gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
3956d554 24#include "gdb_obstack.h" /* For obstack internals. */
b15cc25c 25#include "objfile-flags.h"
af5bf4ad 26#include "symfile.h"
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
d320c2b5 30#include "psymtab.h"
7d7167ce 31#include <atomic>
1b7a07cb 32#include <bitset>
b5ec771e 33#include <vector>
268a13a5
TT
34#include "gdbsupport/next-iterator.h"
35#include "gdbsupport/safe-iterator.h"
b366c208 36#include "bcache.h"
0d12e84c 37#include "gdbarch.h"
7d7167ce 38#include "gdbsupport/refcounted-object.h"
3956d554 39
2de7ced7 40struct htab;
4a4b3fed 41struct objfile_data;
af5bf4ad 42struct partial_symbol;
08c0b5bc 43
c906108c
SS
44/* This structure maintains information on a per-objfile basis about the
45 "entry point" of the objfile, and the scope within which the entry point
46 exists. It is possible that gdb will see more than one objfile that is
47 executable, each with its own entry point.
48
49 For example, for dynamically linked executables in SVR4, the dynamic linker
50 code is contained within the shared C library, which is actually executable
51 and is run by the kernel first when an exec is done of a user executable
52 that is dynamically linked. The dynamic linker within the shared C library
53 then maps in the various program segments in the user executable and jumps
54 to the user executable's recorded entry point, as if the call had been made
55 directly by the kernel.
56
73c1e0a1
AC
57 The traditional gdb method of using this info was to use the
58 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
59 the debugging information, where these values are the starting
60 address (inclusive) and ending address (exclusive) of the
61 instruction space in the executable which correspond to the
0df8b418 62 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
63 be a startup file and frames with pc's inside it are treated as
64 nonexistent. Setting these variables is necessary so that
65 backtraces do not fly off the bottom of the stack.
66
67 NOTE: cagney/2003-09-09: It turns out that this "traditional"
68 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 69 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 70 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
71 testcase are broken for some targets. In this test the functions
72 are all implemented as part of one file and the testcase is not
73 necessarily linked with a start file (depending on the target).
30baf67b
TV
74 What happens is, that the first frame is printed normally and
75 following frames are treated as being inside the entry file then.
627b3ba2
AC
76 This way, only the #0 frame is printed in the backtrace output.''
77 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
78
79 Gdb also supports an alternate method to avoid running off the bottom
80 of the stack.
81
82 There are two frames that are "special", the frame for the function
83 containing the process entry point, since it has no predecessor frame,
84 and the frame for the function containing the user code entry point
85 (the main() function), since all the predecessor frames are for the
86 process startup code. Since we have no guarantee that the linked
87 in startup modules have any debugging information that gdb can use,
88 we need to avoid following frame pointers back into frames that might
95cf5869 89 have been built in the startup code, as we might get hopelessly
c906108c
SS
90 confused. However, we almost always have debugging information
91 available for main().
92
618ce49f
AC
93 These variables are used to save the range of PC values which are
94 valid within the main() function and within the function containing
95 the process entry point. If we always consider the frame for
96 main() as the outermost frame when debugging user code, and the
97 frame for the process entry point function as the outermost frame
98 when debugging startup code, then all we have to do is have
99 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
100 current PC is within the range specified by these variables. In
101 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
102 not proceed when following the frame chain back up the stack.
103
104 A nice side effect is that we can still debug startup code without
105 running off the end of the frame chain, assuming that we have usable
106 debugging information in the startup modules, and if we choose to not
107 use the block at main, or can't find it for some reason, everything
108 still works as before. And if we have no startup code debugging
109 information but we do have usable information for main(), backtraces
6e4c6c91 110 from user code don't go wandering off into the startup code. */
c906108c
SS
111
112struct entry_info
95cf5869
DE
113{
114 /* The unrelocated value we should use for this objfile entry point. */
115 CORE_ADDR entry_point;
c906108c 116
95cf5869
DE
117 /* The index of the section in which the entry point appears. */
118 int the_bfd_section_index;
53eddfa6 119
95cf5869
DE
120 /* Set to 1 iff ENTRY_POINT contains a valid value. */
121 unsigned entry_point_p : 1;
6ef55de7 122
95cf5869
DE
123 /* Set to 1 iff this object was initialized. */
124 unsigned initialized : 1;
125};
c906108c 126
f1f6aadf
PA
127/* Sections in an objfile. The section offsets are stored in the
128 OBJFILE. */
c906108c 129
c5aa993b 130struct obj_section
95cf5869
DE
131{
132 /* BFD section pointer */
133 struct bfd_section *the_bfd_section;
c906108c 134
95cf5869
DE
135 /* Objfile this section is part of. */
136 struct objfile *objfile;
c906108c 137
95cf5869
DE
138 /* True if this "overlay section" is mapped into an "overlay region". */
139 int ovly_mapped;
140};
c906108c 141
f1f6aadf
PA
142/* Relocation offset applied to S. */
143#define obj_section_offset(s) \
6a053cb1 144 (((s)->objfile->section_offsets)[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
f1f6aadf
PA
145
146/* The memory address of section S (vma + offset). */
147#define obj_section_addr(s) \
fd361982 148 (bfd_section_vma (s->the_bfd_section) \
f1f6aadf
PA
149 + obj_section_offset (s))
150
151/* The one-passed-the-end memory address of section S
152 (vma + size + offset). */
153#define obj_section_endaddr(s) \
fd361982
AM
154 (bfd_section_vma (s->the_bfd_section) \
155 + bfd_section_size ((s)->the_bfd_section) \
f1f6aadf 156 + obj_section_offset (s))
c906108c 157
b3b3bada
SM
158#define ALL_OBJFILE_OSECTIONS(objfile, osect) \
159 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
160 if (osect->the_bfd_section == NULL) \
161 { \
162 /* Nothing. */ \
163 } \
164 else
165
166#define SECT_OFF_DATA(objfile) \
167 ((objfile->sect_index_data == -1) \
168 ? (internal_error (__FILE__, __LINE__, \
169 _("sect_index_data not initialized")), -1) \
170 : objfile->sect_index_data)
171
172#define SECT_OFF_RODATA(objfile) \
173 ((objfile->sect_index_rodata == -1) \
174 ? (internal_error (__FILE__, __LINE__, \
175 _("sect_index_rodata not initialized")), -1) \
176 : objfile->sect_index_rodata)
177
178#define SECT_OFF_TEXT(objfile) \
179 ((objfile->sect_index_text == -1) \
180 ? (internal_error (__FILE__, __LINE__, \
181 _("sect_index_text not initialized")), -1) \
182 : objfile->sect_index_text)
183
184/* Sometimes the .bss section is missing from the objfile, so we don't
185 want to die here. Let the users of SECT_OFF_BSS deal with an
186 uninitialized section index. */
187#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
188
c906108c
SS
189/* The "objstats" structure provides a place for gdb to record some
190 interesting information about its internal state at runtime, on a
191 per objfile basis, such as information about the number of symbols
0df8b418 192 read, size of string table (if any), etc. */
c906108c 193
c5aa993b 194struct objstats
95cf5869
DE
195{
196 /* Number of partial symbols read. */
9e86da07 197 int n_psyms = 0;
95cf5869
DE
198
199 /* Number of full symbols read. */
9e86da07 200 int n_syms = 0;
95cf5869
DE
201
202 /* Number of ".stabs" read (if applicable). */
9e86da07 203 int n_stabs = 0;
95cf5869
DE
204
205 /* Number of types. */
9e86da07 206 int n_types = 0;
95cf5869
DE
207
208 /* Size of stringtable, (if applicable). */
9e86da07 209 int sz_strtab = 0;
95cf5869 210};
c906108c
SS
211
212#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
213#define OBJSTATS struct objstats stats
a14ed312
KB
214extern void print_objfile_statistics (void);
215extern void print_symbol_bcache_statistics (void);
c906108c 216
9227b5eb 217/* Number of entries in the minimal symbol hash table. */
375f3d86 218#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 219
7932255d
TT
220/* An iterator for minimal symbols. */
221
222struct minimal_symbol_iterator
223{
224 typedef minimal_symbol_iterator self_type;
225 typedef struct minimal_symbol *value_type;
226 typedef struct minimal_symbol *&reference;
227 typedef struct minimal_symbol **pointer;
228 typedef std::forward_iterator_tag iterator_category;
229 typedef int difference_type;
230
231 explicit minimal_symbol_iterator (struct minimal_symbol *msym)
232 : m_msym (msym)
233 {
234 }
235
236 value_type operator* () const
237 {
238 return m_msym;
239 }
240
241 bool operator== (const self_type &other) const
242 {
243 return m_msym == other.m_msym;
244 }
245
246 bool operator!= (const self_type &other) const
247 {
248 return m_msym != other.m_msym;
249 }
250
251 self_type &operator++ ()
252 {
253 ++m_msym;
254 return *this;
255 }
256
257private:
258 struct minimal_symbol *m_msym;
259};
260
706e3705
TT
261/* Some objfile data is hung off the BFD. This enables sharing of the
262 data across all objfiles using the BFD. The data is stored in an
263 instance of this structure, and associated with the BFD using the
264 registry system. */
265
266struct objfile_per_bfd_storage
267{
23732b1e
PA
268 objfile_per_bfd_storage ()
269 : minsyms_read (false)
270 {}
271
d6797f46
TT
272 ~objfile_per_bfd_storage ();
273
706e3705
TT
274 /* The storage has an obstack of its own. */
275
23732b1e 276 auto_obstack storage_obstack;
95cf5869 277
be1e3d3e 278 /* String cache. */
706e3705 279
be1e3d3e 280 gdb::bcache string_cache;
df6d5441
TT
281
282 /* The gdbarch associated with the BFD. Note that this gdbarch is
283 determined solely from BFD information, without looking at target
284 information. The gdbarch determined from a running target may
285 differ from this e.g. with respect to register types and names. */
286
23732b1e 287 struct gdbarch *gdbarch = NULL;
84a1243b
TT
288
289 /* Hash table for mapping symbol names to demangled names. Each
c7ee338a
CB
290 entry in the hash table is a demangled_name_entry struct, storing the
291 language and two consecutive strings, both null-terminated; the first one
292 is a mangled or linkage name, and the second is the demangled name or just
293 a zero byte if the name doesn't demangle. */
95cf5869 294
db92718b 295 htab_up demangled_names_hash;
6ef55de7
TT
296
297 /* The per-objfile information about the entry point, the scope (file/func)
298 containing the entry point, and the scope of the user's main() func. */
299
23732b1e 300 entry_info ei {};
3d548a53
TT
301
302 /* The name and language of any "main" found in this objfile. The
303 name can be NULL, which means that the information was not
304 recorded. */
305
23732b1e
PA
306 const char *name_of_main = NULL;
307 enum language language_of_main = language_unknown;
34643a32
TT
308
309 /* Each file contains a pointer to an array of minimal symbols for all
310 global symbols that are defined within the file. The array is
311 terminated by a "null symbol", one that has a NULL pointer for the
312 name and a zero value for the address. This makes it easy to walk
313 through the array when passed a pointer to somewhere in the middle
314 of it. There is also a count of the number of symbols, which does
042d75e4 315 not include the terminating null symbol. */
34643a32 316
042d75e4 317 gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
23732b1e 318 int minimal_symbol_count = 0;
34643a32 319
5f6cac40
TT
320 /* The number of minimal symbols read, before any minimal symbol
321 de-duplication is applied. Note in particular that this has only
322 a passing relationship with the actual size of the table above;
323 use minimal_symbol_count if you need the true size. */
95cf5869 324
23732b1e 325 int n_minsyms = 0;
5f6cac40 326
34643a32
TT
327 /* This is true if minimal symbols have already been read. Symbol
328 readers can use this to bypass minimal symbol reading. Also, the
329 minimal symbol table management code in minsyms.c uses this to
330 suppress new minimal symbols. You might think that MSYMBOLS or
331 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
332 for multiple readers to install minimal symbols into a given
333 per-BFD. */
334
23732b1e 335 bool minsyms_read : 1;
34643a32 336
c7ee338a
CB
337 /* This is a hash table used to index the minimal symbols by (mangled)
338 name. */
34643a32 339
23732b1e 340 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
341
342 /* This hash table is used to index the minimal symbols by their
c7ee338a
CB
343 demangled names. Uses a language-specific hash function via
344 search_name_hash. */
34643a32 345
23732b1e 346 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
b5ec771e
PA
347
348 /* All the different languages of symbols found in the demangled
1b7a07cb
TT
349 hash table. */
350 std::bitset<nr_languages> demangled_hash_languages;
706e3705
TT
351};
352
e9ad22ee
TT
353/* An iterator that first returns a parent objfile, and then each
354 separate debug objfile. */
355
356class separate_debug_iterator
357{
358public:
359
360 explicit separate_debug_iterator (struct objfile *objfile)
361 : m_objfile (objfile),
362 m_parent (objfile)
363 {
364 }
365
366 bool operator!= (const separate_debug_iterator &other)
367 {
368 return m_objfile != other.m_objfile;
369 }
370
371 separate_debug_iterator &operator++ ();
372
373 struct objfile *operator* ()
374 {
375 return m_objfile;
376 }
377
378private:
379
380 struct objfile *m_objfile;
381 struct objfile *m_parent;
382};
383
384/* A range adapter wrapping separate_debug_iterator. */
385
386class separate_debug_range
387{
388public:
389
390 explicit separate_debug_range (struct objfile *objfile)
391 : m_objfile (objfile)
392 {
393 }
394
395 separate_debug_iterator begin ()
396 {
397 return separate_debug_iterator (m_objfile);
398 }
399
400 separate_debug_iterator end ()
401 {
402 return separate_debug_iterator (nullptr);
403 }
404
405private:
406
407 struct objfile *m_objfile;
408};
409
c906108c
SS
410/* Master structure for keeping track of each file from which
411 gdb reads symbols. There are several ways these get allocated: 1.
412 The main symbol file, symfile_objfile, set by the symbol-file command,
413 2. Additional symbol files added by the add-symbol-file command,
414 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
415 for modules that were loaded when GDB attached to a remote system
4ee94178
CB
416 (see remote-vx.c).
417
418 GDB typically reads symbols twice -- first an initial scan which just
419 reads "partial symbols"; these are partial information for the
420 static/global symbols in a symbol file. When later looking up symbols,
421 objfile->sf->qf->lookup_symbol is used to check if we only have a partial
422 symbol and if so, read and expand the full compunit. */
c906108c
SS
423
424struct objfile
95cf5869 425{
bda13cdc
TT
426private:
427
428 /* The only way to create an objfile is to call objfile::make. */
9e86da07 429 objfile (bfd *, const char *, objfile_flags);
bda13cdc
TT
430
431public:
432
7d7167ce
TT
433 /* Normally you should not call delete. Instead, call 'unlink' to
434 remove it from the program space's list. In some cases, you may
435 need to hold a reference to an objfile that is independent of its
436 existence on the program space's list; for this case, the
437 destructor must be public so that shared_ptr can reference
438 it. */
439 ~objfile ();
440
bda13cdc 441 /* Create an objfile. */
f65fe570
TT
442 static objfile *make (bfd *bfd_, const char *name_, objfile_flags flags_,
443 objfile *parent = nullptr);
bda13cdc 444
268e4f09
TT
445 /* Remove an objfile from the current program space, and free
446 it. */
447 void unlink ();
9e86da07
TT
448
449 DISABLE_COPY_AND_ASSIGN (objfile);
450
f252c6d5
TT
451 /* A range adapter that makes it possible to iterate over all
452 psymtabs in one objfile. */
453
454 psymtab_storage::partial_symtab_range psymtabs ()
455 {
456 return partial_symtabs->range ();
457 }
458
6d6a12bf
TT
459 /* Reset the storage for the partial symbol tables. */
460
461 void reset_psymtabs ()
462 {
463 psymbol_map.clear ();
8d7bcccb 464 partial_symtabs.reset (new psymtab_storage ());
6d6a12bf
TT
465 }
466
b669c953
TT
467 typedef next_adapter<struct compunit_symtab> compunits_range;
468
469 /* A range adapter that makes it possible to iterate over all
470 compunits in one objfile. */
471
472 compunits_range compunits ()
473 {
474 return compunits_range (compunit_symtabs);
475 }
6d6a12bf 476
7932255d
TT
477 /* A range adapter that makes it possible to iterate over all
478 minimal symbols of an objfile. */
479
480 class msymbols_range
481 {
482 public:
483
484 explicit msymbols_range (struct objfile *objfile)
485 : m_objfile (objfile)
486 {
487 }
488
489 minimal_symbol_iterator begin () const
490 {
042d75e4 491 return minimal_symbol_iterator (m_objfile->per_bfd->msymbols.get ());
7932255d
TT
492 }
493
494 minimal_symbol_iterator end () const
495 {
496 return minimal_symbol_iterator
042d75e4 497 (m_objfile->per_bfd->msymbols.get ()
7932255d
TT
498 + m_objfile->per_bfd->minimal_symbol_count);
499 }
500
501 private:
502
503 struct objfile *m_objfile;
504 };
505
506 /* Return a range adapter for iterating over all minimal
507 symbols. */
508
509 msymbols_range msymbols ()
510 {
511 return msymbols_range (this);
512 }
513
e9ad22ee
TT
514 /* Return a range adapter for iterating over all the separate debug
515 objfiles of this objfile. */
516
517 separate_debug_range separate_debug_objfiles ()
518 {
519 return separate_debug_range (this);
520 }
521
b3b3bada
SM
522 CORE_ADDR text_section_offset () const
523 {
524 return section_offsets[SECT_OFF_TEXT (this)];
525 }
526
527 CORE_ADDR data_section_offset () const
528 {
529 return section_offsets[SECT_OFF_DATA (this)];
530 }
7932255d 531
be1e3d3e
TT
532 /* Intern STRING and return the unique copy. The copy has the same
533 lifetime as the per-BFD object. */
534 const char *intern (const char *str)
535 {
536 return (const char *) per_bfd->string_cache.insert (str, strlen (str) + 1);
537 }
538
539 /* Intern STRING and return the unique copy. The copy has the same
540 lifetime as the per-BFD object. */
541 const char *intern (const std::string &str)
542 {
543 return (const char *) per_bfd->string_cache.insert (str.c_str (),
544 str.size () + 1);
545 }
546
08feed99
TT
547 /* Retrieve the gdbarch associated with this objfile. */
548 struct gdbarch *arch () const
549 {
550 return per_bfd->gdbarch;
551 }
552
be1e3d3e 553
95cf5869
DE
554 /* The object file's original name as specified by the user,
555 made absolute, and tilde-expanded. However, it is not canonicalized
556 (i.e., it has not been passed through gdb_realpath).
557 This pointer is never NULL. This does not have to be freed; it is
558 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 559
befcd486 560 const char *original_name = nullptr;
c906108c 561
9e86da07 562 CORE_ADDR addr_low = 0;
c906108c 563
b15cc25c 564 /* Some flag bits for this objfile. */
e4f6d2ec 565
b15cc25c 566 objfile_flags flags;
c906108c 567
95cf5869 568 /* The program space associated with this objfile. */
c906108c 569
95cf5869 570 struct program_space *pspace;
6c95b8df 571
95cf5869
DE
572 /* List of compunits.
573 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 574
9e86da07 575 struct compunit_symtab *compunit_symtabs = nullptr;
c906108c 576
d320c2b5 577 /* The partial symbol tables. */
c906108c 578
17ee85fc 579 std::shared_ptr<psymtab_storage> partial_symtabs;
c906108c 580
95cf5869
DE
581 /* The object file's BFD. Can be null if the objfile contains only
582 minimal symbols, e.g. the run time common symbols for SunOS4. */
c906108c 583
95cf5869 584 bfd *obfd;
c906108c 585
95cf5869
DE
586 /* The per-BFD data. Note that this is treated specially if OBFD
587 is NULL. */
c906108c 588
9e86da07 589 struct objfile_per_bfd_storage *per_bfd = nullptr;
706e3705 590
95cf5869
DE
591 /* The modification timestamp of the object file, as of the last time
592 we read its symbols. */
706e3705 593
9e86da07 594 long mtime = 0;
c906108c 595
95cf5869
DE
596 /* Obstack to hold objects that should be freed when we load a new symbol
597 table from this object file. */
c906108c 598
9e86da07 599 struct obstack objfile_obstack {};
b99607ea 600
71a3c369
TT
601 /* Map symbol addresses to the partial symtab that defines the
602 object at that address. */
603
604 std::vector<std::pair<CORE_ADDR, partial_symtab *>> psymbol_map;
605
95cf5869
DE
606 /* Structure which keeps track of functions that manipulate objfile's
607 of the same type as this objfile. I.e. the function to read partial
608 symbols for example. Note that this structure is in statically
609 allocated memory, and is shared by all objfiles that use the
610 object module reader of this type. */
c906108c 611
9e86da07 612 const struct sym_fns *sf = nullptr;
c906108c 613
95cf5869 614 /* Per objfile data-pointers required by other GDB modules. */
c906108c 615
9e86da07 616 REGISTRY_FIELDS {};
0d0e1a63 617
95cf5869
DE
618 /* Set of relocation offsets to apply to each section.
619 The table is indexed by the_bfd_section->index, thus it is generally
620 as large as the number of sections in the binary.
0d0e1a63 621
95cf5869
DE
622 These offsets indicate that all symbols (including partial and
623 minimal symbols) which have been read have been relocated by this
624 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 625
6a053cb1 626 ::section_offsets section_offsets;
c906108c 627
95cf5869
DE
628 /* Indexes in the section_offsets array. These are initialized by the
629 *_symfile_offsets() family of functions (som_symfile_offsets,
630 xcoff_symfile_offsets, default_symfile_offsets). In theory they
631 should correspond to the section indexes used by bfd for the
632 current objfile. The exception to this for the time being is the
9e86da07
TT
633 SOM version.
634
635 These are initialized to -1 so that we can later detect if they
636 are used w/o being properly assigned to. */
c906108c 637
9e86da07
TT
638 int sect_index_text = -1;
639 int sect_index_data = -1;
640 int sect_index_bss = -1;
641 int sect_index_rodata = -1;
b8fbeb18 642
95cf5869
DE
643 /* These pointers are used to locate the section table, which
644 among other things, is used to map pc addresses into sections.
645 SECTIONS points to the first entry in the table, and
646 SECTIONS_END points to the first location past the last entry
647 in the table. The table is stored on the objfile_obstack. The
648 sections are indexed by the BFD section index; but the
649 structure data is only valid for certain sections
650 (e.g. non-empty, SEC_ALLOC). */
b8fbeb18 651
9e86da07
TT
652 struct obj_section *sections = nullptr;
653 struct obj_section *sections_end = nullptr;
c906108c 654
95cf5869
DE
655 /* GDB allows to have debug symbols in separate object files. This is
656 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
657 Although this is a tree structure, GDB only support one level
658 (ie a separate debug for a separate debug is not supported). Note that
659 separate debug object are in the main chain and therefore will be
2030c079 660 visited by objfiles & co iterators. Separate debug objfile always
95cf5869 661 has a non-nul separate_debug_objfile_backlink. */
c906108c 662
95cf5869 663 /* Link to the first separate debug object, if any. */
15d123c9 664
9e86da07 665 struct objfile *separate_debug_objfile = nullptr;
5b5d99cf 666
95cf5869
DE
667 /* If this is a separate debug object, this is used as a link to the
668 actual executable objfile. */
15d123c9 669
9e86da07 670 struct objfile *separate_debug_objfile_backlink = nullptr;
15d123c9 671
95cf5869
DE
672 /* If this is a separate debug object, this is a link to the next one
673 for the same executable objfile. */
5c4e30ca 674
9e86da07 675 struct objfile *separate_debug_objfile_link = nullptr;
95cf5869
DE
676
677 /* Place to stash various statistics about this objfile. */
678
679 OBJSTATS;
680
681 /* A linked list of symbols created when reading template types or
682 function templates. These symbols are not stored in any symbol
683 table, so we have to keep them here to relocate them
684 properly. */
685
9e86da07 686 struct symbol *template_symbols = nullptr;
63e43d3a
PMR
687
688 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
689 block *) that have one.
690
691 In the context of nested functions (available in Pascal, Ada and GNU C,
692 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
693 for a function is a way to get the frame corresponding to the enclosing
694 function.
695
696 Very few blocks have a static link, so it's more memory efficient to
697 store these here rather than in struct block. Static links must be
698 allocated on the objfile's obstack. */
cf250e36 699 htab_up static_links;
95cf5869 700};
c906108c 701
268e4f09
TT
702/* A deleter for objfile. */
703
704struct objfile_deleter
705{
706 void operator() (objfile *ptr) const
707 {
708 ptr->unlink ();
709 }
710};
711
712/* A unique pointer that holds an objfile. */
713
714typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
715
c906108c
SS
716/* Declarations for functions defined in objfiles.c */
717
abd0a5fa
JK
718extern int entry_point_address_query (CORE_ADDR *entry_p);
719
9ab9195f
EZ
720extern CORE_ADDR entry_point_address (void);
721
d82ea6a8 722extern void build_objfile_section_table (struct objfile *);
c906108c 723
15d123c9
TG
724extern void free_objfile_separate_debug (struct objfile *);
725
6a053cb1 726extern void objfile_relocate (struct objfile *, const section_offsets &);
4141a416 727extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 728
55333a84
DE
729extern int objfile_has_partial_symbols (struct objfile *objfile);
730
731extern int objfile_has_full_symbols (struct objfile *objfile);
732
e361b228
TG
733extern int objfile_has_symbols (struct objfile *objfile);
734
a14ed312 735extern int have_partial_symbols (void);
c906108c 736
a14ed312 737extern int have_full_symbols (void);
c906108c 738
8fb8eb5c
DE
739extern void objfile_set_sym_fns (struct objfile *objfile,
740 const struct sym_fns *sf);
741
bb272892 742extern void objfiles_changed (void);
63644780 743
02ff80c2
SM
744/* Return true if ADDR maps into one of the sections of OBJFILE and false
745 otherwise. */
746
747extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 748
d03de421
PA
749/* Return true if ADDRESS maps into one of the sections of a
750 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 751
02ff80c2
SM
752extern bool shared_objfile_contains_address_p (struct program_space *pspace,
753 CORE_ADDR address);
08351840 754
c906108c
SS
755/* This operation deletes all objfile entries that represent solibs that
756 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
757 command. */
758
a14ed312 759extern void objfile_purge_solibs (void);
c906108c
SS
760
761/* Functions for dealing with the minimal symbol table, really a misc
762 address<->symbol mapping for things we don't have debug symbols for. */
763
a14ed312 764extern int have_minimal_symbols (void);
c906108c 765
a14ed312 766extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 767
3e5d3a5a 768/* Return non-zero if PC is in a section called NAME. */
a121b7c1 769extern int pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
770
771/* Return non-zero if PC is in a SVR4-style procedure linkage table
772 section. */
773
774static inline int
775in_plt_section (CORE_ADDR pc)
776{
777 return pc_in_section (pc, ".plt");
778}
c906108c 779
0d0e1a63
MK
780/* Keep a registry of per-objfile data-pointers required by other GDB
781 modules. */
8e260fc0 782DECLARE_REGISTRY(objfile);
e3c69974 783
607ece04
GB
784/* In normal use, the section map will be rebuilt by find_pc_section
785 if objfiles have been added, removed or relocated since it was last
786 called. Calling inhibit_section_map_updates will inhibit this
06424eac
TT
787 behavior until the returned scoped_restore object is destroyed. If
788 you call inhibit_section_map_updates you must ensure that every
789 call to find_pc_section in the inhibited region relates to a
790 section that is already in the section map and has not since been
791 removed or relocated. */
792extern scoped_restore_tmpl<int> inhibit_section_map_updates
793 (struct program_space *pspace);
607ece04 794
19630284
JB
795extern void default_iterate_over_objfiles_in_search_order
796 (struct gdbarch *gdbarch,
797 iterate_over_objfiles_in_search_order_cb_ftype *cb,
798 void *cb_data, struct objfile *current_objfile);
b8fbeb18 799
706e3705
TT
800/* Reset the per-BFD storage area on OBJ. */
801
802void set_objfile_per_bfd (struct objfile *obj);
803
e02c96a7
DE
804/* Return canonical name for OBJFILE.
805 This is the real file name if the file has been opened.
806 Otherwise it is the original name supplied by the user. */
807
4262abfb
JK
808const char *objfile_name (const struct objfile *objfile);
809
e02c96a7
DE
810/* Return the (real) file name of OBJFILE if the file has been opened,
811 otherwise return NULL. */
812
813const char *objfile_filename (const struct objfile *objfile);
814
cc485e62
DE
815/* Return the name to print for OBJFILE in debugging messages. */
816
817extern const char *objfile_debug_name (const struct objfile *objfile);
818
015d2e7e
DE
819/* Return the name of the file format of OBJFILE if the file has been opened,
820 otherwise return NULL. */
821
822const char *objfile_flavour_name (struct objfile *objfile);
823
3d548a53
TT
824/* Set the objfile's notion of the "main" name and language. */
825
826extern void set_objfile_main_name (struct objfile *objfile,
827 const char *name, enum language lang);
828
63e43d3a
PMR
829extern void objfile_register_static_link
830 (struct objfile *objfile,
831 const struct block *block,
832 const struct dynamic_prop *static_link);
833
834extern const struct dynamic_prop *objfile_lookup_static_link
835 (struct objfile *objfile, const struct block *block);
836
c5aa993b 837#endif /* !defined (OBJFILES_H) */
This page took 1.937568 seconds and 4 git commands to generate.