Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / stap-probe.c
CommitLineData
55aa24fb
SDJ
1/* SystemTap probe support for GDB.
2
32d0add0 3 Copyright (C) 2012-2015 Free Software Foundation, Inc.
55aa24fb
SDJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "stap-probe.h"
22#include "probe.h"
23#include "vec.h"
24#include "ui-out.h"
25#include "objfiles.h"
26#include "arch-utils.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "filenames.h"
30#include "value.h"
55aa24fb
SDJ
31#include "ax.h"
32#include "ax-gdb.h"
33#include "complaints.h"
34#include "cli/cli-utils.h"
35#include "linespec.h"
36#include "user-regs.h"
37#include "parser-defs.h"
38#include "language.h"
39#include "elf-bfd.h"
40
41#include <ctype.h>
42
43/* The name of the SystemTap section where we will find information about
44 the probes. */
45
46#define STAP_BASE_SECTION_NAME ".stapsdt.base"
47
48/* Forward declaration. */
49
e36122e9 50extern const struct probe_ops stap_probe_ops;
55aa24fb
SDJ
51
52/* Should we display debug information for the probe's argument expression
53 parsing? */
54
ccce17b0 55static unsigned int stap_expression_debug = 0;
55aa24fb
SDJ
56
57/* The various possibilities of bitness defined for a probe's argument.
58
59 The relationship is:
60
61 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
30a1e6cc
SDJ
62 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'.
63 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'.
64 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'.
65 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'.
55aa24fb
SDJ
66 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
67 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
68 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
69 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
70
71enum stap_arg_bitness
72{
73 STAP_ARG_BITNESS_UNDEFINED,
30a1e6cc
SDJ
74 STAP_ARG_BITNESS_8BIT_UNSIGNED,
75 STAP_ARG_BITNESS_8BIT_SIGNED,
76 STAP_ARG_BITNESS_16BIT_UNSIGNED,
77 STAP_ARG_BITNESS_16BIT_SIGNED,
55aa24fb
SDJ
78 STAP_ARG_BITNESS_32BIT_UNSIGNED,
79 STAP_ARG_BITNESS_32BIT_SIGNED,
80 STAP_ARG_BITNESS_64BIT_UNSIGNED,
81 STAP_ARG_BITNESS_64BIT_SIGNED,
82};
83
84/* The following structure represents a single argument for the probe. */
85
86struct stap_probe_arg
87{
88 /* The bitness of this argument. */
89 enum stap_arg_bitness bitness;
90
91 /* The corresponding `struct type *' to the bitness. */
92 struct type *atype;
93
94 /* The argument converted to an internal GDB expression. */
95 struct expression *aexpr;
96};
97
98typedef struct stap_probe_arg stap_probe_arg_s;
99DEF_VEC_O (stap_probe_arg_s);
100
101struct stap_probe
102{
103 /* Generic information about the probe. This shall be the first element
104 of this struct, in order to maintain binary compatibility with the
105 `struct probe' and be able to fully abstract it. */
106 struct probe p;
107
108 /* If the probe has a semaphore associated, then this is the value of
729662a5 109 it, relative to SECT_OFF_DATA. */
55aa24fb
SDJ
110 CORE_ADDR sem_addr;
111
97c2dca0 112 /* One if the arguments have been parsed. */
55aa24fb 113 unsigned int args_parsed : 1;
97c2dca0 114
55aa24fb
SDJ
115 union
116 {
117 const char *text;
118
119 /* Information about each argument. This is an array of `stap_probe_arg',
120 with each entry representing one argument. */
121 VEC (stap_probe_arg_s) *vec;
122 }
123 args_u;
124};
125
126/* When parsing the arguments, we have to establish different precedences
127 for the various kinds of asm operators. This enumeration represents those
128 precedences.
129
130 This logic behind this is available at
131 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
132 the command "info '(as)Infix Ops'". */
133
134enum stap_operand_prec
135{
136 /* Lowest precedence, used for non-recognized operands or for the beginning
137 of the parsing process. */
138 STAP_OPERAND_PREC_NONE = 0,
139
140 /* Precedence of logical OR. */
141 STAP_OPERAND_PREC_LOGICAL_OR,
142
143 /* Precedence of logical AND. */
144 STAP_OPERAND_PREC_LOGICAL_AND,
145
146 /* Precedence of additive (plus, minus) and comparative (equal, less,
147 greater-than, etc) operands. */
148 STAP_OPERAND_PREC_ADD_CMP,
149
150 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
151 logical NOT). */
152 STAP_OPERAND_PREC_BITWISE,
153
154 /* Precedence of multiplicative operands (multiplication, division,
155 remainder, left shift and right shift). */
156 STAP_OPERAND_PREC_MUL
157};
158
159static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
160 enum stap_operand_prec prec);
161
162static void stap_parse_argument_conditionally (struct stap_parse_info *p);
163
164/* Returns 1 if *S is an operator, zero otherwise. */
165
fcf57f19 166static int stap_is_operator (const char *op);
55aa24fb
SDJ
167
168static void
169show_stapexpressiondebug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
173 value);
174}
175
176/* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
177 if the operator code was not recognized. */
178
179static enum stap_operand_prec
180stap_get_operator_prec (enum exp_opcode op)
181{
182 switch (op)
183 {
184 case BINOP_LOGICAL_OR:
185 return STAP_OPERAND_PREC_LOGICAL_OR;
186
187 case BINOP_LOGICAL_AND:
188 return STAP_OPERAND_PREC_LOGICAL_AND;
189
190 case BINOP_ADD:
191 case BINOP_SUB:
192 case BINOP_EQUAL:
193 case BINOP_NOTEQUAL:
194 case BINOP_LESS:
195 case BINOP_LEQ:
196 case BINOP_GTR:
197 case BINOP_GEQ:
198 return STAP_OPERAND_PREC_ADD_CMP;
199
200 case BINOP_BITWISE_IOR:
201 case BINOP_BITWISE_AND:
202 case BINOP_BITWISE_XOR:
203 case UNOP_LOGICAL_NOT:
204 return STAP_OPERAND_PREC_BITWISE;
205
206 case BINOP_MUL:
207 case BINOP_DIV:
208 case BINOP_REM:
209 case BINOP_LSH:
210 case BINOP_RSH:
211 return STAP_OPERAND_PREC_MUL;
212
213 default:
214 return STAP_OPERAND_PREC_NONE;
215 }
216}
217
218/* Given S, read the operator in it and fills the OP pointer with its code.
219 Return 1 on success, zero if the operator was not recognized. */
220
fcf57f19
SDJ
221static enum exp_opcode
222stap_get_opcode (const char **s)
55aa24fb
SDJ
223{
224 const char c = **s;
fcf57f19 225 enum exp_opcode op;
55aa24fb
SDJ
226
227 *s += 1;
228
229 switch (c)
230 {
231 case '*':
fcf57f19 232 op = BINOP_MUL;
55aa24fb
SDJ
233 break;
234
235 case '/':
fcf57f19 236 op = BINOP_DIV;
55aa24fb
SDJ
237 break;
238
239 case '%':
fcf57f19 240 op = BINOP_REM;
55aa24fb
SDJ
241 break;
242
243 case '<':
fcf57f19 244 op = BINOP_LESS;
55aa24fb
SDJ
245 if (**s == '<')
246 {
247 *s += 1;
fcf57f19 248 op = BINOP_LSH;
55aa24fb
SDJ
249 }
250 else if (**s == '=')
251 {
252 *s += 1;
fcf57f19 253 op = BINOP_LEQ;
55aa24fb
SDJ
254 }
255 else if (**s == '>')
256 {
257 *s += 1;
fcf57f19 258 op = BINOP_NOTEQUAL;
55aa24fb
SDJ
259 }
260 break;
261
262 case '>':
fcf57f19 263 op = BINOP_GTR;
55aa24fb
SDJ
264 if (**s == '>')
265 {
266 *s += 1;
fcf57f19 267 op = BINOP_RSH;
55aa24fb
SDJ
268 }
269 else if (**s == '=')
270 {
271 *s += 1;
fcf57f19 272 op = BINOP_GEQ;
55aa24fb
SDJ
273 }
274 break;
275
276 case '|':
fcf57f19 277 op = BINOP_BITWISE_IOR;
55aa24fb
SDJ
278 if (**s == '|')
279 {
280 *s += 1;
fcf57f19 281 op = BINOP_LOGICAL_OR;
55aa24fb
SDJ
282 }
283 break;
284
285 case '&':
fcf57f19 286 op = BINOP_BITWISE_AND;
55aa24fb
SDJ
287 if (**s == '&')
288 {
289 *s += 1;
fcf57f19 290 op = BINOP_LOGICAL_AND;
55aa24fb
SDJ
291 }
292 break;
293
294 case '^':
fcf57f19 295 op = BINOP_BITWISE_XOR;
55aa24fb
SDJ
296 break;
297
298 case '!':
fcf57f19 299 op = UNOP_LOGICAL_NOT;
55aa24fb
SDJ
300 break;
301
302 case '+':
fcf57f19 303 op = BINOP_ADD;
55aa24fb
SDJ
304 break;
305
306 case '-':
fcf57f19 307 op = BINOP_SUB;
55aa24fb
SDJ
308 break;
309
310 case '=':
fcf57f19
SDJ
311 gdb_assert (**s == '=');
312 op = BINOP_EQUAL;
55aa24fb
SDJ
313 break;
314
315 default:
fcf57f19
SDJ
316 internal_error (__FILE__, __LINE__,
317 _("Invalid opcode in expression `%s' for SystemTap"
318 "probe"), *s);
55aa24fb
SDJ
319 }
320
fcf57f19 321 return op;
55aa24fb
SDJ
322}
323
324/* Given the bitness of the argument, represented by B, return the
325 corresponding `struct type *'. */
326
327static struct type *
328stap_get_expected_argument_type (struct gdbarch *gdbarch,
329 enum stap_arg_bitness b)
330{
331 switch (b)
332 {
333 case STAP_ARG_BITNESS_UNDEFINED:
334 if (gdbarch_addr_bit (gdbarch) == 32)
335 return builtin_type (gdbarch)->builtin_uint32;
336 else
337 return builtin_type (gdbarch)->builtin_uint64;
338
30a1e6cc
SDJ
339 case STAP_ARG_BITNESS_8BIT_UNSIGNED:
340 return builtin_type (gdbarch)->builtin_uint8;
341
342 case STAP_ARG_BITNESS_8BIT_SIGNED:
343 return builtin_type (gdbarch)->builtin_int8;
344
345 case STAP_ARG_BITNESS_16BIT_UNSIGNED:
346 return builtin_type (gdbarch)->builtin_uint16;
347
348 case STAP_ARG_BITNESS_16BIT_SIGNED:
349 return builtin_type (gdbarch)->builtin_int16;
350
55aa24fb
SDJ
351 case STAP_ARG_BITNESS_32BIT_SIGNED:
352 return builtin_type (gdbarch)->builtin_int32;
353
354 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
355 return builtin_type (gdbarch)->builtin_uint32;
356
357 case STAP_ARG_BITNESS_64BIT_SIGNED:
358 return builtin_type (gdbarch)->builtin_int64;
359
360 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
361 return builtin_type (gdbarch)->builtin_uint64;
362
363 default:
364 internal_error (__FILE__, __LINE__,
365 _("Undefined bitness for probe."));
366 break;
367 }
368}
369
05c0465e
SDJ
370/* Helper function to check for a generic list of prefixes. GDBARCH
371 is the current gdbarch being used. S is the expression being
372 analyzed. If R is not NULL, it will be used to return the found
373 prefix. PREFIXES is the list of expected prefixes.
374
375 This function does a case-insensitive match.
376
377 Return 1 if any prefix has been found, zero otherwise. */
378
379static int
380stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
381 const char **r, const char *const *prefixes)
382{
383 const char *const *p;
384
385 if (prefixes == NULL)
386 {
387 if (r != NULL)
388 *r = "";
389
390 return 1;
391 }
392
393 for (p = prefixes; *p != NULL; ++p)
97c2dca0
SDJ
394 if (strncasecmp (s, *p, strlen (*p)) == 0)
395 {
396 if (r != NULL)
397 *r = *p;
05c0465e 398
97c2dca0
SDJ
399 return 1;
400 }
05c0465e
SDJ
401
402 return 0;
403}
404
405/* Return 1 if S points to a register prefix, zero otherwise. For a
406 description of the arguments, look at stap_is_generic_prefix. */
407
408static int
409stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
410 const char **r)
411{
412 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
413
414 return stap_is_generic_prefix (gdbarch, s, r, t);
415}
416
417/* Return 1 if S points to a register indirection prefix, zero
418 otherwise. For a description of the arguments, look at
419 stap_is_generic_prefix. */
420
421static int
422stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
423 const char **r)
424{
425 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
426
427 return stap_is_generic_prefix (gdbarch, s, r, t);
428}
429
430/* Return 1 if S points to an integer prefix, zero otherwise. For a
431 description of the arguments, look at stap_is_generic_prefix.
432
433 This function takes care of analyzing whether we are dealing with
434 an expected integer prefix, or, if there is no integer prefix to be
435 expected, whether we are dealing with a digit. It does a
436 case-insensitive match. */
437
438static int
439stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
440 const char **r)
441{
442 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
443 const char *const *p;
444
445 if (t == NULL)
446 {
447 /* A NULL value here means that integers do not have a prefix.
448 We just check for a digit then. */
449 if (r != NULL)
450 *r = "";
451
452 return isdigit (*s);
453 }
454
455 for (p = t; *p != NULL; ++p)
456 {
457 size_t len = strlen (*p);
458
459 if ((len == 0 && isdigit (*s))
460 || (len > 0 && strncasecmp (s, *p, len) == 0))
461 {
462 /* Integers may or may not have a prefix. The "len == 0"
463 check covers the case when integers do not have a prefix
464 (therefore, we just check if we have a digit). The call
465 to "strncasecmp" covers the case when they have a
466 prefix. */
467 if (r != NULL)
468 *r = *p;
469
470 return 1;
471 }
472 }
473
474 return 0;
475}
476
477/* Helper function to check for a generic list of suffixes. If we are
478 not expecting any suffixes, then it just returns 1. If we are
479 expecting at least one suffix, then it returns 1 if a suffix has
480 been found, zero otherwise. GDBARCH is the current gdbarch being
481 used. S is the expression being analyzed. If R is not NULL, it
482 will be used to return the found suffix. SUFFIXES is the list of
483 expected suffixes. This function does a case-insensitive
484 match. */
485
486static int
487stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
488 const char **r, const char *const *suffixes)
489{
490 const char *const *p;
491 int found = 0;
492
493 if (suffixes == NULL)
494 {
495 if (r != NULL)
496 *r = "";
497
498 return 1;
499 }
500
501 for (p = suffixes; *p != NULL; ++p)
502 if (strncasecmp (s, *p, strlen (*p)) == 0)
503 {
504 if (r != NULL)
505 *r = *p;
506
507 found = 1;
508 break;
509 }
510
511 return found;
512}
513
514/* Return 1 if S points to an integer suffix, zero otherwise. For a
515 description of the arguments, look at
516 stap_generic_check_suffix. */
517
518static int
519stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
520 const char **r)
521{
522 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
523
524 return stap_generic_check_suffix (gdbarch, s, r, p);
525}
526
527/* Return 1 if S points to a register suffix, zero otherwise. For a
528 description of the arguments, look at
529 stap_generic_check_suffix. */
530
531static int
532stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
533 const char **r)
534{
535 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
536
537 return stap_generic_check_suffix (gdbarch, s, r, p);
538}
539
540/* Return 1 if S points to a register indirection suffix, zero
541 otherwise. For a description of the arguments, look at
542 stap_generic_check_suffix. */
543
544static int
545stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
546 const char **r)
547{
548 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
549
550 return stap_generic_check_suffix (gdbarch, s, r, p);
551}
552
55aa24fb
SDJ
553/* Function responsible for parsing a register operand according to
554 SystemTap parlance. Assuming:
555
556 RP = register prefix
557 RS = register suffix
558 RIP = register indirection prefix
559 RIS = register indirection suffix
560
561 Then a register operand can be:
562
563 [RIP] [RP] REGISTER [RS] [RIS]
564
565 This function takes care of a register's indirection, displacement and
566 direct access. It also takes into consideration the fact that some
567 registers are named differently inside and outside GDB, e.g., PPC's
568 general-purpose registers are represented by integers in the assembly
569 language (e.g., `15' is the 15th general-purpose register), but inside
570 GDB they have a prefix (the letter `r') appended. */
571
572static void
573stap_parse_register_operand (struct stap_parse_info *p)
574{
575 /* Simple flag to indicate whether we have seen a minus signal before
576 certain number. */
577 int got_minus = 0;
55aa24fb
SDJ
578 /* Flags to indicate whether this register access is being displaced and/or
579 indirected. */
580 int disp_p = 0, indirect_p = 0;
581 struct gdbarch *gdbarch = p->gdbarch;
55aa24fb
SDJ
582 /* Needed to generate the register name as a part of an expression. */
583 struct stoken str;
55aa24fb
SDJ
584 /* Variables used to extract the register name from the probe's
585 argument. */
586 const char *start;
587 char *regname;
588 int len;
55aa24fb 589 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
55aa24fb 590 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
55aa24fb 591 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
55aa24fb 592 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
05c0465e
SDJ
593 const char *reg_prefix;
594 const char *reg_ind_prefix;
595 const char *reg_suffix;
596 const char *reg_ind_suffix;
55aa24fb
SDJ
597
598 /* Checking for a displacement argument. */
599 if (*p->arg == '+')
600 {
601 /* If it's a plus sign, we don't need to do anything, just advance the
602 pointer. */
603 ++p->arg;
604 }
605
606 if (*p->arg == '-')
607 {
608 got_minus = 1;
609 ++p->arg;
610 }
611
612 if (isdigit (*p->arg))
613 {
614 /* The value of the displacement. */
615 long displacement;
a0bcdaa7 616 char *endp;
55aa24fb
SDJ
617
618 disp_p = 1;
a0bcdaa7
PA
619 displacement = strtol (p->arg, &endp, 10);
620 p->arg = endp;
55aa24fb
SDJ
621
622 /* Generating the expression for the displacement. */
410a0ff2
SDJ
623 write_exp_elt_opcode (&p->pstate, OP_LONG);
624 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
625 write_exp_elt_longcst (&p->pstate, displacement);
626 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 627 if (got_minus)
410a0ff2 628 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
55aa24fb
SDJ
629 }
630
631 /* Getting rid of register indirection prefix. */
05c0465e 632 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
55aa24fb
SDJ
633 {
634 indirect_p = 1;
05c0465e 635 p->arg += strlen (reg_ind_prefix);
55aa24fb
SDJ
636 }
637
638 if (disp_p && !indirect_p)
639 error (_("Invalid register displacement syntax on expression `%s'."),
640 p->saved_arg);
641
642 /* Getting rid of register prefix. */
05c0465e
SDJ
643 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
644 p->arg += strlen (reg_prefix);
55aa24fb
SDJ
645
646 /* Now we should have only the register name. Let's extract it and get
647 the associated number. */
648 start = p->arg;
649
650 /* We assume the register name is composed by letters and numbers. */
651 while (isalnum (*p->arg))
652 ++p->arg;
653
654 len = p->arg - start;
655
656 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
657 regname[0] = '\0';
658
659 /* We only add the GDB's register prefix/suffix if we are dealing with
660 a numeric register. */
661 if (gdb_reg_prefix && isdigit (*start))
662 {
663 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
664 strncpy (regname + gdb_reg_prefix_len, start, len);
665
666 if (gdb_reg_suffix)
667 strncpy (regname + gdb_reg_prefix_len + len,
668 gdb_reg_suffix, gdb_reg_suffix_len);
669
670 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
671 }
672 else
673 strncpy (regname, start, len);
674
675 regname[len] = '\0';
676
677 /* Is this a valid register name? */
678 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
679 error (_("Invalid register name `%s' on expression `%s'."),
680 regname, p->saved_arg);
681
410a0ff2 682 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
683 str.ptr = regname;
684 str.length = len;
410a0ff2
SDJ
685 write_exp_string (&p->pstate, str);
686 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
687
688 if (indirect_p)
689 {
690 if (disp_p)
410a0ff2 691 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
55aa24fb
SDJ
692
693 /* Casting to the expected type. */
410a0ff2
SDJ
694 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
695 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
696 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
55aa24fb 697
410a0ff2 698 write_exp_elt_opcode (&p->pstate, UNOP_IND);
55aa24fb
SDJ
699 }
700
701 /* Getting rid of the register name suffix. */
05c0465e
SDJ
702 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
703 p->arg += strlen (reg_suffix);
704 else
705 error (_("Missing register name suffix on expression `%s'."),
706 p->saved_arg);
55aa24fb
SDJ
707
708 /* Getting rid of the register indirection suffix. */
05c0465e 709 if (indirect_p)
55aa24fb 710 {
05c0465e
SDJ
711 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
712 &reg_ind_suffix))
713 p->arg += strlen (reg_ind_suffix);
714 else
715 error (_("Missing indirection suffix on expression `%s'."),
716 p->saved_arg);
55aa24fb
SDJ
717 }
718}
719
720/* This function is responsible for parsing a single operand.
721
722 A single operand can be:
723
724 - an unary operation (e.g., `-5', `~2', or even with subexpressions
725 like `-(2 + 1)')
726 - a register displacement, which will be treated as a register
727 operand (e.g., `-4(%eax)' on x86)
728 - a numeric constant, or
729 - a register operand (see function `stap_parse_register_operand')
730
731 The function also calls special-handling functions to deal with
732 unrecognized operands, allowing arch-specific parsers to be
733 created. */
734
735static void
736stap_parse_single_operand (struct stap_parse_info *p)
737{
738 struct gdbarch *gdbarch = p->gdbarch;
05c0465e 739 const char *int_prefix = NULL;
55aa24fb
SDJ
740
741 /* We first try to parse this token as a "special token". */
742 if (gdbarch_stap_parse_special_token_p (gdbarch))
97c2dca0
SDJ
743 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0)
744 {
745 /* If the return value of the above function is not zero,
746 it means it successfully parsed the special token.
55aa24fb 747
97c2dca0
SDJ
748 If it is NULL, we try to parse it using our method. */
749 return;
750 }
55aa24fb
SDJ
751
752 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
753 {
754 char c = *p->arg;
55aa24fb
SDJ
755 /* We use this variable to do a lookahead. */
756 const char *tmp = p->arg;
474ca4f6 757 int has_digit = 0;
55aa24fb 758
97c2dca0 759 /* Skipping signal. */
55aa24fb
SDJ
760 ++tmp;
761
762 /* This is an unary operation. Here is a list of allowed tokens
763 here:
764
765 - numeric literal;
766 - number (from register displacement)
767 - subexpression (beginning with `(')
768
769 We handle the register displacement here, and the other cases
770 recursively. */
771 if (p->inside_paren_p)
772 tmp = skip_spaces_const (tmp);
773
474ca4f6 774 while (isdigit (*tmp))
a0bcdaa7 775 {
474ca4f6
SDJ
776 /* We skip the digit here because we are only interested in
777 knowing what kind of unary operation this is. The digit
778 will be handled by one of the functions that will be
779 called below ('stap_parse_argument_conditionally' or
780 'stap_parse_register_operand'). */
781 ++tmp;
782 has_digit = 1;
a0bcdaa7 783 }
55aa24fb 784
474ca4f6
SDJ
785 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
786 NULL))
55aa24fb
SDJ
787 {
788 /* If we are here, it means it is a displacement. The only
789 operations allowed here are `-' and `+'. */
790 if (c == '~')
791 error (_("Invalid operator `%c' for register displacement "
792 "on expression `%s'."), c, p->saved_arg);
793
794 stap_parse_register_operand (p);
795 }
474ca4f6
SDJ
796 else
797 {
798 /* This is not a displacement. We skip the operator, and
799 deal with it when the recursion returns. */
800 ++p->arg;
801 stap_parse_argument_conditionally (p);
802 if (c == '-')
803 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
804 else if (c == '~')
805 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
806 }
55aa24fb
SDJ
807 }
808 else if (isdigit (*p->arg))
809 {
810 /* A temporary variable, needed for lookahead. */
811 const char *tmp = p->arg;
a0bcdaa7 812 char *endp;
55aa24fb
SDJ
813 long number;
814
05c0465e
SDJ
815 /* We can be dealing with a numeric constant, or with a register
816 displacement. */
a0bcdaa7
PA
817 number = strtol (tmp, &endp, 10);
818 tmp = endp;
55aa24fb
SDJ
819
820 if (p->inside_paren_p)
821 tmp = skip_spaces_const (tmp);
05c0465e
SDJ
822
823 /* If "stap_is_integer_prefix" returns true, it means we can
824 accept integers without a prefix here. But we also need to
825 check whether the next token (i.e., "tmp") is not a register
826 indirection prefix. */
827 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
828 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
55aa24fb 829 {
05c0465e
SDJ
830 const char *int_suffix;
831
55aa24fb 832 /* We are dealing with a numeric constant. */
410a0ff2
SDJ
833 write_exp_elt_opcode (&p->pstate, OP_LONG);
834 write_exp_elt_type (&p->pstate,
835 builtin_type (gdbarch)->builtin_long);
836 write_exp_elt_longcst (&p->pstate, number);
837 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb
SDJ
838
839 p->arg = tmp;
840
05c0465e
SDJ
841 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
842 p->arg += strlen (int_suffix);
843 else
844 error (_("Invalid constant suffix on expression `%s'."),
845 p->saved_arg);
55aa24fb 846 }
05c0465e 847 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
55aa24fb
SDJ
848 stap_parse_register_operand (p);
849 else
850 error (_("Unknown numeric token on expression `%s'."),
851 p->saved_arg);
852 }
05c0465e 853 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
55aa24fb
SDJ
854 {
855 /* We are dealing with a numeric constant. */
856 long number;
a0bcdaa7 857 char *endp;
05c0465e 858 const char *int_suffix;
55aa24fb 859
05c0465e 860 p->arg += strlen (int_prefix);
a0bcdaa7
PA
861 number = strtol (p->arg, &endp, 10);
862 p->arg = endp;
55aa24fb 863
410a0ff2
SDJ
864 write_exp_elt_opcode (&p->pstate, OP_LONG);
865 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
866 write_exp_elt_longcst (&p->pstate, number);
867 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 868
05c0465e
SDJ
869 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
870 p->arg += strlen (int_suffix);
871 else
872 error (_("Invalid constant suffix on expression `%s'."),
873 p->saved_arg);
55aa24fb 874 }
05c0465e
SDJ
875 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
876 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
55aa24fb
SDJ
877 stap_parse_register_operand (p);
878 else
879 error (_("Operator `%c' not recognized on expression `%s'."),
880 *p->arg, p->saved_arg);
881}
882
883/* This function parses an argument conditionally, based on single or
884 non-single operands. A non-single operand would be a parenthesized
885 expression (e.g., `(2 + 1)'), and a single operand is anything that
886 starts with `-', `~', `+' (i.e., unary operators), a digit, or
887 something recognized by `gdbarch_stap_is_single_operand'. */
888
889static void
890stap_parse_argument_conditionally (struct stap_parse_info *p)
891{
97c2dca0
SDJ
892 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
893
55aa24fb
SDJ
894 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
895 || isdigit (*p->arg)
896 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
897 stap_parse_single_operand (p);
898 else if (*p->arg == '(')
899 {
900 /* We are dealing with a parenthesized operand. It means we
901 have to parse it as it was a separate expression, without
902 left-side or precedence. */
903 ++p->arg;
904 p->arg = skip_spaces_const (p->arg);
905 ++p->inside_paren_p;
906
907 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
908
909 --p->inside_paren_p;
910 if (*p->arg != ')')
911 error (_("Missign close-paren on expression `%s'."),
912 p->saved_arg);
913
914 ++p->arg;
915 if (p->inside_paren_p)
916 p->arg = skip_spaces_const (p->arg);
917 }
918 else
919 error (_("Cannot parse expression `%s'."), p->saved_arg);
920}
921
922/* Helper function for `stap_parse_argument'. Please, see its comments to
923 better understand what this function does. */
924
925static void
926stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
927 enum stap_operand_prec prec)
928{
929 /* This is an operator-precedence parser.
930
931 We work with left- and right-sides of expressions, and
932 parse them depending on the precedence of the operators
933 we find. */
934
97c2dca0
SDJ
935 gdb_assert (p->arg != NULL);
936
55aa24fb
SDJ
937 if (p->inside_paren_p)
938 p->arg = skip_spaces_const (p->arg);
939
940 if (!has_lhs)
941 {
942 /* We were called without a left-side, either because this is the
943 first call, or because we were called to parse a parenthesized
944 expression. It doesn't really matter; we have to parse the
945 left-side in order to continue the process. */
946 stap_parse_argument_conditionally (p);
947 }
948
949 /* Start to parse the right-side, and to "join" left and right sides
950 depending on the operation specified.
951
952 This loop shall continue until we run out of characters in the input,
953 or until we find a close-parenthesis, which means that we've reached
954 the end of a sub-expression. */
97c2dca0 955 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
55aa24fb
SDJ
956 {
957 const char *tmp_exp_buf;
958 enum exp_opcode opcode;
959 enum stap_operand_prec cur_prec;
960
fcf57f19 961 if (!stap_is_operator (p->arg))
55aa24fb
SDJ
962 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
963 p->saved_arg);
964
965 /* We have to save the current value of the expression buffer because
966 the `stap_get_opcode' modifies it in order to get the current
967 operator. If this operator's precedence is lower than PREC, we
968 should return and not advance the expression buffer pointer. */
969 tmp_exp_buf = p->arg;
fcf57f19 970 opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
971
972 cur_prec = stap_get_operator_prec (opcode);
973 if (cur_prec < prec)
974 {
975 /* If the precedence of the operator that we are seeing now is
976 lower than the precedence of the first operator seen before
977 this parsing process began, it means we should stop parsing
978 and return. */
979 break;
980 }
981
982 p->arg = tmp_exp_buf;
983 if (p->inside_paren_p)
984 p->arg = skip_spaces_const (p->arg);
985
986 /* Parse the right-side of the expression. */
987 stap_parse_argument_conditionally (p);
988
989 /* While we still have operators, try to parse another
990 right-side, but using the current right-side as a left-side. */
97c2dca0 991 while (*p->arg != '\0' && stap_is_operator (p->arg))
55aa24fb
SDJ
992 {
993 enum exp_opcode lookahead_opcode;
994 enum stap_operand_prec lookahead_prec;
995
996 /* Saving the current expression buffer position. The explanation
997 is the same as above. */
998 tmp_exp_buf = p->arg;
fcf57f19 999 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
1000 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1001
1002 if (lookahead_prec <= prec)
1003 {
1004 /* If we are dealing with an operator whose precedence is lower
1005 than the first one, just abandon the attempt. */
1006 break;
1007 }
1008
1009 /* Parse the right-side of the expression, but since we already
1010 have a left-side at this point, set `has_lhs' to 1. */
1011 stap_parse_argument_1 (p, 1, lookahead_prec);
1012 }
1013
410a0ff2 1014 write_exp_elt_opcode (&p->pstate, opcode);
55aa24fb
SDJ
1015 }
1016}
1017
1018/* Parse a probe's argument.
1019
1020 Assuming that:
1021
1022 LP = literal integer prefix
1023 LS = literal integer suffix
1024
1025 RP = register prefix
1026 RS = register suffix
1027
1028 RIP = register indirection prefix
1029 RIS = register indirection suffix
1030
1031 This routine assumes that arguments' tokens are of the form:
1032
1033 - [LP] NUMBER [LS]
1034 - [RP] REGISTER [RS]
1035 - [RIP] [RP] REGISTER [RS] [RIS]
1036 - If we find a number without LP, we try to parse it as a literal integer
1037 constant (if LP == NULL), or as a register displacement.
1038 - We count parenthesis, and only skip whitespaces if we are inside them.
1039 - If we find an operator, we skip it.
1040
1041 This function can also call a special function that will try to match
1042 unknown tokens. It will return 1 if the argument has been parsed
1043 successfully, or zero otherwise. */
1044
1045static struct expression *
1046stap_parse_argument (const char **arg, struct type *atype,
1047 struct gdbarch *gdbarch)
1048{
1049 struct stap_parse_info p;
55aa24fb
SDJ
1050 struct cleanup *back_to;
1051
1052 /* We need to initialize the expression buffer, in order to begin
f7088df3
SDJ
1053 our parsing efforts. We use language_c here because we may need
1054 to do pointer arithmetics. */
1055 initialize_expout (&p.pstate, 10, language_def (language_c), gdbarch);
410a0ff2 1056 back_to = make_cleanup (free_current_contents, &p.pstate.expout);
55aa24fb
SDJ
1057
1058 p.saved_arg = *arg;
1059 p.arg = *arg;
1060 p.arg_type = atype;
1061 p.gdbarch = gdbarch;
1062 p.inside_paren_p = 0;
1063
1064 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1065
1066 discard_cleanups (back_to);
1067
1068 gdb_assert (p.inside_paren_p == 0);
1069
1070 /* Casting the final expression to the appropriate type. */
410a0ff2
SDJ
1071 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1072 write_exp_elt_type (&p.pstate, atype);
1073 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
55aa24fb 1074
410a0ff2 1075 reallocate_expout (&p.pstate);
55aa24fb
SDJ
1076
1077 p.arg = skip_spaces_const (p.arg);
1078 *arg = p.arg;
1079
410a0ff2
SDJ
1080 /* We can safely return EXPOUT here. */
1081 return p.pstate.expout;
55aa24fb
SDJ
1082}
1083
1084/* Function which parses an argument string from PROBE, correctly splitting
1085 the arguments and storing their information in properly ways.
1086
1087 Consider the following argument string (x86 syntax):
1088
1089 `4@%eax 4@$10'
1090
1091 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
1092 This function basically handles them, properly filling some structures with
1093 this information. */
1094
1095static void
08a6411c 1096stap_parse_probe_arguments (struct stap_probe *probe, struct gdbarch *gdbarch)
55aa24fb
SDJ
1097{
1098 const char *cur;
55aa24fb
SDJ
1099
1100 gdb_assert (!probe->args_parsed);
1101 cur = probe->args_u.text;
1102 probe->args_parsed = 1;
1103 probe->args_u.vec = NULL;
1104
97c2dca0 1105 if (cur == NULL || *cur == '\0' || *cur == ':')
55aa24fb
SDJ
1106 return;
1107
97c2dca0 1108 while (*cur != '\0')
55aa24fb
SDJ
1109 {
1110 struct stap_probe_arg arg;
1111 enum stap_arg_bitness b;
1112 int got_minus = 0;
1113 struct expression *expr;
1114
1115 memset (&arg, 0, sizeof (arg));
1116
1117 /* We expect to find something like:
1118
1119 N@OP
1120
30a1e6cc 1121 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so
55aa24fb
SDJ
1122 we check it here. If we don't find it, go to the next
1123 state. */
f33da99a
SDJ
1124 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1125 || (isdigit (cur[0]) && cur[1] == '@'))
55aa24fb
SDJ
1126 {
1127 if (*cur == '-')
1128 {
1129 /* Discard the `-'. */
1130 ++cur;
1131 got_minus = 1;
1132 }
1133
30a1e6cc
SDJ
1134 /* Defining the bitness. */
1135 switch (*cur)
55aa24fb 1136 {
30a1e6cc
SDJ
1137 case '1':
1138 b = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1139 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1140 break;
1141
1142 case '2':
1143 b = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1144 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1145 break;
1146
1147 case '4':
1148 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1149 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1150 break;
1151
1152 case '8':
1153 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1154 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1155 break;
1156
1157 default:
1158 {
1159 /* We have an error, because we don't expect anything
1160 except 1, 2, 4 and 8. */
1161 warning (_("unrecognized bitness %s%c' for probe `%s'"),
1162 got_minus ? "`-" : "`", *cur, probe->p.name);
1163 return;
1164 }
55aa24fb
SDJ
1165 }
1166
1167 arg.bitness = b;
55aa24fb
SDJ
1168
1169 /* Discard the number and the `@' sign. */
1170 cur += 2;
1171 }
f33da99a
SDJ
1172 else
1173 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
1174
1175 arg.atype = stap_get_expected_argument_type (gdbarch, arg.bitness);
55aa24fb
SDJ
1176
1177 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
1178
1179 if (stap_expression_debug)
1180 dump_raw_expression (expr, gdb_stdlog,
1181 "before conversion to prefix form");
1182
1183 prefixify_expression (expr);
1184
1185 if (stap_expression_debug)
1186 dump_prefix_expression (expr, gdb_stdlog);
1187
1188 arg.aexpr = expr;
1189
1190 /* Start it over again. */
1191 cur = skip_spaces_const (cur);
1192
1193 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
1194 }
1195}
1196
729662a5
TT
1197/* Implementation of the get_probe_address method. */
1198
1199static CORE_ADDR
1200stap_get_probe_address (struct probe *probe, struct objfile *objfile)
1201{
1202 return probe->address + ANOFFSET (objfile->section_offsets,
1203 SECT_OFF_DATA (objfile));
1204}
1205
55aa24fb
SDJ
1206/* Given PROBE, returns the number of arguments present in that probe's
1207 argument string. */
1208
1209static unsigned
08a6411c
SDJ
1210stap_get_probe_argument_count (struct probe *probe_generic,
1211 struct frame_info *frame)
55aa24fb
SDJ
1212{
1213 struct stap_probe *probe = (struct stap_probe *) probe_generic;
08a6411c 1214 struct gdbarch *gdbarch = get_frame_arch (frame);
55aa24fb
SDJ
1215
1216 gdb_assert (probe_generic->pops == &stap_probe_ops);
1217
1218 if (!probe->args_parsed)
25f9533e 1219 {
08a6411c
SDJ
1220 if (can_evaluate_probe_arguments (probe_generic))
1221 stap_parse_probe_arguments (probe, gdbarch);
25f9533e
SDJ
1222 else
1223 {
1224 static int have_warned_stap_incomplete = 0;
1225
1226 if (!have_warned_stap_incomplete)
1227 {
1228 warning (_(
1229"The SystemTap SDT probe support is not fully implemented on this target;\n"
1230"you will not be able to inspect the arguments of the probes.\n"
1231"Please report a bug against GDB requesting a port to this target."));
1232 have_warned_stap_incomplete = 1;
1233 }
1234
1235 /* Marking the arguments as "already parsed". */
1236 probe->args_u.vec = NULL;
1237 probe->args_parsed = 1;
1238 }
1239 }
55aa24fb
SDJ
1240
1241 gdb_assert (probe->args_parsed);
1242 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1243}
1244
1245/* Return 1 if OP is a valid operator inside a probe argument, or zero
1246 otherwise. */
1247
1248static int
fcf57f19 1249stap_is_operator (const char *op)
55aa24fb 1250{
fcf57f19
SDJ
1251 int ret = 1;
1252
1253 switch (*op)
1254 {
1255 case '*':
1256 case '/':
1257 case '%':
1258 case '^':
1259 case '!':
1260 case '+':
1261 case '-':
1262 case '<':
1263 case '>':
1264 case '|':
1265 case '&':
1266 break;
1267
1268 case '=':
1269 if (op[1] != '=')
1270 ret = 0;
1271 break;
1272
1273 default:
1274 /* We didn't find any operator. */
1275 ret = 0;
1276 }
1277
1278 return ret;
55aa24fb
SDJ
1279}
1280
1281static struct stap_probe_arg *
08a6411c 1282stap_get_arg (struct stap_probe *probe, unsigned n, struct gdbarch *gdbarch)
55aa24fb
SDJ
1283{
1284 if (!probe->args_parsed)
08a6411c 1285 stap_parse_probe_arguments (probe, gdbarch);
55aa24fb
SDJ
1286
1287 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1288}
1289
25f9533e
SDJ
1290/* Implement the `can_evaluate_probe_arguments' method of probe_ops. */
1291
1292static int
1293stap_can_evaluate_probe_arguments (struct probe *probe_generic)
1294{
1295 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
729662a5 1296 struct gdbarch *gdbarch = stap_probe->p.arch;
25f9533e
SDJ
1297
1298 /* For SystemTap probes, we have to guarantee that the method
1299 stap_is_single_operand is defined on gdbarch. If it is not, then it
1300 means that argument evaluation is not implemented on this target. */
1301 return gdbarch_stap_is_single_operand_p (gdbarch);
1302}
1303
55aa24fb
SDJ
1304/* Evaluate the probe's argument N (indexed from 0), returning a value
1305 corresponding to it. Assertion is thrown if N does not exist. */
1306
1307static struct value *
08a6411c
SDJ
1308stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n,
1309 struct frame_info *frame)
55aa24fb
SDJ
1310{
1311 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
08a6411c 1312 struct gdbarch *gdbarch = get_frame_arch (frame);
55aa24fb
SDJ
1313 struct stap_probe_arg *arg;
1314 int pos = 0;
1315
1316 gdb_assert (probe_generic->pops == &stap_probe_ops);
1317
08a6411c 1318 arg = stap_get_arg (stap_probe, n, gdbarch);
55aa24fb
SDJ
1319 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1320}
1321
1322/* Compile the probe's argument N (indexed from 0) to agent expression.
1323 Assertion is thrown if N does not exist. */
1324
1325static void
6bac7473
SDJ
1326stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1327 struct axs_value *value, unsigned n)
55aa24fb
SDJ
1328{
1329 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1330 struct stap_probe_arg *arg;
1331 union exp_element *pc;
1332
1333 gdb_assert (probe_generic->pops == &stap_probe_ops);
1334
08a6411c 1335 arg = stap_get_arg (stap_probe, n, expr->gdbarch);
55aa24fb
SDJ
1336
1337 pc = arg->aexpr->elts;
1338 gen_expr (arg->aexpr, &pc, expr, value);
1339
1340 require_rvalue (expr, value);
1341 value->type = arg->atype;
1342}
1343
1344/* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
5d9cf8a4 1345 as it is allocated on an obstack. */
55aa24fb
SDJ
1346
1347static void
1348stap_probe_destroy (struct probe *probe_generic)
1349{
1350 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1351
1352 gdb_assert (probe_generic->pops == &stap_probe_ops);
1353
1354 if (probe->args_parsed)
1355 {
1356 struct stap_probe_arg *arg;
1357 int ix;
1358
1359 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1360 ++ix)
1361 xfree (arg->aexpr);
1362 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1363 }
1364}
1365
1366\f
1367
55aa24fb
SDJ
1368/* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1369 address. SET is zero if the semaphore should be cleared, or one
1370 if it should be set. This is a helper function for `stap_semaphore_down'
1371 and `stap_semaphore_up'. */
1372
1373static void
1374stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1375{
1376 gdb_byte bytes[sizeof (LONGEST)];
1377 /* The ABI specifies "unsigned short". */
1378 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1379 ULONGEST value;
1380
1381 if (address == 0)
1382 return;
1383
1384 /* Swallow errors. */
1385 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1386 {
1387 warning (_("Could not read the value of a SystemTap semaphore."));
1388 return;
1389 }
1390
1391 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1392 gdbarch_byte_order (gdbarch));
1393 /* Note that we explicitly don't worry about overflow or
1394 underflow. */
1395 if (set)
1396 ++value;
1397 else
1398 --value;
1399
1400 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1401 gdbarch_byte_order (gdbarch), value);
1402
1403 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1404 warning (_("Could not write the value of a SystemTap semaphore."));
1405}
1406
1407/* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1408 act as reference counters, so calls to this function must be paired with
1409 calls to `stap_semaphore_down'.
1410
1411 This function and `stap_semaphore_down' race with another tool changing
1412 the probes, but that is too rare to care. */
1413
1414static void
729662a5
TT
1415stap_set_semaphore (struct probe *probe_generic, struct objfile *objfile,
1416 struct gdbarch *gdbarch)
55aa24fb
SDJ
1417{
1418 struct stap_probe *probe = (struct stap_probe *) probe_generic;
729662a5 1419 CORE_ADDR addr;
55aa24fb
SDJ
1420
1421 gdb_assert (probe_generic->pops == &stap_probe_ops);
1422
729662a5
TT
1423 addr = (probe->sem_addr
1424 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1425 stap_modify_semaphore (addr, 1, gdbarch);
55aa24fb
SDJ
1426}
1427
1428/* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1429
1430static void
729662a5
TT
1431stap_clear_semaphore (struct probe *probe_generic, struct objfile *objfile,
1432 struct gdbarch *gdbarch)
55aa24fb
SDJ
1433{
1434 struct stap_probe *probe = (struct stap_probe *) probe_generic;
729662a5 1435 CORE_ADDR addr;
55aa24fb
SDJ
1436
1437 gdb_assert (probe_generic->pops == &stap_probe_ops);
1438
729662a5
TT
1439 addr = (probe->sem_addr
1440 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1441 stap_modify_semaphore (addr, 0, gdbarch);
55aa24fb
SDJ
1442}
1443
55aa24fb
SDJ
1444/* Helper function that parses the information contained in a
1445 SystemTap's probe. Basically, the information consists in:
1446
1447 - Probe's PC address;
1448 - Link-time section address of `.stapsdt.base' section;
1449 - Link-time address of the semaphore variable, or ZERO if the
1450 probe doesn't have an associated semaphore;
1451 - Probe's provider name;
1452 - Probe's name;
1453 - Probe's argument format
1454
1455 This function returns 1 if the handling was successful, and zero
1456 otherwise. */
1457
1458static void
1459handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1460 VEC (probe_p) **probesp, CORE_ADDR base)
1461{
1462 bfd *abfd = objfile->obfd;
1463 int size = bfd_get_arch_size (abfd) / 8;
1464 struct gdbarch *gdbarch = get_objfile_arch (objfile);
55aa24fb
SDJ
1465 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1466 CORE_ADDR base_ref;
1467 const char *probe_args = NULL;
1468 struct stap_probe *ret;
1469
8d749320 1470 ret = XOBNEW (&objfile->per_bfd->storage_obstack, struct stap_probe);
55aa24fb 1471 ret->p.pops = &stap_probe_ops;
729662a5 1472 ret->p.arch = gdbarch;
55aa24fb
SDJ
1473
1474 /* Provider and the name of the probe. */
fe106009 1475 ret->p.provider = (char *) &el->data[3 * size];
55aa24fb
SDJ
1476 ret->p.name = memchr (ret->p.provider, '\0',
1477 (char *) el->data + el->size - ret->p.provider);
1478 /* Making sure there is a name. */
97c2dca0 1479 if (ret->p.name == NULL)
55aa24fb
SDJ
1480 {
1481 complaint (&symfile_complaints, _("corrupt probe name when "
4262abfb
JK
1482 "reading `%s'"),
1483 objfile_name (objfile));
55aa24fb
SDJ
1484
1485 /* There is no way to use a probe without a name or a provider, so
1486 returning zero here makes sense. */
1487 return;
1488 }
1489 else
1490 ++ret->p.name;
1491
1492 /* Retrieving the probe's address. */
1493 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1494
1495 /* Link-time sh_addr of `.stapsdt.base' section. */
1496 base_ref = extract_typed_address (&el->data[size], ptr_type);
1497
1498 /* Semaphore address. */
1499 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1500
729662a5 1501 ret->p.address += base - base_ref;
97c2dca0 1502 if (ret->sem_addr != 0)
729662a5 1503 ret->sem_addr += base - base_ref;
55aa24fb
SDJ
1504
1505 /* Arguments. We can only extract the argument format if there is a valid
1506 name for this probe. */
1507 probe_args = memchr (ret->p.name, '\0',
1508 (char *) el->data + el->size - ret->p.name);
1509
1510 if (probe_args != NULL)
1511 ++probe_args;
1512
97c2dca0
SDJ
1513 if (probe_args == NULL
1514 || (memchr (probe_args, '\0', (char *) el->data + el->size - ret->p.name)
1515 != el->data + el->size - 1))
55aa24fb
SDJ
1516 {
1517 complaint (&symfile_complaints, _("corrupt probe argument when "
4262abfb
JK
1518 "reading `%s'"),
1519 objfile_name (objfile));
55aa24fb
SDJ
1520 /* If the argument string is NULL, it means some problem happened with
1521 it. So we return 0. */
1522 return;
1523 }
1524
1525 ret->args_parsed = 0;
1526 ret->args_u.text = (void *) probe_args;
1527
1528 /* Successfully created probe. */
1529 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1530}
1531
1532/* Helper function which tries to find the base address of the SystemTap
1533 base section named STAP_BASE_SECTION_NAME. */
1534
1535static void
1536get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1537{
1538 asection **ret = obj;
1539
1540 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1541 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1542 *ret = sect;
1543}
1544
1545/* Helper function which iterates over every section in the BFD file,
1546 trying to find the base address of the SystemTap base section.
1547 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1548
1549static int
1550get_stap_base_address (bfd *obfd, bfd_vma *base)
1551{
1552 asection *ret = NULL;
1553
1554 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1555
97c2dca0 1556 if (ret == NULL)
55aa24fb
SDJ
1557 {
1558 complaint (&symfile_complaints, _("could not obtain base address for "
1559 "SystemTap section on objfile `%s'."),
1560 obfd->filename);
1561 return 0;
1562 }
1563
97c2dca0 1564 if (base != NULL)
55aa24fb
SDJ
1565 *base = ret->vma;
1566
1567 return 1;
1568}
1569
1570/* Helper function for `elf_get_probes', which gathers information about all
1571 SystemTap probes from OBJFILE. */
1572
1573static void
1574stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1575{
1576 /* If we are here, then this is the first time we are parsing the
1577 SystemTap probe's information. We basically have to count how many
1578 probes the objfile has, and then fill in the necessary information
1579 for each one. */
1580 bfd *obfd = objfile->obfd;
1581 bfd_vma base;
1582 struct sdt_note *iter;
1583 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1584
d7333987
SDJ
1585 if (objfile->separate_debug_objfile_backlink != NULL)
1586 {
1587 /* This is a .debug file, not the objfile itself. */
1588 return;
1589 }
1590
97c2dca0 1591 if (elf_tdata (obfd)->sdt_note_head == NULL)
55aa24fb
SDJ
1592 {
1593 /* There isn't any probe here. */
1594 return;
1595 }
1596
1597 if (!get_stap_base_address (obfd, &base))
1598 {
1599 /* There was an error finding the base address for the section.
1600 Just return NULL. */
1601 return;
1602 }
1603
1604 /* Parsing each probe's information. */
97c2dca0
SDJ
1605 for (iter = elf_tdata (obfd)->sdt_note_head;
1606 iter != NULL;
1607 iter = iter->next)
55aa24fb
SDJ
1608 {
1609 /* We first have to handle all the information about the
1610 probe which is present in the section. */
1611 handle_stap_probe (objfile, iter, probesp, base);
1612 }
1613
1614 if (save_probesp_len == VEC_length (probe_p, *probesp))
1615 {
1616 /* If we are here, it means we have failed to parse every known
1617 probe. */
1618 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1619 "from inferior"));
1620 return;
1621 }
1622}
1623
6f9b8491
JM
1624/* Implementation of the type_name method. */
1625
1626static const char *
1627stap_type_name (struct probe *probe)
1628{
1629 gdb_assert (probe->pops == &stap_probe_ops);
1630 return "stap";
1631}
1632
55aa24fb
SDJ
1633static int
1634stap_probe_is_linespec (const char **linespecp)
1635{
1636 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1637
1638 return probe_is_linespec_by_keyword (linespecp, keywords);
1639}
1640
1641static void
1642stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1643{
1644 info_probe_column_s stap_probe_column;
1645
1646 stap_probe_column.field_name = "semaphore";
1647 stap_probe_column.print_name = _("Semaphore");
1648
1649 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1650}
1651
1652static void
1653stap_gen_info_probes_table_values (struct probe *probe_generic,
55aa24fb
SDJ
1654 VEC (const_char_ptr) **ret)
1655{
1656 struct stap_probe *probe = (struct stap_probe *) probe_generic;
6bac7473 1657 struct gdbarch *gdbarch;
55aa24fb
SDJ
1658 const char *val = NULL;
1659
1660 gdb_assert (probe_generic->pops == &stap_probe_ops);
1661
729662a5 1662 gdbarch = probe->p.arch;
6bac7473 1663
97c2dca0 1664 if (probe->sem_addr != 0)
55aa24fb
SDJ
1665 val = print_core_address (gdbarch, probe->sem_addr);
1666
1667 VEC_safe_push (const_char_ptr, *ret, val);
1668}
1669
1670/* SystemTap probe_ops. */
1671
e36122e9 1672const struct probe_ops stap_probe_ops =
55aa24fb
SDJ
1673{
1674 stap_probe_is_linespec,
1675 stap_get_probes,
729662a5 1676 stap_get_probe_address,
55aa24fb 1677 stap_get_probe_argument_count,
25f9533e 1678 stap_can_evaluate_probe_arguments,
55aa24fb
SDJ
1679 stap_evaluate_probe_argument,
1680 stap_compile_to_ax,
1681 stap_set_semaphore,
1682 stap_clear_semaphore,
1683 stap_probe_destroy,
6f9b8491 1684 stap_type_name,
55aa24fb
SDJ
1685 stap_gen_info_probes_table_header,
1686 stap_gen_info_probes_table_values,
9aca2ff8
JM
1687 NULL, /* enable_probe */
1688 NULL /* disable_probe */
55aa24fb
SDJ
1689};
1690
1691/* Implementation of the `info probes stap' command. */
1692
1693static void
1694info_probes_stap_command (char *arg, int from_tty)
1695{
1696 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1697}
1698
1699void _initialize_stap_probe (void);
1700
1701void
1702_initialize_stap_probe (void)
1703{
1704 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1705
ccce17b0
YQ
1706 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1707 &stap_expression_debug,
1708 _("Set SystemTap expression debugging."),
1709 _("Show SystemTap expression debugging."),
1710 _("When non-zero, the internal representation "
1711 "of SystemTap expressions will be printed."),
1712 NULL,
1713 show_stapexpressiondebug,
1714 &setdebuglist, &showdebuglist);
55aa24fb 1715
55aa24fb
SDJ
1716 add_cmd ("stap", class_info, info_probes_stap_command,
1717 _("\
1718Show information about SystemTap static probes.\n\
1719Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1720Each argument is a regular expression, used to select probes.\n\
1721PROVIDER matches probe provider names.\n\
1722NAME matches the probe names.\n\
1723OBJECT matches the executable or shared library name."),
1724 info_probes_cmdlist_get ());
1725
1726}
This page took 0.49696 seconds and 4 git commands to generate.