gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / rl78-tdep.c
CommitLineData
9058f767
KB
1/* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
2
b811d2c2 3 Copyright (C) 2011-2020 Free Software Foundation, Inc.
9058f767
KB
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "prologue-value.h"
25#include "target.h"
26#include "regcache.h"
27#include "opcode/rl78.h"
28#include "dis-asm.h"
29#include "gdbtypes.h"
30#include "frame.h"
31#include "frame-unwind.h"
32#include "frame-base.h"
33#include "value.h"
34#include "gdbcore.h"
82ca8957 35#include "dwarf2/frame.h"
c47a44f4 36#include "reggroups.h"
9058f767
KB
37
38#include "elf/rl78.h"
39#include "elf-bfd.h"
40
41/* Register Banks. */
42
43enum
44{
45 RL78_BANK0 = 0,
46 RL78_BANK1 = 1,
47 RL78_BANK2 = 2,
48 RL78_BANK3 = 3,
49 RL78_NUMBANKS = 4,
50 RL78_REGS_PER_BANK = 8
51};
52
53/* Register Numbers. */
54
55enum
56{
57 /* All general purpose registers are 8 bits wide. */
c47a44f4
KB
58 RL78_RAW_BANK0_R0_REGNUM = 0,
59 RL78_RAW_BANK0_R1_REGNUM,
60 RL78_RAW_BANK0_R2_REGNUM,
61 RL78_RAW_BANK0_R3_REGNUM,
62 RL78_RAW_BANK0_R4_REGNUM,
63 RL78_RAW_BANK0_R5_REGNUM,
64 RL78_RAW_BANK0_R6_REGNUM,
65 RL78_RAW_BANK0_R7_REGNUM,
66
67 RL78_RAW_BANK1_R0_REGNUM,
68 RL78_RAW_BANK1_R1_REGNUM,
69 RL78_RAW_BANK1_R2_REGNUM,
70 RL78_RAW_BANK1_R3_REGNUM,
71 RL78_RAW_BANK1_R4_REGNUM,
72 RL78_RAW_BANK1_R5_REGNUM,
73 RL78_RAW_BANK1_R6_REGNUM,
74 RL78_RAW_BANK1_R7_REGNUM,
75
76 RL78_RAW_BANK2_R0_REGNUM,
77 RL78_RAW_BANK2_R1_REGNUM,
78 RL78_RAW_BANK2_R2_REGNUM,
79 RL78_RAW_BANK2_R3_REGNUM,
80 RL78_RAW_BANK2_R4_REGNUM,
81 RL78_RAW_BANK2_R5_REGNUM,
82 RL78_RAW_BANK2_R6_REGNUM,
83 RL78_RAW_BANK2_R7_REGNUM,
84
85 RL78_RAW_BANK3_R0_REGNUM,
86 RL78_RAW_BANK3_R1_REGNUM,
87 RL78_RAW_BANK3_R2_REGNUM,
88 RL78_RAW_BANK3_R3_REGNUM,
89 RL78_RAW_BANK3_R4_REGNUM,
90 RL78_RAW_BANK3_R5_REGNUM,
91 RL78_RAW_BANK3_R6_REGNUM,
92 RL78_RAW_BANK3_R7_REGNUM,
93
94 RL78_PSW_REGNUM, /* 8 bits */
95 RL78_ES_REGNUM, /* 8 bits */
96 RL78_CS_REGNUM, /* 8 bits */
ba89f962 97 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
c47a44f4
KB
98
99 /* Fixed address SFRs (some of those above are SFRs too.) */
100 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
101 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
102 RL78_PMC_REGNUM, /* 8 bits */
103 RL78_MEM_REGNUM, /* 8 bits ?? */
104
105 RL78_NUM_REGS,
106
107 /* Pseudo registers. */
ba89f962
KB
108 RL78_PC_REGNUM = RL78_NUM_REGS,
109 RL78_SP_REGNUM,
c47a44f4
KB
110
111 RL78_X_REGNUM,
112 RL78_A_REGNUM,
113 RL78_C_REGNUM,
114 RL78_B_REGNUM,
115 RL78_E_REGNUM,
116 RL78_D_REGNUM,
117 RL78_L_REGNUM,
118 RL78_H_REGNUM,
119
120 RL78_AX_REGNUM,
121 RL78_BC_REGNUM,
122 RL78_DE_REGNUM,
123 RL78_HL_REGNUM,
124
125 RL78_BANK0_R0_REGNUM,
9058f767
KB
126 RL78_BANK0_R1_REGNUM,
127 RL78_BANK0_R2_REGNUM,
128 RL78_BANK0_R3_REGNUM,
129 RL78_BANK0_R4_REGNUM,
130 RL78_BANK0_R5_REGNUM,
131 RL78_BANK0_R6_REGNUM,
132 RL78_BANK0_R7_REGNUM,
133
134 RL78_BANK1_R0_REGNUM,
135 RL78_BANK1_R1_REGNUM,
136 RL78_BANK1_R2_REGNUM,
137 RL78_BANK1_R3_REGNUM,
138 RL78_BANK1_R4_REGNUM,
139 RL78_BANK1_R5_REGNUM,
140 RL78_BANK1_R6_REGNUM,
141 RL78_BANK1_R7_REGNUM,
142
143 RL78_BANK2_R0_REGNUM,
144 RL78_BANK2_R1_REGNUM,
145 RL78_BANK2_R2_REGNUM,
146 RL78_BANK2_R3_REGNUM,
147 RL78_BANK2_R4_REGNUM,
148 RL78_BANK2_R5_REGNUM,
149 RL78_BANK2_R6_REGNUM,
150 RL78_BANK2_R7_REGNUM,
151
152 RL78_BANK3_R0_REGNUM,
153 RL78_BANK3_R1_REGNUM,
154 RL78_BANK3_R2_REGNUM,
155 RL78_BANK3_R3_REGNUM,
156 RL78_BANK3_R4_REGNUM,
157 RL78_BANK3_R5_REGNUM,
158 RL78_BANK3_R6_REGNUM,
159 RL78_BANK3_R7_REGNUM,
160
c47a44f4 161 RL78_BANK0_RP0_REGNUM,
9058f767
KB
162 RL78_BANK0_RP1_REGNUM,
163 RL78_BANK0_RP2_REGNUM,
164 RL78_BANK0_RP3_REGNUM,
165
166 RL78_BANK1_RP0_REGNUM,
167 RL78_BANK1_RP1_REGNUM,
168 RL78_BANK1_RP2_REGNUM,
169 RL78_BANK1_RP3_REGNUM,
170
171 RL78_BANK2_RP0_REGNUM,
172 RL78_BANK2_RP1_REGNUM,
173 RL78_BANK2_RP2_REGNUM,
174 RL78_BANK2_RP3_REGNUM,
175
176 RL78_BANK3_RP0_REGNUM,
177 RL78_BANK3_RP1_REGNUM,
178 RL78_BANK3_RP2_REGNUM,
179 RL78_BANK3_RP3_REGNUM,
180
6d451942
KB
181 /* These are the same as the above 16 registers, but have
182 a pointer type for use as base registers in expression
183 evaluation. These are not user visible registers. */
184 RL78_BANK0_RP0_PTR_REGNUM,
185 RL78_BANK0_RP1_PTR_REGNUM,
186 RL78_BANK0_RP2_PTR_REGNUM,
187 RL78_BANK0_RP3_PTR_REGNUM,
188
189 RL78_BANK1_RP0_PTR_REGNUM,
190 RL78_BANK1_RP1_PTR_REGNUM,
191 RL78_BANK1_RP2_PTR_REGNUM,
192 RL78_BANK1_RP3_PTR_REGNUM,
193
194 RL78_BANK2_RP0_PTR_REGNUM,
195 RL78_BANK2_RP1_PTR_REGNUM,
196 RL78_BANK2_RP2_PTR_REGNUM,
197 RL78_BANK2_RP3_PTR_REGNUM,
198
199 RL78_BANK3_RP0_PTR_REGNUM,
200 RL78_BANK3_RP1_PTR_REGNUM,
201 RL78_BANK3_RP2_PTR_REGNUM,
202 RL78_BANK3_RP3_PTR_REGNUM,
203
9058f767
KB
204 RL78_NUM_TOTAL_REGS,
205 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
206};
207
0bca7f99
KB
208#define RL78_SP_ADDR 0xffff8
209
9058f767
KB
210/* Architecture specific data. */
211
212struct gdbarch_tdep
213{
214 /* The ELF header flags specify the multilib used. */
215 int elf_flags;
216
217 struct type *rl78_void,
218 *rl78_uint8,
219 *rl78_int8,
220 *rl78_uint16,
221 *rl78_int16,
222 *rl78_uint32,
223 *rl78_int32,
224 *rl78_data_pointer,
e6280369
KB
225 *rl78_code_pointer,
226 *rl78_psw_type;
9058f767
KB
227};
228
229/* This structure holds the results of a prologue analysis. */
230
231struct rl78_prologue
232{
233 /* The offset from the frame base to the stack pointer --- always
234 zero or negative.
235
236 Calling this a "size" is a bit misleading, but given that the
237 stack grows downwards, using offsets for everything keeps one
238 from going completely sign-crazy: you never change anything's
239 sign for an ADD instruction; always change the second operand's
240 sign for a SUB instruction; and everything takes care of
241 itself. */
242 int frame_size;
243
244 /* Non-zero if this function has initialized the frame pointer from
245 the stack pointer, zero otherwise. */
246 int has_frame_ptr;
247
248 /* If has_frame_ptr is non-zero, this is the offset from the frame
249 base to where the frame pointer points. This is always zero or
250 negative. */
251 int frame_ptr_offset;
252
253 /* The address of the first instruction at which the frame has been
254 set up and the arguments are where the debug info says they are
255 --- as best as we can tell. */
256 CORE_ADDR prologue_end;
257
258 /* reg_offset[R] is the offset from the CFA at which register R is
259 saved, or 1 if register R has not been saved. (Real values are
260 always zero or negative.) */
261 int reg_offset[RL78_NUM_TOTAL_REGS];
262};
263
1a31b34a
YQ
264/* Construct type for PSW register. */
265
266static struct type *
267rl78_psw_type (struct gdbarch *gdbarch)
268{
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270
271 if (tdep->rl78_psw_type == NULL)
272 {
273 tdep->rl78_psw_type = arch_flags_type (gdbarch,
77b7c781 274 "builtin_type_rl78_psw", 8);
1a31b34a
YQ
275 append_flags_type_flag (tdep->rl78_psw_type, 0, "CY");
276 append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0");
277 append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1");
278 append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0");
279 append_flags_type_flag (tdep->rl78_psw_type, 4, "AC");
280 append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1");
281 append_flags_type_flag (tdep->rl78_psw_type, 6, "Z");
282 append_flags_type_flag (tdep->rl78_psw_type, 7, "IE");
283 }
284
285 return tdep->rl78_psw_type;
286}
287
9058f767
KB
288/* Implement the "register_type" gdbarch method. */
289
290static struct type *
291rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
292{
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 if (reg_nr == RL78_PC_REGNUM)
296 return tdep->rl78_code_pointer;
ba89f962
KB
297 else if (reg_nr == RL78_RAW_PC_REGNUM)
298 return tdep->rl78_uint32;
e6280369 299 else if (reg_nr == RL78_PSW_REGNUM)
1a31b34a 300 return rl78_psw_type (gdbarch);
9058f767 301 else if (reg_nr <= RL78_MEM_REGNUM
c47a44f4
KB
302 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
303 || (RL78_BANK0_R0_REGNUM <= reg_nr
304 && reg_nr <= RL78_BANK3_R7_REGNUM))
9058f767 305 return tdep->rl78_int8;
6d451942
KB
306 else if (reg_nr == RL78_SP_REGNUM
307 || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
308 && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
9058f767 309 return tdep->rl78_data_pointer;
6d451942
KB
310 else
311 return tdep->rl78_int16;
9058f767
KB
312}
313
314/* Implement the "register_name" gdbarch method. */
315
316static const char *
317rl78_register_name (struct gdbarch *gdbarch, int regnr)
318{
319 static const char *const reg_names[] =
320 {
c47a44f4
KB
321 "", /* bank0_r0 */
322 "", /* bank0_r1 */
323 "", /* bank0_r2 */
324 "", /* bank0_r3 */
325 "", /* bank0_r4 */
326 "", /* bank0_r5 */
327 "", /* bank0_r6 */
328 "", /* bank0_r7 */
329
330 "", /* bank1_r0 */
331 "", /* bank1_r1 */
332 "", /* bank1_r2 */
333 "", /* bank1_r3 */
334 "", /* bank1_r4 */
335 "", /* bank1_r5 */
336 "", /* bank1_r6 */
337 "", /* bank1_r7 */
338
339 "", /* bank2_r0 */
340 "", /* bank2_r1 */
341 "", /* bank2_r2 */
342 "", /* bank2_r3 */
343 "", /* bank2_r4 */
344 "", /* bank2_r5 */
345 "", /* bank2_r6 */
346 "", /* bank2_r7 */
347
348 "", /* bank3_r0 */
349 "", /* bank3_r1 */
350 "", /* bank3_r2 */
351 "", /* bank3_r3 */
352 "", /* bank3_r4 */
353 "", /* bank3_r5 */
354 "", /* bank3_r6 */
355 "", /* bank3_r7 */
356
357 "psw",
358 "es",
359 "cs",
ba89f962 360 "",
c47a44f4
KB
361
362 "", /* spl */
363 "", /* sph */
364 "pmc",
365 "mem",
366
ba89f962 367 "pc",
c47a44f4
KB
368 "sp",
369
370 "x",
371 "a",
372 "c",
373 "b",
374 "e",
375 "d",
376 "l",
377 "h",
378
379 "ax",
380 "bc",
381 "de",
382 "hl",
383
9058f767
KB
384 "bank0_r0",
385 "bank0_r1",
386 "bank0_r2",
387 "bank0_r3",
388 "bank0_r4",
389 "bank0_r5",
390 "bank0_r6",
391 "bank0_r7",
392
393 "bank1_r0",
394 "bank1_r1",
395 "bank1_r2",
396 "bank1_r3",
397 "bank1_r4",
398 "bank1_r5",
399 "bank1_r6",
400 "bank1_r7",
401
402 "bank2_r0",
403 "bank2_r1",
404 "bank2_r2",
405 "bank2_r3",
406 "bank2_r4",
407 "bank2_r5",
408 "bank2_r6",
409 "bank2_r7",
410
411 "bank3_r0",
412 "bank3_r1",
413 "bank3_r2",
414 "bank3_r3",
415 "bank3_r4",
416 "bank3_r5",
417 "bank3_r6",
418 "bank3_r7",
419
9058f767
KB
420 "bank0_rp0",
421 "bank0_rp1",
422 "bank0_rp2",
423 "bank0_rp3",
424
425 "bank1_rp0",
426 "bank1_rp1",
427 "bank1_rp2",
428 "bank1_rp3",
429
430 "bank2_rp0",
431 "bank2_rp1",
432 "bank2_rp2",
433 "bank2_rp3",
434
435 "bank3_rp0",
436 "bank3_rp1",
437 "bank3_rp2",
6d451942
KB
438 "bank3_rp3",
439
440 /* The 16 register slots would be named
441 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
442 want these to be user visible registers. */
443 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
c47a44f4 444 };
9058f767 445
c47a44f4
KB
446 return reg_names[regnr];
447}
9058f767 448
bc3c6b36
KB
449/* Implement the "register_name" gdbarch method for the g10 variant. */
450
451static const char *
452rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
453{
454 static const char *const reg_names[] =
455 {
456 "", /* bank0_r0 */
457 "", /* bank0_r1 */
458 "", /* bank0_r2 */
459 "", /* bank0_r3 */
460 "", /* bank0_r4 */
461 "", /* bank0_r5 */
462 "", /* bank0_r6 */
463 "", /* bank0_r7 */
464
465 "", /* bank1_r0 */
466 "", /* bank1_r1 */
467 "", /* bank1_r2 */
468 "", /* bank1_r3 */
469 "", /* bank1_r4 */
470 "", /* bank1_r5 */
471 "", /* bank1_r6 */
472 "", /* bank1_r7 */
473
474 "", /* bank2_r0 */
475 "", /* bank2_r1 */
476 "", /* bank2_r2 */
477 "", /* bank2_r3 */
478 "", /* bank2_r4 */
479 "", /* bank2_r5 */
480 "", /* bank2_r6 */
481 "", /* bank2_r7 */
482
483 "", /* bank3_r0 */
484 "", /* bank3_r1 */
485 "", /* bank3_r2 */
486 "", /* bank3_r3 */
487 "", /* bank3_r4 */
488 "", /* bank3_r5 */
489 "", /* bank3_r6 */
490 "", /* bank3_r7 */
491
492 "psw",
493 "es",
494 "cs",
495 "",
496
497 "", /* spl */
498 "", /* sph */
499 "pmc",
500 "mem",
501
502 "pc",
503 "sp",
504
505 "x",
506 "a",
507 "c",
508 "b",
509 "e",
510 "d",
511 "l",
512 "h",
513
514 "ax",
515 "bc",
516 "de",
517 "hl",
518
519 "bank0_r0",
520 "bank0_r1",
521 "bank0_r2",
522 "bank0_r3",
523 "bank0_r4",
524 "bank0_r5",
525 "bank0_r6",
526 "bank0_r7",
527
528 "",
529 "",
530 "",
531 "",
532 "",
533 "",
534 "",
535 "",
536
537 "",
538 "",
539 "",
540 "",
541 "",
542 "",
543 "",
544 "",
545
546 "",
547 "",
548 "",
549 "",
550 "",
551 "",
552 "",
553 "",
554
555 "bank0_rp0",
556 "bank0_rp1",
557 "bank0_rp2",
558 "bank0_rp3",
559
560 "",
561 "",
562 "",
563 "",
564
565 "",
566 "",
567 "",
568 "",
569
570 "",
571 "",
572 "",
6d451942
KB
573 "",
574
575 /* The 16 register slots would be named
576 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
577 want these to be user visible registers. */
578 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
bc3c6b36
KB
579 };
580
581 return reg_names[regnr];
582}
583
c47a44f4 584/* Implement the "register_reggroup_p" gdbarch method. */
9058f767 585
c47a44f4
KB
586static int
587rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
588 struct reggroup *group)
589{
590 if (group == all_reggroup)
591 return 1;
9058f767 592
c47a44f4
KB
593 /* All other registers are saved and restored. */
594 if (group == save_reggroup || group == restore_reggroup)
595 {
b3ce41ea 596 if ((regnum < RL78_NUM_REGS
ba89f962
KB
597 && regnum != RL78_SPL_REGNUM
598 && regnum != RL78_SPH_REGNUM
599 && regnum != RL78_RAW_PC_REGNUM)
600 || regnum == RL78_SP_REGNUM
601 || regnum == RL78_PC_REGNUM)
c47a44f4
KB
602 return 1;
603 else
604 return 0;
605 }
606
607 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
608 || regnum == RL78_ES_REGNUM
609 || regnum == RL78_CS_REGNUM
610 || regnum == RL78_SPL_REGNUM
611 || regnum == RL78_SPH_REGNUM
612 || regnum == RL78_PMC_REGNUM
613 || regnum == RL78_MEM_REGNUM
ba89f962 614 || regnum == RL78_RAW_PC_REGNUM
c47a44f4
KB
615 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
616 return group == system_reggroup;
617
618 return group == general_reggroup;
9058f767
KB
619}
620
621/* Strip bits to form an instruction address. (When fetching a
622 32-bit address from the stack, the high eight bits are garbage.
623 This function strips off those unused bits.) */
624
625static CORE_ADDR
626rl78_make_instruction_address (CORE_ADDR addr)
627{
628 return addr & 0xffffff;
629}
630
631/* Set / clear bits necessary to make a data address. */
632
633static CORE_ADDR
634rl78_make_data_address (CORE_ADDR addr)
635{
636 return (addr & 0xffff) | 0xf0000;
637}
638
639/* Implement the "pseudo_register_read" gdbarch method. */
640
641static enum register_status
642rl78_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 643 readable_regcache *regcache,
9058f767
KB
644 int reg, gdb_byte *buffer)
645{
646 enum register_status status;
647
c47a44f4
KB
648 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
649 {
650 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
651 + (reg - RL78_BANK0_R0_REGNUM);
652
03f50fc8 653 status = regcache->raw_read (raw_regnum, buffer);
c47a44f4
KB
654 }
655 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
9058f767
KB
656 {
657 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
c47a44f4 658 + RL78_RAW_BANK0_R0_REGNUM;
9058f767 659
03f50fc8 660 status = regcache->raw_read (raw_regnum, buffer);
6d451942 661 if (status == REG_VALID)
03f50fc8 662 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
6d451942
KB
663 }
664 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
665 {
666 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
667 + RL78_RAW_BANK0_R0_REGNUM;
668
03f50fc8 669 status = regcache->raw_read (raw_regnum, buffer);
9058f767 670 if (status == REG_VALID)
03f50fc8 671 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
9058f767
KB
672 }
673 else if (reg == RL78_SP_REGNUM)
674 {
03f50fc8 675 status = regcache->raw_read (RL78_SPL_REGNUM, buffer);
9058f767 676 if (status == REG_VALID)
03f50fc8 677 status = regcache->raw_read (RL78_SPH_REGNUM, buffer + 1);
9058f767 678 }
ba89f962
KB
679 else if (reg == RL78_PC_REGNUM)
680 {
681 gdb_byte rawbuf[4];
682
03f50fc8 683 status = regcache->raw_read (RL78_RAW_PC_REGNUM, rawbuf);
ba89f962
KB
684 memcpy (buffer, rawbuf, 3);
685 }
9058f767
KB
686 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
687 {
688 ULONGEST psw;
689
03f50fc8 690 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
9058f767
KB
691 if (status == REG_VALID)
692 {
693 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
694 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
c47a44f4 695 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
9058f767 696 + (reg - RL78_X_REGNUM);
03f50fc8 697 status = regcache->raw_read (raw_regnum, buffer);
9058f767
KB
698 }
699 }
700 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
701 {
702 ULONGEST psw;
703
03f50fc8 704 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
9058f767
KB
705 if (status == REG_VALID)
706 {
707 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
708 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
c47a44f4 709 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
9058f767 710 + 2 * (reg - RL78_AX_REGNUM);
03f50fc8 711 status = regcache->raw_read (raw_regnum, buffer);
9058f767 712 if (status == REG_VALID)
03f50fc8 713 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
9058f767
KB
714 }
715 }
716 else
717 gdb_assert_not_reached ("invalid pseudo register number");
718 return status;
719}
720
721/* Implement the "pseudo_register_write" gdbarch method. */
722
723static void
724rl78_pseudo_register_write (struct gdbarch *gdbarch,
725 struct regcache *regcache,
726 int reg, const gdb_byte *buffer)
727{
c47a44f4
KB
728 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
729 {
730 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
731 + (reg - RL78_BANK0_R0_REGNUM);
732
10eaee5f 733 regcache->raw_write (raw_regnum, buffer);
c47a44f4
KB
734 }
735 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
9058f767
KB
736 {
737 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
c47a44f4 738 + RL78_RAW_BANK0_R0_REGNUM;
9058f767 739
10eaee5f
SM
740 regcache->raw_write (raw_regnum, buffer);
741 regcache->raw_write (raw_regnum + 1, buffer + 1);
6d451942
KB
742 }
743 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
744 {
745 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
746 + RL78_RAW_BANK0_R0_REGNUM;
747
10eaee5f
SM
748 regcache->raw_write (raw_regnum, buffer);
749 regcache->raw_write (raw_regnum + 1, buffer + 1);
9058f767
KB
750 }
751 else if (reg == RL78_SP_REGNUM)
752 {
10eaee5f
SM
753 regcache->raw_write (RL78_SPL_REGNUM, buffer);
754 regcache->raw_write (RL78_SPH_REGNUM, buffer + 1);
9058f767 755 }
ba89f962
KB
756 else if (reg == RL78_PC_REGNUM)
757 {
758 gdb_byte rawbuf[4];
759
760 memcpy (rawbuf, buffer, 3);
761 rawbuf[3] = 0;
10eaee5f 762 regcache->raw_write (RL78_RAW_PC_REGNUM, rawbuf);
ba89f962 763 }
9058f767
KB
764 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
765 {
766 ULONGEST psw;
767 int bank;
768 int raw_regnum;
769
770 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
771 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
772 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
c47a44f4 773 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
9058f767 774 + (reg - RL78_X_REGNUM);
10eaee5f 775 regcache->raw_write (raw_regnum, buffer);
9058f767
KB
776 }
777 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
778 {
779 ULONGEST psw;
780 int bank, raw_regnum;
781
782 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
783 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
784 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
c47a44f4 785 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
9058f767 786 + 2 * (reg - RL78_AX_REGNUM);
10eaee5f
SM
787 regcache->raw_write (raw_regnum, buffer);
788 regcache->raw_write (raw_regnum + 1, buffer + 1);
9058f767
KB
789 }
790 else
791 gdb_assert_not_reached ("invalid pseudo register number");
792}
793
598cc9dc
YQ
794/* The documented BRK instruction is actually a two byte sequence,
795 {0x61, 0xcc}, but instructions may be as short as one byte.
796 Correspondence with Renesas revealed that the one byte sequence
797 0xff is used when a one byte breakpoint instruction is required. */
04180708 798constexpr gdb_byte rl78_break_insn[] = { 0xff };
9058f767 799
04180708 800typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint;
9058f767
KB
801
802/* Define a "handle" struct for fetching the next opcode. */
803
804struct rl78_get_opcode_byte_handle
805{
806 CORE_ADDR pc;
807};
808
0bca7f99
KB
809static int
810opc_reg_to_gdb_regnum (int opcreg)
811{
812 switch (opcreg)
813 {
814 case RL78_Reg_X:
815 return RL78_X_REGNUM;
816 case RL78_Reg_A:
817 return RL78_A_REGNUM;
818 case RL78_Reg_C:
819 return RL78_C_REGNUM;
820 case RL78_Reg_B:
821 return RL78_B_REGNUM;
822 case RL78_Reg_E:
823 return RL78_E_REGNUM;
824 case RL78_Reg_D:
825 return RL78_D_REGNUM;
826 case RL78_Reg_L:
827 return RL78_L_REGNUM;
828 case RL78_Reg_H:
829 return RL78_H_REGNUM;
830 case RL78_Reg_AX:
831 return RL78_AX_REGNUM;
832 case RL78_Reg_BC:
833 return RL78_BC_REGNUM;
834 case RL78_Reg_DE:
835 return RL78_DE_REGNUM;
836 case RL78_Reg_HL:
837 return RL78_HL_REGNUM;
838 case RL78_Reg_SP:
839 return RL78_SP_REGNUM;
840 case RL78_Reg_PSW:
841 return RL78_PSW_REGNUM;
842 case RL78_Reg_CS:
843 return RL78_CS_REGNUM;
844 case RL78_Reg_ES:
845 return RL78_ES_REGNUM;
846 case RL78_Reg_PMC:
847 return RL78_PMC_REGNUM;
848 case RL78_Reg_MEM:
849 return RL78_MEM_REGNUM;
850 default:
851 internal_error (__FILE__, __LINE__,
852 _("Undefined mapping for opc reg %d"),
853 opcreg);
854 }
855
856 /* Not reached. */
857 return 0;
858}
859
9058f767
KB
860/* Fetch a byte on behalf of the opcode decoder. HANDLE contains
861 the memory address of the next byte to fetch. If successful,
862 the address in the handle is updated and the byte fetched is
863 returned as the value of the function. If not successful, -1
864 is returned. */
865
866static int
867rl78_get_opcode_byte (void *handle)
868{
19ba03f4
SM
869 struct rl78_get_opcode_byte_handle *opcdata
870 = (struct rl78_get_opcode_byte_handle *) handle;
9058f767
KB
871 int status;
872 gdb_byte byte;
873
874 status = target_read_memory (opcdata->pc, &byte, 1);
875 if (status == 0)
876 {
877 opcdata->pc += 1;
878 return byte;
879 }
880 else
881 return -1;
882}
883
884/* Function for finding saved registers in a 'struct pv_area'; this
f7b7ed97 885 function is passed to pv_area::scan.
9058f767
KB
886
887 If VALUE is a saved register, ADDR says it was saved at a constant
888 offset from the frame base, and SIZE indicates that the whole
889 register was saved, record its offset. */
890
891static void
892check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
893 pv_t value)
894{
895 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
896
897 if (value.kind == pvk_register
898 && value.k == 0
899 && pv_is_register (addr, RL78_SP_REGNUM)
f5656ead 900 && size == register_size (target_gdbarch (), value.reg))
9058f767
KB
901 result->reg_offset[value.reg] = addr.k;
902}
903
904/* Analyze a prologue starting at START_PC, going no further than
905 LIMIT_PC. Fill in RESULT as appropriate. */
906
907static void
908rl78_analyze_prologue (CORE_ADDR start_pc,
909 CORE_ADDR limit_pc, struct rl78_prologue *result)
910{
911 CORE_ADDR pc, next_pc;
912 int rn;
913 pv_t reg[RL78_NUM_TOTAL_REGS];
9058f767
KB
914 CORE_ADDR after_last_frame_setup_insn = start_pc;
915 int bank = 0;
916
917 memset (result, 0, sizeof (*result));
918
919 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
920 {
921 reg[rn] = pv_register (rn, 0);
922 result->reg_offset[rn] = 1;
923 }
924
f7b7ed97 925 pv_area stack (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
9058f767
KB
926
927 /* The call instruction has saved the return address on the stack. */
928 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
f7b7ed97 929 stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
9058f767
KB
930
931 pc = start_pc;
932 while (pc < limit_pc)
933 {
934 int bytes_read;
935 struct rl78_get_opcode_byte_handle opcode_handle;
936 RL78_Opcode_Decoded opc;
937
938 opcode_handle.pc = pc;
939 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
0952813b 940 &opcode_handle, RL78_ISA_DEFAULT);
9058f767
KB
941 next_pc = pc + bytes_read;
942
943 if (opc.id == RLO_sel)
944 {
945 bank = opc.op[1].addend;
946 }
947 else if (opc.id == RLO_mov
948 && opc.op[0].type == RL78_Operand_PreDec
949 && opc.op[0].reg == RL78_Reg_SP
950 && opc.op[1].type == RL78_Operand_Register)
951 {
952 int rsrc = (bank * RL78_REGS_PER_BANK)
f7b7ed97 953 + 2 * (opc.op[1].reg - RL78_Reg_AX);
9058f767
KB
954
955 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
f7b7ed97 956 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]);
9058f767 957 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
f7b7ed97 958 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
9058f767
KB
959 after_last_frame_setup_insn = next_pc;
960 }
961 else if (opc.id == RLO_sub
962 && opc.op[0].type == RL78_Operand_Register
963 && opc.op[0].reg == RL78_Reg_SP
964 && opc.op[1].type == RL78_Operand_Immediate)
965 {
966 int addend = opc.op[1].addend;
967
968 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
969 -addend);
970 after_last_frame_setup_insn = next_pc;
971 }
0bca7f99
KB
972 else if (opc.id == RLO_mov
973 && opc.size == RL78_Word
974 && opc.op[0].type == RL78_Operand_Register
975 && opc.op[1].type == RL78_Operand_Indirect
976 && opc.op[1].addend == RL78_SP_ADDR)
977 {
978 reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
979 = reg[RL78_SP_REGNUM];
980 }
981 else if (opc.id == RLO_sub
982 && opc.size == RL78_Word
983 && opc.op[0].type == RL78_Operand_Register
984 && opc.op[1].type == RL78_Operand_Immediate)
985 {
986 int addend = opc.op[1].addend;
987 int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
988
989 reg[regnum] = pv_add_constant (reg[regnum], -addend);
990 }
991 else if (opc.id == RLO_mov
992 && opc.size == RL78_Word
993 && opc.op[0].type == RL78_Operand_Indirect
994 && opc.op[0].addend == RL78_SP_ADDR
995 && opc.op[1].type == RL78_Operand_Register)
996 {
997 reg[RL78_SP_REGNUM]
998 = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
999 after_last_frame_setup_insn = next_pc;
1000 }
9058f767
KB
1001 else
1002 {
1003 /* Terminate the prologue scan. */
1004 break;
1005 }
1006
1007 pc = next_pc;
1008 }
1009
1010 /* Is the frame size (offset, really) a known constant? */
1011 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
1012 result->frame_size = reg[RL78_SP_REGNUM].k;
1013
1014 /* Record where all the registers were saved. */
f7b7ed97 1015 stack.scan (check_for_saved, (void *) result);
9058f767
KB
1016
1017 result->prologue_end = after_last_frame_setup_insn;
9058f767
KB
1018}
1019
1020/* Implement the "addr_bits_remove" gdbarch method. */
1021
1022static CORE_ADDR
1023rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1024{
1025 return addr & 0xffffff;
1026}
1027
1028/* Implement the "address_to_pointer" gdbarch method. */
1029
1030static void
1031rl78_address_to_pointer (struct gdbarch *gdbarch,
1032 struct type *type, gdb_byte *buf, CORE_ADDR addr)
1033{
1034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1035
1036 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
1037 addr & 0xffffff);
1038}
1039
1040/* Implement the "pointer_to_address" gdbarch method. */
1041
1042static CORE_ADDR
1043rl78_pointer_to_address (struct gdbarch *gdbarch,
1044 struct type *type, const gdb_byte *buf)
1045{
1046 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1047 CORE_ADDR addr
1048 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
1049
1050 /* Is it a code address? */
78134374
SM
1051 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
1052 || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD
9058f767
KB
1053 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
1054 || TYPE_LENGTH (type) == 4)
1055 return rl78_make_instruction_address (addr);
1056 else
1057 return rl78_make_data_address (addr);
1058}
1059
1060/* Implement the "skip_prologue" gdbarch method. */
1061
1062static CORE_ADDR
1063rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1064{
e4569f1e 1065 const char *name;
9058f767
KB
1066 CORE_ADDR func_addr, func_end;
1067 struct rl78_prologue p;
1068
1069 /* Try to find the extent of the function that contains PC. */
1070 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1071 return pc;
1072
1073 rl78_analyze_prologue (pc, func_end, &p);
1074 return p.prologue_end;
1075}
1076
1077/* Implement the "unwind_pc" gdbarch method. */
1078
1079static CORE_ADDR
1080rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1081{
1082 return rl78_addr_bits_remove
1083 (arch, frame_unwind_register_unsigned (next_frame,
1084 RL78_PC_REGNUM));
1085}
1086
9058f767
KB
1087/* Given a frame described by THIS_FRAME, decode the prologue of its
1088 associated function if there is not cache entry as specified by
1089 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
1090 return that struct as the value of this function. */
1091
1092static struct rl78_prologue *
1093rl78_analyze_frame_prologue (struct frame_info *this_frame,
1094 void **this_prologue_cache)
1095{
1096 if (!*this_prologue_cache)
1097 {
1098 CORE_ADDR func_start, stop_addr;
1099
1100 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
1101
1102 func_start = get_frame_func (this_frame);
1103 stop_addr = get_frame_pc (this_frame);
1104
1105 /* If we couldn't find any function containing the PC, then
1106 just initialize the prologue cache, but don't do anything. */
1107 if (!func_start)
1108 stop_addr = func_start;
1109
19ba03f4
SM
1110 rl78_analyze_prologue (func_start, stop_addr,
1111 (struct rl78_prologue *) *this_prologue_cache);
9058f767
KB
1112 }
1113
19ba03f4 1114 return (struct rl78_prologue *) *this_prologue_cache;
9058f767
KB
1115}
1116
1117/* Given a frame and a prologue cache, return this frame's base. */
1118
1119static CORE_ADDR
1120rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1121{
1122 struct rl78_prologue *p
1123 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1124 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
1125
1126 return rl78_make_data_address (sp - p->frame_size);
1127}
1128
1129/* Implement the "frame_this_id" method for unwinding frames. */
1130
1131static void
1132rl78_this_id (struct frame_info *this_frame,
1133 void **this_prologue_cache, struct frame_id *this_id)
1134{
1135 *this_id = frame_id_build (rl78_frame_base (this_frame,
1136 this_prologue_cache),
1137 get_frame_func (this_frame));
1138}
1139
1140/* Implement the "frame_prev_register" method for unwinding frames. */
1141
1142static struct value *
1143rl78_prev_register (struct frame_info *this_frame,
1144 void **this_prologue_cache, int regnum)
1145{
1146 struct rl78_prologue *p
1147 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1148 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
1149
1150 if (regnum == RL78_SP_REGNUM)
1151 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1152
1153 else if (regnum == RL78_SPL_REGNUM)
1154 return frame_unwind_got_constant (this_frame, regnum,
1155 (frame_base & 0xff));
1156
1157 else if (regnum == RL78_SPH_REGNUM)
1158 return frame_unwind_got_constant (this_frame, regnum,
1159 ((frame_base >> 8) & 0xff));
1160
1161 /* If prologue analysis says we saved this register somewhere,
1162 return a description of the stack slot holding it. */
1163 else if (p->reg_offset[regnum] != 1)
1164 {
1165 struct value *rv =
1166 frame_unwind_got_memory (this_frame, regnum,
1167 frame_base + p->reg_offset[regnum]);
1168
1169 if (regnum == RL78_PC_REGNUM)
1170 {
1171 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
1172
1173 return frame_unwind_got_constant (this_frame, regnum, pc);
1174 }
1175 return rv;
1176 }
1177
1178 /* Otherwise, presume we haven't changed the value of this
1179 register, and get it from the next frame. */
1180 else
1181 return frame_unwind_got_register (this_frame, regnum, regnum);
1182}
1183
1184static const struct frame_unwind rl78_unwind =
1185{
1186 NORMAL_FRAME,
1187 default_frame_unwind_stop_reason,
1188 rl78_this_id,
1189 rl78_prev_register,
1190 NULL,
1191 default_frame_sniffer
1192};
1193
1194/* Implement the "dwarf_reg_to_regnum" gdbarch method. */
1195
1196static int
1197rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1198{
1199 if (0 <= reg && reg <= 31)
1200 {
1201 if ((reg & 1) == 0)
6d451942
KB
1202 /* Map even registers to their 16-bit counterparts which have a
1203 pointer type. This is usually what is required from the DWARF
1204 info. */
1205 return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
9058f767
KB
1206 else
1207 return reg;
1208 }
1209 else if (reg == 32)
1210 return RL78_SP_REGNUM;
1211 else if (reg == 33)
b3ce41ea
KB
1212 return -1; /* ap */
1213 else if (reg == 34)
1214 return RL78_PSW_REGNUM;
1215 else if (reg == 35)
1216 return RL78_ES_REGNUM;
1217 else if (reg == 36)
1218 return RL78_CS_REGNUM;
1219 else if (reg == 37)
9058f767
KB
1220 return RL78_PC_REGNUM;
1221 else
0fde2c53 1222 return -1;
9058f767
KB
1223}
1224
c47a44f4
KB
1225/* Implement the `register_sim_regno' gdbarch method. */
1226
1227static int
1228rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1229{
1230 gdb_assert (regnum < RL78_NUM_REGS);
1231
1232 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
1233 just want to override the default here which disallows register
1234 numbers which have no names. */
1235 return regnum;
1236}
1237
9058f767
KB
1238/* Implement the "return_value" gdbarch method. */
1239
1240static enum return_value_convention
1241rl78_return_value (struct gdbarch *gdbarch,
6a3a010b 1242 struct value *function,
9058f767
KB
1243 struct type *valtype,
1244 struct regcache *regcache,
1245 gdb_byte *readbuf, const gdb_byte *writebuf)
1246{
1247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1248 ULONGEST valtype_len = TYPE_LENGTH (valtype);
bc3c6b36 1249 int is_g10 = gdbarch_tdep (gdbarch)->elf_flags & E_FLAG_RL78_G10;
9058f767
KB
1250
1251 if (valtype_len > 8)
1252 return RETURN_VALUE_STRUCT_CONVENTION;
1253
1254 if (readbuf)
1255 {
1256 ULONGEST u;
c47a44f4 1257 int argreg = RL78_RAW_BANK1_R0_REGNUM;
bc3c6b36 1258 CORE_ADDR g10_raddr = 0xffec8;
9058f767
KB
1259 int offset = 0;
1260
1261 while (valtype_len > 0)
1262 {
bc3c6b36
KB
1263 if (is_g10)
1264 u = read_memory_integer (g10_raddr, 1,
1265 gdbarch_byte_order (gdbarch));
1266 else
1267 regcache_cooked_read_unsigned (regcache, argreg, &u);
9058f767
KB
1268 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1269 valtype_len -= 1;
1270 offset += 1;
1271 argreg++;
bc3c6b36 1272 g10_raddr++;
9058f767
KB
1273 }
1274 }
1275
1276 if (writebuf)
1277 {
1278 ULONGEST u;
c47a44f4 1279 int argreg = RL78_RAW_BANK1_R0_REGNUM;
bc3c6b36 1280 CORE_ADDR g10_raddr = 0xffec8;
9058f767
KB
1281 int offset = 0;
1282
1283 while (valtype_len > 0)
1284 {
1285 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
bc3c6b36
KB
1286 if (is_g10) {
1287 gdb_byte b = u & 0xff;
1288 write_memory (g10_raddr, &b, 1);
1289 }
1290 else
1291 regcache_cooked_write_unsigned (regcache, argreg, u);
9058f767
KB
1292 valtype_len -= 1;
1293 offset += 1;
1294 argreg++;
bc3c6b36 1295 g10_raddr++;
9058f767
KB
1296 }
1297 }
1298
1299 return RETURN_VALUE_REGISTER_CONVENTION;
1300}
1301
1302
1303/* Implement the "frame_align" gdbarch method. */
1304
1305static CORE_ADDR
1306rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1307{
1308 return rl78_make_data_address (align_down (sp, 2));
1309}
1310
1311
1312/* Implement the "dummy_id" gdbarch method. */
1313
1314static struct frame_id
1315rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1316{
1317 return
1318 frame_id_build (rl78_make_data_address
1319 (get_frame_register_unsigned
1320 (this_frame, RL78_SP_REGNUM)),
1321 get_frame_pc (this_frame));
1322}
1323
1324
1325/* Implement the "push_dummy_call" gdbarch method. */
1326
1327static CORE_ADDR
1328rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1329 struct regcache *regcache, CORE_ADDR bp_addr,
1330 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1331 function_call_return_method return_method,
1332 CORE_ADDR struct_addr)
9058f767
KB
1333{
1334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1335 gdb_byte buf[4];
1336 int i;
1337
1338 /* Push arguments in reverse order. */
1339 for (i = nargs - 1; i >= 0; i--)
1340 {
1341 struct type *value_type = value_enclosing_type (args[i]);
1342 int len = TYPE_LENGTH (value_type);
1343 int container_len = (len + 1) & ~1;
9058f767
KB
1344
1345 sp -= container_len;
1346 write_memory (rl78_make_data_address (sp),
1347 value_contents_all (args[i]), len);
1348 }
1349
1350 /* Store struct value address. */
cf84fa6b 1351 if (return_method == return_method_struct)
9058f767
KB
1352 {
1353 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1354 sp -= 2;
1355 write_memory (rl78_make_data_address (sp), buf, 2);
1356 }
1357
1358 /* Store return address. */
1359 sp -= 4;
1360 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1361 write_memory (rl78_make_data_address (sp), buf, 4);
1362
1363 /* Finally, update the stack pointer... */
1364 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1365
1366 /* DWARF2/GCC uses the stack address *before* the function call as a
1367 frame's CFA. */
1368 return rl78_make_data_address (sp + 4);
1369}
1370
1371/* Allocate and initialize a gdbarch object. */
1372
1373static struct gdbarch *
1374rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1375{
1376 struct gdbarch *gdbarch;
1377 struct gdbarch_tdep *tdep;
1378 int elf_flags;
1379
1380 /* Extract the elf_flags if available. */
1381 if (info.abfd != NULL
1382 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1383 elf_flags = elf_elfheader (info.abfd)->e_flags;
1384 else
1385 elf_flags = 0;
1386
1387
1388 /* Try to find the architecture in the list of already defined
1389 architectures. */
1390 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1391 arches != NULL;
1392 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1393 {
1394 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1395 continue;
1396
1397 return arches->gdbarch;
1398 }
1399
1400 /* None found, create a new architecture from the information
1401 provided. */
e6ddc3bf 1402 tdep = XCNEW (struct gdbarch_tdep);
9058f767
KB
1403 gdbarch = gdbarch_alloc (&info, tdep);
1404 tdep->elf_flags = elf_flags;
1405
1406 /* Initialize types. */
77b7c781
UW
1407 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1408 "void");
9058f767
KB
1409 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1410 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1411 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1412 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1413 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1414 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1415
1416 tdep->rl78_data_pointer
88dfca6c 1417 = arch_pointer_type (gdbarch, 16, "rl78_data_addr_t", tdep->rl78_void);
9058f767 1418 tdep->rl78_code_pointer
88dfca6c 1419 = arch_pointer_type (gdbarch, 32, "rl78_code_addr_t", tdep->rl78_void);
9058f767
KB
1420
1421 /* Registers. */
1422 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1423 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
bc3c6b36
KB
1424 if (tdep->elf_flags & E_FLAG_RL78_G10)
1425 set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
1426 else
1427 set_gdbarch_register_name (gdbarch, rl78_register_name);
9058f767
KB
1428 set_gdbarch_register_type (gdbarch, rl78_register_type);
1429 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1430 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1431 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1432 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1433 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
c47a44f4
KB
1434 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1435 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
9058f767
KB
1436
1437 /* Data types. */
1438 set_gdbarch_char_signed (gdbarch, 0);
1439 set_gdbarch_short_bit (gdbarch, 16);
1440 set_gdbarch_int_bit (gdbarch, 16);
1441 set_gdbarch_long_bit (gdbarch, 32);
1442 set_gdbarch_long_long_bit (gdbarch, 64);
1443 set_gdbarch_ptr_bit (gdbarch, 16);
1444 set_gdbarch_addr_bit (gdbarch, 32);
b3ce41ea 1445 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
9058f767
KB
1446 set_gdbarch_float_bit (gdbarch, 32);
1447 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1448 set_gdbarch_double_bit (gdbarch, 32);
1449 set_gdbarch_long_double_bit (gdbarch, 64);
1450 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1451 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1452 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1453 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1454 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1455
1456 /* Breakpoints. */
04180708
YQ
1457 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc);
1458 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind);
9058f767
KB
1459 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1460
9058f767
KB
1461 /* Frames, prologues, etc. */
1462 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1463 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1464 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
9058f767 1465 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
b3ce41ea
KB
1466
1467 dwarf2_append_unwinders (gdbarch);
9058f767
KB
1468 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1469
1470 /* Dummy frames, return values. */
1471 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1472 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1473 set_gdbarch_return_value (gdbarch, rl78_return_value);
1474
1475 /* Virtual tables. */
1476 set_gdbarch_vbit_in_delta (gdbarch, 1);
1477
1478 return gdbarch;
1479}
1480
1481/* Register the above initialization routine. */
1482
6c265988 1483void _initialize_rl78_tdep ();
9058f767 1484void
6c265988 1485_initialize_rl78_tdep ()
9058f767
KB
1486{
1487 register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);
1488}
This page took 0.970656 seconds and 4 git commands to generate.