Remove extra copy of elf32_m68k_copy_private_bfd_data.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c
SS
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#if !defined (TARGET_H)
22#define TARGET_H
23
24/* This include file defines the interface between the main part
25 of the debugger, and the part which is target-specific, or
26 specific to the communications interface between us and the
27 target.
28
29 A TARGET is an interface between the debugger and a particular
30 kind of file or process. Targets can be STACKED in STRATA,
31 so that more than one target can potentially respond to a request.
32 In particular, memory accesses will walk down the stack of targets
33 until they find a target that is interested in handling that particular
34 address. STRATA are artificial boundaries on the stack, within
35 which particular kinds of targets live. Strata exist so that
36 people don't get confused by pushing e.g. a process target and then
37 a file target, and wondering why they can't see the current values
38 of variables any more (the file target is handling them and they
39 never get to the process target). So when you push a file target,
40 it goes into the file stratum, which is always below the process
41 stratum. */
42
43#include "bfd.h"
44#include "symtab.h"
45
46enum strata {
47 dummy_stratum, /* The lowest of the low */
48 file_stratum, /* Executable files, etc */
49 core_stratum, /* Core dump files */
50 download_stratum, /* Downloading of remote targets */
51 process_stratum /* Executing processes */
52};
53
54enum thread_control_capabilities {
55 tc_none = 0, /* Default: can't control thread execution. */
56 tc_schedlock = 1, /* Can lock the thread scheduler. */
57 tc_switch = 2 /* Can switch the running thread on demand. */
58};
59
60/* Stuff for target_wait. */
61
62/* Generally, what has the program done? */
63enum target_waitkind {
64 /* The program has exited. The exit status is in value.integer. */
65 TARGET_WAITKIND_EXITED,
66
67 /* The program has stopped with a signal. Which signal is in value.sig. */
68 TARGET_WAITKIND_STOPPED,
69
70 /* The program has terminated with a signal. Which signal is in
71 value.sig. */
72 TARGET_WAITKIND_SIGNALLED,
73
74 /* The program is letting us know that it dynamically loaded something
75 (e.g. it called load(2) on AIX). */
76 TARGET_WAITKIND_LOADED,
77
78 /* The program has forked. A "related" process' ID is in value.related_pid.
79 I.e., if the child forks, value.related_pid is the parent's ID.
80 */
81 TARGET_WAITKIND_FORKED,
82
83 /* The program has vforked. A "related" process's ID is in value.related_pid.
84 */
85 TARGET_WAITKIND_VFORKED,
86
87 /* The program has exec'ed a new executable file. The new file's pathname
88 is pointed to by value.execd_pathname.
89 */
90 TARGET_WAITKIND_EXECD,
91
92 /* The program has entered or returned from a system call. On HP-UX, this
93 is used in the hardware watchpoint implementation. The syscall's unique
94 integer ID number is in value.syscall_id;
95 */
96 TARGET_WAITKIND_SYSCALL_ENTRY,
97 TARGET_WAITKIND_SYSCALL_RETURN,
98
99 /* Nothing happened, but we stopped anyway. This perhaps should be handled
100 within target_wait, but I'm not sure target_wait should be resuming the
101 inferior. */
102 TARGET_WAITKIND_SPURIOUS
103 };
104
105/* The numbering of these signals is chosen to match traditional unix
106 signals (insofar as various unices use the same numbers, anyway).
107 It is also the numbering of the GDB remote protocol. Other remote
108 protocols, if they use a different numbering, should make sure to
109 translate appropriately. */
110
111/* This is based strongly on Unix/POSIX signals for several reasons:
112 (1) This set of signals represents a widely-accepted attempt to
113 represent events of this sort in a portable fashion, (2) we want a
114 signal to make it from wait to child_wait to the user intact, (3) many
115 remote protocols use a similar encoding. However, it is
116 recognized that this set of signals has limitations (such as not
117 distinguishing between various kinds of SIGSEGV, or not
118 distinguishing hitting a breakpoint from finishing a single step).
119 So in the future we may get around this either by adding additional
120 signals for breakpoint, single-step, etc., or by adding signal
121 codes; the latter seems more in the spirit of what BSD, System V,
122 etc. are doing to address these issues. */
123
124/* For an explanation of what each signal means, see
125 target_signal_to_string. */
126
127enum target_signal {
128 /* Used some places (e.g. stop_signal) to record the concept that
129 there is no signal. */
130 TARGET_SIGNAL_0 = 0,
131 TARGET_SIGNAL_FIRST = 0,
132 TARGET_SIGNAL_HUP = 1,
133 TARGET_SIGNAL_INT = 2,
134 TARGET_SIGNAL_QUIT = 3,
135 TARGET_SIGNAL_ILL = 4,
136 TARGET_SIGNAL_TRAP = 5,
137 TARGET_SIGNAL_ABRT = 6,
138 TARGET_SIGNAL_EMT = 7,
139 TARGET_SIGNAL_FPE = 8,
140 TARGET_SIGNAL_KILL = 9,
141 TARGET_SIGNAL_BUS = 10,
142 TARGET_SIGNAL_SEGV = 11,
143 TARGET_SIGNAL_SYS = 12,
144 TARGET_SIGNAL_PIPE = 13,
145 TARGET_SIGNAL_ALRM = 14,
146 TARGET_SIGNAL_TERM = 15,
147 TARGET_SIGNAL_URG = 16,
148 TARGET_SIGNAL_STOP = 17,
149 TARGET_SIGNAL_TSTP = 18,
150 TARGET_SIGNAL_CONT = 19,
151 TARGET_SIGNAL_CHLD = 20,
152 TARGET_SIGNAL_TTIN = 21,
153 TARGET_SIGNAL_TTOU = 22,
154 TARGET_SIGNAL_IO = 23,
155 TARGET_SIGNAL_XCPU = 24,
156 TARGET_SIGNAL_XFSZ = 25,
157 TARGET_SIGNAL_VTALRM = 26,
158 TARGET_SIGNAL_PROF = 27,
159 TARGET_SIGNAL_WINCH = 28,
160 TARGET_SIGNAL_LOST = 29,
161 TARGET_SIGNAL_USR1 = 30,
162 TARGET_SIGNAL_USR2 = 31,
163 TARGET_SIGNAL_PWR = 32,
164 /* Similar to SIGIO. Perhaps they should have the same number. */
165 TARGET_SIGNAL_POLL = 33,
166 TARGET_SIGNAL_WIND = 34,
167 TARGET_SIGNAL_PHONE = 35,
168 TARGET_SIGNAL_WAITING = 36,
169 TARGET_SIGNAL_LWP = 37,
170 TARGET_SIGNAL_DANGER = 38,
171 TARGET_SIGNAL_GRANT = 39,
172 TARGET_SIGNAL_RETRACT = 40,
173 TARGET_SIGNAL_MSG = 41,
174 TARGET_SIGNAL_SOUND = 42,
175 TARGET_SIGNAL_SAK = 43,
176 TARGET_SIGNAL_PRIO = 44,
177 TARGET_SIGNAL_REALTIME_33 = 45,
178 TARGET_SIGNAL_REALTIME_34 = 46,
179 TARGET_SIGNAL_REALTIME_35 = 47,
180 TARGET_SIGNAL_REALTIME_36 = 48,
181 TARGET_SIGNAL_REALTIME_37 = 49,
182 TARGET_SIGNAL_REALTIME_38 = 50,
183 TARGET_SIGNAL_REALTIME_39 = 51,
184 TARGET_SIGNAL_REALTIME_40 = 52,
185 TARGET_SIGNAL_REALTIME_41 = 53,
186 TARGET_SIGNAL_REALTIME_42 = 54,
187 TARGET_SIGNAL_REALTIME_43 = 55,
188 TARGET_SIGNAL_REALTIME_44 = 56,
189 TARGET_SIGNAL_REALTIME_45 = 57,
190 TARGET_SIGNAL_REALTIME_46 = 58,
191 TARGET_SIGNAL_REALTIME_47 = 59,
192 TARGET_SIGNAL_REALTIME_48 = 60,
193 TARGET_SIGNAL_REALTIME_49 = 61,
194 TARGET_SIGNAL_REALTIME_50 = 62,
195 TARGET_SIGNAL_REALTIME_51 = 63,
196 TARGET_SIGNAL_REALTIME_52 = 64,
197 TARGET_SIGNAL_REALTIME_53 = 65,
198 TARGET_SIGNAL_REALTIME_54 = 66,
199 TARGET_SIGNAL_REALTIME_55 = 67,
200 TARGET_SIGNAL_REALTIME_56 = 68,
201 TARGET_SIGNAL_REALTIME_57 = 69,
202 TARGET_SIGNAL_REALTIME_58 = 70,
203 TARGET_SIGNAL_REALTIME_59 = 71,
204 TARGET_SIGNAL_REALTIME_60 = 72,
205 TARGET_SIGNAL_REALTIME_61 = 73,
206 TARGET_SIGNAL_REALTIME_62 = 74,
207 TARGET_SIGNAL_REALTIME_63 = 75,
208#if defined(MACH) || defined(__MACH__)
209 /* Mach exceptions */
7a292a7a
SS
210 TARGET_EXC_BAD_ACCESS,
211 TARGET_EXC_BAD_INSTRUCTION,
212 TARGET_EXC_ARITHMETIC,
213 TARGET_EXC_EMULATION,
214 TARGET_EXC_SOFTWARE,
215 TARGET_EXC_BREAKPOINT,
c906108c 216#endif
7a292a7a
SS
217 TARGET_SIGNAL_INFO,
218
c906108c
SS
219 /* Some signal we don't know about. */
220 TARGET_SIGNAL_UNKNOWN,
221
222 /* Use whatever signal we use when one is not specifically specified
223 (for passing to proceed and so on). */
224 TARGET_SIGNAL_DEFAULT,
225
226 /* Last and unused enum value, for sizing arrays, etc. */
227 TARGET_SIGNAL_LAST
228};
229
230struct target_waitstatus {
231 enum target_waitkind kind;
232
233 /* Forked child pid, execd pathname, exit status or signal number. */
234 union {
235 int integer;
236 enum target_signal sig;
237 int related_pid;
238 char * execd_pathname;
239 int syscall_id;
240 } value;
241};
242
243/* Return the string for a signal. */
244extern char *target_signal_to_string PARAMS ((enum target_signal));
245
246/* Return the name (SIGHUP, etc.) for a signal. */
247extern char *target_signal_to_name PARAMS ((enum target_signal));
248
249/* Given a name (SIGHUP, etc.), return its signal. */
250enum target_signal target_signal_from_name PARAMS ((char *));
251
252\f
253/* If certain kinds of activity happen, target_wait should perform
254 callbacks. */
255/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
256 on TARGET_ACTIVITY_FD. */
257extern int target_activity_fd;
258/* Returns zero to leave the inferior alone, one to interrupt it. */
259extern int (*target_activity_function) PARAMS ((void));
260\f
261struct target_ops
262{
263 char *to_shortname; /* Name this target type */
264 char *to_longname; /* Name for printing */
265 char *to_doc; /* Documentation. Does not include trailing
266 newline, and starts with a one-line descrip-
267 tion (probably similar to to_longname). */
268 void (*to_open) PARAMS ((char *, int));
269 void (*to_close) PARAMS ((int));
270 void (*to_attach) PARAMS ((char *, int));
271 void (*to_post_attach) PARAMS ((int));
272 void (*to_require_attach) PARAMS ((char *, int));
273 void (*to_detach) PARAMS ((char *, int));
274 void (*to_require_detach) PARAMS ((int, char *, int));
275 void (*to_resume) PARAMS ((int, int, enum target_signal));
276 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
277 void (*to_post_wait) PARAMS ((int, int));
278 void (*to_fetch_registers) PARAMS ((int));
279 void (*to_store_registers) PARAMS ((int));
280 void (*to_prepare_to_store) PARAMS ((void));
281
282 /* Transfer LEN bytes of memory between GDB address MYADDR and
283 target address MEMADDR. If WRITE, transfer them to the target, else
284 transfer them from the target. TARGET is the target from which we
285 get this function.
286
287 Return value, N, is one of the following:
288
289 0 means that we can't handle this. If errno has been set, it is the
290 error which prevented us from doing it (FIXME: What about bfd_error?).
291
292 positive (call it N) means that we have transferred N bytes
293 starting at MEMADDR. We might be able to handle more bytes
294 beyond this length, but no promises.
295
296 negative (call its absolute value N) means that we cannot
297 transfer right at MEMADDR, but we could transfer at least
298 something at MEMADDR + N. */
299
300 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
301 int len, int write,
302 struct target_ops * target));
303
304#if 0
305 /* Enable this after 4.12. */
306
307 /* Search target memory. Start at STARTADDR and take LEN bytes of
308 target memory, and them with MASK, and compare to DATA. If they
309 match, set *ADDR_FOUND to the address we found it at, store the data
310 we found at LEN bytes starting at DATA_FOUND, and return. If
311 not, add INCREMENT to the search address and keep trying until
312 the search address is outside of the range [LORANGE,HIRANGE).
313
314 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
315 void (*to_search) PARAMS ((int len, char *data, char *mask,
316 CORE_ADDR startaddr, int increment,
317 CORE_ADDR lorange, CORE_ADDR hirange,
318 CORE_ADDR *addr_found, char *data_found));
319
320#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
321 (*current_target.to_search) (len, data, mask, startaddr, increment, \
322 lorange, hirange, addr_found, data_found)
323#endif /* 0 */
324
325 void (*to_files_info) PARAMS ((struct target_ops *));
326 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
327 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
328 void (*to_terminal_init) PARAMS ((void));
329 void (*to_terminal_inferior) PARAMS ((void));
330 void (*to_terminal_ours_for_output) PARAMS ((void));
331 void (*to_terminal_ours) PARAMS ((void));
332 void (*to_terminal_info) PARAMS ((char *, int));
333 void (*to_kill) PARAMS ((void));
334 void (*to_load) PARAMS ((char *, int));
335 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
336 void (*to_create_inferior) PARAMS ((char *, char *, char **));
337 void (*to_post_startup_inferior) PARAMS ((int));
338 void (*to_acknowledge_created_inferior) PARAMS ((int));
339 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
340 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
341 int (*to_insert_fork_catchpoint) PARAMS ((int));
342 int (*to_remove_fork_catchpoint) PARAMS ((int));
343 int (*to_insert_vfork_catchpoint) PARAMS ((int));
344 int (*to_remove_vfork_catchpoint) PARAMS ((int));
345 int (*to_has_forked) PARAMS ((int, int *));
346 int (*to_has_vforked) PARAMS ((int, int *));
347 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
348 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
349 int (*to_insert_exec_catchpoint) PARAMS ((int));
350 int (*to_remove_exec_catchpoint) PARAMS ((int));
351 int (*to_has_execd) PARAMS ((int, char **));
352 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
353 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
354 int (*to_has_exited) PARAMS ((int, int, int *));
355 void (*to_mourn_inferior) PARAMS ((void));
356 int (*to_can_run) PARAMS ((void));
357 void (*to_notice_signals) PARAMS ((int pid));
358 int (*to_thread_alive) PARAMS ((int pid));
359 void (*to_stop) PARAMS ((void));
360 int (*to_query) PARAMS ((int/*char*/, char *, char *, int *));
361 struct symtab_and_line * (*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
362 struct exception_event_record * (*to_get_current_exception_event) PARAMS ((void));
363 char * (*to_pid_to_exec_file) PARAMS ((int pid));
364 char * (*to_core_file_to_sym_file) PARAMS ((char *));
365 enum strata to_stratum;
366 struct target_ops
367 *DONT_USE; /* formerly to_next */
368 int to_has_all_memory;
369 int to_has_memory;
370 int to_has_stack;
371 int to_has_registers;
372 int to_has_execution;
373 int to_has_thread_control; /* control thread execution */
374 struct section_table
375 *to_sections;
376 struct section_table
377 *to_sections_end;
378 int to_magic;
379 /* Need sub-structure for target machine related rather than comm related? */
380};
381
382/* Magic number for checking ops size. If a struct doesn't end with this
383 number, somebody changed the declaration but didn't change all the
384 places that initialize one. */
385
386#define OPS_MAGIC 3840
387
388/* The ops structure for our "current" target process. This should
389 never be NULL. If there is no target, it points to the dummy_target. */
390
391extern struct target_ops current_target;
392
393/* An item on the target stack. */
394
395struct target_stack_item
396{
397 struct target_stack_item *next;
398 struct target_ops *target_ops;
399};
400
401/* The target stack. */
402
403extern struct target_stack_item *target_stack;
404
405/* Define easy words for doing these operations on our current target. */
406
407#define target_shortname (current_target.to_shortname)
408#define target_longname (current_target.to_longname)
409
410/* The open routine takes the rest of the parameters from the command,
411 and (if successful) pushes a new target onto the stack.
412 Targets should supply this routine, if only to provide an error message. */
413#define target_open(name, from_tty) \
414 (*current_target.to_open) (name, from_tty)
415
416/* Does whatever cleanup is required for a target that we are no longer
417 going to be calling. Argument says whether we are quitting gdb and
418 should not get hung in case of errors, or whether we want a clean
419 termination even if it takes a while. This routine is automatically
420 always called just before a routine is popped off the target stack.
421 Closing file descriptors and freeing memory are typical things it should
422 do. */
423
424#define target_close(quitting) \
425 (*current_target.to_close) (quitting)
426
427/* Attaches to a process on the target side. Arguments are as passed
428 to the `attach' command by the user. This routine can be called
429 when the target is not on the target-stack, if the target_can_run
430 routine returns 1; in that case, it must push itself onto the stack.
431 Upon exit, the target should be ready for normal operations, and
432 should be ready to deliver the status of the process immediately
433 (without waiting) to an upcoming target_wait call. */
434
435#define target_attach(args, from_tty) \
436 (*current_target.to_attach) (args, from_tty)
437
438/* The target_attach operation places a process under debugger control,
439 and stops the process.
440
441 This operation provides a target-specific hook that allows the
442 necessary bookkeeping to be performed after an attach completes.
443 */
444#define target_post_attach(pid) \
445 (*current_target.to_post_attach) (pid)
446
447/* Attaches to a process on the target side, if not already attached.
448 (If already attached, takes no action.)
449
450 This operation can be used to follow the child process of a fork.
451 On some targets, such child processes of an original inferior process
452 are automatically under debugger control, and thus do not require an
453 actual attach operation. */
454
455#define target_require_attach(args, from_tty) \
456 (*current_target.to_require_attach) (args, from_tty)
457
458/* Takes a program previously attached to and detaches it.
459 The program may resume execution (some targets do, some don't) and will
460 no longer stop on signals, etc. We better not have left any breakpoints
461 in the program or it'll die when it hits one. ARGS is arguments
462 typed by the user (e.g. a signal to send the process). FROM_TTY
463 says whether to be verbose or not. */
464
465extern void
466target_detach PARAMS ((char *, int));
467
468/* Detaches from a process on the target side, if not already dettached.
469 (If already detached, takes no action.)
470
471 This operation can be used to follow the parent process of a fork.
472 On some targets, such child processes of an original inferior process
473 are automatically under debugger control, and thus do require an actual
474 detach operation.
475
476 PID is the process id of the child to detach from.
477 ARGS is arguments typed by the user (e.g. a signal to send the process).
478 FROM_TTY says whether to be verbose or not. */
479
480#define target_require_detach(pid, args, from_tty) \
481 (*current_target.to_require_detach) (pid, args, from_tty)
482
483/* Resume execution of the target process PID. STEP says whether to
484 single-step or to run free; SIGGNAL is the signal to be given to
485 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
486 pass TARGET_SIGNAL_DEFAULT. */
487
488#define target_resume(pid, step, siggnal) \
489 (*current_target.to_resume) (pid, step, siggnal)
490
491/* Wait for process pid to do something. Pid = -1 to wait for any pid
492 to do something. Return pid of child, or -1 in case of error;
493 store status through argument pointer STATUS. Note that it is
494 *not* OK to return_to_top_level out of target_wait without popping
495 the debugging target from the stack; GDB isn't prepared to get back
496 to the prompt with a debugging target but without the frame cache,
497 stop_pc, etc., set up. */
498
499#define target_wait(pid, status) \
500 (*current_target.to_wait) (pid, status)
501
502/* The target_wait operation waits for a process event to occur, and
503 thereby stop the process.
504
505 On some targets, certain events may happen in sequences. gdb's
506 correct response to any single event of such a sequence may require
507 knowledge of what earlier events in the sequence have been seen.
508
509 This operation provides a target-specific hook that allows the
510 necessary bookkeeping to be performed to track such sequences.
511 */
512
513#define target_post_wait(pid, status) \
514 (*current_target.to_post_wait) (pid, status)
515
516/* Fetch register REGNO, or all regs if regno == -1. No result. */
517
518#define target_fetch_registers(regno) \
519 (*current_target.to_fetch_registers) (regno)
520
521/* Store at least register REGNO, or all regs if REGNO == -1.
522 It can store as many registers as it wants to, so target_prepare_to_store
523 must have been previously called. Calls error() if there are problems. */
524
525#define target_store_registers(regs) \
526 (*current_target.to_store_registers) (regs)
527
528/* Get ready to modify the registers array. On machines which store
529 individual registers, this doesn't need to do anything. On machines
530 which store all the registers in one fell swoop, this makes sure
531 that REGISTERS contains all the registers from the program being
532 debugged. */
533
534#define target_prepare_to_store() \
535 (*current_target.to_prepare_to_store) ()
536
537extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
538
539extern int
540target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
541
542extern int
543target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
544 asection *bfd_section));
545
546extern int
547target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
548
549extern int
550target_write_memory PARAMS ((CORE_ADDR, char *, int));
551
552extern int
553xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
554
555extern int
556child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
557
558extern char *
559child_pid_to_exec_file PARAMS ((int));
560
561extern char *
562child_core_file_to_sym_file PARAMS ((char *));
563
564#if defined(CHILD_POST_ATTACH)
565extern void
566child_post_attach PARAMS ((int));
567#endif
568
569extern void
570child_post_wait PARAMS ((int, int));
571
572extern void
573child_post_startup_inferior PARAMS ((int));
574
575extern void
576child_acknowledge_created_inferior PARAMS ((int));
577
578extern void
579child_clone_and_follow_inferior PARAMS ((int, int *));
580
581extern void
582child_post_follow_inferior_by_clone PARAMS ((void));
583
584extern int
585child_insert_fork_catchpoint PARAMS ((int));
586
587extern int
588child_remove_fork_catchpoint PARAMS ((int));
589
590extern int
591child_insert_vfork_catchpoint PARAMS ((int));
592
593extern int
594child_remove_vfork_catchpoint PARAMS ((int));
595
596extern int
597child_has_forked PARAMS ((int, int *));
598
599extern int
600child_has_vforked PARAMS ((int, int *));
601
602extern void
603child_acknowledge_created_inferior PARAMS ((int));
604
605extern int
606child_can_follow_vfork_prior_to_exec PARAMS ((void));
607
608extern void
609child_post_follow_vfork PARAMS ((int, int, int, int));
610
611extern int
612child_insert_exec_catchpoint PARAMS ((int));
613
614extern int
615child_remove_exec_catchpoint PARAMS ((int));
616
617extern int
618child_has_execd PARAMS ((int, char **));
619
620extern int
621child_reported_exec_events_per_exec_call PARAMS ((void));
622
623extern int
624child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
625
626extern int
627child_has_exited PARAMS ((int, int, int *));
628
629extern int
630child_thread_alive PARAMS ((int));
631
632/* From exec.c */
633
634extern void
635print_section_info PARAMS ((struct target_ops *, bfd *));
636
637/* Print a line about the current target. */
638
639#define target_files_info() \
640 (*current_target.to_files_info) (&current_target)
641
642/* Insert a breakpoint at address ADDR in the target machine.
643 SAVE is a pointer to memory allocated for saving the
644 target contents. It is guaranteed by the caller to be long enough
645 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
646 an errno value. */
647
648#define target_insert_breakpoint(addr, save) \
649 (*current_target.to_insert_breakpoint) (addr, save)
650
651/* Remove a breakpoint at address ADDR in the target machine.
652 SAVE is a pointer to the same save area
653 that was previously passed to target_insert_breakpoint.
654 Result is 0 for success, or an errno value. */
655
656#define target_remove_breakpoint(addr, save) \
657 (*current_target.to_remove_breakpoint) (addr, save)
658
659/* Initialize the terminal settings we record for the inferior,
660 before we actually run the inferior. */
661
662#define target_terminal_init() \
663 (*current_target.to_terminal_init) ()
664
665/* Put the inferior's terminal settings into effect.
666 This is preparation for starting or resuming the inferior. */
667
668#define target_terminal_inferior() \
669 (*current_target.to_terminal_inferior) ()
670
671/* Put some of our terminal settings into effect,
672 enough to get proper results from our output,
673 but do not change into or out of RAW mode
674 so that no input is discarded.
675
676 After doing this, either terminal_ours or terminal_inferior
677 should be called to get back to a normal state of affairs. */
678
679#define target_terminal_ours_for_output() \
680 (*current_target.to_terminal_ours_for_output) ()
681
682/* Put our terminal settings into effect.
683 First record the inferior's terminal settings
684 so they can be restored properly later. */
685
686#define target_terminal_ours() \
687 (*current_target.to_terminal_ours) ()
688
689/* Print useful information about our terminal status, if such a thing
690 exists. */
691
692#define target_terminal_info(arg, from_tty) \
693 (*current_target.to_terminal_info) (arg, from_tty)
694
695/* Kill the inferior process. Make it go away. */
696
697#define target_kill() \
698 (*current_target.to_kill) ()
699
700/* Load an executable file into the target process. This is expected to
701 not only bring new code into the target process, but also to update
702 GDB's symbol tables to match. */
703
704#define target_load(arg, from_tty) \
705 (*current_target.to_load) (arg, from_tty)
706
707/* Look up a symbol in the target's symbol table. NAME is the symbol
708 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
709 should be returned. The result is 0 if successful, nonzero if the
710 symbol does not exist in the target environment. This function should
711 not call error() if communication with the target is interrupted, since
712 it is called from symbol reading, but should return nonzero, possibly
713 doing a complain(). */
714
715#define target_lookup_symbol(name, addrp) \
716 (*current_target.to_lookup_symbol) (name, addrp)
717
718/* Start an inferior process and set inferior_pid to its pid.
719 EXEC_FILE is the file to run.
720 ALLARGS is a string containing the arguments to the program.
721 ENV is the environment vector to pass. Errors reported with error().
722 On VxWorks and various standalone systems, we ignore exec_file. */
723
724#define target_create_inferior(exec_file, args, env) \
725 (*current_target.to_create_inferior) (exec_file, args, env)
726
727
728/* Some targets (such as ttrace-based HPUX) don't allow us to request
729 notification of inferior events such as fork and vork immediately
730 after the inferior is created. (This because of how gdb gets an
731 inferior created via invoking a shell to do it. In such a scenario,
732 if the shell init file has commands in it, the shell will fork and
733 exec for each of those commands, and we will see each such fork
734 event. Very bad.)
735
736 Such targets will supply an appropriate definition for this function.
737 */
738#define target_post_startup_inferior(pid) \
739 (*current_target.to_post_startup_inferior) (pid)
740
741/* On some targets, the sequence of starting up an inferior requires
742 some synchronization between gdb and the new inferior process, PID.
743 */
744#define target_acknowledge_created_inferior(pid) \
745 (*current_target.to_acknowledge_created_inferior) (pid)
746
747/* An inferior process has been created via a fork() or similar
748 system call. This function will clone the debugger, then ensure
749 that CHILD_PID is attached to by that debugger.
750
751 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
752 and FALSE otherwise. (The original and clone debuggers can use this
753 to determine which they are, if need be.)
754
755 (This is not a terribly useful feature without a GUI to prevent
756 the two debuggers from competing for shell input.)
757 */
758#define target_clone_and_follow_inferior(child_pid,followed_child) \
759 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
760
761/* This operation is intended to be used as the last in a sequence of
762 steps taken when following both parent and child of a fork. This
763 is used by a clone of the debugger, which will follow the child.
764
765 The original debugger has detached from this process, and the
766 clone has attached to it.
767
768 On some targets, this requires a bit of cleanup to make it work
769 correctly.
770 */
771#define target_post_follow_inferior_by_clone() \
772 (*current_target.to_post_follow_inferior_by_clone) ()
773
774/* On some targets, we can catch an inferior fork or vfork event when it
775 occurs. These functions insert/remove an already-created catchpoint for
776 such events.
777 */
778#define target_insert_fork_catchpoint(pid) \
779 (*current_target.to_insert_fork_catchpoint) (pid)
780
781#define target_remove_fork_catchpoint(pid) \
782 (*current_target.to_remove_fork_catchpoint) (pid)
783
784#define target_insert_vfork_catchpoint(pid) \
785 (*current_target.to_insert_vfork_catchpoint) (pid)
786
787#define target_remove_vfork_catchpoint(pid) \
788 (*current_target.to_remove_vfork_catchpoint) (pid)
789
790/* Returns TRUE if PID has invoked the fork() system call. And,
791 also sets CHILD_PID to the process id of the other ("child")
792 inferior process that was created by that call.
793 */
794#define target_has_forked(pid,child_pid) \
795 (*current_target.to_has_forked) (pid,child_pid)
796
797/* Returns TRUE if PID has invoked the vfork() system call. And,
798 also sets CHILD_PID to the process id of the other ("child")
799 inferior process that was created by that call.
800 */
801#define target_has_vforked(pid,child_pid) \
802 (*current_target.to_has_vforked) (pid,child_pid)
803
804/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
805 anything to a vforked child before it subsequently calls exec().
806 On such platforms, we say that the debugger cannot "follow" the
807 child until it has vforked.
808
809 This function should be defined to return 1 by those targets
810 which can allow the debugger to immediately follow a vforked
811 child, and 0 if they cannot.
812 */
813#define target_can_follow_vfork_prior_to_exec() \
814 (*current_target.to_can_follow_vfork_prior_to_exec) ()
815
816/* An inferior process has been created via a vfork() system call.
817 The debugger has followed the parent, the child, or both. The
818 process of setting up for that follow may have required some
819 target-specific trickery to track the sequence of reported events.
820 If so, this function should be defined by those targets that
821 require the debugger to perform cleanup or initialization after
822 the vfork follow.
823 */
824#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
825 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
826
827/* On some targets, we can catch an inferior exec event when it
828 occurs. These functions insert/remove an already-created catchpoint
829 for such events.
830 */
831#define target_insert_exec_catchpoint(pid) \
832 (*current_target.to_insert_exec_catchpoint) (pid)
833
834#define target_remove_exec_catchpoint(pid) \
835 (*current_target.to_remove_exec_catchpoint) (pid)
836
837/* Returns TRUE if PID has invoked a flavor of the exec() system call.
838 And, also sets EXECD_PATHNAME to the pathname of the executable file
839 that was passed to exec(), and is now being executed.
840 */
841#define target_has_execd(pid,execd_pathname) \
842 (*current_target.to_has_execd) (pid,execd_pathname)
843
844/* Returns the number of exec events that are reported when a process
845 invokes a flavor of the exec() system call on this target, if exec
846 events are being reported.
847 */
848#define target_reported_exec_events_per_exec_call() \
849 (*current_target.to_reported_exec_events_per_exec_call) ()
850
851/* Returns TRUE if PID has reported a syscall event. And, also sets
852 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
853 the unique integer ID of the syscall.
854 */
855#define target_has_syscall_event(pid,kind,syscall_id) \
856 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
857
858/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
859 exit code of PID, if any.
860 */
861#define target_has_exited(pid,wait_status,exit_status) \
862 (*current_target.to_has_exited) (pid,wait_status,exit_status)
863
864/* The debugger has completed a blocking wait() call. There is now
865 some process event that must be processed. This function should
866 be defined by those targets that require the debugger to perform
867 cleanup or internal state changes in response to the process event.
868 */
869
870/* The inferior process has died. Do what is right. */
871
872#define target_mourn_inferior() \
873 (*current_target.to_mourn_inferior) ()
874
875/* Does target have enough data to do a run or attach command? */
876
877#define target_can_run(t) \
878 ((t)->to_can_run) ()
879
880/* post process changes to signal handling in the inferior. */
881
882#define target_notice_signals(pid) \
883 (*current_target.to_notice_signals) (pid)
884
885/* Check to see if a thread is still alive. */
886
887#define target_thread_alive(pid) \
888 (*current_target.to_thread_alive) (pid)
889
890/* Make target stop in a continuable fashion. (For instance, under Unix, this
891 should act like SIGSTOP). This function is normally used by GUIs to
892 implement a stop button. */
893
894#define target_stop current_target.to_stop
895
896/* Queries the target side for some information. The first argument is a
897 letter specifying the type of the query, which is used to determine who
898 should process it. The second argument is a string that specifies which
899 information is desired and the third is a buffer that carries back the
900 response from the target side. The fourth parameter is the size of the
901 output buffer supplied. */
902
903#define target_query(query_type, query, resp_buffer, bufffer_size) \
904 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
905
906/* Get the symbol information for a breakpointable routine called when
907 an exception event occurs.
908 Intended mainly for C++, and for those
909 platforms/implementations where such a callback mechanism is available,
910 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
911 different mechanisms for debugging exceptions. */
912
913#define target_enable_exception_callback(kind, enable) \
914 (*current_target.to_enable_exception_callback) (kind, enable)
915
916/* Get the current exception event kind -- throw or catch, etc. */
917
918#define target_get_current_exception_event() \
919 (*current_target.to_get_current_exception_event) ()
920
921/* Pointer to next target in the chain, e.g. a core file and an exec file. */
922
923#define target_next \
924 (current_target.to_next)
925
926/* Does the target include all of memory, or only part of it? This
927 determines whether we look up the target chain for other parts of
928 memory if this target can't satisfy a request. */
929
930#define target_has_all_memory \
931 (current_target.to_has_all_memory)
932
933/* Does the target include memory? (Dummy targets don't.) */
934
935#define target_has_memory \
936 (current_target.to_has_memory)
937
938/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
939 we start a process.) */
940
941#define target_has_stack \
942 (current_target.to_has_stack)
943
944/* Does the target have registers? (Exec files don't.) */
945
946#define target_has_registers \
947 (current_target.to_has_registers)
948
949/* Does the target have execution? Can we make it jump (through
950 hoops), or pop its stack a few times? FIXME: If this is to work that
951 way, it needs to check whether an inferior actually exists.
952 remote-udi.c and probably other targets can be the current target
953 when the inferior doesn't actually exist at the moment. Right now
954 this just tells us whether this target is *capable* of execution. */
955
956#define target_has_execution \
957 (current_target.to_has_execution)
958
959/* Can the target support the debugger control of thread execution?
960 a) Can it lock the thread scheduler?
961 b) Can it switch the currently running thread? */
962
963#define target_can_lock_scheduler \
964 (current_target.to_has_thread_control & tc_schedlock)
965
966#define target_can_switch_threads \
967 (current_target.to_has_thread_control & tc_switch)
968
969extern void target_link PARAMS ((char *, CORE_ADDR *));
970
971/* Converts a process id to a string. Usually, the string just contains
972 `process xyz', but on some systems it may contain
973 `process xyz thread abc'. */
974
975#ifndef target_pid_to_str
976#define target_pid_to_str(PID) \
977 normal_pid_to_str (PID)
978extern char *normal_pid_to_str PARAMS ((int pid));
979#endif
980
981#ifndef target_tid_to_str
982#define target_tid_to_str(PID) \
983 normal_pid_to_str (PID)
984extern char *normal_pid_to_str PARAMS ((int pid));
985#endif
986
987
988#ifndef target_new_objfile
989#define target_new_objfile(OBJFILE)
990#endif
991
992#ifndef target_pid_or_tid_to_str
993#define target_pid_or_tid_to_str(ID) \
994 normal_pid_to_str (ID)
995#endif
996
997/* Attempts to find the pathname of the executable file
998 that was run to create a specified process.
999
1000 The process PID must be stopped when this operation is used.
1001
1002 If the executable file cannot be determined, NULL is returned.
1003
1004 Else, a pointer to a character string containing the pathname
1005 is returned. This string should be copied into a buffer by
1006 the client if the string will not be immediately used, or if
1007 it must persist.
1008 */
1009
1010#define target_pid_to_exec_file(pid) \
1011 (current_target.to_pid_to_exec_file) (pid)
1012
1013/* Hook to call target-dependant code after reading in a new symbol table. */
1014
1015#ifndef TARGET_SYMFILE_POSTREAD
1016#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1017#endif
1018
1019/* Hook to call target dependant code just after inferior target process has
1020 started. */
1021
1022#ifndef TARGET_CREATE_INFERIOR_HOOK
1023#define TARGET_CREATE_INFERIOR_HOOK(PID)
1024#endif
1025
1026/* Hardware watchpoint interfaces. */
1027
1028/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1029 write). */
1030
1031#ifndef STOPPED_BY_WATCHPOINT
1032#define STOPPED_BY_WATCHPOINT(w) 0
1033#endif
1034
1035/* HP-UX supplies these operations, which respectively disable and enable
1036 the memory page-protections that are used to implement hardware watchpoints
1037 on that platform. See wait_for_inferior's use of these.
1038 */
1039#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1040#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1041#endif
1042
1043#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1044#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1045#endif
1046
1047/* Provide defaults for systems that don't support hardware watchpoints. */
1048
1049#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1050
1051/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1052 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1053 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1054 (including this one?). OTHERTYPE is who knows what... */
1055
1056#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1057
1058#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1059#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1060 (LONGEST)(byte_count) <= REGISTER_SIZE
1061#endif
1062
1063/* However, some addresses may not be profitable to use hardware to watch,
1064 or may be difficult to understand when the addressed object is out of
1065 scope, and hence should be unwatched. On some targets, this may have
1066 severe performance penalties, such that we might as well use regular
1067 watchpoints, and save (possibly precious) hardware watchpoints for other
1068 locations.
1069 */
1070#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1071#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1072#endif
1073
1074
1075/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1076 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1077 success, non-zero for failure. */
1078
1079#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1080#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1081
1082#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1083
1084#ifndef target_insert_hw_breakpoint
1085#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1086#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1087#endif
1088
1089#ifndef target_stopped_data_address
1090#define target_stopped_data_address() 0
1091#endif
1092
1093/* If defined, then we need to decr pc by this much after a hardware break-
1094 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1095
1096#ifndef DECR_PC_AFTER_HW_BREAK
1097#define DECR_PC_AFTER_HW_BREAK 0
1098#endif
1099
1100/* Sometimes gdb may pick up what appears to be a valid target address
1101 from a minimal symbol, but the value really means, essentially,
1102 "This is an index into a table which is populated when the inferior
1103 is run. Therefore, do not attempt to use this as a PC."
1104 */
1105#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1106#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1107#endif
1108
1109/* This will only be defined by a target that supports catching vfork events,
1110 such as HP-UX.
1111
1112 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1113 child process after it has exec'd, causes the parent process to resume as
1114 well. To prevent the parent from running spontaneously, such targets should
1115 define this to a function that prevents that from happening.
1116 */
1117#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1118#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1119#endif
1120
1121/* This will only be defined by a target that supports catching vfork events,
1122 such as HP-UX.
1123
1124 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1125 process must be resumed when it delivers its exec event, before the parent
1126 vfork event will be delivered to us.
1127 */
1128#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1129#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1130#endif
1131
1132/* Routines for maintenance of the target structures...
1133
1134 add_target: Add a target to the list of all possible targets.
1135
1136 push_target: Make this target the top of the stack of currently used
1137 targets, within its particular stratum of the stack. Result
1138 is 0 if now atop the stack, nonzero if not on top (maybe
1139 should warn user).
1140
1141 unpush_target: Remove this from the stack of currently used targets,
1142 no matter where it is on the list. Returns 0 if no
1143 change, 1 if removed from stack.
1144
1145 pop_target: Remove the top thing on the stack of current targets. */
1146
1147extern void
1148add_target PARAMS ((struct target_ops *));
1149
1150extern int
1151push_target PARAMS ((struct target_ops *));
1152
1153extern int
1154unpush_target PARAMS ((struct target_ops *));
1155
1156extern void
1157target_preopen PARAMS ((int));
1158
1159extern void
1160pop_target PARAMS ((void));
1161
1162/* Struct section_table maps address ranges to file sections. It is
1163 mostly used with BFD files, but can be used without (e.g. for handling
1164 raw disks, or files not in formats handled by BFD). */
1165
1166struct section_table {
1167 CORE_ADDR addr; /* Lowest address in section */
1168 CORE_ADDR endaddr; /* 1+highest address in section */
1169
1170 sec_ptr the_bfd_section;
1171
1172 bfd *bfd; /* BFD file pointer */
1173};
1174
1175/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1176 Returns 0 if OK, 1 on error. */
1177
1178extern int
1179build_section_table PARAMS ((bfd *, struct section_table **,
1180 struct section_table **));
1181
1182/* From mem-break.c */
1183
1184extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1185
1186extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1187
1188extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1189#ifndef BREAKPOINT_FROM_PC
1190#define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1191#endif
1192
1193
1194/* From target.c */
1195
1196extern void
1197initialize_targets PARAMS ((void));
1198
1199extern void
1200noprocess PARAMS ((void));
1201
1202extern void
1203find_default_attach PARAMS ((char *, int));
1204
1205void
1206find_default_require_attach PARAMS ((char *, int));
1207
1208void
1209find_default_require_detach PARAMS ((int, char *, int));
1210
1211extern void
1212find_default_create_inferior PARAMS ((char *, char *, char **));
1213
1214void
1215find_default_clone_and_follow_inferior PARAMS ((int, int *));
1216
7a292a7a
SS
1217extern struct target_ops *find_run_target PARAMS ((void));
1218
c906108c
SS
1219extern struct target_ops *
1220find_core_target PARAMS ((void));
1221\f
1222/* Stuff that should be shared among the various remote targets. */
1223
1224/* Debugging level. 0 is off, and non-zero values mean to print some debug
1225 information (higher values, more information). */
1226extern int remote_debug;
1227
1228/* Speed in bits per second, or -1 which means don't mess with the speed. */
1229extern int baud_rate;
1230/* Timeout limit for response from target. */
1231extern int remote_timeout;
1232
1233extern asection *target_memory_bfd_section;
1234\f
1235/* Functions for helping to write a native target. */
1236
1237/* This is for native targets which use a unix/POSIX-style waitstatus. */
1238extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1239
1240/* Convert between host signal numbers and enum target_signal's. */
1241extern enum target_signal target_signal_from_host PARAMS ((int));
1242extern int target_signal_to_host PARAMS ((enum target_signal));
1243
1244/* Convert from a number used in a GDB command to an enum target_signal. */
1245extern enum target_signal target_signal_from_command PARAMS ((int));
1246
1247/* Any target can call this to switch to remote protocol (in remote.c). */
1248extern void push_remote_target PARAMS ((char *name, int from_tty));
1249\f
1250/* Imported from machine dependent code */
1251
1252#ifndef SOFTWARE_SINGLE_STEP_P
1253#define SOFTWARE_SINGLE_STEP_P 0
1254#define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1255#endif /* SOFTWARE_SINGLE_STEP_P */
1256
1257/* Blank target vector entries are initialized to target_ignore. */
1258void target_ignore PARAMS ((void));
1259
1260/* Macro for getting target's idea of a frame pointer.
1261 FIXME: GDB's whole scheme for dealing with "frames" and
1262 "frame pointers" needs a serious shakedown. */
1263#ifndef TARGET_VIRTUAL_FRAME_POINTER
1264#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1265 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1266#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1267
1268#endif /* !defined (TARGET_H) */
This page took 0.06589 seconds and 4 git commands to generate.