Multi-target support
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
b811d2c2 3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
626ca2c0
CB
54static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
1c4dcb57 58
13437d4b
KB
59/* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
bc043ef3 67static const char * const solib_break_names[] =
13437d4b
KB
68{
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
4c7dcb84 73 "__dl_rtld_db_dlactivity",
1f72e589 74 "_rtld_debug_state",
4c0122c8 75
13437d4b
KB
76 NULL
77};
13437d4b 78
bc043ef3 79static const char * const bkpt_names[] =
13437d4b 80{
13437d4b 81 "_start",
ad3dcc5c 82 "__start",
13437d4b
KB
83 "main",
84 NULL
85};
13437d4b 86
bc043ef3 87static const char * const main_name_list[] =
13437d4b
KB
88{
89 "main_$main",
90 NULL
91};
92
f9e14852
GB
93/* What to do when a probe stop occurs. */
94
95enum probe_action
96{
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112};
113
114/* A probe's name and its associated action. */
115
116struct probe_info
117{
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123};
124
125/* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129static const struct probe_info probe_info[] =
130{
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138};
139
140#define NUM_PROBES ARRAY_SIZE (probe_info)
141
4d7b2d5b
JB
142/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145static int
146svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147{
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
7307a73a 161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 162 different locations. */
7307a73a
RO
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
4d7b2d5b
JB
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172}
173
174static int
175svr4_same (struct so_list *gdb, struct so_list *inferior)
176{
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178}
179
a7961323 180static std::unique_ptr<lm_info_svr4>
3957565a 181lm_info_read (CORE_ADDR lm_addr)
13437d4b 182{
4b188b9f 183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 184 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 185
a7961323 186 gdb::byte_vector lm (lmo->link_map_size);
3957565a 187
a7961323
TT
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
3957565a
JK
191 else
192 {
f5656ead 193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 194
a7961323 195 lm_info.reset (new lm_info_svr4);
3957565a
JK
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
3957565a 209 return lm_info;
13437d4b
KB
210}
211
cc10cae3 212static int
b23518f0 213has_lm_dynamic_from_link_map (void)
cc10cae3
AO
214{
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
cfaefc65 217 return lmo->l_ld_offset >= 0;
cc10cae3
AO
218}
219
cc10cae3 220static CORE_ADDR
f65ce5fb 221lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 222{
d0e449a1
SM
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
cc10cae3
AO
226 {
227 struct bfd_section *dyninfo_sect;
28f34a8f 228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 229
d0e449a1 230 l_addr = li->l_addr_inferior;
cc10cae3 231
b23518f0 232 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
233 goto set_addr;
234
d0e449a1 235 l_dynaddr = li->l_ld;
cc10cae3
AO
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
fd361982 241 dynaddr = bfd_section_vma (dyninfo_sect);
cc10cae3
AO
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
28f34a8f 245 CORE_ADDR align = 0x1000;
4e1fc9c9 246 CORE_ADDR minpagesize = align;
28f34a8f 247
cc10cae3
AO
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
4e1fc9c9
JK
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
5c0d192f
JK
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 288
02835898
JK
289 l_addr = l_dynaddr - dynaddr;
290
4e1fc9c9
JK
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 293 {
701ed6dc 294 if (info_verbose)
ccf26247
JK
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
f5656ead 297 paddress (target_gdbarch (), l_addr),
ccf26247 298 so->so_name);
cc10cae3 299 }
79d4c408 300 else
02835898
JK
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
cc10cae3
AO
315 }
316
317 set_addr:
d0e449a1
SM
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
cc10cae3
AO
320 }
321
d0e449a1 322 return li->l_addr;
cc10cae3
AO
323}
324
6c95b8df 325/* Per pspace SVR4 specific data. */
13437d4b 326
1a816a87
PA
327struct svr4_info
328{
09232438
TT
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
1a816a87
PA
334
335 /* Validity flag for debug_loader_offset. */
09232438 336 int debug_loader_offset_p = 0;
1a816a87
PA
337
338 /* Load address for the dynamic linker, inferred. */
09232438 339 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 342 char *debug_loader_name = nullptr;
1a816a87
PA
343
344 /* Load map address for the main executable. */
09232438 345 CORE_ADDR main_lm_addr = 0;
1a816a87 346
09232438
TT
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
f9e14852
GB
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
09232438 354 int using_xfer = 0;
f9e14852
GB
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
935676c9 359 probe_and_action->prob->address. */
09232438 360 htab_up probes_table;
f9e14852
GB
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
09232438 364 struct so_list *solib_list = nullptr;
6c95b8df 365};
1a816a87 366
6c95b8df 367/* Per-program-space data key. */
09232438 368static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
1a816a87 369
f9e14852
GB
370/* Free the probes table. */
371
372static void
373free_probes_table (struct svr4_info *info)
374{
09232438 375 info->probes_table.reset (nullptr);
f9e14852
GB
376}
377
378/* Free the solib list. */
379
380static void
381free_solib_list (struct svr4_info *info)
382{
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385}
386
09232438 387svr4_info::~svr4_info ()
1a816a87 388{
09232438 389 free_solib_list (this);
1a816a87
PA
390}
391
d70cc3ba
SM
392/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
34439770 394
6c95b8df 395static struct svr4_info *
d70cc3ba 396get_svr4_info (program_space *pspace)
1a816a87 397{
09232438 398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 399
09232438
TT
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
34439770 402
6c95b8df 403 return info;
1a816a87 404}
93a57060 405
13437d4b
KB
406/* Local function prototypes */
407
bc043ef3 408static int match_main (const char *);
13437d4b 409
97ec2c2f 410/* Read program header TYPE from inferior memory. The header is found
17658d46 411 by scanning the OS auxiliary vector.
97ec2c2f 412
09919ac2
JK
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
17658d46
SM
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 420
17658d46
SM
421static gdb::optional<gdb::byte_vector>
422read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 423{
f5656ead 424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
43136979 428 int pt_phdr_p = 0;
97ec2c2f
UW
429
430 /* Get required auxv elements from target. */
8b88a78e 431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 432 return {};
8b88a78e 433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 434 return {};
8b88a78e 435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 436 return {};
97ec2c2f 437 if (!at_phdr || !at_phnum)
17658d46 438 return {};
97ec2c2f
UW
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
17658d46 446 return {};
97ec2c2f 447
09919ac2
JK
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
97ec2c2f
UW
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
43136979
AR
462 int p_type;
463
97ec2c2f
UW
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 466 return {};
97ec2c2f 467
43136979
AR
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
97ec2c2f
UW
479 break;
480 }
481
482 if (i == at_phnum)
17658d46 483 return {};
97ec2c2f
UW
484
485 /* Retrieve address and size. */
e17a4113
UW
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
97ec2c2f
UW
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
43136979
AR
499 int p_type;
500
97ec2c2f
UW
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 503 return {};
97ec2c2f 504
43136979
AR
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
97ec2c2f
UW
516 break;
517 }
518
519 if (i == at_phnum)
17658d46 520 return {};
97ec2c2f
UW
521
522 /* Retrieve address and size. */
e17a4113
UW
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
97ec2c2f
UW
527 }
528
43136979
AR
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
97ec2c2f 539 /* Read in requested program header. */
17658d46
SM
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
97ec2c2f
UW
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
a738da3a
MF
546 if (base_addr)
547 *base_addr = sect_addr;
97ec2c2f
UW
548
549 return buf;
550}
551
552
553/* Return program interpreter string. */
17658d46 554static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
555find_program_interpreter (void)
556{
97ec2c2f
UW
557 /* If we have an exec_bfd, use its section table. */
558 if (exec_bfd
559 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
560 {
561 struct bfd_section *interp_sect;
562
563 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
564 if (interp_sect != NULL)
565 {
fd361982 566 int sect_size = bfd_section_size (interp_sect);
97ec2c2f 567
17658d46
SM
568 gdb::byte_vector buf (sect_size);
569 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
570 sect_size);
571 return buf;
97ec2c2f
UW
572 }
573 }
574
17658d46
SM
575 /* If we didn't find it, use the target auxiliary vector. */
576 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
577}
578
579
b6d7a4bf
SM
580/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
581 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
582
583static int
a738da3a
MF
584scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
585 CORE_ADDR *ptr_addr)
3a40aaa0
UW
586{
587 int arch_size, step, sect_size;
b6d7a4bf 588 long current_dyntag;
b381ea14 589 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 590 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
591 Elf32_External_Dyn *x_dynp_32;
592 Elf64_External_Dyn *x_dynp_64;
593 struct bfd_section *sect;
61f0d762 594 struct target_section *target_section;
3a40aaa0
UW
595
596 if (abfd == NULL)
597 return 0;
0763ab81
PA
598
599 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
600 return 0;
601
3a40aaa0
UW
602 arch_size = bfd_get_arch_size (abfd);
603 if (arch_size == -1)
0763ab81 604 return 0;
3a40aaa0
UW
605
606 /* Find the start address of the .dynamic section. */
607 sect = bfd_get_section_by_name (abfd, ".dynamic");
608 if (sect == NULL)
609 return 0;
61f0d762
JK
610
611 for (target_section = current_target_sections->sections;
612 target_section < current_target_sections->sections_end;
613 target_section++)
614 if (sect == target_section->the_bfd_section)
615 break;
b381ea14
JK
616 if (target_section < current_target_sections->sections_end)
617 dyn_addr = target_section->addr;
618 else
619 {
620 /* ABFD may come from OBJFILE acting only as a symbol file without being
621 loaded into the target (see add_symbol_file_command). This case is
622 such fallback to the file VMA address without the possibility of
623 having the section relocated to its actual in-memory address. */
624
fd361982 625 dyn_addr = bfd_section_vma (sect);
b381ea14 626 }
3a40aaa0 627
65728c26
DJ
628 /* Read in .dynamic from the BFD. We will get the actual value
629 from memory later. */
fd361982 630 sect_size = bfd_section_size (sect);
224c3ddb 631 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
632 if (!bfd_get_section_contents (abfd, sect,
633 buf, 0, sect_size))
634 return 0;
3a40aaa0
UW
635
636 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
637 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
638 : sizeof (Elf64_External_Dyn);
639 for (bufend = buf + sect_size;
640 buf < bufend;
641 buf += step)
642 {
643 if (arch_size == 32)
644 {
645 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 646 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
647 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
648 }
65728c26 649 else
3a40aaa0
UW
650 {
651 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 652 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
653 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
654 }
b6d7a4bf 655 if (current_dyntag == DT_NULL)
3a40aaa0 656 return 0;
b6d7a4bf 657 if (current_dyntag == desired_dyntag)
3a40aaa0 658 {
65728c26
DJ
659 /* If requested, try to read the runtime value of this .dynamic
660 entry. */
3a40aaa0 661 if (ptr)
65728c26 662 {
b6da22b0 663 struct type *ptr_type;
65728c26 664 gdb_byte ptr_buf[8];
a738da3a 665 CORE_ADDR ptr_addr_1;
65728c26 666
f5656ead 667 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
668 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
669 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 670 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 671 *ptr = dyn_ptr;
a738da3a
MF
672 if (ptr_addr)
673 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
674 }
675 return 1;
3a40aaa0
UW
676 }
677 }
678
679 return 0;
680}
681
b6d7a4bf
SM
682/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
683 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
684 is returned and the corresponding PTR is set. */
97ec2c2f
UW
685
686static int
a738da3a
MF
687scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
688 CORE_ADDR *ptr_addr)
97ec2c2f 689{
f5656ead 690 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 691 int arch_size, step;
b6d7a4bf 692 long current_dyntag;
97ec2c2f 693 CORE_ADDR dyn_ptr;
a738da3a 694 CORE_ADDR base_addr;
97ec2c2f
UW
695
696 /* Read in .dynamic section. */
17658d46
SM
697 gdb::optional<gdb::byte_vector> ph_data
698 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
699 if (!ph_data)
97ec2c2f
UW
700 return 0;
701
702 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
703 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
704 : sizeof (Elf64_External_Dyn);
17658d46
SM
705 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
706 buf < bufend; buf += step)
97ec2c2f
UW
707 {
708 if (arch_size == 32)
709 {
710 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 711
b6d7a4bf 712 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
713 4, byte_order);
714 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
715 4, byte_order);
97ec2c2f
UW
716 }
717 else
718 {
719 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 720
b6d7a4bf 721 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
722 8, byte_order);
723 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
724 8, byte_order);
97ec2c2f 725 }
b6d7a4bf 726 if (current_dyntag == DT_NULL)
97ec2c2f
UW
727 break;
728
b6d7a4bf 729 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
730 {
731 if (ptr)
732 *ptr = dyn_ptr;
733
a738da3a 734 if (ptr_addr)
17658d46 735 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 736
97ec2c2f
UW
737 return 1;
738 }
739 }
740
97ec2c2f
UW
741 return 0;
742}
743
7f86f058
PA
744/* Locate the base address of dynamic linker structs for SVR4 elf
745 targets.
13437d4b
KB
746
747 For SVR4 elf targets the address of the dynamic linker's runtime
748 structure is contained within the dynamic info section in the
749 executable file. The dynamic section is also mapped into the
750 inferior address space. Because the runtime loader fills in the
751 real address before starting the inferior, we have to read in the
752 dynamic info section from the inferior address space.
753 If there are any errors while trying to find the address, we
7f86f058 754 silently return 0, otherwise the found address is returned. */
13437d4b
KB
755
756static CORE_ADDR
757elf_locate_base (void)
758{
3b7344d5 759 struct bound_minimal_symbol msymbol;
a738da3a 760 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 761
65728c26
DJ
762 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
763 instead of DT_DEBUG, although they sometimes contain an unused
764 DT_DEBUG. */
a738da3a
MF
765 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
766 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 767 {
f5656ead 768 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 769 gdb_byte *pbuf;
b6da22b0 770 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 771
224c3ddb 772 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
773 /* DT_MIPS_RLD_MAP contains a pointer to the address
774 of the dynamic link structure. */
775 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 776 return 0;
b6da22b0 777 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
778 }
779
a738da3a
MF
780 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
781 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
782 in non-PIE. */
783 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
784 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
785 {
786 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
787 gdb_byte *pbuf;
788 int pbuf_size = TYPE_LENGTH (ptr_type);
789
224c3ddb 790 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
791 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
792 DT slot to the address of the dynamic link structure. */
793 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
794 return 0;
795 return extract_typed_address (pbuf, ptr_type);
796 }
797
65728c26 798 /* Find DT_DEBUG. */
a738da3a
MF
799 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
800 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
801 return dyn_ptr;
802
3a40aaa0
UW
803 /* This may be a static executable. Look for the symbol
804 conventionally named _r_debug, as a last resort. */
805 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 806 if (msymbol.minsym != NULL)
77e371c0 807 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
808
809 /* DT_DEBUG entry not found. */
810 return 0;
811}
812
7f86f058 813/* Locate the base address of dynamic linker structs.
13437d4b
KB
814
815 For both the SunOS and SVR4 shared library implementations, if the
816 inferior executable has been linked dynamically, there is a single
817 address somewhere in the inferior's data space which is the key to
818 locating all of the dynamic linker's runtime structures. This
819 address is the value of the debug base symbol. The job of this
820 function is to find and return that address, or to return 0 if there
821 is no such address (the executable is statically linked for example).
822
823 For SunOS, the job is almost trivial, since the dynamic linker and
824 all of it's structures are statically linked to the executable at
825 link time. Thus the symbol for the address we are looking for has
826 already been added to the minimal symbol table for the executable's
827 objfile at the time the symbol file's symbols were read, and all we
828 have to do is look it up there. Note that we explicitly do NOT want
829 to find the copies in the shared library.
830
831 The SVR4 version is a bit more complicated because the address
832 is contained somewhere in the dynamic info section. We have to go
833 to a lot more work to discover the address of the debug base symbol.
834 Because of this complexity, we cache the value we find and return that
835 value on subsequent invocations. Note there is no copy in the
7f86f058 836 executable symbol tables. */
13437d4b
KB
837
838static CORE_ADDR
1a816a87 839locate_base (struct svr4_info *info)
13437d4b 840{
13437d4b
KB
841 /* Check to see if we have a currently valid address, and if so, avoid
842 doing all this work again and just return the cached address. If
843 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
844 section for ELF executables. There's no point in doing any of this
845 though if we don't have some link map offsets to work with. */
13437d4b 846
1a816a87 847 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 848 info->debug_base = elf_locate_base ();
1a816a87 849 return info->debug_base;
13437d4b
KB
850}
851
e4cd0d6a 852/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
853 return its address in the inferior. Return zero if the address
854 could not be determined.
13437d4b 855
e4cd0d6a
MK
856 FIXME: Perhaps we should validate the info somehow, perhaps by
857 checking r_version for a known version number, or r_state for
858 RT_CONSISTENT. */
13437d4b
KB
859
860static CORE_ADDR
1a816a87 861solib_svr4_r_map (struct svr4_info *info)
13437d4b 862{
4b188b9f 863 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 864 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 865 CORE_ADDR addr = 0;
13437d4b 866
a70b8144 867 try
08597104
JB
868 {
869 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
870 ptr_type);
871 }
230d2906 872 catch (const gdb_exception_error &ex)
492d29ea
PA
873 {
874 exception_print (gdb_stderr, ex);
875 }
492d29ea 876
08597104 877 return addr;
e4cd0d6a 878}
13437d4b 879
7cd25cfc
DJ
880/* Find r_brk from the inferior's debug base. */
881
882static CORE_ADDR
1a816a87 883solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
884{
885 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 886 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 887
1a816a87
PA
888 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
889 ptr_type);
7cd25cfc
DJ
890}
891
e4cd0d6a
MK
892/* Find the link map for the dynamic linker (if it is not in the
893 normal list of loaded shared objects). */
13437d4b 894
e4cd0d6a 895static CORE_ADDR
1a816a87 896solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
897{
898 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 899 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
34877895 900 enum bfd_endian byte_order = type_byte_order (ptr_type);
416f679e
SDJ
901 ULONGEST version = 0;
902
a70b8144 903 try
416f679e
SDJ
904 {
905 /* Check version, and return zero if `struct r_debug' doesn't have
906 the r_ldsomap member. */
907 version
908 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
909 lmo->r_version_size, byte_order);
910 }
230d2906 911 catch (const gdb_exception_error &ex)
416f679e
SDJ
912 {
913 exception_print (gdb_stderr, ex);
914 }
13437d4b 915
e4cd0d6a
MK
916 if (version < 2 || lmo->r_ldsomap_offset == -1)
917 return 0;
13437d4b 918
1a816a87 919 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 920 ptr_type);
13437d4b
KB
921}
922
de18c1d8
JM
923/* On Solaris systems with some versions of the dynamic linker,
924 ld.so's l_name pointer points to the SONAME in the string table
925 rather than into writable memory. So that GDB can find shared
926 libraries when loading a core file generated by gcore, ensure that
927 memory areas containing the l_name string are saved in the core
928 file. */
929
930static int
931svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
932{
933 struct svr4_info *info;
934 CORE_ADDR ldsomap;
74de0234 935 CORE_ADDR name_lm;
de18c1d8 936
d70cc3ba 937 info = get_svr4_info (current_program_space);
de18c1d8
JM
938
939 info->debug_base = 0;
940 locate_base (info);
941 if (!info->debug_base)
942 return 0;
943
944 ldsomap = solib_svr4_r_ldsomap (info);
945 if (!ldsomap)
946 return 0;
947
a7961323 948 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 949 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 950
74de0234 951 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
952}
953
bf469271 954/* See solist.h. */
13437d4b
KB
955
956static int
bf469271 957open_symbol_file_object (int from_tty)
13437d4b
KB
958{
959 CORE_ADDR lm, l_name;
e83e4e24 960 gdb::unique_xmalloc_ptr<char> filename;
13437d4b 961 int errcode;
4b188b9f 962 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 963 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 964 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 965 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 966 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
967 symfile_add_flags add_flags = 0;
968
969 if (from_tty)
970 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
971
972 if (symfile_objfile)
9e2f0ad4 973 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 974 return 0;
13437d4b 975
7cd25cfc 976 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
977 info->debug_base = 0;
978 if (locate_base (info) == 0)
a7961323 979 return 0; /* failed somehow... */
13437d4b
KB
980
981 /* First link map member should be the executable. */
1a816a87 982 lm = solib_svr4_r_map (info);
e4cd0d6a 983 if (lm == 0)
a7961323 984 return 0; /* failed somehow... */
13437d4b
KB
985
986 /* Read address of name from target memory to GDB. */
a7961323 987 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 988
cfaefc65 989 /* Convert the address to host format. */
a7961323 990 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 991
13437d4b 992 if (l_name == 0)
a7961323 993 return 0; /* No filename. */
13437d4b
KB
994
995 /* Now fetch the filename from target memory. */
996 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
997
998 if (errcode)
999 {
8a3fe4f8 1000 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1001 safe_strerror (errcode));
1002 return 0;
1003 }
1004
13437d4b 1005 /* Have a pathname: read the symbol file. */
e83e4e24 1006 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1007
1008 return 1;
1009}
13437d4b 1010
2268b414
JK
1011/* Data exchange structure for the XML parser as returned by
1012 svr4_current_sos_via_xfer_libraries. */
1013
1014struct svr4_library_list
1015{
1016 struct so_list *head, **tailp;
1017
1018 /* Inferior address of struct link_map used for the main executable. It is
1019 NULL if not known. */
1020 CORE_ADDR main_lm;
1021};
1022
7905fc35
PA
1023/* This module's 'free_objfile' observer. */
1024
1025static void
1026svr4_free_objfile_observer (struct objfile *objfile)
1027{
1028 probes_table_remove_objfile_probes (objfile);
1029}
1030
93f2a35e
JK
1031/* Implementation for target_so_ops.free_so. */
1032
1033static void
1034svr4_free_so (struct so_list *so)
1035{
76e75227
SM
1036 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1037
1038 delete li;
93f2a35e
JK
1039}
1040
0892cb63
DE
1041/* Implement target_so_ops.clear_so. */
1042
1043static void
1044svr4_clear_so (struct so_list *so)
1045{
d0e449a1
SM
1046 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1047
1048 if (li != NULL)
1049 li->l_addr_p = 0;
0892cb63
DE
1050}
1051
93f2a35e
JK
1052/* Free so_list built so far (called via cleanup). */
1053
1054static void
1055svr4_free_library_list (void *p_list)
1056{
1057 struct so_list *list = *(struct so_list **) p_list;
1058
1059 while (list != NULL)
1060 {
1061 struct so_list *next = list->next;
1062
3756ef7e 1063 free_so (list);
93f2a35e
JK
1064 list = next;
1065 }
1066}
1067
f9e14852
GB
1068/* Copy library list. */
1069
1070static struct so_list *
1071svr4_copy_library_list (struct so_list *src)
1072{
1073 struct so_list *dst = NULL;
1074 struct so_list **link = &dst;
1075
1076 while (src != NULL)
1077 {
fe978cb0 1078 struct so_list *newobj;
f9e14852 1079
8d749320 1080 newobj = XNEW (struct so_list);
fe978cb0 1081 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1082
76e75227
SM
1083 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1084 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1085
fe978cb0
PA
1086 newobj->next = NULL;
1087 *link = newobj;
1088 link = &newobj->next;
f9e14852
GB
1089
1090 src = src->next;
1091 }
1092
1093 return dst;
1094}
1095
2268b414
JK
1096#ifdef HAVE_LIBEXPAT
1097
1098#include "xml-support.h"
1099
1100/* Handle the start of a <library> element. Note: new elements are added
1101 at the tail of the list, keeping the list in order. */
1102
1103static void
1104library_list_start_library (struct gdb_xml_parser *parser,
1105 const struct gdb_xml_element *element,
4d0fdd9b
SM
1106 void *user_data,
1107 std::vector<gdb_xml_value> &attributes)
2268b414 1108{
19ba03f4
SM
1109 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1110 const char *name
4d0fdd9b 1111 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1112 ULONGEST *lmp
4d0fdd9b 1113 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1114 ULONGEST *l_addrp
4d0fdd9b 1115 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1116 ULONGEST *l_ldp
4d0fdd9b 1117 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1118 struct so_list *new_elem;
1119
41bf6aca 1120 new_elem = XCNEW (struct so_list);
76e75227 1121 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1122 new_elem->lm_info = li;
1123 li->lm_addr = *lmp;
1124 li->l_addr_inferior = *l_addrp;
1125 li->l_ld = *l_ldp;
2268b414
JK
1126
1127 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1128 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1129 strcpy (new_elem->so_original_name, new_elem->so_name);
1130
1131 *list->tailp = new_elem;
1132 list->tailp = &new_elem->next;
1133}
1134
1135/* Handle the start of a <library-list-svr4> element. */
1136
1137static void
1138svr4_library_list_start_list (struct gdb_xml_parser *parser,
1139 const struct gdb_xml_element *element,
4d0fdd9b
SM
1140 void *user_data,
1141 std::vector<gdb_xml_value> &attributes)
2268b414 1142{
19ba03f4
SM
1143 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1144 const char *version
4d0fdd9b 1145 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1146 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1147
1148 if (strcmp (version, "1.0") != 0)
1149 gdb_xml_error (parser,
1150 _("SVR4 Library list has unsupported version \"%s\""),
1151 version);
1152
1153 if (main_lm)
4d0fdd9b 1154 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1155}
1156
1157/* The allowed elements and attributes for an XML library list.
1158 The root element is a <library-list>. */
1159
1160static const struct gdb_xml_attribute svr4_library_attributes[] =
1161{
1162 { "name", GDB_XML_AF_NONE, NULL, NULL },
1163 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1166 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1167};
1168
1169static const struct gdb_xml_element svr4_library_list_children[] =
1170{
1171 {
1172 "library", svr4_library_attributes, NULL,
1173 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1174 library_list_start_library, NULL
1175 },
1176 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1177};
1178
1179static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1180{
1181 { "version", GDB_XML_AF_NONE, NULL, NULL },
1182 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1183 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1184};
1185
1186static const struct gdb_xml_element svr4_library_list_elements[] =
1187{
1188 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1189 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1190 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1191};
1192
2268b414
JK
1193/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1194
1195 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1196 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1197 empty, caller is responsible for freeing all its entries. */
1198
1199static int
1200svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1201{
2b6ff1c0
TT
1202 auto cleanup = make_scope_exit ([&] ()
1203 {
1204 svr4_free_library_list (&list->head);
1205 });
2268b414
JK
1206
1207 memset (list, 0, sizeof (*list));
1208 list->tailp = &list->head;
2eca4a8d 1209 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1210 svr4_library_list_elements, document, list) == 0)
1211 {
1212 /* Parsed successfully, keep the result. */
2b6ff1c0 1213 cleanup.release ();
2268b414
JK
1214 return 1;
1215 }
1216
2268b414
JK
1217 return 0;
1218}
1219
f9e14852 1220/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1221
1222 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1223 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1224 empty, caller is responsible for freeing all its entries.
1225
1226 Note that ANNEX must be NULL if the remote does not explicitly allow
1227 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1228 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1229
1230static int
f9e14852
GB
1231svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1232 const char *annex)
2268b414 1233{
f9e14852
GB
1234 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1235
2268b414 1236 /* Fetch the list of shared libraries. */
9018be22 1237 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1238 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1239 annex);
9018be22 1240 if (!svr4_library_document)
2268b414
JK
1241 return 0;
1242
9018be22 1243 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1244}
1245
1246#else
1247
1248static int
f9e14852
GB
1249svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1250 const char *annex)
2268b414
JK
1251{
1252 return 0;
1253}
1254
1255#endif
1256
34439770
DJ
1257/* If no shared library information is available from the dynamic
1258 linker, build a fallback list from other sources. */
1259
1260static struct so_list *
d70cc3ba 1261svr4_default_sos (svr4_info *info)
34439770 1262{
fe978cb0 1263 struct so_list *newobj;
1a816a87 1264
8e5c319d
JK
1265 if (!info->debug_loader_offset_p)
1266 return NULL;
34439770 1267
fe978cb0 1268 newobj = XCNEW (struct so_list);
76e75227 1269 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1270 newobj->lm_info = li;
34439770 1271
3957565a 1272 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1273 li->l_addr = info->debug_loader_offset;
1274 li->l_addr_p = 1;
34439770 1275
fe978cb0
PA
1276 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1277 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1278 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1279
fe978cb0 1280 return newobj;
34439770
DJ
1281}
1282
f9e14852
GB
1283/* Read the whole inferior libraries chain starting at address LM.
1284 Expect the first entry in the chain's previous entry to be PREV_LM.
1285 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1286 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1287 to it. Returns nonzero upon success. If zero is returned the
1288 entries stored to LINK_PTR_PTR are still valid although they may
1289 represent only part of the inferior library list. */
13437d4b 1290
f9e14852 1291static int
d70cc3ba 1292svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1293 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1294{
c725e7b6 1295 CORE_ADDR first_l_name = 0;
f9e14852 1296 CORE_ADDR next_lm;
13437d4b 1297
cb08cc53 1298 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1299 {
cb08cc53 1300 int errcode;
e83e4e24 1301 gdb::unique_xmalloc_ptr<char> buffer;
13437d4b 1302
b3bc8453 1303 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1304
a7961323 1305 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1306 newobj->lm_info = li;
1307 if (li == NULL)
b3bc8453 1308 return 0;
13437d4b 1309
d0e449a1 1310 next_lm = li->l_next;
492928e4 1311
d0e449a1 1312 if (li->l_prev != prev_lm)
492928e4 1313 {
2268b414 1314 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1315 paddress (target_gdbarch (), prev_lm),
d0e449a1 1316 paddress (target_gdbarch (), li->l_prev));
f9e14852 1317 return 0;
492928e4 1318 }
13437d4b
KB
1319
1320 /* For SVR4 versions, the first entry in the link map is for the
1321 inferior executable, so we must ignore it. For some versions of
1322 SVR4, it has no name. For others (Solaris 2.3 for example), it
1323 does have a name, so we can no longer use a missing name to
c378eb4e 1324 decide when to ignore it. */
d0e449a1 1325 if (ignore_first && li->l_prev == 0)
93a57060 1326 {
d0e449a1
SM
1327 first_l_name = li->l_name;
1328 info->main_lm_addr = li->lm_addr;
cb08cc53 1329 continue;
93a57060 1330 }
13437d4b 1331
cb08cc53 1332 /* Extract this shared object's name. */
d0e449a1
SM
1333 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1334 &errcode);
cb08cc53
JK
1335 if (errcode != 0)
1336 {
7d760051
UW
1337 /* If this entry's l_name address matches that of the
1338 inferior executable, then this is not a normal shared
1339 object, but (most likely) a vDSO. In this case, silently
1340 skip it; otherwise emit a warning. */
d0e449a1 1341 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1342 warning (_("Can't read pathname for load map: %s."),
1343 safe_strerror (errcode));
cb08cc53 1344 continue;
13437d4b
KB
1345 }
1346
e83e4e24 1347 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1348 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1349 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1350
cb08cc53
JK
1351 /* If this entry has no name, or its name matches the name
1352 for the main executable, don't include it in the list. */
fe978cb0 1353 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1354 continue;
e4cd0d6a 1355
fe978cb0 1356 newobj->next = 0;
b3bc8453
TT
1357 /* Don't free it now. */
1358 **link_ptr_ptr = newobj.release ();
1359 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1360 }
f9e14852
GB
1361
1362 return 1;
cb08cc53
JK
1363}
1364
f9e14852
GB
1365/* Read the full list of currently loaded shared objects directly
1366 from the inferior, without referring to any libraries read and
1367 stored by the probes interface. Handle special cases relating
1368 to the first elements of the list. */
cb08cc53
JK
1369
1370static struct so_list *
f9e14852 1371svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1372{
1373 CORE_ADDR lm;
1374 struct so_list *head = NULL;
1375 struct so_list **link_ptr = &head;
cb08cc53 1376 int ignore_first;
2268b414
JK
1377 struct svr4_library_list library_list;
1378
0c5bf5a9
JK
1379 /* Fall back to manual examination of the target if the packet is not
1380 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1381 tests a case where gdbserver cannot find the shared libraries list while
1382 GDB itself is able to find it via SYMFILE_OBJFILE.
1383
1384 Unfortunately statically linked inferiors will also fall back through this
1385 suboptimal code path. */
1386
f9e14852
GB
1387 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1388 NULL);
1389 if (info->using_xfer)
2268b414
JK
1390 {
1391 if (library_list.main_lm)
f9e14852 1392 info->main_lm_addr = library_list.main_lm;
2268b414 1393
d70cc3ba 1394 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1395 }
cb08cc53 1396
cb08cc53
JK
1397 /* Always locate the debug struct, in case it has moved. */
1398 info->debug_base = 0;
1399 locate_base (info);
1400
1401 /* If we can't find the dynamic linker's base structure, this
1402 must not be a dynamically linked executable. Hmm. */
1403 if (! info->debug_base)
d70cc3ba 1404 return svr4_default_sos (info);
cb08cc53
JK
1405
1406 /* Assume that everything is a library if the dynamic loader was loaded
1407 late by a static executable. */
1408 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1409 ignore_first = 0;
1410 else
1411 ignore_first = 1;
1412
2b6ff1c0
TT
1413 auto cleanup = make_scope_exit ([&] ()
1414 {
1415 svr4_free_library_list (&head);
1416 });
cb08cc53
JK
1417
1418 /* Walk the inferior's link map list, and build our list of
1419 `struct so_list' nodes. */
1420 lm = solib_svr4_r_map (info);
1421 if (lm)
d70cc3ba 1422 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1423
1424 /* On Solaris, the dynamic linker is not in the normal list of
1425 shared objects, so make sure we pick it up too. Having
1426 symbol information for the dynamic linker is quite crucial
1427 for skipping dynamic linker resolver code. */
1428 lm = solib_svr4_r_ldsomap (info);
1429 if (lm)
d70cc3ba 1430 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1431
2b6ff1c0 1432 cleanup.release ();
13437d4b 1433
34439770 1434 if (head == NULL)
d70cc3ba 1435 return svr4_default_sos (info);
34439770 1436
13437d4b
KB
1437 return head;
1438}
1439
8b9a549d
PA
1440/* Implement the main part of the "current_sos" target_so_ops
1441 method. */
f9e14852
GB
1442
1443static struct so_list *
d70cc3ba 1444svr4_current_sos_1 (svr4_info *info)
f9e14852 1445{
f9e14852
GB
1446 /* If the solib list has been read and stored by the probes
1447 interface then we return a copy of the stored list. */
1448 if (info->solib_list != NULL)
1449 return svr4_copy_library_list (info->solib_list);
1450
1451 /* Otherwise obtain the solib list directly from the inferior. */
1452 return svr4_current_sos_direct (info);
1453}
1454
8b9a549d
PA
1455/* Implement the "current_sos" target_so_ops method. */
1456
1457static struct so_list *
1458svr4_current_sos (void)
1459{
d70cc3ba
SM
1460 svr4_info *info = get_svr4_info (current_program_space);
1461 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1462 struct mem_range vsyscall_range;
1463
1464 /* Filter out the vDSO module, if present. Its symbol file would
1465 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1466 managed by symfile-mem.c:add_vsyscall_page. */
1467 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1468 && vsyscall_range.length != 0)
1469 {
1470 struct so_list **sop;
1471
1472 sop = &so_head;
1473 while (*sop != NULL)
1474 {
1475 struct so_list *so = *sop;
1476
1477 /* We can't simply match the vDSO by starting address alone,
1478 because lm_info->l_addr_inferior (and also l_addr) do not
1479 necessarily represent the real starting address of the
1480 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1481 field (the ".dynamic" section of the shared object)
1482 always points at the absolute/resolved address though.
1483 So check whether that address is inside the vDSO's
1484 mapping instead.
1485
1486 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1487 0-based ELF, and we see:
1488
1489 (gdb) info auxv
1490 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1491 (gdb) p/x *_r_debug.r_map.l_next
1492 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1493
1494 And on Linux 2.6.32 (x86_64) we see:
1495
1496 (gdb) info auxv
1497 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1498 (gdb) p/x *_r_debug.r_map.l_next
1499 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1500
1501 Dumping that vDSO shows:
1502
1503 (gdb) info proc mappings
1504 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1505 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1506 # readelf -Wa vdso.bin
1507 [...]
1508 Entry point address: 0xffffffffff700700
1509 [...]
1510 Section Headers:
1511 [Nr] Name Type Address Off Size
1512 [ 0] NULL 0000000000000000 000000 000000
1513 [ 1] .hash HASH ffffffffff700120 000120 000038
1514 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1515 [...]
1516 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1517 */
d0e449a1
SM
1518
1519 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1520
1521 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1522 {
1523 *sop = so->next;
1524 free_so (so);
1525 break;
1526 }
1527
1528 sop = &so->next;
1529 }
1530 }
1531
1532 return so_head;
1533}
1534
93a57060 1535/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1536
1537CORE_ADDR
1538svr4_fetch_objfile_link_map (struct objfile *objfile)
1539{
93a57060 1540 struct so_list *so;
d70cc3ba 1541 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1542
93a57060 1543 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1544 if (info->main_lm_addr == 0)
e696b3ad 1545 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1546
93a57060
DJ
1547 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1548 if (objfile == symfile_objfile)
1a816a87 1549 return info->main_lm_addr;
93a57060 1550
df22c1e5
JB
1551 /* If OBJFILE is a separate debug object file, look for the
1552 original object file. */
1553 if (objfile->separate_debug_objfile_backlink != NULL)
1554 objfile = objfile->separate_debug_objfile_backlink;
1555
93a57060
DJ
1556 /* The other link map addresses may be found by examining the list
1557 of shared libraries. */
1558 for (so = master_so_list (); so; so = so->next)
1559 if (so->objfile == objfile)
d0e449a1
SM
1560 {
1561 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1562
1563 return li->lm_addr;
1564 }
93a57060
DJ
1565
1566 /* Not found! */
bc4a16ae
EZ
1567 return 0;
1568}
13437d4b
KB
1569
1570/* On some systems, the only way to recognize the link map entry for
1571 the main executable file is by looking at its name. Return
1572 non-zero iff SONAME matches one of the known main executable names. */
1573
1574static int
bc043ef3 1575match_main (const char *soname)
13437d4b 1576{
bc043ef3 1577 const char * const *mainp;
13437d4b
KB
1578
1579 for (mainp = main_name_list; *mainp != NULL; mainp++)
1580 {
1581 if (strcmp (soname, *mainp) == 0)
1582 return (1);
1583 }
1584
1585 return (0);
1586}
1587
13437d4b
KB
1588/* Return 1 if PC lies in the dynamic symbol resolution code of the
1589 SVR4 run time loader. */
13437d4b 1590
7d522c90 1591int
d7fa2ae2 1592svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1593{
d70cc3ba 1594 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1595
1596 return ((pc >= info->interp_text_sect_low
1597 && pc < info->interp_text_sect_high)
1598 || (pc >= info->interp_plt_sect_low
1599 && pc < info->interp_plt_sect_high)
3e5d3a5a 1600 || in_plt_section (pc)
0875794a 1601 || in_gnu_ifunc_stub (pc));
13437d4b 1602}
13437d4b 1603
2f4950cd
AC
1604/* Given an executable's ABFD and target, compute the entry-point
1605 address. */
1606
1607static CORE_ADDR
1608exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1609{
8c2b9656
YQ
1610 CORE_ADDR addr;
1611
2f4950cd
AC
1612 /* KevinB wrote ... for most targets, the address returned by
1613 bfd_get_start_address() is the entry point for the start
1614 function. But, for some targets, bfd_get_start_address() returns
1615 the address of a function descriptor from which the entry point
1616 address may be extracted. This address is extracted by
1617 gdbarch_convert_from_func_ptr_addr(). The method
1618 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1619 function for targets which don't use function descriptors. */
8c2b9656 1620 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1621 bfd_get_start_address (abfd),
1622 targ);
8c2b9656 1623 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1624}
13437d4b 1625
f9e14852
GB
1626/* A probe and its associated action. */
1627
1628struct probe_and_action
1629{
1630 /* The probe. */
935676c9 1631 probe *prob;
f9e14852 1632
729662a5
TT
1633 /* The relocated address of the probe. */
1634 CORE_ADDR address;
1635
f9e14852
GB
1636 /* The action. */
1637 enum probe_action action;
7905fc35
PA
1638
1639 /* The objfile where this probe was found. */
1640 struct objfile *objfile;
f9e14852
GB
1641};
1642
1643/* Returns a hash code for the probe_and_action referenced by p. */
1644
1645static hashval_t
1646hash_probe_and_action (const void *p)
1647{
19ba03f4 1648 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1649
729662a5 1650 return (hashval_t) pa->address;
f9e14852
GB
1651}
1652
1653/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1654 are equal. */
1655
1656static int
1657equal_probe_and_action (const void *p1, const void *p2)
1658{
19ba03f4
SM
1659 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1660 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1661
729662a5 1662 return pa1->address == pa2->address;
f9e14852
GB
1663}
1664
7905fc35
PA
1665/* Traversal function for probes_table_remove_objfile_probes. */
1666
1667static int
1668probes_table_htab_remove_objfile_probes (void **slot, void *info)
1669{
1670 probe_and_action *pa = (probe_and_action *) *slot;
1671 struct objfile *objfile = (struct objfile *) info;
1672
1673 if (pa->objfile == objfile)
09232438
TT
1674 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1675 slot);
7905fc35
PA
1676
1677 return 1;
1678}
1679
1680/* Remove all probes that belong to OBJFILE from the probes table. */
1681
1682static void
1683probes_table_remove_objfile_probes (struct objfile *objfile)
1684{
d70cc3ba 1685 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1686 if (info->probes_table != nullptr)
09232438 1687 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1688 probes_table_htab_remove_objfile_probes, objfile);
1689}
1690
f9e14852
GB
1691/* Register a solib event probe and its associated action in the
1692 probes table. */
1693
1694static void
d70cc3ba 1695register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1696 probe *prob, CORE_ADDR address,
729662a5 1697 enum probe_action action)
f9e14852 1698{
f9e14852
GB
1699 struct probe_and_action lookup, *pa;
1700 void **slot;
1701
1702 /* Create the probes table, if necessary. */
1703 if (info->probes_table == NULL)
09232438
TT
1704 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1705 equal_probe_and_action,
1706 xfree, xcalloc, xfree));
f9e14852 1707
729662a5 1708 lookup.address = address;
09232438 1709 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1710 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1711
1712 pa = XCNEW (struct probe_and_action);
935676c9 1713 pa->prob = prob;
729662a5 1714 pa->address = address;
f9e14852 1715 pa->action = action;
7905fc35 1716 pa->objfile = objfile;
f9e14852
GB
1717
1718 *slot = pa;
1719}
1720
1721/* Get the solib event probe at the specified location, and the
1722 action associated with it. Returns NULL if no solib event probe
1723 was found. */
1724
1725static struct probe_and_action *
1726solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1727{
f9e14852
GB
1728 struct probe_and_action lookup;
1729 void **slot;
1730
729662a5 1731 lookup.address = address;
09232438 1732 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1733
1734 if (slot == NULL)
1735 return NULL;
1736
1737 return (struct probe_and_action *) *slot;
1738}
1739
1740/* Decide what action to take when the specified solib event probe is
1741 hit. */
1742
1743static enum probe_action
1744solib_event_probe_action (struct probe_and_action *pa)
1745{
1746 enum probe_action action;
73c6b475 1747 unsigned probe_argc = 0;
08a6411c 1748 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1749
1750 action = pa->action;
1751 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1752 return action;
1753
1754 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1755
1756 /* Check that an appropriate number of arguments has been supplied.
1757 We expect:
1758 arg0: Lmid_t lmid (mandatory)
1759 arg1: struct r_debug *debug_base (mandatory)
1760 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1761 try
3bd7e5b7 1762 {
fe01123e 1763 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
3bd7e5b7 1764 }
230d2906 1765 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1766 {
1767 exception_print (gdb_stderr, ex);
1768 probe_argc = 0;
1769 }
3bd7e5b7 1770
935676c9
SDJ
1771 /* If get_argument_count throws an exception, probe_argc will be set
1772 to zero. However, if pa->prob does not have arguments, then
1773 get_argument_count will succeed but probe_argc will also be zero.
1774 Both cases happen because of different things, but they are
1775 treated equally here: action will be set to
3bd7e5b7 1776 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1777 if (probe_argc == 2)
1778 action = FULL_RELOAD;
1779 else if (probe_argc < 2)
1780 action = PROBES_INTERFACE_FAILED;
1781
1782 return action;
1783}
1784
1785/* Populate the shared object list by reading the entire list of
1786 shared objects from the inferior. Handle special cases relating
1787 to the first elements of the list. Returns nonzero on success. */
1788
1789static int
1790solist_update_full (struct svr4_info *info)
1791{
1792 free_solib_list (info);
1793 info->solib_list = svr4_current_sos_direct (info);
1794
1795 return 1;
1796}
1797
1798/* Update the shared object list starting from the link-map entry
1799 passed by the linker in the probe's third argument. Returns
1800 nonzero if the list was successfully updated, or zero to indicate
1801 failure. */
1802
1803static int
1804solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1805{
1806 struct so_list *tail;
1807 CORE_ADDR prev_lm;
1808
1809 /* svr4_current_sos_direct contains logic to handle a number of
1810 special cases relating to the first elements of the list. To
1811 avoid duplicating this logic we defer to solist_update_full
1812 if the list is empty. */
1813 if (info->solib_list == NULL)
1814 return 0;
1815
1816 /* Fall back to a full update if we are using a remote target
1817 that does not support incremental transfers. */
1818 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1819 return 0;
1820
1821 /* Walk to the end of the list. */
1822 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1823 /* Nothing. */;
d0e449a1
SM
1824
1825 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1826 prev_lm = li->lm_addr;
f9e14852
GB
1827
1828 /* Read the new objects. */
1829 if (info->using_xfer)
1830 {
1831 struct svr4_library_list library_list;
1832 char annex[64];
1833
1834 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1835 phex_nz (lm, sizeof (lm)),
1836 phex_nz (prev_lm, sizeof (prev_lm)));
1837 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1838 return 0;
1839
1840 tail->next = library_list.head;
1841 }
1842 else
1843 {
1844 struct so_list **link = &tail->next;
1845
1846 /* IGNORE_FIRST may safely be set to zero here because the
1847 above check and deferral to solist_update_full ensures
1848 that this call to svr4_read_so_list will never see the
1849 first element. */
d70cc3ba 1850 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1851 return 0;
1852 }
1853
1854 return 1;
1855}
1856
1857/* Disable the probes-based linker interface and revert to the
1858 original interface. We don't reset the breakpoints as the
1859 ones set up for the probes-based interface are adequate. */
1860
1861static void
d70cc3ba 1862disable_probes_interface (svr4_info *info)
f9e14852 1863{
f9e14852 1864 warning (_("Probes-based dynamic linker interface failed.\n"
422186a9 1865 "Reverting to original interface."));
f9e14852
GB
1866
1867 free_probes_table (info);
1868 free_solib_list (info);
1869}
1870
1871/* Update the solib list as appropriate when using the
1872 probes-based linker interface. Do nothing if using the
1873 standard interface. */
1874
1875static void
1876svr4_handle_solib_event (void)
1877{
d70cc3ba 1878 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1879 struct probe_and_action *pa;
1880 enum probe_action action;
ad1c917a 1881 struct value *val = NULL;
f9e14852 1882 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1883 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1884
1885 /* Do nothing if not using the probes interface. */
1886 if (info->probes_table == NULL)
1887 return;
1888
1889 /* If anything goes wrong we revert to the original linker
1890 interface. */
d70cc3ba
SM
1891 auto cleanup = make_scope_exit ([info] ()
1892 {
1893 disable_probes_interface (info);
1894 });
f9e14852
GB
1895
1896 pc = regcache_read_pc (get_current_regcache ());
1897 pa = solib_event_probe_at (info, pc);
1898 if (pa == NULL)
d01c5877 1899 return;
f9e14852
GB
1900
1901 action = solib_event_probe_action (pa);
1902 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1903 return;
f9e14852
GB
1904
1905 if (action == DO_NOTHING)
1906 {
d01c5877 1907 cleanup.release ();
f9e14852
GB
1908 return;
1909 }
1910
935676c9 1911 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1912 using find_pc_section. find_pc_section is accelerated by a cache
1913 called the section map. The section map is invalidated every
1914 time a shared library is loaded or unloaded, and if the inferior
1915 is generating a lot of shared library events then the section map
1916 will be updated every time svr4_handle_solib_event is called.
1917 We called find_pc_section in svr4_create_solib_event_breakpoints,
1918 so we can guarantee that the dynamic linker's sections are in the
1919 section map. We can therefore inhibit section map updates across
935676c9 1920 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1921 {
1922 scoped_restore inhibit_updates
1923 = inhibit_section_map_updates (current_program_space);
f9e14852 1924
a70b8144 1925 try
06424eac
TT
1926 {
1927 val = pa->prob->evaluate_argument (1, frame);
1928 }
230d2906 1929 catch (const gdb_exception_error &ex)
06424eac
TT
1930 {
1931 exception_print (gdb_stderr, ex);
1932 val = NULL;
1933 }
f9e14852 1934
06424eac 1935 if (val == NULL)
d01c5877 1936 return;
f9e14852 1937
06424eac
TT
1938 debug_base = value_as_address (val);
1939 if (debug_base == 0)
d01c5877 1940 return;
f9e14852 1941
06424eac
TT
1942 /* Always locate the debug struct, in case it moved. */
1943 info->debug_base = 0;
1944 if (locate_base (info) == 0)
cb736441
GB
1945 {
1946 /* It's possible for the reloc_complete probe to be triggered before
1947 the linker has set the DT_DEBUG pointer (for example, when the
1948 linker has finished relocating an LD_AUDIT library or its
1949 dependencies). Since we can't yet handle libraries from other link
1950 namespaces, we don't lose anything by ignoring them here. */
1951 struct value *link_map_id_val;
1952 try
1953 {
1954 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1955 }
1956 catch (const gdb_exception_error)
1957 {
1958 link_map_id_val = NULL;
1959 }
1960 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1961 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1962 action = DO_NOTHING;
1963 else
1964 return;
1965 }
3bd7e5b7 1966
06424eac
TT
1967 /* GDB does not currently support libraries loaded via dlmopen
1968 into namespaces other than the initial one. We must ignore
1969 any namespace other than the initial namespace here until
1970 support for this is added to GDB. */
1971 if (debug_base != info->debug_base)
1972 action = DO_NOTHING;
f9e14852 1973
06424eac
TT
1974 if (action == UPDATE_OR_RELOAD)
1975 {
a70b8144 1976 try
06424eac
TT
1977 {
1978 val = pa->prob->evaluate_argument (2, frame);
1979 }
230d2906 1980 catch (const gdb_exception_error &ex)
06424eac
TT
1981 {
1982 exception_print (gdb_stderr, ex);
06424eac
TT
1983 return;
1984 }
06424eac
TT
1985
1986 if (val != NULL)
1987 lm = value_as_address (val);
1988
1989 if (lm == 0)
1990 action = FULL_RELOAD;
1991 }
f9e14852 1992
06424eac
TT
1993 /* Resume section map updates. Closing the scope is
1994 sufficient. */
1995 }
f9e14852
GB
1996
1997 if (action == UPDATE_OR_RELOAD)
1998 {
1999 if (!solist_update_incremental (info, lm))
2000 action = FULL_RELOAD;
2001 }
2002
2003 if (action == FULL_RELOAD)
2004 {
2005 if (!solist_update_full (info))
d01c5877 2006 return;
f9e14852
GB
2007 }
2008
d01c5877 2009 cleanup.release ();
f9e14852
GB
2010}
2011
2012/* Helper function for svr4_update_solib_event_breakpoints. */
2013
95da600f
CB
2014static bool
2015svr4_update_solib_event_breakpoint (struct breakpoint *b)
f9e14852
GB
2016{
2017 struct bp_location *loc;
2018
2019 if (b->type != bp_shlib_event)
2020 {
2021 /* Continue iterating. */
95da600f 2022 return false;
f9e14852
GB
2023 }
2024
2025 for (loc = b->loc; loc != NULL; loc = loc->next)
2026 {
2027 struct svr4_info *info;
2028 struct probe_and_action *pa;
2029
09232438 2030 info = solib_svr4_pspace_data.get (loc->pspace);
f9e14852
GB
2031 if (info == NULL || info->probes_table == NULL)
2032 continue;
2033
2034 pa = solib_event_probe_at (info, loc->address);
2035 if (pa == NULL)
2036 continue;
2037
2038 if (pa->action == DO_NOTHING)
2039 {
2040 if (b->enable_state == bp_disabled && stop_on_solib_events)
2041 enable_breakpoint (b);
2042 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2043 disable_breakpoint (b);
2044 }
2045
2046 break;
2047 }
2048
2049 /* Continue iterating. */
95da600f 2050 return false;
f9e14852
GB
2051}
2052
2053/* Enable or disable optional solib event breakpoints as appropriate.
2054 Called whenever stop_on_solib_events is changed. */
2055
2056static void
2057svr4_update_solib_event_breakpoints (void)
2058{
95da600f 2059 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
f9e14852
GB
2060}
2061
2062/* Create and register solib event breakpoints. PROBES is an array
2063 of NUM_PROBES elements, each of which is vector of probes. A
2064 solib event breakpoint will be created and registered for each
2065 probe. */
2066
2067static void
d70cc3ba 2068svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2069 const std::vector<probe *> *probes,
729662a5 2070 struct objfile *objfile)
f9e14852 2071{
45461e0d 2072 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2073 {
2074 enum probe_action action = probe_info[i].action;
f9e14852 2075
45461e0d 2076 for (probe *p : probes[i])
f9e14852 2077 {
935676c9 2078 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2079
2080 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2081 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2082 }
2083 }
2084
2085 svr4_update_solib_event_breakpoints ();
2086}
2087
e661ef01
AH
2088/* Find all the glibc named probes. Only if all of the probes are found, then
2089 create them and return true. Otherwise return false. If WITH_PREFIX is set
2090 then add "rtld" to the front of the probe names. */
2091static bool
2092svr4_find_and_create_probe_breakpoints (svr4_info *info,
2093 struct gdbarch *gdbarch,
2094 struct obj_section *os,
2095 bool with_prefix)
2096{
2097 std::vector<probe *> probes[NUM_PROBES];
e661ef01
AH
2098
2099 for (int i = 0; i < NUM_PROBES; i++)
2100 {
2101 const char *name = probe_info[i].name;
2102 char buf[32];
2103
2104 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2105 version of the probes code in which the probes' names were prefixed
2106 with "rtld_" and the "map_failed" probe did not exist. The locations
2107 of the probes are otherwise the same, so we check for probes with
2108 prefixed names if probes with unprefixed names are not present. */
2109 if (with_prefix)
2110 {
2111 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2112 name = buf;
2113 }
2114
2115 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2116
2117 /* The "map_failed" probe did not exist in early
2118 versions of the probes code in which the probes'
2119 names were prefixed with "rtld_". */
2120 if (with_prefix && streq (name, "rtld_map_failed"))
2121 continue;
2122
2123 /* Ensure at least one probe for the current name was found. */
2124 if (probes[i].empty ())
2125 return false;
2126
2127 /* Ensure probe arguments can be evaluated. */
d90b8f26 2128 for (probe *p : probes[i])
e661ef01 2129 {
e661ef01
AH
2130 if (!p->can_evaluate_arguments ())
2131 return false;
d90b8f26
AH
2132 /* This will fail if the probe is invalid. This has been seen on Arm
2133 due to references to symbols that have been resolved away. */
2134 try
2135 {
2136 p->get_argument_count (gdbarch);
2137 }
2138 catch (const gdb_exception_error &ex)
2139 {
2140 exception_print (gdb_stderr, ex);
2141 warning (_("Initializing probes-based dynamic linker interface "
2142 "failed.\nReverting to original interface."));
2143 return false;
2144 }
e661ef01
AH
2145 }
2146 }
2147
2148 /* All probes found. Now create them. */
2149 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2150 return true;
2151}
2152
f9e14852
GB
2153/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2154 before and after mapping and unmapping shared libraries. The sole
2155 purpose of this method is to allow debuggers to set a breakpoint so
2156 they can track these changes.
2157
2158 Some versions of the glibc dynamic linker contain named probes
2159 to allow more fine grained stopping. Given the address of the
2160 original marker function, this function attempts to find these
2161 probes, and if found, sets breakpoints on those instead. If the
2162 probes aren't found, a single breakpoint is set on the original
2163 marker function. */
2164
2165static void
d70cc3ba 2166svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2167 CORE_ADDR address)
2168{
e661ef01 2169 struct obj_section *os = find_pc_section (address);
f9e14852 2170
e661ef01
AH
2171 if (os == nullptr
2172 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2173 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2174 create_solib_event_breakpoint (gdbarch, address);
f9e14852
GB
2175}
2176
cb457ae2
YQ
2177/* Helper function for gdb_bfd_lookup_symbol. */
2178
2179static int
3953f15c 2180cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2181{
2182 return (strcmp (sym->name, (const char *) data) == 0
2183 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2184}
7f86f058 2185/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2186
2187 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2188 debugger interface, support for arranging for the inferior to hit
2189 a breakpoint after mapping in the shared libraries. This function
2190 enables that breakpoint.
2191
2192 For SunOS, there is a special flag location (in_debugger) which we
2193 set to 1. When the dynamic linker sees this flag set, it will set
2194 a breakpoint at a location known only to itself, after saving the
2195 original contents of that place and the breakpoint address itself,
2196 in it's own internal structures. When we resume the inferior, it
2197 will eventually take a SIGTRAP when it runs into the breakpoint.
2198 We handle this (in a different place) by restoring the contents of
2199 the breakpointed location (which is only known after it stops),
2200 chasing around to locate the shared libraries that have been
2201 loaded, then resuming.
2202
2203 For SVR4, the debugger interface structure contains a member (r_brk)
2204 which is statically initialized at the time the shared library is
2205 built, to the offset of a function (_r_debug_state) which is guaran-
2206 teed to be called once before mapping in a library, and again when
2207 the mapping is complete. At the time we are examining this member,
2208 it contains only the unrelocated offset of the function, so we have
2209 to do our own relocation. Later, when the dynamic linker actually
2210 runs, it relocates r_brk to be the actual address of _r_debug_state().
2211
2212 The debugger interface structure also contains an enumeration which
2213 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2214 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2215 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2216
2217static int
268a4a75 2218enable_break (struct svr4_info *info, int from_tty)
13437d4b 2219{
3b7344d5 2220 struct bound_minimal_symbol msymbol;
bc043ef3 2221 const char * const *bkpt_namep;
13437d4b 2222 asection *interp_sect;
7cd25cfc 2223 CORE_ADDR sym_addr;
13437d4b 2224
6c95b8df
PA
2225 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2226 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2227
7cd25cfc
DJ
2228 /* If we already have a shared library list in the target, and
2229 r_debug contains r_brk, set the breakpoint there - this should
2230 mean r_brk has already been relocated. Assume the dynamic linker
2231 is the object containing r_brk. */
2232
e696b3ad 2233 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2234 sym_addr = 0;
1a816a87
PA
2235 if (info->debug_base && solib_svr4_r_map (info) != 0)
2236 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2237
2238 if (sym_addr != 0)
2239 {
2240 struct obj_section *os;
2241
b36ec657 2242 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2243 (target_gdbarch (),
2244 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2245 sym_addr,
2246 current_top_target ()));
b36ec657 2247
48379de6
DE
2248 /* On at least some versions of Solaris there's a dynamic relocation
2249 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2250 we get control before the dynamic linker has self-relocated.
2251 Check if SYM_ADDR is in a known section, if it is assume we can
2252 trust its value. This is just a heuristic though, it could go away
2253 or be replaced if it's getting in the way.
2254
2255 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2256 however it's spelled in your particular system) is ARM or Thumb.
2257 That knowledge is encoded in the address, if it's Thumb the low bit
2258 is 1. However, we've stripped that info above and it's not clear
2259 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2260 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2261 find_pc_section verifies we know about the address and have some
2262 hope of computing the right kind of breakpoint to use (via
2263 symbol info). It does mean that GDB needs to be pointed at a
2264 non-stripped version of the dynamic linker in order to obtain
2265 information it already knows about. Sigh. */
2266
7cd25cfc
DJ
2267 os = find_pc_section (sym_addr);
2268 if (os != NULL)
2269 {
2270 /* Record the relocated start and end address of the dynamic linker
2271 text and plt section for svr4_in_dynsym_resolve_code. */
2272 bfd *tmp_bfd;
2273 CORE_ADDR load_addr;
2274
2275 tmp_bfd = os->objfile->obfd;
6a053cb1 2276 load_addr = os->objfile->section_offsets[SECT_OFF_TEXT (os->objfile)];
7cd25cfc
DJ
2277
2278 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2279 if (interp_sect)
2280 {
fd361982
AM
2281 info->interp_text_sect_low
2282 = bfd_section_vma (interp_sect) + load_addr;
2283 info->interp_text_sect_high
2284 = info->interp_text_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2285 }
2286 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2287 if (interp_sect)
2288 {
fd361982
AM
2289 info->interp_plt_sect_low
2290 = bfd_section_vma (interp_sect) + load_addr;
2291 info->interp_plt_sect_high
2292 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
7cd25cfc
DJ
2293 }
2294
d70cc3ba 2295 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2296 return 1;
2297 }
2298 }
2299
97ec2c2f 2300 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2301 into the old breakpoint at symbol code. */
17658d46
SM
2302 gdb::optional<gdb::byte_vector> interp_name_holder
2303 = find_program_interpreter ();
2304 if (interp_name_holder)
13437d4b 2305 {
17658d46 2306 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2307 CORE_ADDR load_addr = 0;
2308 int load_addr_found = 0;
2ec9a4f8 2309 int loader_found_in_list = 0;
f8766ec1 2310 struct so_list *so;
2f4950cd 2311 struct target_ops *tmp_bfd_target;
13437d4b 2312
7cd25cfc 2313 sym_addr = 0;
13437d4b
KB
2314
2315 /* Now we need to figure out where the dynamic linker was
2316 loaded so that we can load its symbols and place a breakpoint
2317 in the dynamic linker itself.
2318
2319 This address is stored on the stack. However, I've been unable
2320 to find any magic formula to find it for Solaris (appears to
2321 be trivial on GNU/Linux). Therefore, we have to try an alternate
2322 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2323
192b62ce 2324 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2325 try
f1838a98 2326 {
97ec2c2f 2327 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2328 }
230d2906 2329 catch (const gdb_exception &ex)
492d29ea
PA
2330 {
2331 }
492d29ea 2332
13437d4b
KB
2333 if (tmp_bfd == NULL)
2334 goto bkpt_at_symbol;
2335
2f4950cd 2336 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2337 well as BFD operations can be used. target_bfd_reopen
2338 acquires its own reference. */
2339 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2340
f8766ec1
KB
2341 /* On a running target, we can get the dynamic linker's base
2342 address from the shared library table. */
f8766ec1
KB
2343 so = master_so_list ();
2344 while (so)
8ad2fcde 2345 {
97ec2c2f 2346 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2347 {
2348 load_addr_found = 1;
2ec9a4f8 2349 loader_found_in_list = 1;
192b62ce 2350 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2351 break;
2352 }
f8766ec1 2353 so = so->next;
8ad2fcde
KB
2354 }
2355
8d4e36ba
JB
2356 /* If we were not able to find the base address of the loader
2357 from our so_list, then try using the AT_BASE auxilliary entry. */
2358 if (!load_addr_found)
8b88a78e 2359 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2360 {
f5656ead 2361 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2362
2363 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2364 that `+ load_addr' will overflow CORE_ADDR width not creating
2365 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2366 GDB. */
2367
d182d057 2368 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2369 {
d182d057 2370 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2371 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2372 tmp_bfd_target);
2373
2374 gdb_assert (load_addr < space_size);
2375
2376 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2377 64bit ld.so with 32bit executable, it should not happen. */
2378
2379 if (tmp_entry_point < space_size
2380 && tmp_entry_point + load_addr >= space_size)
2381 load_addr -= space_size;
2382 }
2383
2384 load_addr_found = 1;
2385 }
8d4e36ba 2386
8ad2fcde
KB
2387 /* Otherwise we find the dynamic linker's base address by examining
2388 the current pc (which should point at the entry point for the
8d4e36ba
JB
2389 dynamic linker) and subtracting the offset of the entry point.
2390
2391 This is more fragile than the previous approaches, but is a good
2392 fallback method because it has actually been working well in
2393 most cases. */
8ad2fcde 2394 if (!load_addr_found)
fb14de7b 2395 {
c2250ad1 2396 struct regcache *regcache
5b6d1e4f
PA
2397 = get_thread_arch_regcache (current_inferior ()->process_target (),
2398 inferior_ptid, target_gdbarch ());
433759f7 2399
fb14de7b 2400 load_addr = (regcache_read_pc (regcache)
192b62ce 2401 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2402 }
2ec9a4f8
DJ
2403
2404 if (!loader_found_in_list)
34439770 2405 {
1a816a87
PA
2406 info->debug_loader_name = xstrdup (interp_name);
2407 info->debug_loader_offset_p = 1;
2408 info->debug_loader_offset = load_addr;
e696b3ad 2409 solib_add (NULL, from_tty, auto_solib_add);
34439770 2410 }
13437d4b
KB
2411
2412 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2413 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2414 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2415 if (interp_sect)
2416 {
fd361982
AM
2417 info->interp_text_sect_low
2418 = bfd_section_vma (interp_sect) + load_addr;
2419 info->interp_text_sect_high
2420 = info->interp_text_sect_low + bfd_section_size (interp_sect);
13437d4b 2421 }
192b62ce 2422 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2423 if (interp_sect)
2424 {
fd361982
AM
2425 info->interp_plt_sect_low
2426 = bfd_section_vma (interp_sect) + load_addr;
2427 info->interp_plt_sect_high
2428 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
13437d4b
KB
2429 }
2430
2431 /* Now try to set a breakpoint in the dynamic linker. */
2432 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2433 {
192b62ce
TT
2434 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2435 cmp_name_and_sec_flags,
3953f15c 2436 *bkpt_namep);
13437d4b
KB
2437 if (sym_addr != 0)
2438 break;
2439 }
2440
2bbe3cc1
DJ
2441 if (sym_addr != 0)
2442 /* Convert 'sym_addr' from a function pointer to an address.
2443 Because we pass tmp_bfd_target instead of the current
2444 target, this will always produce an unrelocated value. */
f5656ead 2445 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2446 sym_addr,
2447 tmp_bfd_target);
2448
695c3173
TT
2449 /* We're done with both the temporary bfd and target. Closing
2450 the target closes the underlying bfd, because it holds the
2451 only remaining reference. */
460014f5 2452 target_close (tmp_bfd_target);
13437d4b
KB
2453
2454 if (sym_addr != 0)
2455 {
d70cc3ba 2456 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2457 load_addr + sym_addr);
13437d4b
KB
2458 return 1;
2459 }
2460
2461 /* For whatever reason we couldn't set a breakpoint in the dynamic
2462 linker. Warn and drop into the old code. */
2463 bkpt_at_symbol:
82d03102
PG
2464 warning (_("Unable to find dynamic linker breakpoint function.\n"
2465 "GDB will be unable to debug shared library initializers\n"
2466 "and track explicitly loaded dynamic code."));
13437d4b 2467 }
13437d4b 2468
e499d0f1
DJ
2469 /* Scan through the lists of symbols, trying to look up the symbol and
2470 set a breakpoint there. Terminate loop when we/if we succeed. */
2471
2472 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2473 {
2474 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2475 if ((msymbol.minsym != NULL)
77e371c0 2476 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2477 {
77e371c0 2478 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2479 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2480 sym_addr,
8b88a78e 2481 current_top_target ());
d70cc3ba
SM
2482 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2483 sym_addr);
e499d0f1
DJ
2484 return 1;
2485 }
2486 }
13437d4b 2487
17658d46 2488 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2489 {
c6490bf2 2490 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2491 {
c6490bf2 2492 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2493 if ((msymbol.minsym != NULL)
77e371c0 2494 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2495 {
77e371c0 2496 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2497 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2498 sym_addr,
8b88a78e 2499 current_top_target ());
d70cc3ba
SM
2500 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2501 sym_addr);
c6490bf2
KB
2502 return 1;
2503 }
13437d4b
KB
2504 }
2505 }
542c95c2 2506 return 0;
13437d4b
KB
2507}
2508
d1012b8e 2509/* Read the ELF program headers from ABFD. */
e2a44558 2510
d1012b8e
SM
2511static gdb::optional<gdb::byte_vector>
2512read_program_headers_from_bfd (bfd *abfd)
e2a44558 2513{
d1012b8e
SM
2514 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2515 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2516 if (phdrs_size == 0)
2517 return {};
09919ac2 2518
d1012b8e 2519 gdb::byte_vector buf (phdrs_size);
09919ac2 2520 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2521 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2522 return {};
09919ac2
JK
2523
2524 return buf;
b8040f19
JK
2525}
2526
01c30d6e
JK
2527/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2528 exec_bfd. Otherwise return 0.
2529
2530 We relocate all of the sections by the same amount. This
c378eb4e 2531 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2532 According to the System V Application Binary Interface,
2533 Edition 4.1, page 5-5:
2534
2535 ... Though the system chooses virtual addresses for
2536 individual processes, it maintains the segments' relative
2537 positions. Because position-independent code uses relative
85102364 2538 addressing between segments, the difference between
b8040f19
JK
2539 virtual addresses in memory must match the difference
2540 between virtual addresses in the file. The difference
2541 between the virtual address of any segment in memory and
2542 the corresponding virtual address in the file is thus a
2543 single constant value for any one executable or shared
2544 object in a given process. This difference is the base
2545 address. One use of the base address is to relocate the
2546 memory image of the program during dynamic linking.
2547
2548 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2549 ABI and is left unspecified in some of the earlier editions.
2550
2551 Decide if the objfile needs to be relocated. As indicated above, we will
2552 only be here when execution is stopped. But during attachment PC can be at
2553 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2554 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2555 regcache_read_pc would point to the interpreter and not the main executable.
2556
2557 So, to summarize, relocations are necessary when the start address obtained
2558 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2559
09919ac2
JK
2560 [ The astute reader will note that we also test to make sure that
2561 the executable in question has the DYNAMIC flag set. It is my
2562 opinion that this test is unnecessary (undesirable even). It
2563 was added to avoid inadvertent relocation of an executable
2564 whose e_type member in the ELF header is not ET_DYN. There may
2565 be a time in the future when it is desirable to do relocations
2566 on other types of files as well in which case this condition
2567 should either be removed or modified to accomodate the new file
2568 type. - Kevin, Nov 2000. ] */
b8040f19 2569
01c30d6e
JK
2570static int
2571svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2572{
41752192
JK
2573 /* ENTRY_POINT is a possible function descriptor - before
2574 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2575 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2576
2577 if (exec_bfd == NULL)
2578 return 0;
2579
09919ac2
JK
2580 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2581 being executed themselves and PIE (Position Independent Executable)
2582 executables are ET_DYN. */
2583
2584 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2585 return 0;
2586
8b88a78e 2587 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2588 return 0;
2589
8f61baf8 2590 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2591
8f61baf8 2592 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2593 alignment. It is cheaper than the program headers comparison below. */
2594
2595 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2596 {
2597 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2598
2599 /* p_align of PT_LOAD segments does not specify any alignment but
2600 only congruency of addresses:
2601 p_offset % p_align == p_vaddr % p_align
2602 Kernel is free to load the executable with lower alignment. */
2603
8f61baf8 2604 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2605 return 0;
2606 }
2607
2608 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2609 comparing their program headers. If the program headers in the auxilliary
2610 vector do not match the program headers in the executable, then we are
2611 looking at a different file than the one used by the kernel - for
2612 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2613
2614 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2615 {
d1012b8e 2616 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2617 really do not match. */
0a1e94c7 2618 int arch_size;
09919ac2 2619
17658d46
SM
2620 gdb::optional<gdb::byte_vector> phdrs_target
2621 = read_program_header (-1, &arch_size, NULL);
d1012b8e
SM
2622 gdb::optional<gdb::byte_vector> phdrs_binary
2623 = read_program_headers_from_bfd (exec_bfd);
2624 if (phdrs_target && phdrs_binary)
0a1e94c7 2625 {
f5656ead 2626 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2627
2628 /* We are dealing with three different addresses. EXEC_BFD
2629 represents current address in on-disk file. target memory content
2630 may be different from EXEC_BFD as the file may have been prelinked
2631 to a different address after the executable has been loaded.
2632 Moreover the address of placement in target memory can be
3e43a32a
MS
2633 different from what the program headers in target memory say -
2634 this is the goal of PIE.
0a1e94c7
JK
2635
2636 Detected DISPLACEMENT covers both the offsets of PIE placement and
2637 possible new prelink performed after start of the program. Here
2638 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2639 content offset for the verification purpose. */
2640
d1012b8e 2641 if (phdrs_target->size () != phdrs_binary->size ()
0a1e94c7 2642 || bfd_get_arch_size (exec_bfd) != arch_size)
d1012b8e 2643 return 0;
3e43a32a 2644 else if (arch_size == 32
17658d46
SM
2645 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2646 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7
JK
2647 {
2648 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2649 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2650 CORE_ADDR displacement = 0;
2651 int i;
2652
2653 /* DISPLACEMENT could be found more easily by the difference of
2654 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2655 already have enough information to compute that displacement
2656 with what we've read. */
2657
2658 for (i = 0; i < ehdr2->e_phnum; i++)
2659 if (phdr2[i].p_type == PT_LOAD)
2660 {
2661 Elf32_External_Phdr *phdrp;
2662 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2663 CORE_ADDR vaddr, paddr;
2664 CORE_ADDR displacement_vaddr = 0;
2665 CORE_ADDR displacement_paddr = 0;
2666
17658d46 2667 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2668 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2669 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2670
2671 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2672 byte_order);
2673 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2674
2675 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2676 byte_order);
2677 displacement_paddr = paddr - phdr2[i].p_paddr;
2678
2679 if (displacement_vaddr == displacement_paddr)
2680 displacement = displacement_vaddr;
2681
2682 break;
2683 }
2684
17658d46
SM
2685 /* Now compare program headers from the target and the binary
2686 with optional DISPLACEMENT. */
0a1e94c7 2687
17658d46
SM
2688 for (i = 0;
2689 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2690 i++)
0a1e94c7
JK
2691 {
2692 Elf32_External_Phdr *phdrp;
2693 Elf32_External_Phdr *phdr2p;
2694 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2695 CORE_ADDR vaddr, paddr;
43b8e241 2696 asection *plt2_asect;
0a1e94c7 2697
17658d46 2698 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2699 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2700 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2701 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2702
2703 /* PT_GNU_STACK is an exception by being never relocated by
2704 prelink as its addresses are always zero. */
2705
2706 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2707 continue;
2708
2709 /* Check also other adjustment combinations - PR 11786. */
2710
3e43a32a
MS
2711 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2712 byte_order);
0a1e94c7
JK
2713 vaddr -= displacement;
2714 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2715
3e43a32a
MS
2716 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2717 byte_order);
0a1e94c7
JK
2718 paddr -= displacement;
2719 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2720
2721 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2722 continue;
2723
204b5331
DE
2724 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2725 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2726 Strip also modifies memsz of PT_TLS.
204b5331 2727 See PR 11786. */
c44deb73
SM
2728 if (phdr2[i].p_type == PT_GNU_RELRO
2729 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2730 {
2731 Elf32_External_Phdr tmp_phdr = *phdrp;
2732 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2733
2734 memset (tmp_phdr.p_filesz, 0, 4);
2735 memset (tmp_phdr.p_memsz, 0, 4);
2736 memset (tmp_phdr.p_flags, 0, 4);
2737 memset (tmp_phdr.p_align, 0, 4);
2738 memset (tmp_phdr2.p_filesz, 0, 4);
2739 memset (tmp_phdr2.p_memsz, 0, 4);
2740 memset (tmp_phdr2.p_flags, 0, 4);
2741 memset (tmp_phdr2.p_align, 0, 4);
2742
2743 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2744 == 0)
2745 continue;
2746 }
2747
43b8e241
JK
2748 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2749 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2750 if (plt2_asect)
2751 {
2752 int content2;
2753 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2754 CORE_ADDR filesz;
2755
fd361982 2756 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2757 & SEC_HAS_CONTENTS) != 0;
2758
2759 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2760 byte_order);
2761
2762 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2763 FILESZ is from the in-memory image. */
2764 if (content2)
fd361982 2765 filesz += bfd_section_size (plt2_asect);
43b8e241 2766 else
fd361982 2767 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2768
2769 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2770 filesz);
2771
2772 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2773 continue;
2774 }
2775
d1012b8e 2776 return 0;
0a1e94c7
JK
2777 }
2778 }
3e43a32a 2779 else if (arch_size == 64
17658d46
SM
2780 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2781 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7
JK
2782 {
2783 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2784 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2785 CORE_ADDR displacement = 0;
2786 int i;
2787
2788 /* DISPLACEMENT could be found more easily by the difference of
2789 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2790 already have enough information to compute that displacement
2791 with what we've read. */
2792
2793 for (i = 0; i < ehdr2->e_phnum; i++)
2794 if (phdr2[i].p_type == PT_LOAD)
2795 {
2796 Elf64_External_Phdr *phdrp;
2797 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2798 CORE_ADDR vaddr, paddr;
2799 CORE_ADDR displacement_vaddr = 0;
2800 CORE_ADDR displacement_paddr = 0;
2801
17658d46 2802 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2803 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2804 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2805
2806 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2807 byte_order);
2808 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2809
2810 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2811 byte_order);
2812 displacement_paddr = paddr - phdr2[i].p_paddr;
2813
2814 if (displacement_vaddr == displacement_paddr)
2815 displacement = displacement_vaddr;
2816
2817 break;
2818 }
2819
2820 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2821
17658d46
SM
2822 for (i = 0;
2823 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2824 i++)
0a1e94c7
JK
2825 {
2826 Elf64_External_Phdr *phdrp;
2827 Elf64_External_Phdr *phdr2p;
2828 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2829 CORE_ADDR vaddr, paddr;
43b8e241 2830 asection *plt2_asect;
0a1e94c7 2831
17658d46 2832 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2833 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2834 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2835 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2836
2837 /* PT_GNU_STACK is an exception by being never relocated by
2838 prelink as its addresses are always zero. */
2839
2840 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2841 continue;
2842
2843 /* Check also other adjustment combinations - PR 11786. */
2844
3e43a32a
MS
2845 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2846 byte_order);
0a1e94c7
JK
2847 vaddr -= displacement;
2848 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2849
3e43a32a
MS
2850 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2851 byte_order);
0a1e94c7
JK
2852 paddr -= displacement;
2853 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2854
2855 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2856 continue;
2857
204b5331
DE
2858 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2859 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2860 Strip also modifies memsz of PT_TLS.
204b5331 2861 See PR 11786. */
c44deb73
SM
2862 if (phdr2[i].p_type == PT_GNU_RELRO
2863 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2864 {
2865 Elf64_External_Phdr tmp_phdr = *phdrp;
2866 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2867
2868 memset (tmp_phdr.p_filesz, 0, 8);
2869 memset (tmp_phdr.p_memsz, 0, 8);
2870 memset (tmp_phdr.p_flags, 0, 4);
2871 memset (tmp_phdr.p_align, 0, 8);
2872 memset (tmp_phdr2.p_filesz, 0, 8);
2873 memset (tmp_phdr2.p_memsz, 0, 8);
2874 memset (tmp_phdr2.p_flags, 0, 4);
2875 memset (tmp_phdr2.p_align, 0, 8);
2876
2877 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2878 == 0)
2879 continue;
2880 }
2881
43b8e241
JK
2882 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2883 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2884 if (plt2_asect)
2885 {
2886 int content2;
2887 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2888 CORE_ADDR filesz;
2889
fd361982 2890 content2 = (bfd_section_flags (plt2_asect)
43b8e241
JK
2891 & SEC_HAS_CONTENTS) != 0;
2892
2893 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2894 byte_order);
2895
2896 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2897 FILESZ is from the in-memory image. */
2898 if (content2)
fd361982 2899 filesz += bfd_section_size (plt2_asect);
43b8e241 2900 else
fd361982 2901 filesz -= bfd_section_size (plt2_asect);
43b8e241
JK
2902
2903 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2904 filesz);
2905
2906 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2907 continue;
2908 }
2909
d1012b8e 2910 return 0;
0a1e94c7
JK
2911 }
2912 }
2913 else
d1012b8e 2914 return 0;
0a1e94c7 2915 }
09919ac2 2916 }
b8040f19 2917
ccf26247
JK
2918 if (info_verbose)
2919 {
2920 /* It can be printed repeatedly as there is no easy way to check
2921 the executable symbols/file has been already relocated to
2922 displacement. */
2923
2924 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2925 "displacement %s for \"%s\".\n"),
8f61baf8 2926 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2927 bfd_get_filename (exec_bfd));
2928 }
2929
8f61baf8 2930 *displacementp = exec_displacement;
01c30d6e 2931 return 1;
b8040f19
JK
2932}
2933
2934/* Relocate the main executable. This function should be called upon
c378eb4e 2935 stopping the inferior process at the entry point to the program.
b8040f19
JK
2936 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2937 different, the main executable is relocated by the proper amount. */
2938
2939static void
2940svr4_relocate_main_executable (void)
2941{
01c30d6e
JK
2942 CORE_ADDR displacement;
2943
4e5799b6
JK
2944 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2945 probably contains the offsets computed using the PIE displacement
2946 from the previous run, which of course are irrelevant for this run.
2947 So we need to determine the new PIE displacement and recompute the
2948 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2949 already contains pre-computed offsets.
01c30d6e 2950
4e5799b6 2951 If we cannot compute the PIE displacement, either:
01c30d6e 2952
4e5799b6
JK
2953 - The executable is not PIE.
2954
2955 - SYMFILE_OBJFILE does not match the executable started in the target.
2956 This can happen for main executable symbols loaded at the host while
2957 `ld.so --ld-args main-executable' is loaded in the target.
2958
2959 Then we leave the section offsets untouched and use them as is for
2960 this run. Either:
2961
2962 - These section offsets were properly reset earlier, and thus
2963 already contain the correct values. This can happen for instance
2964 when reconnecting via the remote protocol to a target that supports
2965 the `qOffsets' packet.
2966
2967 - The section offsets were not reset earlier, and the best we can
c378eb4e 2968 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2969
2970 if (! svr4_exec_displacement (&displacement))
2971 return;
b8040f19 2972
01c30d6e
JK
2973 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2974 addresses. */
b8040f19
JK
2975
2976 if (symfile_objfile)
e2a44558 2977 {
6a053cb1
TT
2978 section_offsets new_offsets (symfile_objfile->section_offsets.size (),
2979 displacement);
b8040f19 2980 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2981 }
51bee8e9
JK
2982 else if (exec_bfd)
2983 {
2984 asection *asect;
2985
2986 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2987 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
fd361982 2988 bfd_section_vma (asect) + displacement);
51bee8e9 2989 }
e2a44558
KB
2990}
2991
7f86f058 2992/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2993
2994 For SVR4 executables, this first instruction is either the first
2995 instruction in the dynamic linker (for dynamically linked
2996 executables) or the instruction at "start" for statically linked
2997 executables. For dynamically linked executables, the system
2998 first exec's /lib/libc.so.N, which contains the dynamic linker,
2999 and starts it running. The dynamic linker maps in any needed
3000 shared libraries, maps in the actual user executable, and then
3001 jumps to "start" in the user executable.
3002
7f86f058
PA
3003 We can arrange to cooperate with the dynamic linker to discover the
3004 names of shared libraries that are dynamically linked, and the base
3005 addresses to which they are linked.
13437d4b
KB
3006
3007 This function is responsible for discovering those names and
3008 addresses, and saving sufficient information about them to allow
d2e5c99a 3009 their symbols to be read at a later time. */
13437d4b 3010
e2a44558 3011static void
268a4a75 3012svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3013{
1a816a87
PA
3014 struct svr4_info *info;
3015
d70cc3ba 3016 info = get_svr4_info (current_program_space);
2020b7ab 3017
f9e14852
GB
3018 /* Clear the probes-based interface's state. */
3019 free_probes_table (info);
3020 free_solib_list (info);
3021
e2a44558 3022 /* Relocate the main executable if necessary. */
86e4bafc 3023 svr4_relocate_main_executable ();
e2a44558 3024
c91c8c16
PA
3025 /* No point setting a breakpoint in the dynamic linker if we can't
3026 hit it (e.g., a core file, or a trace file). */
3027 if (!target_has_execution)
3028 return;
3029
d5a921c9 3030 if (!svr4_have_link_map_offsets ())
513f5903 3031 return;
d5a921c9 3032
268a4a75 3033 if (!enable_break (info, from_tty))
542c95c2 3034 return;
13437d4b
KB
3035}
3036
3037static void
3038svr4_clear_solib (void)
3039{
6c95b8df
PA
3040 struct svr4_info *info;
3041
d70cc3ba 3042 info = get_svr4_info (current_program_space);
6c95b8df
PA
3043 info->debug_base = 0;
3044 info->debug_loader_offset_p = 0;
3045 info->debug_loader_offset = 0;
3046 xfree (info->debug_loader_name);
3047 info->debug_loader_name = NULL;
13437d4b
KB
3048}
3049
6bb7be43
JB
3050/* Clear any bits of ADDR that wouldn't fit in a target-format
3051 data pointer. "Data pointer" here refers to whatever sort of
3052 address the dynamic linker uses to manage its sections. At the
3053 moment, we don't support shared libraries on any processors where
3054 code and data pointers are different sizes.
3055
3056 This isn't really the right solution. What we really need here is
3057 a way to do arithmetic on CORE_ADDR values that respects the
3058 natural pointer/address correspondence. (For example, on the MIPS,
3059 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3060 sign-extend the value. There, simply truncating the bits above
819844ad 3061 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3062 be a new gdbarch method or something. */
3063static CORE_ADDR
3064svr4_truncate_ptr (CORE_ADDR addr)
3065{
f5656ead 3066 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3067 /* We don't need to truncate anything, and the bit twiddling below
3068 will fail due to overflow problems. */
3069 return addr;
3070 else
f5656ead 3071 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3072}
3073
3074
749499cb
KB
3075static void
3076svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3077 struct target_section *sec)
749499cb 3078{
2b2848e2
DE
3079 bfd *abfd = sec->the_bfd_section->owner;
3080
3081 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3082 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3083}
4b188b9f 3084\f
749499cb 3085
4b188b9f 3086/* Architecture-specific operations. */
6bb7be43 3087
4b188b9f
MK
3088/* Per-architecture data key. */
3089static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3090
4b188b9f 3091struct solib_svr4_ops
e5e2b9ff 3092{
4b188b9f
MK
3093 /* Return a description of the layout of `struct link_map'. */
3094 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3095};
e5e2b9ff 3096
4b188b9f 3097/* Return a default for the architecture-specific operations. */
e5e2b9ff 3098
4b188b9f
MK
3099static void *
3100solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3101{
4b188b9f 3102 struct solib_svr4_ops *ops;
e5e2b9ff 3103
4b188b9f 3104 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3105 ops->fetch_link_map_offsets = NULL;
4b188b9f 3106 return ops;
e5e2b9ff
KB
3107}
3108
4b188b9f 3109/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3110 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3111
21479ded 3112void
e5e2b9ff
KB
3113set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3114 struct link_map_offsets *(*flmo) (void))
21479ded 3115{
19ba03f4
SM
3116 struct solib_svr4_ops *ops
3117 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3118
3119 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3120
3121 set_solib_ops (gdbarch, &svr4_so_ops);
626ca2c0
CB
3122 set_gdbarch_iterate_over_objfiles_in_search_order
3123 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
21479ded
KB
3124}
3125
4b188b9f
MK
3126/* Fetch a link_map_offsets structure using the architecture-specific
3127 `struct link_map_offsets' fetcher. */
1c4dcb57 3128
4b188b9f
MK
3129static struct link_map_offsets *
3130svr4_fetch_link_map_offsets (void)
21479ded 3131{
19ba03f4
SM
3132 struct solib_svr4_ops *ops
3133 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3134 solib_svr4_data);
4b188b9f
MK
3135
3136 gdb_assert (ops->fetch_link_map_offsets);
3137 return ops->fetch_link_map_offsets ();
21479ded
KB
3138}
3139
4b188b9f
MK
3140/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3141
3142static int
3143svr4_have_link_map_offsets (void)
3144{
19ba03f4
SM
3145 struct solib_svr4_ops *ops
3146 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3147 solib_svr4_data);
433759f7 3148
4b188b9f
MK
3149 return (ops->fetch_link_map_offsets != NULL);
3150}
3151\f
3152
e4bbbda8
MK
3153/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3154 `struct r_debug' and a `struct link_map' that are binary compatible
85102364 3155 with the original SVR4 implementation. */
e4bbbda8
MK
3156
3157/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3158 for an ILP32 SVR4 system. */
d989b283 3159
e4bbbda8
MK
3160struct link_map_offsets *
3161svr4_ilp32_fetch_link_map_offsets (void)
3162{
3163 static struct link_map_offsets lmo;
3164 static struct link_map_offsets *lmp = NULL;
3165
3166 if (lmp == NULL)
3167 {
3168 lmp = &lmo;
3169
e4cd0d6a
MK
3170 lmo.r_version_offset = 0;
3171 lmo.r_version_size = 4;
e4bbbda8 3172 lmo.r_map_offset = 4;
7cd25cfc 3173 lmo.r_brk_offset = 8;
e4cd0d6a 3174 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3175
3176 /* Everything we need is in the first 20 bytes. */
3177 lmo.link_map_size = 20;
3178 lmo.l_addr_offset = 0;
e4bbbda8 3179 lmo.l_name_offset = 4;
cc10cae3 3180 lmo.l_ld_offset = 8;
e4bbbda8 3181 lmo.l_next_offset = 12;
e4bbbda8 3182 lmo.l_prev_offset = 16;
e4bbbda8
MK
3183 }
3184
3185 return lmp;
3186}
3187
3188/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3189 for an LP64 SVR4 system. */
d989b283 3190
e4bbbda8
MK
3191struct link_map_offsets *
3192svr4_lp64_fetch_link_map_offsets (void)
3193{
3194 static struct link_map_offsets lmo;
3195 static struct link_map_offsets *lmp = NULL;
3196
3197 if (lmp == NULL)
3198 {
3199 lmp = &lmo;
3200
e4cd0d6a
MK
3201 lmo.r_version_offset = 0;
3202 lmo.r_version_size = 4;
e4bbbda8 3203 lmo.r_map_offset = 8;
7cd25cfc 3204 lmo.r_brk_offset = 16;
e4cd0d6a 3205 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3206
3207 /* Everything we need is in the first 40 bytes. */
3208 lmo.link_map_size = 40;
3209 lmo.l_addr_offset = 0;
e4bbbda8 3210 lmo.l_name_offset = 8;
cc10cae3 3211 lmo.l_ld_offset = 16;
e4bbbda8 3212 lmo.l_next_offset = 24;
e4bbbda8 3213 lmo.l_prev_offset = 32;
e4bbbda8
MK
3214 }
3215
3216 return lmp;
3217}
3218\f
3219
7d522c90 3220struct target_so_ops svr4_so_ops;
13437d4b 3221
626ca2c0 3222/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3223 different rule for symbol lookup. The lookup begins here in the DSO, not in
3224 the main executable. */
3225
626ca2c0
CB
3226static void
3227svr4_iterate_over_objfiles_in_search_order
3228 (struct gdbarch *gdbarch,
3229 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3230 void *cb_data, struct objfile *current_objfile)
3a40aaa0 3231{
626ca2c0
CB
3232 bool checked_current_objfile = false;
3233 if (current_objfile != nullptr)
61f0d762 3234 {
626ca2c0 3235 bfd *abfd;
61f0d762 3236
626ca2c0
CB
3237 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3238 current_objfile = current_objfile->separate_debug_objfile_backlink;
61f0d762 3239
626ca2c0
CB
3240 if (current_objfile == symfile_objfile)
3241 abfd = exec_bfd;
3242 else
3243 abfd = current_objfile->obfd;
3244
7ab78ccb
SM
3245 if (abfd != nullptr
3246 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
626ca2c0
CB
3247 {
3248 checked_current_objfile = true;
3249 if (cb (current_objfile, cb_data) != 0)
3250 return;
3251 }
3252 }
3a40aaa0 3253
626ca2c0
CB
3254 for (objfile *objfile : current_program_space->objfiles ())
3255 {
3256 if (checked_current_objfile && objfile == current_objfile)
3257 continue;
3258 if (cb (objfile, cb_data) != 0)
3259 return;
3260 }
3a40aaa0
UW
3261}
3262
13437d4b
KB
3263void
3264_initialize_svr4_solib (void)
3265{
4b188b9f
MK
3266 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3267
749499cb 3268 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3269 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3270 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3271 svr4_so_ops.clear_solib = svr4_clear_solib;
3272 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3273 svr4_so_ops.current_sos = svr4_current_sos;
3274 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3275 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3276 svr4_so_ops.bfd_open = solib_bfd_open;
a7c02bc8 3277 svr4_so_ops.same = svr4_same;
de18c1d8 3278 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3279 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3280 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35
PA
3281
3282 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
13437d4b 3283}
This page took 2.272658 seconds and 4 git commands to generate.