gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
b811d2c2 3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
626ca2c0
CB
54static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
1c4dcb57 58
13437d4b
KB
59/* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
bc043ef3 67static const char * const solib_break_names[] =
13437d4b
KB
68{
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
4c7dcb84 73 "__dl_rtld_db_dlactivity",
1f72e589 74 "_rtld_debug_state",
4c0122c8 75
13437d4b
KB
76 NULL
77};
13437d4b 78
bc043ef3 79static const char * const bkpt_names[] =
13437d4b 80{
13437d4b 81 "_start",
ad3dcc5c 82 "__start",
13437d4b
KB
83 "main",
84 NULL
85};
13437d4b 86
bc043ef3 87static const char * const main_name_list[] =
13437d4b
KB
88{
89 "main_$main",
90 NULL
91};
92
f9e14852
GB
93/* What to do when a probe stop occurs. */
94
95enum probe_action
96{
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112};
113
114/* A probe's name and its associated action. */
115
116struct probe_info
117{
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123};
124
125/* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129static const struct probe_info probe_info[] =
130{
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138};
139
140#define NUM_PROBES ARRAY_SIZE (probe_info)
141
4d7b2d5b
JB
142/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145static int
146svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147{
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
7307a73a 161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 162 different locations. */
7307a73a
RO
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
4d7b2d5b
JB
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172}
173
174static int
175svr4_same (struct so_list *gdb, struct so_list *inferior)
176{
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178}
179
a7961323 180static std::unique_ptr<lm_info_svr4>
3957565a 181lm_info_read (CORE_ADDR lm_addr)
13437d4b 182{
4b188b9f 183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 184 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 185
a7961323 186 gdb::byte_vector lm (lmo->link_map_size);
3957565a 187
a7961323
TT
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
3957565a
JK
191 else
192 {
f5656ead 193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 194
a7961323 195 lm_info.reset (new lm_info_svr4);
3957565a
JK
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
3957565a 209 return lm_info;
13437d4b
KB
210}
211
cc10cae3 212static int
b23518f0 213has_lm_dynamic_from_link_map (void)
cc10cae3
AO
214{
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
cfaefc65 217 return lmo->l_ld_offset >= 0;
cc10cae3
AO
218}
219
cc10cae3 220static CORE_ADDR
f65ce5fb 221lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 222{
d0e449a1
SM
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
cc10cae3
AO
226 {
227 struct bfd_section *dyninfo_sect;
28f34a8f 228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 229
d0e449a1 230 l_addr = li->l_addr_inferior;
cc10cae3 231
b23518f0 232 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
233 goto set_addr;
234
d0e449a1 235 l_dynaddr = li->l_ld;
cc10cae3
AO
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
fd361982 241 dynaddr = bfd_section_vma (dyninfo_sect);
cc10cae3
AO
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
28f34a8f 245 CORE_ADDR align = 0x1000;
4e1fc9c9 246 CORE_ADDR minpagesize = align;
28f34a8f 247
cc10cae3
AO
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
4e1fc9c9
JK
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
5c0d192f
JK
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 288
02835898
JK
289 l_addr = l_dynaddr - dynaddr;
290
4e1fc9c9
JK
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 293 {
701ed6dc 294 if (info_verbose)
ccf26247
JK
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
f5656ead 297 paddress (target_gdbarch (), l_addr),
ccf26247 298 so->so_name);
cc10cae3 299 }
79d4c408 300 else
02835898
JK
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
cc10cae3
AO
315 }
316
317 set_addr:
d0e449a1
SM
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
cc10cae3
AO
320 }
321
d0e449a1 322 return li->l_addr;
cc10cae3
AO
323}
324
6c95b8df 325/* Per pspace SVR4 specific data. */
13437d4b 326
1a816a87
PA
327struct svr4_info
328{
09232438
TT
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
1a816a87
PA
334
335 /* Validity flag for debug_loader_offset. */
09232438 336 int debug_loader_offset_p = 0;
1a816a87
PA
337
338 /* Load address for the dynamic linker, inferred. */
09232438 339 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 342 char *debug_loader_name = nullptr;
1a816a87
PA
343
344 /* Load map address for the main executable. */
09232438 345 CORE_ADDR main_lm_addr = 0;
1a816a87 346
09232438
TT
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
f9e14852
GB
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
09232438 354 int using_xfer = 0;
f9e14852
GB
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
935676c9 359 probe_and_action->prob->address. */
09232438 360 htab_up probes_table;
f9e14852
GB
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
09232438 364 struct so_list *solib_list = nullptr;
6c95b8df 365};
1a816a87 366
6c95b8df 367/* Per-program-space data key. */
09232438 368static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
1a816a87 369
f9e14852
GB
370/* Free the probes table. */
371
372static void
373free_probes_table (struct svr4_info *info)
374{
09232438 375 info->probes_table.reset (nullptr);
f9e14852
GB
376}
377
378/* Free the solib list. */
379
380static void
381free_solib_list (struct svr4_info *info)
382{
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385}
386
09232438 387svr4_info::~svr4_info ()
1a816a87 388{
09232438 389 free_solib_list (this);
1a816a87
PA
390}
391
d70cc3ba
SM
392/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
34439770 394
6c95b8df 395static struct svr4_info *
d70cc3ba 396get_svr4_info (program_space *pspace)
1a816a87 397{
09232438 398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 399
09232438
TT
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
34439770 402
6c95b8df 403 return info;
1a816a87 404}
93a57060 405
13437d4b
KB
406/* Local function prototypes */
407
bc043ef3 408static int match_main (const char *);
13437d4b 409
97ec2c2f 410/* Read program header TYPE from inferior memory. The header is found
17658d46 411 by scanning the OS auxiliary vector.
97ec2c2f 412
09919ac2
JK
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
17658d46
SM
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 420
17658d46
SM
421static gdb::optional<gdb::byte_vector>
422read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 423{
f5656ead 424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
43136979 428 int pt_phdr_p = 0;
97ec2c2f
UW
429
430 /* Get required auxv elements from target. */
8b88a78e 431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 432 return {};
8b88a78e 433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 434 return {};
8b88a78e 435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 436 return {};
97ec2c2f 437 if (!at_phdr || !at_phnum)
17658d46 438 return {};
97ec2c2f
UW
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
17658d46 446 return {};
97ec2c2f 447
09919ac2
JK
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
97ec2c2f
UW
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
43136979
AR
462 int p_type;
463
97ec2c2f
UW
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 466 return {};
97ec2c2f 467
43136979
AR
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
97ec2c2f
UW
479 break;
480 }
481
482 if (i == at_phnum)
17658d46 483 return {};
97ec2c2f
UW
484
485 /* Retrieve address and size. */
e17a4113
UW
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
97ec2c2f
UW
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
43136979
AR
499 int p_type;
500
97ec2c2f
UW
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 503 return {};
97ec2c2f 504
43136979
AR
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
97ec2c2f
UW
516 break;
517 }
518
519 if (i == at_phnum)
17658d46 520 return {};
97ec2c2f
UW
521
522 /* Retrieve address and size. */
e17a4113
UW
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
97ec2c2f
UW
527 }
528
43136979
AR
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
97ec2c2f 539 /* Read in requested program header. */
17658d46
SM
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
97ec2c2f
UW
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
a738da3a
MF
546 if (base_addr)
547 *base_addr = sect_addr;
97ec2c2f
UW
548
549 return buf;
550}
551
552
553/* Return program interpreter string. */
17658d46 554static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
555find_program_interpreter (void)
556{
97ec2c2f
UW
557 /* If we have an exec_bfd, use its section table. */
558 if (exec_bfd
559 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
560 {
561 struct bfd_section *interp_sect;
562
563 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
564 if (interp_sect != NULL)
565 {
fd361982 566 int sect_size = bfd_section_size (interp_sect);
97ec2c2f 567
17658d46
SM
568 gdb::byte_vector buf (sect_size);
569 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
570 sect_size);
571 return buf;
97ec2c2f
UW
572 }
573 }
574
17658d46
SM
575 /* If we didn't find it, use the target auxiliary vector. */
576 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
577}
578
579
b6d7a4bf
SM
580/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
581 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
582
583static int
a738da3a
MF
584scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
585 CORE_ADDR *ptr_addr)
3a40aaa0
UW
586{
587 int arch_size, step, sect_size;
b6d7a4bf 588 long current_dyntag;
b381ea14 589 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 590 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
591 Elf32_External_Dyn *x_dynp_32;
592 Elf64_External_Dyn *x_dynp_64;
593 struct bfd_section *sect;
61f0d762 594 struct target_section *target_section;
3a40aaa0
UW
595
596 if (abfd == NULL)
597 return 0;
0763ab81
PA
598
599 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
600 return 0;
601
3a40aaa0
UW
602 arch_size = bfd_get_arch_size (abfd);
603 if (arch_size == -1)
0763ab81 604 return 0;
3a40aaa0
UW
605
606 /* Find the start address of the .dynamic section. */
607 sect = bfd_get_section_by_name (abfd, ".dynamic");
608 if (sect == NULL)
609 return 0;
61f0d762
JK
610
611 for (target_section = current_target_sections->sections;
612 target_section < current_target_sections->sections_end;
613 target_section++)
614 if (sect == target_section->the_bfd_section)
615 break;
b381ea14
JK
616 if (target_section < current_target_sections->sections_end)
617 dyn_addr = target_section->addr;
618 else
619 {
620 /* ABFD may come from OBJFILE acting only as a symbol file without being
621 loaded into the target (see add_symbol_file_command). This case is
622 such fallback to the file VMA address without the possibility of
623 having the section relocated to its actual in-memory address. */
624
fd361982 625 dyn_addr = bfd_section_vma (sect);
b381ea14 626 }
3a40aaa0 627
65728c26
DJ
628 /* Read in .dynamic from the BFD. We will get the actual value
629 from memory later. */
fd361982 630 sect_size = bfd_section_size (sect);
224c3ddb 631 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
632 if (!bfd_get_section_contents (abfd, sect,
633 buf, 0, sect_size))
634 return 0;
3a40aaa0
UW
635
636 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
637 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
638 : sizeof (Elf64_External_Dyn);
639 for (bufend = buf + sect_size;
640 buf < bufend;
641 buf += step)
642 {
643 if (arch_size == 32)
644 {
645 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 646 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
647 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
648 }
65728c26 649 else
3a40aaa0
UW
650 {
651 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 652 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
653 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
654 }
b6d7a4bf 655 if (current_dyntag == DT_NULL)
3a40aaa0 656 return 0;
b6d7a4bf 657 if (current_dyntag == desired_dyntag)
3a40aaa0 658 {
65728c26
DJ
659 /* If requested, try to read the runtime value of this .dynamic
660 entry. */
3a40aaa0 661 if (ptr)
65728c26 662 {
b6da22b0 663 struct type *ptr_type;
65728c26 664 gdb_byte ptr_buf[8];
a738da3a 665 CORE_ADDR ptr_addr_1;
65728c26 666
f5656ead 667 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
668 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
669 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 670 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 671 *ptr = dyn_ptr;
a738da3a
MF
672 if (ptr_addr)
673 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
674 }
675 return 1;
3a40aaa0
UW
676 }
677 }
678
679 return 0;
680}
681
b6d7a4bf
SM
682/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
683 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
684 is returned and the corresponding PTR is set. */
97ec2c2f
UW
685
686static int
a738da3a
MF
687scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
688 CORE_ADDR *ptr_addr)
97ec2c2f 689{
f5656ead 690 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 691 int arch_size, step;
b6d7a4bf 692 long current_dyntag;
97ec2c2f 693 CORE_ADDR dyn_ptr;
a738da3a 694 CORE_ADDR base_addr;
97ec2c2f
UW
695
696 /* Read in .dynamic section. */
17658d46
SM
697 gdb::optional<gdb::byte_vector> ph_data
698 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
699 if (!ph_data)
97ec2c2f
UW
700 return 0;
701
702 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
703 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
704 : sizeof (Elf64_External_Dyn);
17658d46
SM
705 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
706 buf < bufend; buf += step)
97ec2c2f
UW
707 {
708 if (arch_size == 32)
709 {
710 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 711
b6d7a4bf 712 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
713 4, byte_order);
714 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
715 4, byte_order);
97ec2c2f
UW
716 }
717 else
718 {
719 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 720
b6d7a4bf 721 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
722 8, byte_order);
723 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
724 8, byte_order);
97ec2c2f 725 }
b6d7a4bf 726 if (current_dyntag == DT_NULL)
97ec2c2f
UW
727 break;
728
b6d7a4bf 729 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
730 {
731 if (ptr)
732 *ptr = dyn_ptr;
733
a738da3a 734 if (ptr_addr)
17658d46 735 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 736
97ec2c2f
UW
737 return 1;
738 }
739 }
740
97ec2c2f
UW
741 return 0;
742}
743
7f86f058
PA
744/* Locate the base address of dynamic linker structs for SVR4 elf
745 targets.
13437d4b
KB
746
747 For SVR4 elf targets the address of the dynamic linker's runtime
748 structure is contained within the dynamic info section in the
749 executable file. The dynamic section is also mapped into the
750 inferior address space. Because the runtime loader fills in the
751 real address before starting the inferior, we have to read in the
752 dynamic info section from the inferior address space.
753 If there are any errors while trying to find the address, we
7f86f058 754 silently return 0, otherwise the found address is returned. */
13437d4b
KB
755
756static CORE_ADDR
757elf_locate_base (void)
758{
3b7344d5 759 struct bound_minimal_symbol msymbol;
a738da3a 760 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 761
65728c26
DJ
762 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
763 instead of DT_DEBUG, although they sometimes contain an unused
764 DT_DEBUG. */
a738da3a
MF
765 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
766 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 767 {
f5656ead 768 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 769 gdb_byte *pbuf;
b6da22b0 770 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 771
224c3ddb 772 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
773 /* DT_MIPS_RLD_MAP contains a pointer to the address
774 of the dynamic link structure. */
775 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 776 return 0;
b6da22b0 777 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
778 }
779
a738da3a
MF
780 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
781 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
782 in non-PIE. */
783 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
784 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
785 {
786 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
787 gdb_byte *pbuf;
788 int pbuf_size = TYPE_LENGTH (ptr_type);
789
224c3ddb 790 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
791 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
792 DT slot to the address of the dynamic link structure. */
793 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
794 return 0;
795 return extract_typed_address (pbuf, ptr_type);
796 }
797
65728c26 798 /* Find DT_DEBUG. */
a738da3a
MF
799 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
800 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
801 return dyn_ptr;
802
3a40aaa0
UW
803 /* This may be a static executable. Look for the symbol
804 conventionally named _r_debug, as a last resort. */
805 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 806 if (msymbol.minsym != NULL)
77e371c0 807 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
808
809 /* DT_DEBUG entry not found. */
810 return 0;
811}
812
7f86f058 813/* Locate the base address of dynamic linker structs.
13437d4b
KB
814
815 For both the SunOS and SVR4 shared library implementations, if the
816 inferior executable has been linked dynamically, there is a single
817 address somewhere in the inferior's data space which is the key to
818 locating all of the dynamic linker's runtime structures. This
819 address is the value of the debug base symbol. The job of this
820 function is to find and return that address, or to return 0 if there
821 is no such address (the executable is statically linked for example).
822
823 For SunOS, the job is almost trivial, since the dynamic linker and
824 all of it's structures are statically linked to the executable at
825 link time. Thus the symbol for the address we are looking for has
826 already been added to the minimal symbol table for the executable's
827 objfile at the time the symbol file's symbols were read, and all we
828 have to do is look it up there. Note that we explicitly do NOT want
829 to find the copies in the shared library.
830
831 The SVR4 version is a bit more complicated because the address
832 is contained somewhere in the dynamic info section. We have to go
833 to a lot more work to discover the address of the debug base symbol.
834 Because of this complexity, we cache the value we find and return that
835 value on subsequent invocations. Note there is no copy in the
7f86f058 836 executable symbol tables. */
13437d4b
KB
837
838static CORE_ADDR
1a816a87 839locate_base (struct svr4_info *info)
13437d4b 840{
13437d4b
KB
841 /* Check to see if we have a currently valid address, and if so, avoid
842 doing all this work again and just return the cached address. If
843 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
844 section for ELF executables. There's no point in doing any of this
845 though if we don't have some link map offsets to work with. */
13437d4b 846
1a816a87 847 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 848 info->debug_base = elf_locate_base ();
1a816a87 849 return info->debug_base;
13437d4b
KB
850}
851
e4cd0d6a 852/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
853 return its address in the inferior. Return zero if the address
854 could not be determined.
13437d4b 855
e4cd0d6a
MK
856 FIXME: Perhaps we should validate the info somehow, perhaps by
857 checking r_version for a known version number, or r_state for
858 RT_CONSISTENT. */
13437d4b
KB
859
860static CORE_ADDR
1a816a87 861solib_svr4_r_map (struct svr4_info *info)
13437d4b 862{
4b188b9f 863 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 864 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 865 CORE_ADDR addr = 0;
13437d4b 866
a70b8144 867 try
08597104
JB
868 {
869 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
870 ptr_type);
871 }
230d2906 872 catch (const gdb_exception_error &ex)
492d29ea
PA
873 {
874 exception_print (gdb_stderr, ex);
875 }
492d29ea 876
08597104 877 return addr;
e4cd0d6a 878}
13437d4b 879
7cd25cfc
DJ
880/* Find r_brk from the inferior's debug base. */
881
882static CORE_ADDR
1a816a87 883solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
884{
885 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 886 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 887
1a816a87
PA
888 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
889 ptr_type);
7cd25cfc
DJ
890}
891
e4cd0d6a
MK
892/* Find the link map for the dynamic linker (if it is not in the
893 normal list of loaded shared objects). */
13437d4b 894
e4cd0d6a 895static CORE_ADDR
1a816a87 896solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
897{
898 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 899 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
34877895 900 enum bfd_endian byte_order = type_byte_order (ptr_type);
416f679e
SDJ
901 ULONGEST version = 0;
902
a70b8144 903 try
416f679e
SDJ
904 {
905 /* Check version, and return zero if `struct r_debug' doesn't have
906 the r_ldsomap member. */
907 version
908 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
909 lmo->r_version_size, byte_order);
910 }
230d2906 911 catch (const gdb_exception_error &ex)
416f679e
SDJ
912 {
913 exception_print (gdb_stderr, ex);
914 }
13437d4b 915
e4cd0d6a
MK
916 if (version < 2 || lmo->r_ldsomap_offset == -1)
917 return 0;
13437d4b 918
1a816a87 919 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 920 ptr_type);
13437d4b
KB
921}
922
de18c1d8
JM
923/* On Solaris systems with some versions of the dynamic linker,
924 ld.so's l_name pointer points to the SONAME in the string table
925 rather than into writable memory. So that GDB can find shared
926 libraries when loading a core file generated by gcore, ensure that
927 memory areas containing the l_name string are saved in the core
928 file. */
929
930static int
931svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
932{
933 struct svr4_info *info;
934 CORE_ADDR ldsomap;
74de0234 935 CORE_ADDR name_lm;
de18c1d8 936
d70cc3ba 937 info = get_svr4_info (current_program_space);
de18c1d8
JM
938
939 info->debug_base = 0;
940 locate_base (info);
941 if (!info->debug_base)
942 return 0;
943
944 ldsomap = solib_svr4_r_ldsomap (info);
945 if (!ldsomap)
946 return 0;
947
a7961323 948 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 949 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 950
74de0234 951 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
952}
953
bf469271 954/* See solist.h. */
13437d4b
KB
955
956static int
bf469271 957open_symbol_file_object (int from_tty)
13437d4b
KB
958{
959 CORE_ADDR lm, l_name;
e83e4e24 960 gdb::unique_xmalloc_ptr<char> filename;
13437d4b 961 int errcode;
4b188b9f 962 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 963 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 964 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 965 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 966 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
967 symfile_add_flags add_flags = 0;
968
969 if (from_tty)
970 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
971
972 if (symfile_objfile)
9e2f0ad4 973 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 974 return 0;
13437d4b 975
7cd25cfc 976 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
977 info->debug_base = 0;
978 if (locate_base (info) == 0)
a7961323 979 return 0; /* failed somehow... */
13437d4b
KB
980
981 /* First link map member should be the executable. */
1a816a87 982 lm = solib_svr4_r_map (info);
e4cd0d6a 983 if (lm == 0)
a7961323 984 return 0; /* failed somehow... */
13437d4b
KB
985
986 /* Read address of name from target memory to GDB. */
a7961323 987 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 988
cfaefc65 989 /* Convert the address to host format. */
a7961323 990 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 991
13437d4b 992 if (l_name == 0)
a7961323 993 return 0; /* No filename. */
13437d4b
KB
994
995 /* Now fetch the filename from target memory. */
996 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
997
998 if (errcode)
999 {
8a3fe4f8 1000 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1001 safe_strerror (errcode));
1002 return 0;
1003 }
1004
13437d4b 1005 /* Have a pathname: read the symbol file. */
e83e4e24 1006 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1007
1008 return 1;
1009}
13437d4b 1010
2268b414
JK
1011/* Data exchange structure for the XML parser as returned by
1012 svr4_current_sos_via_xfer_libraries. */
1013
1014struct svr4_library_list
1015{
1016 struct so_list *head, **tailp;
1017
1018 /* Inferior address of struct link_map used for the main executable. It is
1019 NULL if not known. */
1020 CORE_ADDR main_lm;
1021};
1022
7905fc35
PA
1023/* This module's 'free_objfile' observer. */
1024
1025static void
1026svr4_free_objfile_observer (struct objfile *objfile)
1027{
1028 probes_table_remove_objfile_probes (objfile);
1029}
1030
93f2a35e
JK
1031/* Implementation for target_so_ops.free_so. */
1032
1033static void
1034svr4_free_so (struct so_list *so)
1035{
76e75227
SM
1036 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1037
1038 delete li;
93f2a35e
JK
1039}
1040
0892cb63
DE
1041/* Implement target_so_ops.clear_so. */
1042
1043static void
1044svr4_clear_so (struct so_list *so)
1045{
d0e449a1
SM
1046 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1047
1048 if (li != NULL)
1049 li->l_addr_p = 0;
0892cb63
DE
1050}
1051
93f2a35e
JK
1052/* Free so_list built so far (called via cleanup). */
1053
1054static void
1055svr4_free_library_list (void *p_list)
1056{
1057 struct so_list *list = *(struct so_list **) p_list;
1058
1059 while (list != NULL)
1060 {
1061 struct so_list *next = list->next;
1062
3756ef7e 1063 free_so (list);
93f2a35e
JK
1064 list = next;
1065 }
1066}
1067
f9e14852
GB
1068/* Copy library list. */
1069
1070static struct so_list *
1071svr4_copy_library_list (struct so_list *src)
1072{
1073 struct so_list *dst = NULL;
1074 struct so_list **link = &dst;
1075
1076 while (src != NULL)
1077 {
fe978cb0 1078 struct so_list *newobj;
f9e14852 1079
8d749320 1080 newobj = XNEW (struct so_list);
fe978cb0 1081 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1082
76e75227
SM
1083 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1084 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1085
fe978cb0
PA
1086 newobj->next = NULL;
1087 *link = newobj;
1088 link = &newobj->next;
f9e14852
GB
1089
1090 src = src->next;
1091 }
1092
1093 return dst;
1094}
1095
2268b414
JK
1096#ifdef HAVE_LIBEXPAT
1097
1098#include "xml-support.h"
1099
1100/* Handle the start of a <library> element. Note: new elements are added
1101 at the tail of the list, keeping the list in order. */
1102
1103static void
1104library_list_start_library (struct gdb_xml_parser *parser,
1105 const struct gdb_xml_element *element,
4d0fdd9b
SM
1106 void *user_data,
1107 std::vector<gdb_xml_value> &attributes)
2268b414 1108{
19ba03f4
SM
1109 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1110 const char *name
4d0fdd9b 1111 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1112 ULONGEST *lmp
4d0fdd9b 1113 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1114 ULONGEST *l_addrp
4d0fdd9b 1115 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1116 ULONGEST *l_ldp
4d0fdd9b 1117 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1118 struct so_list *new_elem;
1119
41bf6aca 1120 new_elem = XCNEW (struct so_list);
76e75227 1121 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1122 new_elem->lm_info = li;
1123 li->lm_addr = *lmp;
1124 li->l_addr_inferior = *l_addrp;
1125 li->l_ld = *l_ldp;
2268b414
JK
1126
1127 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1128 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1129 strcpy (new_elem->so_original_name, new_elem->so_name);
1130
1131 *list->tailp = new_elem;
1132 list->tailp = &new_elem->next;
1133}
1134
1135/* Handle the start of a <library-list-svr4> element. */
1136
1137static void
1138svr4_library_list_start_list (struct gdb_xml_parser *parser,
1139 const struct gdb_xml_element *element,
4d0fdd9b
SM
1140 void *user_data,
1141 std::vector<gdb_xml_value> &attributes)
2268b414 1142{
19ba03f4
SM
1143 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1144 const char *version
4d0fdd9b 1145 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1146 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1147
1148 if (strcmp (version, "1.0") != 0)
1149 gdb_xml_error (parser,
1150 _("SVR4 Library list has unsupported version \"%s\""),
1151 version);
1152
1153 if (main_lm)
4d0fdd9b 1154 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1155}
1156
1157/* The allowed elements and attributes for an XML library list.
1158 The root element is a <library-list>. */
1159
1160static const struct gdb_xml_attribute svr4_library_attributes[] =
1161{
1162 { "name", GDB_XML_AF_NONE, NULL, NULL },
1163 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1166 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1167};
1168
1169static const struct gdb_xml_element svr4_library_list_children[] =
1170{
1171 {
1172 "library", svr4_library_attributes, NULL,
1173 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1174 library_list_start_library, NULL
1175 },
1176 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1177};
1178
1179static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1180{
1181 { "version", GDB_XML_AF_NONE, NULL, NULL },
1182 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1183 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1184};
1185
1186static const struct gdb_xml_element svr4_library_list_elements[] =
1187{
1188 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1189 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1190 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1191};
1192
2268b414
JK
1193/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1194
1195 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1196 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1197 empty, caller is responsible for freeing all its entries. */
1198
1199static int
1200svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1201{
2b6ff1c0
TT
1202 auto cleanup = make_scope_exit ([&] ()
1203 {
1204 svr4_free_library_list (&list->head);
1205 });
2268b414
JK
1206
1207 memset (list, 0, sizeof (*list));
1208 list->tailp = &list->head;
2eca4a8d 1209 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1210 svr4_library_list_elements, document, list) == 0)
1211 {
1212 /* Parsed successfully, keep the result. */
2b6ff1c0 1213 cleanup.release ();
2268b414
JK
1214 return 1;
1215 }
1216
2268b414
JK
1217 return 0;
1218}
1219
f9e14852 1220/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1221
1222 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1223 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1224 empty, caller is responsible for freeing all its entries.
1225
1226 Note that ANNEX must be NULL if the remote does not explicitly allow
1227 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1228 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1229
1230static int
f9e14852
GB
1231svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1232 const char *annex)
2268b414 1233{
f9e14852
GB
1234 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1235
2268b414 1236 /* Fetch the list of shared libraries. */
9018be22 1237 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1238 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1239 annex);
9018be22 1240 if (!svr4_library_document)
2268b414
JK
1241 return 0;
1242
9018be22 1243 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1244}
1245
1246#else
1247
1248static int
f9e14852
GB
1249svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1250 const char *annex)
2268b414
JK
1251{
1252 return 0;
1253}
1254
1255#endif
1256
34439770
DJ
1257/* If no shared library information is available from the dynamic
1258 linker, build a fallback list from other sources. */
1259
1260static struct so_list *
d70cc3ba 1261svr4_default_sos (svr4_info *info)
34439770 1262{
fe978cb0 1263 struct so_list *newobj;
1a816a87 1264
8e5c319d
JK
1265 if (!info->debug_loader_offset_p)
1266 return NULL;
34439770 1267
fe978cb0 1268 newobj = XCNEW (struct so_list);
76e75227 1269 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1270 newobj->lm_info = li;
34439770 1271
3957565a 1272 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1273 li->l_addr = info->debug_loader_offset;
1274 li->l_addr_p = 1;
34439770 1275
fe978cb0
PA
1276 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1277 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1278 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1279
fe978cb0 1280 return newobj;
34439770
DJ
1281}
1282
f9e14852
GB
1283/* Read the whole inferior libraries chain starting at address LM.
1284 Expect the first entry in the chain's previous entry to be PREV_LM.
1285 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1286 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1287 to it. Returns nonzero upon success. If zero is returned the
1288 entries stored to LINK_PTR_PTR are still valid although they may
1289 represent only part of the inferior library list. */
13437d4b 1290
f9e14852 1291static int
d70cc3ba 1292svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1293 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1294{
c725e7b6 1295 CORE_ADDR first_l_name = 0;
f9e14852 1296 CORE_ADDR next_lm;
13437d4b 1297
cb08cc53 1298 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1299 {
cb08cc53 1300 int errcode;
e83e4e24 1301 gdb::unique_xmalloc_ptr<char> buffer;
13437d4b 1302
b3bc8453 1303 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1304
a7961323 1305 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1306 newobj->lm_info = li;
1307 if (li == NULL)
b3bc8453 1308 return 0;
13437d4b 1309
d0e449a1 1310 next_lm = li->l_next;
492928e4 1311
d0e449a1 1312 if (li->l_prev != prev_lm)
492928e4 1313 {
2268b414 1314 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1315 paddress (target_gdbarch (), prev_lm),
d0e449a1 1316 paddress (target_gdbarch (), li->l_prev));
f9e14852 1317 return 0;
492928e4 1318 }
13437d4b
KB
1319
1320 /* For SVR4 versions, the first entry in the link map is for the
1321 inferior executable, so we must ignore it. For some versions of
1322 SVR4, it has no name. For others (Solaris 2.3 for example), it
1323 does have a name, so we can no longer use a missing name to
c378eb4e 1324 decide when to ignore it. */
d0e449a1 1325 if (ignore_first && li->l_prev == 0)
93a57060 1326 {
d0e449a1
SM
1327 first_l_name = li->l_name;
1328 info->main_lm_addr = li->lm_addr;
cb08cc53 1329 continue;
93a57060 1330 }
13437d4b 1331
cb08cc53 1332 /* Extract this shared object's name. */
d0e449a1
SM
1333 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1334 &errcode);
cb08cc53
JK
1335 if (errcode != 0)
1336 {
7d760051
UW
1337 /* If this entry's l_name address matches that of the
1338 inferior executable, then this is not a normal shared
1339 object, but (most likely) a vDSO. In this case, silently
1340 skip it; otherwise emit a warning. */
d0e449a1 1341 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1342 warning (_("Can't read pathname for load map: %s."),
1343 safe_strerror (errcode));
cb08cc53 1344 continue;
13437d4b
KB
1345 }
1346
e83e4e24 1347 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1348 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1349 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1350
cb08cc53
JK
1351 /* If this entry has no name, or its name matches the name
1352 for the main executable, don't include it in the list. */
fe978cb0 1353 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1354 continue;
e4cd0d6a 1355
fe978cb0 1356 newobj->next = 0;
b3bc8453
TT
1357 /* Don't free it now. */
1358 **link_ptr_ptr = newobj.release ();
1359 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1360 }
f9e14852
GB
1361
1362 return 1;
cb08cc53
JK
1363}
1364
f9e14852
GB
1365/* Read the full list of currently loaded shared objects directly
1366 from the inferior, without referring to any libraries read and
1367 stored by the probes interface. Handle special cases relating
1368 to the first elements of the list. */
cb08cc53
JK
1369
1370static struct so_list *
f9e14852 1371svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1372{
1373 CORE_ADDR lm;
1374 struct so_list *head = NULL;
1375 struct so_list **link_ptr = &head;
cb08cc53 1376 int ignore_first;
2268b414
JK
1377 struct svr4_library_list library_list;
1378
0c5bf5a9
JK
1379 /* Fall back to manual examination of the target if the packet is not
1380 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1381 tests a case where gdbserver cannot find the shared libraries list while
1382 GDB itself is able to find it via SYMFILE_OBJFILE.
1383
1384 Unfortunately statically linked inferiors will also fall back through this
1385 suboptimal code path. */
1386
f9e14852
GB
1387 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1388 NULL);
1389 if (info->using_xfer)
2268b414
JK
1390 {
1391 if (library_list.main_lm)
f9e14852 1392 info->main_lm_addr = library_list.main_lm;
2268b414 1393
d70cc3ba 1394 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1395 }
cb08cc53 1396
cb08cc53
JK
1397 /* Always locate the debug struct, in case it has moved. */
1398 info->debug_base = 0;
1399 locate_base (info);
1400
1401 /* If we can't find the dynamic linker's base structure, this
1402 must not be a dynamically linked executable. Hmm. */
1403 if (! info->debug_base)
d70cc3ba 1404 return svr4_default_sos (info);
cb08cc53
JK
1405
1406 /* Assume that everything is a library if the dynamic loader was loaded
1407 late by a static executable. */
1408 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1409 ignore_first = 0;
1410 else
1411 ignore_first = 1;
1412
2b6ff1c0
TT
1413 auto cleanup = make_scope_exit ([&] ()
1414 {
1415 svr4_free_library_list (&head);
1416 });
cb08cc53
JK
1417
1418 /* Walk the inferior's link map list, and build our list of
1419 `struct so_list' nodes. */
1420 lm = solib_svr4_r_map (info);
1421 if (lm)
d70cc3ba 1422 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1423
1424 /* On Solaris, the dynamic linker is not in the normal list of
1425 shared objects, so make sure we pick it up too. Having
1426 symbol information for the dynamic linker is quite crucial
1427 for skipping dynamic linker resolver code. */
1428 lm = solib_svr4_r_ldsomap (info);
1429 if (lm)
d70cc3ba 1430 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1431
2b6ff1c0 1432 cleanup.release ();
13437d4b 1433
34439770 1434 if (head == NULL)
d70cc3ba 1435 return svr4_default_sos (info);
34439770 1436
13437d4b
KB
1437 return head;
1438}
1439
8b9a549d
PA
1440/* Implement the main part of the "current_sos" target_so_ops
1441 method. */
f9e14852
GB
1442
1443static struct so_list *
d70cc3ba 1444svr4_current_sos_1 (svr4_info *info)
f9e14852 1445{
f9e14852
GB
1446 /* If the solib list has been read and stored by the probes
1447 interface then we return a copy of the stored list. */
1448 if (info->solib_list != NULL)
1449 return svr4_copy_library_list (info->solib_list);
1450
1451 /* Otherwise obtain the solib list directly from the inferior. */
1452 return svr4_current_sos_direct (info);
1453}
1454
8b9a549d
PA
1455/* Implement the "current_sos" target_so_ops method. */
1456
1457static struct so_list *
1458svr4_current_sos (void)
1459{
d70cc3ba
SM
1460 svr4_info *info = get_svr4_info (current_program_space);
1461 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1462 struct mem_range vsyscall_range;
1463
1464 /* Filter out the vDSO module, if present. Its symbol file would
1465 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1466 managed by symfile-mem.c:add_vsyscall_page. */
1467 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1468 && vsyscall_range.length != 0)
1469 {
1470 struct so_list **sop;
1471
1472 sop = &so_head;
1473 while (*sop != NULL)
1474 {
1475 struct so_list *so = *sop;
1476
1477 /* We can't simply match the vDSO by starting address alone,
1478 because lm_info->l_addr_inferior (and also l_addr) do not
1479 necessarily represent the real starting address of the
1480 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1481 field (the ".dynamic" section of the shared object)
1482 always points at the absolute/resolved address though.
1483 So check whether that address is inside the vDSO's
1484 mapping instead.
1485
1486 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1487 0-based ELF, and we see:
1488
1489 (gdb) info auxv
1490 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1491 (gdb) p/x *_r_debug.r_map.l_next
1492 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1493
1494 And on Linux 2.6.32 (x86_64) we see:
1495
1496 (gdb) info auxv
1497 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1498 (gdb) p/x *_r_debug.r_map.l_next
1499 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1500
1501 Dumping that vDSO shows:
1502
1503 (gdb) info proc mappings
1504 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1505 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1506 # readelf -Wa vdso.bin
1507 [...]
1508 Entry point address: 0xffffffffff700700
1509 [...]
1510 Section Headers:
1511 [Nr] Name Type Address Off Size
1512 [ 0] NULL 0000000000000000 000000 000000
1513 [ 1] .hash HASH ffffffffff700120 000120 000038
1514 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1515 [...]
1516 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1517 */
d0e449a1
SM
1518
1519 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1520
1521 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1522 {
1523 *sop = so->next;
1524 free_so (so);
1525 break;
1526 }
1527
1528 sop = &so->next;
1529 }
1530 }
1531
1532 return so_head;
1533}
1534
93a57060 1535/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1536
1537CORE_ADDR
1538svr4_fetch_objfile_link_map (struct objfile *objfile)
1539{
d70cc3ba 1540 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1541
93a57060 1542 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1543 if (info->main_lm_addr == 0)
e696b3ad 1544 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1545
93a57060
DJ
1546 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1547 if (objfile == symfile_objfile)
1a816a87 1548 return info->main_lm_addr;
93a57060 1549
df22c1e5
JB
1550 /* If OBJFILE is a separate debug object file, look for the
1551 original object file. */
1552 if (objfile->separate_debug_objfile_backlink != NULL)
1553 objfile = objfile->separate_debug_objfile_backlink;
1554
93a57060
DJ
1555 /* The other link map addresses may be found by examining the list
1556 of shared libraries. */
a1fd1ac9 1557 for (struct so_list *so : current_program_space->solibs ())
93a57060 1558 if (so->objfile == objfile)
d0e449a1
SM
1559 {
1560 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1561
1562 return li->lm_addr;
1563 }
93a57060
DJ
1564
1565 /* Not found! */
bc4a16ae
EZ
1566 return 0;
1567}
13437d4b
KB
1568
1569/* On some systems, the only way to recognize the link map entry for
1570 the main executable file is by looking at its name. Return
1571 non-zero iff SONAME matches one of the known main executable names. */
1572
1573static int
bc043ef3 1574match_main (const char *soname)
13437d4b 1575{
bc043ef3 1576 const char * const *mainp;
13437d4b
KB
1577
1578 for (mainp = main_name_list; *mainp != NULL; mainp++)
1579 {
1580 if (strcmp (soname, *mainp) == 0)
1581 return (1);
1582 }
1583
1584 return (0);
1585}
1586
13437d4b
KB
1587/* Return 1 if PC lies in the dynamic symbol resolution code of the
1588 SVR4 run time loader. */
13437d4b 1589
7d522c90 1590int
d7fa2ae2 1591svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1592{
d70cc3ba 1593 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1594
1595 return ((pc >= info->interp_text_sect_low
1596 && pc < info->interp_text_sect_high)
1597 || (pc >= info->interp_plt_sect_low
1598 && pc < info->interp_plt_sect_high)
3e5d3a5a 1599 || in_plt_section (pc)
0875794a 1600 || in_gnu_ifunc_stub (pc));
13437d4b 1601}
13437d4b 1602
2f4950cd
AC
1603/* Given an executable's ABFD and target, compute the entry-point
1604 address. */
1605
1606static CORE_ADDR
1607exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1608{
8c2b9656
YQ
1609 CORE_ADDR addr;
1610
2f4950cd
AC
1611 /* KevinB wrote ... for most targets, the address returned by
1612 bfd_get_start_address() is the entry point for the start
1613 function. But, for some targets, bfd_get_start_address() returns
1614 the address of a function descriptor from which the entry point
1615 address may be extracted. This address is extracted by
1616 gdbarch_convert_from_func_ptr_addr(). The method
1617 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1618 function for targets which don't use function descriptors. */
8c2b9656 1619 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1620 bfd_get_start_address (abfd),
1621 targ);
8c2b9656 1622 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1623}
13437d4b 1624
f9e14852
GB
1625/* A probe and its associated action. */
1626
1627struct probe_and_action
1628{
1629 /* The probe. */
935676c9 1630 probe *prob;
f9e14852 1631
729662a5
TT
1632 /* The relocated address of the probe. */
1633 CORE_ADDR address;
1634
f9e14852
GB
1635 /* The action. */
1636 enum probe_action action;
7905fc35
PA
1637
1638 /* The objfile where this probe was found. */
1639 struct objfile *objfile;
f9e14852
GB
1640};
1641
1642/* Returns a hash code for the probe_and_action referenced by p. */
1643
1644static hashval_t
1645hash_probe_and_action (const void *p)
1646{
19ba03f4 1647 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1648
729662a5 1649 return (hashval_t) pa->address;
f9e14852
GB
1650}
1651
1652/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1653 are equal. */
1654
1655static int
1656equal_probe_and_action (const void *p1, const void *p2)
1657{
19ba03f4
SM
1658 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1659 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1660
729662a5 1661 return pa1->address == pa2->address;
f9e14852
GB
1662}
1663
7905fc35
PA
1664/* Traversal function for probes_table_remove_objfile_probes. */
1665
1666static int
1667probes_table_htab_remove_objfile_probes (void **slot, void *info)
1668{
1669 probe_and_action *pa = (probe_and_action *) *slot;
1670 struct objfile *objfile = (struct objfile *) info;
1671
1672 if (pa->objfile == objfile)
09232438
TT
1673 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1674 slot);
7905fc35
PA
1675
1676 return 1;
1677}
1678
1679/* Remove all probes that belong to OBJFILE from the probes table. */
1680
1681static void
1682probes_table_remove_objfile_probes (struct objfile *objfile)
1683{
d70cc3ba 1684 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1685 if (info->probes_table != nullptr)
09232438 1686 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1687 probes_table_htab_remove_objfile_probes, objfile);
1688}
1689
f9e14852
GB
1690/* Register a solib event probe and its associated action in the
1691 probes table. */
1692
1693static void
d70cc3ba 1694register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1695 probe *prob, CORE_ADDR address,
729662a5 1696 enum probe_action action)
f9e14852 1697{
f9e14852
GB
1698 struct probe_and_action lookup, *pa;
1699 void **slot;
1700
1701 /* Create the probes table, if necessary. */
1702 if (info->probes_table == NULL)
09232438
TT
1703 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1704 equal_probe_and_action,
1705 xfree, xcalloc, xfree));
f9e14852 1706
729662a5 1707 lookup.address = address;
09232438 1708 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1709 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1710
1711 pa = XCNEW (struct probe_and_action);
935676c9 1712 pa->prob = prob;
729662a5 1713 pa->address = address;
f9e14852 1714 pa->action = action;
7905fc35 1715 pa->objfile = objfile;
f9e14852
GB
1716
1717 *slot = pa;
1718}
1719
1720/* Get the solib event probe at the specified location, and the
1721 action associated with it. Returns NULL if no solib event probe
1722 was found. */
1723
1724static struct probe_and_action *
1725solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1726{
f9e14852
GB
1727 struct probe_and_action lookup;
1728 void **slot;
1729
729662a5 1730 lookup.address = address;
09232438 1731 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1732
1733 if (slot == NULL)
1734 return NULL;
1735
1736 return (struct probe_and_action *) *slot;
1737}
1738
1739/* Decide what action to take when the specified solib event probe is
1740 hit. */
1741
1742static enum probe_action
1743solib_event_probe_action (struct probe_and_action *pa)
1744{
1745 enum probe_action action;
73c6b475 1746 unsigned probe_argc = 0;
08a6411c 1747 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1748
1749 action = pa->action;
1750 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1751 return action;
1752
1753 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1754
1755 /* Check that an appropriate number of arguments has been supplied.
1756 We expect:
1757 arg0: Lmid_t lmid (mandatory)
1758 arg1: struct r_debug *debug_base (mandatory)
1759 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1760 try
3bd7e5b7 1761 {
fe01123e 1762 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
3bd7e5b7 1763 }
230d2906 1764 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1765 {
1766 exception_print (gdb_stderr, ex);
1767 probe_argc = 0;
1768 }
3bd7e5b7 1769
935676c9
SDJ
1770 /* If get_argument_count throws an exception, probe_argc will be set
1771 to zero. However, if pa->prob does not have arguments, then
1772 get_argument_count will succeed but probe_argc will also be zero.
1773 Both cases happen because of different things, but they are
1774 treated equally here: action will be set to
3bd7e5b7 1775 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1776 if (probe_argc == 2)
1777 action = FULL_RELOAD;
1778 else if (probe_argc < 2)
1779 action = PROBES_INTERFACE_FAILED;
1780
1781 return action;
1782}
1783
1784/* Populate the shared object list by reading the entire list of
1785 shared objects from the inferior. Handle special cases relating
1786 to the first elements of the list. Returns nonzero on success. */
1787
1788static int
1789solist_update_full (struct svr4_info *info)
1790{
1791 free_solib_list (info);
1792 info->solib_list = svr4_current_sos_direct (info);
1793
1794 return 1;
1795}
1796
1797/* Update the shared object list starting from the link-map entry
1798 passed by the linker in the probe's third argument. Returns
1799 nonzero if the list was successfully updated, or zero to indicate
1800 failure. */
1801
1802static int
1803solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1804{
1805 struct so_list *tail;
1806 CORE_ADDR prev_lm;
1807
1808 /* svr4_current_sos_direct contains logic to handle a number of
1809 special cases relating to the first elements of the list. To
1810 avoid duplicating this logic we defer to solist_update_full
1811 if the list is empty. */
1812 if (info->solib_list == NULL)
1813 return 0;
1814
1815 /* Fall back to a full update if we are using a remote target
1816 that does not support incremental transfers. */
1817 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1818 return 0;
1819
1820 /* Walk to the end of the list. */
1821 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1822 /* Nothing. */;
d0e449a1
SM
1823
1824 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1825 prev_lm = li->lm_addr;
f9e14852
GB
1826
1827 /* Read the new objects. */
1828 if (info->using_xfer)
1829 {
1830 struct svr4_library_list library_list;
1831 char annex[64];
1832
1833 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1834 phex_nz (lm, sizeof (lm)),
1835 phex_nz (prev_lm, sizeof (prev_lm)));
1836 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1837 return 0;
1838
1839 tail->next = library_list.head;
1840 }
1841 else
1842 {
1843 struct so_list **link = &tail->next;
1844
1845 /* IGNORE_FIRST may safely be set to zero here because the
1846 above check and deferral to solist_update_full ensures
1847 that this call to svr4_read_so_list will never see the
1848 first element. */
d70cc3ba 1849 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1850 return 0;
1851 }
1852
1853 return 1;
1854}
1855
1856/* Disable the probes-based linker interface and revert to the
1857 original interface. We don't reset the breakpoints as the
1858 ones set up for the probes-based interface are adequate. */
1859
1860static void
d70cc3ba 1861disable_probes_interface (svr4_info *info)
f9e14852 1862{
f9e14852 1863 warning (_("Probes-based dynamic linker interface failed.\n"
422186a9 1864 "Reverting to original interface."));
f9e14852
GB
1865
1866 free_probes_table (info);
1867 free_solib_list (info);
1868}
1869
1870/* Update the solib list as appropriate when using the
1871 probes-based linker interface. Do nothing if using the
1872 standard interface. */
1873
1874static void
1875svr4_handle_solib_event (void)
1876{
d70cc3ba 1877 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1878 struct probe_and_action *pa;
1879 enum probe_action action;
ad1c917a 1880 struct value *val = NULL;
f9e14852 1881 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1882 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1883
1884 /* Do nothing if not using the probes interface. */
1885 if (info->probes_table == NULL)
1886 return;
1887
1888 /* If anything goes wrong we revert to the original linker
1889 interface. */
d70cc3ba
SM
1890 auto cleanup = make_scope_exit ([info] ()
1891 {
1892 disable_probes_interface (info);
1893 });
f9e14852
GB
1894
1895 pc = regcache_read_pc (get_current_regcache ());
1896 pa = solib_event_probe_at (info, pc);
1897 if (pa == NULL)
d01c5877 1898 return;
f9e14852
GB
1899
1900 action = solib_event_probe_action (pa);
1901 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1902 return;
f9e14852
GB
1903
1904 if (action == DO_NOTHING)
1905 {
d01c5877 1906 cleanup.release ();
f9e14852
GB
1907 return;
1908 }
1909
935676c9 1910 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1911 using find_pc_section. find_pc_section is accelerated by a cache
1912 called the section map. The section map is invalidated every
1913 time a shared library is loaded or unloaded, and if the inferior
1914 is generating a lot of shared library events then the section map
1915 will be updated every time svr4_handle_solib_event is called.
1916 We called find_pc_section in svr4_create_solib_event_breakpoints,
1917 so we can guarantee that the dynamic linker's sections are in the
1918 section map. We can therefore inhibit section map updates across
935676c9 1919 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1920 {
1921 scoped_restore inhibit_updates
1922 = inhibit_section_map_updates (current_program_space);
f9e14852 1923
a70b8144 1924 try
06424eac
TT
1925 {
1926 val = pa->prob->evaluate_argument (1, frame);
1927 }
230d2906 1928 catch (const gdb_exception_error &ex)
06424eac
TT
1929 {
1930 exception_print (gdb_stderr, ex);
1931 val = NULL;
1932 }
f9e14852 1933
06424eac 1934 if (val == NULL)
d01c5877 1935 return;
f9e14852 1936
06424eac
TT
1937 debug_base = value_as_address (val);
1938 if (debug_base == 0)
d01c5877 1939 return;
f9e14852 1940
06424eac
TT
1941 /* Always locate the debug struct, in case it moved. */
1942 info->debug_base = 0;
1943 if (locate_base (info) == 0)
cb736441
GB
1944 {
1945 /* It's possible for the reloc_complete probe to be triggered before
1946 the linker has set the DT_DEBUG pointer (for example, when the
1947 linker has finished relocating an LD_AUDIT library or its
1948 dependencies). Since we can't yet handle libraries from other link
1949 namespaces, we don't lose anything by ignoring them here. */
1950 struct value *link_map_id_val;
1951 try
1952 {
1953 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1954 }
1955 catch (const gdb_exception_error)
1956 {
1957 link_map_id_val = NULL;
1958 }
1959 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1960 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1961 action = DO_NOTHING;
1962 else
1963 return;
1964 }
3bd7e5b7 1965
06424eac
TT
1966 /* GDB does not currently support libraries loaded via dlmopen
1967 into namespaces other than the initial one. We must ignore
1968 any namespace other than the initial namespace here until
1969 support for this is added to GDB. */
1970 if (debug_base != info->debug_base)
1971 action = DO_NOTHING;
f9e14852 1972
06424eac
TT
1973 if (action == UPDATE_OR_RELOAD)
1974 {
a70b8144 1975 try
06424eac
TT
1976 {
1977 val = pa->prob->evaluate_argument (2, frame);
1978 }
230d2906 1979 catch (const gdb_exception_error &ex)
06424eac
TT
1980 {
1981 exception_print (gdb_stderr, ex);
06424eac
TT
1982 return;
1983 }
06424eac
TT
1984
1985 if (val != NULL)
1986 lm = value_as_address (val);
1987
1988 if (lm == 0)
1989 action = FULL_RELOAD;
1990 }
f9e14852 1991
06424eac
TT
1992 /* Resume section map updates. Closing the scope is
1993 sufficient. */
1994 }
f9e14852
GB
1995
1996 if (action == UPDATE_OR_RELOAD)
1997 {
1998 if (!solist_update_incremental (info, lm))
1999 action = FULL_RELOAD;
2000 }
2001
2002 if (action == FULL_RELOAD)
2003 {
2004 if (!solist_update_full (info))
d01c5877 2005 return;
f9e14852
GB
2006 }
2007
d01c5877 2008 cleanup.release ();
f9e14852
GB
2009}
2010
2011/* Helper function for svr4_update_solib_event_breakpoints. */
2012
95da600f
CB
2013static bool
2014svr4_update_solib_event_breakpoint (struct breakpoint *b)
f9e14852
GB
2015{
2016 struct bp_location *loc;
2017
2018 if (b->type != bp_shlib_event)
2019 {
2020 /* Continue iterating. */
95da600f 2021 return false;
f9e14852
GB
2022 }
2023
2024 for (loc = b->loc; loc != NULL; loc = loc->next)
2025 {
2026 struct svr4_info *info;
2027 struct probe_and_action *pa;
2028
09232438 2029 info = solib_svr4_pspace_data.get (loc->pspace);
f9e14852
GB
2030 if (info == NULL || info->probes_table == NULL)
2031 continue;
2032
2033 pa = solib_event_probe_at (info, loc->address);
2034 if (pa == NULL)
2035 continue;
2036
2037 if (pa->action == DO_NOTHING)
2038 {
2039 if (b->enable_state == bp_disabled && stop_on_solib_events)
2040 enable_breakpoint (b);
2041 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2042 disable_breakpoint (b);
2043 }
2044
2045 break;
2046 }
2047
2048 /* Continue iterating. */
95da600f 2049 return false;
f9e14852
GB
2050}
2051
2052/* Enable or disable optional solib event breakpoints as appropriate.
2053 Called whenever stop_on_solib_events is changed. */
2054
2055static void
2056svr4_update_solib_event_breakpoints (void)
2057{
95da600f 2058 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
f9e14852
GB
2059}
2060
2061/* Create and register solib event breakpoints. PROBES is an array
2062 of NUM_PROBES elements, each of which is vector of probes. A
2063 solib event breakpoint will be created and registered for each
2064 probe. */
2065
2066static void
d70cc3ba 2067svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2068 const std::vector<probe *> *probes,
729662a5 2069 struct objfile *objfile)
f9e14852 2070{
45461e0d 2071 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2072 {
2073 enum probe_action action = probe_info[i].action;
f9e14852 2074
45461e0d 2075 for (probe *p : probes[i])
f9e14852 2076 {
935676c9 2077 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2078
2079 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2080 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2081 }
2082 }
2083
2084 svr4_update_solib_event_breakpoints ();
2085}
2086
e661ef01
AH
2087/* Find all the glibc named probes. Only if all of the probes are found, then
2088 create them and return true. Otherwise return false. If WITH_PREFIX is set
2089 then add "rtld" to the front of the probe names. */
2090static bool
2091svr4_find_and_create_probe_breakpoints (svr4_info *info,
2092 struct gdbarch *gdbarch,
2093 struct obj_section *os,
2094 bool with_prefix)
2095{
2096 std::vector<probe *> probes[NUM_PROBES];
e661ef01
AH
2097
2098 for (int i = 0; i < NUM_PROBES; i++)
2099 {
2100 const char *name = probe_info[i].name;
2101 char buf[32];
2102
2103 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2104 version of the probes code in which the probes' names were prefixed
2105 with "rtld_" and the "map_failed" probe did not exist. The locations
2106 of the probes are otherwise the same, so we check for probes with
2107 prefixed names if probes with unprefixed names are not present. */
2108 if (with_prefix)
2109 {
2110 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2111 name = buf;
2112 }
2113
2114 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2115
2116 /* The "map_failed" probe did not exist in early
2117 versions of the probes code in which the probes'
2118 names were prefixed with "rtld_". */
2119 if (with_prefix && streq (name, "rtld_map_failed"))
2120 continue;
2121
2122 /* Ensure at least one probe for the current name was found. */
2123 if (probes[i].empty ())
2124 return false;
2125
2126 /* Ensure probe arguments can be evaluated. */
d90b8f26 2127 for (probe *p : probes[i])
e661ef01 2128 {
e661ef01
AH
2129 if (!p->can_evaluate_arguments ())
2130 return false;
d90b8f26
AH
2131 /* This will fail if the probe is invalid. This has been seen on Arm
2132 due to references to symbols that have been resolved away. */
2133 try
2134 {
2135 p->get_argument_count (gdbarch);
2136 }
2137 catch (const gdb_exception_error &ex)
2138 {
2139 exception_print (gdb_stderr, ex);
2140 warning (_("Initializing probes-based dynamic linker interface "
2141 "failed.\nReverting to original interface."));
2142 return false;
2143 }
e661ef01
AH
2144 }
2145 }
2146
2147 /* All probes found. Now create them. */
2148 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2149 return true;
2150}
2151
f9e14852
GB
2152/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2153 before and after mapping and unmapping shared libraries. The sole
2154 purpose of this method is to allow debuggers to set a breakpoint so
2155 they can track these changes.
2156
2157 Some versions of the glibc dynamic linker contain named probes
2158 to allow more fine grained stopping. Given the address of the
2159 original marker function, this function attempts to find these
2160 probes, and if found, sets breakpoints on those instead. If the
2161 probes aren't found, a single breakpoint is set on the original
2162 marker function. */
2163
2164static void
d70cc3ba 2165svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2166 CORE_ADDR address)
2167{
e661ef01 2168 struct obj_section *os = find_pc_section (address);
f9e14852 2169
e661ef01
AH
2170 if (os == nullptr
2171 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2172 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2173 create_solib_event_breakpoint (gdbarch, address);
f9e14852
GB
2174}
2175
cb457ae2
YQ
2176/* Helper function for gdb_bfd_lookup_symbol. */
2177
2178static int
3953f15c 2179cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2180{
2181 return (strcmp (sym->name, (const char *) data) == 0
2182 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2183}
7f86f058 2184/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2185
2186 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2187 debugger interface, support for arranging for the inferior to hit
2188 a breakpoint after mapping in the shared libraries. This function
2189 enables that breakpoint.
2190
2191 For SunOS, there is a special flag location (in_debugger) which we
2192 set to 1. When the dynamic linker sees this flag set, it will set
2193 a breakpoint at a location known only to itself, after saving the
2194 original contents of that place and the breakpoint address itself,
2195 in it's own internal structures. When we resume the inferior, it
2196 will eventually take a SIGTRAP when it runs into the breakpoint.
2197 We handle this (in a different place) by restoring the contents of
2198 the breakpointed location (which is only known after it stops),
2199 chasing around to locate the shared libraries that have been
2200 loaded, then resuming.
2201
2202 For SVR4, the debugger interface structure contains a member (r_brk)
2203 which is statically initialized at the time the shared library is
2204 built, to the offset of a function (_r_debug_state) which is guaran-
2205 teed to be called once before mapping in a library, and again when
2206 the mapping is complete. At the time we are examining this member,
2207 it contains only the unrelocated offset of the function, so we have
2208 to do our own relocation. Later, when the dynamic linker actually
2209 runs, it relocates r_brk to be the actual address of _r_debug_state().
2210
2211 The debugger interface structure also contains an enumeration which
2212 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2213 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2214 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2215
2216static int
268a4a75 2217enable_break (struct svr4_info *info, int from_tty)
13437d4b 2218{
3b7344d5 2219 struct bound_minimal_symbol msymbol;
bc043ef3 2220 const char * const *bkpt_namep;
13437d4b 2221 asection *interp_sect;
7cd25cfc 2222 CORE_ADDR sym_addr;
13437d4b 2223
6c95b8df
PA
2224 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2225 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2226
7cd25cfc
DJ
2227 /* If we already have a shared library list in the target, and
2228 r_debug contains r_brk, set the breakpoint there - this should
2229 mean r_brk has already been relocated. Assume the dynamic linker
2230 is the object containing r_brk. */
2231
e696b3ad 2232 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2233 sym_addr = 0;
1a816a87
PA
2234 if (info->debug_base && solib_svr4_r_map (info) != 0)
2235 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2236
2237 if (sym_addr != 0)
2238 {
2239 struct obj_section *os;
2240
b36ec657 2241 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2242 (target_gdbarch (),
2243 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2244 sym_addr,
2245 current_top_target ()));
b36ec657 2246
48379de6
DE
2247 /* On at least some versions of Solaris there's a dynamic relocation
2248 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2249 we get control before the dynamic linker has self-relocated.
2250 Check if SYM_ADDR is in a known section, if it is assume we can
2251 trust its value. This is just a heuristic though, it could go away
2252 or be replaced if it's getting in the way.
2253
2254 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2255 however it's spelled in your particular system) is ARM or Thumb.
2256 That knowledge is encoded in the address, if it's Thumb the low bit
2257 is 1. However, we've stripped that info above and it's not clear
2258 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2259 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2260 find_pc_section verifies we know about the address and have some
2261 hope of computing the right kind of breakpoint to use (via
2262 symbol info). It does mean that GDB needs to be pointed at a
2263 non-stripped version of the dynamic linker in order to obtain
2264 information it already knows about. Sigh. */
2265
7cd25cfc
DJ
2266 os = find_pc_section (sym_addr);
2267 if (os != NULL)
2268 {
2269 /* Record the relocated start and end address of the dynamic linker
2270 text and plt section for svr4_in_dynsym_resolve_code. */
2271 bfd *tmp_bfd;
2272 CORE_ADDR load_addr;
2273
2274 tmp_bfd = os->objfile->obfd;
b3b3bada 2275 load_addr = os->objfile->text_section_offset ();
7cd25cfc
DJ
2276
2277 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2278 if (interp_sect)
2279 {
fd361982
AM
2280 info->interp_text_sect_low
2281 = bfd_section_vma (interp_sect) + load_addr;
2282 info->interp_text_sect_high
2283 = info->interp_text_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2284 }
2285 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2286 if (interp_sect)
2287 {
fd361982
AM
2288 info->interp_plt_sect_low
2289 = bfd_section_vma (interp_sect) + load_addr;
2290 info->interp_plt_sect_high
2291 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2292 }
2293
d70cc3ba 2294 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2295 return 1;
2296 }
2297 }
2298
97ec2c2f 2299 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2300 into the old breakpoint at symbol code. */
17658d46
SM
2301 gdb::optional<gdb::byte_vector> interp_name_holder
2302 = find_program_interpreter ();
2303 if (interp_name_holder)
13437d4b 2304 {
17658d46 2305 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2306 CORE_ADDR load_addr = 0;
2307 int load_addr_found = 0;
2ec9a4f8 2308 int loader_found_in_list = 0;
2f4950cd 2309 struct target_ops *tmp_bfd_target;
13437d4b 2310
7cd25cfc 2311 sym_addr = 0;
13437d4b
KB
2312
2313 /* Now we need to figure out where the dynamic linker was
2314 loaded so that we can load its symbols and place a breakpoint
2315 in the dynamic linker itself.
2316
2317 This address is stored on the stack. However, I've been unable
2318 to find any magic formula to find it for Solaris (appears to
2319 be trivial on GNU/Linux). Therefore, we have to try an alternate
2320 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2321
192b62ce 2322 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2323 try
f1838a98 2324 {
97ec2c2f 2325 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2326 }
230d2906 2327 catch (const gdb_exception &ex)
492d29ea
PA
2328 {
2329 }
492d29ea 2330
13437d4b
KB
2331 if (tmp_bfd == NULL)
2332 goto bkpt_at_symbol;
2333
2f4950cd 2334 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2335 well as BFD operations can be used. target_bfd_reopen
2336 acquires its own reference. */
2337 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2338
f8766ec1
KB
2339 /* On a running target, we can get the dynamic linker's base
2340 address from the shared library table. */
a1fd1ac9 2341 for (struct so_list *so : current_program_space->solibs ())
8ad2fcde 2342 {
97ec2c2f 2343 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2344 {
2345 load_addr_found = 1;
2ec9a4f8 2346 loader_found_in_list = 1;
192b62ce 2347 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2348 break;
2349 }
8ad2fcde
KB
2350 }
2351
8d4e36ba
JB
2352 /* If we were not able to find the base address of the loader
2353 from our so_list, then try using the AT_BASE auxilliary entry. */
2354 if (!load_addr_found)
8b88a78e 2355 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2356 {
f5656ead 2357 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2358
2359 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2360 that `+ load_addr' will overflow CORE_ADDR width not creating
2361 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2362 GDB. */
2363
d182d057 2364 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2365 {
d182d057 2366 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2367 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2368 tmp_bfd_target);
2369
2370 gdb_assert (load_addr < space_size);
2371
2372 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2373 64bit ld.so with 32bit executable, it should not happen. */
2374
2375 if (tmp_entry_point < space_size
2376 && tmp_entry_point + load_addr >= space_size)
2377 load_addr -= space_size;
2378 }
2379
2380 load_addr_found = 1;
2381 }
8d4e36ba 2382
8ad2fcde
KB
2383 /* Otherwise we find the dynamic linker's base address by examining
2384 the current pc (which should point at the entry point for the
8d4e36ba
JB
2385 dynamic linker) and subtracting the offset of the entry point.
2386
2387 This is more fragile than the previous approaches, but is a good
2388 fallback method because it has actually been working well in
2389 most cases. */
8ad2fcde 2390 if (!load_addr_found)
fb14de7b 2391 {
c2250ad1 2392 struct regcache *regcache
5b6d1e4f
PA
2393 = get_thread_arch_regcache (current_inferior ()->process_target (),
2394 inferior_ptid, target_gdbarch ());
433759f7 2395
fb14de7b 2396 load_addr = (regcache_read_pc (regcache)
192b62ce 2397 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2398 }
2ec9a4f8
DJ
2399
2400 if (!loader_found_in_list)
34439770 2401 {
1a816a87
PA
2402 info->debug_loader_name = xstrdup (interp_name);
2403 info->debug_loader_offset_p = 1;
2404 info->debug_loader_offset = load_addr;
e696b3ad 2405 solib_add (NULL, from_tty, auto_solib_add);
34439770 2406 }
13437d4b
KB
2407
2408 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2409 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2410 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2411 if (interp_sect)
2412 {
fd361982
AM
2413 info->interp_text_sect_low
2414 = bfd_section_vma (interp_sect) + load_addr;
2415 info->interp_text_sect_high
2416 = info->interp_text_sect_low + bfd_section_size (interp_sect);
13437d4b 2417 }
192b62ce 2418 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2419 if (interp_sect)
2420 {
fd361982
AM
2421 info->interp_plt_sect_low
2422 = bfd_section_vma (interp_sect) + load_addr;
2423 info->interp_plt_sect_high
2424 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
13437d4b
KB
2425 }
2426
2427 /* Now try to set a breakpoint in the dynamic linker. */
2428 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2429 {
192b62ce
TT
2430 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2431 cmp_name_and_sec_flags,
3953f15c 2432 *bkpt_namep);
13437d4b
KB
2433 if (sym_addr != 0)
2434 break;
2435 }
2436
2bbe3cc1
DJ
2437 if (sym_addr != 0)
2438 /* Convert 'sym_addr' from a function pointer to an address.
2439 Because we pass tmp_bfd_target instead of the current
2440 target, this will always produce an unrelocated value. */
f5656ead 2441 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2442 sym_addr,
2443 tmp_bfd_target);
2444
695c3173
TT
2445 /* We're done with both the temporary bfd and target. Closing
2446 the target closes the underlying bfd, because it holds the
2447 only remaining reference. */
460014f5 2448 target_close (tmp_bfd_target);
13437d4b
KB
2449
2450 if (sym_addr != 0)
2451 {
d70cc3ba 2452 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2453 load_addr + sym_addr);
13437d4b
KB
2454 return 1;
2455 }
2456
2457 /* For whatever reason we couldn't set a breakpoint in the dynamic
2458 linker. Warn and drop into the old code. */
2459 bkpt_at_symbol:
82d03102
PG
2460 warning (_("Unable to find dynamic linker breakpoint function.\n"
2461 "GDB will be unable to debug shared library initializers\n"
2462 "and track explicitly loaded dynamic code."));
13437d4b 2463 }
13437d4b 2464
e499d0f1
DJ
2465 /* Scan through the lists of symbols, trying to look up the symbol and
2466 set a breakpoint there. Terminate loop when we/if we succeed. */
2467
2468 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2469 {
2470 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2471 if ((msymbol.minsym != NULL)
77e371c0 2472 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2473 {
77e371c0 2474 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2475 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2476 sym_addr,
8b88a78e 2477 current_top_target ());
d70cc3ba
SM
2478 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2479 sym_addr);
e499d0f1
DJ
2480 return 1;
2481 }
2482 }
13437d4b 2483
17658d46 2484 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2485 {
c6490bf2 2486 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2487 {
c6490bf2 2488 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2489 if ((msymbol.minsym != NULL)
77e371c0 2490 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2491 {
77e371c0 2492 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2493 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2494 sym_addr,
8b88a78e 2495 current_top_target ());
d70cc3ba
SM
2496 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2497 sym_addr);
c6490bf2
KB
2498 return 1;
2499 }
13437d4b
KB
2500 }
2501 }
542c95c2 2502 return 0;
13437d4b
KB
2503}
2504
d1012b8e 2505/* Read the ELF program headers from ABFD. */
e2a44558 2506
d1012b8e
SM
2507static gdb::optional<gdb::byte_vector>
2508read_program_headers_from_bfd (bfd *abfd)
e2a44558 2509{
d1012b8e
SM
2510 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2511 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2512 if (phdrs_size == 0)
2513 return {};
09919ac2 2514
d1012b8e 2515 gdb::byte_vector buf (phdrs_size);
09919ac2 2516 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2517 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2518 return {};
09919ac2
JK
2519
2520 return buf;
b8040f19
JK
2521}
2522
01c30d6e
JK
2523/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2524 exec_bfd. Otherwise return 0.
2525
2526 We relocate all of the sections by the same amount. This
c378eb4e 2527 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2528 According to the System V Application Binary Interface,
2529 Edition 4.1, page 5-5:
2530
2531 ... Though the system chooses virtual addresses for
2532 individual processes, it maintains the segments' relative
2533 positions. Because position-independent code uses relative
85102364 2534 addressing between segments, the difference between
b8040f19
JK
2535 virtual addresses in memory must match the difference
2536 between virtual addresses in the file. The difference
2537 between the virtual address of any segment in memory and
2538 the corresponding virtual address in the file is thus a
2539 single constant value for any one executable or shared
2540 object in a given process. This difference is the base
2541 address. One use of the base address is to relocate the
2542 memory image of the program during dynamic linking.
2543
2544 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2545 ABI and is left unspecified in some of the earlier editions.
2546
2547 Decide if the objfile needs to be relocated. As indicated above, we will
2548 only be here when execution is stopped. But during attachment PC can be at
2549 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2550 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2551 regcache_read_pc would point to the interpreter and not the main executable.
2552
2553 So, to summarize, relocations are necessary when the start address obtained
2554 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2555
09919ac2
JK
2556 [ The astute reader will note that we also test to make sure that
2557 the executable in question has the DYNAMIC flag set. It is my
2558 opinion that this test is unnecessary (undesirable even). It
2559 was added to avoid inadvertent relocation of an executable
2560 whose e_type member in the ELF header is not ET_DYN. There may
2561 be a time in the future when it is desirable to do relocations
2562 on other types of files as well in which case this condition
2563 should either be removed or modified to accomodate the new file
2564 type. - Kevin, Nov 2000. ] */
b8040f19 2565
01c30d6e
JK
2566static int
2567svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2568{
41752192
JK
2569 /* ENTRY_POINT is a possible function descriptor - before
2570 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2571 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2572
2573 if (exec_bfd == NULL)
2574 return 0;
2575
09919ac2
JK
2576 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2577 being executed themselves and PIE (Position Independent Executable)
2578 executables are ET_DYN. */
2579
2580 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2581 return 0;
2582
8b88a78e 2583 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2584 return 0;
2585
8f61baf8 2586 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2587
8f61baf8 2588 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2589 alignment. It is cheaper than the program headers comparison below. */
2590
2591 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2592 {
2593 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2594
2595 /* p_align of PT_LOAD segments does not specify any alignment but
2596 only congruency of addresses:
2597 p_offset % p_align == p_vaddr % p_align
2598 Kernel is free to load the executable with lower alignment. */
2599
8f61baf8 2600 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2601 return 0;
2602 }
2603
2604 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2605 comparing their program headers. If the program headers in the auxilliary
2606 vector do not match the program headers in the executable, then we are
2607 looking at a different file than the one used by the kernel - for
2608 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2609
2610 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2611 {
d1012b8e 2612 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2613 really do not match. */
0a1e94c7 2614 int arch_size;
09919ac2 2615
17658d46
SM
2616 gdb::optional<gdb::byte_vector> phdrs_target
2617 = read_program_header (-1, &arch_size, NULL);
d1012b8e
SM
2618 gdb::optional<gdb::byte_vector> phdrs_binary
2619 = read_program_headers_from_bfd (exec_bfd);
2620 if (phdrs_target && phdrs_binary)
0a1e94c7 2621 {
f5656ead 2622 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2623
2624 /* We are dealing with three different addresses. EXEC_BFD
2625 represents current address in on-disk file. target memory content
2626 may be different from EXEC_BFD as the file may have been prelinked
2627 to a different address after the executable has been loaded.
2628 Moreover the address of placement in target memory can be
3e43a32a
MS
2629 different from what the program headers in target memory say -
2630 this is the goal of PIE.
0a1e94c7
JK
2631
2632 Detected DISPLACEMENT covers both the offsets of PIE placement and
2633 possible new prelink performed after start of the program. Here
2634 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2635 content offset for the verification purpose. */
2636
d1012b8e 2637 if (phdrs_target->size () != phdrs_binary->size ()
0a1e94c7 2638 || bfd_get_arch_size (exec_bfd) != arch_size)
d1012b8e 2639 return 0;
3e43a32a 2640 else if (arch_size == 32
17658d46
SM
2641 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2642 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7
JK
2643 {
2644 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2645 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2646 CORE_ADDR displacement = 0;
2647 int i;
2648
2649 /* DISPLACEMENT could be found more easily by the difference of
2650 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2651 already have enough information to compute that displacement
2652 with what we've read. */
2653
2654 for (i = 0; i < ehdr2->e_phnum; i++)
2655 if (phdr2[i].p_type == PT_LOAD)
2656 {
2657 Elf32_External_Phdr *phdrp;
2658 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2659 CORE_ADDR vaddr, paddr;
2660 CORE_ADDR displacement_vaddr = 0;
2661 CORE_ADDR displacement_paddr = 0;
2662
17658d46 2663 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2664 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2665 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2666
2667 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2668 byte_order);
2669 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2670
2671 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2672 byte_order);
2673 displacement_paddr = paddr - phdr2[i].p_paddr;
2674
2675 if (displacement_vaddr == displacement_paddr)
2676 displacement = displacement_vaddr;
2677
2678 break;
2679 }
2680
17658d46
SM
2681 /* Now compare program headers from the target and the binary
2682 with optional DISPLACEMENT. */
0a1e94c7 2683
17658d46
SM
2684 for (i = 0;
2685 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2686 i++)
0a1e94c7
JK
2687 {
2688 Elf32_External_Phdr *phdrp;
2689 Elf32_External_Phdr *phdr2p;
2690 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2691 CORE_ADDR vaddr, paddr;
43b8e241 2692 asection *plt2_asect;
0a1e94c7 2693
17658d46 2694 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2695 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2696 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2697 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2698
2699 /* PT_GNU_STACK is an exception by being never relocated by
2700 prelink as its addresses are always zero. */
2701
2702 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2703 continue;
2704
2705 /* Check also other adjustment combinations - PR 11786. */
2706
3e43a32a
MS
2707 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2708 byte_order);
0a1e94c7
JK
2709 vaddr -= displacement;
2710 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2711
3e43a32a
MS
2712 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2713 byte_order);
0a1e94c7
JK
2714 paddr -= displacement;
2715 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2716
2717 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2718 continue;
2719
204b5331
DE
2720 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2721 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2722 Strip also modifies memsz of PT_TLS.
204b5331 2723 See PR 11786. */
c44deb73
SM
2724 if (phdr2[i].p_type == PT_GNU_RELRO
2725 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2726 {
2727 Elf32_External_Phdr tmp_phdr = *phdrp;
2728 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2729
2730 memset (tmp_phdr.p_filesz, 0, 4);
2731 memset (tmp_phdr.p_memsz, 0, 4);
2732 memset (tmp_phdr.p_flags, 0, 4);
2733 memset (tmp_phdr.p_align, 0, 4);
2734 memset (tmp_phdr2.p_filesz, 0, 4);
2735 memset (tmp_phdr2.p_memsz, 0, 4);
2736 memset (tmp_phdr2.p_flags, 0, 4);
2737 memset (tmp_phdr2.p_align, 0, 4);
2738
2739 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2740 == 0)
2741 continue;
2742 }
2743
43b8e241
JK
2744 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2745 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2746 if (plt2_asect)
2747 {
2748 int content2;
2749 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2750 CORE_ADDR filesz;
2751
fd361982 2752 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2753 & SEC_HAS_CONTENTS) != 0;
2754
2755 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2756 byte_order);
2757
2758 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2759 FILESZ is from the in-memory image. */
2760 if (content2)
fd361982 2761 filesz += bfd_section_size (plt2_asect);
43b8e241 2762 else
fd361982 2763 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2764
2765 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2766 filesz);
2767
2768 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2769 continue;
2770 }
2771
d1012b8e 2772 return 0;
0a1e94c7
JK
2773 }
2774 }
3e43a32a 2775 else if (arch_size == 64
17658d46
SM
2776 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2777 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7
JK
2778 {
2779 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2780 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2781 CORE_ADDR displacement = 0;
2782 int i;
2783
2784 /* DISPLACEMENT could be found more easily by the difference of
2785 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2786 already have enough information to compute that displacement
2787 with what we've read. */
2788
2789 for (i = 0; i < ehdr2->e_phnum; i++)
2790 if (phdr2[i].p_type == PT_LOAD)
2791 {
2792 Elf64_External_Phdr *phdrp;
2793 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2794 CORE_ADDR vaddr, paddr;
2795 CORE_ADDR displacement_vaddr = 0;
2796 CORE_ADDR displacement_paddr = 0;
2797
17658d46 2798 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2799 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2800 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2801
2802 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2803 byte_order);
2804 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2805
2806 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2807 byte_order);
2808 displacement_paddr = paddr - phdr2[i].p_paddr;
2809
2810 if (displacement_vaddr == displacement_paddr)
2811 displacement = displacement_vaddr;
2812
2813 break;
2814 }
2815
2816 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2817
17658d46
SM
2818 for (i = 0;
2819 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2820 i++)
0a1e94c7
JK
2821 {
2822 Elf64_External_Phdr *phdrp;
2823 Elf64_External_Phdr *phdr2p;
2824 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2825 CORE_ADDR vaddr, paddr;
43b8e241 2826 asection *plt2_asect;
0a1e94c7 2827
17658d46 2828 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2829 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2830 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2831 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2832
2833 /* PT_GNU_STACK is an exception by being never relocated by
2834 prelink as its addresses are always zero. */
2835
2836 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2837 continue;
2838
2839 /* Check also other adjustment combinations - PR 11786. */
2840
3e43a32a
MS
2841 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2842 byte_order);
0a1e94c7
JK
2843 vaddr -= displacement;
2844 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2845
3e43a32a
MS
2846 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2847 byte_order);
0a1e94c7
JK
2848 paddr -= displacement;
2849 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2850
2851 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2852 continue;
2853
204b5331
DE
2854 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2855 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2856 Strip also modifies memsz of PT_TLS.
204b5331 2857 See PR 11786. */
c44deb73
SM
2858 if (phdr2[i].p_type == PT_GNU_RELRO
2859 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2860 {
2861 Elf64_External_Phdr tmp_phdr = *phdrp;
2862 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2863
2864 memset (tmp_phdr.p_filesz, 0, 8);
2865 memset (tmp_phdr.p_memsz, 0, 8);
2866 memset (tmp_phdr.p_flags, 0, 4);
2867 memset (tmp_phdr.p_align, 0, 8);
2868 memset (tmp_phdr2.p_filesz, 0, 8);
2869 memset (tmp_phdr2.p_memsz, 0, 8);
2870 memset (tmp_phdr2.p_flags, 0, 4);
2871 memset (tmp_phdr2.p_align, 0, 8);
2872
2873 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2874 == 0)
2875 continue;
2876 }
2877
43b8e241
JK
2878 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2879 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2880 if (plt2_asect)
2881 {
2882 int content2;
2883 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2884 CORE_ADDR filesz;
2885
fd361982 2886 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2887 & SEC_HAS_CONTENTS) != 0;
2888
2889 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2890 byte_order);
2891
2892 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2893 FILESZ is from the in-memory image. */
2894 if (content2)
fd361982 2895 filesz += bfd_section_size (plt2_asect);
43b8e241 2896 else
fd361982 2897 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2898
2899 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2900 filesz);
2901
2902 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2903 continue;
2904 }
2905
d1012b8e 2906 return 0;
0a1e94c7
JK
2907 }
2908 }
2909 else
d1012b8e 2910 return 0;
0a1e94c7 2911 }
09919ac2 2912 }
b8040f19 2913
ccf26247
JK
2914 if (info_verbose)
2915 {
2916 /* It can be printed repeatedly as there is no easy way to check
2917 the executable symbols/file has been already relocated to
2918 displacement. */
2919
2920 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2921 "displacement %s for \"%s\".\n"),
8f61baf8 2922 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2923 bfd_get_filename (exec_bfd));
2924 }
2925
8f61baf8 2926 *displacementp = exec_displacement;
01c30d6e 2927 return 1;
b8040f19
JK
2928}
2929
2930/* Relocate the main executable. This function should be called upon
c378eb4e 2931 stopping the inferior process at the entry point to the program.
b8040f19
JK
2932 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2933 different, the main executable is relocated by the proper amount. */
2934
2935static void
2936svr4_relocate_main_executable (void)
2937{
01c30d6e
JK
2938 CORE_ADDR displacement;
2939
4e5799b6
JK
2940 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2941 probably contains the offsets computed using the PIE displacement
2942 from the previous run, which of course are irrelevant for this run.
2943 So we need to determine the new PIE displacement and recompute the
2944 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2945 already contains pre-computed offsets.
01c30d6e 2946
4e5799b6 2947 If we cannot compute the PIE displacement, either:
01c30d6e 2948
4e5799b6
JK
2949 - The executable is not PIE.
2950
2951 - SYMFILE_OBJFILE does not match the executable started in the target.
2952 This can happen for main executable symbols loaded at the host while
2953 `ld.so --ld-args main-executable' is loaded in the target.
2954
2955 Then we leave the section offsets untouched and use them as is for
2956 this run. Either:
2957
2958 - These section offsets were properly reset earlier, and thus
2959 already contain the correct values. This can happen for instance
2960 when reconnecting via the remote protocol to a target that supports
2961 the `qOffsets' packet.
2962
2963 - The section offsets were not reset earlier, and the best we can
c378eb4e 2964 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2965
2966 if (! svr4_exec_displacement (&displacement))
2967 return;
b8040f19 2968
01c30d6e
JK
2969 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2970 addresses. */
b8040f19
JK
2971
2972 if (symfile_objfile)
e2a44558 2973 {
6a053cb1
TT
2974 section_offsets new_offsets (symfile_objfile->section_offsets.size (),
2975 displacement);
b8040f19 2976 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2977 }
51bee8e9
JK
2978 else if (exec_bfd)
2979 {
2980 asection *asect;
2981
2982 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2983 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
fd361982 2984 bfd_section_vma (asect) + displacement);
51bee8e9 2985 }
e2a44558
KB
2986}
2987
7f86f058 2988/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2989
2990 For SVR4 executables, this first instruction is either the first
2991 instruction in the dynamic linker (for dynamically linked
2992 executables) or the instruction at "start" for statically linked
2993 executables. For dynamically linked executables, the system
2994 first exec's /lib/libc.so.N, which contains the dynamic linker,
2995 and starts it running. The dynamic linker maps in any needed
2996 shared libraries, maps in the actual user executable, and then
2997 jumps to "start" in the user executable.
2998
7f86f058
PA
2999 We can arrange to cooperate with the dynamic linker to discover the
3000 names of shared libraries that are dynamically linked, and the base
3001 addresses to which they are linked.
13437d4b
KB
3002
3003 This function is responsible for discovering those names and
3004 addresses, and saving sufficient information about them to allow
d2e5c99a 3005 their symbols to be read at a later time. */
13437d4b 3006
e2a44558 3007static void
268a4a75 3008svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3009{
1a816a87
PA
3010 struct svr4_info *info;
3011
d70cc3ba 3012 info = get_svr4_info (current_program_space);
2020b7ab 3013
f9e14852
GB
3014 /* Clear the probes-based interface's state. */
3015 free_probes_table (info);
3016 free_solib_list (info);
3017
e2a44558 3018 /* Relocate the main executable if necessary. */
86e4bafc 3019 svr4_relocate_main_executable ();
e2a44558 3020
c91c8c16
PA
3021 /* No point setting a breakpoint in the dynamic linker if we can't
3022 hit it (e.g., a core file, or a trace file). */
3023 if (!target_has_execution)
3024 return;
3025
d5a921c9 3026 if (!svr4_have_link_map_offsets ())
513f5903 3027 return;
d5a921c9 3028
268a4a75 3029 if (!enable_break (info, from_tty))
542c95c2 3030 return;
13437d4b
KB
3031}
3032
3033static void
3034svr4_clear_solib (void)
3035{
6c95b8df
PA
3036 struct svr4_info *info;
3037
d70cc3ba 3038 info = get_svr4_info (current_program_space);
6c95b8df
PA
3039 info->debug_base = 0;
3040 info->debug_loader_offset_p = 0;
3041 info->debug_loader_offset = 0;
3042 xfree (info->debug_loader_name);
3043 info->debug_loader_name = NULL;
13437d4b
KB
3044}
3045
6bb7be43
JB
3046/* Clear any bits of ADDR that wouldn't fit in a target-format
3047 data pointer. "Data pointer" here refers to whatever sort of
3048 address the dynamic linker uses to manage its sections. At the
3049 moment, we don't support shared libraries on any processors where
3050 code and data pointers are different sizes.
3051
3052 This isn't really the right solution. What we really need here is
3053 a way to do arithmetic on CORE_ADDR values that respects the
3054 natural pointer/address correspondence. (For example, on the MIPS,
3055 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3056 sign-extend the value. There, simply truncating the bits above
819844ad 3057 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3058 be a new gdbarch method or something. */
3059static CORE_ADDR
3060svr4_truncate_ptr (CORE_ADDR addr)
3061{
f5656ead 3062 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3063 /* We don't need to truncate anything, and the bit twiddling below
3064 will fail due to overflow problems. */
3065 return addr;
3066 else
f5656ead 3067 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3068}
3069
3070
749499cb
KB
3071static void
3072svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3073 struct target_section *sec)
749499cb 3074{
2b2848e2
DE
3075 bfd *abfd = sec->the_bfd_section->owner;
3076
3077 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3078 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3079}
4b188b9f 3080\f
749499cb 3081
4b188b9f 3082/* Architecture-specific operations. */
6bb7be43 3083
4b188b9f
MK
3084/* Per-architecture data key. */
3085static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3086
4b188b9f 3087struct solib_svr4_ops
e5e2b9ff 3088{
4b188b9f
MK
3089 /* Return a description of the layout of `struct link_map'. */
3090 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3091};
e5e2b9ff 3092
4b188b9f 3093/* Return a default for the architecture-specific operations. */
e5e2b9ff 3094
4b188b9f
MK
3095static void *
3096solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3097{
4b188b9f 3098 struct solib_svr4_ops *ops;
e5e2b9ff 3099
4b188b9f 3100 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3101 ops->fetch_link_map_offsets = NULL;
4b188b9f 3102 return ops;
e5e2b9ff
KB
3103}
3104
4b188b9f 3105/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3106 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3107
21479ded 3108void
e5e2b9ff
KB
3109set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3110 struct link_map_offsets *(*flmo) (void))
21479ded 3111{
19ba03f4
SM
3112 struct solib_svr4_ops *ops
3113 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3114
3115 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3116
3117 set_solib_ops (gdbarch, &svr4_so_ops);
626ca2c0
CB
3118 set_gdbarch_iterate_over_objfiles_in_search_order
3119 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
21479ded
KB
3120}
3121
4b188b9f
MK
3122/* Fetch a link_map_offsets structure using the architecture-specific
3123 `struct link_map_offsets' fetcher. */
1c4dcb57 3124
4b188b9f
MK
3125static struct link_map_offsets *
3126svr4_fetch_link_map_offsets (void)
21479ded 3127{
19ba03f4
SM
3128 struct solib_svr4_ops *ops
3129 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3130 solib_svr4_data);
4b188b9f
MK
3131
3132 gdb_assert (ops->fetch_link_map_offsets);
3133 return ops->fetch_link_map_offsets ();
21479ded
KB
3134}
3135
4b188b9f
MK
3136/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3137
3138static int
3139svr4_have_link_map_offsets (void)
3140{
19ba03f4
SM
3141 struct solib_svr4_ops *ops
3142 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3143 solib_svr4_data);
433759f7 3144
4b188b9f
MK
3145 return (ops->fetch_link_map_offsets != NULL);
3146}
3147\f
3148
e4bbbda8
MK
3149/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3150 `struct r_debug' and a `struct link_map' that are binary compatible
85102364 3151 with the original SVR4 implementation. */
e4bbbda8
MK
3152
3153/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3154 for an ILP32 SVR4 system. */
d989b283 3155
e4bbbda8
MK
3156struct link_map_offsets *
3157svr4_ilp32_fetch_link_map_offsets (void)
3158{
3159 static struct link_map_offsets lmo;
3160 static struct link_map_offsets *lmp = NULL;
3161
3162 if (lmp == NULL)
3163 {
3164 lmp = &lmo;
3165
e4cd0d6a
MK
3166 lmo.r_version_offset = 0;
3167 lmo.r_version_size = 4;
e4bbbda8 3168 lmo.r_map_offset = 4;
7cd25cfc 3169 lmo.r_brk_offset = 8;
e4cd0d6a 3170 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3171
3172 /* Everything we need is in the first 20 bytes. */
3173 lmo.link_map_size = 20;
3174 lmo.l_addr_offset = 0;
e4bbbda8 3175 lmo.l_name_offset = 4;
cc10cae3 3176 lmo.l_ld_offset = 8;
e4bbbda8 3177 lmo.l_next_offset = 12;
e4bbbda8 3178 lmo.l_prev_offset = 16;
e4bbbda8
MK
3179 }
3180
3181 return lmp;
3182}
3183
3184/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3185 for an LP64 SVR4 system. */
d989b283 3186
e4bbbda8
MK
3187struct link_map_offsets *
3188svr4_lp64_fetch_link_map_offsets (void)
3189{
3190 static struct link_map_offsets lmo;
3191 static struct link_map_offsets *lmp = NULL;
3192
3193 if (lmp == NULL)
3194 {
3195 lmp = &lmo;
3196
e4cd0d6a
MK
3197 lmo.r_version_offset = 0;
3198 lmo.r_version_size = 4;
e4bbbda8 3199 lmo.r_map_offset = 8;
7cd25cfc 3200 lmo.r_brk_offset = 16;
e4cd0d6a 3201 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3202
3203 /* Everything we need is in the first 40 bytes. */
3204 lmo.link_map_size = 40;
3205 lmo.l_addr_offset = 0;
e4bbbda8 3206 lmo.l_name_offset = 8;
cc10cae3 3207 lmo.l_ld_offset = 16;
e4bbbda8 3208 lmo.l_next_offset = 24;
e4bbbda8 3209 lmo.l_prev_offset = 32;
e4bbbda8
MK
3210 }
3211
3212 return lmp;
3213}
3214\f
3215
7d522c90 3216struct target_so_ops svr4_so_ops;
13437d4b 3217
626ca2c0 3218/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3219 different rule for symbol lookup. The lookup begins here in the DSO, not in
3220 the main executable. */
3221
626ca2c0
CB
3222static void
3223svr4_iterate_over_objfiles_in_search_order
3224 (struct gdbarch *gdbarch,
3225 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3226 void *cb_data, struct objfile *current_objfile)
3a40aaa0 3227{
626ca2c0
CB
3228 bool checked_current_objfile = false;
3229 if (current_objfile != nullptr)
61f0d762 3230 {
626ca2c0 3231 bfd *abfd;
61f0d762 3232
626ca2c0
CB
3233 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3234 current_objfile = current_objfile->separate_debug_objfile_backlink;
61f0d762 3235
626ca2c0
CB
3236 if (current_objfile == symfile_objfile)
3237 abfd = exec_bfd;
3238 else
3239 abfd = current_objfile->obfd;
3240
7ab78ccb
SM
3241 if (abfd != nullptr
3242 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
626ca2c0
CB
3243 {
3244 checked_current_objfile = true;
3245 if (cb (current_objfile, cb_data) != 0)
3246 return;
3247 }
3248 }
3a40aaa0 3249
626ca2c0
CB
3250 for (objfile *objfile : current_program_space->objfiles ())
3251 {
3252 if (checked_current_objfile && objfile == current_objfile)
3253 continue;
3254 if (cb (objfile, cb_data) != 0)
3255 return;
3256 }
3a40aaa0
UW
3257}
3258
6c265988 3259void _initialize_svr4_solib ();
13437d4b 3260void
6c265988 3261_initialize_svr4_solib ()
13437d4b 3262{
4b188b9f
MK
3263 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3264
749499cb 3265 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3266 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3267 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3268 svr4_so_ops.clear_solib = svr4_clear_solib;
3269 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3270 svr4_so_ops.current_sos = svr4_current_sos;
3271 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3272 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3273 svr4_so_ops.bfd_open = solib_bfd_open;
a7c02bc8 3274 svr4_so_ops.same = svr4_same;
de18c1d8 3275 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3276 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3277 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35
PA
3278
3279 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
13437d4b 3280}
This page took 2.308251 seconds and 4 git commands to generate.