gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / progspace.h
CommitLineData
6c95b8df
PA
1/* Program and address space management, for GDB, the GNU debugger.
2
b811d2c2 3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
6c95b8df
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21#ifndef PROGSPACE_H
22#define PROGSPACE_H
23
24#include "target.h"
06333fea 25#include "gdb_bfd.h"
268a13a5 26#include "gdbsupport/gdb_vecs.h"
8e260fc0 27#include "registry.h"
268a13a5
TT
28#include "gdbsupport/next-iterator.h"
29#include "gdbsupport/safe-iterator.h"
d0801dd8 30#include <list>
94c93c35 31#include <vector>
6c95b8df
PA
32
33struct target_ops;
34struct bfd;
35struct objfile;
36struct inferior;
37struct exec;
38struct address_space;
39struct program_space_data;
b26dfc9a 40struct address_space_data;
a1fd1ac9 41struct so_list;
6c95b8df 42
7d7167ce
TT
43typedef std::list<std::shared_ptr<objfile>> objfile_list;
44
45/* An iterator that wraps an iterator over std::shared_ptr<objfile>,
46 and dereferences the returned object. This is useful for iterating
47 over a list of shared pointers and returning raw pointers -- which
48 helped avoid touching a lot of code when changing how objfiles are
49 managed. */
50
51class unwrapping_objfile_iterator
52{
53public:
54
55 typedef unwrapping_objfile_iterator self_type;
56 typedef typename ::objfile *value_type;
57 typedef typename ::objfile &reference;
58 typedef typename ::objfile **pointer;
59 typedef typename objfile_list::iterator::iterator_category iterator_category;
60 typedef typename objfile_list::iterator::difference_type difference_type;
61
62 unwrapping_objfile_iterator (const objfile_list::iterator &iter)
63 : m_iter (iter)
64 {
65 }
66
67 objfile *operator* () const
68 {
69 return m_iter->get ();
70 }
71
72 unwrapping_objfile_iterator operator++ ()
73 {
74 ++m_iter;
75 return *this;
76 }
77
78 bool operator!= (const unwrapping_objfile_iterator &other) const
79 {
80 return m_iter != other.m_iter;
81 }
82
83private:
84
85 /* The underlying iterator. */
86 objfile_list::iterator m_iter;
87};
88
89
90/* A range that returns unwrapping_objfile_iterators. */
91
92struct unwrapping_objfile_range
93{
94 typedef unwrapping_objfile_iterator iterator;
95
96 unwrapping_objfile_range (objfile_list &ol)
97 : m_list (ol)
98 {
99 }
100
101 iterator begin () const
102 {
103 return iterator (m_list.begin ());
104 }
105
106 iterator end () const
107 {
108 return iterator (m_list.end ());
109 }
110
111private:
112
113 objfile_list &m_list;
114};
115
6c95b8df
PA
116/* A program space represents a symbolic view of an address space.
117 Roughly speaking, it holds all the data associated with a
118 non-running-yet program (main executable, main symbols), and when
119 an inferior is running and is bound to it, includes the list of its
120 mapped in shared libraries.
121
122 In the traditional debugging scenario, there's a 1-1 correspondence
123 among program spaces, inferiors and address spaces, like so:
124
125 pspace1 (prog1) <--> inf1(pid1) <--> aspace1
126
127 In the case of debugging more than one traditional unix process or
128 program, we still have:
129
130 |-----------------+------------+---------|
131 | pspace1 (prog1) | inf1(pid1) | aspace1 |
132 |----------------------------------------|
133 | pspace2 (prog1) | no inf yet | aspace2 |
134 |-----------------+------------+---------|
135 | pspace3 (prog2) | inf2(pid2) | aspace3 |
136 |-----------------+------------+---------|
137
138 In the former example, if inf1 forks (and GDB stays attached to
139 both processes), the new child will have its own program and
140 address spaces. Like so:
141
142 |-----------------+------------+---------|
143 | pspace1 (prog1) | inf1(pid1) | aspace1 |
144 |-----------------+------------+---------|
145 | pspace2 (prog1) | inf2(pid2) | aspace2 |
146 |-----------------+------------+---------|
147
148 However, had inf1 from the latter case vforked instead, it would
149 share the program and address spaces with its parent, until it
150 execs or exits, like so:
151
152 |-----------------+------------+---------|
153 | pspace1 (prog1) | inf1(pid1) | aspace1 |
154 | | inf2(pid2) | |
155 |-----------------+------------+---------|
156
157 When the vfork child execs, it is finally given new program and
158 address spaces.
159
160 |-----------------+------------+---------|
161 | pspace1 (prog1) | inf1(pid1) | aspace1 |
162 |-----------------+------------+---------|
163 | pspace2 (prog1) | inf2(pid2) | aspace2 |
164 |-----------------+------------+---------|
165
166 There are targets where the OS (if any) doesn't provide memory
167 management or VM protection, where all inferiors share the same
168 address space --- e.g. uClinux. GDB models this by having all
169 inferiors share the same address space, but, giving each its own
170 program space, like so:
171
172 |-----------------+------------+---------|
173 | pspace1 (prog1) | inf1(pid1) | |
174 |-----------------+------------+ |
175 | pspace2 (prog1) | inf2(pid2) | aspace1 |
176 |-----------------+------------+ |
177 | pspace3 (prog2) | inf3(pid3) | |
178 |-----------------+------------+---------|
179
180 The address space sharing matters for run control and breakpoints
181 management. E.g., did we just hit a known breakpoint that we need
182 to step over? Is this breakpoint a duplicate of this other one, or
183 do I need to insert a trap?
184
185 Then, there are targets where all symbols look the same for all
186 inferiors, although each has its own address space, as e.g.,
187 Ericsson DICOS. In such case, the model is:
188
189 |---------+------------+---------|
190 | | inf1(pid1) | aspace1 |
191 | +------------+---------|
192 | pspace | inf2(pid2) | aspace2 |
193 | +------------+---------|
194 | | inf3(pid3) | aspace3 |
195 |---------+------------+---------|
196
197 Note however, that the DICOS debug API takes care of making GDB
198 believe that breakpoints are "global". That is, although each
199 process does have its own private copy of data symbols (just like a
200 bunch of forks), to the breakpoints module, all processes share a
201 single address space, so all breakpoints set at the same address
202 are duplicates of each other, even breakpoints set in the data
203 space (e.g., call dummy breakpoints placed on stack). This allows
204 a simplification in the spaces implementation: we avoid caring for
205 a many-many links between address and program spaces. Either
206 there's a single address space bound to the program space
207 (traditional unix/uClinux), or, in the DICOS case, the address
208 space bound to the program space is mostly ignored. */
209
210/* The program space structure. */
211
212struct program_space
564b1e3f 213{
381ce63f
PA
214 /* Constructs a new empty program space, binds it to ASPACE, and
215 adds it to the program space list. */
216 explicit program_space (address_space *aspace);
217
218 /* Releases a program space, and all its contents (shared libraries,
219 objfiles, and any other references to the program space in other
220 modules). It is an internal error to call this when the program
221 space is the current program space, since there should always be
222 a program space. */
564b1e3f
SM
223 ~program_space ();
224
7d7167ce 225 typedef unwrapping_objfile_range objfiles_range;
2030c079 226
30baf67b 227 /* Return an iterable object that can be used to iterate over all
2030c079
TT
228 objfiles. The basic use is in a foreach, like:
229
230 for (objfile *objf : pspace->objfiles ()) { ... } */
7d7167ce 231 objfiles_range objfiles ()
2030c079 232 {
7d7167ce 233 return unwrapping_objfile_range (objfiles_list);
2030c079
TT
234 }
235
d0801dd8 236 typedef basic_safe_range<objfiles_range> objfiles_safe_range;
7e955d83
TT
237
238 /* An iterable object that can be used to iterate over all objfiles.
239 The basic use is in a foreach, like:
240
241 for (objfile *objf : pspace->objfiles_safe ()) { ... }
242
243 This variant uses a basic_safe_iterator so that objfiles can be
244 deleted during iteration. */
245 objfiles_safe_range objfiles_safe ()
246 {
d0801dd8 247 return objfiles_safe_range (objfiles_list);
7e955d83
TT
248 }
249
7cac64af
TT
250 /* Add OBJFILE to the list of objfiles, putting it just before
251 BEFORE. If BEFORE is nullptr, it will go at the end of the
252 list. */
7d7167ce
TT
253 void add_objfile (std::shared_ptr<objfile> &&objfile,
254 struct objfile *before);
7cac64af 255
23452926
TT
256 /* Remove OBJFILE from the list of objfiles. */
257 void remove_objfile (struct objfile *objfile);
7cac64af 258
deeafabb
TT
259 /* Return true if there is more than one object file loaded; false
260 otherwise. */
d0801dd8
TT
261 bool multi_objfile_p () const
262 {
263 return objfiles_list.size () > 1;
264 }
deeafabb 265
343cc952
TT
266 /* Free all the objfiles associated with this program space. */
267 void free_all_objfiles ();
268
a1fd1ac9
TT
269 /* Return a range adapter for iterating over all the solibs in this
270 program space. Use it like:
271
272 for (so_list *so : pspace->solibs ()) { ... } */
273 next_adapter<struct so_list> solibs () const;
274
deeafabb 275
564b1e3f
SM
276 /* Unique ID number. */
277 int num = 0;
278
279 /* The main executable loaded into this program space. This is
280 managed by the exec target. */
281
282 /* The BFD handle for the main executable. */
283 bfd *ebfd = NULL;
284 /* The last-modified time, from when the exec was brought in. */
285 long ebfd_mtime = 0;
286 /* Similar to bfd_get_filename (exec_bfd) but in original form given
287 by user, without symbolic links and pathname resolved.
288 It needs to be freed by xfree. It is not NULL iff EBFD is not NULL. */
289 char *pspace_exec_filename = NULL;
290
e540a5a2 291 /* Binary file diddling handle for the core file. */
06333fea 292 gdb_bfd_ref_ptr cbfd;
e540a5a2 293
564b1e3f
SM
294 /* The address space attached to this program space. More than one
295 program space may be bound to the same address space. In the
296 traditional unix-like debugging scenario, this will usually
297 match the address space bound to the inferior, and is mostly
298 used by the breakpoints module for address matches. If the
299 target shares a program space for all inferiors and breakpoints
300 are global, then this field is ignored (we don't currently
301 support inferiors sharing a program space if the target doesn't
302 make breakpoints global). */
303 struct address_space *aspace = NULL;
304
305 /* True if this program space's section offsets don't yet represent
306 the final offsets of the "live" address space (that is, the
307 section addresses still require the relocation offsets to be
308 applied, and hence we can't trust the section addresses for
309 anything that pokes at live memory). E.g., for qOffsets
310 targets, or for PIE executables, until we connect and ask the
311 target for the final relocation offsets, the symbols we've used
312 to set breakpoints point at the wrong addresses. */
313 int executing_startup = 0;
314
315 /* True if no breakpoints should be inserted in this program
316 space. */
317 int breakpoints_not_allowed = 0;
318
319 /* The object file that the main symbol table was loaded from
320 (e.g. the argument to the "symbol-file" or "file" command). */
321 struct objfile *symfile_object_file = NULL;
322
d0801dd8 323 /* All known objfiles are kept in a linked list. */
7d7167ce 324 std::list<std::shared_ptr<objfile>> objfiles_list;
564b1e3f
SM
325
326 /* The set of target sections matching the sections mapped into
327 this program space. Managed by both exec_ops and solib.c. */
328 struct target_section_table target_sections {};
329
330 /* List of shared objects mapped into this space. Managed by
331 solib.c. */
332 struct so_list *so_list = NULL;
333
334 /* Number of calls to solib_add. */
335 unsigned int solib_add_generation = 0;
336
337 /* When an solib is added, it is also added to this vector. This
338 is so we can properly report solib changes to the user. */
bcb430e4 339 std::vector<struct so_list *> added_solibs;
564b1e3f
SM
340
341 /* When an solib is removed, its name is added to this vector.
342 This is so we can properly report solib changes to the user. */
6fb16ce6 343 std::vector<std::string> deleted_solibs;
564b1e3f
SM
344
345 /* Per pspace data-pointers required by other GDB modules. */
346 REGISTRY_FIELDS {};
347};
6c95b8df 348
55b11ddf
PA
349/* An address space. It is used for comparing if
350 pspaces/inferior/threads see the same address space and for
351 associating caches to each address space. */
352struct address_space
353{
354 int num;
355
356 /* Per aspace data-pointers required by other GDB modules. */
357 REGISTRY_FIELDS;
358};
359
6c95b8df
PA
360/* The object file that the main symbol table was loaded from (e.g. the
361 argument to the "symbol-file" or "file" command). */
362
363#define symfile_objfile current_program_space->symfile_object_file
364
6c95b8df
PA
365/* The set of target sections matching the sections mapped into the
366 current program space. */
367#define current_target_sections (&current_program_space->target_sections)
368
369/* The list of all program spaces. There's always at least one. */
94c93c35 370extern std::vector<struct program_space *>program_spaces;
6c95b8df
PA
371
372/* The current program space. This is always non-null. */
373extern struct program_space *current_program_space;
374
7a41607e
SM
375/* Returns true iff there's no inferior bound to PSPACE. */
376extern int program_space_empty_p (struct program_space *pspace);
377
6c95b8df
PA
378/* Copies program space SRC to DEST. Copies the main executable file,
379 and the main symbol file. Returns DEST. */
380extern struct program_space *clone_program_space (struct program_space *dest,
381 struct program_space *src);
382
6c95b8df
PA
383/* Sets PSPACE as the current program space. This is usually used
384 instead of set_current_space_and_thread when the current
385 thread/inferior is not important for the operations that follow.
386 E.g., when accessing the raw symbol tables. If memory access is
387 required, then you should use switch_to_program_space_and_thread.
388 Otherwise, it is the caller's responsibility to make sure that the
389 currently selected inferior/thread matches the selected program
390 space. */
391extern void set_current_program_space (struct program_space *pspace);
392
5ed8105e
PA
393/* Save/restore the current program space. */
394
395class scoped_restore_current_program_space
396{
397public:
398 scoped_restore_current_program_space ()
399 : m_saved_pspace (current_program_space)
400 {}
401
402 ~scoped_restore_current_program_space ()
403 { set_current_program_space (m_saved_pspace); }
404
d6541620 405 DISABLE_COPY_AND_ASSIGN (scoped_restore_current_program_space);
6c95b8df 406
5ed8105e
PA
407private:
408 program_space *m_saved_pspace;
409};
6c95b8df
PA
410
411/* Create a new address space object, and add it to the list. */
412extern struct address_space *new_address_space (void);
413
414/* Maybe create a new address space object, and add it to the list, or
415 return a pointer to an existing address space, in case inferiors
416 share an address space. */
417extern struct address_space *maybe_new_address_space (void);
418
c0694254
PA
419/* Returns the integer address space id of ASPACE. */
420extern int address_space_num (struct address_space *aspace);
421
6c95b8df
PA
422/* Update all program spaces matching to address spaces. The user may
423 have created several program spaces, and loaded executables into
424 them before connecting to the target interface that will create the
425 inferiors. All that happens before GDB has a chance to know if the
426 inferiors will share an address space or not. Call this after
427 having connected to the target interface and having fetched the
428 target description, to fixup the program/address spaces
429 mappings. */
430extern void update_address_spaces (void);
431
edcc5120
TT
432/* Reset saved solib data at the start of an solib event. This lets
433 us properly collect the data when calling solib_add, so it can then
434 later be printed. */
435extern void clear_program_space_solib_cache (struct program_space *);
436
6c95b8df
PA
437/* Keep a registry of per-pspace data-pointers required by other GDB
438 modules. */
439
8e260fc0 440DECLARE_REGISTRY (program_space);
6c95b8df 441
3a8356ff
YQ
442/* Keep a registry of per-aspace data-pointers required by other GDB
443 modules. */
444
445DECLARE_REGISTRY (address_space);
446
6c95b8df 447#endif
This page took 1.122311 seconds and 4 git commands to generate.