already relative to the text_offset that will be
538 passed in. */
539 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
540 {
541 bfd_map_over_sections (objfile->obfd,
4efb68b1 542 record_text_segment_lowaddr, NULL);
53a5351d
JM
543
544 /* ?!? Mask off some low bits. Should this instead subtract
545 out the lowest section's filepos or something like that?
546 This looks very hokey to me. */
547 low_text_segment_address &= ~0xfff;
548 text_offset += low_text_segment_address;
549 }
550
c906108c
SS
551 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
552
553 /* Now internalize the information being careful to handle host/target
c5aa993b 554 endian issues. */
c906108c
SS
555 for (i = 0; i < entries; i++)
556 {
557 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 558 (bfd_byte *) buf);
c906108c
SS
559 table[i].region_start += text_offset;
560 buf += 4;
c5aa993b 561 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
562 table[i].region_end += text_offset;
563 buf += 4;
c5aa993b 564 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
565 buf += 4;
566 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
567 table[i].Millicode = (tmp >> 30) & 0x1;
568 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
569 table[i].Region_description = (tmp >> 27) & 0x3;
570 table[i].reserved1 = (tmp >> 26) & 0x1;
571 table[i].Entry_SR = (tmp >> 25) & 0x1;
572 table[i].Entry_FR = (tmp >> 21) & 0xf;
573 table[i].Entry_GR = (tmp >> 16) & 0x1f;
574 table[i].Args_stored = (tmp >> 15) & 0x1;
575 table[i].Variable_Frame = (tmp >> 14) & 0x1;
576 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
577 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
578 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
579 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
580 table[i].Ada_Region = (tmp >> 9) & 0x1;
581 table[i].cxx_info = (tmp >> 8) & 0x1;
582 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
583 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
584 table[i].reserved2 = (tmp >> 5) & 0x1;
585 table[i].Save_SP = (tmp >> 4) & 0x1;
586 table[i].Save_RP = (tmp >> 3) & 0x1;
587 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
588 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
589 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 590 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
591 buf += 4;
592 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
593 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
594 table[i].Large_frame = (tmp >> 29) & 0x1;
595 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
596 table[i].reserved4 = (tmp >> 27) & 0x1;
597 table[i].Total_frame_size = tmp & 0x7ffffff;
598
c5aa993b 599 /* Stub unwinds are handled elsewhere. */
c906108c
SS
600 table[i].stub_unwind.stub_type = 0;
601 table[i].stub_unwind.padding = 0;
602 }
603 }
604}
605
606/* Read in the backtrace information stored in the `$UNWIND_START$' section of
607 the object file. This info is used mainly by find_unwind_entry() to find
608 out the stack frame size and frame pointer used by procedures. We put
609 everything on the psymbol obstack in the objfile so that it automatically
610 gets freed when the objfile is destroyed. */
611
612static void
fba45db2 613read_unwind_info (struct objfile *objfile)
c906108c 614{
d4f3574e
SS
615 asection *unwind_sec, *stub_unwind_sec;
616 unsigned unwind_size, stub_unwind_size, total_size;
617 unsigned index, unwind_entries;
c906108c
SS
618 unsigned stub_entries, total_entries;
619 CORE_ADDR text_offset;
620 struct obj_unwind_info *ui;
621 obj_private_data_t *obj_private;
622
623 text_offset = ANOFFSET (objfile->section_offsets, 0);
8b92e4d5 624 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
c5aa993b 625 sizeof (struct obj_unwind_info));
c906108c
SS
626
627 ui->table = NULL;
628 ui->cache = NULL;
629 ui->last = -1;
630
d4f3574e
SS
631 /* For reasons unknown the HP PA64 tools generate multiple unwinder
632 sections in a single executable. So we just iterate over every
633 section in the BFD looking for unwinder sections intead of trying
634 to do a lookup with bfd_get_section_by_name.
c906108c 635
d4f3574e
SS
636 First determine the total size of the unwind tables so that we
637 can allocate memory in a nice big hunk. */
638 total_entries = 0;
639 for (unwind_sec = objfile->obfd->sections;
640 unwind_sec;
641 unwind_sec = unwind_sec->next)
c906108c 642 {
d4f3574e
SS
643 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
644 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
645 {
646 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
647 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 648
d4f3574e
SS
649 total_entries += unwind_entries;
650 }
c906108c
SS
651 }
652
d4f3574e
SS
653 /* Now compute the size of the stub unwinds. Note the ELF tools do not
654 use stub unwinds at the curren time. */
655 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
656
c906108c
SS
657 if (stub_unwind_sec)
658 {
659 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
660 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
661 }
662 else
663 {
664 stub_unwind_size = 0;
665 stub_entries = 0;
666 }
667
668 /* Compute total number of unwind entries and their total size. */
d4f3574e 669 total_entries += stub_entries;
c906108c
SS
670 total_size = total_entries * sizeof (struct unwind_table_entry);
671
672 /* Allocate memory for the unwind table. */
673 ui->table = (struct unwind_table_entry *)
8b92e4d5 674 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 675 ui->last = total_entries - 1;
c906108c 676
d4f3574e
SS
677 /* Now read in each unwind section and internalize the standard unwind
678 entries. */
c906108c 679 index = 0;
d4f3574e
SS
680 for (unwind_sec = objfile->obfd->sections;
681 unwind_sec;
682 unwind_sec = unwind_sec->next)
683 {
684 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
685 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
686 {
687 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
688 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
689
690 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
691 unwind_entries, unwind_size, text_offset);
692 index += unwind_entries;
693 }
694 }
695
696 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
697 if (stub_unwind_size > 0)
698 {
699 unsigned int i;
700 char *buf = alloca (stub_unwind_size);
701
702 /* Read in the stub unwind entries. */
703 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
704 0, stub_unwind_size);
705
706 /* Now convert them into regular unwind entries. */
707 for (i = 0; i < stub_entries; i++, index++)
708 {
709 /* Clear out the next unwind entry. */
710 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
711
712 /* Convert offset & size into region_start and region_end.
713 Stuff away the stub type into "reserved" fields. */
714 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
715 (bfd_byte *) buf);
716 ui->table[index].region_start += text_offset;
717 buf += 4;
718 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 719 (bfd_byte *) buf);
c906108c
SS
720 buf += 2;
721 ui->table[index].region_end
c5aa993b
JM
722 = ui->table[index].region_start + 4 *
723 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
724 buf += 2;
725 }
726
727 }
728
729 /* Unwind table needs to be kept sorted. */
730 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
731 compare_unwind_entries);
732
733 /* Keep a pointer to the unwind information. */
c5aa993b 734 if (objfile->obj_private == NULL)
c906108c
SS
735 {
736 obj_private = (obj_private_data_t *)
8b92e4d5 737 obstack_alloc (&objfile->objfile_obstack,
c5aa993b 738 sizeof (obj_private_data_t));
c906108c 739 obj_private->unwind_info = NULL;
c5aa993b 740 obj_private->so_info = NULL;
53a5351d 741 obj_private->dp = 0;
c5aa993b 742
4efb68b1 743 objfile->obj_private = obj_private;
c906108c 744 }
c5aa993b 745 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
746 obj_private->unwind_info = ui;
747}
748
749/* Lookup the unwind (stack backtrace) info for the given PC. We search all
750 of the objfiles seeking the unwind table entry for this PC. Each objfile
751 contains a sorted list of struct unwind_table_entry. Since we do a binary
752 search of the unwind tables, we depend upon them to be sorted. */
753
754struct unwind_table_entry *
fba45db2 755find_unwind_entry (CORE_ADDR pc)
c906108c
SS
756{
757 int first, middle, last;
758 struct objfile *objfile;
759
760 /* A function at address 0? Not in HP-UX! */
761 if (pc == (CORE_ADDR) 0)
762 return NULL;
763
764 ALL_OBJFILES (objfile)
c5aa993b
JM
765 {
766 struct obj_unwind_info *ui;
767 ui = NULL;
768 if (objfile->obj_private)
769 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 770
c5aa993b
JM
771 if (!ui)
772 {
773 read_unwind_info (objfile);
774 if (objfile->obj_private == NULL)
104c1213 775 error ("Internal error reading unwind information.");
c5aa993b
JM
776 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
777 }
c906108c 778
c5aa993b 779 /* First, check the cache */
c906108c 780
c5aa993b
JM
781 if (ui->cache
782 && pc >= ui->cache->region_start
783 && pc <= ui->cache->region_end)
784 return ui->cache;
c906108c 785
c5aa993b 786 /* Not in the cache, do a binary search */
c906108c 787
c5aa993b
JM
788 first = 0;
789 last = ui->last;
c906108c 790
c5aa993b
JM
791 while (first <= last)
792 {
793 middle = (first + last) / 2;
794 if (pc >= ui->table[middle].region_start
795 && pc <= ui->table[middle].region_end)
796 {
797 ui->cache = &ui->table[middle];
798 return &ui->table[middle];
799 }
c906108c 800
c5aa993b
JM
801 if (pc < ui->table[middle].region_start)
802 last = middle - 1;
803 else
804 first = middle + 1;
805 }
806 } /* ALL_OBJFILES() */
c906108c
SS
807 return NULL;
808}
809
aaab4dba
AC
810const unsigned char *
811hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
812{
56132691 813 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
814 (*len) = sizeof (breakpoint);
815 return breakpoint;
816}
817
e23457df
AC
818/* Return the name of a register. */
819
820const char *
3ff7cf9e 821hppa32_register_name (int i)
e23457df
AC
822{
823 static char *names[] = {
824 "flags", "r1", "rp", "r3",
825 "r4", "r5", "r6", "r7",
826 "r8", "r9", "r10", "r11",
827 "r12", "r13", "r14", "r15",
828 "r16", "r17", "r18", "r19",
829 "r20", "r21", "r22", "r23",
830 "r24", "r25", "r26", "dp",
831 "ret0", "ret1", "sp", "r31",
832 "sar", "pcoqh", "pcsqh", "pcoqt",
833 "pcsqt", "eiem", "iir", "isr",
834 "ior", "ipsw", "goto", "sr4",
835 "sr0", "sr1", "sr2", "sr3",
836 "sr5", "sr6", "sr7", "cr0",
837 "cr8", "cr9", "ccr", "cr12",
838 "cr13", "cr24", "cr25", "cr26",
839 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
840 "fpsr", "fpe1", "fpe2", "fpe3",
841 "fpe4", "fpe5", "fpe6", "fpe7",
842 "fr4", "fr4R", "fr5", "fr5R",
843 "fr6", "fr6R", "fr7", "fr7R",
844 "fr8", "fr8R", "fr9", "fr9R",
845 "fr10", "fr10R", "fr11", "fr11R",
846 "fr12", "fr12R", "fr13", "fr13R",
847 "fr14", "fr14R", "fr15", "fr15R",
848 "fr16", "fr16R", "fr17", "fr17R",
849 "fr18", "fr18R", "fr19", "fr19R",
850 "fr20", "fr20R", "fr21", "fr21R",
851 "fr22", "fr22R", "fr23", "fr23R",
852 "fr24", "fr24R", "fr25", "fr25R",
853 "fr26", "fr26R", "fr27", "fr27R",
854 "fr28", "fr28R", "fr29", "fr29R",
855 "fr30", "fr30R", "fr31", "fr31R"
856 };
857 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
858 return NULL;
859 else
860 return names[i];
861}
862
863const char *
864hppa64_register_name (int i)
865{
866 static char *names[] = {
867 "flags", "r1", "rp", "r3",
868 "r4", "r5", "r6", "r7",
869 "r8", "r9", "r10", "r11",
870 "r12", "r13", "r14", "r15",
871 "r16", "r17", "r18", "r19",
872 "r20", "r21", "r22", "r23",
873 "r24", "r25", "r26", "dp",
874 "ret0", "ret1", "sp", "r31",
875 "sar", "pcoqh", "pcsqh", "pcoqt",
876 "pcsqt", "eiem", "iir", "isr",
877 "ior", "ipsw", "goto", "sr4",
878 "sr0", "sr1", "sr2", "sr3",
879 "sr5", "sr6", "sr7", "cr0",
880 "cr8", "cr9", "ccr", "cr12",
881 "cr13", "cr24", "cr25", "cr26",
882 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
883 "fpsr", "fpe1", "fpe2", "fpe3",
884 "fr4", "fr5", "fr6", "fr7",
885 "fr8", "fr9", "fr10", "fr11",
886 "fr12", "fr13", "fr14", "fr15",
887 "fr16", "fr17", "fr18", "fr19",
888 "fr20", "fr21", "fr22", "fr23",
889 "fr24", "fr25", "fr26", "fr27",
890 "fr28", "fr29", "fr30", "fr31"
891 };
892 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
893 return NULL;
894 else
895 return names[i];
896}
897
898
899
c906108c
SS
900/* Return the adjustment necessary to make for addresses on the stack
901 as presented by hpread.c.
902
903 This is necessary because of the stack direction on the PA and the
904 bizarre way in which someone (?) decided they wanted to handle
905 frame pointerless code in GDB. */
906int
fba45db2 907hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
908{
909 struct unwind_table_entry *u;
910
911 u = find_unwind_entry (func_addr);
912 if (!u)
913 return 0;
914 else
915 return u->Total_frame_size << 3;
916}
917
918/* Called to determine if PC is in an interrupt handler of some
919 kind. */
920
921static int
fba45db2 922pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
923{
924 struct unwind_table_entry *u;
925 struct minimal_symbol *msym_us;
926
927 u = find_unwind_entry (pc);
928 if (!u)
929 return 0;
930
931 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
932 its frame isn't a pure interrupt frame. Deal with this. */
933 msym_us = lookup_minimal_symbol_by_pc (pc);
934
d7bd68ca 935 return (u->HP_UX_interrupt_marker
22abf04a 936 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
c906108c
SS
937}
938
939/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
940 appears that PC is in a linker stub.
941
942 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
943
944static int
fba45db2 945pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
946{
947 int found_magic_instruction = 0;
948 int i;
949 char buf[4];
950
951 /* If unable to read memory, assume pc is not in a linker stub. */
952 if (target_read_memory (pc, buf, 4) != 0)
953 return 0;
954
955 /* We are looking for something like
956
957 ; $$dyncall jams RP into this special spot in the frame (RP')
958 ; before calling the "call stub"
959 ldw -18(sp),rp
960
961 ldsid (rp),r1 ; Get space associated with RP into r1
962 mtsp r1,sp ; Move it into space register 0
963 be,n 0(sr0),rp) ; back to your regularly scheduled program */
964
965 /* Maximum known linker stub size is 4 instructions. Search forward
966 from the given PC, then backward. */
967 for (i = 0; i < 4; i++)
968 {
969 /* If we hit something with an unwind, stop searching this direction. */
970
971 if (find_unwind_entry (pc + i * 4) != 0)
972 break;
973
974 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 975 return from a cross-space function call. */
c906108c
SS
976 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
977 {
978 found_magic_instruction = 1;
979 break;
980 }
981 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 982 here. */
c906108c
SS
983 }
984
985 if (found_magic_instruction != 0)
986 return 1;
987
988 /* Now look backward. */
989 for (i = 0; i < 4; i++)
990 {
991 /* If we hit something with an unwind, stop searching this direction. */
992
993 if (find_unwind_entry (pc - i * 4) != 0)
994 break;
995
996 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 997 return from a cross-space function call. */
c906108c
SS
998 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
999 {
1000 found_magic_instruction = 1;
1001 break;
1002 }
1003 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 1004 here. */
c906108c
SS
1005 }
1006 return found_magic_instruction;
1007}
1008
1009static int
fba45db2 1010find_return_regnum (CORE_ADDR pc)
c906108c
SS
1011{
1012 struct unwind_table_entry *u;
1013
1014 u = find_unwind_entry (pc);
1015
1016 if (!u)
1017 return RP_REGNUM;
1018
1019 if (u->Millicode)
1020 return 31;
1021
1022 return RP_REGNUM;
1023}
1024
1025/* Return size of frame, or -1 if we should use a frame pointer. */
1026static int
fba45db2 1027find_proc_framesize (CORE_ADDR pc)
c906108c
SS
1028{
1029 struct unwind_table_entry *u;
1030 struct minimal_symbol *msym_us;
1031
1032 /* This may indicate a bug in our callers... */
c5aa993b 1033 if (pc == (CORE_ADDR) 0)
c906108c 1034 return -1;
c5aa993b 1035
c906108c
SS
1036 u = find_unwind_entry (pc);
1037
1038 if (!u)
1039 {
1040 if (pc_in_linker_stub (pc))
1041 /* Linker stubs have a zero size frame. */
1042 return 0;
1043 else
1044 return -1;
1045 }
1046
1047 msym_us = lookup_minimal_symbol_by_pc (pc);
1048
1049 /* If Save_SP is set, and we're not in an interrupt or signal caller,
1050 then we have a frame pointer. Use it. */
3fa41cdb
JL
1051 if (u->Save_SP
1052 && !pc_in_interrupt_handler (pc)
1053 && msym_us
22abf04a 1054 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
c906108c
SS
1055 return -1;
1056
1057 return u->Total_frame_size << 3;
1058}
1059
1060/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 1061static int rp_saved (CORE_ADDR);
c906108c
SS
1062
1063static int
fba45db2 1064rp_saved (CORE_ADDR pc)
c906108c
SS
1065{
1066 struct unwind_table_entry *u;
1067
1068 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
1069 if (pc == (CORE_ADDR) 0)
1070 return 0;
1071
1072 u = find_unwind_entry (pc);
1073
1074 if (!u)
1075 {
1076 if (pc_in_linker_stub (pc))
1077 /* This is the so-called RP'. */
1078 return -24;
1079 else
1080 return 0;
1081 }
1082
1083 if (u->Save_RP)
53a5351d 1084 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
1085 else if (u->stub_unwind.stub_type != 0)
1086 {
1087 switch (u->stub_unwind.stub_type)
1088 {
1089 case EXPORT:
1090 case IMPORT:
1091 return -24;
1092 case PARAMETER_RELOCATION:
1093 return -8;
1094 default:
1095 return 0;
1096 }
1097 }
1098 else
1099 return 0;
1100}
1101\f
1102int
60383d10 1103hppa_frameless_function_invocation (struct frame_info *frame)
c906108c
SS
1104{
1105 struct unwind_table_entry *u;
1106
ef6e7e13 1107 u = find_unwind_entry (get_frame_pc (frame));
c906108c
SS
1108
1109 if (u == 0)
1110 return 0;
1111
1112 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1113}
1114
d709c020
JB
1115/* Immediately after a function call, return the saved pc.
1116 Can't go through the frames for this because on some machines
1117 the new frame is not set up until the new function executes
1118 some instructions. */
1119
c906108c 1120CORE_ADDR
60383d10 1121hppa_saved_pc_after_call (struct frame_info *frame)
c906108c
SS
1122{
1123 int ret_regnum;
1124 CORE_ADDR pc;
1125 struct unwind_table_entry *u;
1126
1127 ret_regnum = find_return_regnum (get_frame_pc (frame));
1128 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 1129
c906108c
SS
1130 /* If PC is in a linker stub, then we need to dig the address
1131 the stub will return to out of the stack. */
1132 u = find_unwind_entry (pc);
1133 if (u && u->stub_unwind.stub_type != 0)
8bedc050 1134 return DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1135 else
1136 return pc;
1137}
1138\f
1139CORE_ADDR
fba45db2 1140hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1141{
1142 CORE_ADDR pc = get_frame_pc (frame);
1143 struct unwind_table_entry *u;
65e82032 1144 CORE_ADDR old_pc = 0;
c5aa993b
JM
1145 int spun_around_loop = 0;
1146 int rp_offset = 0;
c906108c
SS
1147
1148 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1149 at the base of the frame in an interrupt handler. Registers within
1150 are saved in the exact same order as GDB numbers registers. How
1151 convienent. */
1152 if (pc_in_interrupt_handler (pc))
ef6e7e13 1153 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
53a5351d 1154 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 1155
ef6e7e13
AC
1156 if ((get_frame_pc (frame) >= get_frame_base (frame)
1157 && (get_frame_pc (frame)
1158 <= (get_frame_base (frame)
1159 /* A call dummy is sized in words, but it is actually a
1160 series of instructions. Account for that scaling
1161 factor. */
b1e29e33
AC
1162 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1163 * DEPRECATED_CALL_DUMMY_LENGTH)
ef6e7e13
AC
1164 /* Similarly we have to account for 64bit wide register
1165 saves. */
b1e29e33 1166 + (32 * DEPRECATED_REGISTER_SIZE)
ef6e7e13
AC
1167 /* We always consider FP regs 8 bytes long. */
1168 + (NUM_REGS - FP0_REGNUM) * 8
1169 /* Similarly we have to account for 64bit wide register
1170 saves. */
b1e29e33 1171 + (6 * DEPRECATED_REGISTER_SIZE)))))
104c1213 1172 {
ef6e7e13 1173 return read_memory_integer ((get_frame_base (frame)
104c1213
JM
1174 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1175 TARGET_PTR_BIT / 8) & ~0x3;
1176 }
1177
c906108c
SS
1178#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1179 /* Deal with signal handler caller frames too. */
5a203e44 1180 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1181 {
1182 CORE_ADDR rp;
1183 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1184 return rp & ~0x3;
1185 }
1186#endif
1187
60383d10 1188 if (hppa_frameless_function_invocation (frame))
c906108c
SS
1189 {
1190 int ret_regnum;
1191
1192 ret_regnum = find_return_regnum (pc);
1193
1194 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
1195 handler caller, then we need to look in the saved
1196 register area to get the return pointer (the values
1197 in the registers may not correspond to anything useful). */
ef6e7e13
AC
1198 if (get_next_frame (frame)
1199 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1200 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 1201 {
43bd9a9e 1202 CORE_ADDR *saved_regs;
ef6e7e13 1203 hppa_frame_init_saved_regs (get_next_frame (frame));
1b1d3794 1204 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 1205 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1206 TARGET_PTR_BIT / 8) & 0x2)
c906108c 1207 {
43bd9a9e 1208 pc = read_memory_integer (saved_regs[31],
53a5351d 1209 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1210
1211 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
1212 with a return pointer in %rp and the kernel call with
1213 a return pointer in %r31. We return the %rp variant
1214 if %r31 is the same as frame->pc. */
ef6e7e13 1215 if (pc == get_frame_pc (frame))
43bd9a9e 1216 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1217 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1218 }
1219 else
43bd9a9e 1220 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1221 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1222 }
1223 else
1224 pc = read_register (ret_regnum) & ~0x3;
1225 }
1226 else
1227 {
1228 spun_around_loop = 0;
c5aa993b 1229 old_pc = pc;
c906108c 1230
c5aa993b 1231 restart:
c906108c
SS
1232 rp_offset = rp_saved (pc);
1233
1234 /* Similar to code in frameless function case. If the next
c5aa993b
JM
1235 frame is a signal or interrupt handler, then dig the right
1236 information out of the saved register info. */
c906108c 1237 if (rp_offset == 0
ef6e7e13
AC
1238 && get_next_frame (frame)
1239 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1240 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
c906108c 1241 {
43bd9a9e 1242 CORE_ADDR *saved_regs;
ef6e7e13 1243 hppa_frame_init_saved_regs (get_next_frame (frame));
1b1d3794 1244 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
43bd9a9e 1245 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1246 TARGET_PTR_BIT / 8) & 0x2)
c906108c 1247 {
43bd9a9e 1248 pc = read_memory_integer (saved_regs[31],
53a5351d 1249 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1250
1251 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
1252 with a return pointer in %rp and the kernel call with
1253 a return pointer in %r31. We return the %rp variant
1254 if %r31 is the same as frame->pc. */
ef6e7e13 1255 if (pc == get_frame_pc (frame))
43bd9a9e 1256 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1257 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1258 }
1259 else
43bd9a9e 1260 pc = read_memory_integer (saved_regs[RP_REGNUM],
53a5351d 1261 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1262 }
1263 else if (rp_offset == 0)
c5aa993b
JM
1264 {
1265 old_pc = pc;
1266 pc = read_register (RP_REGNUM) & ~0x3;
1267 }
c906108c 1268 else
c5aa993b
JM
1269 {
1270 old_pc = pc;
ef6e7e13 1271 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
53a5351d 1272 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 1273 }
c906108c
SS
1274 }
1275
1276 /* If PC is inside a linker stub, then dig out the address the stub
1277 will return to.
1278
1279 Don't do this for long branch stubs. Why? For some unknown reason
1280 _start is marked as a long branch stub in hpux10. */
1281 u = find_unwind_entry (pc);
1282 if (u && u->stub_unwind.stub_type != 0
1283 && u->stub_unwind.stub_type != LONG_BRANCH)
1284 {
1285 unsigned int insn;
1286
1287 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1288 then the call chain will eventually point us into the stub for
1289 _sigreturn. Unlike most cases, we'll be pointed to the branch
1290 to the real sigreturn rather than the code after the real branch!.
c906108c 1291
c5aa993b
JM
1292 Else, try to dig the address the stub will return to in the normal
1293 fashion. */
c906108c
SS
1294 insn = read_memory_integer (pc, 4);
1295 if ((insn & 0xfc00e000) == 0xe8000000)
1296 return (pc + extract_17 (insn) + 8) & ~0x3;
1297 else
1298 {
c5aa993b
JM
1299 if (old_pc == pc)
1300 spun_around_loop++;
1301
1302 if (spun_around_loop > 1)
1303 {
1304 /* We're just about to go around the loop again with
1305 no more hope of success. Die. */
1306 error ("Unable to find return pc for this frame");
1307 }
1308 else
1309 goto restart;
c906108c
SS
1310 }
1311 }
1312
1313 return pc;
1314}
1315\f
1316/* We need to correct the PC and the FP for the outermost frame when we are
1317 in a system call. */
1318
1319void
60383d10 1320hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1321{
1322 int flags;
1323 int framesize;
1324
ef6e7e13 1325 if (get_next_frame (frame) && !fromleaf)
c906108c
SS
1326 return;
1327
618ce49f
AC
1328 /* If the next frame represents a frameless function invocation then
1329 we have to do some adjustments that are normally done by
1330 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1331 this case.) */
c906108c
SS
1332 if (fromleaf)
1333 {
1334 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1335 in the current frame structure (it isn't set yet). */
8bedc050 1336 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
c906108c
SS
1337
1338 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1339 use it, else subtract the size of this frame from the current
1340 frame. (we always want frame->frame to point at the lowest address
1341 in the frame). */
c906108c 1342 if (framesize == -1)
0ba6dca9 1343 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
c906108c 1344 else
ef6e7e13 1345 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
c906108c
SS
1346 return;
1347 }
1348
1349 flags = read_register (FLAGS_REGNUM);
c5aa993b 1350 if (flags & 2) /* In system call? */
ef6e7e13 1351 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
c906108c
SS
1352
1353 /* The outermost frame is always derived from PC-framesize
1354
1355 One might think frameless innermost frames should have
1356 a frame->frame that is the same as the parent's frame->frame.
1357 That is wrong; frame->frame in that case should be the *high*
1358 address of the parent's frame. It's complicated as hell to
1359 explain, but the parent *always* creates some stack space for
1360 the child. So the child actually does have a frame of some
1361 sorts, and its base is the high address in its parent's frame. */
ef6e7e13 1362 framesize = find_proc_framesize (get_frame_pc (frame));
c906108c 1363 if (framesize == -1)
0ba6dca9 1364 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
c906108c 1365 else
ef6e7e13 1366 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
c906108c
SS
1367}
1368\f
a5afb99f
AC
1369/* Given a GDB frame, determine the address of the calling function's
1370 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
1371 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1372 will be called for the new frame.
c906108c
SS
1373
1374 This may involve searching through prologues for several functions
1375 at boundaries where GCC calls HP C code, or where code which has
1376 a frame pointer calls code without a frame pointer. */
1377
1378CORE_ADDR
60383d10 1379hppa_frame_chain (struct frame_info *frame)
c906108c
SS
1380{
1381 int my_framesize, caller_framesize;
1382 struct unwind_table_entry *u;
1383 CORE_ADDR frame_base;
1384 struct frame_info *tmp_frame;
1385
c2c6d25f
JM
1386 /* A frame in the current frame list, or zero. */
1387 struct frame_info *saved_regs_frame = 0;
43bd9a9e
AC
1388 /* Where the registers were saved in saved_regs_frame. If
1389 saved_regs_frame is zero, this is garbage. */
1390 CORE_ADDR *saved_regs = NULL;
c2c6d25f 1391
c5aa993b 1392 CORE_ADDR caller_pc;
c906108c
SS
1393
1394 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1395 struct symbol *frame_symbol;
1396 char *frame_symbol_name;
c906108c
SS
1397
1398 /* If this is a threaded application, and we see the
1399 routine "__pthread_exit", treat it as the stack root
1400 for this thread. */
ef6e7e13
AC
1401 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1402 frame_symbol = find_pc_function (get_frame_pc (frame));
c906108c 1403
c5aa993b 1404 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1405 {
c5aa993b
JM
1406 /* The test above for "no user function name" would defend
1407 against the slim likelihood that a user might define a
1408 routine named "__pthread_exit" and then try to debug it.
1409
1410 If it weren't commented out, and you tried to debug the
1411 pthread library itself, you'd get errors.
1412
1413 So for today, we don't make that check. */
22abf04a 1414 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
c5aa993b
JM
1415 if (frame_symbol_name != 0)
1416 {
1417 if (0 == strncmp (frame_symbol_name,
1418 THREAD_INITIAL_FRAME_SYMBOL,
1419 THREAD_INITIAL_FRAME_SYM_LEN))
1420 {
1421 /* Pretend we've reached the bottom of the stack. */
1422 return (CORE_ADDR) 0;
1423 }
1424 }
1425 } /* End of hacky code for threads. */
1426
c906108c
SS
1427 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1428 are easy; at *sp we have a full save state strucutre which we can
1429 pull the old stack pointer from. Also see frame_saved_pc for
1430 code to dig a saved PC out of the save state structure. */
ef6e7e13
AC
1431 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1432 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
53a5351d 1433 TARGET_PTR_BIT / 8);
c906108c 1434#ifdef FRAME_BASE_BEFORE_SIGTRAMP
5a203e44 1435 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1436 {
1437 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1438 }
1439#endif
1440 else
ef6e7e13 1441 frame_base = get_frame_base (frame);
c906108c
SS
1442
1443 /* Get frame sizes for the current frame and the frame of the
1444 caller. */
ef6e7e13 1445 my_framesize = find_proc_framesize (get_frame_pc (frame));
8bedc050 1446 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
1447
1448 /* If we can't determine the caller's PC, then it's not likely we can
1449 really determine anything meaningful about its frame. We'll consider
1450 this to be stack bottom. */
1451 if (caller_pc == (CORE_ADDR) 0)
1452 return (CORE_ADDR) 0;
1453
8bedc050 1454 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1455
1456 /* If caller does not have a frame pointer, then its frame
1457 can be found at current_frame - caller_framesize. */
1458 if (caller_framesize != -1)
1459 {
1460 return frame_base - caller_framesize;
1461 }
1462 /* Both caller and callee have frame pointers and are GCC compiled
1463 (SAVE_SP bit in unwind descriptor is on for both functions.
1464 The previous frame pointer is found at the top of the current frame. */
1465 if (caller_framesize == -1 && my_framesize == -1)
1466 {
53a5351d 1467 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1468 }
1469 /* Caller has a frame pointer, but callee does not. This is a little
1470 more difficult as GCC and HP C lay out locals and callee register save
1471 areas very differently.
1472
1473 The previous frame pointer could be in a register, or in one of
1474 several areas on the stack.
1475
1476 Walk from the current frame to the innermost frame examining
1477 unwind descriptors to determine if %r3 ever gets saved into the
1478 stack. If so return whatever value got saved into the stack.
1479 If it was never saved in the stack, then the value in %r3 is still
1480 valid, so use it.
1481
1482 We use information from unwind descriptors to determine if %r3
1483 is saved into the stack (Entry_GR field has this information). */
1484
ef6e7e13 1485 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
c906108c 1486 {
ef6e7e13 1487 u = find_unwind_entry (get_frame_pc (tmp_frame));
c906108c
SS
1488
1489 if (!u)
1490 {
1491 /* We could find this information by examining prologues. I don't
1492 think anyone has actually written any tools (not even "strip")
1493 which leave them out of an executable, so maybe this is a moot
1494 point. */
c5aa993b
JM
1495 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1496 code that doesn't have unwind entries. For example, stepping into
1497 the dynamic linker will give you a PC that has none. Thus, I've
1498 disabled this warning. */
c906108c 1499#if 0
ef6e7e13 1500 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
c906108c
SS
1501#endif
1502 return (CORE_ADDR) 0;
1503 }
1504
c2c6d25f 1505 if (u->Save_SP
5a203e44 1506 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1507 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1508 break;
c2c6d25f
JM
1509
1510 /* Entry_GR specifies the number of callee-saved general registers
1511 saved in the stack. It starts at %r3, so %r3 would be 1. */
1512 if (u->Entry_GR >= 1)
1513 {
1514 /* The unwind entry claims that r3 is saved here. However,
1515 in optimized code, GCC often doesn't actually save r3.
1516 We'll discover this if we look at the prologue. */
43bd9a9e 1517 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1518 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
c2c6d25f
JM
1519 saved_regs_frame = tmp_frame;
1520
1521 /* If we have an address for r3, that's good. */
0ba6dca9 1522 if (saved_regs[DEPRECATED_FP_REGNUM])
c2c6d25f
JM
1523 break;
1524 }
c906108c
SS
1525 }
1526
1527 if (tmp_frame)
1528 {
1529 /* We may have walked down the chain into a function with a frame
c5aa993b 1530 pointer. */
c906108c 1531 if (u->Save_SP
5a203e44 1532 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
ef6e7e13 1533 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
c906108c 1534 {
ef6e7e13 1535 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
c906108c
SS
1536 }
1537 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1538 else
c906108c 1539 {
c906108c
SS
1540 /* Sick.
1541
1542 For optimization purposes many kernels don't have the
1543 callee saved registers into the save_state structure upon
1544 entry into the kernel for a syscall; the optimization
1545 is usually turned off if the process is being traced so
1546 that the debugger can get full register state for the
1547 process.
c5aa993b 1548
c906108c
SS
1549 This scheme works well except for two cases:
1550
c5aa993b
JM
1551 * Attaching to a process when the process is in the
1552 kernel performing a system call (debugger can't get
1553 full register state for the inferior process since
1554 the process wasn't being traced when it entered the
1555 system call).
c906108c 1556
c5aa993b
JM
1557 * Register state is not complete if the system call
1558 causes the process to core dump.
c906108c
SS
1559
1560
1561 The following heinous code is an attempt to deal with
1562 the lack of register state in a core dump. It will
1563 fail miserably if the function which performs the
1564 system call has a variable sized stack frame. */
1565
c2c6d25f 1566 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1567 {
1568 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1569 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
43bd9a9e 1570 }
c906108c
SS
1571
1572 /* Abominable hack. */
1573 if (current_target.to_has_execution == 0
43bd9a9e
AC
1574 && ((saved_regs[FLAGS_REGNUM]
1575 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1576 TARGET_PTR_BIT / 8)
c906108c 1577 & 0x2))
43bd9a9e 1578 || (saved_regs[FLAGS_REGNUM] == 0
c906108c
SS
1579 && read_register (FLAGS_REGNUM) & 0x2)))
1580 {
8bedc050 1581 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1582 if (!u)
1583 {
0ba6dca9 1584 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1585 TARGET_PTR_BIT / 8);
c906108c
SS
1586 }
1587 else
1588 {
1589 return frame_base - (u->Total_frame_size << 3);
1590 }
1591 }
c5aa993b 1592
0ba6dca9 1593 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1594 TARGET_PTR_BIT / 8);
c906108c
SS
1595 }
1596 }
1597 else
1598 {
c906108c
SS
1599 /* Get the innermost frame. */
1600 tmp_frame = frame;
ef6e7e13
AC
1601 while (get_next_frame (tmp_frame) != NULL)
1602 tmp_frame = get_next_frame (tmp_frame);
c906108c 1603
c2c6d25f 1604 if (tmp_frame != saved_regs_frame)
43bd9a9e
AC
1605 {
1606 hppa_frame_init_saved_regs (tmp_frame);
1b1d3794 1607 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
43bd9a9e 1608 }
c2c6d25f 1609
c906108c
SS
1610 /* Abominable hack. See above. */
1611 if (current_target.to_has_execution == 0
43bd9a9e
AC
1612 && ((saved_regs[FLAGS_REGNUM]
1613 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
53a5351d 1614 TARGET_PTR_BIT / 8)
c906108c 1615 & 0x2))
43bd9a9e 1616 || (saved_regs[FLAGS_REGNUM] == 0
c5aa993b 1617 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c 1618 {
8bedc050 1619 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
c906108c
SS
1620 if (!u)
1621 {
0ba6dca9 1622 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
53a5351d 1623 TARGET_PTR_BIT / 8);
c906108c 1624 }
c5aa993b
JM
1625 else
1626 {
1627 return frame_base - (u->Total_frame_size << 3);
1628 }
c906108c 1629 }
c5aa993b 1630
c906108c 1631 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1632 holds the value of the previous frame pointer). */
0ba6dca9 1633 return deprecated_read_fp ();
c906108c
SS
1634 }
1635}
c906108c 1636\f
c5aa993b 1637
c906108c
SS
1638/* To see if a frame chain is valid, see if the caller looks like it
1639 was compiled with gcc. */
1640
1641int
fba45db2 1642hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1643{
1644 struct minimal_symbol *msym_us;
1645 struct minimal_symbol *msym_start;
1646 struct unwind_table_entry *u, *next_u = NULL;
1647 struct frame_info *next;
1648
ef6e7e13 1649 u = find_unwind_entry (get_frame_pc (thisframe));
c906108c
SS
1650
1651 if (u == NULL)
1652 return 1;
1653
1654 /* We can't just check that the same of msym_us is "_start", because
1655 someone idiotically decided that they were going to make a Ltext_end
1656 symbol with the same address. This Ltext_end symbol is totally
1657 indistinguishable (as nearly as I can tell) from the symbol for a function
1658 which is (legitimately, since it is in the user's namespace)
1659 named Ltext_end, so we can't just ignore it. */
8bedc050 1660 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
c906108c
SS
1661 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1662 if (msym_us
1663 && msym_start
1664 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1665 return 0;
1666
1667 /* Grrrr. Some new idiot decided that they don't want _start for the
1668 PRO configurations; $START$ calls main directly.... Deal with it. */
1669 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1670 if (msym_us
1671 && msym_start
1672 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1673 return 0;
1674
1675 next = get_next_frame (thisframe);
1676 if (next)
ef6e7e13 1677 next_u = find_unwind_entry (get_frame_pc (next));
c906108c
SS
1678
1679 /* If this frame does not save SP, has no stack, isn't a stub,
1680 and doesn't "call" an interrupt routine or signal handler caller,
1681 then its not valid. */
1682 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
ef6e7e13 1683 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
c906108c
SS
1684 || (next_u && next_u->HP_UX_interrupt_marker))
1685 return 1;
1686
ef6e7e13 1687 if (pc_in_linker_stub (get_frame_pc (thisframe)))
c906108c
SS
1688 return 1;
1689
1690 return 0;
1691}
1692
7daf4f5b
JB
1693/* These functions deal with saving and restoring register state
1694 around a function call in the inferior. They keep the stack
1695 double-word aligned; eventually, on an hp700, the stack will have
1696 to be aligned to a 64-byte boundary. */
c906108c
SS
1697
1698void
7daf4f5b 1699hppa_push_dummy_frame (void)
c906108c
SS
1700{
1701 CORE_ADDR sp, pc, pcspace;
52f0bd74 1702 int regnum;
53a5351d 1703 CORE_ADDR int_buffer;
c906108c
SS
1704 double freg_buffer;
1705
60383d10 1706 pc = hppa_target_read_pc (inferior_ptid);
c906108c
SS
1707 int_buffer = read_register (FLAGS_REGNUM);
1708 if (int_buffer & 0x2)
1709 {
3371ccc0 1710 const unsigned int sid = (pc >> 30) & 0x3;
c906108c
SS
1711 if (sid == 0)
1712 pcspace = read_register (SR4_REGNUM);
1713 else
1714 pcspace = read_register (SR4_REGNUM + 4 + sid);
c906108c
SS
1715 }
1716 else
1717 pcspace = read_register (PCSQ_HEAD_REGNUM);
1718
1719 /* Space for "arguments"; the RP goes in here. */
1720 sp = read_register (SP_REGNUM) + 48;
1721 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1722
1723 /* The 32bit and 64bit ABIs save the return pointer into different
1724 stack slots. */
b1e29e33
AC
1725 if (DEPRECATED_REGISTER_SIZE == 8)
1726 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
53a5351d 1727 else
b1e29e33 1728 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
c906108c 1729
0ba6dca9 1730 int_buffer = deprecated_read_fp ();
b1e29e33 1731 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
c906108c 1732
0ba6dca9 1733 write_register (DEPRECATED_FP_REGNUM, sp);
c906108c 1734
b1e29e33 1735 sp += 2 * DEPRECATED_REGISTER_SIZE;
c906108c
SS
1736
1737 for (regnum = 1; regnum < 32; regnum++)
0ba6dca9 1738 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
c906108c
SS
1739 sp = push_word (sp, read_register (regnum));
1740
53a5351d 1741 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
b1e29e33 1742 if (DEPRECATED_REGISTER_SIZE != 8)
53a5351d 1743 sp += 4;
c906108c
SS
1744
1745 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1746 {
62700349 1747 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
73937e03 1748 (char *) &freg_buffer, 8);
c5aa993b 1749 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1750 }
1751 sp = push_word (sp, read_register (IPSW_REGNUM));
1752 sp = push_word (sp, read_register (SAR_REGNUM));
1753 sp = push_word (sp, pc);
1754 sp = push_word (sp, pcspace);
1755 sp = push_word (sp, pc + 4);
1756 sp = push_word (sp, pcspace);
1757 write_register (SP_REGNUM, sp);
1758}
1759
1760static void
fba45db2 1761find_dummy_frame_regs (struct frame_info *frame,
43bd9a9e 1762 CORE_ADDR frame_saved_regs[])
c906108c 1763{
ef6e7e13 1764 CORE_ADDR fp = get_frame_base (frame);
c906108c
SS
1765 int i;
1766
53a5351d 1767 /* The 32bit and 64bit ABIs save RP into different locations. */
b1e29e33 1768 if (DEPRECATED_REGISTER_SIZE == 8)
43bd9a9e 1769 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
53a5351d 1770 else
43bd9a9e 1771 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
53a5351d 1772
0ba6dca9 1773 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
c906108c 1774
b1e29e33 1775 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
53a5351d 1776
b1e29e33 1777 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
c906108c 1778 {
0ba6dca9 1779 if (i != DEPRECATED_FP_REGNUM)
c906108c 1780 {
43bd9a9e 1781 frame_saved_regs[i] = fp;
b1e29e33 1782 fp += DEPRECATED_REGISTER_SIZE;
c906108c
SS
1783 }
1784 }
1785
53a5351d 1786 /* This is not necessary or desirable for the 64bit ABI. */
b1e29e33 1787 if (DEPRECATED_REGISTER_SIZE != 8)
53a5351d
JM
1788 fp += 4;
1789
c906108c 1790 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
43bd9a9e
AC
1791 frame_saved_regs[i] = fp;
1792
1793 frame_saved_regs[IPSW_REGNUM] = fp;
b1e29e33
AC
1794 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1795 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1796 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1797 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1798 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
c906108c
SS
1799}
1800
1801void
fba45db2 1802hppa_pop_frame (void)
c906108c 1803{
52f0bd74
AC
1804 struct frame_info *frame = get_current_frame ();
1805 CORE_ADDR fp, npc, target_pc;
1806 int regnum;
43bd9a9e 1807 CORE_ADDR *fsr;
c906108c
SS
1808 double freg_buffer;
1809
c193f6ac 1810 fp = get_frame_base (frame);
43bd9a9e 1811 hppa_frame_init_saved_regs (frame);
1b1d3794 1812 fsr = deprecated_get_frame_saved_regs (frame);
c906108c
SS
1813
1814#ifndef NO_PC_SPACE_QUEUE_RESTORE
43bd9a9e
AC
1815 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1816 restore_pc_queue (fsr);
c906108c
SS
1817#endif
1818
1819 for (regnum = 31; regnum > 0; regnum--)
43bd9a9e
AC
1820 if (fsr[regnum])
1821 write_register (regnum, read_memory_integer (fsr[regnum],
b1e29e33 1822 DEPRECATED_REGISTER_SIZE));
c906108c 1823
c5aa993b 1824 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
43bd9a9e 1825 if (fsr[regnum])
c906108c 1826 {
43bd9a9e 1827 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
62700349 1828 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
73937e03 1829 (char *) &freg_buffer, 8);
c906108c
SS
1830 }
1831
43bd9a9e 1832 if (fsr[IPSW_REGNUM])
c906108c 1833 write_register (IPSW_REGNUM,
43bd9a9e 1834 read_memory_integer (fsr[IPSW_REGNUM],
b1e29e33 1835 DEPRECATED_REGISTER_SIZE));
c906108c 1836
43bd9a9e 1837 if (fsr[SAR_REGNUM])
c906108c 1838 write_register (SAR_REGNUM,
43bd9a9e 1839 read_memory_integer (fsr[SAR_REGNUM],
b1e29e33 1840 DEPRECATED_REGISTER_SIZE));
c906108c
SS
1841
1842 /* If the PC was explicitly saved, then just restore it. */
43bd9a9e 1843 if (fsr[PCOQ_TAIL_REGNUM])
c906108c 1844 {
43bd9a9e 1845 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
b1e29e33 1846 DEPRECATED_REGISTER_SIZE);
c906108c
SS
1847 write_register (PCOQ_TAIL_REGNUM, npc);
1848 }
1849 /* Else use the value in %rp to set the new PC. */
c5aa993b 1850 else
c906108c
SS
1851 {
1852 npc = read_register (RP_REGNUM);
1853 write_pc (npc);
1854 }
1855
b1e29e33 1856 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
c906108c 1857
43bd9a9e 1858 if (fsr[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1859 write_register (SP_REGNUM, fp - 48);
1860 else
1861 write_register (SP_REGNUM, fp);
1862
1863 /* The PC we just restored may be inside a return trampoline. If so
1864 we want to restart the inferior and run it through the trampoline.
1865
1866 Do this by setting a momentary breakpoint at the location the
1867 trampoline returns to.
1868
1869 Don't skip through the trampoline if we're popping a dummy frame. */
1870 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
43bd9a9e 1871 if (target_pc && !fsr[IPSW_REGNUM])
c906108c
SS
1872 {
1873 struct symtab_and_line sal;
1874 struct breakpoint *breakpoint;
1875 struct cleanup *old_chain;
1876
1877 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1878 for "return_command" will print the frame we returned to. */
c906108c
SS
1879 sal = find_pc_line (target_pc, 0);
1880 sal.pc = target_pc;
516b1f28 1881 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
c906108c
SS
1882 breakpoint->silent = 1;
1883
1884 /* So we can clean things up. */
4d6140d9 1885 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1886
1887 /* Start up the inferior. */
1888 clear_proceed_status ();
1889 proceed_to_finish = 1;
2acceee2 1890 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1891
1892 /* Perform our cleanups. */
1893 do_cleanups (old_chain);
1894 }
1895 flush_cached_frames ();
1896}
1897
1898/* After returning to a dummy on the stack, restore the instruction
1899 queue space registers. */
1900
1901static int
43bd9a9e 1902restore_pc_queue (CORE_ADDR *fsr)
c906108c
SS
1903{
1904 CORE_ADDR pc = read_pc ();
43bd9a9e 1905 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
53a5351d 1906 TARGET_PTR_BIT / 8);
c906108c
SS
1907 struct target_waitstatus w;
1908 int insn_count;
1909
1910 /* Advance past break instruction in the call dummy. */
1911 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1912 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1913
1914 /* HPUX doesn't let us set the space registers or the space
1915 registers of the PC queue through ptrace. Boo, hiss.
1916 Conveniently, the call dummy has this sequence of instructions
1917 after the break:
c5aa993b
JM
1918 mtsp r21, sr0
1919 ble,n 0(sr0, r22)
1920
c906108c
SS
1921 So, load up the registers and single step until we are in the
1922 right place. */
1923
43bd9a9e 1924 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
b1e29e33 1925 DEPRECATED_REGISTER_SIZE));
c906108c
SS
1926 write_register (22, new_pc);
1927
1928 for (insn_count = 0; insn_count < 3; insn_count++)
1929 {
1930 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1931 merge this into wait_for_inferior (as a special kind of
1932 watchpoint? By setting a breakpoint at the end? Is there
1933 any other choice? Is there *any* way to do this stuff with
1934 ptrace() or some equivalent?). */
c906108c 1935 resume (1, 0);
39f77062 1936 target_wait (inferior_ptid, &w);
c906108c
SS
1937
1938 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1939 {
1940 stop_signal = w.value.sig;
1941 terminal_ours_for_output ();
1942 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1943 target_signal_to_name (stop_signal),
1944 target_signal_to_string (stop_signal));
c5aa993b
JM
1945 gdb_flush (gdb_stdout);
1946 return 0;
1947 }
c906108c
SS
1948 }
1949 target_terminal_ours ();
1950 target_fetch_registers (-1);
1951 return 1;
1952}
1953
c2c6d25f
JM
1954
1955#ifdef PA20W_CALLING_CONVENTIONS
1956
53a5351d
JM
1957/* This function pushes a stack frame with arguments as part of the
1958 inferior function calling mechanism.
c906108c 1959
c2c6d25f
JM
1960 This is the version for the PA64, in which later arguments appear
1961 at higher addresses. (The stack always grows towards higher
1962 addresses.)
c906108c 1963
53a5351d
JM
1964 We simply allocate the appropriate amount of stack space and put
1965 arguments into their proper slots. The call dummy code will copy
1966 arguments into registers as needed by the ABI.
c906108c 1967
c2c6d25f
JM
1968 This ABI also requires that the caller provide an argument pointer
1969 to the callee, so we do that too. */
53a5351d 1970
c906108c 1971CORE_ADDR
ea7c478f 1972hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1973 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1974{
1975 /* array of arguments' offsets */
c5aa993b 1976 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1977
1978 /* array of arguments' lengths: real lengths in bytes, not aligned to
1979 word size */
c5aa993b 1980 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1981
53a5351d
JM
1982 /* The value of SP as it was passed into this function after
1983 aligning. */
f27dd7fd 1984 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
c906108c 1985
53a5351d
JM
1986 /* The number of stack bytes occupied by the current argument. */
1987 int bytes_reserved;
1988
1989 /* The total number of bytes reserved for the arguments. */
1990 int cum_bytes_reserved = 0;
c906108c 1991
53a5351d
JM
1992 /* Similarly, but aligned. */
1993 int cum_bytes_aligned = 0;
1994 int i;
c5aa993b 1995
53a5351d 1996 /* Iterate over each argument provided by the user. */
c906108c
SS
1997 for (i = 0; i < nargs; i++)
1998 {
c2c6d25f
JM
1999 struct type *arg_type = VALUE_TYPE (args[i]);
2000
2001 /* Integral scalar values smaller than a register are padded on
2002 the left. We do this by promoting them to full-width,
2003 although the ABI says to pad them with garbage. */
2004 if (is_integral_type (arg_type)
b1e29e33 2005 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
c2c6d25f
JM
2006 {
2007 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
2008 ? builtin_type_unsigned_long
2009 : builtin_type_long),
2010 args[i]);
2011 arg_type = VALUE_TYPE (args[i]);
2012 }
2013
2014 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 2015
53a5351d
JM
2016 /* Align the size of the argument to the word size for this
2017 target. */
b1e29e33 2018 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
c906108c 2019
53a5351d
JM
2020 offset[i] = cum_bytes_reserved;
2021
c2c6d25f
JM
2022 /* Aggregates larger than eight bytes (the only types larger
2023 than eight bytes we have) are aligned on a 16-byte boundary,
2024 possibly padded on the right with garbage. This may leave an
2025 empty word on the stack, and thus an unused register, as per
2026 the ABI. */
2027 if (bytes_reserved > 8)
2028 {
2029 /* Round up the offset to a multiple of two slots. */
b1e29e33
AC
2030 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
2031 & -(2*DEPRECATED_REGISTER_SIZE));
c906108c 2032
c2c6d25f
JM
2033 /* Note the space we've wasted, if any. */
2034 bytes_reserved += new_offset - offset[i];
2035 offset[i] = new_offset;
2036 }
53a5351d 2037
c2c6d25f
JM
2038 cum_bytes_reserved += bytes_reserved;
2039 }
2040
2041 /* CUM_BYTES_RESERVED already accounts for all the arguments
2042 passed by the user. However, the ABIs mandate minimum stack space
2043 allocations for outgoing arguments.
2044
2045 The ABIs also mandate minimum stack alignments which we must
2046 preserve. */
f27dd7fd 2047 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
c2c6d25f
JM
2048 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2049
2050 /* Now write each of the args at the proper offset down the stack. */
2051 for (i = 0; i < nargs; i++)
2052 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2053
2054 /* If a structure has to be returned, set up register 28 to hold its
2055 address */
2056 if (struct_return)
2057 write_register (28, struct_addr);
2058
2059 /* For the PA64 we must pass a pointer to the outgoing argument list.
2060 The ABI mandates that the pointer should point to the first byte of
2061 storage beyond the register flushback area.
2062
2063 However, the call dummy expects the outgoing argument pointer to
2064 be passed in register %r4. */
2065 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
2066
2067 /* ?!? This needs further work. We need to set up the global data
2068 pointer for this procedure. This assumes the same global pointer
2069 for every procedure. The call dummy expects the dp value to
2070 be passed in register %r6. */
2071 write_register (6, read_register (27));
2072
2073 /* The stack will have 64 bytes of additional space for a frame marker. */
2074 return sp + 64;
2075}
2076
2077#else
2078
2079/* This function pushes a stack frame with arguments as part of the
2080 inferior function calling mechanism.
2081
2082 This is the version of the function for the 32-bit PA machines, in
2083 which later arguments appear at lower addresses. (The stack always
2084 grows towards higher addresses.)
2085
2086 We simply allocate the appropriate amount of stack space and put
2087 arguments into their proper slots. The call dummy code will copy
2088 arguments into registers as needed by the ABI. */
2089
2090CORE_ADDR
ea7c478f 2091hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 2092 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
2093{
2094 /* array of arguments' offsets */
2095 int *offset = (int *) alloca (nargs * sizeof (int));
2096
2097 /* array of arguments' lengths: real lengths in bytes, not aligned to
2098 word size */
2099 int *lengths = (int *) alloca (nargs * sizeof (int));
2100
2101 /* The number of stack bytes occupied by the current argument. */
2102 int bytes_reserved;
2103
2104 /* The total number of bytes reserved for the arguments. */
2105 int cum_bytes_reserved = 0;
2106
2107 /* Similarly, but aligned. */
2108 int cum_bytes_aligned = 0;
2109 int i;
2110
2111 /* Iterate over each argument provided by the user. */
2112 for (i = 0; i < nargs; i++)
2113 {
2114 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2115
2116 /* Align the size of the argument to the word size for this
2117 target. */
b1e29e33 2118 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
c2c6d25f 2119
b6649e88
AC
2120 offset[i] = (cum_bytes_reserved
2121 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
2122
2123 /* If the argument is a double word argument, then it needs to be
2124 double word aligned. */
b1e29e33
AC
2125 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2126 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
c5aa993b
JM
2127 {
2128 int new_offset = 0;
53a5351d
JM
2129 /* BYTES_RESERVED is already aligned to the word, so we put
2130 the argument at one word more down the stack.
2131
2132 This will leave one empty word on the stack, and one unused
2133 register as mandated by the ABI. */
b1e29e33
AC
2134 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2135 & -(2 * DEPRECATED_REGISTER_SIZE));
53a5351d 2136
b1e29e33 2137 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
c5aa993b 2138 {
b1e29e33
AC
2139 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2140 offset[i] += DEPRECATED_REGISTER_SIZE;
c5aa993b
JM
2141 }
2142 }
c906108c
SS
2143
2144 cum_bytes_reserved += bytes_reserved;
2145
2146 }
2147
c2c6d25f
JM
2148 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2149 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
2150 allocations for outgoing arguments.
2151
c2c6d25f 2152 The ABI also mandates minimum stack alignments which we must
53a5351d 2153 preserve. */
f27dd7fd 2154 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
2155 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2156
2157 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
2158 ?!? We need to promote values to a full register instead of skipping
2159 words in the stack. */
c906108c
SS
2160 for (i = 0; i < nargs; i++)
2161 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 2162
53a5351d
JM
2163 /* If a structure has to be returned, set up register 28 to hold its
2164 address */
c906108c
SS
2165 if (struct_return)
2166 write_register (28, struct_addr);
2167
53a5351d 2168 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
2169 return sp + 32;
2170}
2171
c2c6d25f 2172#endif
c906108c 2173
2f690297
AC
2174/* This function pushes a stack frame with arguments as part of the
2175 inferior function calling mechanism.
2176
2177 This is the version for the PA64, in which later arguments appear
2178 at higher addresses. (The stack always grows towards higher
2179 addresses.)
2180
2181 We simply allocate the appropriate amount of stack space and put
2182 arguments into their proper slots.
2183
2184 This ABI also requires that the caller provide an argument pointer
2185 to the callee, so we do that too. */
2186
2187CORE_ADDR
2188hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2189 struct regcache *regcache, CORE_ADDR bp_addr,
2190 int nargs, struct value **args, CORE_ADDR sp,
2191 int struct_return, CORE_ADDR struct_addr)
2192{
2193 /* Array of arguments' offsets. */
2194 int *offset = (int *) alloca (nargs * sizeof (int));
2195
2196 /* Array of arguments' lengths: real lengths in bytes, not aligned
2197 to word size. */
2198 int *lengths = (int *) alloca (nargs * sizeof (int));
2199
2200 /* The value of SP as it was passed into this function. */
2201 CORE_ADDR orig_sp = sp;
2202
2203 /* The number of stack bytes occupied by the current argument. */
2204 int bytes_reserved;
2205
2206 /* The total number of bytes reserved for the arguments. */
2207 int cum_bytes_reserved = 0;
2208
2209 /* Similarly, but aligned. */
2210 int cum_bytes_aligned = 0;
2211 int i;
2212
2213 /* Iterate over each argument provided by the user. */
2214 for (i = 0; i < nargs; i++)
2215 {
2216 struct type *arg_type = VALUE_TYPE (args[i]);
2217
2218 /* Integral scalar values smaller than a register are padded on
2219 the left. We do this by promoting them to full-width,
2220 although the ABI says to pad them with garbage. */
2221 if (is_integral_type (arg_type)
2222 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
2223 {
2224 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
2225 ? builtin_type_unsigned_long
2226 : builtin_type_long),
2227 args[i]);
2228 arg_type = VALUE_TYPE (args[i]);
2229 }
2230
2231 lengths[i] = TYPE_LENGTH (arg_type);
2232
2233 /* Align the size of the argument to the word size for this
2234 target. */
2235 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2236
2237 offset[i] = cum_bytes_reserved;
2238
2239 /* Aggregates larger than eight bytes (the only types larger
2240 than eight bytes we have) are aligned on a 16-byte boundary,
2241 possibly padded on the right with garbage. This may leave an
2242 empty word on the stack, and thus an unused register, as per
2243 the ABI. */
2244 if (bytes_reserved > 8)
2245 {
2246 /* Round up the offset to a multiple of two slots. */
2247 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
2248 & -(2*DEPRECATED_REGISTER_SIZE));
2249
2250 /* Note the space we've wasted, if any. */
2251 bytes_reserved += new_offset - offset[i];
2252 offset[i] = new_offset;
2253 }
2254
2255 cum_bytes_reserved += bytes_reserved;
2256 }
2257
2258 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2259 by the user. However, the ABIs mandate minimum stack space
2260 allocations for outgoing arguments.
2261
2262 The ABIs also mandate minimum stack alignments which we must
2263 preserve. */
2264 cum_bytes_aligned = align_up (cum_bytes_reserved, 16);
2265 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2266
2267 /* Now write each of the args at the proper offset down the
2268 stack. */
2269 for (i = 0; i < nargs; i++)
2270 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2271
2272 /* If a structure has to be returned, set up register 28 to hold its
2273 address */
2274 if (struct_return)
2275 write_register (28, struct_addr);
2276
2277 /* For the PA64 we must pass a pointer to the outgoing argument
2278 list. The ABI mandates that the pointer should point to the
2279 first byte of storage beyond the register flushback area.
2280
2281 However, the call dummy expects the outgoing argument pointer to
2282 be passed in register %r4. */
2283 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
2284
2285 /* ?!? This needs further work. We need to set up the global data
2286 pointer for this procedure. This assumes the same global pointer
2287 for every procedure. The call dummy expects the dp value to be
2288 passed in register %r6. */
2289 write_register (6, read_register (27));
2290
2291 /* Set the return address. */
2292 regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr);
2293
2294 /* The stack will have 64 bytes of additional space for a frame
2295 marker. */
2296 return sp + 64;
2297
2298}
2299
2300/* This function pushes a stack frame with arguments as part of the
2301 inferior function calling mechanism.
2302
2303 This is the version of the function for the 32-bit PA machines, in
2304 which later arguments appear at lower addresses. (The stack always
2305 grows towards higher addresses.)
2306
2307 We simply allocate the appropriate amount of stack space and put
2308 arguments into their proper slots. */
2309
2310CORE_ADDR
2311hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2312 struct regcache *regcache, CORE_ADDR bp_addr,
2313 int nargs, struct value **args, CORE_ADDR sp,
2314 int struct_return, CORE_ADDR struct_addr)
2315{
2316 struct tdep *tdep = gdbarch_tdep (gdbarch);
2317
2318 /* array of arguments' offsets */
2319 int *offset = (int *) alloca (nargs * sizeof (int));
2320
2321 /* array of arguments' lengths: real lengths in bytes, not aligned to
2322 word size */
2323 int *lengths = (int *) alloca (nargs * sizeof (int));
2324
2325 /* The number of stack bytes occupied by the current argument. */
2326 int bytes_reserved;
2327
2328 /* The total number of bytes reserved for the arguments. */
2329 int cum_bytes_reserved = 0;
2330
2331 /* Similarly, but aligned. */
2332 int cum_bytes_aligned = 0;
2333 int i;
2334
2335 /* Iterate over each argument provided by the user. */
2336 for (i = 0; i < nargs; i++)
2337 {
2338 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2339
2340 /* Align the size of the argument to the word size for this
2341 target. */
2342 bytes_reserved = (lengths[i] + 4 - 1) & -4;
2343
2344 offset[i] = (cum_bytes_reserved + (lengths[i] > 4
2345 ? bytes_reserved : lengths[i]));
2346
2347 /* If the argument is a double word argument, then it needs to be
2348 double word aligned. */
2349 if ((bytes_reserved == 2 * 4)
2350 && (offset[i] % 2 * 4))
2351 {
2352 int new_offset = 0;
2353 /* BYTES_RESERVED is already aligned to the word, so we put
2354 the argument at one word more down the stack.
2355
2356 This will leave one empty word on the stack, and one
2357 unused register as mandated by the ABI. */
2358 new_offset = ((offset[i] + 2 * 4 - 1)
2359 & -(2 * 4));
2360
2361 if ((new_offset - offset[i]) >= 2 * 4)
2362 {
2363 bytes_reserved += 4;
2364 offset[i] += 4;
2365 }
2366 }
2367
2368 cum_bytes_reserved += bytes_reserved;
2369
2370 }
2371
2372 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2373 by the user. However, the ABI mandates minimum stack space
2374 allocations for outgoing arguments.
2375
2376 The ABI also mandates minimum stack alignments which we must
2377 preserve. */
2378 cum_bytes_aligned = align_up (cum_bytes_reserved, 8);
2379 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2380
2381 /* Now write each of the args at the proper offset down the stack.
2382 ?!? We need to promote values to a full register instead of skipping
2383 words in the stack. */
2384 for (i = 0; i < nargs; i++)
2385 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2386
2387 /* If a structure has to be returned, set up register 28 to hold its
2388 address */
2389 if (struct_return)
2390 write_register (28, struct_addr);
2391
2392 /* Set the return address. */
2393 regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr);
2394
2395 /* The stack will have 32 bytes of additional space for a frame marker. */
2396 return sp + 32;
2397}
2398
2399/* Force all frames to 16-byte alignment. Better safe than sorry. */
2400
2401static CORE_ADDR
2402hppa_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2403{
2404 /* Just always 16-byte align. */
2405 return align_up (addr, 16);
2406}
2407
2408
c906108c 2409/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
2410 This function calls shl_findsym, indirectly through a
2411 call to __d_shl_get. __d_shl_get is in end.c, which is always
2412 linked in by the hp compilers/linkers.
2413 The call to shl_findsym cannot be made directly because it needs
2414 to be active in target address space.
2415 inputs: - minimal symbol pointer for the function we want to look up
2416 - address in target space of the descriptor for the library
2417 where we want to look the symbol up.
2418 This address is retrieved using the
2419 som_solib_get_solib_by_pc function (somsolib.c).
2420 output: - real address in the library of the function.
2421 note: the handle can be null, in which case shl_findsym will look for
2422 the symbol in all the loaded shared libraries.
2423 files to look at if you need reference on this stuff:
2424 dld.c, dld_shl_findsym.c
2425 end.c
2426 man entry for shl_findsym */
c906108c
SS
2427
2428CORE_ADDR
fba45db2 2429find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 2430{
c5aa993b
JM
2431 struct symbol *get_sym, *symbol2;
2432 struct minimal_symbol *buff_minsym, *msymbol;
2433 struct type *ftype;
ea7c478f
AC
2434 struct value **args;
2435 struct value *funcval;
2436 struct value *val;
c5aa993b
JM
2437
2438 int x, namelen, err_value, tmp = -1;
2439 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2440 CORE_ADDR stub_addr;
2441
2442
ea7c478f 2443 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b 2444 funcval = find_function_in_inferior ("__d_shl_get");
176620f1 2445 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
c5aa993b
JM
2446 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2447 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
176620f1 2448 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
c5aa993b 2449 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
22abf04a 2450 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
c5aa993b
JM
2451 value_return_addr = endo_buff_addr + namelen;
2452 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2453
2454 /* do alignment */
2455 if ((x = value_return_addr % 64) != 0)
2456 value_return_addr = value_return_addr + 64 - x;
2457
2458 errno_return_addr = value_return_addr + 64;
2459
2460
2461 /* set up stuff needed by __d_shl_get in buffer in end.o */
2462
22abf04a 2463 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
c5aa993b
JM
2464
2465 target_write_memory (value_return_addr, (char *) &tmp, 4);
2466
2467 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2468
2469 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2470 (char *) &handle, 4);
2471
2472 /* now prepare the arguments for the call */
2473
2474 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
2475 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2476 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 2477 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
2478 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2479 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
2480
2481 /* now call the function */
2482
2483 val = call_function_by_hand (funcval, 6, args);
2484
2485 /* now get the results */
2486
2487 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2488
2489 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2490 if (stub_addr <= 0)
104c1213 2491 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2492
2493 return (stub_addr);
c906108c
SS
2494}
2495
c5aa993b 2496/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd 2497static int
4efb68b1 2498cover_find_stub_with_shl_get (void *args_untyped)
c906108c 2499{
a0b3c4fd
JM
2500 args_for_find_stub *args = args_untyped;
2501 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2502 return 0;
c906108c
SS
2503}
2504
c906108c
SS
2505/* Insert the specified number of args and function address
2506 into a call sequence of the above form stored at DUMMYNAME.
2507
2508 On the hppa we need to call the stack dummy through $$dyncall.
b1e29e33
AC
2509 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2510 argument, real_pc, which is the location where gdb should start up
2511 the inferior to do the function call.
cce74817
JM
2512
2513 This has to work across several versions of hpux, bsd, osf1. It has to
2514 work regardless of what compiler was used to build the inferior program.
2515 It should work regardless of whether or not end.o is available. It has
2516 to work even if gdb can not call into the dynamic loader in the inferior
2517 to query it for symbol names and addresses.
2518
2519 Yes, all those cases should work. Luckily code exists to handle most
2520 of them. The complexity is in selecting exactly what scheme should
2521 be used to perform the inferior call.
2522
2523 At the current time this routine is known not to handle cases where
2524 the program was linked with HP's compiler without including end.o.
2525
2526 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2527
2528CORE_ADDR
fba45db2 2529hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2530 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2531{
2532 CORE_ADDR dyncall_addr;
2533 struct minimal_symbol *msymbol;
2534 struct minimal_symbol *trampoline;
2535 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2536 struct unwind_table_entry *u = NULL;
2537 CORE_ADDR new_stub = 0;
2538 CORE_ADDR solib_handle = 0;
2539
2540 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2541 passed an import stub, not a PLABEL. It is also necessary to set %r19
2542 (the PIC register) before performing the call.
c906108c 2543
cce74817
JM
2544 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2545 are calling the target directly. When using __d_plt_call we want to
2546 use a PLABEL instead of an import stub. */
2547 int using_gcc_plt_call = 1;
2548
53a5351d
JM
2549#ifdef GDB_TARGET_IS_HPPA_20W
2550 /* We currently use completely different code for the PA2.0W inferior
2551 function call sequences. This needs to be cleaned up. */
2552 {
2553 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2554 struct target_waitstatus w;
2555 int inst1, inst2;
2556 char buf[4];
2557 int status;
2558 struct objfile *objfile;
2559
2560 /* We can not modify the PC space queues directly, so we start
2561 up the inferior and execute a couple instructions to set the
2562 space queues so that they point to the call dummy in the stack. */
2563 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2564 sr5 = read_register (SR5_REGNUM);
2565 if (1)
2566 {
2567 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2568 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2569 if (target_read_memory (pcoqh, buf, 4) != 0)
2570 error ("Couldn't modify space queue\n");
2571 inst1 = extract_unsigned_integer (buf, 4);
2572
2573 if (target_read_memory (pcoqt, buf, 4) != 0)
2574 error ("Couldn't modify space queue\n");
2575 inst2 = extract_unsigned_integer (buf, 4);
2576
2577 /* BVE (r1) */
2578 *((int *) buf) = 0xe820d000;
2579 if (target_write_memory (pcoqh, buf, 4) != 0)
2580 error ("Couldn't modify space queue\n");
2581
2582 /* NOP */
2583 *((int *) buf) = 0x08000240;
2584 if (target_write_memory (pcoqt, buf, 4) != 0)
2585 {
2586 *((int *) buf) = inst1;
2587 target_write_memory (pcoqh, buf, 4);
2588 error ("Couldn't modify space queue\n");
2589 }
2590
2591 write_register (1, pc);
2592
2593 /* Single step twice, the BVE instruction will set the space queue
2594 such that it points to the PC value written immediately above
2595 (ie the call dummy). */
2596 resume (1, 0);
39f77062 2597 target_wait (inferior_ptid, &w);
53a5351d 2598 resume (1, 0);
39f77062 2599 target_wait (inferior_ptid, &w);
53a5351d
JM
2600
2601 /* Restore the two instructions at the old PC locations. */
2602 *((int *) buf) = inst1;
2603 target_write_memory (pcoqh, buf, 4);
2604 *((int *) buf) = inst2;
2605 target_write_memory (pcoqt, buf, 4);
2606 }
2607
2608 /* The call dummy wants the ultimate destination address initially
2609 in register %r5. */
2610 write_register (5, fun);
2611
2612 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2613 own (it could be a shared library for example). */
53a5351d
JM
2614 ALL_OBJFILES (objfile)
2615 {
2616 struct obj_section *s;
2617 obj_private_data_t *obj_private;
2618
2619 /* See if FUN is in any section within this shared library. */
2620 for (s = objfile->sections; s < objfile->sections_end; s++)
2621 if (s->addr <= fun && fun < s->endaddr)
2622 break;
2623
2624 if (s >= objfile->sections_end)
2625 continue;
2626
2627 obj_private = (obj_private_data_t *) objfile->obj_private;
2628
2629 /* The DP value may be different for each objfile. But within an
2630 objfile each function uses the same dp value. Thus we do not need
2631 to grope around the opd section looking for dp values.
2632
2633 ?!? This is not strictly correct since we may be in a shared library
2634 and want to call back into the main program. To make that case
2635 work correctly we need to set obj_private->dp for the main program's
2636 objfile, then remove this conditional. */
2637 if (obj_private->dp)
2638 write_register (27, obj_private->dp);
2639 break;
2640 }
2641 return pc;
2642 }
2643#endif
2644
2645#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2646 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2647 __gcc_plt_call works for any number of arguments. */
c906108c 2648 trampoline = NULL;
cce74817
JM
2649 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2650 using_gcc_plt_call = 0;
2651
c906108c
SS
2652 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2653 if (msymbol == NULL)
cce74817 2654 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2655
2656 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2657
2658 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2659 its real address and the value of its GOT/DP if we plan to
2660 call the routine via gcc_plt_call. */
2661 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2662 {
2663 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2664 at *(fun+4). Note the call dummy is *NOT* allowed to
2665 trash %r19 before calling the target function. */
53a5351d 2666 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
b1e29e33 2667 DEPRECATED_REGISTER_SIZE));
c906108c
SS
2668
2669 /* Now get the real address for the function we are calling, it's
c5aa993b 2670 at *fun. */
53a5351d
JM
2671 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2672 TARGET_PTR_BIT / 8);
c906108c
SS
2673 }
2674 else
2675 {
2676
2677#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2678 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2679 a PLABEL. When using gcc's PLT call routine we must call an import
2680 stub rather than the export stub or real function for lazy binding
2681 to work correctly
cce74817 2682
39f77062 2683 If we are using the gcc PLT call routine, then we need to
c5aa993b 2684 get the import stub for the target function. */
cce74817 2685 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2686 {
2687 struct objfile *objfile;
2688 struct minimal_symbol *funsymbol, *stub_symbol;
2689 CORE_ADDR newfun = 0;
2690
2691 funsymbol = lookup_minimal_symbol_by_pc (fun);
2692 if (!funsymbol)
4ce44c66 2693 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2694
2695 /* Search all the object files for an import symbol with the
2696 right name. */
2697 ALL_OBJFILES (objfile)
c5aa993b
JM
2698 {
2699 stub_symbol
2700 = lookup_minimal_symbol_solib_trampoline
40324f1b 2701 (DEPRECATED_SYMBOL_NAME (funsymbol), objfile);
c5aa993b
JM
2702
2703 if (!stub_symbol)
22abf04a 2704 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
c5aa993b
JM
2705 NULL, objfile);
2706
2707 /* Found a symbol with the right name. */
2708 if (stub_symbol)
2709 {
2710 struct unwind_table_entry *u;
2711 /* It must be a shared library trampoline. */
2712 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2713 continue;
2714
2715 /* It must also be an import stub. */
2716 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2717 if (u == NULL
2718 || (u->stub_unwind.stub_type != IMPORT
2719#ifdef GDB_NATIVE_HPUX_11
2720 /* Sigh. The hpux 10.20 dynamic linker will blow
2721 chunks if we perform a call to an unbound function
2722 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2723 linker will blow chunks if we do not call the
2724 unbound function via the IMPORT_SHLIB stub.
2725
2726 We currently have no way to select bevahior on just
2727 the target. However, we only support HPUX/SOM in
2728 native mode. So we conditinalize on a native
2729 #ifdef. Ugly. Ugly. Ugly */
2730 && u->stub_unwind.stub_type != IMPORT_SHLIB
2731#endif
2732 ))
c5aa993b
JM
2733 continue;
2734
2735 /* OK. Looks like the correct import stub. */
2736 newfun = SYMBOL_VALUE (stub_symbol);
2737 fun = newfun;
6426a772
JM
2738
2739 /* If we found an IMPORT stub, then we want to stop
2740 searching now. If we found an IMPORT_SHLIB, we want
2741 to continue the search in the hopes that we will find
2742 an IMPORT stub. */
2743 if (u->stub_unwind.stub_type == IMPORT)
2744 break;
c5aa993b
JM
2745 }
2746 }
cce74817
JM
2747
2748 /* Ouch. We did not find an import stub. Make an attempt to
2749 do the right thing instead of just croaking. Most of the
2750 time this will actually work. */
c906108c
SS
2751 if (newfun == 0)
2752 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2753
2754 u = find_unwind_entry (fun);
c5aa993b 2755 if (u
cce74817
JM
2756 && (u->stub_unwind.stub_type == IMPORT
2757 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2758 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2759
2760 /* If we found the import stub in the shared library, then we have
2761 to set %r19 before we call the stub. */
2762 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2763 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2764 }
c906108c
SS
2765#endif
2766 }
2767
cce74817
JM
2768 /* If we are calling into another load module then have sr4export call the
2769 magic __d_plt_call routine which is linked in from end.o.
c906108c 2770
cce74817
JM
2771 You can't use _sr4export to make the call as the value in sp-24 will get
2772 fried and you end up returning to the wrong location. You can't call the
2773 target as the code to bind the PLT entry to a function can't return to a
2774 stack address.
2775
2776 Also, query the dynamic linker in the inferior to provide a suitable
2777 PLABEL for the target function. */
c5aa993b 2778 if (!using_gcc_plt_call)
c906108c
SS
2779 {
2780 CORE_ADDR new_fun;
2781
cce74817 2782 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2783 handle we can query the shared library for a PLABEL. */
cce74817 2784 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2785
cce74817 2786 if (solib_handle)
c906108c 2787 {
cce74817 2788 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2789
cce74817
JM
2790 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2791
2792 if (trampoline == NULL)
2793 {
2794 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2795 }
2796
2797 /* This is where sr4export will jump to. */
2798 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2799
2800 /* If the function is in a shared library, then call __d_shl_get to
2801 get a PLABEL for the target function. */
2802 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2803
c5aa993b 2804 if (new_stub == 0)
22abf04a 2805 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
c906108c
SS
2806
2807 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2808 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2809 (struct objfile *) NULL);
c906108c 2810
cce74817
JM
2811 if (msymbol == NULL)
2812 error ("Can't find an address for __shlib_funcptr");
2813 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2814 (char *) &new_stub, 4);
c906108c
SS
2815
2816 /* We want sr4export to call __d_plt_call, so we claim it is
2817 the final target. Clear trampoline. */
cce74817
JM
2818 fun = new_fun;
2819 trampoline = NULL;
c906108c
SS
2820 }
2821 }
2822
2823 /* Store upper 21 bits of function address into ldil. fun will either be
2824 the final target (most cases) or __d_plt_call when calling into a shared
2825 library and __gcc_plt_call is not available. */
2826 store_unsigned_integer
2827 (&dummy[FUNC_LDIL_OFFSET],
2828 INSTRUCTION_SIZE,
2829 deposit_21 (fun >> 11,
2830 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2831 INSTRUCTION_SIZE)));
2832
2833 /* Store lower 11 bits of function address into ldo */
2834 store_unsigned_integer
2835 (&dummy[FUNC_LDO_OFFSET],
2836 INSTRUCTION_SIZE,
2837 deposit_14 (fun & MASK_11,
2838 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2839 INSTRUCTION_SIZE)));
2840#ifdef SR4EXPORT_LDIL_OFFSET
2841
2842 {
2843 CORE_ADDR trampoline_addr;
2844
2845 /* We may still need sr4export's address too. */
2846
2847 if (trampoline == NULL)
2848 {
2849 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2850 if (msymbol == NULL)
cce74817 2851 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2852
2853 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2854 }
2855 else
2856 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2857
2858
2859 /* Store upper 21 bits of trampoline's address into ldil */
2860 store_unsigned_integer
2861 (&dummy[SR4EXPORT_LDIL_OFFSET],
2862 INSTRUCTION_SIZE,
2863 deposit_21 (trampoline_addr >> 11,
2864 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2865 INSTRUCTION_SIZE)));
2866
2867 /* Store lower 11 bits of trampoline's address into ldo */
2868 store_unsigned_integer
2869 (&dummy[SR4EXPORT_LDO_OFFSET],
2870 INSTRUCTION_SIZE,
2871 deposit_14 (trampoline_addr & MASK_11,
2872 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2873 INSTRUCTION_SIZE)));
2874 }
2875#endif
2876
2877 write_register (22, pc);
2878
2879 /* If we are in a syscall, then we should call the stack dummy
2880 directly. $$dyncall is not needed as the kernel sets up the
2881 space id registers properly based on the value in %r31. In
2882 fact calling $$dyncall will not work because the value in %r22
2883 will be clobbered on the syscall exit path.
2884
2885 Similarly if the current PC is in a shared library. Note however,
2886 this scheme won't work if the shared library isn't mapped into
2887 the same space as the stack. */
2888 if (flags & 2)
2889 return pc;
2890#ifndef GDB_TARGET_IS_PA_ELF
60383d10 2891 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
c906108c
SS
2892 return pc;
2893#endif
2894 else
2895 return dyncall_addr;
53a5351d 2896#endif
c906108c
SS
2897}
2898
c906108c
SS
2899/* If the pid is in a syscall, then the FP register is not readable.
2900 We'll return zero in that case, rather than attempting to read it
2901 and cause a warning. */
60383d10 2902
c906108c 2903CORE_ADDR
60383d10 2904hppa_read_fp (int pid)
c906108c
SS
2905{
2906 int flags = read_register (FLAGS_REGNUM);
2907
c5aa993b
JM
2908 if (flags & 2)
2909 {
2910 return (CORE_ADDR) 0;
2911 }
c906108c
SS
2912
2913 /* This is the only site that may directly read_register () the FP
0ba6dca9
AC
2914 register. All others must use deprecated_read_fp (). */
2915 return read_register (DEPRECATED_FP_REGNUM);
c906108c
SS
2916}
2917
60383d10
JB
2918CORE_ADDR
2919hppa_target_read_fp (void)
2920{
2921 return hppa_read_fp (PIDGET (inferior_ptid));
2922}
c906108c
SS
2923
2924/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2925 bits. */
2926
2927CORE_ADDR
60383d10 2928hppa_target_read_pc (ptid_t ptid)
c906108c 2929{
39f77062 2930 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2931
2932 /* The following test does not belong here. It is OS-specific, and belongs
2933 in native code. */
2934 /* Test SS_INSYSCALL */
2935 if (flags & 2)
39f77062 2936 return read_register_pid (31, ptid) & ~0x3;
c906108c 2937
39f77062 2938 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2939}
2940
2941/* Write out the PC. If currently in a syscall, then also write the new
2942 PC value into %r31. */
2943
2944void
60383d10 2945hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2946{
39f77062 2947 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2948
2949 /* The following test does not belong here. It is OS-specific, and belongs
2950 in native code. */
2951 /* If in a syscall, then set %r31. Also make sure to get the
2952 privilege bits set correctly. */
2953 /* Test SS_INSYSCALL */
2954 if (flags & 2)
39f77062 2955 write_register_pid (31, v | 0x3, ptid);
c906108c 2956
39f77062 2957 write_register_pid (PC_REGNUM, v, ptid);
adc11376 2958 write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid);
c906108c
SS
2959}
2960
2961/* return the alignment of a type in bytes. Structures have the maximum
2962 alignment required by their fields. */
2963
2964static int
fba45db2 2965hppa_alignof (struct type *type)
c906108c
SS
2966{
2967 int max_align, align, i;
2968 CHECK_TYPEDEF (type);
2969 switch (TYPE_CODE (type))
2970 {
2971 case TYPE_CODE_PTR:
2972 case TYPE_CODE_INT:
2973 case TYPE_CODE_FLT:
2974 return TYPE_LENGTH (type);
2975 case TYPE_CODE_ARRAY:
2976 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2977 case TYPE_CODE_STRUCT:
2978 case TYPE_CODE_UNION:
2979 max_align = 1;
2980 for (i = 0; i < TYPE_NFIELDS (type); i++)
2981 {
2982 /* Bit fields have no real alignment. */
2983 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2984 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2985 {
2986 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2987 max_align = max (max_align, align);
2988 }
2989 }
2990 return max_align;
2991 default:
2992 return 4;
2993 }
2994}
2995
2996/* Print the register regnum, or all registers if regnum is -1 */
2997
2998void
fba45db2 2999pa_do_registers_info (int regnum, int fpregs)
c906108c 3000{
b8b527c5 3001 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
c906108c
SS
3002 int i;
3003
3004 /* Make a copy of gdb's save area (may cause actual
3005 reads from the target). */
3006 for (i = 0; i < NUM_REGS; i++)
62700349
AC
3007 frame_register_read (deprecated_selected_frame, i,
3008 raw_regs + DEPRECATED_REGISTER_BYTE (i));
c906108c
SS
3009
3010 if (regnum == -1)
3011 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
3012 else if (regnum < FP4_REGNUM)
3013 {
3014 long reg_val[2];
3015
3016 /* Why is the value not passed through "extract_signed_integer"
3017 as in "pa_print_registers" below? */
3018 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
3019
3020 if (!is_pa_2)
3021 {
ce414844 3022 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 3023 }
c906108c 3024 else
c5aa993b
JM
3025 {
3026 /* Fancy % formats to prevent leading zeros. */
3027 if (reg_val[0] == 0)
ce414844 3028 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 3029 else
ce414844 3030 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
3031 reg_val[0], reg_val[1]);
3032 }
c906108c 3033 }
c906108c 3034 else
c5aa993b
JM
3035 /* Note that real floating point values only start at
3036 FP4_REGNUM. FP0 and up are just status and error
3037 registers, which have integral (bit) values. */
c906108c
SS
3038 pa_print_fp_reg (regnum);
3039}
3040
3041/********** new function ********************/
3042void
fba45db2
KB
3043pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
3044 enum precision_type precision)
c906108c 3045{
b8b527c5 3046 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
c906108c
SS
3047 int i;
3048
3049 /* Make a copy of gdb's save area (may cause actual
c5aa993b 3050 reads from the target). */
c906108c 3051 for (i = 0; i < NUM_REGS; i++)
62700349
AC
3052 frame_register_read (deprecated_selected_frame, i,
3053 raw_regs + DEPRECATED_REGISTER_BYTE (i));
c906108c
SS
3054
3055 if (regnum == -1)
3056 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
3057
c5aa993b
JM
3058 else if (regnum < FP4_REGNUM)
3059 {
3060 long reg_val[2];
3061
3062 /* Why is the value not passed through "extract_signed_integer"
3063 as in "pa_print_registers" below? */
3064 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 3065
c5aa993b
JM
3066 if (!is_pa_2)
3067 {
ce414844 3068 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 3069 }
c906108c 3070 else
c5aa993b
JM
3071 {
3072 /* Fancy % formats to prevent leading zeros. */
3073 if (reg_val[0] == 0)
ce414844 3074 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
3075 reg_val[1]);
3076 else
ce414844 3077 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
3078 reg_val[0], reg_val[1]);
3079 }
c906108c 3080 }
c906108c 3081 else
c5aa993b
JM
3082 /* Note that real floating point values only start at
3083 FP4_REGNUM. FP0 and up are just status and error
3084 registers, which have integral (bit) values. */
c906108c
SS
3085 pa_strcat_fp_reg (regnum, stream, precision);
3086}
3087
3088/* If this is a PA2.0 machine, fetch the real 64-bit register
3089 value. Otherwise use the info from gdb's saved register area.
3090
3091 Note that reg_val is really expected to be an array of longs,
3092 with two elements. */
3093static void
fba45db2 3094pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 3095{
c5aa993b 3096 static int know_which = 0; /* False */
c906108c 3097
c5aa993b 3098 int regaddr;
c906108c 3099 unsigned int offset;
52f0bd74 3100 int i;
c5aa993b
JM
3101 int start;
3102
3103
123a958e 3104 char buf[MAX_REGISTER_SIZE];
c906108c
SS
3105 long long reg_val;
3106
c5aa993b
JM
3107 if (!know_which)
3108 {
3109 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
3110 {
3111 is_pa_2 = (1 == 1);
3112 }
3113
3114 know_which = 1; /* True */
3115 }
c906108c
SS
3116
3117 raw_val[0] = 0;
3118 raw_val[1] = 0;
3119
c5aa993b
JM
3120 if (!is_pa_2)
3121 {
62700349 3122 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
c906108c 3123 return;
c5aa993b 3124 }
c906108c
SS
3125
3126 /* Code below copied from hppah-nat.c, with fixes for wide
3127 registers, using different area of save_state, etc. */
3128 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
3129 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
3130 {
c906108c 3131 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
3132 offset = U_REGS_OFFSET;
3133 regaddr = register_addr (regnum, offset);
3134 start = 1;
3135 }
3136 else
3137 {
c906108c
SS
3138 /* Use wide regs area, and calculate registers as 8 bytes wide.
3139
3140 We'd like to do this, but current version of "C" doesn't
3141 permit "offsetof":
3142
c5aa993b 3143 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
3144
3145 Note that to avoid "C" doing typed pointer arithmetic, we
3146 have to cast away the type in our offset calculation:
3147 otherwise we get an offset of 1! */
3148
7a292a7a 3149 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 3150 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
3151 so to avoid compile-time warnings, we only compile this for
3152 PA 2.0 processors. This control path should only be followed
3153 if we're debugging a PA 2.0 processor, so this should not cause
3154 problems. */
3155
c906108c
SS
3156 /* #if the following code out so that this file can still be
3157 compiled on older HPUX boxes (< 10.20) which don't have
3158 this structure/structure member. */
3159#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
3160 save_state_t temp;
3161
3162 offset = ((int) &temp.ss_wide) - ((int) &temp);
3163 regaddr = offset + regnum * 8;
c5aa993b 3164 start = 0;
c906108c 3165#endif
c5aa993b
JM
3166 }
3167
3168 for (i = start; i < 2; i++)
c906108c
SS
3169 {
3170 errno = 0;
39f77062 3171 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 3172 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
3173 if (errno != 0)
3174 {
3175 /* Warning, not error, in case we are attached; sometimes the
3176 kernel doesn't let us at the registers. */
3177 char *err = safe_strerror (errno);
3178 char *msg = alloca (strlen (err) + 128);
3179 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
3180 warning (msg);
3181 goto error_exit;
3182 }
3183
3184 regaddr += sizeof (long);
3185 }
c5aa993b 3186
c906108c 3187 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 3188 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
3189
3190error_exit:
3191 ;
3192}
3193
3194/* "Info all-reg" command */
c5aa993b 3195
c906108c 3196static void
fba45db2 3197pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 3198{
c5aa993b 3199 int i, j;
adf40b2e
JM
3200 /* Alas, we are compiled so that "long long" is 32 bits */
3201 long raw_val[2];
c906108c 3202 long long_val;
a0b3c4fd 3203 int rows = 48, columns = 2;
c906108c 3204
adf40b2e 3205 for (i = 0; i < rows; i++)
c906108c 3206 {
adf40b2e 3207 for (j = 0; j < columns; j++)
c906108c 3208 {
adf40b2e
JM
3209 /* We display registers in column-major order. */
3210 int regnum = i + j * rows;
3211
c5aa993b
JM
3212 /* Q: Why is the value passed through "extract_signed_integer",
3213 while above, in "pa_do_registers_info" it isn't?
3214 A: ? */
adf40b2e 3215 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
3216
3217 /* Even fancier % formats to prevent leading zeros
3218 and still maintain the output in columns. */
3219 if (!is_pa_2)
3220 {
3221 /* Being big-endian, on this machine the low bits
3222 (the ones we want to look at) are in the second longword. */
3223 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 3224 printf_filtered ("%10.10s: %8lx ",
adf40b2e 3225 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
3226 }
3227 else
3228 {
3229 /* raw_val = extract_signed_integer(&raw_val, 8); */
3230 if (raw_val[0] == 0)
ce414844 3231 printf_filtered ("%10.10s: %8lx ",
adf40b2e 3232 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 3233 else
ce414844 3234 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 3235 REGISTER_NAME (regnum),
c5aa993b
JM
3236 raw_val[0], raw_val[1]);
3237 }
c906108c
SS
3238 }
3239 printf_unfiltered ("\n");
3240 }
c5aa993b 3241
c906108c 3242 if (fpregs)
c5aa993b 3243 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
3244 pa_print_fp_reg (i);
3245}
3246
c5aa993b 3247/************* new function ******************/
c906108c 3248static void
fba45db2
KB
3249pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
3250 struct ui_file *stream)
c906108c 3251{
c5aa993b
JM
3252 int i, j;
3253 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
3254 long long_val;
3255 enum precision_type precision;
3256
3257 precision = unspecified_precision;
3258
3259 for (i = 0; i < 18; i++)
3260 {
3261 for (j = 0; j < 4; j++)
3262 {
c5aa993b
JM
3263 /* Q: Why is the value passed through "extract_signed_integer",
3264 while above, in "pa_do_registers_info" it isn't?
3265 A: ? */
3266 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
3267
3268 /* Even fancier % formats to prevent leading zeros
3269 and still maintain the output in columns. */
3270 if (!is_pa_2)
3271 {
3272 /* Being big-endian, on this machine the low bits
3273 (the ones we want to look at) are in the second longword. */
3274 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
3275 fprintf_filtered (stream, "%8.8s: %8lx ",
3276 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
3277 }
3278 else
3279 {
3280 /* raw_val = extract_signed_integer(&raw_val, 8); */
3281 if (raw_val[0] == 0)
ce414844
AC
3282 fprintf_filtered (stream, "%8.8s: %8lx ",
3283 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 3284 else
ce414844
AC
3285 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
3286 REGISTER_NAME (i + (j * 18)), raw_val[0],
3287 raw_val[1]);
c5aa993b 3288 }
c906108c
SS
3289 }
3290 fprintf_unfiltered (stream, "\n");
3291 }
c5aa993b 3292
c906108c 3293 if (fpregs)
c5aa993b 3294 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
3295 pa_strcat_fp_reg (i, stream, precision);
3296}
3297
3298static void
fba45db2 3299pa_print_fp_reg (int i)
c906108c 3300{
123a958e
AC
3301 char raw_buffer[MAX_REGISTER_SIZE];
3302 char virtual_buffer[MAX_REGISTER_SIZE];
c906108c
SS
3303
3304 /* Get 32bits of data. */
6e7f8b9c 3305 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
3306
3307 /* Put it in the buffer. No conversions are ever necessary. */
12c266ea 3308 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
c906108c
SS
3309
3310 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3311 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3312 fputs_filtered ("(single precision) ", gdb_stdout);
3313
2e092625 3314 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
c906108c
SS
3315 1, 0, Val_pretty_default);
3316 printf_filtered ("\n");
3317
3318 /* If "i" is even, then this register can also be a double-precision
3319 FP register. Dump it out as such. */
3320 if ((i % 2) == 0)
3321 {
3322 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 3323 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
c906108c
SS
3324
3325 /* Copy it into the appropriate part of the virtual buffer. */
12c266ea
AC
3326 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
3327 DEPRECATED_REGISTER_RAW_SIZE (i));
c906108c
SS
3328
3329 /* Dump it as a double. */
3330 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3331 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3332 fputs_filtered ("(double precision) ", gdb_stdout);
3333
3334 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3335 1, 0, Val_pretty_default);
3336 printf_filtered ("\n");
3337 }
3338}
3339
3340/*************** new function ***********************/
3341static void
fba45db2 3342pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c 3343{
123a958e
AC
3344 char raw_buffer[MAX_REGISTER_SIZE];
3345 char virtual_buffer[MAX_REGISTER_SIZE];
c906108c
SS
3346
3347 fputs_filtered (REGISTER_NAME (i), stream);
3348 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3349
3350 /* Get 32bits of data. */
6e7f8b9c 3351 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
3352
3353 /* Put it in the buffer. No conversions are ever necessary. */
12c266ea 3354 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
c906108c
SS
3355
3356 if (precision == double_precision && (i % 2) == 0)
3357 {
3358
123a958e 3359 char raw_buf[MAX_REGISTER_SIZE];
c5aa993b
JM
3360
3361 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 3362 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
c5aa993b
JM
3363
3364 /* Copy it into the appropriate part of the virtual buffer. */
12c266ea
AC
3365 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3366 DEPRECATED_REGISTER_RAW_SIZE (i));
c906108c 3367
c5aa993b
JM
3368 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3369 1, 0, Val_pretty_default);
c906108c
SS
3370
3371 }
c5aa993b
JM
3372 else
3373 {
2e092625 3374 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
c5aa993b
JM
3375 1, 0, Val_pretty_default);
3376 }
c906108c
SS
3377
3378}
3379
3380/* Return one if PC is in the call path of a trampoline, else return zero.
3381
3382 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3383 just shared library trampolines (import, export). */
3384
3385int
60383d10 3386hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3387{
3388 struct minimal_symbol *minsym;
3389 struct unwind_table_entry *u;
3390 static CORE_ADDR dyncall = 0;
3391 static CORE_ADDR sr4export = 0;
3392
c2c6d25f
JM
3393#ifdef GDB_TARGET_IS_HPPA_20W
3394 /* PA64 has a completely different stub/trampoline scheme. Is it
3395 better? Maybe. It's certainly harder to determine with any
3396 certainty that we are in a stub because we can not refer to the
3397 unwinders to help.
3398
3399 The heuristic is simple. Try to lookup the current PC value in th
3400 minimal symbol table. If that fails, then assume we are not in a
3401 stub and return.
3402
3403 Then see if the PC value falls within the section bounds for the
3404 section containing the minimal symbol we found in the first
3405 step. If it does, then assume we are not in a stub and return.
3406
3407 Finally peek at the instructions to see if they look like a stub. */
3408 {
3409 struct minimal_symbol *minsym;
3410 asection *sec;
3411 CORE_ADDR addr;
3412 int insn, i;
3413
3414 minsym = lookup_minimal_symbol_by_pc (pc);
3415 if (! minsym)
3416 return 0;
3417
3418 sec = SYMBOL_BFD_SECTION (minsym);
3419
b98ed7be
AM
3420 if (bfd_get_section_vma (sec->owner, sec) <= pc
3421 && pc < (bfd_get_section_vma (sec->owner, sec)
3422 + bfd_section_size (sec->owner, sec)))
c2c6d25f
JM
3423 return 0;
3424
3425 /* We might be in a stub. Peek at the instructions. Stubs are 3
3426 instructions long. */
3427 insn = read_memory_integer (pc, 4);
3428
b84a8afe 3429 /* Find out where we think we are within the stub. */
c2c6d25f
JM
3430 if ((insn & 0xffffc00e) == 0x53610000)
3431 addr = pc;
3432 else if ((insn & 0xffffffff) == 0xe820d000)
3433 addr = pc - 4;
3434 else if ((insn & 0xffffc00e) == 0x537b0000)
3435 addr = pc - 8;
3436 else
3437 return 0;
3438
3439 /* Now verify each insn in the range looks like a stub instruction. */
3440 insn = read_memory_integer (addr, 4);
3441 if ((insn & 0xffffc00e) != 0x53610000)
3442 return 0;
3443
3444 /* Now verify each insn in the range looks like a stub instruction. */
3445 insn = read_memory_integer (addr + 4, 4);
3446 if ((insn & 0xffffffff) != 0xe820d000)
3447 return 0;
3448
3449 /* Now verify each insn in the range looks like a stub instruction. */
3450 insn = read_memory_integer (addr + 8, 4);
3451 if ((insn & 0xffffc00e) != 0x537b0000)
3452 return 0;
3453
3454 /* Looks like a stub. */
3455 return 1;
3456 }
3457#endif
3458
3459 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3460 new exec file */
c906108c
SS
3461
3462 /* First see if PC is in one of the two C-library trampolines. */
3463 if (!dyncall)
3464 {
3465 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3466 if (minsym)
3467 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3468 else
3469 dyncall = -1;
3470 }
3471
3472 if (!sr4export)
3473 {
3474 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3475 if (minsym)
3476 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3477 else
3478 sr4export = -1;
3479 }
3480
3481 if (pc == dyncall || pc == sr4export)
3482 return 1;
3483
104c1213 3484 minsym = lookup_minimal_symbol_by_pc (pc);
22abf04a 3485 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
104c1213
JM
3486 return 1;
3487
c906108c
SS
3488 /* Get the unwind descriptor corresponding to PC, return zero
3489 if no unwind was found. */
3490 u = find_unwind_entry (pc);
3491 if (!u)
3492 return 0;
3493
3494 /* If this isn't a linker stub, then return now. */
3495 if (u->stub_unwind.stub_type == 0)
3496 return 0;
3497
3498 /* By definition a long-branch stub is a call stub. */
3499 if (u->stub_unwind.stub_type == LONG_BRANCH)
3500 return 1;
3501
3502 /* The call and return path execute the same instructions within
3503 an IMPORT stub! So an IMPORT stub is both a call and return
3504 trampoline. */
3505 if (u->stub_unwind.stub_type == IMPORT)
3506 return 1;
3507
3508 /* Parameter relocation stubs always have a call path and may have a
3509 return path. */
3510 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3511 || u->stub_unwind.stub_type == EXPORT)
3512 {
3513 CORE_ADDR addr;
3514
3515 /* Search forward from the current PC until we hit a branch
c5aa993b 3516 or the end of the stub. */
c906108c
SS
3517 for (addr = pc; addr <= u->region_end; addr += 4)
3518 {
3519 unsigned long insn;
3520
3521 insn = read_memory_integer (addr, 4);
3522
3523 /* Does it look like a bl? If so then it's the call path, if
3524 we find a bv or be first, then we're on the return path. */
3525 if ((insn & 0xfc00e000) == 0xe8000000)
3526 return 1;
3527 else if ((insn & 0xfc00e001) == 0xe800c000
3528 || (insn & 0xfc000000) == 0xe0000000)
3529 return 0;
3530 }
3531
3532 /* Should never happen. */
104c1213
JM
3533 warning ("Unable to find branch in parameter relocation stub.\n");
3534 return 0;
c906108c
SS
3535 }
3536
3537 /* Unknown stub type. For now, just return zero. */
104c1213 3538 return 0;
c906108c
SS
3539}
3540
3541/* Return one if PC is in the return path of a trampoline, else return zero.
3542
3543 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3544 just shared library trampolines (import, export). */
3545
3546int
60383d10 3547hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3548{
3549 struct unwind_table_entry *u;
3550
3551 /* Get the unwind descriptor corresponding to PC, return zero
3552 if no unwind was found. */
3553 u = find_unwind_entry (pc);
3554 if (!u)
3555 return 0;
3556
3557 /* If this isn't a linker stub or it's just a long branch stub, then
3558 return zero. */
3559 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3560 return 0;
3561
3562 /* The call and return path execute the same instructions within
3563 an IMPORT stub! So an IMPORT stub is both a call and return
3564 trampoline. */
3565 if (u->stub_unwind.stub_type == IMPORT)
3566 return 1;
3567
3568 /* Parameter relocation stubs always have a call path and may have a
3569 return path. */
3570 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3571 || u->stub_unwind.stub_type == EXPORT)
3572 {
3573 CORE_ADDR addr;
3574
3575 /* Search forward from the current PC until we hit a branch
c5aa993b 3576 or the end of the stub. */
c906108c
SS
3577 for (addr = pc; addr <= u->region_end; addr += 4)
3578 {
3579 unsigned long insn;
3580
3581 insn = read_memory_integer (addr, 4);
3582
3583 /* Does it look like a bl? If so then it's the call path, if
3584 we find a bv or be first, then we're on the return path. */
3585 if ((insn & 0xfc00e000) == 0xe8000000)
3586 return 0;
3587 else if ((insn & 0xfc00e001) == 0xe800c000
3588 || (insn & 0xfc000000) == 0xe0000000)
3589 return 1;
3590 }
3591
3592 /* Should never happen. */
104c1213
JM
3593 warning ("Unable to find branch in parameter relocation stub.\n");
3594 return 0;
c906108c
SS
3595 }
3596
3597 /* Unknown stub type. For now, just return zero. */
104c1213 3598 return 0;
c906108c
SS
3599
3600}
3601
3602/* Figure out if PC is in a trampoline, and if so find out where
3603 the trampoline will jump to. If not in a trampoline, return zero.
3604
3605 Simple code examination probably is not a good idea since the code
3606 sequences in trampolines can also appear in user code.
3607
3608 We use unwinds and information from the minimal symbol table to
3609 determine when we're in a trampoline. This won't work for ELF
3610 (yet) since it doesn't create stub unwind entries. Whether or
3611 not ELF will create stub unwinds or normal unwinds for linker
3612 stubs is still being debated.
3613
3614 This should handle simple calls through dyncall or sr4export,
3615 long calls, argument relocation stubs, and dyncall/sr4export
3616 calling an argument relocation stub. It even handles some stubs
3617 used in dynamic executables. */
3618
c906108c 3619CORE_ADDR
60383d10 3620hppa_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
3621{
3622 long orig_pc = pc;
3623 long prev_inst, curr_inst, loc;
3624 static CORE_ADDR dyncall = 0;
3625 static CORE_ADDR dyncall_external = 0;
3626 static CORE_ADDR sr4export = 0;
3627 struct minimal_symbol *msym;
3628 struct unwind_table_entry *u;
3629
c2c6d25f
JM
3630 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3631 new exec file */
c906108c
SS
3632
3633 if (!dyncall)
3634 {
3635 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3636 if (msym)
3637 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3638 else
3639 dyncall = -1;
3640 }
3641
3642 if (!dyncall_external)
3643 {
3644 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3645 if (msym)
3646 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3647 else
3648 dyncall_external = -1;
3649 }
3650
3651 if (!sr4export)
3652 {
3653 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3654 if (msym)
3655 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3656 else
3657 sr4export = -1;
3658 }
3659
3660 /* Addresses passed to dyncall may *NOT* be the actual address
3661 of the function. So we may have to do something special. */
3662 if (pc == dyncall)
3663 {
3664 pc = (CORE_ADDR) read_register (22);
3665
3666 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3667 the PLT entry for this function, not the address of the function
3668 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3669 if (pc & 0x2)
53a5351d 3670 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3671 }
3672 if (pc == dyncall_external)
3673 {
3674 pc = (CORE_ADDR) read_register (22);
53a5351d 3675 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3676 }
3677 else if (pc == sr4export)
3678 pc = (CORE_ADDR) (read_register (22));
3679
3680 /* Get the unwind descriptor corresponding to PC, return zero
3681 if no unwind was found. */
3682 u = find_unwind_entry (pc);
3683 if (!u)
3684 return 0;
3685
3686 /* If this isn't a linker stub, then return now. */
3687 /* elz: attention here! (FIXME) because of a compiler/linker
3688 error, some stubs which should have a non zero stub_unwind.stub_type
3689 have unfortunately a value of zero. So this function would return here
3690 as if we were not in a trampoline. To fix this, we go look at the partial
3691 symbol information, which reports this guy as a stub.
3692 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3693 partial symbol information is also wrong sometimes. This is because
3694 when it is entered (somread.c::som_symtab_read()) it can happen that
3695 if the type of the symbol (from the som) is Entry, and the symbol is
3696 in a shared library, then it can also be a trampoline. This would
3697 be OK, except that I believe the way they decide if we are ina shared library
3698 does not work. SOOOO..., even if we have a regular function w/o trampolines
3699 its minimal symbol can be assigned type mst_solib_trampoline.
3700 Also, if we find that the symbol is a real stub, then we fix the unwind
3701 descriptor, and define the stub type to be EXPORT.
c5aa993b 3702 Hopefully this is correct most of the times. */
c906108c 3703 if (u->stub_unwind.stub_type == 0)
c5aa993b 3704 {
c906108c
SS
3705
3706/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3707 we can delete all the code which appears between the lines */
3708/*--------------------------------------------------------------------------*/
c5aa993b 3709 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3710
c5aa993b
JM
3711 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3712 return orig_pc == pc ? 0 : pc & ~0x3;
3713
3714 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3715 {
3716 struct objfile *objfile;
3717 struct minimal_symbol *msymbol;
3718 int function_found = 0;
3719
3720 /* go look if there is another minimal symbol with the same name as
3721 this one, but with type mst_text. This would happen if the msym
3722 is an actual trampoline, in which case there would be another
3723 symbol with the same name corresponding to the real function */
3724
3725 ALL_MSYMBOLS (objfile, msymbol)
3726 {
3727 if (MSYMBOL_TYPE (msymbol) == mst_text
cb137aa5 3728 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
c5aa993b
JM
3729 {
3730 function_found = 1;
3731 break;
3732 }
3733 }
3734
3735 if (function_found)
3736 /* the type of msym is correct (mst_solib_trampoline), but
3737 the unwind info is wrong, so set it to the correct value */
3738 u->stub_unwind.stub_type = EXPORT;
3739 else
3740 /* the stub type info in the unwind is correct (this is not a
3741 trampoline), but the msym type information is wrong, it
3742 should be mst_text. So we need to fix the msym, and also
3743 get out of this function */
3744 {
3745 MSYMBOL_TYPE (msym) = mst_text;
3746 return orig_pc == pc ? 0 : pc & ~0x3;
3747 }
3748 }
c906108c 3749
c906108c 3750/*--------------------------------------------------------------------------*/
c5aa993b 3751 }
c906108c
SS
3752
3753 /* It's a stub. Search for a branch and figure out where it goes.
3754 Note we have to handle multi insn branch sequences like ldil;ble.
3755 Most (all?) other branches can be determined by examining the contents
3756 of certain registers and the stack. */
3757
3758 loc = pc;
3759 curr_inst = 0;
3760 prev_inst = 0;
3761 while (1)
3762 {
3763 /* Make sure we haven't walked outside the range of this stub. */
3764 if (u != find_unwind_entry (loc))
3765 {
3766 warning ("Unable to find branch in linker stub");
3767 return orig_pc == pc ? 0 : pc & ~0x3;
3768 }
3769
3770 prev_inst = curr_inst;
3771 curr_inst = read_memory_integer (loc, 4);
3772
3773 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3774 branch from the stub to the actual function. */
c906108c
SS
3775 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3776 {
3777 /* Yup. See if the previous instruction loaded
3778 a value into %r1. If so compute and return the jump address. */
3779 if ((prev_inst & 0xffe00000) == 0x20200000)
3780 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3781 else
3782 {
3783 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3784 return orig_pc == pc ? 0 : pc & ~0x3;
3785 }
3786 }
3787
3788 /* Does it look like a be 0(sr0,%r21)? OR
3789 Does it look like a be, n 0(sr0,%r21)? OR
3790 Does it look like a bve (r21)? (this is on PA2.0)
3791 Does it look like a bve, n(r21)? (this is also on PA2.0)
3792 That's the branch from an
c5aa993b 3793 import stub to an export stub.
c906108c 3794
c5aa993b
JM
3795 It is impossible to determine the target of the branch via
3796 simple examination of instructions and/or data (consider
3797 that the address in the plabel may be the address of the
3798 bind-on-reference routine in the dynamic loader).
c906108c 3799
c5aa993b 3800 So we have try an alternative approach.
c906108c 3801
c5aa993b
JM
3802 Get the name of the symbol at our current location; it should
3803 be a stub symbol with the same name as the symbol in the
3804 shared library.
c906108c 3805
c5aa993b
JM
3806 Then lookup a minimal symbol with the same name; we should
3807 get the minimal symbol for the target routine in the shared
3808 library as those take precedence of import/export stubs. */
c906108c 3809 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3810 (curr_inst == 0xe2a00002) ||
3811 (curr_inst == 0xeaa0d000) ||
3812 (curr_inst == 0xeaa0d002))
c906108c
SS
3813 {
3814 struct minimal_symbol *stubsym, *libsym;
3815
3816 stubsym = lookup_minimal_symbol_by_pc (loc);
3817 if (stubsym == NULL)
3818 {
ce414844 3819 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3820 return orig_pc == pc ? 0 : pc & ~0x3;
3821 }
3822
22abf04a 3823 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
c906108c
SS
3824 if (libsym == NULL)
3825 {
3826 warning ("Unable to find library symbol for %s\n",
22abf04a 3827 DEPRECATED_SYMBOL_NAME (stubsym));
c906108c
SS
3828 return orig_pc == pc ? 0 : pc & ~0x3;
3829 }
3830
3831 return SYMBOL_VALUE (libsym);
3832 }
3833
3834 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3835 branch from the stub to the actual function. */
3836 /*elz */
c906108c
SS
3837 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3838 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3839 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3840 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3841
3842 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3843 current stack pointer being the same as the stack
3844 pointer in the stub itself! This is a branch on from the
3845 stub back to the original caller. */
3846 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3847 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3848 {
3849 /* Yup. See if the previous instruction loaded
3850 rp from sp - 8. */
3851 if (prev_inst == 0x4bc23ff1)
3852 return (read_memory_integer
3853 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3854 else
3855 {
3856 warning ("Unable to find restore of %%rp before bv (%%rp).");
3857 return orig_pc == pc ? 0 : pc & ~0x3;
3858 }
3859 }
3860
3861 /* elz: added this case to capture the new instruction
3862 at the end of the return part of an export stub used by
3863 the PA2.0: BVE, n (rp) */
3864 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3865 {
c5aa993b 3866 return (read_memory_integer
53a5351d 3867 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3868 }
3869
3870 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3871 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3872 else if (curr_inst == 0xe0400002)
3873 {
3874 /* The value we jump to is sitting in sp - 24. But that's
3875 loaded several instructions before the be instruction.
3876 I guess we could check for the previous instruction being
3877 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3878 return (read_memory_integer
53a5351d 3879 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3880 }
3881
3882 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3883 Keep looking. */
c906108c
SS
3884 loc += 4;
3885 }
3886}
3887
3888
3889/* For the given instruction (INST), return any adjustment it makes
3890 to the stack pointer or zero for no adjustment.
3891
3892 This only handles instructions commonly found in prologues. */
3893
3894static int
fba45db2 3895prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3896{
3897 /* This must persist across calls. */
3898 static int save_high21;
3899
3900 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3901 if ((inst & 0xffffc000) == 0x37de0000)
3902 return extract_14 (inst);
3903
3904 /* stwm X,D(sp) */
3905 if ((inst & 0xffe00000) == 0x6fc00000)
3906 return extract_14 (inst);
3907
104c1213
JM
3908 /* std,ma X,D(sp) */
3909 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3910 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3911
c906108c
SS
3912 /* addil high21,%r1; ldo low11,(%r1),%r30)
3913 save high bits in save_high21 for later use. */
3914 if ((inst & 0xffe00000) == 0x28200000)
3915 {
3916 save_high21 = extract_21 (inst);
3917 return 0;
3918 }
3919
3920 if ((inst & 0xffff0000) == 0x343e0000)
3921 return save_high21 + extract_14 (inst);
3922
3923 /* fstws as used by the HP compilers. */
3924 if ((inst & 0xffffffe0) == 0x2fd01220)
3925 return extract_5_load (inst);
3926
3927 /* No adjustment. */
3928 return 0;
3929}
3930
3931/* Return nonzero if INST is a branch of some kind, else return zero. */
3932
3933static int
fba45db2 3934is_branch (unsigned long inst)
c906108c
SS
3935{
3936 switch (inst >> 26)
3937 {
3938 case 0x20:
3939 case 0x21:
3940 case 0x22:
3941 case 0x23:
7be570e7 3942 case 0x27:
c906108c
SS
3943 case 0x28:
3944 case 0x29:
3945 case 0x2a:
3946 case 0x2b:
7be570e7 3947 case 0x2f:
c906108c
SS
3948 case 0x30:
3949 case 0x31:
3950 case 0x32:
3951 case 0x33:
3952 case 0x38:
3953 case 0x39:
3954 case 0x3a:
7be570e7 3955 case 0x3b:
c906108c
SS
3956 return 1;
3957
3958 default:
3959 return 0;
3960 }
3961}
3962
3963/* Return the register number for a GR which is saved by INST or
3964 zero it INST does not save a GR. */
3965
3966static int
fba45db2 3967inst_saves_gr (unsigned long inst)
c906108c
SS
3968{
3969 /* Does it look like a stw? */
7be570e7
JM
3970 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3971 || (inst >> 26) == 0x1f
3972 || ((inst >> 26) == 0x1f
3973 && ((inst >> 6) == 0xa)))
3974 return extract_5R_store (inst);
3975
3976 /* Does it look like a std? */
3977 if ((inst >> 26) == 0x1c
3978 || ((inst >> 26) == 0x03
3979 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3980 return extract_5R_store (inst);
3981
3982 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3983 if ((inst >> 26) == 0x1b)
3984 return extract_5R_store (inst);
3985
3986 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3987 too. */
7be570e7
JM
3988 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3989 || ((inst >> 26) == 0x3
3990 && (((inst >> 6) & 0xf) == 0x8
3991 || (inst >> 6) & 0xf) == 0x9))
c906108c 3992 return extract_5R_store (inst);
c5aa993b 3993
c906108c
SS
3994 return 0;
3995}
3996
3997/* Return the register number for a FR which is saved by INST or
3998 zero it INST does not save a FR.
3999
4000 Note we only care about full 64bit register stores (that's the only
4001 kind of stores the prologue will use).
4002
4003 FIXME: What about argument stores with the HP compiler in ANSI mode? */
4004
4005static int
fba45db2 4006inst_saves_fr (unsigned long inst)
c906108c 4007{
7be570e7 4008 /* is this an FSTD ? */
c906108c
SS
4009 if ((inst & 0xfc00dfc0) == 0x2c001200)
4010 return extract_5r_store (inst);
7be570e7
JM
4011 if ((inst & 0xfc000002) == 0x70000002)
4012 return extract_5R_store (inst);
4013 /* is this an FSTW ? */
c906108c
SS
4014 if ((inst & 0xfc00df80) == 0x24001200)
4015 return extract_5r_store (inst);
7be570e7
JM
4016 if ((inst & 0xfc000002) == 0x7c000000)
4017 return extract_5R_store (inst);
c906108c
SS
4018 return 0;
4019}
4020
4021/* Advance PC across any function entry prologue instructions
4022 to reach some "real" code.
4023
4024 Use information in the unwind table to determine what exactly should
4025 be in the prologue. */
4026
4027
4028CORE_ADDR
fba45db2 4029skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
4030{
4031 char buf[4];
4032 CORE_ADDR orig_pc = pc;
4033 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4034 unsigned long args_stored, status, i, restart_gr, restart_fr;
4035 struct unwind_table_entry *u;
4036
4037 restart_gr = 0;
4038 restart_fr = 0;
4039
4040restart:
4041 u = find_unwind_entry (pc);
4042 if (!u)
4043 return pc;
4044
c5aa993b 4045 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
4046 if ((pc & ~0x3) != u->region_start)
4047 return pc;
4048
4049 /* This is how much of a frame adjustment we need to account for. */
4050 stack_remaining = u->Total_frame_size << 3;
4051
4052 /* Magic register saves we want to know about. */
4053 save_rp = u->Save_RP;
4054 save_sp = u->Save_SP;
4055
4056 /* An indication that args may be stored into the stack. Unfortunately
4057 the HPUX compilers tend to set this in cases where no args were
4058 stored too!. */
4059 args_stored = 1;
4060
4061 /* Turn the Entry_GR field into a bitmask. */
4062 save_gr = 0;
4063 for (i = 3; i < u->Entry_GR + 3; i++)
4064 {
4065 /* Frame pointer gets saved into a special location. */
0ba6dca9 4066 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
c906108c
SS
4067 continue;
4068
4069 save_gr |= (1 << i);
4070 }
4071 save_gr &= ~restart_gr;
4072
4073 /* Turn the Entry_FR field into a bitmask too. */
4074 save_fr = 0;
4075 for (i = 12; i < u->Entry_FR + 12; i++)
4076 save_fr |= (1 << i);
4077 save_fr &= ~restart_fr;
4078
4079 /* Loop until we find everything of interest or hit a branch.
4080
4081 For unoptimized GCC code and for any HP CC code this will never ever
4082 examine any user instructions.
4083
4084 For optimzied GCC code we're faced with problems. GCC will schedule
4085 its prologue and make prologue instructions available for delay slot
4086 filling. The end result is user code gets mixed in with the prologue
4087 and a prologue instruction may be in the delay slot of the first branch
4088 or call.
4089
4090 Some unexpected things are expected with debugging optimized code, so
4091 we allow this routine to walk past user instructions in optimized
4092 GCC code. */
4093 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
4094 || args_stored)
4095 {
4096 unsigned int reg_num;
4097 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
4098 unsigned long old_save_rp, old_save_sp, next_inst;
4099
4100 /* Save copies of all the triggers so we can compare them later
c5aa993b 4101 (only for HPC). */
c906108c
SS
4102 old_save_gr = save_gr;
4103 old_save_fr = save_fr;
4104 old_save_rp = save_rp;
4105 old_save_sp = save_sp;
4106 old_stack_remaining = stack_remaining;
4107
4108 status = target_read_memory (pc, buf, 4);
4109 inst = extract_unsigned_integer (buf, 4);
c5aa993b 4110
c906108c
SS
4111 /* Yow! */
4112 if (status != 0)
4113 return pc;
4114
4115 /* Note the interesting effects of this instruction. */
4116 stack_remaining -= prologue_inst_adjust_sp (inst);
4117
7be570e7
JM
4118 /* There are limited ways to store the return pointer into the
4119 stack. */
4120 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
4121 save_rp = 0;
4122
104c1213 4123 /* These are the only ways we save SP into the stack. At this time
c5aa993b 4124 the HP compilers never bother to save SP into the stack. */
104c1213
JM
4125 if ((inst & 0xffffc000) == 0x6fc10000
4126 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
4127 save_sp = 0;
4128
6426a772
JM
4129 /* Are we loading some register with an offset from the argument
4130 pointer? */
4131 if ((inst & 0xffe00000) == 0x37a00000
4132 || (inst & 0xffffffe0) == 0x081d0240)
4133 {
4134 pc += 4;
4135 continue;
4136 }
4137
c906108c
SS
4138 /* Account for general and floating-point register saves. */
4139 reg_num = inst_saves_gr (inst);
4140 save_gr &= ~(1 << reg_num);
4141
4142 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
4143 Unfortunately args_stored only tells us that some arguments
4144 where stored into the stack. Not how many or what kind!
c906108c 4145
c5aa993b
JM
4146 This is a kludge as on the HP compiler sets this bit and it
4147 never does prologue scheduling. So once we see one, skip past
4148 all of them. We have similar code for the fp arg stores below.
c906108c 4149
c5aa993b
JM
4150 FIXME. Can still die if we have a mix of GR and FR argument
4151 stores! */
6426a772 4152 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 4153 {
6426a772 4154 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
4155 {
4156 pc += 4;
4157 status = target_read_memory (pc, buf, 4);
4158 inst = extract_unsigned_integer (buf, 4);
4159 if (status != 0)
4160 return pc;
4161 reg_num = inst_saves_gr (inst);
4162 }
4163 args_stored = 0;
4164 continue;
4165 }
4166
4167 reg_num = inst_saves_fr (inst);
4168 save_fr &= ~(1 << reg_num);
4169
4170 status = target_read_memory (pc + 4, buf, 4);
4171 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 4172
c906108c
SS
4173 /* Yow! */
4174 if (status != 0)
4175 return pc;
4176
4177 /* We've got to be read to handle the ldo before the fp register
c5aa993b 4178 save. */
c906108c
SS
4179 if ((inst & 0xfc000000) == 0x34000000
4180 && inst_saves_fr (next_inst) >= 4
6426a772 4181 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
4182 {
4183 /* So we drop into the code below in a reasonable state. */
4184 reg_num = inst_saves_fr (next_inst);
4185 pc -= 4;
4186 }
4187
4188 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
4189 This is a kludge as on the HP compiler sets this bit and it
4190 never does prologue scheduling. So once we see one, skip past
4191 all of them. */
6426a772 4192 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 4193 {
6426a772 4194 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
4195 {
4196 pc += 8;
4197 status = target_read_memory (pc, buf, 4);
4198 inst = extract_unsigned_integer (buf, 4);
4199 if (status != 0)
4200 return pc;
4201 if ((inst & 0xfc000000) != 0x34000000)
4202 break;
4203 status = target_read_memory (pc + 4, buf, 4);
4204 next_inst = extract_unsigned_integer (buf, 4);
4205 if (status != 0)
4206 return pc;
4207 reg_num = inst_saves_fr (next_inst);
4208 }
4209 args_stored = 0;
4210 continue;
4211 }
4212
4213 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 4214 instruction is in the delay slot of the first call/branch. */
c906108c
SS
4215 if (is_branch (inst))
4216 break;
4217
4218 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
4219 arguments were stored into the stack (boo hiss). This could
4220 cause this code to then skip a bunch of user insns (up to the
4221 first branch).
4222
4223 To combat this we try to identify when args_stored was bogusly
4224 set and clear it. We only do this when args_stored is nonzero,
4225 all other resources are accounted for, and nothing changed on
4226 this pass. */
c906108c 4227 if (args_stored
c5aa993b 4228 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
4229 && old_save_gr == save_gr && old_save_fr == save_fr
4230 && old_save_rp == save_rp && old_save_sp == save_sp
4231 && old_stack_remaining == stack_remaining)
4232 break;
c5aa993b 4233
c906108c
SS
4234 /* Bump the PC. */
4235 pc += 4;
4236 }
4237
4238 /* We've got a tenative location for the end of the prologue. However
4239 because of limitations in the unwind descriptor mechanism we may
4240 have went too far into user code looking for the save of a register
4241 that does not exist. So, if there registers we expected to be saved
4242 but never were, mask them out and restart.
4243
4244 This should only happen in optimized code, and should be very rare. */
c5aa993b 4245 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
4246 {
4247 pc = orig_pc;
4248 restart_gr = save_gr;
4249 restart_fr = save_fr;
4250 goto restart;
4251 }
4252
4253 return pc;
4254}
4255
4256
7be570e7
JM
4257/* Return the address of the PC after the last prologue instruction if
4258 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
4259
4260static CORE_ADDR
fba45db2 4261after_prologue (CORE_ADDR pc)
c906108c
SS
4262{
4263 struct symtab_and_line sal;
4264 CORE_ADDR func_addr, func_end;
4265 struct symbol *f;
4266
7be570e7
JM
4267 /* If we can not find the symbol in the partial symbol table, then
4268 there is no hope we can determine the function's start address
4269 with this code. */
c906108c 4270 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 4271 return 0;
c906108c 4272
7be570e7 4273 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
4274 sal = find_pc_line (func_addr, 0);
4275
7be570e7
JM
4276 /* There are only two cases to consider. First, the end of the source line
4277 is within the function bounds. In that case we return the end of the
4278 source line. Second is the end of the source line extends beyond the
4279 bounds of the current function. We need to use the slow code to
4280 examine instructions in that case.
c906108c 4281
7be570e7
JM
4282 Anything else is simply a bug elsewhere. Fixing it here is absolutely
4283 the wrong thing to do. In fact, it should be entirely possible for this
4284 function to always return zero since the slow instruction scanning code
4285 is supposed to *always* work. If it does not, then it is a bug. */
4286 if (sal.end < func_end)
4287 return sal.end;
c5aa993b 4288 else
7be570e7 4289 return 0;
c906108c
SS
4290}
4291
4292/* To skip prologues, I use this predicate. Returns either PC itself
4293 if the code at PC does not look like a function prologue; otherwise
4294 returns an address that (if we're lucky) follows the prologue. If
4295 LENIENT, then we must skip everything which is involved in setting
4296 up the frame (it's OK to skip more, just so long as we don't skip
4297 anything which might clobber the registers which are being saved.
4298 Currently we must not skip more on the alpha, but we might the lenient
4299 stuff some day. */
4300
4301CORE_ADDR
fba45db2 4302hppa_skip_prologue (CORE_ADDR pc)
c906108c 4303{
c5aa993b
JM
4304 unsigned long inst;
4305 int offset;
4306 CORE_ADDR post_prologue_pc;
4307 char buf[4];
c906108c 4308
c5aa993b
JM
4309 /* See if we can determine the end of the prologue via the symbol table.
4310 If so, then return either PC, or the PC after the prologue, whichever
4311 is greater. */
c906108c 4312
c5aa993b 4313 post_prologue_pc = after_prologue (pc);
c906108c 4314
7be570e7
JM
4315 /* If after_prologue returned a useful address, then use it. Else
4316 fall back on the instruction skipping code.
4317
4318 Some folks have claimed this causes problems because the breakpoint
4319 may be the first instruction of the prologue. If that happens, then
4320 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
4321 if (post_prologue_pc != 0)
4322 return max (pc, post_prologue_pc);
c5aa993b
JM
4323 else
4324 return (skip_prologue_hard_way (pc));
c906108c
SS
4325}
4326
43bd9a9e
AC
4327/* Put here the code to store, into the SAVED_REGS, the addresses of
4328 the saved registers of frame described by FRAME_INFO. This
4329 includes special registers such as pc and fp saved in special ways
4330 in the stack frame. sp is even more special: the address we return
4331 for it IS the sp for the next frame. */
c906108c
SS
4332
4333void
fba45db2 4334hppa_frame_find_saved_regs (struct frame_info *frame_info,
43bd9a9e 4335 CORE_ADDR frame_saved_regs[])
c906108c
SS
4336{
4337 CORE_ADDR pc;
4338 struct unwind_table_entry *u;
4339 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4340 int status, i, reg;
4341 char buf[4];
4342 int fp_loc = -1;
d4f3574e 4343 int final_iteration;
c906108c
SS
4344
4345 /* Zero out everything. */
43bd9a9e 4346 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
4347
4348 /* Call dummy frames always look the same, so there's no need to
4349 examine the dummy code to determine locations of saved registers;
4350 instead, let find_dummy_frame_regs fill in the correct offsets
4351 for the saved registers. */
ef6e7e13
AC
4352 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4353 && (get_frame_pc (frame_info)
4354 <= (get_frame_base (frame_info)
4355 /* A call dummy is sized in words, but it is actually a
4356 series of instructions. Account for that scaling
4357 factor. */
b1e29e33
AC
4358 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4359 * DEPRECATED_CALL_DUMMY_LENGTH)
ef6e7e13
AC
4360 /* Similarly we have to account for 64bit wide register
4361 saves. */
b1e29e33 4362 + (32 * DEPRECATED_REGISTER_SIZE)
ef6e7e13
AC
4363 /* We always consider FP regs 8 bytes long. */
4364 + (NUM_REGS - FP0_REGNUM) * 8
4365 /* Similarly we have to account for 64bit wide register
4366 saves. */
b1e29e33 4367 + (6 * DEPRECATED_REGISTER_SIZE)))))
c906108c
SS
4368 find_dummy_frame_regs (frame_info, frame_saved_regs);
4369
4370 /* Interrupt handlers are special too. They lay out the register
4371 state in the exact same order as the register numbers in GDB. */
ef6e7e13 4372 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
c906108c
SS
4373 {
4374 for (i = 0; i < NUM_REGS; i++)
4375 {
4376 /* SP is a little special. */
4377 if (i == SP_REGNUM)
43bd9a9e 4378 frame_saved_regs[SP_REGNUM]
ef6e7e13 4379 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
53a5351d 4380 TARGET_PTR_BIT / 8);
c906108c 4381 else
ef6e7e13 4382 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
c906108c
SS
4383 }
4384 return;
4385 }
4386
4387#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4388 /* Handle signal handler callers. */
5a203e44 4389 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
c906108c
SS
4390 {
4391 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4392 return;
4393 }
4394#endif
4395
4396 /* Get the starting address of the function referred to by the PC
4397 saved in frame. */
be41e9f4 4398 pc = get_frame_func (frame_info);
c906108c
SS
4399
4400 /* Yow! */
4401 u = find_unwind_entry (pc);
4402 if (!u)
4403 return;
4404
4405 /* This is how much of a frame adjustment we need to account for. */
4406 stack_remaining = u->Total_frame_size << 3;
4407
4408 /* Magic register saves we want to know about. */
4409 save_rp = u->Save_RP;
4410 save_sp = u->Save_SP;
4411
4412 /* Turn the Entry_GR field into a bitmask. */
4413 save_gr = 0;
4414 for (i = 3; i < u->Entry_GR + 3; i++)
4415 {
4416 /* Frame pointer gets saved into a special location. */
0ba6dca9 4417 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
c906108c
SS
4418 continue;
4419
4420 save_gr |= (1 << i);
4421 }
4422
4423 /* Turn the Entry_FR field into a bitmask too. */
4424 save_fr = 0;
4425 for (i = 12; i < u->Entry_FR + 12; i++)
4426 save_fr |= (1 << i);
4427
4428 /* The frame always represents the value of %sp at entry to the
4429 current function (and is thus equivalent to the "saved" stack
4430 pointer. */
ef6e7e13 4431 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
c906108c
SS
4432
4433 /* Loop until we find everything of interest or hit a branch.
4434
4435 For unoptimized GCC code and for any HP CC code this will never ever
4436 examine any user instructions.
4437
7be570e7 4438 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
4439 its prologue and make prologue instructions available for delay slot
4440 filling. The end result is user code gets mixed in with the prologue
4441 and a prologue instruction may be in the delay slot of the first branch
4442 or call.
4443
4444 Some unexpected things are expected with debugging optimized code, so
4445 we allow this routine to walk past user instructions in optimized
4446 GCC code. */
d4f3574e
SS
4447 final_iteration = 0;
4448 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
ef6e7e13 4449 && pc <= get_frame_pc (frame_info))
c906108c
SS
4450 {
4451 status = target_read_memory (pc, buf, 4);
4452 inst = extract_unsigned_integer (buf, 4);
4453
4454 /* Yow! */
4455 if (status != 0)
4456 return;
4457
4458 /* Note the interesting effects of this instruction. */
4459 stack_remaining -= prologue_inst_adjust_sp (inst);
4460
104c1213
JM
4461 /* There are limited ways to store the return pointer into the
4462 stack. */
c2c6d25f 4463 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
4464 {
4465 save_rp = 0;
ef6e7e13 4466 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
c906108c 4467 }
c2c6d25f
JM
4468 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4469 {
4470 save_rp = 0;
ef6e7e13 4471 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
c2c6d25f 4472 }
c906108c 4473
104c1213
JM
4474 /* Note if we saved SP into the stack. This also happens to indicate
4475 the location of the saved frame pointer. */
c2c6d25f
JM
4476 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4477 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213 4478 {
0ba6dca9 4479 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
104c1213
JM
4480 save_sp = 0;
4481 }
c906108c
SS
4482
4483 /* Account for general and floating-point register saves. */
4484 reg = inst_saves_gr (inst);
4485 if (reg >= 3 && reg <= 18
0ba6dca9 4486 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
c906108c
SS
4487 {
4488 save_gr &= ~(1 << reg);
4489
4490 /* stwm with a positive displacement is a *post modify*. */
4491 if ((inst >> 26) == 0x1b
4492 && extract_14 (inst) >= 0)
ef6e7e13 4493 frame_saved_regs[reg] = get_frame_base (frame_info);
104c1213 4494 /* A std has explicit post_modify forms. */
56132691 4495 else if ((inst & 0xfc00000c) == 0x70000008)
ef6e7e13 4496 frame_saved_regs[reg] = get_frame_base (frame_info);
c906108c
SS
4497 else
4498 {
104c1213
JM
4499 CORE_ADDR offset;
4500
4501 if ((inst >> 26) == 0x1c)
d4f3574e 4502 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4503 else if ((inst >> 26) == 0x03)
4504 offset = low_sign_extend (inst & 0x1f, 5);
4505 else
4506 offset = extract_14 (inst);
4507
c906108c
SS
4508 /* Handle code with and without frame pointers. */
4509 if (u->Save_SP)
43bd9a9e 4510 frame_saved_regs[reg]
ef6e7e13 4511 = get_frame_base (frame_info) + offset;
c906108c 4512 else
43bd9a9e 4513 frame_saved_regs[reg]
ef6e7e13 4514 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
104c1213 4515 + offset);
c906108c
SS
4516 }
4517 }
4518
4519
4520 /* GCC handles callee saved FP regs a little differently.
4521
c5aa993b
JM
4522 It emits an instruction to put the value of the start of
4523 the FP store area into %r1. It then uses fstds,ma with
4524 a basereg of %r1 for the stores.
c906108c 4525
c5aa993b
JM
4526 HP CC emits them at the current stack pointer modifying
4527 the stack pointer as it stores each register. */
c906108c
SS
4528
4529 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4530 if ((inst & 0xffffc000) == 0x34610000
4531 || (inst & 0xffffc000) == 0x37c10000)
4532 fp_loc = extract_14 (inst);
c5aa993b 4533
c906108c
SS
4534 reg = inst_saves_fr (inst);
4535 if (reg >= 12 && reg <= 21)
4536 {
4537 /* Note +4 braindamage below is necessary because the FP status
4538 registers are internally 8 registers rather than the expected
4539 4 registers. */
4540 save_fr &= ~(1 << reg);
4541 if (fp_loc == -1)
4542 {
4543 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4544 we've set enough state that the GCC and HPCC code are
4545 both handled in the same manner. */
ef6e7e13 4546 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
c906108c
SS
4547 fp_loc = 8;
4548 }
4549 else
4550 {
43bd9a9e 4551 frame_saved_regs[reg + FP0_REGNUM + 4]
ef6e7e13 4552 = get_frame_base (frame_info) + fp_loc;
c906108c
SS
4553 fp_loc += 8;
4554 }
4555 }
4556
39f77062 4557 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4558 if (final_iteration)
c906108c
SS
4559 break;
4560
d4f3574e
SS
4561 /* We want to look precisely one instruction beyond the branch
4562 if we have not found everything yet. */
4563 if (is_branch (inst))
4564 final_iteration = 1;
4565
c906108c
SS
4566 /* Bump the PC. */
4567 pc += 4;
4568 }
4569}
4570
43bd9a9e
AC
4571/* XXX - deprecated. This is a compatibility function for targets
4572 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4573/* Find the addresses in which registers are saved in FRAME. */
4574
343af405 4575static void
43bd9a9e
AC
4576hppa_frame_init_saved_regs (struct frame_info *frame)
4577{
1b1d3794 4578 if (deprecated_get_frame_saved_regs (frame) == NULL)
43bd9a9e 4579 frame_saved_regs_zalloc (frame);
1b1d3794 4580 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
43bd9a9e 4581}
c906108c 4582
26d08f08
AC
4583struct hppa_frame_cache
4584{
4585 CORE_ADDR base;
4586 struct trad_frame_saved_reg *saved_regs;
4587};
4588
4589static struct hppa_frame_cache *
4590hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
4591{
4592 struct hppa_frame_cache *cache;
4593 long saved_gr_mask;
4594 long saved_fr_mask;
4595 CORE_ADDR this_sp;
4596 long frame_size;
4597 struct unwind_table_entry *u;
4598 int i;
4599
4600 if ((*this_cache) != NULL)
4601 return (*this_cache);
4602 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
4603 (*this_cache) = cache;
4604 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
4605
4606 /* Yow! */
4607 u = find_unwind_entry (frame_func_unwind (next_frame));
4608 if (!u)
4609 return;
4610
4611 /* Turn the Entry_GR field into a bitmask. */
4612 saved_gr_mask = 0;
4613 for (i = 3; i < u->Entry_GR + 3; i++)
4614 {
4615 /* Frame pointer gets saved into a special location. */
4616 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4617 continue;
4618
4619 saved_gr_mask |= (1 << i);
4620 }
4621
4622 /* Turn the Entry_FR field into a bitmask too. */
4623 saved_fr_mask = 0;
4624 for (i = 12; i < u->Entry_FR + 12; i++)
4625 saved_fr_mask |= (1 << i);
4626
4627 /* Loop until we find everything of interest or hit a branch.
4628
4629 For unoptimized GCC code and for any HP CC code this will never ever
4630 examine any user instructions.
4631
4632 For optimized GCC code we're faced with problems. GCC will schedule
4633 its prologue and make prologue instructions available for delay slot
4634 filling. The end result is user code gets mixed in with the prologue
4635 and a prologue instruction may be in the delay slot of the first branch
4636 or call.
4637
4638 Some unexpected things are expected with debugging optimized code, so
4639 we allow this routine to walk past user instructions in optimized
4640 GCC code. */
4641 {
4642 int final_iteration = 0;
4643 CORE_ADDR pc;
4644 CORE_ADDR end_pc = skip_prologue_using_sal (pc);
4645 int looking_for_sp = u->Save_SP;
4646 int looking_for_rp = u->Save_RP;
4647 int fp_loc = -1;
4648 if (end_pc == 0)
4649 end_pc = frame_pc_unwind (next_frame);
4650 frame_size = 0;
4651 for (pc = frame_func_unwind (next_frame);
4652 ((saved_gr_mask || saved_fr_mask
4653 || looking_for_sp || looking_for_rp
4654 || frame_size < (u->Total_frame_size << 3))
4655 && pc <= end_pc);
4656 pc += 4)
4657 {
4658 int reg;
4659 char buf4[4];
4660 long status = target_read_memory (pc, buf4, sizeof buf4);
4661 long inst = extract_unsigned_integer (buf4, sizeof buf4);
4662
4663 /* Note the interesting effects of this instruction. */
4664 frame_size += prologue_inst_adjust_sp (inst);
4665
4666 /* There are limited ways to store the return pointer into the
4667 stack. */
4668 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4669 {
4670 looking_for_rp = 0;
4671 cache->saved_regs[RP_REGNUM].addr = -20;
4672 }
4673 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4674 {
4675 looking_for_rp = 0;
4676 cache->saved_regs[RP_REGNUM].addr = -16;
4677 }
4678
4679 /* Check to see if we saved SP into the stack. This also
4680 happens to indicate the location of the saved frame
4681 pointer. */
4682 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4683 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4684 {
4685 looking_for_sp = 0;
4686 cache->saved_regs[DEPRECATED_FP_REGNUM].addr = 0;
4687 }
4688
4689 /* Account for general and floating-point register saves. */
4690 reg = inst_saves_gr (inst);
4691 if (reg >= 3 && reg <= 18
4692 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4693 {
4694 saved_gr_mask &= ~(1 << reg);
4695 if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0)
4696 /* stwm with a positive displacement is a _post_
4697 _modify_. */
4698 cache->saved_regs[reg].addr = 0;
4699 else if ((inst & 0xfc00000c) == 0x70000008)
4700 /* A std has explicit post_modify forms. */
4701 cache->saved_regs[reg].addr = 0;
4702 else
4703 {
4704 CORE_ADDR offset;
4705
4706 if ((inst >> 26) == 0x1c)
4707 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4708 else if ((inst >> 26) == 0x03)
4709 offset = low_sign_extend (inst & 0x1f, 5);
4710 else
4711 offset = extract_14 (inst);
4712
4713 /* Handle code with and without frame pointers. */
4714 if (u->Save_SP)
4715 cache->saved_regs[reg].addr = offset;
4716 else
4717 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
4718 }
4719 }
4720
4721 /* GCC handles callee saved FP regs a little differently.
4722
4723 It emits an instruction to put the value of the start of
4724 the FP store area into %r1. It then uses fstds,ma with a
4725 basereg of %r1 for the stores.
4726
4727 HP CC emits them at the current stack pointer modifying the
4728 stack pointer as it stores each register. */
4729
4730 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4731 if ((inst & 0xffffc000) == 0x34610000
4732 || (inst & 0xffffc000) == 0x37c10000)
4733 fp_loc = extract_14 (inst);
4734
4735 reg = inst_saves_fr (inst);
4736 if (reg >= 12 && reg <= 21)
4737 {
4738 /* Note +4 braindamage below is necessary because the FP
4739 status registers are internally 8 registers rather than
4740 the expected 4 registers. */
4741 saved_fr_mask &= ~(1 << reg);
4742 if (fp_loc == -1)
4743 {
4744 /* 1st HP CC FP register store. After this
4745 instruction we've set enough state that the GCC and
4746 HPCC code are both handled in the same manner. */
4747 cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0;
4748 fp_loc = 8;
4749 }
4750 else
4751 {
4752 cache->saved_regs[reg + FP0_REGNUM + 4].addr = fp_loc;
4753 fp_loc += 8;
4754 }
4755 }
4756
4757 /* Quit if we hit any kind of branch the previous iteration. */
4758 if (final_iteration)
4759 break;
4760 /* We want to look precisely one instruction beyond the branch
4761 if we have not found everything yet. */
4762 if (is_branch (inst))
4763 final_iteration = 1;
4764 }
4765 }
4766
4767 {
4768 /* The frame base always represents the value of %sp at entry to
4769 the current function (and is thus equivalent to the "saved"
4770 stack pointer. */
4771 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
4772 /* FIXME: cagney/2004-02-22: This assumes that the frame has been
4773 created. If it hasn't everything will be out-of-wack. */
4774 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, SP_REGNUM))
4775 /* Both we're expecting the SP to be saved and the SP has been
4776 saved. The entry SP value is saved at this frame's SP
4777 address. */
4778 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
4779 else
4780 /* The prologue has been slowly allocating stack space. Adjust
4781 the SP back. */
4782 cache->base = this_sp - frame_size;
4783 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
4784 }
4785
4786 /* The PC is found in the "return register". */
4787 if (u->Millicode)
4788 cache->saved_regs[PC_REGNUM] = cache->saved_regs[31];
4789 else
4790 cache->saved_regs[PC_REGNUM] = cache->saved_regs[RP_REGNUM];
4791
4792 {
4793 /* Convert all the offsets into addresses. */
4794 int reg;
4795 for (reg = 0; reg < NUM_REGS; reg++)
4796 {
4797 if (trad_frame_addr_p (cache->saved_regs, reg))
4798 cache->saved_regs[reg].addr += cache->base;
4799 }
4800 }
4801
4802 return (*this_cache);
4803}
4804
4805static void
4806hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
4807 struct frame_id *this_id)
4808{
4809 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4810 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
4811}
4812
4813static void
4814hppa_frame_prev_register (struct frame_info *next_frame,
4815 void **this_cache,
4816 int regnum, int *optimizedp,
4817 enum lval_type *lvalp, CORE_ADDR *addrp,
4818 int *realnump, void *valuep)
4819{
4820 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4821 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
4822 optimizedp, lvalp, addrp, realnump, valuep);
4823}
4824
4825static const struct frame_unwind hppa_frame_unwind =
4826{
4827 NORMAL_FRAME,
4828 hppa_frame_this_id,
4829 hppa_frame_prev_register
4830};
4831
4832static const struct frame_unwind *
4833hppa_frame_unwind_sniffer (struct frame_info *next_frame)
4834{
4835 return &hppa_frame_unwind;
4836}
4837
4838static CORE_ADDR
4839hppa_frame_base_address (struct frame_info *next_frame,
4840 void **this_cache)
4841{
4842 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
4843 this_cache);
4844 return info->base;
4845}
4846
4847static const struct frame_base hppa_frame_base = {
4848 &hppa_frame_unwind,
4849 hppa_frame_base_address,
4850 hppa_frame_base_address,
4851 hppa_frame_base_address
4852};
4853
4854static const struct frame_base *
4855hppa_frame_base_sniffer (struct frame_info *next_frame)
4856{
4857 return &hppa_frame_base;
4858}
4859
4860static struct frame_id
4861hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
4862{
4863 return frame_id_build (frame_unwind_register_unsigned (next_frame,
4864 SP_REGNUM),
4865 frame_pc_unwind (next_frame));
4866}
4867
4868static CORE_ADDR
4869hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
4870{
4871 return frame_unwind_register_signed (next_frame, PC_REGNUM) & ~3;
4872}
4873
c906108c
SS
4874/* Exception handling support for the HP-UX ANSI C++ compiler.
4875 The compiler (aCC) provides a callback for exception events;
4876 GDB can set a breakpoint on this callback and find out what
4877 exception event has occurred. */
4878
4879/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4880static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4881/* The name of the function to be used to set the hook value */
4882static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4883/* The name of the callback function in end.o */
c906108c 4884static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4885/* Name of function in end.o on which a break is set (called by above) */
4886static char HP_ACC_EH_break[] = "__d_eh_break";
4887/* Name of flag (in end.o) that enables catching throws */
4888static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4889/* Name of flag (in end.o) that enables catching catching */
4890static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4891/* The enum used by aCC */
4892typedef enum
4893 {
4894 __EH_NOTIFY_THROW,
4895 __EH_NOTIFY_CATCH
4896 }
4897__eh_notification;
c906108c
SS
4898
4899/* Is exception-handling support available with this executable? */
4900static int hp_cxx_exception_support = 0;
4901/* Has the initialize function been run? */
4902int hp_cxx_exception_support_initialized = 0;
4903/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4904extern int exception_support_initialized;
4905/* Address of __eh_notify_hook */
a0b3c4fd 4906static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4907/* Address of __d_eh_notify_callback */
a0b3c4fd 4908static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4909/* Address of __d_eh_break */
a0b3c4fd 4910static CORE_ADDR eh_break_addr = 0;
c906108c 4911/* Address of __d_eh_catch_catch */
a0b3c4fd 4912static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4913/* Address of __d_eh_catch_throw */
a0b3c4fd 4914static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4915/* Sal for __d_eh_break */
a0b3c4fd 4916static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4917
4918/* Code in end.c expects __d_pid to be set in the inferior,
4919 otherwise __d_eh_notify_callback doesn't bother to call
4920 __d_eh_break! So we poke the pid into this symbol
4921 ourselves.
4922 0 => success
c5aa993b 4923 1 => failure */
c906108c 4924int
fba45db2 4925setup_d_pid_in_inferior (void)
c906108c
SS
4926{
4927 CORE_ADDR anaddr;
c5aa993b
JM
4928 struct minimal_symbol *msymbol;
4929 char buf[4]; /* FIXME 32x64? */
4930
c906108c
SS
4931 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4932 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4933 if (msymbol == NULL)
4934 {
4935 warning ("Unable to find __d_pid symbol in object file.");
4936 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4937 return 1;
4938 }
4939
4940 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4941 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4942 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4943 {
4944 warning ("Unable to write __d_pid");
4945 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4946 return 1;
4947 }
4948 return 0;
4949}
4950
4951/* Initialize exception catchpoint support by looking for the
4952 necessary hooks/callbacks in end.o, etc., and set the hook value to
4953 point to the required debug function
4954
4955 Return 0 => failure
c5aa993b 4956 1 => success */
c906108c
SS
4957
4958static int
fba45db2 4959initialize_hp_cxx_exception_support (void)
c906108c
SS
4960{
4961 struct symtabs_and_lines sals;
c5aa993b
JM
4962 struct cleanup *old_chain;
4963 struct cleanup *canonical_strings_chain = NULL;
c906108c 4964 int i;
c5aa993b
JM
4965 char *addr_start;
4966 char *addr_end = NULL;
4967 char **canonical = (char **) NULL;
c906108c 4968 int thread = -1;
c5aa993b
JM
4969 struct symbol *sym = NULL;
4970 struct minimal_symbol *msym = NULL;
4971 struct objfile *objfile;
c906108c
SS
4972 asection *shlib_info;
4973
4974 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4975 recursion is a possibility because finding the hook for exception
4976 callbacks involves making a call in the inferior, which means
4977 re-inserting breakpoints which can re-invoke this code */
4978
c5aa993b
JM
4979 static int recurse = 0;
4980 if (recurse > 0)
c906108c
SS
4981 {
4982 hp_cxx_exception_support_initialized = 0;
4983 exception_support_initialized = 0;
4984 return 0;
4985 }
4986
4987 hp_cxx_exception_support = 0;
4988
4989 /* First check if we have seen any HP compiled objects; if not,
4990 it is very unlikely that HP's idiosyncratic callback mechanism
4991 for exception handling debug support will be available!
4992 This will percolate back up to breakpoint.c, where our callers
4993 will decide to try the g++ exception-handling support instead. */
4994 if (!hp_som_som_object_present)
4995 return 0;
c5aa993b 4996
c906108c
SS
4997 /* We have a SOM executable with SOM debug info; find the hooks */
4998
4999 /* First look for the notify hook provided by aCC runtime libs */
5000 /* If we find this symbol, we conclude that the executable must
5001 have HP aCC exception support built in. If this symbol is not
5002 found, even though we're a HP SOM-SOM file, we may have been
5003 built with some other compiler (not aCC). This results percolates
5004 back up to our callers in breakpoint.c which can decide to
5005 try the g++ style of exception support instead.
5006 If this symbol is found but the other symbols we require are
5007 not found, there is something weird going on, and g++ support
5008 should *not* be tried as an alternative.
c5aa993b 5009
c906108c
SS
5010 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
5011 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 5012
c906108c
SS
5013 /* libCsup has this hook; it'll usually be non-debuggable */
5014 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
5015 if (msym)
5016 {
5017 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
5018 hp_cxx_exception_support = 1;
c5aa993b 5019 }
c906108c
SS
5020 else
5021 {
5022 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
5023 warning ("Executable may not have been compiled debuggable with HP aCC.");
5024 warning ("GDB will be unable to intercept exception events.");
5025 eh_notify_hook_addr = 0;
5026 hp_cxx_exception_support = 0;
5027 return 0;
5028 }
5029
c906108c 5030 /* Next look for the notify callback routine in end.o */
c5aa993b 5031 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
5032 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
5033 if (msym)
5034 {
5035 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
5036 hp_cxx_exception_support = 1;
c5aa993b
JM
5037 }
5038 else
c906108c
SS
5039 {
5040 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
5041 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
5042 warning ("GDB will be unable to intercept exception events.");
5043 eh_notify_callback_addr = 0;
5044 return 0;
5045 }
5046
53a5351d 5047#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
5048 /* Check whether the executable is dynamically linked or archive bound */
5049 /* With an archive-bound executable we can use the raw addresses we find
5050 for the callback function, etc. without modification. For an executable
5051 with shared libraries, we have to do more work to find the plabel, which
5052 can be the target of a call through $$dyncall from the aCC runtime support
5053 library (libCsup) which is linked shared by default by aCC. */
5054 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 5055 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
5056 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
5057 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
5058 {
5059 /* The minsym we have has the local code address, but that's not the
5060 plabel that can be used by an inter-load-module call. */
5061 /* Find solib handle for main image (which has end.o), and use that
5062 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 5063 of shl_findsym()) to find the plabel. */
c906108c
SS
5064
5065 args_for_find_stub args;
5066 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 5067
c906108c
SS
5068 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
5069 args.msym = msym;
a0b3c4fd 5070 args.return_val = 0;
c5aa993b 5071
c906108c 5072 recurse++;
4efb68b1 5073 catch_errors (cover_find_stub_with_shl_get, &args, message,
a0b3c4fd
JM
5074 RETURN_MASK_ALL);
5075 eh_notify_callback_addr = args.return_val;
c906108c 5076 recurse--;
c5aa993b 5077
c906108c 5078 exception_catchpoints_are_fragile = 1;
c5aa993b 5079
c906108c 5080 if (!eh_notify_callback_addr)
c5aa993b
JM
5081 {
5082 /* We can get here either if there is no plabel in the export list
1faa59a8 5083 for the main image, or if something strange happened (?) */
c5aa993b
JM
5084 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
5085 warning ("GDB will not be able to intercept exception events.");
5086 return 0;
5087 }
c906108c
SS
5088 }
5089 else
5090 exception_catchpoints_are_fragile = 0;
53a5351d 5091#endif
c906108c 5092
c906108c 5093 /* Now, look for the breakpointable routine in end.o */
c5aa993b 5094 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
5095 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
5096 if (msym)
5097 {
5098 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
5099 hp_cxx_exception_support = 1;
c5aa993b 5100 }
c906108c
SS
5101 else
5102 {
5103 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
5104 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5105 warning ("GDB will be unable to intercept exception events.");
5106 eh_break_addr = 0;
5107 return 0;
5108 }
5109
c906108c
SS
5110 /* Next look for the catch enable flag provided in end.o */
5111 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
176620f1 5112 VAR_DOMAIN, 0, (struct symtab **) NULL);
c5aa993b 5113 if (sym) /* sometimes present in debug info */
c906108c
SS
5114 {
5115 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
5116 hp_cxx_exception_support = 1;
5117 }
c5aa993b
JM
5118 else
5119 /* otherwise look in SOM symbol dict. */
c906108c
SS
5120 {
5121 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
5122 if (msym)
c5aa993b
JM
5123 {
5124 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
5125 hp_cxx_exception_support = 1;
5126 }
c906108c 5127 else
c5aa993b
JM
5128 {
5129 warning ("Unable to enable interception of exception catches.");
5130 warning ("Executable may not have been compiled debuggable with HP aCC.");
5131 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5132 return 0;
5133 }
c906108c
SS
5134 }
5135
c906108c
SS
5136 /* Next look for the catch enable flag provided end.o */
5137 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
176620f1 5138 VAR_DOMAIN, 0, (struct symtab **) NULL);
c5aa993b 5139 if (sym) /* sometimes present in debug info */
c906108c
SS
5140 {
5141 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
5142 hp_cxx_exception_support = 1;
5143 }
c5aa993b
JM
5144 else
5145 /* otherwise look in SOM symbol dict. */
c906108c
SS
5146 {
5147 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
5148 if (msym)
c5aa993b
JM
5149 {
5150 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
5151 hp_cxx_exception_support = 1;
5152 }
c906108c 5153 else
c5aa993b
JM
5154 {
5155 warning ("Unable to enable interception of exception throws.");
5156 warning ("Executable may not have been compiled debuggable with HP aCC.");
5157 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5158 return 0;
5159 }
c906108c
SS
5160 }
5161
c5aa993b
JM
5162 /* Set the flags */
5163 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
5164 hp_cxx_exception_support_initialized = 1;
5165 exception_support_initialized = 1;
5166
5167 return 1;
5168}
5169
5170/* Target operation for enabling or disabling interception of
5171 exception events.
5172 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
5173 ENABLE is either 0 (disable) or 1 (enable).
5174 Return value is NULL if no support found;
5175 -1 if something went wrong,
5176 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 5177 address was found. */
c906108c 5178
c5aa993b 5179struct symtab_and_line *
fba45db2 5180child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
5181{
5182 char buf[4];
5183
5184 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
5185 if (!initialize_hp_cxx_exception_support ())
5186 return NULL;
5187
5188 switch (hp_cxx_exception_support)
5189 {
c5aa993b
JM
5190 case 0:
5191 /* Assuming no HP support at all */
5192 return NULL;
5193 case 1:
5194 /* HP support should be present, but something went wrong */
5195 return (struct symtab_and_line *) -1; /* yuck! */
5196 /* there may be other cases in the future */
c906108c 5197 }
c5aa993b 5198
c906108c 5199 /* Set the EH hook to point to the callback routine */
c5aa993b 5200 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 5201 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 5202 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
5203 {
5204 warning ("Could not write to target memory for exception event callback.");
5205 warning ("Interception of exception events may not work.");
c5aa993b 5206 return (struct symtab_and_line *) -1;
c906108c
SS
5207 }
5208 if (enable)
5209 {
c5aa993b 5210 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 5211 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
5212 {
5213 if (setup_d_pid_in_inferior ())
5214 return (struct symtab_and_line *) -1;
5215 }
c906108c 5216 else
c5aa993b 5217 {
104c1213
JM
5218 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
5219 return (struct symtab_and_line *) -1;
c5aa993b 5220 }
c906108c 5221 }
c5aa993b 5222
c906108c
SS
5223 switch (kind)
5224 {
c5aa993b
JM
5225 case EX_EVENT_THROW:
5226 store_unsigned_integer (buf, 4, enable ? 1 : 0);
5227 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
5228 {
5229 warning ("Couldn't enable exception throw interception.");
5230 return (struct symtab_and_line *) -1;
5231 }
5232 break;
5233 case EX_EVENT_CATCH:
5234 store_unsigned_integer (buf, 4, enable ? 1 : 0);
5235 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
5236 {
5237 warning ("Couldn't enable exception catch interception.");
5238 return (struct symtab_and_line *) -1;
5239 }
5240 break;
104c1213
JM
5241 default:
5242 error ("Request to enable unknown or unsupported exception event.");
c906108c 5243 }
c5aa993b 5244
c906108c
SS
5245 /* Copy break address into new sal struct, malloc'ing if needed. */
5246 if (!break_callback_sal)
5247 {
5248 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
5249 }
fe39c653 5250 init_sal (break_callback_sal);
c906108c
SS
5251 break_callback_sal->symtab = NULL;
5252 break_callback_sal->pc = eh_break_addr;
5253 break_callback_sal->line = 0;
5254 break_callback_sal->end = eh_break_addr;
c5aa993b 5255
c906108c
SS
5256 return break_callback_sal;
5257}
5258
c5aa993b 5259/* Record some information about the current exception event */
c906108c 5260static struct exception_event_record current_ex_event;
c5aa993b
JM
5261/* Convenience struct */
5262static struct symtab_and_line null_symtab_and_line =
5263{NULL, 0, 0, 0};
c906108c
SS
5264
5265/* Report current exception event. Returns a pointer to a record
5266 that describes the kind of the event, where it was thrown from,
5267 and where it will be caught. More information may be reported
c5aa993b 5268 in the future */
c906108c 5269struct exception_event_record *
fba45db2 5270child_get_current_exception_event (void)
c906108c 5271{
c5aa993b
JM
5272 CORE_ADDR event_kind;
5273 CORE_ADDR throw_addr;
5274 CORE_ADDR catch_addr;
c906108c
SS
5275 struct frame_info *fi, *curr_frame;
5276 int level = 1;
5277
c5aa993b 5278 curr_frame = get_current_frame ();
c906108c
SS
5279 if (!curr_frame)
5280 return (struct exception_event_record *) NULL;
5281
5282 /* Go up one frame to __d_eh_notify_callback, because at the
5283 point when this code is executed, there's garbage in the
5284 arguments of __d_eh_break. */
5285 fi = find_relative_frame (curr_frame, &level);
5286 if (level != 0)
5287 return (struct exception_event_record *) NULL;
5288
0f7d239c 5289 select_frame (fi);
c906108c
SS
5290
5291 /* Read in the arguments */
5292 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
5293 1. event kind catch or throw
5294 2. the target address if known
5295 3. a flag -- not sure what this is. pai/1997-07-17 */
5296 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
5297 catch_addr = read_register (ARG1_REGNUM);
5298
5299 /* Now go down to a user frame */
5300 /* For a throw, __d_eh_break is called by
c5aa993b
JM
5301 __d_eh_notify_callback which is called by
5302 __notify_throw which is called
5303 from user code.
c906108c 5304 For a catch, __d_eh_break is called by
c5aa993b
JM
5305 __d_eh_notify_callback which is called by
5306 <stackwalking stuff> which is called by
5307 __throw__<stuff> or __rethrow_<stuff> which is called
5308 from user code. */
5309 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
5310 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
5311 fi = find_relative_frame (curr_frame, &level);
5312 if (level != 0)
5313 return (struct exception_event_record *) NULL;
5314
0f7d239c 5315 select_frame (fi);
ef6e7e13 5316 throw_addr = get_frame_pc (fi);
c906108c
SS
5317
5318 /* Go back to original (top) frame */
0f7d239c 5319 select_frame (curr_frame);
c906108c
SS
5320
5321 current_ex_event.kind = (enum exception_event_kind) event_kind;
5322 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
5323 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
5324
5325 return &current_ex_event;
5326}
5327
9a043c1d
AC
5328/* Instead of this nasty cast, add a method pvoid() that prints out a
5329 host VOID data type (remember %p isn't portable). */
5330
5331static CORE_ADDR
5332hppa_pointer_to_address_hack (void *ptr)
5333{
5334 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
5335 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
5336}
5337
c906108c 5338static void
fba45db2 5339unwind_command (char *exp, int from_tty)
c906108c
SS
5340{
5341 CORE_ADDR address;
5342 struct unwind_table_entry *u;
5343
5344 /* If we have an expression, evaluate it and use it as the address. */
5345
5346 if (exp != 0 && *exp != 0)
5347 address = parse_and_eval_address (exp);
5348 else
5349 return;
5350
5351 u = find_unwind_entry (address);
5352
5353 if (!u)
5354 {
5355 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
5356 return;
5357 }
5358
ce414844 5359 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 5360 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
5361
5362 printf_unfiltered ("\tregion_start = ");
5363 print_address (u->region_start, gdb_stdout);
5364
5365 printf_unfiltered ("\n\tregion_end = ");
5366 print_address (u->region_end, gdb_stdout);
5367
c906108c 5368#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
5369
5370 printf_unfiltered ("\n\tflags =");
5371 pif (Cannot_unwind);
5372 pif (Millicode);
5373 pif (Millicode_save_sr0);
5374 pif (Entry_SR);
5375 pif (Args_stored);
5376 pif (Variable_Frame);
5377 pif (Separate_Package_Body);
5378 pif (Frame_Extension_Millicode);
5379 pif (Stack_Overflow_Check);
5380 pif (Two_Instruction_SP_Increment);
5381 pif (Ada_Region);
5382 pif (Save_SP);
5383 pif (Save_RP);
5384 pif (Save_MRP_in_frame);
5385 pif (extn_ptr_defined);
5386 pif (Cleanup_defined);
5387 pif (MPE_XL_interrupt_marker);
5388 pif (HP_UX_interrupt_marker);
5389 pif (Large_frame);
5390
5391 putchar_unfiltered ('\n');
5392
c906108c 5393#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
5394
5395 pin (Region_description);
5396 pin (Entry_FR);
5397 pin (Entry_GR);
5398 pin (Total_frame_size);
5399}
c906108c 5400
c2c6d25f 5401void
fba45db2 5402hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
5403{
5404 /* To step over a breakpoint instruction on the PA takes some
5405 fiddling with the instruction address queue.
5406
5407 When we stop at a breakpoint, the IA queue front (the instruction
5408 we're executing now) points at the breakpoint instruction, and
5409 the IA queue back (the next instruction to execute) points to
5410 whatever instruction we would execute after the breakpoint, if it
5411 were an ordinary instruction. This is the case even if the
5412 breakpoint is in the delay slot of a branch instruction.
5413
5414 Clearly, to step past the breakpoint, we need to set the queue
5415 front to the back. But what do we put in the back? What
5416 instruction comes after that one? Because of the branch delay
5417 slot, the next insn is always at the back + 4. */
5418 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
5419 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
5420
5421 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
5422 /* We can leave the tail's space the same, since there's no jump. */
5423}
5424
1cdb71fe
JL
5425/* Copy the function value from VALBUF into the proper location
5426 for a function return.
5427
5428 Called only in the context of the "return" command. */
5429
5430void
3ff7cf9e 5431hppa32_store_return_value (struct type *type, char *valbuf)
1cdb71fe
JL
5432{
5433 /* For software floating point, the return value goes into the
5434 integer registers. But we do not have any flag to key this on,
5435 so we always store the value into the integer registers.
5436
5437 If its a float value, then we also store it into the floating
5438 point registers. */
62700349 5439 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
73937e03
AC
5440 + (TYPE_LENGTH (type) > 4
5441 ? (8 - TYPE_LENGTH (type))
5442 : (4 - TYPE_LENGTH (type))),
5443 valbuf, TYPE_LENGTH (type));
77296879 5444 if (TYPE_CODE (type) == TYPE_CODE_FLT)
62700349 5445 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
73937e03 5446 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
5447}
5448
3ff7cf9e
JB
5449/* Same as hppa32_store_return_value(), but for the PA64 ABI. */
5450
5451void
5452hppa64_store_return_value (struct type *type, char *valbuf)
5453{
5454 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5455 deprecated_write_register_bytes
62700349 5456 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
3ff7cf9e
JB
5457 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5458 valbuf, TYPE_LENGTH (type));
5459 else if (is_integral_type(type))
5460 deprecated_write_register_bytes
62700349 5461 (DEPRECATED_REGISTER_BYTE (28)
3ff7cf9e
JB
5462 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5463 valbuf, TYPE_LENGTH (type));
5464 else if (TYPE_LENGTH (type) <= 8)
5465 deprecated_write_register_bytes
62700349 5466 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
3ff7cf9e
JB
5467 else if (TYPE_LENGTH (type) <= 16)
5468 {
62700349 5469 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
3ff7cf9e 5470 deprecated_write_register_bytes
62700349 5471 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
3ff7cf9e
JB
5472 }
5473}
5474
1cdb71fe
JL
5475/* Copy the function's return value into VALBUF.
5476
5477 This function is called only in the context of "target function calls",
5478 ie. when the debugger forces a function to be called in the child, and
5479 when the debugger forces a fucntion to return prematurely via the
5480 "return" command. */
5481
5482void
3ff7cf9e 5483hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1cdb71fe 5484{
77296879 5485 if (TYPE_CODE (type) == TYPE_CODE_FLT)
62700349 5486 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
1cdb71fe
JL
5487 else
5488 memcpy (valbuf,
3ff7cf9e 5489 (regbuf
62700349 5490 + DEPRECATED_REGISTER_BYTE (28)
1cdb71fe
JL
5491 + (TYPE_LENGTH (type) > 4
5492 ? (8 - TYPE_LENGTH (type))
5493 : (4 - TYPE_LENGTH (type)))),
5494 TYPE_LENGTH (type));
5495}
4facf7e8 5496
3ff7cf9e
JB
5497/* Same as hppa32_extract_return_value but for the PA64 ABI case. */
5498
5499void
5500hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
5501{
5502 /* RM: Floats are returned in FR4R, doubles in FR4.
5503 Integral values are in r28, padded on the left.
5504 Aggregates less that 65 bits are in r28, right padded.
5505 Aggregates upto 128 bits are in r28 and r29, right padded. */
5506 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5507 memcpy (valbuf,
62700349 5508 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
3ff7cf9e
JB
5509 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5510 TYPE_LENGTH (type));
5511 else if (is_integral_type(type))
5512 memcpy (valbuf,
62700349 5513 regbuf + DEPRECATED_REGISTER_BYTE (28)
3ff7cf9e
JB
5514 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5515 TYPE_LENGTH (type));
5516 else if (TYPE_LENGTH (type) <= 8)
62700349
AC
5517 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
5518 TYPE_LENGTH (type));
3ff7cf9e
JB
5519 else if (TYPE_LENGTH (type) <= 16)
5520 {
62700349
AC
5521 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
5522 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
5523 TYPE_LENGTH (type) - 8);
3ff7cf9e
JB
5524 }
5525}
5526
d709c020
JB
5527int
5528hppa_reg_struct_has_addr (int gcc_p, struct type *type)
5529{
5530 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
5531 via a pointer regardless of its type or the compiler used. */
5532 return (TYPE_LENGTH (type) > 8);
5533}
5534
5535int
5536hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
5537{
5538 /* Stack grows upward */
5539 return (lhs > rhs);
5540}
5541
5542CORE_ADDR
3ff7cf9e 5543hppa32_stack_align (CORE_ADDR sp)
d709c020
JB
5544{
5545 /* elz: adjust the quantity to the next highest value which is
5546 64-bit aligned. This is used in valops.c, when the sp is adjusted.
5547 On hppa the sp must always be kept 64-bit aligned */
5548 return ((sp % 8) ? (sp + 7) & -8 : sp);
5549}
5550
3ff7cf9e
JB
5551CORE_ADDR
5552hppa64_stack_align (CORE_ADDR sp)
5553{
5554 /* The PA64 ABI mandates a 16 byte stack alignment. */
5555 return ((sp % 16) ? (sp + 15) & -16 : sp);
5556}
5557
d709c020
JB
5558int
5559hppa_pc_requires_run_before_use (CORE_ADDR pc)
5560{
5561 /* Sometimes we may pluck out a minimal symbol that has a negative address.
5562
5563 An example of this occurs when an a.out is linked against a foo.sl.
5564 The foo.sl defines a global bar(), and the a.out declares a signature
5565 for bar(). However, the a.out doesn't directly call bar(), but passes
5566 its address in another call.
5567
5568 If you have this scenario and attempt to "break bar" before running,
5569 gdb will find a minimal symbol for bar() in the a.out. But that
5570 symbol's address will be negative. What this appears to denote is
5571 an index backwards from the base of the procedure linkage table (PLT)
5572 into the data linkage table (DLT), the end of which is contiguous
5573 with the start of the PLT. This is clearly not a valid address for
5574 us to set a breakpoint on.
5575
5576 Note that one must be careful in how one checks for a negative address.
5577 0xc0000000 is a legitimate address of something in a shared text
5578 segment, for example. Since I don't know what the possible range
5579 is of these "really, truly negative" addresses that come from the
5580 minimal symbols, I'm resorting to the gross hack of checking the
5581 top byte of the address for all 1's. Sigh. */
5582
5583 return (!target_has_stack && (pc & 0xFF000000));
5584}
5585
5586int
5587hppa_instruction_nullified (void)
5588{
5589 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
5590 avoid the type cast. I'm leaving it as is for now as I'm doing
5591 semi-mechanical multiarching-related changes. */
5592 const int ipsw = (int) read_register (IPSW_REGNUM);
5593 const int flags = (int) read_register (FLAGS_REGNUM);
5594
5595 return ((ipsw & 0x00200000) && !(flags & 0x2));
5596}
5597
60e1ff27
JB
5598int
5599hppa_register_raw_size (int reg_nr)
5600{
5601 /* All registers have the same size. */
b1e29e33 5602 return DEPRECATED_REGISTER_SIZE;
60e1ff27
JB
5603}
5604
d709c020
JB
5605/* Index within the register vector of the first byte of the space i
5606 used for register REG_NR. */
5607
5608int
5609hppa_register_byte (int reg_nr)
5610{
3ff7cf9e
JB
5611 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5612
5613 return reg_nr * tdep->bytes_per_address;
d709c020
JB
5614}
5615
5616/* Return the GDB type object for the "standard" data type of data
5617 in register N. */
5618
5619struct type *
3ff7cf9e 5620hppa32_register_virtual_type (int reg_nr)
d709c020
JB
5621{
5622 if (reg_nr < FP4_REGNUM)
5623 return builtin_type_int;
5624 else
5625 return builtin_type_float;
5626}
5627
3ff7cf9e
JB
5628/* Return the GDB type object for the "standard" data type of data
5629 in register N. hppa64 version. */
5630
5631struct type *
5632hppa64_register_virtual_type (int reg_nr)
5633{
5634 if (reg_nr < FP4_REGNUM)
5635 return builtin_type_unsigned_long_long;
5636 else
5637 return builtin_type_double;
5638}
5639
d709c020
JB
5640/* Store the address of the place in which to copy the structure the
5641 subroutine will return. This is called from call_function. */
5642
5643void
5644hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5645{
5646 write_register (28, addr);
5647}
d709c020
JB
5648/* Return True if REGNUM is not a register available to the user
5649 through ptrace(). */
5650
5651int
5652hppa_cannot_store_register (int regnum)
5653{
5654 return (regnum == 0
5655 || regnum == PCSQ_HEAD_REGNUM
5656 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5657 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5658
5659}
5660
d709c020
JB
5661CORE_ADDR
5662hppa_smash_text_address (CORE_ADDR addr)
5663{
5664 /* The low two bits of the PC on the PA contain the privilege level.
5665 Some genius implementing a (non-GCC) compiler apparently decided
5666 this means that "addresses" in a text section therefore include a
5667 privilege level, and thus symbol tables should contain these bits.
5668 This seems like a bonehead thing to do--anyway, it seems to work
5669 for our purposes to just ignore those bits. */
5670
5671 return (addr &= ~0x3);
5672}
5673
143985b7
AF
5674/* Get the ith function argument for the current function. */
5675CORE_ADDR
5676hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5677 struct type *type)
5678{
5679 CORE_ADDR addr;
7f5f525d 5680 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
143985b7
AF
5681 return addr;
5682}
5683
8e8b2dba
MC
5684/* Here is a table of C type sizes on hppa with various compiles
5685 and options. I measured this on PA 9000/800 with HP-UX 11.11
5686 and these compilers:
5687
5688 /usr/ccs/bin/cc HP92453-01 A.11.01.21
5689 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
5690 /opt/aCC/bin/aCC B3910B A.03.45
5691 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
5692
5693 cc : 1 2 4 4 8 : 4 8 -- : 4 4
5694 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5695 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5696 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5697 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5698 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5699 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5700 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
5701
5702 Each line is:
5703
5704 compiler and options
5705 char, short, int, long, long long
5706 float, double, long double
5707 char *, void (*)()
5708
5709 So all these compilers use either ILP32 or LP64 model.
5710 TODO: gcc has more options so it needs more investigation.
5711
a2379359
MC
5712 For floating point types, see:
5713
5714 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
5715 HP-UX floating-point guide, hpux 11.00
5716
8e8b2dba
MC
5717 -- chastain 2003-12-18 */
5718
e6e68f1f
JB
5719static struct gdbarch *
5720hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5721{
3ff7cf9e 5722 struct gdbarch_tdep *tdep;
e6e68f1f 5723 struct gdbarch *gdbarch;
59623e27
JB
5724
5725 /* Try to determine the ABI of the object we are loading. */
4be87837 5726 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 5727 {
4be87837
DJ
5728 /* If it's a SOM file, assume it's HP/UX SOM. */
5729 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5730 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 5731 }
e6e68f1f
JB
5732
5733 /* find a candidate among the list of pre-declared architectures. */
5734 arches = gdbarch_list_lookup_by_info (arches, &info);
5735 if (arches != NULL)
5736 return (arches->gdbarch);
5737
5738 /* If none found, then allocate and initialize one. */
3ff7cf9e
JB
5739 tdep = XMALLOC (struct gdbarch_tdep);
5740 gdbarch = gdbarch_alloc (&info, tdep);
5741
5742 /* Determine from the bfd_arch_info structure if we are dealing with
5743 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5744 then default to a 32bit machine. */
5745 if (info.bfd_arch_info != NULL)
5746 tdep->bytes_per_address =
5747 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5748 else
5749 tdep->bytes_per_address = 4;
5750
5751 /* Some parts of the gdbarch vector depend on whether we are running
5752 on a 32 bits or 64 bits target. */
5753 switch (tdep->bytes_per_address)
5754 {
5755 case 4:
5756 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5757 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5758 set_gdbarch_deprecated_register_virtual_type
5759 (gdbarch, hppa32_register_virtual_type);
3ff7cf9e
JB
5760 break;
5761 case 8:
5762 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5763 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5764 set_gdbarch_deprecated_register_virtual_type
5765 (gdbarch, hppa64_register_virtual_type);
3ff7cf9e
JB
5766 break;
5767 default:
5768 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5769 tdep->bytes_per_address);
5770 }
5771
5772 /* The following gdbarch vector elements depend on other parts of this
5773 vector which have been set above, depending on the ABI. */
5774 set_gdbarch_deprecated_register_bytes
5775 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5776 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 5777 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 5778
8e8b2dba
MC
5779 /* The following gdbarch vector elements are the same in both ILP32
5780 and LP64, but might show differences some day. */
5781 set_gdbarch_long_long_bit (gdbarch, 64);
5782 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 5783 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 5784
3ff7cf9e
JB
5785 /* The following gdbarch vector elements do not depend on the address
5786 size, or in any other gdbarch element previously set. */
60383d10
JB
5787 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5788 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5789 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5790 set_gdbarch_in_solib_return_trampoline (gdbarch,
5791 hppa_in_solib_return_trampoline);
60383d10 5792 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
3ff7cf9e 5793 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
0ba6dca9 5794 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
60383d10
JB
5795 set_gdbarch_sp_regnum (gdbarch, 30);
5796 set_gdbarch_fp0_regnum (gdbarch, 64);
5797 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
9c04cab7 5798 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
9c04cab7
AC
5799 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5800 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
3ff7cf9e 5801 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
a0ed5532 5802 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
60383d10 5803 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
b6fbdd1d 5804 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
5805 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5806 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5807 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5808 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
0ba6dca9 5809 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
60383d10 5810
143985b7
AF
5811 /* Helper for function argument information. */
5812 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5813
36482093
AC
5814 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5815
3a3bc038
AC
5816 /* When a hardware watchpoint triggers, we'll move the inferior past
5817 it by removing all eventpoints; stepping past the instruction
5818 that caused the trigger; reinserting eventpoints; and checking
5819 whether any watched location changed. */
5820 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5821
5979bc46 5822 /* Inferior function call methods. */
e963316f 5823 if (0)
5979bc46 5824 {
2f690297
AC
5825 set_gdbarch_frame_align (gdbarch, hppa_frame_align);
5826 switch (tdep->bytes_per_address)
5827 {
5828 case 4:
5829 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
5830 break;
5831 case 8:
5832 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
5833 break;
5834 }
5979bc46 5835 }
e963316f
AC
5836 else
5837 {
5838 switch (tdep->bytes_per_address)
5839 {
5840 case 4:
5841 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa32_call_dummy_length);
5842 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5843 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
e963316f
AC
5844 break;
5845 case 8:
5846 set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, hppa64_call_dummy_breakpoint_offset);
5847 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa64_call_dummy_length);
5848 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
fad850b2
AC
5849 break;
5850 }
5851 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5852 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5853 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
abf9b42d
AC
5854 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
5855 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
5856 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
fad850b2
AC
5857 }
5858
5859 /* Struct return methods. */
5860 if (0)
5861 {
537987fc
AC
5862 switch (tdep->bytes_per_address)
5863 {
5864 case 4:
5865 set_gdbarch_return_value (gdbarch, hppa32_return_value);
5866 break;
5867 case 8:
5868 set_gdbarch_return_value (gdbarch, hppa64_return_value);
5869 break;
5870 default:
5871 internal_error (__FILE__, __LINE__, "bad switch");
5872 }
fad850b2
AC
5873 }
5874 else
5875 {
5876 switch (tdep->bytes_per_address)
5877 {
5878 case 4:
5879 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa32_extract_return_value);
5880 set_gdbarch_use_struct_convention (gdbarch, hppa32_use_struct_convention);
5881 set_gdbarch_deprecated_store_return_value (gdbarch, hppa32_store_return_value);
5882 break;
5883 case 8:
e963316f
AC
5884 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa64_extract_return_value);
5885 set_gdbarch_use_struct_convention (gdbarch, hppa64_use_struct_convention);
5886 set_gdbarch_deprecated_store_return_value (gdbarch, hppa64_store_return_value);
5887 break;
5888 }
5889 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
e963316f
AC
5890 }
5891
5979bc46 5892 /* Frame unwind methods. */
e963316f
AC
5893 if (0)
5894 {
26d08f08
AC
5895 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
5896 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
5897 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
5898 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
e963316f
AC
5899 }
5900 else
5901 {
5902 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5903 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
5904 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, hppa_frame_init_saved_regs);
5905 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5906 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5907 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5908 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, hppa_frameless_function_invocation);
5909 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5910 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5911 }
5979bc46 5912
752d4ac1
JB
5913 /* Hook in ABI-specific overrides, if they have been registered. */
5914 gdbarch_init_osabi (info, gdbarch);
5915
e6e68f1f
JB
5916 return gdbarch;
5917}
5918
5919static void
5920hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5921{
5922 /* Nothing to print for the moment. */
5923}
5924
4facf7e8
JB
5925void
5926_initialize_hppa_tdep (void)
5927{
5928 struct cmd_list_element *c;
5929 void break_at_finish_command (char *arg, int from_tty);
5930 void tbreak_at_finish_command (char *arg, int from_tty);
5931 void break_at_finish_at_depth_command (char *arg, int from_tty);
5932
e6e68f1f 5933 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8
JB
5934
5935 add_cmd ("unwind", class_maintenance, unwind_command,
5936 "Print unwind table entry at given address.",
5937 &maintenanceprintlist);
5938
5939 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5940 break_at_finish_command,
5941 concat ("Set breakpoint at procedure exit. \n\
5942Argument may be function name, or \"*\" and an address.\n\
5943If function is specified, break at end of code for that function.\n\
5944If an address is specified, break at the end of the function that contains \n\
5945that exact address.\n",
5946 "With no arg, uses current execution address of selected stack frame.\n\
5947This is useful for breaking on return to a stack frame.\n\
5948\n\
5949Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5950\n\
5951Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5952 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5953 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5954 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5955 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5956
5957 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5958 tbreak_at_finish_command,
5959"Set temporary breakpoint at procedure exit. Either there should\n\
5960be no argument or the argument must be a depth.\n"), NULL);
5961 set_cmd_completer (c, location_completer);
5962
5963 if (xdb_commands)
5964 deprecate_cmd (add_com ("bx", class_breakpoint,
5965 break_at_finish_at_depth_command,
5966"Set breakpoint at procedure exit. Either there should\n\
5967be no argument or the argument must be a depth.\n"), NULL);
5968}
5969
This page took 0.648676 seconds and 4 git commands to generate.