* solib-svr4.c: Add include of "auxv.h".
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
96baa820
JM
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
6a6b96b9 81static int prepare_to_proceed (int);
ea67f13b 82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
c906108c
SS
85int inferior_ignoring_leading_exec_events = 0;
86
5fbbeb29
CF
87/* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90int step_stop_if_no_debug = 0;
920d2a44
AC
91static void
92show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94{
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96}
5fbbeb29 97
43ff13b4 98/* In asynchronous mode, but simulating synchronous execution. */
96baa820 99
43ff13b4
JM
100int sync_execution = 0;
101
c906108c
SS
102/* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
96baa820
JM
104 running in. */
105
39f77062 106static ptid_t previous_inferior_ptid;
7a292a7a
SS
107
108/* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111#ifndef MAY_FOLLOW_EXEC
112#define MAY_FOLLOW_EXEC (0)
c906108c
SS
113#endif
114
7a292a7a
SS
115static int may_follow_exec = MAY_FOLLOW_EXEC;
116
527159b7 117static int debug_infrun = 0;
920d2a44
AC
118static void
119show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123}
527159b7 124
d4f3574e
SS
125/* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
ca557f44
AC
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
d4f3574e
SS
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
c906108c 163
c906108c
SS
164/* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172#ifndef SOLIB_IN_DYNAMIC_LINKER
173#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174#endif
175
c2c6d25f 176
7a292a7a
SS
177/* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
692590c1
MS
180#ifndef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 0
182#else
183#undef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 1
185#endif
186
c906108c
SS
187/* Tables of how to react to signals; the user sets them. */
188
189static unsigned char *signal_stop;
190static unsigned char *signal_print;
191static unsigned char *signal_program;
192
193#define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201#define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
39f77062
KB
209/* Value to pass to target_resume() to cause all threads to resume */
210
211#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
212
213/* Command list pointer for the "stop" placeholder. */
214
215static struct cmd_list_element *stop_command;
216
217/* Nonzero if breakpoints are now inserted in the inferior. */
218
219static int breakpoints_inserted;
220
221/* Function inferior was in as of last step command. */
222
223static struct symbol *step_start_function;
224
225/* Nonzero if we are expecting a trace trap and should proceed from it. */
226
227static int trap_expected;
228
c906108c
SS
229/* Nonzero if we want to give control to the user when we're notified
230 of shared library events by the dynamic linker. */
231static int stop_on_solib_events;
920d2a44
AC
232static void
233show_stop_on_solib_events (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
237 value);
238}
c906108c 239
c906108c
SS
240/* Nonzero means expecting a trace trap
241 and should stop the inferior and return silently when it happens. */
242
243int stop_after_trap;
244
245/* Nonzero means expecting a trap and caller will handle it themselves.
246 It is used after attach, due to attaching to a process;
247 when running in the shell before the child program has been exec'd;
248 and when running some kinds of remote stuff (FIXME?). */
249
c0236d92 250enum stop_kind stop_soon;
c906108c
SS
251
252/* Nonzero if proceed is being used for a "finish" command or a similar
253 situation when stop_registers should be saved. */
254
255int proceed_to_finish;
256
257/* Save register contents here when about to pop a stack dummy frame,
258 if-and-only-if proceed_to_finish is set.
259 Thus this contains the return value from the called function (assuming
260 values are returned in a register). */
261
72cec141 262struct regcache *stop_registers;
c906108c 263
c906108c
SS
264/* Nonzero after stop if current stack frame should be printed. */
265
266static int stop_print_frame;
267
268static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 269
e02bc4cc 270/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
271 returned by target_wait()/deprecated_target_wait_hook(). This
272 information is returned by get_last_target_status(). */
39f77062 273static ptid_t target_last_wait_ptid;
e02bc4cc
DS
274static struct target_waitstatus target_last_waitstatus;
275
c906108c
SS
276/* This is used to remember when a fork, vfork or exec event
277 was caught by a catchpoint, and thus the event is to be
278 followed at the next resume of the inferior, and not
279 immediately. */
280static struct
488f131b
JB
281{
282 enum target_waitkind kind;
283 struct
c906108c 284 {
488f131b 285 int parent_pid;
488f131b 286 int child_pid;
c906108c 287 }
488f131b
JB
288 fork_event;
289 char *execd_pathname;
290}
c906108c
SS
291pending_follow;
292
53904c9e
AC
293static const char follow_fork_mode_child[] = "child";
294static const char follow_fork_mode_parent[] = "parent";
295
488f131b 296static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
297 follow_fork_mode_child,
298 follow_fork_mode_parent,
299 NULL
ef346e04 300};
c906108c 301
53904c9e 302static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
303static void
304show_follow_fork_mode_string (struct ui_file *file, int from_tty,
305 struct cmd_list_element *c, const char *value)
306{
307 fprintf_filtered (file, _("\
308Debugger response to a program call of fork or vfork is \"%s\".\n"),
309 value);
310}
c906108c
SS
311\f
312
6604731b 313static int
4ef3f3be 314follow_fork (void)
c906108c 315{
ea1dd7bc 316 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 317
6604731b 318 return target_follow_fork (follow_child);
c906108c
SS
319}
320
6604731b
DJ
321void
322follow_inferior_reset_breakpoints (void)
c906108c 323{
6604731b
DJ
324 /* Was there a step_resume breakpoint? (There was if the user
325 did a "next" at the fork() call.) If so, explicitly reset its
326 thread number.
327
328 step_resumes are a form of bp that are made to be per-thread.
329 Since we created the step_resume bp when the parent process
330 was being debugged, and now are switching to the child process,
331 from the breakpoint package's viewpoint, that's a switch of
332 "threads". We must update the bp's notion of which thread
333 it is for, or it'll be ignored when it triggers. */
334
335 if (step_resume_breakpoint)
336 breakpoint_re_set_thread (step_resume_breakpoint);
337
338 /* Reinsert all breakpoints in the child. The user may have set
339 breakpoints after catching the fork, in which case those
340 were never set in the child, but only in the parent. This makes
341 sure the inserted breakpoints match the breakpoint list. */
342
343 breakpoint_re_set ();
344 insert_breakpoints ();
c906108c 345}
c906108c 346
1adeb98a
FN
347/* EXECD_PATHNAME is assumed to be non-NULL. */
348
c906108c 349static void
96baa820 350follow_exec (int pid, char *execd_pathname)
c906108c 351{
c906108c 352 int saved_pid = pid;
7a292a7a
SS
353 struct target_ops *tgt;
354
355 if (!may_follow_exec)
356 return;
c906108c 357
c906108c
SS
358 /* This is an exec event that we actually wish to pay attention to.
359 Refresh our symbol table to the newly exec'd program, remove any
360 momentary bp's, etc.
361
362 If there are breakpoints, they aren't really inserted now,
363 since the exec() transformed our inferior into a fresh set
364 of instructions.
365
366 We want to preserve symbolic breakpoints on the list, since
367 we have hopes that they can be reset after the new a.out's
368 symbol table is read.
369
370 However, any "raw" breakpoints must be removed from the list
371 (e.g., the solib bp's), since their address is probably invalid
372 now.
373
374 And, we DON'T want to call delete_breakpoints() here, since
375 that may write the bp's "shadow contents" (the instruction
376 value that was overwritten witha TRAP instruction). Since
377 we now have a new a.out, those shadow contents aren't valid. */
378 update_breakpoints_after_exec ();
379
380 /* If there was one, it's gone now. We cannot truly step-to-next
381 statement through an exec(). */
382 step_resume_breakpoint = NULL;
383 step_range_start = 0;
384 step_range_end = 0;
385
c906108c 386 /* What is this a.out's name? */
a3f17187 387 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
388
389 /* We've followed the inferior through an exec. Therefore, the
390 inferior has essentially been killed & reborn. */
7a292a7a
SS
391
392 /* First collect the run target in effect. */
393 tgt = find_run_target ();
394 /* If we can't find one, things are in a very strange state... */
395 if (tgt == NULL)
8a3fe4f8 396 error (_("Could find run target to save before following exec"));
7a292a7a 397
c906108c
SS
398 gdb_flush (gdb_stdout);
399 target_mourn_inferior ();
39f77062 400 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 401 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 402 push_target (tgt);
c906108c
SS
403
404 /* That a.out is now the one to use. */
405 exec_file_attach (execd_pathname, 0);
406
407 /* And also is where symbols can be found. */
1adeb98a 408 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
409
410 /* Reset the shared library package. This ensures that we get
411 a shlib event when the child reaches "_start", at which point
412 the dld will have had a chance to initialize the child. */
7a292a7a 413#if defined(SOLIB_RESTART)
c906108c 414 SOLIB_RESTART ();
7a292a7a
SS
415#endif
416#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 417 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
418#else
419 solib_create_inferior_hook ();
7a292a7a 420#endif
c906108c
SS
421
422 /* Reinsert all breakpoints. (Those which were symbolic have
423 been reset to the proper address in the new a.out, thanks
424 to symbol_file_command...) */
425 insert_breakpoints ();
426
427 /* The next resume of this inferior should bring it to the shlib
428 startup breakpoints. (If the user had also set bp's on
429 "main" from the old (parent) process, then they'll auto-
430 matically get reset there in the new process.) */
c906108c
SS
431}
432
433/* Non-zero if we just simulating a single-step. This is needed
434 because we cannot remove the breakpoints in the inferior process
435 until after the `wait' in `wait_for_inferior'. */
436static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
437
438/* The thread we inserted single-step breakpoints for. */
439static ptid_t singlestep_ptid;
440
fd48f117
DJ
441/* PC when we started this single-step. */
442static CORE_ADDR singlestep_pc;
443
9f976b41
DJ
444/* If another thread hit the singlestep breakpoint, we save the original
445 thread here so that we can resume single-stepping it later. */
446static ptid_t saved_singlestep_ptid;
447static int stepping_past_singlestep_breakpoint;
6a6b96b9
UW
448
449/* Similarly, if we are stepping another thread past a breakpoint,
450 save the original thread here so that we can resume stepping it later. */
451static ptid_t stepping_past_breakpoint_ptid;
452static int stepping_past_breakpoint;
c906108c
SS
453\f
454
455/* Things to clean up if we QUIT out of resume (). */
c906108c 456static void
74b7792f 457resume_cleanups (void *ignore)
c906108c
SS
458{
459 normal_stop ();
460}
461
53904c9e
AC
462static const char schedlock_off[] = "off";
463static const char schedlock_on[] = "on";
464static const char schedlock_step[] = "step";
488f131b 465static const char *scheduler_enums[] = {
ef346e04
AC
466 schedlock_off,
467 schedlock_on,
468 schedlock_step,
469 NULL
470};
920d2a44
AC
471static const char *scheduler_mode = schedlock_off;
472static void
473show_scheduler_mode (struct ui_file *file, int from_tty,
474 struct cmd_list_element *c, const char *value)
475{
476 fprintf_filtered (file, _("\
477Mode for locking scheduler during execution is \"%s\".\n"),
478 value);
479}
c906108c
SS
480
481static void
96baa820 482set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 483{
eefe576e
AC
484 if (!target_can_lock_scheduler)
485 {
486 scheduler_mode = schedlock_off;
487 error (_("Target '%s' cannot support this command."), target_shortname);
488 }
c906108c
SS
489}
490
491
492/* Resume the inferior, but allow a QUIT. This is useful if the user
493 wants to interrupt some lengthy single-stepping operation
494 (for child processes, the SIGINT goes to the inferior, and so
495 we get a SIGINT random_signal, but for remote debugging and perhaps
496 other targets, that's not true).
497
498 STEP nonzero if we should step (zero to continue instead).
499 SIG is the signal to give the inferior (zero for none). */
500void
96baa820 501resume (int step, enum target_signal sig)
c906108c
SS
502{
503 int should_resume = 1;
74b7792f 504 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
505 QUIT;
506
527159b7 507 if (debug_infrun)
8a9de0e4
AC
508 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
509 step, sig);
527159b7 510
ef5cf84e
MS
511 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
512
c906108c 513
692590c1
MS
514 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
515 over an instruction that causes a page fault without triggering
516 a hardware watchpoint. The kernel properly notices that it shouldn't
517 stop, because the hardware watchpoint is not triggered, but it forgets
518 the step request and continues the program normally.
519 Work around the problem by removing hardware watchpoints if a step is
520 requested, GDB will check for a hardware watchpoint trigger after the
521 step anyway. */
522 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
523 remove_hw_watchpoints ();
488f131b 524
692590c1 525
c2c6d25f
JM
526 /* Normally, by the time we reach `resume', the breakpoints are either
527 removed or inserted, as appropriate. The exception is if we're sitting
528 at a permanent breakpoint; we need to step over it, but permanent
529 breakpoints can't be removed. So we have to test for it here. */
530 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
6d350bb5
UW
531 {
532 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
594f7785
UW
533 gdbarch_skip_permanent_breakpoint (current_gdbarch,
534 get_current_regcache ());
6d350bb5
UW
535 else
536 error (_("\
537The program is stopped at a permanent breakpoint, but GDB does not know\n\
538how to step past a permanent breakpoint on this architecture. Try using\n\
539a command like `return' or `jump' to continue execution."));
540 }
c2c6d25f 541
1c0fdd0e 542 if (step && gdbarch_software_single_step_p (current_gdbarch))
c906108c
SS
543 {
544 /* Do it the hard way, w/temp breakpoints */
1c0fdd0e 545 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
e6590a1b
UW
546 {
547 /* ...and don't ask hardware to do it. */
548 step = 0;
549 /* and do not pull these breakpoints until after a `wait' in
550 `wait_for_inferior' */
551 singlestep_breakpoints_inserted_p = 1;
552 singlestep_ptid = inferior_ptid;
553 singlestep_pc = read_pc ();
554 }
c906108c
SS
555 }
556
c906108c 557 /* If there were any forks/vforks/execs that were caught and are
6604731b 558 now to be followed, then do so. */
c906108c
SS
559 switch (pending_follow.kind)
560 {
6604731b
DJ
561 case TARGET_WAITKIND_FORKED:
562 case TARGET_WAITKIND_VFORKED:
c906108c 563 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
564 if (follow_fork ())
565 should_resume = 0;
c906108c
SS
566 break;
567
6604731b 568 case TARGET_WAITKIND_EXECD:
c906108c 569 /* follow_exec is called as soon as the exec event is seen. */
6604731b 570 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
571 break;
572
573 default:
574 break;
575 }
c906108c
SS
576
577 /* Install inferior's terminal modes. */
578 target_terminal_inferior ();
579
580 if (should_resume)
581 {
39f77062 582 ptid_t resume_ptid;
dfcd3bfb 583
488f131b 584 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 585
8fb3e588
AC
586 if ((step || singlestep_breakpoints_inserted_p)
587 && (stepping_past_singlestep_breakpoint
588 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 589 {
ef5cf84e
MS
590 /* Stepping past a breakpoint without inserting breakpoints.
591 Make sure only the current thread gets to step, so that
592 other threads don't sneak past breakpoints while they are
593 not inserted. */
c906108c 594
ef5cf84e 595 resume_ptid = inferior_ptid;
c906108c 596 }
ef5cf84e 597
8fb3e588
AC
598 if ((scheduler_mode == schedlock_on)
599 || (scheduler_mode == schedlock_step
600 && (step || singlestep_breakpoints_inserted_p)))
c906108c 601 {
ef5cf84e 602 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 603 resume_ptid = inferior_ptid;
c906108c 604 }
ef5cf84e 605
e6cf7916 606 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
c4ed33b9
AC
607 {
608 /* Most targets can step a breakpoint instruction, thus
609 executing it normally. But if this one cannot, just
610 continue and we will hit it anyway. */
611 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
612 step = 0;
613 }
39f77062 614 target_resume (resume_ptid, step, sig);
c906108c
SS
615 }
616
617 discard_cleanups (old_cleanups);
618}
619\f
620
621/* Clear out all variables saying what to do when inferior is continued.
622 First do this, then set the ones you want, then call `proceed'. */
623
624void
96baa820 625clear_proceed_status (void)
c906108c
SS
626{
627 trap_expected = 0;
628 step_range_start = 0;
629 step_range_end = 0;
aa0cd9c1 630 step_frame_id = null_frame_id;
5fbbeb29 631 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 632 stop_after_trap = 0;
c0236d92 633 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
634 proceed_to_finish = 0;
635 breakpoint_proceeded = 1; /* We're about to proceed... */
636
d5c31457
UW
637 if (stop_registers)
638 {
639 regcache_xfree (stop_registers);
640 stop_registers = NULL;
641 }
642
c906108c
SS
643 /* Discard any remaining commands or status from previous stop. */
644 bpstat_clear (&stop_bpstat);
645}
646
ea67f13b
DJ
647/* This should be suitable for any targets that support threads. */
648
649static int
6a6b96b9 650prepare_to_proceed (int step)
ea67f13b
DJ
651{
652 ptid_t wait_ptid;
653 struct target_waitstatus wait_status;
654
655 /* Get the last target status returned by target_wait(). */
656 get_last_target_status (&wait_ptid, &wait_status);
657
6a6b96b9 658 /* Make sure we were stopped at a breakpoint. */
ea67f13b 659 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 660 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
661 {
662 return 0;
663 }
664
6a6b96b9 665 /* Switched over from WAIT_PID. */
ea67f13b 666 if (!ptid_equal (wait_ptid, minus_one_ptid)
6a6b96b9
UW
667 && !ptid_equal (inferior_ptid, wait_ptid)
668 && breakpoint_here_p (read_pc_pid (wait_ptid)))
ea67f13b 669 {
6a6b96b9
UW
670 /* If stepping, remember current thread to switch back to. */
671 if (step)
ea67f13b 672 {
6a6b96b9
UW
673 stepping_past_breakpoint = 1;
674 stepping_past_breakpoint_ptid = inferior_ptid;
ea67f13b
DJ
675 }
676
6a6b96b9
UW
677 /* Switch back to WAIT_PID thread. */
678 switch_to_thread (wait_ptid);
679
8fb3e588 680 /* We return 1 to indicate that there is a breakpoint here,
6a6b96b9
UW
681 so we need to step over it before continuing to avoid
682 hitting it straight away. */
683 return 1;
ea67f13b
DJ
684 }
685
686 return 0;
ea67f13b 687}
e4846b08
JJ
688
689/* Record the pc of the program the last time it stopped. This is
690 just used internally by wait_for_inferior, but need to be preserved
691 over calls to it and cleared when the inferior is started. */
692static CORE_ADDR prev_pc;
693
c906108c
SS
694/* Basic routine for continuing the program in various fashions.
695
696 ADDR is the address to resume at, or -1 for resume where stopped.
697 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 698 or -1 for act according to how it stopped.
c906108c 699 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
700 -1 means return after that and print nothing.
701 You should probably set various step_... variables
702 before calling here, if you are stepping.
c906108c
SS
703
704 You should call clear_proceed_status before calling proceed. */
705
706void
96baa820 707proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
708{
709 int oneproc = 0;
710
711 if (step > 0)
712 step_start_function = find_pc_function (read_pc ());
713 if (step < 0)
714 stop_after_trap = 1;
715
2acceee2 716 if (addr == (CORE_ADDR) -1)
c906108c 717 {
c906108c 718 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
719 /* There is a breakpoint at the address we will resume at,
720 step one instruction before inserting breakpoints so that
721 we do not stop right away (and report a second hit at this
722 breakpoint). */
c906108c 723 oneproc = 1;
3352ef37
AC
724 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
725 && gdbarch_single_step_through_delay (current_gdbarch,
726 get_current_frame ()))
727 /* We stepped onto an instruction that needs to be stepped
728 again before re-inserting the breakpoint, do so. */
c906108c
SS
729 oneproc = 1;
730 }
731 else
732 {
733 write_pc (addr);
c906108c
SS
734 }
735
527159b7 736 if (debug_infrun)
8a9de0e4
AC
737 fprintf_unfiltered (gdb_stdlog,
738 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
739 paddr_nz (addr), siggnal, step);
527159b7 740
c906108c
SS
741 /* In a multi-threaded task we may select another thread
742 and then continue or step.
743
744 But if the old thread was stopped at a breakpoint, it
745 will immediately cause another breakpoint stop without
746 any execution (i.e. it will report a breakpoint hit
747 incorrectly). So we must step over it first.
748
ea67f13b 749 prepare_to_proceed checks the current thread against the thread
c906108c
SS
750 that reported the most recent event. If a step-over is required
751 it returns TRUE and sets the current thread to the old thread. */
6a6b96b9 752 if (prepare_to_proceed (step))
ea67f13b 753 oneproc = 1;
c906108c 754
c906108c
SS
755 if (oneproc)
756 /* We will get a trace trap after one instruction.
757 Continue it automatically and insert breakpoints then. */
758 trap_expected = 1;
759 else
760 {
81d0cc19
GS
761 insert_breakpoints ();
762 /* If we get here there was no call to error() in
8fb3e588 763 insert breakpoints -- so they were inserted. */
c906108c
SS
764 breakpoints_inserted = 1;
765 }
766
767 if (siggnal != TARGET_SIGNAL_DEFAULT)
768 stop_signal = siggnal;
769 /* If this signal should not be seen by program,
770 give it zero. Used for debugging signals. */
771 else if (!signal_program[stop_signal])
772 stop_signal = TARGET_SIGNAL_0;
773
774 annotate_starting ();
775
776 /* Make sure that output from GDB appears before output from the
777 inferior. */
778 gdb_flush (gdb_stdout);
779
e4846b08
JJ
780 /* Refresh prev_pc value just prior to resuming. This used to be
781 done in stop_stepping, however, setting prev_pc there did not handle
782 scenarios such as inferior function calls or returning from
783 a function via the return command. In those cases, the prev_pc
784 value was not set properly for subsequent commands. The prev_pc value
785 is used to initialize the starting line number in the ecs. With an
786 invalid value, the gdb next command ends up stopping at the position
787 represented by the next line table entry past our start position.
788 On platforms that generate one line table entry per line, this
789 is not a problem. However, on the ia64, the compiler generates
790 extraneous line table entries that do not increase the line number.
791 When we issue the gdb next command on the ia64 after an inferior call
792 or a return command, we often end up a few instructions forward, still
793 within the original line we started.
794
795 An attempt was made to have init_execution_control_state () refresh
796 the prev_pc value before calculating the line number. This approach
797 did not work because on platforms that use ptrace, the pc register
798 cannot be read unless the inferior is stopped. At that point, we
799 are not guaranteed the inferior is stopped and so the read_pc ()
800 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 801 updated correctly when the inferior is stopped. */
e4846b08
JJ
802 prev_pc = read_pc ();
803
c906108c
SS
804 /* Resume inferior. */
805 resume (oneproc || step || bpstat_should_step (), stop_signal);
806
807 /* Wait for it to stop (if not standalone)
808 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
809 /* Do this only if we are not using the event loop, or if the target
810 does not support asynchronous execution. */
362646f5 811 if (!target_can_async_p ())
43ff13b4
JM
812 {
813 wait_for_inferior ();
814 normal_stop ();
815 }
c906108c 816}
c906108c
SS
817\f
818
819/* Start remote-debugging of a machine over a serial link. */
96baa820 820
c906108c 821void
8621d6a9 822start_remote (int from_tty)
c906108c
SS
823{
824 init_thread_list ();
825 init_wait_for_inferior ();
b0f4b84b 826 stop_soon = STOP_QUIETLY_REMOTE;
c906108c 827 trap_expected = 0;
43ff13b4 828
6426a772
JM
829 /* Always go on waiting for the target, regardless of the mode. */
830 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 831 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
832 nothing is returned (instead of just blocking). Because of this,
833 targets expecting an immediate response need to, internally, set
834 things up so that the target_wait() is forced to eventually
835 timeout. */
836 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
837 differentiate to its caller what the state of the target is after
838 the initial open has been performed. Here we're assuming that
839 the target has stopped. It should be possible to eventually have
840 target_open() return to the caller an indication that the target
841 is currently running and GDB state should be set to the same as
842 for an async run. */
843 wait_for_inferior ();
8621d6a9
DJ
844
845 /* Now that the inferior has stopped, do any bookkeeping like
846 loading shared libraries. We want to do this before normal_stop,
847 so that the displayed frame is up to date. */
848 post_create_inferior (&current_target, from_tty);
849
6426a772 850 normal_stop ();
c906108c
SS
851}
852
853/* Initialize static vars when a new inferior begins. */
854
855void
96baa820 856init_wait_for_inferior (void)
c906108c
SS
857{
858 /* These are meaningless until the first time through wait_for_inferior. */
859 prev_pc = 0;
c906108c 860
c906108c
SS
861 breakpoints_inserted = 0;
862 breakpoint_init_inferior (inf_starting);
863
864 /* Don't confuse first call to proceed(). */
865 stop_signal = TARGET_SIGNAL_0;
866
867 /* The first resume is not following a fork/vfork/exec. */
868 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 869
c906108c 870 clear_proceed_status ();
9f976b41
DJ
871
872 stepping_past_singlestep_breakpoint = 0;
6a6b96b9 873 stepping_past_breakpoint = 0;
c906108c 874}
c906108c 875\f
b83266a0
SS
876/* This enum encodes possible reasons for doing a target_wait, so that
877 wfi can call target_wait in one place. (Ultimately the call will be
878 moved out of the infinite loop entirely.) */
879
c5aa993b
JM
880enum infwait_states
881{
cd0fc7c3
SS
882 infwait_normal_state,
883 infwait_thread_hop_state,
cd0fc7c3 884 infwait_nonstep_watch_state
b83266a0
SS
885};
886
11cf8741
JM
887/* Why did the inferior stop? Used to print the appropriate messages
888 to the interface from within handle_inferior_event(). */
889enum inferior_stop_reason
890{
11cf8741
JM
891 /* Step, next, nexti, stepi finished. */
892 END_STEPPING_RANGE,
11cf8741
JM
893 /* Inferior terminated by signal. */
894 SIGNAL_EXITED,
895 /* Inferior exited. */
896 EXITED,
897 /* Inferior received signal, and user asked to be notified. */
898 SIGNAL_RECEIVED
899};
900
cd0fc7c3
SS
901/* This structure contains what used to be local variables in
902 wait_for_inferior. Probably many of them can return to being
903 locals in handle_inferior_event. */
904
c5aa993b 905struct execution_control_state
488f131b
JB
906{
907 struct target_waitstatus ws;
908 struct target_waitstatus *wp;
909 int another_trap;
910 int random_signal;
911 CORE_ADDR stop_func_start;
912 CORE_ADDR stop_func_end;
913 char *stop_func_name;
914 struct symtab_and_line sal;
488f131b
JB
915 int current_line;
916 struct symtab *current_symtab;
917 int handling_longjmp; /* FIXME */
918 ptid_t ptid;
919 ptid_t saved_inferior_ptid;
68f53502 920 int step_after_step_resume_breakpoint;
488f131b
JB
921 int stepping_through_solib_after_catch;
922 bpstat stepping_through_solib_catchpoints;
488f131b
JB
923 int new_thread_event;
924 struct target_waitstatus tmpstatus;
925 enum infwait_states infwait_state;
926 ptid_t waiton_ptid;
927 int wait_some_more;
928};
929
930void init_execution_control_state (struct execution_control_state *ecs);
931
932void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 933
c2c6d25f 934static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 935static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 936static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
937static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
938 struct frame_id sr_id);
104c1213
JM
939static void stop_stepping (struct execution_control_state *ecs);
940static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 941static void keep_going (struct execution_control_state *ecs);
488f131b
JB
942static void print_stop_reason (enum inferior_stop_reason stop_reason,
943 int stop_info);
104c1213 944
cd0fc7c3
SS
945/* Wait for control to return from inferior to debugger.
946 If inferior gets a signal, we may decide to start it up again
947 instead of returning. That is why there is a loop in this function.
948 When this function actually returns it means the inferior
949 should be left stopped and GDB should read more commands. */
950
951void
96baa820 952wait_for_inferior (void)
cd0fc7c3
SS
953{
954 struct cleanup *old_cleanups;
955 struct execution_control_state ecss;
956 struct execution_control_state *ecs;
c906108c 957
527159b7 958 if (debug_infrun)
8a9de0e4 959 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 960
8601f500 961 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 962 &step_resume_breakpoint);
cd0fc7c3
SS
963
964 /* wfi still stays in a loop, so it's OK just to take the address of
965 a local to get the ecs pointer. */
966 ecs = &ecss;
967
968 /* Fill in with reasonable starting values. */
969 init_execution_control_state (ecs);
970
c906108c 971 /* We'll update this if & when we switch to a new thread. */
39f77062 972 previous_inferior_ptid = inferior_ptid;
c906108c 973
cd0fc7c3
SS
974 overlay_cache_invalid = 1;
975
976 /* We have to invalidate the registers BEFORE calling target_wait
977 because they can be loaded from the target while in target_wait.
978 This makes remote debugging a bit more efficient for those
979 targets that provide critical registers as part of their normal
980 status mechanism. */
981
982 registers_changed ();
b83266a0 983
c906108c
SS
984 while (1)
985 {
9a4105ab
AC
986 if (deprecated_target_wait_hook)
987 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 988 else
39f77062 989 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 990
cd0fc7c3
SS
991 /* Now figure out what to do with the result of the result. */
992 handle_inferior_event (ecs);
c906108c 993
cd0fc7c3
SS
994 if (!ecs->wait_some_more)
995 break;
996 }
997 do_cleanups (old_cleanups);
998}
c906108c 999
43ff13b4
JM
1000/* Asynchronous version of wait_for_inferior. It is called by the
1001 event loop whenever a change of state is detected on the file
1002 descriptor corresponding to the target. It can be called more than
1003 once to complete a single execution command. In such cases we need
1004 to keep the state in a global variable ASYNC_ECSS. If it is the
1005 last time that this function is called for a single execution
1006 command, then report to the user that the inferior has stopped, and
1007 do the necessary cleanups. */
1008
1009struct execution_control_state async_ecss;
1010struct execution_control_state *async_ecs;
1011
1012void
fba45db2 1013fetch_inferior_event (void *client_data)
43ff13b4
JM
1014{
1015 static struct cleanup *old_cleanups;
1016
c5aa993b 1017 async_ecs = &async_ecss;
43ff13b4
JM
1018
1019 if (!async_ecs->wait_some_more)
1020 {
488f131b 1021 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1022 &step_resume_breakpoint);
43ff13b4
JM
1023
1024 /* Fill in with reasonable starting values. */
1025 init_execution_control_state (async_ecs);
1026
43ff13b4 1027 /* We'll update this if & when we switch to a new thread. */
39f77062 1028 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1029
1030 overlay_cache_invalid = 1;
1031
1032 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1033 because they can be loaded from the target while in target_wait.
1034 This makes remote debugging a bit more efficient for those
1035 targets that provide critical registers as part of their normal
1036 status mechanism. */
43ff13b4
JM
1037
1038 registers_changed ();
1039 }
1040
9a4105ab 1041 if (deprecated_target_wait_hook)
488f131b 1042 async_ecs->ptid =
9a4105ab 1043 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1044 else
39f77062 1045 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1046
1047 /* Now figure out what to do with the result of the result. */
1048 handle_inferior_event (async_ecs);
1049
1050 if (!async_ecs->wait_some_more)
1051 {
adf40b2e 1052 /* Do only the cleanups that have been added by this
488f131b
JB
1053 function. Let the continuations for the commands do the rest,
1054 if there are any. */
43ff13b4
JM
1055 do_exec_cleanups (old_cleanups);
1056 normal_stop ();
c2d11a7d
JM
1057 if (step_multi && stop_step)
1058 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1059 else
1060 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1061 }
1062}
1063
cd0fc7c3
SS
1064/* Prepare an execution control state for looping through a
1065 wait_for_inferior-type loop. */
1066
1067void
96baa820 1068init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1069{
6ad80df0 1070 ecs->another_trap = 0;
cd0fc7c3 1071 ecs->random_signal = 0;
68f53502 1072 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1073 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1074 ecs->stepping_through_solib_after_catch = 0;
1075 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1076 ecs->sal = find_pc_line (prev_pc, 0);
1077 ecs->current_line = ecs->sal.line;
1078 ecs->current_symtab = ecs->sal.symtab;
1079 ecs->infwait_state = infwait_normal_state;
39f77062 1080 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1081 ecs->wp = &(ecs->ws);
1082}
1083
e02bc4cc 1084/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1085 target_wait()/deprecated_target_wait_hook(). The data is actually
1086 cached by handle_inferior_event(), which gets called immediately
1087 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1088
1089void
488f131b 1090get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1091{
39f77062 1092 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1093 *status = target_last_waitstatus;
1094}
1095
ac264b3b
MS
1096void
1097nullify_last_target_wait_ptid (void)
1098{
1099 target_last_wait_ptid = minus_one_ptid;
1100}
1101
dd80620e
MS
1102/* Switch thread contexts, maintaining "infrun state". */
1103
1104static void
1105context_switch (struct execution_control_state *ecs)
1106{
1107 /* Caution: it may happen that the new thread (or the old one!)
1108 is not in the thread list. In this case we must not attempt
1109 to "switch context", or we run the risk that our context may
1110 be lost. This may happen as a result of the target module
1111 mishandling thread creation. */
1112
fd48f117
DJ
1113 if (debug_infrun)
1114 {
1115 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1116 target_pid_to_str (inferior_ptid));
1117 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1118 target_pid_to_str (ecs->ptid));
1119 }
1120
dd80620e 1121 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1122 { /* Perform infrun state context switch: */
dd80620e 1123 /* Save infrun state for the old thread. */
0ce3d317 1124 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1125 trap_expected, step_resume_breakpoint,
15960608 1126 step_range_start,
aa0cd9c1 1127 step_range_end, &step_frame_id,
dd80620e
MS
1128 ecs->handling_longjmp, ecs->another_trap,
1129 ecs->stepping_through_solib_after_catch,
1130 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1131 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1132
1133 /* Load infrun state for the new thread. */
0ce3d317 1134 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1135 &trap_expected, &step_resume_breakpoint,
15960608 1136 &step_range_start,
aa0cd9c1 1137 &step_range_end, &step_frame_id,
dd80620e
MS
1138 &ecs->handling_longjmp, &ecs->another_trap,
1139 &ecs->stepping_through_solib_after_catch,
1140 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1141 &ecs->current_line, &ecs->current_symtab);
dd80620e 1142 }
6a6b96b9
UW
1143
1144 switch_to_thread (ecs->ptid);
dd80620e
MS
1145}
1146
4fa8626c
DJ
1147static void
1148adjust_pc_after_break (struct execution_control_state *ecs)
1149{
8aad930b 1150 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1151
1152 /* If this target does not decrement the PC after breakpoints, then
1153 we have nothing to do. */
b798847d 1154 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
4fa8626c
DJ
1155 return;
1156
1157 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1158 we aren't, just return.
9709f61c
DJ
1159
1160 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1161 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1162 implemented by software breakpoints should be handled through the normal
1163 breakpoint layer.
8fb3e588 1164
4fa8626c
DJ
1165 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1166 different signals (SIGILL or SIGEMT for instance), but it is less
1167 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1168 gdbarch_decr_pc_after_break. I don't know any specific target that
1169 generates these signals at breakpoints (the code has been in GDB since at
1170 least 1992) so I can not guess how to handle them here.
8fb3e588 1171
e6cf7916
UW
1172 In earlier versions of GDB, a target with
1173 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1174 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1175 target with both of these set in GDB history, and it seems unlikely to be
1176 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1177
1178 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1179 return;
1180
1181 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1182 return;
1183
8aad930b
AC
1184 /* Find the location where (if we've hit a breakpoint) the
1185 breakpoint would be. */
b798847d
UW
1186 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1187 (current_gdbarch);
8aad930b 1188
1c0fdd0e
UW
1189 /* Check whether there actually is a software breakpoint inserted
1190 at that location. */
1191 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1192 {
1c0fdd0e
UW
1193 /* When using hardware single-step, a SIGTRAP is reported for both
1194 a completed single-step and a software breakpoint. Need to
1195 differentiate between the two, as the latter needs adjusting
1196 but the former does not.
1197
1198 The SIGTRAP can be due to a completed hardware single-step only if
1199 - we didn't insert software single-step breakpoints
1200 - the thread to be examined is still the current thread
1201 - this thread is currently being stepped
1202
1203 If any of these events did not occur, we must have stopped due
1204 to hitting a software breakpoint, and have to back up to the
1205 breakpoint address.
1206
1207 As a special case, we could have hardware single-stepped a
1208 software breakpoint. In this case (prev_pc == breakpoint_pc),
1209 we also need to back up to the breakpoint address. */
1210
1211 if (singlestep_breakpoints_inserted_p
1212 || !ptid_equal (ecs->ptid, inferior_ptid)
1213 || !currently_stepping (ecs)
1214 || prev_pc == breakpoint_pc)
8aad930b
AC
1215 write_pc_pid (breakpoint_pc, ecs->ptid);
1216 }
4fa8626c
DJ
1217}
1218
cd0fc7c3
SS
1219/* Given an execution control state that has been freshly filled in
1220 by an event from the inferior, figure out what it means and take
1221 appropriate action. */
c906108c 1222
7270d8f2
OF
1223int stepped_after_stopped_by_watchpoint;
1224
cd0fc7c3 1225void
96baa820 1226handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1227{
8bbde302
BE
1228 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1229 that the variable stepped_after_stopped_by_watchpoint isn't used,
1230 then you're wrong! See remote.c:remote_stopped_data_address. */
1231
c8edd8b4 1232 int sw_single_step_trap_p = 0;
8fb3e588 1233 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1234
e02bc4cc 1235 /* Cache the last pid/waitstatus. */
39f77062 1236 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1237 target_last_waitstatus = *ecs->wp;
1238
4fa8626c
DJ
1239 adjust_pc_after_break (ecs);
1240
488f131b
JB
1241 switch (ecs->infwait_state)
1242 {
1243 case infwait_thread_hop_state:
527159b7 1244 if (debug_infrun)
8a9de0e4 1245 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1246 /* Cancel the waiton_ptid. */
1247 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1248 break;
b83266a0 1249
488f131b 1250 case infwait_normal_state:
527159b7 1251 if (debug_infrun)
8a9de0e4 1252 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1253 stepped_after_stopped_by_watchpoint = 0;
1254 break;
b83266a0 1255
488f131b 1256 case infwait_nonstep_watch_state:
527159b7 1257 if (debug_infrun)
8a9de0e4
AC
1258 fprintf_unfiltered (gdb_stdlog,
1259 "infrun: infwait_nonstep_watch_state\n");
488f131b 1260 insert_breakpoints ();
c906108c 1261
488f131b
JB
1262 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1263 handle things like signals arriving and other things happening
1264 in combination correctly? */
1265 stepped_after_stopped_by_watchpoint = 1;
1266 break;
65e82032
AC
1267
1268 default:
e2e0b3e5 1269 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1270 }
1271 ecs->infwait_state = infwait_normal_state;
c906108c 1272
35f196d9 1273 reinit_frame_cache ();
c906108c 1274
488f131b 1275 /* If it's a new process, add it to the thread database */
c906108c 1276
488f131b 1277 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1278 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1279 && !in_thread_list (ecs->ptid));
1280
1281 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1282 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1283 {
1284 add_thread (ecs->ptid);
c906108c 1285
488f131b
JB
1286 ui_out_text (uiout, "[New ");
1287 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1288 ui_out_text (uiout, "]\n");
488f131b 1289 }
c906108c 1290
488f131b
JB
1291 switch (ecs->ws.kind)
1292 {
1293 case TARGET_WAITKIND_LOADED:
527159b7 1294 if (debug_infrun)
8a9de0e4 1295 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1296 /* Ignore gracefully during startup of the inferior, as it might
1297 be the shell which has just loaded some objects, otherwise
1298 add the symbols for the newly loaded objects. Also ignore at
1299 the beginning of an attach or remote session; we will query
1300 the full list of libraries once the connection is
1301 established. */
c0236d92 1302 if (stop_soon == NO_STOP_QUIETLY)
488f131b 1303 {
b0f4b84b
DJ
1304 int breakpoints_were_inserted;
1305
488f131b
JB
1306 /* Remove breakpoints, SOLIB_ADD might adjust
1307 breakpoint addresses via breakpoint_re_set. */
b0f4b84b 1308 breakpoints_were_inserted = breakpoints_inserted;
488f131b
JB
1309 if (breakpoints_inserted)
1310 remove_breakpoints ();
b0f4b84b 1311 breakpoints_inserted = 0;
c906108c 1312
488f131b
JB
1313 /* Check for any newly added shared libraries if we're
1314 supposed to be adding them automatically. Switch
1315 terminal for any messages produced by
1316 breakpoint_re_set. */
1317 target_terminal_ours_for_output ();
aff6338a 1318 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1319 stack's section table is kept up-to-date. Architectures,
1320 (e.g., PPC64), use the section table to perform
1321 operations such as address => section name and hence
1322 require the table to contain all sections (including
1323 those found in shared libraries). */
aff6338a 1324 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1325 exec_ops to SOLIB_ADD. This is because current GDB is
1326 only tooled to propagate section_table changes out from
1327 the "current_target" (see target_resize_to_sections), and
1328 not up from the exec stratum. This, of course, isn't
1329 right. "infrun.c" should only interact with the
1330 exec/process stratum, instead relying on the target stack
1331 to propagate relevant changes (stop, section table
1332 changed, ...) up to other layers. */
b0f4b84b 1333#ifdef SOLIB_ADD
aff6338a 1334 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1335#else
1336 solib_add (NULL, 0, &current_target, auto_solib_add);
1337#endif
488f131b
JB
1338 target_terminal_inferior ();
1339
b0f4b84b
DJ
1340 /* Try to reenable shared library breakpoints, additional
1341 code segments in shared libraries might be mapped in now. */
1342 re_enable_breakpoints_in_shlibs ();
1343
1344 /* If requested, stop when the dynamic linker notifies
1345 gdb of events. This allows the user to get control
1346 and place breakpoints in initializer routines for
1347 dynamically loaded objects (among other things). */
1348 if (stop_on_solib_events)
1349 {
1350 stop_stepping (ecs);
1351 return;
1352 }
1353
1354 /* NOTE drow/2007-05-11: This might be a good place to check
1355 for "catch load". */
1356
488f131b 1357 /* Reinsert breakpoints and continue. */
b0f4b84b
DJ
1358 if (breakpoints_were_inserted)
1359 {
1360 insert_breakpoints ();
1361 breakpoints_inserted = 1;
1362 }
488f131b 1363 }
b0f4b84b
DJ
1364
1365 /* If we are skipping through a shell, or through shared library
1366 loading that we aren't interested in, resume the program. If
1367 we're running the program normally, also resume. But stop if
1368 we're attaching or setting up a remote connection. */
1369 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1370 {
1371 resume (0, TARGET_SIGNAL_0);
1372 prepare_to_wait (ecs);
1373 return;
1374 }
1375
1376 break;
c5aa993b 1377
488f131b 1378 case TARGET_WAITKIND_SPURIOUS:
527159b7 1379 if (debug_infrun)
8a9de0e4 1380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1381 resume (0, TARGET_SIGNAL_0);
1382 prepare_to_wait (ecs);
1383 return;
c5aa993b 1384
488f131b 1385 case TARGET_WAITKIND_EXITED:
527159b7 1386 if (debug_infrun)
8a9de0e4 1387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1388 target_terminal_ours (); /* Must do this before mourn anyway */
1389 print_stop_reason (EXITED, ecs->ws.value.integer);
1390
1391 /* Record the exit code in the convenience variable $_exitcode, so
1392 that the user can inspect this again later. */
1393 set_internalvar (lookup_internalvar ("_exitcode"),
1394 value_from_longest (builtin_type_int,
1395 (LONGEST) ecs->ws.value.integer));
1396 gdb_flush (gdb_stdout);
1397 target_mourn_inferior ();
1c0fdd0e 1398 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1399 stop_print_frame = 0;
1400 stop_stepping (ecs);
1401 return;
c5aa993b 1402
488f131b 1403 case TARGET_WAITKIND_SIGNALLED:
527159b7 1404 if (debug_infrun)
8a9de0e4 1405 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1406 stop_print_frame = 0;
1407 stop_signal = ecs->ws.value.sig;
1408 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1409
488f131b
JB
1410 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1411 reach here unless the inferior is dead. However, for years
1412 target_kill() was called here, which hints that fatal signals aren't
1413 really fatal on some systems. If that's true, then some changes
1414 may be needed. */
1415 target_mourn_inferior ();
c906108c 1416
488f131b 1417 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 1418 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1419 stop_stepping (ecs);
1420 return;
c906108c 1421
488f131b
JB
1422 /* The following are the only cases in which we keep going;
1423 the above cases end in a continue or goto. */
1424 case TARGET_WAITKIND_FORKED:
deb3b17b 1425 case TARGET_WAITKIND_VFORKED:
527159b7 1426 if (debug_infrun)
8a9de0e4 1427 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1428 stop_signal = TARGET_SIGNAL_TRAP;
1429 pending_follow.kind = ecs->ws.kind;
1430
8e7d2c16
DJ
1431 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1432 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1433
5a2901d9
DJ
1434 if (!ptid_equal (ecs->ptid, inferior_ptid))
1435 {
1436 context_switch (ecs);
35f196d9 1437 reinit_frame_cache ();
5a2901d9
DJ
1438 }
1439
488f131b 1440 stop_pc = read_pc ();
675bf4cb 1441
00d4360e 1442 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1443
488f131b 1444 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1445
1446 /* If no catchpoint triggered for this, then keep going. */
1447 if (ecs->random_signal)
1448 {
1449 stop_signal = TARGET_SIGNAL_0;
1450 keep_going (ecs);
1451 return;
1452 }
488f131b
JB
1453 goto process_event_stop_test;
1454
1455 case TARGET_WAITKIND_EXECD:
527159b7 1456 if (debug_infrun)
fc5261f2 1457 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1458 stop_signal = TARGET_SIGNAL_TRAP;
1459
7d2830a3 1460 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1461 target_wait function. Until then following vfork on HP/UX 10.20
1462 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1463 /* Is this a target which reports multiple exec events per actual
1464 call to exec()? (HP-UX using ptrace does, for example.) If so,
1465 ignore all but the last one. Just resume the exec'r, and wait
1466 for the next exec event. */
1467 if (inferior_ignoring_leading_exec_events)
1468 {
1469 inferior_ignoring_leading_exec_events--;
488f131b
JB
1470 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1471 prepare_to_wait (ecs);
1472 return;
1473 }
1474 inferior_ignoring_leading_exec_events =
1475 target_reported_exec_events_per_exec_call () - 1;
1476
1477 pending_follow.execd_pathname =
1478 savestring (ecs->ws.value.execd_pathname,
1479 strlen (ecs->ws.value.execd_pathname));
1480
488f131b
JB
1481 /* This causes the eventpoints and symbol table to be reset. Must
1482 do this now, before trying to determine whether to stop. */
1483 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1484 xfree (pending_follow.execd_pathname);
c906108c 1485
488f131b
JB
1486 stop_pc = read_pc_pid (ecs->ptid);
1487 ecs->saved_inferior_ptid = inferior_ptid;
1488 inferior_ptid = ecs->ptid;
675bf4cb 1489
00d4360e 1490 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1491
488f131b
JB
1492 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1493 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1494
5a2901d9
DJ
1495 if (!ptid_equal (ecs->ptid, inferior_ptid))
1496 {
1497 context_switch (ecs);
35f196d9 1498 reinit_frame_cache ();
5a2901d9
DJ
1499 }
1500
04e68871
DJ
1501 /* If no catchpoint triggered for this, then keep going. */
1502 if (ecs->random_signal)
1503 {
1504 stop_signal = TARGET_SIGNAL_0;
1505 keep_going (ecs);
1506 return;
1507 }
488f131b
JB
1508 goto process_event_stop_test;
1509
b4dc5ffa
MK
1510 /* Be careful not to try to gather much state about a thread
1511 that's in a syscall. It's frequently a losing proposition. */
488f131b 1512 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1513 if (debug_infrun)
8a9de0e4 1514 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1515 resume (0, TARGET_SIGNAL_0);
1516 prepare_to_wait (ecs);
1517 return;
c906108c 1518
488f131b
JB
1519 /* Before examining the threads further, step this thread to
1520 get it entirely out of the syscall. (We get notice of the
1521 event when the thread is just on the verge of exiting a
1522 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1523 into user code.) */
488f131b 1524 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1525 if (debug_infrun)
8a9de0e4 1526 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1527 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1528 prepare_to_wait (ecs);
1529 return;
c906108c 1530
488f131b 1531 case TARGET_WAITKIND_STOPPED:
527159b7 1532 if (debug_infrun)
8a9de0e4 1533 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1534 stop_signal = ecs->ws.value.sig;
1535 break;
c906108c 1536
488f131b
JB
1537 /* We had an event in the inferior, but we are not interested
1538 in handling it at this level. The lower layers have already
8e7d2c16 1539 done what needs to be done, if anything.
8fb3e588
AC
1540
1541 One of the possible circumstances for this is when the
1542 inferior produces output for the console. The inferior has
1543 not stopped, and we are ignoring the event. Another possible
1544 circumstance is any event which the lower level knows will be
1545 reported multiple times without an intervening resume. */
488f131b 1546 case TARGET_WAITKIND_IGNORE:
527159b7 1547 if (debug_infrun)
8a9de0e4 1548 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1549 prepare_to_wait (ecs);
488f131b
JB
1550 return;
1551 }
c906108c 1552
488f131b
JB
1553 /* We may want to consider not doing a resume here in order to give
1554 the user a chance to play with the new thread. It might be good
1555 to make that a user-settable option. */
c906108c 1556
488f131b
JB
1557 /* At this point, all threads are stopped (happens automatically in
1558 either the OS or the native code). Therefore we need to continue
1559 all threads in order to make progress. */
1560 if (ecs->new_thread_event)
1561 {
1562 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1563 prepare_to_wait (ecs);
1564 return;
1565 }
c906108c 1566
488f131b
JB
1567 stop_pc = read_pc_pid (ecs->ptid);
1568
527159b7 1569 if (debug_infrun)
8a9de0e4 1570 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1571
9f976b41
DJ
1572 if (stepping_past_singlestep_breakpoint)
1573 {
1c0fdd0e 1574 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
1575 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1576 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1577
1578 stepping_past_singlestep_breakpoint = 0;
1579
1580 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1581 breakpoint, or stopped for some other reason. It would be nice if
1582 we could tell, but we can't reliably. */
9f976b41 1583 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1584 {
527159b7 1585 if (debug_infrun)
8a9de0e4 1586 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 1587 /* Pull the single step breakpoints out of the target. */
e0cd558a 1588 remove_single_step_breakpoints ();
9f976b41
DJ
1589 singlestep_breakpoints_inserted_p = 0;
1590
1591 ecs->random_signal = 0;
1592
1593 ecs->ptid = saved_singlestep_ptid;
1594 context_switch (ecs);
9a4105ab
AC
1595 if (deprecated_context_hook)
1596 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1597
1598 resume (1, TARGET_SIGNAL_0);
1599 prepare_to_wait (ecs);
1600 return;
1601 }
1602 }
1603
1604 stepping_past_singlestep_breakpoint = 0;
1605
6a6b96b9
UW
1606 if (stepping_past_breakpoint)
1607 {
1608 stepping_past_breakpoint = 0;
1609
1610 /* If we stopped for some other reason than single-stepping, ignore
1611 the fact that we were supposed to switch back. */
1612 if (stop_signal == TARGET_SIGNAL_TRAP)
1613 {
1614 if (debug_infrun)
1615 fprintf_unfiltered (gdb_stdlog,
1616 "infrun: stepping_past_breakpoint\n");
1617
1618 /* Pull the single step breakpoints out of the target. */
1619 if (singlestep_breakpoints_inserted_p)
1620 {
1621 remove_single_step_breakpoints ();
1622 singlestep_breakpoints_inserted_p = 0;
1623 }
1624
1625 /* Note: We do not call context_switch at this point, as the
1626 context is already set up for stepping the original thread. */
1627 switch_to_thread (stepping_past_breakpoint_ptid);
1628 /* Suppress spurious "Switching to ..." message. */
1629 previous_inferior_ptid = inferior_ptid;
1630
1631 resume (1, TARGET_SIGNAL_0);
1632 prepare_to_wait (ecs);
1633 return;
1634 }
1635 }
1636
488f131b
JB
1637 /* See if a thread hit a thread-specific breakpoint that was meant for
1638 another thread. If so, then step that thread past the breakpoint,
1639 and continue it. */
1640
1641 if (stop_signal == TARGET_SIGNAL_TRAP)
1642 {
9f976b41
DJ
1643 int thread_hop_needed = 0;
1644
f8d40ec8
JB
1645 /* Check if a regular breakpoint has been hit before checking
1646 for a potential single step breakpoint. Otherwise, GDB will
1647 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1648 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1649 {
c5aa993b 1650 ecs->random_signal = 0;
4fa8626c 1651 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1652 thread_hop_needed = 1;
1653 }
1c0fdd0e 1654 else if (singlestep_breakpoints_inserted_p)
9f976b41 1655 {
fd48f117
DJ
1656 /* We have not context switched yet, so this should be true
1657 no matter which thread hit the singlestep breakpoint. */
1658 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1659 if (debug_infrun)
1660 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1661 "trap for %s\n",
1662 target_pid_to_str (ecs->ptid));
1663
9f976b41
DJ
1664 ecs->random_signal = 0;
1665 /* The call to in_thread_list is necessary because PTIDs sometimes
1666 change when we go from single-threaded to multi-threaded. If
1667 the singlestep_ptid is still in the list, assume that it is
1668 really different from ecs->ptid. */
1669 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1670 && in_thread_list (singlestep_ptid))
1671 {
fd48f117
DJ
1672 /* If the PC of the thread we were trying to single-step
1673 has changed, discard this event (which we were going
1674 to ignore anyway), and pretend we saw that thread
1675 trap. This prevents us continuously moving the
1676 single-step breakpoint forward, one instruction at a
1677 time. If the PC has changed, then the thread we were
1678 trying to single-step has trapped or been signalled,
1679 but the event has not been reported to GDB yet.
1680
1681 There might be some cases where this loses signal
1682 information, if a signal has arrived at exactly the
1683 same time that the PC changed, but this is the best
1684 we can do with the information available. Perhaps we
1685 should arrange to report all events for all threads
1686 when they stop, or to re-poll the remote looking for
1687 this particular thread (i.e. temporarily enable
1688 schedlock). */
1689 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1690 {
1691 if (debug_infrun)
1692 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1693 " but expected thread advanced also\n");
1694
1695 /* The current context still belongs to
1696 singlestep_ptid. Don't swap here, since that's
1697 the context we want to use. Just fudge our
1698 state and continue. */
1699 ecs->ptid = singlestep_ptid;
1700 stop_pc = read_pc_pid (ecs->ptid);
1701 }
1702 else
1703 {
1704 if (debug_infrun)
1705 fprintf_unfiltered (gdb_stdlog,
1706 "infrun: unexpected thread\n");
1707
1708 thread_hop_needed = 1;
1709 stepping_past_singlestep_breakpoint = 1;
1710 saved_singlestep_ptid = singlestep_ptid;
1711 }
9f976b41
DJ
1712 }
1713 }
1714
1715 if (thread_hop_needed)
8fb3e588
AC
1716 {
1717 int remove_status;
1718
527159b7 1719 if (debug_infrun)
8a9de0e4 1720 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1721
8fb3e588
AC
1722 /* Saw a breakpoint, but it was hit by the wrong thread.
1723 Just continue. */
1724
1c0fdd0e 1725 if (singlestep_breakpoints_inserted_p)
488f131b 1726 {
8fb3e588 1727 /* Pull the single step breakpoints out of the target. */
e0cd558a 1728 remove_single_step_breakpoints ();
8fb3e588
AC
1729 singlestep_breakpoints_inserted_p = 0;
1730 }
1731
1732 remove_status = remove_breakpoints ();
1733 /* Did we fail to remove breakpoints? If so, try
1734 to set the PC past the bp. (There's at least
1735 one situation in which we can fail to remove
1736 the bp's: On HP-UX's that use ttrace, we can't
1737 change the address space of a vforking child
1738 process until the child exits (well, okay, not
1739 then either :-) or execs. */
1740 if (remove_status != 0)
1741 {
1742 /* FIXME! This is obviously non-portable! */
1743 write_pc_pid (stop_pc + 4, ecs->ptid);
1744 /* We need to restart all the threads now,
1745 * unles we're running in scheduler-locked mode.
1746 * Use currently_stepping to determine whether to
1747 * step or continue.
1748 */
1749 /* FIXME MVS: is there any reason not to call resume()? */
1750 if (scheduler_mode == schedlock_on)
1751 target_resume (ecs->ptid,
1752 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1753 else
8fb3e588
AC
1754 target_resume (RESUME_ALL,
1755 currently_stepping (ecs), TARGET_SIGNAL_0);
1756 prepare_to_wait (ecs);
1757 return;
1758 }
1759 else
1760 { /* Single step */
1761 breakpoints_inserted = 0;
1762 if (!ptid_equal (inferior_ptid, ecs->ptid))
1763 context_switch (ecs);
1764 ecs->waiton_ptid = ecs->ptid;
1765 ecs->wp = &(ecs->ws);
1766 ecs->another_trap = 1;
1767
1768 ecs->infwait_state = infwait_thread_hop_state;
1769 keep_going (ecs);
1770 registers_changed ();
1771 return;
1772 }
488f131b 1773 }
1c0fdd0e 1774 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
1775 {
1776 sw_single_step_trap_p = 1;
1777 ecs->random_signal = 0;
1778 }
488f131b
JB
1779 }
1780 else
1781 ecs->random_signal = 1;
c906108c 1782
488f131b 1783 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1784 so, then switch to that thread. */
1785 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1786 {
527159b7 1787 if (debug_infrun)
8a9de0e4 1788 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1789
488f131b 1790 context_switch (ecs);
c5aa993b 1791
9a4105ab
AC
1792 if (deprecated_context_hook)
1793 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1794 }
c906108c 1795
1c0fdd0e 1796 if (singlestep_breakpoints_inserted_p)
488f131b
JB
1797 {
1798 /* Pull the single step breakpoints out of the target. */
e0cd558a 1799 remove_single_step_breakpoints ();
488f131b
JB
1800 singlestep_breakpoints_inserted_p = 0;
1801 }
c906108c 1802
488f131b
JB
1803 /* It may not be necessary to disable the watchpoint to stop over
1804 it. For example, the PA can (with some kernel cooperation)
1805 single step over a watchpoint without disabling the watchpoint. */
1806 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1807 {
527159b7 1808 if (debug_infrun)
8a9de0e4 1809 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1810 resume (1, 0);
1811 prepare_to_wait (ecs);
1812 return;
1813 }
c906108c 1814
488f131b
JB
1815 /* It is far more common to need to disable a watchpoint to step
1816 the inferior over it. FIXME. What else might a debug
1817 register or page protection watchpoint scheme need here? */
e6cf7916
UW
1818 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1819 && STOPPED_BY_WATCHPOINT (ecs->ws))
488f131b
JB
1820 {
1821 /* At this point, we are stopped at an instruction which has
1822 attempted to write to a piece of memory under control of
1823 a watchpoint. The instruction hasn't actually executed
1824 yet. If we were to evaluate the watchpoint expression
1825 now, we would get the old value, and therefore no change
1826 would seem to have occurred.
1827
1828 In order to make watchpoints work `right', we really need
1829 to complete the memory write, and then evaluate the
1830 watchpoint expression. The following code does that by
1831 removing the watchpoint (actually, all watchpoints and
1832 breakpoints), single-stepping the target, re-inserting
1833 watchpoints, and then falling through to let normal
1834 single-step processing handle proceed. Since this
1835 includes evaluating watchpoints, things will come to a
1836 stop in the correct manner. */
1837
527159b7 1838 if (debug_infrun)
8a9de0e4 1839 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1840 remove_breakpoints ();
1841 registers_changed ();
1842 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1843
488f131b
JB
1844 ecs->waiton_ptid = ecs->ptid;
1845 ecs->wp = &(ecs->ws);
1846 ecs->infwait_state = infwait_nonstep_watch_state;
1847 prepare_to_wait (ecs);
1848 return;
1849 }
1850
1851 /* It may be possible to simply continue after a watchpoint. */
1852 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1853 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1854
1855 ecs->stop_func_start = 0;
1856 ecs->stop_func_end = 0;
1857 ecs->stop_func_name = 0;
1858 /* Don't care about return value; stop_func_start and stop_func_name
1859 will both be 0 if it doesn't work. */
1860 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1861 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
1862 ecs->stop_func_start
1863 += gdbarch_deprecated_function_start_offset (current_gdbarch);
488f131b
JB
1864 ecs->another_trap = 0;
1865 bpstat_clear (&stop_bpstat);
1866 stop_step = 0;
1867 stop_stack_dummy = 0;
1868 stop_print_frame = 1;
1869 ecs->random_signal = 0;
1870 stopped_by_random_signal = 0;
488f131b 1871
3352ef37
AC
1872 if (stop_signal == TARGET_SIGNAL_TRAP
1873 && trap_expected
1874 && gdbarch_single_step_through_delay_p (current_gdbarch)
1875 && currently_stepping (ecs))
1876 {
1877 /* We're trying to step of a breakpoint. Turns out that we're
1878 also on an instruction that needs to be stepped multiple
1879 times before it's been fully executing. E.g., architectures
1880 with a delay slot. It needs to be stepped twice, once for
1881 the instruction and once for the delay slot. */
1882 int step_through_delay
1883 = gdbarch_single_step_through_delay (current_gdbarch,
1884 get_current_frame ());
527159b7 1885 if (debug_infrun && step_through_delay)
8a9de0e4 1886 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1887 if (step_range_end == 0 && step_through_delay)
1888 {
1889 /* The user issued a continue when stopped at a breakpoint.
1890 Set up for another trap and get out of here. */
1891 ecs->another_trap = 1;
1892 keep_going (ecs);
1893 return;
1894 }
1895 else if (step_through_delay)
1896 {
1897 /* The user issued a step when stopped at a breakpoint.
1898 Maybe we should stop, maybe we should not - the delay
1899 slot *might* correspond to a line of source. In any
1900 case, don't decide that here, just set ecs->another_trap,
1901 making sure we single-step again before breakpoints are
1902 re-inserted. */
1903 ecs->another_trap = 1;
1904 }
1905 }
1906
488f131b
JB
1907 /* Look at the cause of the stop, and decide what to do.
1908 The alternatives are:
1909 1) break; to really stop and return to the debugger,
1910 2) drop through to start up again
1911 (set ecs->another_trap to 1 to single step once)
1912 3) set ecs->random_signal to 1, and the decision between 1 and 2
1913 will be made according to the signal handling tables. */
1914
1915 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1916 that have to do with the program's own actions. Note that
1917 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1918 on the operating system version. Here we detect when a SIGILL or
1919 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1920 something similar for SIGSEGV, since a SIGSEGV will be generated
1921 when we're trying to execute a breakpoint instruction on a
1922 non-executable stack. This happens for call dummy breakpoints
1923 for architectures like SPARC that place call dummies on the
1924 stack. */
488f131b
JB
1925
1926 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1927 || (breakpoints_inserted
1928 && (stop_signal == TARGET_SIGNAL_ILL
1929 || stop_signal == TARGET_SIGNAL_SEGV
1930 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
1931 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1932 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
1933 {
1934 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1935 {
527159b7 1936 if (debug_infrun)
8a9de0e4 1937 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1938 stop_print_frame = 0;
1939 stop_stepping (ecs);
1940 return;
1941 }
c54cfec8
EZ
1942
1943 /* This is originated from start_remote(), start_inferior() and
1944 shared libraries hook functions. */
b0f4b84b 1945 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 1946 {
527159b7 1947 if (debug_infrun)
8a9de0e4 1948 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1949 stop_stepping (ecs);
1950 return;
1951 }
1952
c54cfec8
EZ
1953 /* This originates from attach_command(). We need to overwrite
1954 the stop_signal here, because some kernels don't ignore a
1955 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1956 See more comments in inferior.h. */
c0236d92 1957 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1958 {
1959 stop_stepping (ecs);
1960 if (stop_signal == TARGET_SIGNAL_STOP)
1961 stop_signal = TARGET_SIGNAL_0;
1962 return;
1963 }
1964
d303a6c7
AC
1965 /* Don't even think about breakpoints if just proceeded over a
1966 breakpoint. */
1967 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1968 {
1969 if (debug_infrun)
8a9de0e4 1970 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1971 bpstat_clear (&stop_bpstat);
1972 }
488f131b
JB
1973 else
1974 {
1975 /* See if there is a breakpoint at the current PC. */
8fb3e588 1976 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1977 stopped_by_watchpoint);
488f131b 1978
488f131b
JB
1979 /* Following in case break condition called a
1980 function. */
1981 stop_print_frame = 1;
1982 }
1983
73dd234f 1984 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1985 at one stage in the past included checks for an inferior
1986 function call's call dummy's return breakpoint. The original
1987 comment, that went with the test, read:
73dd234f 1988
8fb3e588
AC
1989 ``End of a stack dummy. Some systems (e.g. Sony news) give
1990 another signal besides SIGTRAP, so check here as well as
1991 above.''
73dd234f
AC
1992
1993 If someone ever tries to get get call dummys on a
1994 non-executable stack to work (where the target would stop
03cebad2
MK
1995 with something like a SIGSEGV), then those tests might need
1996 to be re-instated. Given, however, that the tests were only
73dd234f 1997 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1998 suspect that it won't be the case.
1999
8fb3e588
AC
2000 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2001 be necessary for call dummies on a non-executable stack on
2002 SPARC. */
73dd234f 2003
488f131b
JB
2004 if (stop_signal == TARGET_SIGNAL_TRAP)
2005 ecs->random_signal
2006 = !(bpstat_explains_signal (stop_bpstat)
2007 || trap_expected
488f131b 2008 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2009 else
2010 {
73dd234f 2011 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2012 if (!ecs->random_signal)
2013 stop_signal = TARGET_SIGNAL_TRAP;
2014 }
2015 }
2016
2017 /* When we reach this point, we've pretty much decided
2018 that the reason for stopping must've been a random
2019 (unexpected) signal. */
2020
2021 else
2022 ecs->random_signal = 1;
488f131b 2023
04e68871 2024process_event_stop_test:
488f131b
JB
2025 /* For the program's own signals, act according to
2026 the signal handling tables. */
2027
2028 if (ecs->random_signal)
2029 {
2030 /* Signal not for debugging purposes. */
2031 int printed = 0;
2032
527159b7 2033 if (debug_infrun)
8a9de0e4 2034 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2035
488f131b
JB
2036 stopped_by_random_signal = 1;
2037
2038 if (signal_print[stop_signal])
2039 {
2040 printed = 1;
2041 target_terminal_ours_for_output ();
2042 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2043 }
2044 if (signal_stop[stop_signal])
2045 {
2046 stop_stepping (ecs);
2047 return;
2048 }
2049 /* If not going to stop, give terminal back
2050 if we took it away. */
2051 else if (printed)
2052 target_terminal_inferior ();
2053
2054 /* Clear the signal if it should not be passed. */
2055 if (signal_program[stop_signal] == 0)
2056 stop_signal = TARGET_SIGNAL_0;
2057
68f53502
AC
2058 if (prev_pc == read_pc ()
2059 && !breakpoints_inserted
2060 && breakpoint_here_p (read_pc ())
2061 && step_resume_breakpoint == NULL)
2062 {
2063 /* We were just starting a new sequence, attempting to
2064 single-step off of a breakpoint and expecting a SIGTRAP.
2065 Intead this signal arrives. This signal will take us out
2066 of the stepping range so GDB needs to remember to, when
2067 the signal handler returns, resume stepping off that
2068 breakpoint. */
2069 /* To simplify things, "continue" is forced to use the same
2070 code paths as single-step - set a breakpoint at the
2071 signal return address and then, once hit, step off that
2072 breakpoint. */
d3169d93 2073
44cbf7b5 2074 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2075 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2076 keep_going (ecs);
2077 return;
68f53502 2078 }
9d799f85
AC
2079
2080 if (step_range_end != 0
2081 && stop_signal != TARGET_SIGNAL_0
2082 && stop_pc >= step_range_start && stop_pc < step_range_end
2083 && frame_id_eq (get_frame_id (get_current_frame ()),
2084 step_frame_id)
2085 && step_resume_breakpoint == NULL)
d303a6c7
AC
2086 {
2087 /* The inferior is about to take a signal that will take it
2088 out of the single step range. Set a breakpoint at the
2089 current PC (which is presumably where the signal handler
2090 will eventually return) and then allow the inferior to
2091 run free.
2092
2093 Note that this is only needed for a signal delivered
2094 while in the single-step range. Nested signals aren't a
2095 problem as they eventually all return. */
44cbf7b5 2096 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2097 keep_going (ecs);
2098 return;
d303a6c7 2099 }
9d799f85
AC
2100
2101 /* Note: step_resume_breakpoint may be non-NULL. This occures
2102 when either there's a nested signal, or when there's a
2103 pending signal enabled just as the signal handler returns
2104 (leaving the inferior at the step-resume-breakpoint without
2105 actually executing it). Either way continue until the
2106 breakpoint is really hit. */
488f131b
JB
2107 keep_going (ecs);
2108 return;
2109 }
2110
2111 /* Handle cases caused by hitting a breakpoint. */
2112 {
2113 CORE_ADDR jmp_buf_pc;
2114 struct bpstat_what what;
2115
2116 what = bpstat_what (stop_bpstat);
2117
2118 if (what.call_dummy)
2119 {
2120 stop_stack_dummy = 1;
c5aa993b 2121 }
c906108c 2122
488f131b 2123 switch (what.main_action)
c5aa993b 2124 {
488f131b
JB
2125 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2126 /* If we hit the breakpoint at longjmp, disable it for the
2127 duration of this command. Then, install a temporary
2128 breakpoint at the target of the jmp_buf. */
527159b7 2129 if (debug_infrun)
8802d8ed 2130 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2131 disable_longjmp_breakpoint ();
2132 remove_breakpoints ();
2133 breakpoints_inserted = 0;
91104499 2134 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2135 || !gdbarch_get_longjmp_target (current_gdbarch,
2136 get_current_frame (), &jmp_buf_pc))
c5aa993b 2137 {
488f131b 2138 keep_going (ecs);
104c1213 2139 return;
c5aa993b 2140 }
488f131b
JB
2141
2142 /* Need to blow away step-resume breakpoint, as it
2143 interferes with us */
2144 if (step_resume_breakpoint != NULL)
104c1213 2145 {
488f131b 2146 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2147 }
c906108c 2148
8fb3e588 2149 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2150 ecs->handling_longjmp = 1; /* FIXME */
2151 keep_going (ecs);
2152 return;
c906108c 2153
488f131b
JB
2154 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2155 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2156 if (debug_infrun)
8802d8ed 2157 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2158 remove_breakpoints ();
2159 breakpoints_inserted = 0;
488f131b
JB
2160 disable_longjmp_breakpoint ();
2161 ecs->handling_longjmp = 0; /* FIXME */
2162 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2163 break;
2164 /* else fallthrough */
2165
2166 case BPSTAT_WHAT_SINGLE:
527159b7 2167 if (debug_infrun)
8802d8ed 2168 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
488f131b 2169 if (breakpoints_inserted)
569631c6 2170 remove_breakpoints ();
488f131b
JB
2171 breakpoints_inserted = 0;
2172 ecs->another_trap = 1;
2173 /* Still need to check other stuff, at least the case
2174 where we are stepping and step out of the right range. */
2175 break;
c906108c 2176
488f131b 2177 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2178 if (debug_infrun)
8802d8ed 2179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2180 stop_print_frame = 1;
c906108c 2181
d303a6c7
AC
2182 /* We are about to nuke the step_resume_breakpointt via the
2183 cleanup chain, so no need to worry about it here. */
c5aa993b 2184
488f131b
JB
2185 stop_stepping (ecs);
2186 return;
c5aa993b 2187
488f131b 2188 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2189 if (debug_infrun)
8802d8ed 2190 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2191 stop_print_frame = 0;
c5aa993b 2192
d303a6c7
AC
2193 /* We are about to nuke the step_resume_breakpoin via the
2194 cleanup chain, so no need to worry about it here. */
c5aa993b 2195
488f131b 2196 stop_stepping (ecs);
e441088d 2197 return;
c5aa993b 2198
488f131b
JB
2199 case BPSTAT_WHAT_STEP_RESUME:
2200 /* This proably demands a more elegant solution, but, yeah
2201 right...
c5aa993b 2202
488f131b
JB
2203 This function's use of the simple variable
2204 step_resume_breakpoint doesn't seem to accomodate
2205 simultaneously active step-resume bp's, although the
2206 breakpoint list certainly can.
c5aa993b 2207
488f131b
JB
2208 If we reach here and step_resume_breakpoint is already
2209 NULL, then apparently we have multiple active
2210 step-resume bp's. We'll just delete the breakpoint we
2211 stopped at, and carry on.
2212
2213 Correction: what the code currently does is delete a
2214 step-resume bp, but it makes no effort to ensure that
2215 the one deleted is the one currently stopped at. MVS */
c5aa993b 2216
527159b7 2217 if (debug_infrun)
8802d8ed 2218 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2219
488f131b
JB
2220 if (step_resume_breakpoint == NULL)
2221 {
2222 step_resume_breakpoint =
2223 bpstat_find_step_resume_breakpoint (stop_bpstat);
2224 }
2225 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2226 if (ecs->step_after_step_resume_breakpoint)
2227 {
2228 /* Back when the step-resume breakpoint was inserted, we
2229 were trying to single-step off a breakpoint. Go back
2230 to doing that. */
2231 ecs->step_after_step_resume_breakpoint = 0;
2232 remove_breakpoints ();
2233 breakpoints_inserted = 0;
2234 ecs->another_trap = 1;
2235 keep_going (ecs);
2236 return;
2237 }
488f131b
JB
2238 break;
2239
488f131b
JB
2240 case BPSTAT_WHAT_CHECK_SHLIBS:
2241 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2242 {
527159b7 2243 if (debug_infrun)
8802d8ed 2244 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2245 /* Remove breakpoints, we eventually want to step over the
2246 shlib event breakpoint, and SOLIB_ADD might adjust
2247 breakpoint addresses via breakpoint_re_set. */
2248 if (breakpoints_inserted)
2249 remove_breakpoints ();
c5aa993b 2250 breakpoints_inserted = 0;
488f131b
JB
2251
2252 /* Check for any newly added shared libraries if we're
2253 supposed to be adding them automatically. Switch
2254 terminal for any messages produced by
2255 breakpoint_re_set. */
2256 target_terminal_ours_for_output ();
aff6338a 2257 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2258 stack's section table is kept up-to-date. Architectures,
2259 (e.g., PPC64), use the section table to perform
2260 operations such as address => section name and hence
2261 require the table to contain all sections (including
2262 those found in shared libraries). */
aff6338a 2263 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2264 exec_ops to SOLIB_ADD. This is because current GDB is
2265 only tooled to propagate section_table changes out from
2266 the "current_target" (see target_resize_to_sections), and
2267 not up from the exec stratum. This, of course, isn't
2268 right. "infrun.c" should only interact with the
2269 exec/process stratum, instead relying on the target stack
2270 to propagate relevant changes (stop, section table
2271 changed, ...) up to other layers. */
a77053c2 2272#ifdef SOLIB_ADD
aff6338a 2273 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2274#else
2275 solib_add (NULL, 0, &current_target, auto_solib_add);
2276#endif
488f131b
JB
2277 target_terminal_inferior ();
2278
2279 /* Try to reenable shared library breakpoints, additional
2280 code segments in shared libraries might be mapped in now. */
2281 re_enable_breakpoints_in_shlibs ();
2282
2283 /* If requested, stop when the dynamic linker notifies
2284 gdb of events. This allows the user to get control
2285 and place breakpoints in initializer routines for
2286 dynamically loaded objects (among other things). */
877522db 2287 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2288 {
488f131b 2289 stop_stepping (ecs);
d4f3574e
SS
2290 return;
2291 }
c5aa993b 2292
488f131b
JB
2293 /* If we stopped due to an explicit catchpoint, then the
2294 (see above) call to SOLIB_ADD pulled in any symbols
2295 from a newly-loaded library, if appropriate.
2296
2297 We do want the inferior to stop, but not where it is
2298 now, which is in the dynamic linker callback. Rather,
2299 we would like it stop in the user's program, just after
2300 the call that caused this catchpoint to trigger. That
2301 gives the user a more useful vantage from which to
2302 examine their program's state. */
8fb3e588
AC
2303 else if (what.main_action
2304 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2305 {
488f131b
JB
2306 /* ??rehrauer: If I could figure out how to get the
2307 right return PC from here, we could just set a temp
2308 breakpoint and resume. I'm not sure we can without
2309 cracking open the dld's shared libraries and sniffing
2310 their unwind tables and text/data ranges, and that's
2311 not a terribly portable notion.
2312
2313 Until that time, we must step the inferior out of the
2314 dld callback, and also out of the dld itself (and any
2315 code or stubs in libdld.sl, such as "shl_load" and
2316 friends) until we reach non-dld code. At that point,
2317 we can stop stepping. */
2318 bpstat_get_triggered_catchpoints (stop_bpstat,
2319 &ecs->
2320 stepping_through_solib_catchpoints);
2321 ecs->stepping_through_solib_after_catch = 1;
2322
2323 /* Be sure to lift all breakpoints, so the inferior does
2324 actually step past this point... */
2325 ecs->another_trap = 1;
2326 break;
c906108c 2327 }
c5aa993b 2328 else
c5aa993b 2329 {
488f131b 2330 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2331 ecs->another_trap = 1;
488f131b 2332 break;
c5aa993b 2333 }
488f131b 2334 }
488f131b 2335 break;
c906108c 2336
488f131b
JB
2337 case BPSTAT_WHAT_LAST:
2338 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2339
488f131b
JB
2340 case BPSTAT_WHAT_KEEP_CHECKING:
2341 break;
2342 }
2343 }
c906108c 2344
488f131b
JB
2345 /* We come here if we hit a breakpoint but should not
2346 stop for it. Possibly we also were stepping
2347 and should stop for that. So fall through and
2348 test for stepping. But, if not stepping,
2349 do not stop. */
c906108c 2350
9d1ff73f
MS
2351 /* Are we stepping to get the inferior out of the dynamic linker's
2352 hook (and possibly the dld itself) after catching a shlib
2353 event? */
488f131b
JB
2354 if (ecs->stepping_through_solib_after_catch)
2355 {
2356#if defined(SOLIB_ADD)
2357 /* Have we reached our destination? If not, keep going. */
2358 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2359 {
527159b7 2360 if (debug_infrun)
8a9de0e4 2361 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2362 ecs->another_trap = 1;
2363 keep_going (ecs);
104c1213 2364 return;
488f131b
JB
2365 }
2366#endif
527159b7 2367 if (debug_infrun)
8a9de0e4 2368 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2369 /* Else, stop and report the catchpoint(s) whose triggering
2370 caused us to begin stepping. */
2371 ecs->stepping_through_solib_after_catch = 0;
2372 bpstat_clear (&stop_bpstat);
2373 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2374 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2375 stop_print_frame = 1;
2376 stop_stepping (ecs);
2377 return;
2378 }
c906108c 2379
488f131b
JB
2380 if (step_resume_breakpoint)
2381 {
527159b7 2382 if (debug_infrun)
d3169d93
DJ
2383 fprintf_unfiltered (gdb_stdlog,
2384 "infrun: step-resume breakpoint is inserted\n");
527159b7 2385
488f131b
JB
2386 /* Having a step-resume breakpoint overrides anything
2387 else having to do with stepping commands until
2388 that breakpoint is reached. */
488f131b
JB
2389 keep_going (ecs);
2390 return;
2391 }
c5aa993b 2392
488f131b
JB
2393 if (step_range_end == 0)
2394 {
527159b7 2395 if (debug_infrun)
8a9de0e4 2396 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2397 /* Likewise if we aren't even stepping. */
488f131b
JB
2398 keep_going (ecs);
2399 return;
2400 }
c5aa993b 2401
488f131b 2402 /* If stepping through a line, keep going if still within it.
c906108c 2403
488f131b
JB
2404 Note that step_range_end is the address of the first instruction
2405 beyond the step range, and NOT the address of the last instruction
2406 within it! */
2407 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2408 {
527159b7 2409 if (debug_infrun)
8a9de0e4 2410 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2411 paddr_nz (step_range_start),
2412 paddr_nz (step_range_end));
488f131b
JB
2413 keep_going (ecs);
2414 return;
2415 }
c5aa993b 2416
488f131b 2417 /* We stepped out of the stepping range. */
c906108c 2418
488f131b
JB
2419 /* If we are stepping at the source level and entered the runtime
2420 loader dynamic symbol resolution code, we keep on single stepping
2421 until we exit the run time loader code and reach the callee's
2422 address. */
2423 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2424#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2425 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2426#else
2427 && in_solib_dynsym_resolve_code (stop_pc)
2428#endif
2429 )
488f131b 2430 {
4c8c40e6
MK
2431 CORE_ADDR pc_after_resolver =
2432 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2433
527159b7 2434 if (debug_infrun)
8a9de0e4 2435 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2436
488f131b
JB
2437 if (pc_after_resolver)
2438 {
2439 /* Set up a step-resume breakpoint at the address
2440 indicated by SKIP_SOLIB_RESOLVER. */
2441 struct symtab_and_line sr_sal;
fe39c653 2442 init_sal (&sr_sal);
488f131b
JB
2443 sr_sal.pc = pc_after_resolver;
2444
44cbf7b5 2445 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2446 }
c906108c 2447
488f131b
JB
2448 keep_going (ecs);
2449 return;
2450 }
c906108c 2451
42edda50
AC
2452 if (step_range_end != 1
2453 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2454 || step_over_calls == STEP_OVER_ALL)
2455 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2456 {
527159b7 2457 if (debug_infrun)
8a9de0e4 2458 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2459 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2460 a signal trampoline (either by a signal being delivered or by
2461 the signal handler returning). Just single-step until the
2462 inferior leaves the trampoline (either by calling the handler
2463 or returning). */
488f131b
JB
2464 keep_going (ecs);
2465 return;
2466 }
c906108c 2467
c17eaafe
DJ
2468 /* Check for subroutine calls. The check for the current frame
2469 equalling the step ID is not necessary - the check of the
2470 previous frame's ID is sufficient - but it is a common case and
2471 cheaper than checking the previous frame's ID.
14e60db5
DJ
2472
2473 NOTE: frame_id_eq will never report two invalid frame IDs as
2474 being equal, so to get into this block, both the current and
2475 previous frame must have valid frame IDs. */
c17eaafe
DJ
2476 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2477 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2478 {
95918acb 2479 CORE_ADDR real_stop_pc;
8fb3e588 2480
527159b7 2481 if (debug_infrun)
8a9de0e4 2482 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2483
95918acb
AC
2484 if ((step_over_calls == STEP_OVER_NONE)
2485 || ((step_range_end == 1)
2486 && in_prologue (prev_pc, ecs->stop_func_start)))
2487 {
2488 /* I presume that step_over_calls is only 0 when we're
2489 supposed to be stepping at the assembly language level
2490 ("stepi"). Just stop. */
2491 /* Also, maybe we just did a "nexti" inside a prolog, so we
2492 thought it was a subroutine call but it was not. Stop as
2493 well. FENN */
2494 stop_step = 1;
2495 print_stop_reason (END_STEPPING_RANGE, 0);
2496 stop_stepping (ecs);
2497 return;
2498 }
8fb3e588 2499
8567c30f
AC
2500 if (step_over_calls == STEP_OVER_ALL)
2501 {
2502 /* We're doing a "next", set a breakpoint at callee's return
2503 address (the address at which the caller will
2504 resume). */
14e60db5 2505 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2506 keep_going (ecs);
2507 return;
2508 }
a53c66de 2509
95918acb 2510 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2511 calling routine and the real function), locate the real
2512 function. That's what tells us (a) whether we want to step
2513 into it at all, and (b) what prologue we want to run to the
2514 end of, if we do step into it. */
52f729a7 2515 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 2516 if (real_stop_pc == 0)
52f729a7
UW
2517 real_stop_pc = gdbarch_skip_trampoline_code
2518 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
2519 if (real_stop_pc != 0)
2520 ecs->stop_func_start = real_stop_pc;
8fb3e588 2521
a77053c2
MK
2522 if (
2523#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2524 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2525#else
2526 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2527#endif
2528)
1b2bfbb9
RC
2529 {
2530 struct symtab_and_line sr_sal;
2531 init_sal (&sr_sal);
2532 sr_sal.pc = ecs->stop_func_start;
2533
44cbf7b5 2534 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2535 keep_going (ecs);
2536 return;
1b2bfbb9
RC
2537 }
2538
95918acb 2539 /* If we have line number information for the function we are
8fb3e588 2540 thinking of stepping into, step into it.
95918acb 2541
8fb3e588
AC
2542 If there are several symtabs at that PC (e.g. with include
2543 files), just want to know whether *any* of them have line
2544 numbers. find_pc_line handles this. */
95918acb
AC
2545 {
2546 struct symtab_and_line tmp_sal;
8fb3e588 2547
95918acb
AC
2548 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2549 if (tmp_sal.line != 0)
2550 {
2551 step_into_function (ecs);
2552 return;
2553 }
2554 }
2555
2556 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2557 set, we stop the step so that the user has a chance to switch
2558 in assembly mode. */
95918acb
AC
2559 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2560 {
2561 stop_step = 1;
2562 print_stop_reason (END_STEPPING_RANGE, 0);
2563 stop_stepping (ecs);
2564 return;
2565 }
2566
2567 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2568 which the caller will resume). */
14e60db5 2569 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2570 keep_going (ecs);
488f131b 2571 return;
488f131b 2572 }
c906108c 2573
488f131b
JB
2574 /* If we're in the return path from a shared library trampoline,
2575 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
2576 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2577 stop_pc, ecs->stop_func_name))
488f131b 2578 {
488f131b 2579 /* Determine where this trampoline returns. */
52f729a7
UW
2580 CORE_ADDR real_stop_pc;
2581 real_stop_pc = gdbarch_skip_trampoline_code
2582 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 2583
527159b7 2584 if (debug_infrun)
8a9de0e4 2585 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2586
488f131b 2587 /* Only proceed through if we know where it's going. */
d764a824 2588 if (real_stop_pc)
488f131b
JB
2589 {
2590 /* And put the step-breakpoint there and go until there. */
2591 struct symtab_and_line sr_sal;
2592
fe39c653 2593 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2594 sr_sal.pc = real_stop_pc;
488f131b 2595 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2596
2597 /* Do not specify what the fp should be when we stop since
2598 on some machines the prologue is where the new fp value
2599 is established. */
2600 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2601
488f131b
JB
2602 /* Restart without fiddling with the step ranges or
2603 other state. */
2604 keep_going (ecs);
2605 return;
2606 }
2607 }
c906108c 2608
7ed0fe66
DJ
2609 ecs->sal = find_pc_line (stop_pc, 0);
2610
1b2bfbb9
RC
2611 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2612 the trampoline processing logic, however, there are some trampolines
2613 that have no names, so we should do trampoline handling first. */
2614 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2615 && ecs->stop_func_name == NULL
2616 && ecs->sal.line == 0)
1b2bfbb9 2617 {
527159b7 2618 if (debug_infrun)
8a9de0e4 2619 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2620
1b2bfbb9 2621 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2622 undebuggable function (where there is no debugging information
2623 and no line number corresponding to the address where the
1b2bfbb9
RC
2624 inferior stopped). Since we want to skip this kind of code,
2625 we keep going until the inferior returns from this
14e60db5
DJ
2626 function - unless the user has asked us not to (via
2627 set step-mode) or we no longer know how to get back
2628 to the call site. */
2629 if (step_stop_if_no_debug
2630 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2631 {
2632 /* If we have no line number and the step-stop-if-no-debug
2633 is set, we stop the step so that the user has a chance to
2634 switch in assembly mode. */
2635 stop_step = 1;
2636 print_stop_reason (END_STEPPING_RANGE, 0);
2637 stop_stepping (ecs);
2638 return;
2639 }
2640 else
2641 {
2642 /* Set a breakpoint at callee's return address (the address
2643 at which the caller will resume). */
14e60db5 2644 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2645 keep_going (ecs);
2646 return;
2647 }
2648 }
2649
2650 if (step_range_end == 1)
2651 {
2652 /* It is stepi or nexti. We always want to stop stepping after
2653 one instruction. */
527159b7 2654 if (debug_infrun)
8a9de0e4 2655 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2656 stop_step = 1;
2657 print_stop_reason (END_STEPPING_RANGE, 0);
2658 stop_stepping (ecs);
2659 return;
2660 }
2661
488f131b
JB
2662 if (ecs->sal.line == 0)
2663 {
2664 /* We have no line number information. That means to stop
2665 stepping (does this always happen right after one instruction,
2666 when we do "s" in a function with no line numbers,
2667 or can this happen as a result of a return or longjmp?). */
527159b7 2668 if (debug_infrun)
8a9de0e4 2669 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2670 stop_step = 1;
2671 print_stop_reason (END_STEPPING_RANGE, 0);
2672 stop_stepping (ecs);
2673 return;
2674 }
c906108c 2675
488f131b
JB
2676 if ((stop_pc == ecs->sal.pc)
2677 && (ecs->current_line != ecs->sal.line
2678 || ecs->current_symtab != ecs->sal.symtab))
2679 {
2680 /* We are at the start of a different line. So stop. Note that
2681 we don't stop if we step into the middle of a different line.
2682 That is said to make things like for (;;) statements work
2683 better. */
527159b7 2684 if (debug_infrun)
8a9de0e4 2685 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2686 stop_step = 1;
2687 print_stop_reason (END_STEPPING_RANGE, 0);
2688 stop_stepping (ecs);
2689 return;
2690 }
c906108c 2691
488f131b 2692 /* We aren't done stepping.
c906108c 2693
488f131b
JB
2694 Optimize by setting the stepping range to the line.
2695 (We might not be in the original line, but if we entered a
2696 new line in mid-statement, we continue stepping. This makes
2697 things like for(;;) statements work better.) */
c906108c 2698
488f131b 2699 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2700 {
488f131b
JB
2701 /* If this is the last line of the function, don't keep stepping
2702 (it would probably step us out of the function).
2703 This is particularly necessary for a one-line function,
2704 in which after skipping the prologue we better stop even though
2705 we will be in mid-line. */
527159b7 2706 if (debug_infrun)
8a9de0e4 2707 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2708 stop_step = 1;
2709 print_stop_reason (END_STEPPING_RANGE, 0);
2710 stop_stepping (ecs);
2711 return;
c5aa993b 2712 }
488f131b
JB
2713 step_range_start = ecs->sal.pc;
2714 step_range_end = ecs->sal.end;
aa0cd9c1 2715 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2716 ecs->current_line = ecs->sal.line;
2717 ecs->current_symtab = ecs->sal.symtab;
2718
aa0cd9c1
AC
2719 /* In the case where we just stepped out of a function into the
2720 middle of a line of the caller, continue stepping, but
2721 step_frame_id must be modified to current frame */
65815ea1
AC
2722#if 0
2723 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2724 generous. It will trigger on things like a step into a frameless
2725 stackless leaf function. I think the logic should instead look
2726 at the unwound frame ID has that should give a more robust
2727 indication of what happened. */
8fb3e588
AC
2728 if (step - ID == current - ID)
2729 still stepping in same function;
2730 else if (step - ID == unwind (current - ID))
2731 stepped into a function;
2732 else
2733 stepped out of a function;
2734 /* Of course this assumes that the frame ID unwind code is robust
2735 and we're willing to introduce frame unwind logic into this
2736 function. Fortunately, those days are nearly upon us. */
65815ea1 2737#endif
488f131b 2738 {
aa0cd9c1
AC
2739 struct frame_id current_frame = get_frame_id (get_current_frame ());
2740 if (!(frame_id_inner (current_frame, step_frame_id)))
2741 step_frame_id = current_frame;
488f131b 2742 }
c906108c 2743
527159b7 2744 if (debug_infrun)
8a9de0e4 2745 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2746 keep_going (ecs);
104c1213
JM
2747}
2748
2749/* Are we in the middle of stepping? */
2750
2751static int
2752currently_stepping (struct execution_control_state *ecs)
2753{
d303a6c7 2754 return ((!ecs->handling_longjmp
104c1213
JM
2755 && ((step_range_end && step_resume_breakpoint == NULL)
2756 || trap_expected))
2757 || ecs->stepping_through_solib_after_catch
2758 || bpstat_should_step ());
2759}
c906108c 2760
c2c6d25f
JM
2761/* Subroutine call with source code we should not step over. Do step
2762 to the first line of code in it. */
2763
2764static void
2765step_into_function (struct execution_control_state *ecs)
2766{
2767 struct symtab *s;
2768 struct symtab_and_line sr_sal;
2769
2770 s = find_pc_symtab (stop_pc);
2771 if (s && s->language != language_asm)
a433963d
UW
2772 ecs->stop_func_start = gdbarch_skip_prologue
2773 (current_gdbarch, ecs->stop_func_start);
c2c6d25f
JM
2774
2775 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2776 /* Use the step_resume_break to step until the end of the prologue,
2777 even if that involves jumps (as it seems to on the vax under
2778 4.2). */
2779 /* If the prologue ends in the middle of a source line, continue to
2780 the end of that source line (if it is still within the function).
2781 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2782 if (ecs->sal.end
2783 && ecs->sal.pc != ecs->stop_func_start
2784 && ecs->sal.end < ecs->stop_func_end)
2785 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2786
2dbd5e30
KB
2787 /* Architectures which require breakpoint adjustment might not be able
2788 to place a breakpoint at the computed address. If so, the test
2789 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2790 ecs->stop_func_start to an address at which a breakpoint may be
2791 legitimately placed.
8fb3e588 2792
2dbd5e30
KB
2793 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2794 made, GDB will enter an infinite loop when stepping through
2795 optimized code consisting of VLIW instructions which contain
2796 subinstructions corresponding to different source lines. On
2797 FR-V, it's not permitted to place a breakpoint on any but the
2798 first subinstruction of a VLIW instruction. When a breakpoint is
2799 set, GDB will adjust the breakpoint address to the beginning of
2800 the VLIW instruction. Thus, we need to make the corresponding
2801 adjustment here when computing the stop address. */
8fb3e588 2802
2dbd5e30
KB
2803 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2804 {
2805 ecs->stop_func_start
2806 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2807 ecs->stop_func_start);
2dbd5e30
KB
2808 }
2809
c2c6d25f
JM
2810 if (ecs->stop_func_start == stop_pc)
2811 {
2812 /* We are already there: stop now. */
2813 stop_step = 1;
488f131b 2814 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2815 stop_stepping (ecs);
2816 return;
2817 }
2818 else
2819 {
2820 /* Put the step-breakpoint there and go until there. */
fe39c653 2821 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2822 sr_sal.pc = ecs->stop_func_start;
2823 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2824
c2c6d25f 2825 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2826 some machines the prologue is where the new fp value is
2827 established. */
44cbf7b5 2828 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2829
2830 /* And make sure stepping stops right away then. */
2831 step_range_end = step_range_start;
2832 }
2833 keep_going (ecs);
2834}
d4f3574e 2835
d3169d93 2836/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
2837 This is used to both functions and to skip over code. */
2838
2839static void
2840insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2841 struct frame_id sr_id)
2842{
2843 /* There should never be more than one step-resume breakpoint per
2844 thread, so we should never be setting a new
2845 step_resume_breakpoint when one is already active. */
2846 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
2847
2848 if (debug_infrun)
2849 fprintf_unfiltered (gdb_stdlog,
2850 "infrun: inserting step-resume breakpoint at 0x%s\n",
2851 paddr_nz (sr_sal.pc));
2852
44cbf7b5
AC
2853 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2854 bp_step_resume);
2855 if (breakpoints_inserted)
2856 insert_breakpoints ();
2857}
7ce450bd 2858
d3169d93 2859/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 2860 to skip a potential signal handler.
7ce450bd 2861
14e60db5
DJ
2862 This is called with the interrupted function's frame. The signal
2863 handler, when it returns, will resume the interrupted function at
2864 RETURN_FRAME.pc. */
d303a6c7
AC
2865
2866static void
44cbf7b5 2867insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2868{
2869 struct symtab_and_line sr_sal;
2870
d303a6c7
AC
2871 init_sal (&sr_sal); /* initialize to zeros */
2872
bf6ae464
UW
2873 sr_sal.pc = gdbarch_addr_bits_remove
2874 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
2875 sr_sal.section = find_pc_overlay (sr_sal.pc);
2876
44cbf7b5 2877 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2878}
2879
14e60db5
DJ
2880/* Similar to insert_step_resume_breakpoint_at_frame, except
2881 but a breakpoint at the previous frame's PC. This is used to
2882 skip a function after stepping into it (for "next" or if the called
2883 function has no debugging information).
2884
2885 The current function has almost always been reached by single
2886 stepping a call or return instruction. NEXT_FRAME belongs to the
2887 current function, and the breakpoint will be set at the caller's
2888 resume address.
2889
2890 This is a separate function rather than reusing
2891 insert_step_resume_breakpoint_at_frame in order to avoid
2892 get_prev_frame, which may stop prematurely (see the implementation
2893 of frame_unwind_id for an example). */
2894
2895static void
2896insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2897{
2898 struct symtab_and_line sr_sal;
2899
2900 /* We shouldn't have gotten here if we don't know where the call site
2901 is. */
2902 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2903
2904 init_sal (&sr_sal); /* initialize to zeros */
2905
bf6ae464
UW
2906 sr_sal.pc = gdbarch_addr_bits_remove
2907 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
2908 sr_sal.section = find_pc_overlay (sr_sal.pc);
2909
2910 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2911}
2912
104c1213
JM
2913static void
2914stop_stepping (struct execution_control_state *ecs)
2915{
527159b7 2916 if (debug_infrun)
8a9de0e4 2917 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2918
cd0fc7c3
SS
2919 /* Let callers know we don't want to wait for the inferior anymore. */
2920 ecs->wait_some_more = 0;
2921}
2922
d4f3574e
SS
2923/* This function handles various cases where we need to continue
2924 waiting for the inferior. */
2925/* (Used to be the keep_going: label in the old wait_for_inferior) */
2926
2927static void
2928keep_going (struct execution_control_state *ecs)
2929{
d4f3574e 2930 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2931 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2932
d4f3574e
SS
2933 /* If we did not do break;, it means we should keep running the
2934 inferior and not return to debugger. */
2935
2936 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2937 {
2938 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2939 the inferior, else we'd have done a break above) and we
2940 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2941 resume (currently_stepping (ecs), stop_signal);
2942 }
2943 else
2944 {
2945 /* Either the trap was not expected, but we are continuing
488f131b
JB
2946 anyway (the user asked that this signal be passed to the
2947 child)
2948 -- or --
2949 The signal was SIGTRAP, e.g. it was our signal, but we
2950 decided we should resume from it.
d4f3574e 2951
68f53502 2952 We're going to run this baby now! */
d4f3574e 2953
68f53502 2954 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e 2955 {
569631c6
UW
2956 /* Stop stepping when inserting breakpoints
2957 has failed. */
2958 if (insert_breakpoints () != 0)
d4f3574e
SS
2959 {
2960 stop_stepping (ecs);
2961 return;
2962 }
2963 breakpoints_inserted = 1;
2964 }
2965
2966 trap_expected = ecs->another_trap;
2967
2968 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2969 specifies that such a signal should be delivered to the
2970 target program).
2971
2972 Typically, this would occure when a user is debugging a
2973 target monitor on a simulator: the target monitor sets a
2974 breakpoint; the simulator encounters this break-point and
2975 halts the simulation handing control to GDB; GDB, noteing
2976 that the break-point isn't valid, returns control back to the
2977 simulator; the simulator then delivers the hardware
2978 equivalent of a SIGNAL_TRAP to the program being debugged. */
2979
2980 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2981 stop_signal = TARGET_SIGNAL_0;
2982
d4f3574e
SS
2983
2984 resume (currently_stepping (ecs), stop_signal);
2985 }
2986
488f131b 2987 prepare_to_wait (ecs);
d4f3574e
SS
2988}
2989
104c1213
JM
2990/* This function normally comes after a resume, before
2991 handle_inferior_event exits. It takes care of any last bits of
2992 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2993
104c1213
JM
2994static void
2995prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2996{
527159b7 2997 if (debug_infrun)
8a9de0e4 2998 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2999 if (ecs->infwait_state == infwait_normal_state)
3000 {
3001 overlay_cache_invalid = 1;
3002
3003 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3004 target_wait because they can be loaded from the target while
3005 in target_wait. This makes remote debugging a bit more
3006 efficient for those targets that provide critical registers
3007 as part of their normal status mechanism. */
104c1213
JM
3008
3009 registers_changed ();
39f77062 3010 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3011 ecs->wp = &(ecs->ws);
3012 }
3013 /* This is the old end of the while loop. Let everybody know we
3014 want to wait for the inferior some more and get called again
3015 soon. */
3016 ecs->wait_some_more = 1;
c906108c 3017}
11cf8741
JM
3018
3019/* Print why the inferior has stopped. We always print something when
3020 the inferior exits, or receives a signal. The rest of the cases are
3021 dealt with later on in normal_stop() and print_it_typical(). Ideally
3022 there should be a call to this function from handle_inferior_event()
3023 each time stop_stepping() is called.*/
3024static void
3025print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3026{
3027 switch (stop_reason)
3028 {
11cf8741
JM
3029 case END_STEPPING_RANGE:
3030 /* We are done with a step/next/si/ni command. */
3031 /* For now print nothing. */
fb40c209 3032 /* Print a message only if not in the middle of doing a "step n"
488f131b 3033 operation for n > 1 */
fb40c209 3034 if (!step_multi || !stop_step)
9dc5e2a9 3035 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3036 ui_out_field_string
3037 (uiout, "reason",
3038 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3039 break;
11cf8741
JM
3040 case SIGNAL_EXITED:
3041 /* The inferior was terminated by a signal. */
8b93c638 3042 annotate_signalled ();
9dc5e2a9 3043 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3044 ui_out_field_string
3045 (uiout, "reason",
3046 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3047 ui_out_text (uiout, "\nProgram terminated with signal ");
3048 annotate_signal_name ();
488f131b
JB
3049 ui_out_field_string (uiout, "signal-name",
3050 target_signal_to_name (stop_info));
8b93c638
JM
3051 annotate_signal_name_end ();
3052 ui_out_text (uiout, ", ");
3053 annotate_signal_string ();
488f131b
JB
3054 ui_out_field_string (uiout, "signal-meaning",
3055 target_signal_to_string (stop_info));
8b93c638
JM
3056 annotate_signal_string_end ();
3057 ui_out_text (uiout, ".\n");
3058 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3059 break;
3060 case EXITED:
3061 /* The inferior program is finished. */
8b93c638
JM
3062 annotate_exited (stop_info);
3063 if (stop_info)
3064 {
9dc5e2a9 3065 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3066 ui_out_field_string (uiout, "reason",
3067 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3068 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3069 ui_out_field_fmt (uiout, "exit-code", "0%o",
3070 (unsigned int) stop_info);
8b93c638
JM
3071 ui_out_text (uiout, ".\n");
3072 }
3073 else
3074 {
9dc5e2a9 3075 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3076 ui_out_field_string
3077 (uiout, "reason",
3078 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3079 ui_out_text (uiout, "\nProgram exited normally.\n");
3080 }
f17517ea
AS
3081 /* Support the --return-child-result option. */
3082 return_child_result_value = stop_info;
11cf8741
JM
3083 break;
3084 case SIGNAL_RECEIVED:
3085 /* Signal received. The signal table tells us to print about
3086 it. */
8b93c638
JM
3087 annotate_signal ();
3088 ui_out_text (uiout, "\nProgram received signal ");
3089 annotate_signal_name ();
84c6c83c 3090 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3091 ui_out_field_string
3092 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3093 ui_out_field_string (uiout, "signal-name",
3094 target_signal_to_name (stop_info));
8b93c638
JM
3095 annotate_signal_name_end ();
3096 ui_out_text (uiout, ", ");
3097 annotate_signal_string ();
488f131b
JB
3098 ui_out_field_string (uiout, "signal-meaning",
3099 target_signal_to_string (stop_info));
8b93c638
JM
3100 annotate_signal_string_end ();
3101 ui_out_text (uiout, ".\n");
11cf8741
JM
3102 break;
3103 default:
8e65ff28 3104 internal_error (__FILE__, __LINE__,
e2e0b3e5 3105 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3106 break;
3107 }
3108}
c906108c 3109\f
43ff13b4 3110
c906108c
SS
3111/* Here to return control to GDB when the inferior stops for real.
3112 Print appropriate messages, remove breakpoints, give terminal our modes.
3113
3114 STOP_PRINT_FRAME nonzero means print the executing frame
3115 (pc, function, args, file, line number and line text).
3116 BREAKPOINTS_FAILED nonzero means stop was due to error
3117 attempting to insert breakpoints. */
3118
3119void
96baa820 3120normal_stop (void)
c906108c 3121{
73b65bb0
DJ
3122 struct target_waitstatus last;
3123 ptid_t last_ptid;
3124
3125 get_last_target_status (&last_ptid, &last);
3126
c906108c
SS
3127 /* As with the notification of thread events, we want to delay
3128 notifying the user that we've switched thread context until
3129 the inferior actually stops.
3130
73b65bb0
DJ
3131 There's no point in saying anything if the inferior has exited.
3132 Note that SIGNALLED here means "exited with a signal", not
3133 "received a signal". */
488f131b 3134 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3135 && target_has_execution
3136 && last.kind != TARGET_WAITKIND_SIGNALLED
3137 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3138 {
3139 target_terminal_ours_for_output ();
a3f17187 3140 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3141 target_pid_or_tid_to_str (inferior_ptid));
3142 previous_inferior_ptid = inferior_ptid;
c906108c 3143 }
c906108c 3144
4fa8626c 3145 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3146 /* Make sure that the current_frame's pc is correct. This
3147 is a correction for setting up the frame info before doing
b798847d 3148 gdbarch_decr_pc_after_break */
b87efeee
AC
3149 if (target_has_execution)
3150 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3151 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3152 frame code to check for this and sort out any resultant mess.
b798847d 3153 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3154 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3155
c906108c
SS
3156 if (target_has_execution && breakpoints_inserted)
3157 {
3158 if (remove_breakpoints ())
3159 {
3160 target_terminal_ours_for_output ();
a3f17187
AC
3161 printf_filtered (_("\
3162Cannot remove breakpoints because program is no longer writable.\n\
3163It might be running in another process.\n\
3164Further execution is probably impossible.\n"));
c906108c
SS
3165 }
3166 }
3167 breakpoints_inserted = 0;
3168
3169 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3170 Delete any breakpoint that is to be deleted at the next stop. */
3171
3172 breakpoint_auto_delete (stop_bpstat);
3173
3174 /* If an auto-display called a function and that got a signal,
3175 delete that auto-display to avoid an infinite recursion. */
3176
3177 if (stopped_by_random_signal)
3178 disable_current_display ();
3179
3180 /* Don't print a message if in the middle of doing a "step n"
3181 operation for n > 1 */
3182 if (step_multi && stop_step)
3183 goto done;
3184
3185 target_terminal_ours ();
3186
7abfe014
DJ
3187 /* Set the current source location. This will also happen if we
3188 display the frame below, but the current SAL will be incorrect
3189 during a user hook-stop function. */
3190 if (target_has_stack && !stop_stack_dummy)
3191 set_current_sal_from_frame (get_current_frame (), 1);
3192
5913bcb0
AC
3193 /* Look up the hook_stop and run it (CLI internally handles problem
3194 of stop_command's pre-hook not existing). */
3195 if (stop_command)
3196 catch_errors (hook_stop_stub, stop_command,
3197 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3198
3199 if (!target_has_stack)
3200 {
3201
3202 goto done;
3203 }
3204
3205 /* Select innermost stack frame - i.e., current frame is frame 0,
3206 and current location is based on that.
3207 Don't do this on return from a stack dummy routine,
3208 or if the program has exited. */
3209
3210 if (!stop_stack_dummy)
3211 {
0f7d239c 3212 select_frame (get_current_frame ());
c906108c
SS
3213
3214 /* Print current location without a level number, if
c5aa993b
JM
3215 we have changed functions or hit a breakpoint.
3216 Print source line if we have one.
3217 bpstat_print() contains the logic deciding in detail
3218 what to print, based on the event(s) that just occurred. */
c906108c 3219
206415a3 3220 if (stop_print_frame)
c906108c
SS
3221 {
3222 int bpstat_ret;
3223 int source_flag;
917317f4 3224 int do_frame_printing = 1;
c906108c
SS
3225
3226 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3227 switch (bpstat_ret)
3228 {
3229 case PRINT_UNKNOWN:
b0f4b84b
DJ
3230 /* If we had hit a shared library event breakpoint,
3231 bpstat_print would print out this message. If we hit
3232 an OS-level shared library event, do the same
3233 thing. */
3234 if (last.kind == TARGET_WAITKIND_LOADED)
3235 {
3236 printf_filtered (_("Stopped due to shared library event\n"));
3237 source_flag = SRC_LINE; /* something bogus */
3238 do_frame_printing = 0;
3239 break;
3240 }
3241
aa0cd9c1 3242 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3243 (or should) carry around the function and does (or
3244 should) use that when doing a frame comparison. */
917317f4 3245 if (stop_step
aa0cd9c1
AC
3246 && frame_id_eq (step_frame_id,
3247 get_frame_id (get_current_frame ()))
917317f4 3248 && step_start_function == find_pc_function (stop_pc))
488f131b 3249 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3250 else
488f131b 3251 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3252 break;
3253 case PRINT_SRC_AND_LOC:
488f131b 3254 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3255 break;
3256 case PRINT_SRC_ONLY:
c5394b80 3257 source_flag = SRC_LINE;
917317f4
JM
3258 break;
3259 case PRINT_NOTHING:
488f131b 3260 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3261 do_frame_printing = 0;
3262 break;
3263 default:
e2e0b3e5 3264 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3265 }
c906108c 3266
9dc5e2a9 3267 if (ui_out_is_mi_like_p (uiout))
39f77062 3268 ui_out_field_int (uiout, "thread-id",
488f131b 3269 pid_to_thread_id (inferior_ptid));
c906108c
SS
3270 /* The behavior of this routine with respect to the source
3271 flag is:
c5394b80
JM
3272 SRC_LINE: Print only source line
3273 LOCATION: Print only location
3274 SRC_AND_LOC: Print location and source line */
917317f4 3275 if (do_frame_printing)
b04f3ab4 3276 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3277
3278 /* Display the auto-display expressions. */
3279 do_displays ();
3280 }
3281 }
3282
3283 /* Save the function value return registers, if we care.
3284 We might be about to restore their previous contents. */
3285 if (proceed_to_finish)
d5c31457
UW
3286 {
3287 /* This should not be necessary. */
3288 if (stop_registers)
3289 regcache_xfree (stop_registers);
3290
3291 /* NB: The copy goes through to the target picking up the value of
3292 all the registers. */
3293 stop_registers = regcache_dup (get_current_regcache ());
3294 }
c906108c
SS
3295
3296 if (stop_stack_dummy)
3297 {
dbe9fe58
AC
3298 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3299 ends with a setting of the current frame, so we can use that
3300 next. */
3301 frame_pop (get_current_frame ());
c906108c 3302 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3303 Can't rely on restore_inferior_status because that only gets
3304 called if we don't stop in the called function. */
c906108c 3305 stop_pc = read_pc ();
0f7d239c 3306 select_frame (get_current_frame ());
c906108c
SS
3307 }
3308
c906108c
SS
3309done:
3310 annotate_stopped ();
7a464420 3311 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3312}
3313
3314static int
96baa820 3315hook_stop_stub (void *cmd)
c906108c 3316{
5913bcb0 3317 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3318 return (0);
3319}
3320\f
c5aa993b 3321int
96baa820 3322signal_stop_state (int signo)
c906108c
SS
3323{
3324 return signal_stop[signo];
3325}
3326
c5aa993b 3327int
96baa820 3328signal_print_state (int signo)
c906108c
SS
3329{
3330 return signal_print[signo];
3331}
3332
c5aa993b 3333int
96baa820 3334signal_pass_state (int signo)
c906108c
SS
3335{
3336 return signal_program[signo];
3337}
3338
488f131b 3339int
7bda5e4a 3340signal_stop_update (int signo, int state)
d4f3574e
SS
3341{
3342 int ret = signal_stop[signo];
3343 signal_stop[signo] = state;
3344 return ret;
3345}
3346
488f131b 3347int
7bda5e4a 3348signal_print_update (int signo, int state)
d4f3574e
SS
3349{
3350 int ret = signal_print[signo];
3351 signal_print[signo] = state;
3352 return ret;
3353}
3354
488f131b 3355int
7bda5e4a 3356signal_pass_update (int signo, int state)
d4f3574e
SS
3357{
3358 int ret = signal_program[signo];
3359 signal_program[signo] = state;
3360 return ret;
3361}
3362
c906108c 3363static void
96baa820 3364sig_print_header (void)
c906108c 3365{
a3f17187
AC
3366 printf_filtered (_("\
3367Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3368}
3369
3370static void
96baa820 3371sig_print_info (enum target_signal oursig)
c906108c
SS
3372{
3373 char *name = target_signal_to_name (oursig);
3374 int name_padding = 13 - strlen (name);
96baa820 3375
c906108c
SS
3376 if (name_padding <= 0)
3377 name_padding = 0;
3378
3379 printf_filtered ("%s", name);
488f131b 3380 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3381 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3382 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3383 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3384 printf_filtered ("%s\n", target_signal_to_string (oursig));
3385}
3386
3387/* Specify how various signals in the inferior should be handled. */
3388
3389static void
96baa820 3390handle_command (char *args, int from_tty)
c906108c
SS
3391{
3392 char **argv;
3393 int digits, wordlen;
3394 int sigfirst, signum, siglast;
3395 enum target_signal oursig;
3396 int allsigs;
3397 int nsigs;
3398 unsigned char *sigs;
3399 struct cleanup *old_chain;
3400
3401 if (args == NULL)
3402 {
e2e0b3e5 3403 error_no_arg (_("signal to handle"));
c906108c
SS
3404 }
3405
3406 /* Allocate and zero an array of flags for which signals to handle. */
3407
3408 nsigs = (int) TARGET_SIGNAL_LAST;
3409 sigs = (unsigned char *) alloca (nsigs);
3410 memset (sigs, 0, nsigs);
3411
3412 /* Break the command line up into args. */
3413
3414 argv = buildargv (args);
3415 if (argv == NULL)
3416 {
3417 nomem (0);
3418 }
7a292a7a 3419 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3420
3421 /* Walk through the args, looking for signal oursigs, signal names, and
3422 actions. Signal numbers and signal names may be interspersed with
3423 actions, with the actions being performed for all signals cumulatively
3424 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3425
3426 while (*argv != NULL)
3427 {
3428 wordlen = strlen (*argv);
3429 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3430 {;
3431 }
3432 allsigs = 0;
3433 sigfirst = siglast = -1;
3434
3435 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3436 {
3437 /* Apply action to all signals except those used by the
3438 debugger. Silently skip those. */
3439 allsigs = 1;
3440 sigfirst = 0;
3441 siglast = nsigs - 1;
3442 }
3443 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3444 {
3445 SET_SIGS (nsigs, sigs, signal_stop);
3446 SET_SIGS (nsigs, sigs, signal_print);
3447 }
3448 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3449 {
3450 UNSET_SIGS (nsigs, sigs, signal_program);
3451 }
3452 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3453 {
3454 SET_SIGS (nsigs, sigs, signal_print);
3455 }
3456 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3457 {
3458 SET_SIGS (nsigs, sigs, signal_program);
3459 }
3460 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3461 {
3462 UNSET_SIGS (nsigs, sigs, signal_stop);
3463 }
3464 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3465 {
3466 SET_SIGS (nsigs, sigs, signal_program);
3467 }
3468 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3469 {
3470 UNSET_SIGS (nsigs, sigs, signal_print);
3471 UNSET_SIGS (nsigs, sigs, signal_stop);
3472 }
3473 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3474 {
3475 UNSET_SIGS (nsigs, sigs, signal_program);
3476 }
3477 else if (digits > 0)
3478 {
3479 /* It is numeric. The numeric signal refers to our own
3480 internal signal numbering from target.h, not to host/target
3481 signal number. This is a feature; users really should be
3482 using symbolic names anyway, and the common ones like
3483 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3484
3485 sigfirst = siglast = (int)
3486 target_signal_from_command (atoi (*argv));
3487 if ((*argv)[digits] == '-')
3488 {
3489 siglast = (int)
3490 target_signal_from_command (atoi ((*argv) + digits + 1));
3491 }
3492 if (sigfirst > siglast)
3493 {
3494 /* Bet he didn't figure we'd think of this case... */
3495 signum = sigfirst;
3496 sigfirst = siglast;
3497 siglast = signum;
3498 }
3499 }
3500 else
3501 {
3502 oursig = target_signal_from_name (*argv);
3503 if (oursig != TARGET_SIGNAL_UNKNOWN)
3504 {
3505 sigfirst = siglast = (int) oursig;
3506 }
3507 else
3508 {
3509 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3510 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3511 }
3512 }
3513
3514 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3515 which signals to apply actions to. */
c906108c
SS
3516
3517 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3518 {
3519 switch ((enum target_signal) signum)
3520 {
3521 case TARGET_SIGNAL_TRAP:
3522 case TARGET_SIGNAL_INT:
3523 if (!allsigs && !sigs[signum])
3524 {
3525 if (query ("%s is used by the debugger.\n\
488f131b 3526Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3527 {
3528 sigs[signum] = 1;
3529 }
3530 else
3531 {
a3f17187 3532 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3533 gdb_flush (gdb_stdout);
3534 }
3535 }
3536 break;
3537 case TARGET_SIGNAL_0:
3538 case TARGET_SIGNAL_DEFAULT:
3539 case TARGET_SIGNAL_UNKNOWN:
3540 /* Make sure that "all" doesn't print these. */
3541 break;
3542 default:
3543 sigs[signum] = 1;
3544 break;
3545 }
3546 }
3547
3548 argv++;
3549 }
3550
39f77062 3551 target_notice_signals (inferior_ptid);
c906108c
SS
3552
3553 if (from_tty)
3554 {
3555 /* Show the results. */
3556 sig_print_header ();
3557 for (signum = 0; signum < nsigs; signum++)
3558 {
3559 if (sigs[signum])
3560 {
3561 sig_print_info (signum);
3562 }
3563 }
3564 }
3565
3566 do_cleanups (old_chain);
3567}
3568
3569static void
96baa820 3570xdb_handle_command (char *args, int from_tty)
c906108c
SS
3571{
3572 char **argv;
3573 struct cleanup *old_chain;
3574
3575 /* Break the command line up into args. */
3576
3577 argv = buildargv (args);
3578 if (argv == NULL)
3579 {
3580 nomem (0);
3581 }
7a292a7a 3582 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3583 if (argv[1] != (char *) NULL)
3584 {
3585 char *argBuf;
3586 int bufLen;
3587
3588 bufLen = strlen (argv[0]) + 20;
3589 argBuf = (char *) xmalloc (bufLen);
3590 if (argBuf)
3591 {
3592 int validFlag = 1;
3593 enum target_signal oursig;
3594
3595 oursig = target_signal_from_name (argv[0]);
3596 memset (argBuf, 0, bufLen);
3597 if (strcmp (argv[1], "Q") == 0)
3598 sprintf (argBuf, "%s %s", argv[0], "noprint");
3599 else
3600 {
3601 if (strcmp (argv[1], "s") == 0)
3602 {
3603 if (!signal_stop[oursig])
3604 sprintf (argBuf, "%s %s", argv[0], "stop");
3605 else
3606 sprintf (argBuf, "%s %s", argv[0], "nostop");
3607 }
3608 else if (strcmp (argv[1], "i") == 0)
3609 {
3610 if (!signal_program[oursig])
3611 sprintf (argBuf, "%s %s", argv[0], "pass");
3612 else
3613 sprintf (argBuf, "%s %s", argv[0], "nopass");
3614 }
3615 else if (strcmp (argv[1], "r") == 0)
3616 {
3617 if (!signal_print[oursig])
3618 sprintf (argBuf, "%s %s", argv[0], "print");
3619 else
3620 sprintf (argBuf, "%s %s", argv[0], "noprint");
3621 }
3622 else
3623 validFlag = 0;
3624 }
3625 if (validFlag)
3626 handle_command (argBuf, from_tty);
3627 else
a3f17187 3628 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3629 if (argBuf)
b8c9b27d 3630 xfree (argBuf);
c906108c
SS
3631 }
3632 }
3633 do_cleanups (old_chain);
3634}
3635
3636/* Print current contents of the tables set by the handle command.
3637 It is possible we should just be printing signals actually used
3638 by the current target (but for things to work right when switching
3639 targets, all signals should be in the signal tables). */
3640
3641static void
96baa820 3642signals_info (char *signum_exp, int from_tty)
c906108c
SS
3643{
3644 enum target_signal oursig;
3645 sig_print_header ();
3646
3647 if (signum_exp)
3648 {
3649 /* First see if this is a symbol name. */
3650 oursig = target_signal_from_name (signum_exp);
3651 if (oursig == TARGET_SIGNAL_UNKNOWN)
3652 {
3653 /* No, try numeric. */
3654 oursig =
bb518678 3655 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3656 }
3657 sig_print_info (oursig);
3658 return;
3659 }
3660
3661 printf_filtered ("\n");
3662 /* These ugly casts brought to you by the native VAX compiler. */
3663 for (oursig = TARGET_SIGNAL_FIRST;
3664 (int) oursig < (int) TARGET_SIGNAL_LAST;
3665 oursig = (enum target_signal) ((int) oursig + 1))
3666 {
3667 QUIT;
3668
3669 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3670 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3671 sig_print_info (oursig);
3672 }
3673
a3f17187 3674 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3675}
3676\f
7a292a7a
SS
3677struct inferior_status
3678{
3679 enum target_signal stop_signal;
3680 CORE_ADDR stop_pc;
3681 bpstat stop_bpstat;
3682 int stop_step;
3683 int stop_stack_dummy;
3684 int stopped_by_random_signal;
3685 int trap_expected;
3686 CORE_ADDR step_range_start;
3687 CORE_ADDR step_range_end;
aa0cd9c1 3688 struct frame_id step_frame_id;
5fbbeb29 3689 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3690 CORE_ADDR step_resume_break_address;
3691 int stop_after_trap;
c0236d92 3692 int stop_soon;
7a292a7a
SS
3693
3694 /* These are here because if call_function_by_hand has written some
3695 registers and then decides to call error(), we better not have changed
3696 any registers. */
72cec141 3697 struct regcache *registers;
7a292a7a 3698
101dcfbe
AC
3699 /* A frame unique identifier. */
3700 struct frame_id selected_frame_id;
3701
7a292a7a
SS
3702 int breakpoint_proceeded;
3703 int restore_stack_info;
3704 int proceed_to_finish;
3705};
3706
7a292a7a 3707void
96baa820
JM
3708write_inferior_status_register (struct inferior_status *inf_status, int regno,
3709 LONGEST val)
7a292a7a 3710{
3acba339 3711 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3712 void *buf = alloca (size);
3713 store_signed_integer (buf, size, val);
0818c12a 3714 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3715}
3716
c906108c
SS
3717/* Save all of the information associated with the inferior<==>gdb
3718 connection. INF_STATUS is a pointer to a "struct inferior_status"
3719 (defined in inferior.h). */
3720
7a292a7a 3721struct inferior_status *
96baa820 3722save_inferior_status (int restore_stack_info)
c906108c 3723{
72cec141 3724 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3725
c906108c
SS
3726 inf_status->stop_signal = stop_signal;
3727 inf_status->stop_pc = stop_pc;
3728 inf_status->stop_step = stop_step;
3729 inf_status->stop_stack_dummy = stop_stack_dummy;
3730 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3731 inf_status->trap_expected = trap_expected;
3732 inf_status->step_range_start = step_range_start;
3733 inf_status->step_range_end = step_range_end;
aa0cd9c1 3734 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3735 inf_status->step_over_calls = step_over_calls;
3736 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3737 inf_status->stop_soon = stop_soon;
c906108c
SS
3738 /* Save original bpstat chain here; replace it with copy of chain.
3739 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3740 hand them back the original chain when restore_inferior_status is
3741 called. */
c906108c
SS
3742 inf_status->stop_bpstat = stop_bpstat;
3743 stop_bpstat = bpstat_copy (stop_bpstat);
3744 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3745 inf_status->restore_stack_info = restore_stack_info;
3746 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3747
594f7785 3748 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 3749
206415a3 3750 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3751 return inf_status;
c906108c
SS
3752}
3753
c906108c 3754static int
96baa820 3755restore_selected_frame (void *args)
c906108c 3756{
488f131b 3757 struct frame_id *fid = (struct frame_id *) args;
c906108c 3758 struct frame_info *frame;
c906108c 3759
101dcfbe 3760 frame = frame_find_by_id (*fid);
c906108c 3761
aa0cd9c1
AC
3762 /* If inf_status->selected_frame_id is NULL, there was no previously
3763 selected frame. */
101dcfbe 3764 if (frame == NULL)
c906108c 3765 {
8a3fe4f8 3766 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3767 return 0;
3768 }
3769
0f7d239c 3770 select_frame (frame);
c906108c
SS
3771
3772 return (1);
3773}
3774
3775void
96baa820 3776restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3777{
3778 stop_signal = inf_status->stop_signal;
3779 stop_pc = inf_status->stop_pc;
3780 stop_step = inf_status->stop_step;
3781 stop_stack_dummy = inf_status->stop_stack_dummy;
3782 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3783 trap_expected = inf_status->trap_expected;
3784 step_range_start = inf_status->step_range_start;
3785 step_range_end = inf_status->step_range_end;
aa0cd9c1 3786 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3787 step_over_calls = inf_status->step_over_calls;
3788 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3789 stop_soon = inf_status->stop_soon;
c906108c
SS
3790 bpstat_clear (&stop_bpstat);
3791 stop_bpstat = inf_status->stop_bpstat;
3792 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3793 proceed_to_finish = inf_status->proceed_to_finish;
3794
c906108c
SS
3795 /* The inferior can be gone if the user types "print exit(0)"
3796 (and perhaps other times). */
3797 if (target_has_execution)
72cec141 3798 /* NB: The register write goes through to the target. */
594f7785 3799 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 3800 regcache_xfree (inf_status->registers);
c906108c 3801
c906108c
SS
3802 /* FIXME: If we are being called after stopping in a function which
3803 is called from gdb, we should not be trying to restore the
3804 selected frame; it just prints a spurious error message (The
3805 message is useful, however, in detecting bugs in gdb (like if gdb
3806 clobbers the stack)). In fact, should we be restoring the
3807 inferior status at all in that case? . */
3808
3809 if (target_has_stack && inf_status->restore_stack_info)
3810 {
c906108c 3811 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3812 walking the stack might encounter a garbage pointer and
3813 error() trying to dereference it. */
488f131b
JB
3814 if (catch_errors
3815 (restore_selected_frame, &inf_status->selected_frame_id,
3816 "Unable to restore previously selected frame:\n",
3817 RETURN_MASK_ERROR) == 0)
c906108c
SS
3818 /* Error in restoring the selected frame. Select the innermost
3819 frame. */
0f7d239c 3820 select_frame (get_current_frame ());
c906108c
SS
3821
3822 }
c906108c 3823
72cec141 3824 xfree (inf_status);
7a292a7a 3825}
c906108c 3826
74b7792f
AC
3827static void
3828do_restore_inferior_status_cleanup (void *sts)
3829{
3830 restore_inferior_status (sts);
3831}
3832
3833struct cleanup *
3834make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3835{
3836 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3837}
3838
c906108c 3839void
96baa820 3840discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3841{
3842 /* See save_inferior_status for info on stop_bpstat. */
3843 bpstat_clear (&inf_status->stop_bpstat);
72cec141 3844 regcache_xfree (inf_status->registers);
72cec141 3845 xfree (inf_status);
7a292a7a
SS
3846}
3847
47932f85
DJ
3848int
3849inferior_has_forked (int pid, int *child_pid)
3850{
3851 struct target_waitstatus last;
3852 ptid_t last_ptid;
3853
3854 get_last_target_status (&last_ptid, &last);
3855
3856 if (last.kind != TARGET_WAITKIND_FORKED)
3857 return 0;
3858
3859 if (ptid_get_pid (last_ptid) != pid)
3860 return 0;
3861
3862 *child_pid = last.value.related_pid;
3863 return 1;
3864}
3865
3866int
3867inferior_has_vforked (int pid, int *child_pid)
3868{
3869 struct target_waitstatus last;
3870 ptid_t last_ptid;
3871
3872 get_last_target_status (&last_ptid, &last);
3873
3874 if (last.kind != TARGET_WAITKIND_VFORKED)
3875 return 0;
3876
3877 if (ptid_get_pid (last_ptid) != pid)
3878 return 0;
3879
3880 *child_pid = last.value.related_pid;
3881 return 1;
3882}
3883
3884int
3885inferior_has_execd (int pid, char **execd_pathname)
3886{
3887 struct target_waitstatus last;
3888 ptid_t last_ptid;
3889
3890 get_last_target_status (&last_ptid, &last);
3891
3892 if (last.kind != TARGET_WAITKIND_EXECD)
3893 return 0;
3894
3895 if (ptid_get_pid (last_ptid) != pid)
3896 return 0;
3897
3898 *execd_pathname = xstrdup (last.value.execd_pathname);
3899 return 1;
3900}
3901
ca6724c1
KB
3902/* Oft used ptids */
3903ptid_t null_ptid;
3904ptid_t minus_one_ptid;
3905
3906/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3907
ca6724c1
KB
3908ptid_t
3909ptid_build (int pid, long lwp, long tid)
3910{
3911 ptid_t ptid;
3912
3913 ptid.pid = pid;
3914 ptid.lwp = lwp;
3915 ptid.tid = tid;
3916 return ptid;
3917}
3918
3919/* Create a ptid from just a pid. */
3920
3921ptid_t
3922pid_to_ptid (int pid)
3923{
3924 return ptid_build (pid, 0, 0);
3925}
3926
3927/* Fetch the pid (process id) component from a ptid. */
3928
3929int
3930ptid_get_pid (ptid_t ptid)
3931{
3932 return ptid.pid;
3933}
3934
3935/* Fetch the lwp (lightweight process) component from a ptid. */
3936
3937long
3938ptid_get_lwp (ptid_t ptid)
3939{
3940 return ptid.lwp;
3941}
3942
3943/* Fetch the tid (thread id) component from a ptid. */
3944
3945long
3946ptid_get_tid (ptid_t ptid)
3947{
3948 return ptid.tid;
3949}
3950
3951/* ptid_equal() is used to test equality of two ptids. */
3952
3953int
3954ptid_equal (ptid_t ptid1, ptid_t ptid2)
3955{
3956 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3957 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3958}
3959
3960/* restore_inferior_ptid() will be used by the cleanup machinery
3961 to restore the inferior_ptid value saved in a call to
3962 save_inferior_ptid(). */
ce696e05
KB
3963
3964static void
3965restore_inferior_ptid (void *arg)
3966{
3967 ptid_t *saved_ptid_ptr = arg;
3968 inferior_ptid = *saved_ptid_ptr;
3969 xfree (arg);
3970}
3971
3972/* Save the value of inferior_ptid so that it may be restored by a
3973 later call to do_cleanups(). Returns the struct cleanup pointer
3974 needed for later doing the cleanup. */
3975
3976struct cleanup *
3977save_inferior_ptid (void)
3978{
3979 ptid_t *saved_ptid_ptr;
3980
3981 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3982 *saved_ptid_ptr = inferior_ptid;
3983 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3984}
c5aa993b 3985\f
488f131b 3986
c906108c 3987void
96baa820 3988_initialize_infrun (void)
c906108c 3989{
52f0bd74
AC
3990 int i;
3991 int numsigs;
c906108c
SS
3992 struct cmd_list_element *c;
3993
1bedd215
AC
3994 add_info ("signals", signals_info, _("\
3995What debugger does when program gets various signals.\n\
3996Specify a signal as argument to print info on that signal only."));
c906108c
SS
3997 add_info_alias ("handle", "signals", 0);
3998
1bedd215
AC
3999 add_com ("handle", class_run, handle_command, _("\
4000Specify how to handle a signal.\n\
c906108c
SS
4001Args are signals and actions to apply to those signals.\n\
4002Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4003from 1-15 are allowed for compatibility with old versions of GDB.\n\
4004Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4005The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4006used by the debugger, typically SIGTRAP and SIGINT.\n\
4007Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4008\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4009Stop means reenter debugger if this signal happens (implies print).\n\
4010Print means print a message if this signal happens.\n\
4011Pass means let program see this signal; otherwise program doesn't know.\n\
4012Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4013Pass and Stop may be combined."));
c906108c
SS
4014 if (xdb_commands)
4015 {
1bedd215
AC
4016 add_com ("lz", class_info, signals_info, _("\
4017What debugger does when program gets various signals.\n\
4018Specify a signal as argument to print info on that signal only."));
4019 add_com ("z", class_run, xdb_handle_command, _("\
4020Specify how to handle a signal.\n\
c906108c
SS
4021Args are signals and actions to apply to those signals.\n\
4022Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4023from 1-15 are allowed for compatibility with old versions of GDB.\n\
4024Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4025The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4026used by the debugger, typically SIGTRAP and SIGINT.\n\
4027Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4028\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4029nopass), \"Q\" (noprint)\n\
4030Stop means reenter debugger if this signal happens (implies print).\n\
4031Print means print a message if this signal happens.\n\
4032Pass means let program see this signal; otherwise program doesn't know.\n\
4033Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4034Pass and Stop may be combined."));
c906108c
SS
4035 }
4036
4037 if (!dbx_commands)
1a966eab
AC
4038 stop_command = add_cmd ("stop", class_obscure,
4039 not_just_help_class_command, _("\
4040There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4041This allows you to set a list of commands to be run each time execution\n\
1a966eab 4042of the program stops."), &cmdlist);
c906108c 4043
85c07804
AC
4044 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4045Set inferior debugging."), _("\
4046Show inferior debugging."), _("\
4047When non-zero, inferior specific debugging is enabled."),
4048 NULL,
920d2a44 4049 show_debug_infrun,
85c07804 4050 &setdebuglist, &showdebuglist);
527159b7 4051
c906108c 4052 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4053 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4054 signal_print = (unsigned char *)
4055 xmalloc (sizeof (signal_print[0]) * numsigs);
4056 signal_program = (unsigned char *)
4057 xmalloc (sizeof (signal_program[0]) * numsigs);
4058 for (i = 0; i < numsigs; i++)
4059 {
4060 signal_stop[i] = 1;
4061 signal_print[i] = 1;
4062 signal_program[i] = 1;
4063 }
4064
4065 /* Signals caused by debugger's own actions
4066 should not be given to the program afterwards. */
4067 signal_program[TARGET_SIGNAL_TRAP] = 0;
4068 signal_program[TARGET_SIGNAL_INT] = 0;
4069
4070 /* Signals that are not errors should not normally enter the debugger. */
4071 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4072 signal_print[TARGET_SIGNAL_ALRM] = 0;
4073 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4074 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4075 signal_stop[TARGET_SIGNAL_PROF] = 0;
4076 signal_print[TARGET_SIGNAL_PROF] = 0;
4077 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4078 signal_print[TARGET_SIGNAL_CHLD] = 0;
4079 signal_stop[TARGET_SIGNAL_IO] = 0;
4080 signal_print[TARGET_SIGNAL_IO] = 0;
4081 signal_stop[TARGET_SIGNAL_POLL] = 0;
4082 signal_print[TARGET_SIGNAL_POLL] = 0;
4083 signal_stop[TARGET_SIGNAL_URG] = 0;
4084 signal_print[TARGET_SIGNAL_URG] = 0;
4085 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4086 signal_print[TARGET_SIGNAL_WINCH] = 0;
4087
cd0fc7c3
SS
4088 /* These signals are used internally by user-level thread
4089 implementations. (See signal(5) on Solaris.) Like the above
4090 signals, a healthy program receives and handles them as part of
4091 its normal operation. */
4092 signal_stop[TARGET_SIGNAL_LWP] = 0;
4093 signal_print[TARGET_SIGNAL_LWP] = 0;
4094 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4095 signal_print[TARGET_SIGNAL_WAITING] = 0;
4096 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4097 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4098
85c07804
AC
4099 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4100 &stop_on_solib_events, _("\
4101Set stopping for shared library events."), _("\
4102Show stopping for shared library events."), _("\
c906108c
SS
4103If nonzero, gdb will give control to the user when the dynamic linker\n\
4104notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4105to the user would be loading/unloading of a new library."),
4106 NULL,
920d2a44 4107 show_stop_on_solib_events,
85c07804 4108 &setlist, &showlist);
c906108c 4109
7ab04401
AC
4110 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4111 follow_fork_mode_kind_names,
4112 &follow_fork_mode_string, _("\
4113Set debugger response to a program call of fork or vfork."), _("\
4114Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4115A fork or vfork creates a new process. follow-fork-mode can be:\n\
4116 parent - the original process is debugged after a fork\n\
4117 child - the new process is debugged after a fork\n\
ea1dd7bc 4118The unfollowed process will continue to run.\n\
7ab04401
AC
4119By default, the debugger will follow the parent process."),
4120 NULL,
920d2a44 4121 show_follow_fork_mode_string,
7ab04401
AC
4122 &setlist, &showlist);
4123
4124 add_setshow_enum_cmd ("scheduler-locking", class_run,
4125 scheduler_enums, &scheduler_mode, _("\
4126Set mode for locking scheduler during execution."), _("\
4127Show mode for locking scheduler during execution."), _("\
c906108c
SS
4128off == no locking (threads may preempt at any time)\n\
4129on == full locking (no thread except the current thread may run)\n\
4130step == scheduler locked during every single-step operation.\n\
4131 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4132 Other threads may run while stepping over a function call ('next')."),
4133 set_schedlock_func, /* traps on target vector */
920d2a44 4134 show_scheduler_mode,
7ab04401 4135 &setlist, &showlist);
5fbbeb29 4136
5bf193a2
AC
4137 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4138Set mode of the step operation."), _("\
4139Show mode of the step operation."), _("\
4140When set, doing a step over a function without debug line information\n\
4141will stop at the first instruction of that function. Otherwise, the\n\
4142function is skipped and the step command stops at a different source line."),
4143 NULL,
920d2a44 4144 show_step_stop_if_no_debug,
5bf193a2 4145 &setlist, &showlist);
ca6724c1
KB
4146
4147 /* ptid initializations */
4148 null_ptid = ptid_build (0, 0, 0);
4149 minus_one_ptid = ptid_build (-1, 0, 0);
4150 inferior_ptid = null_ptid;
4151 target_last_wait_ptid = minus_one_ptid;
c906108c 4152}
This page took 0.855717 seconds and 4 git commands to generate.