gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
b811d2c2 3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
268a13a5
TT
44#include "gdbsupport/selftest.h"
45#include "gdbsupport/array-view.h"
7f6aba03 46#include "cli/cli-style.h"
0914bcdb 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
6b850546 68 LONGEST offset;
4e07d55f
PA
69
70 /* Length of the range. */
6b850546 71 LONGEST length;
4e07d55f 72
0c7e6dd8
TT
73 /* Returns true if THIS is strictly less than OTHER, useful for
74 searching. We keep ranges sorted by offset and coalesce
75 overlapping and contiguous ranges, so this just compares the
76 starting offset. */
4e07d55f 77
0c7e6dd8
TT
78 bool operator< (const range &other) const
79 {
80 return offset < other.offset;
81 }
d5f4488f
SM
82
83 /* Returns true if THIS is equal to OTHER. */
84 bool operator== (const range &other) const
85 {
86 return offset == other.offset && length == other.length;
87 }
0c7e6dd8 88};
4e07d55f
PA
89
90/* Returns true if the ranges defined by [offset1, offset1+len1) and
91 [offset2, offset2+len2) overlap. */
92
93static int
6b850546
DT
94ranges_overlap (LONGEST offset1, LONGEST len1,
95 LONGEST offset2, LONGEST len2)
4e07d55f
PA
96{
97 ULONGEST h, l;
98
325fac50
PA
99 l = std::max (offset1, offset2);
100 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
101 return (l < h);
102}
103
4e07d55f
PA
104/* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107static int
0c7e6dd8
TT
108ranges_contain (const std::vector<range> &ranges, LONGEST offset,
109 LONGEST length)
4e07d55f 110{
0c7e6dd8 111 range what;
4e07d55f
PA
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
4e07d55f 147
0c7e6dd8
TT
148 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
149
150 if (i > ranges.begin ())
4e07d55f 151 {
0c7e6dd8 152 const struct range &bef = *(i - 1);
4e07d55f 153
0c7e6dd8 154 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
155 return 1;
156 }
157
0c7e6dd8 158 if (i < ranges.end ())
4e07d55f 159 {
0c7e6dd8 160 const struct range &r = *i;
4e07d55f 161
0c7e6dd8 162 if (ranges_overlap (r.offset, r.length, offset, length))
4e07d55f
PA
163 return 1;
164 }
165
166 return 0;
167}
168
bc3b79fd
TJB
169static struct cmd_list_element *functionlist;
170
87784a47
TT
171/* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
91294c83
AC
174struct value
175{
466ce3ae
TT
176 explicit value (struct type *type_)
177 : modifiable (1),
178 lazy (1),
179 initialized (1),
180 stack (0),
181 type (type_),
182 enclosing_type (type_)
183 {
466ce3ae
TT
184 }
185
186 ~value ()
187 {
466ce3ae
TT
188 if (VALUE_LVAL (this) == lval_computed)
189 {
190 const struct lval_funcs *funcs = location.computed.funcs;
191
192 if (funcs->free_closure)
193 funcs->free_closure (this);
194 }
195 else if (VALUE_LVAL (this) == lval_xcallable)
196 delete location.xm_worker;
466ce3ae
TT
197 }
198
199 DISABLE_COPY_AND_ASSIGN (value);
200
91294c83
AC
201 /* Type of value; either not an lval, or one of the various
202 different possible kinds of lval. */
466ce3ae 203 enum lval_type lval = not_lval;
91294c83
AC
204
205 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
206 unsigned int modifiable : 1;
207
208 /* If zero, contents of this value are in the contents field. If
209 nonzero, contents are in inferior. If the lval field is lval_memory,
210 the contents are in inferior memory at location.address plus offset.
211 The lval field may also be lval_register.
212
213 WARNING: This field is used by the code which handles watchpoints
214 (see breakpoint.c) to decide whether a particular value can be
215 watched by hardware watchpoints. If the lazy flag is set for
216 some member of a value chain, it is assumed that this member of
217 the chain doesn't need to be watched as part of watching the
218 value itself. This is how GDB avoids watching the entire struct
219 or array when the user wants to watch a single struct member or
220 array element. If you ever change the way lazy flag is set and
221 reset, be sure to consider this use as well! */
222 unsigned int lazy : 1;
223
87784a47
TT
224 /* If value is a variable, is it initialized or not. */
225 unsigned int initialized : 1;
226
227 /* If value is from the stack. If this is set, read_stack will be
228 used instead of read_memory to enable extra caching. */
229 unsigned int stack : 1;
91294c83
AC
230
231 /* Location of value (if lval). */
232 union
233 {
7dc54575 234 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
235 CORE_ADDR address;
236
7dc54575
YQ
237 /*If lval == lval_register, the value is from a register. */
238 struct
239 {
240 /* Register number. */
241 int regnum;
242 /* Frame ID of "next" frame to which a register value is relative.
243 If the register value is found relative to frame F, then the
244 frame id of F->next will be stored in next_frame_id. */
245 struct frame_id next_frame_id;
246 } reg;
247
91294c83
AC
248 /* Pointer to internal variable. */
249 struct internalvar *internalvar;
5f5233d4 250
e81e7f5e
SC
251 /* Pointer to xmethod worker. */
252 struct xmethod_worker *xm_worker;
253
5f5233d4
PA
254 /* If lval == lval_computed, this is a set of function pointers
255 to use to access and describe the value, and a closure pointer
256 for them to use. */
257 struct
258 {
c8f2448a
JK
259 /* Functions to call. */
260 const struct lval_funcs *funcs;
261
262 /* Closure for those functions to use. */
263 void *closure;
5f5233d4 264 } computed;
41a883c8 265 } location {};
91294c83 266
3723fda8 267 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
268 addressable memory units. Note also the member embedded_offset
269 below. */
466ce3ae 270 LONGEST offset = 0;
91294c83
AC
271
272 /* Only used for bitfields; number of bits contained in them. */
466ce3ae 273 LONGEST bitsize = 0;
91294c83
AC
274
275 /* Only used for bitfields; position of start of field. For
d5a22e77
TT
276 little-endian targets, it is the position of the LSB. For
277 big-endian targets, it is the position of the MSB. */
466ce3ae 278 LONGEST bitpos = 0;
91294c83 279
87784a47
TT
280 /* The number of references to this value. When a value is created,
281 the value chain holds a reference, so REFERENCE_COUNT is 1. If
282 release_value is called, this value is removed from the chain but
283 the caller of release_value now has a reference to this value.
284 The caller must arrange for a call to value_free later. */
466ce3ae 285 int reference_count = 1;
87784a47 286
4ea48cc1
DJ
287 /* Only used for bitfields; the containing value. This allows a
288 single read from the target when displaying multiple
289 bitfields. */
2c8331b9 290 value_ref_ptr parent;
4ea48cc1 291
91294c83
AC
292 /* Type of the value. */
293 struct type *type;
294
295 /* If a value represents a C++ object, then the `type' field gives
296 the object's compile-time type. If the object actually belongs
297 to some class derived from `type', perhaps with other base
298 classes and additional members, then `type' is just a subobject
299 of the real thing, and the full object is probably larger than
300 `type' would suggest.
301
302 If `type' is a dynamic class (i.e. one with a vtable), then GDB
303 can actually determine the object's run-time type by looking at
304 the run-time type information in the vtable. When this
305 information is available, we may elect to read in the entire
306 object, for several reasons:
307
308 - When printing the value, the user would probably rather see the
309 full object, not just the limited portion apparent from the
310 compile-time type.
311
312 - If `type' has virtual base classes, then even printing `type'
313 alone may require reaching outside the `type' portion of the
314 object to wherever the virtual base class has been stored.
315
316 When we store the entire object, `enclosing_type' is the run-time
317 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
318 offset of `type' within that larger type, in target addressable memory
319 units. The value_contents() macro takes `embedded_offset' into account,
320 so most GDB code continues to see the `type' portion of the value, just
321 as the inferior would.
91294c83
AC
322
323 If `type' is a pointer to an object, then `enclosing_type' is a
324 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
325 the offset in target addressable memory units from the full object
326 to the pointed-to object -- that is, the value `embedded_offset' would
327 have if we followed the pointer and fetched the complete object.
328 (I don't really see the point. Why not just determine the
329 run-time type when you indirect, and avoid the special case? The
330 contents don't matter until you indirect anyway.)
91294c83
AC
331
332 If we're not doing anything fancy, `enclosing_type' is equal to
333 `type', and `embedded_offset' is zero, so everything works
334 normally. */
335 struct type *enclosing_type;
466ce3ae
TT
336 LONGEST embedded_offset = 0;
337 LONGEST pointed_to_offset = 0;
91294c83 338
3e3d7139
JG
339 /* Actual contents of the value. Target byte-order. NULL or not
340 valid if lazy is nonzero. */
14c88955 341 gdb::unique_xmalloc_ptr<gdb_byte> contents;
828d3400 342
4e07d55f
PA
343 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
344 rather than available, since the common and default case is for a
9a0dc9e3
PA
345 value to be available. This is filled in at value read time.
346 The unavailable ranges are tracked in bits. Note that a contents
347 bit that has been optimized out doesn't really exist in the
348 program, so it can't be marked unavailable either. */
0c7e6dd8 349 std::vector<range> unavailable;
9a0dc9e3
PA
350
351 /* Likewise, but for optimized out contents (a chunk of the value of
352 a variable that does not actually exist in the program). If LVAL
353 is lval_register, this is a register ($pc, $sp, etc., never a
354 program variable) that has not been saved in the frame. Not
355 saved registers and optimized-out program variables values are
356 treated pretty much the same, except not-saved registers have a
357 different string representation and related error strings. */
0c7e6dd8 358 std::vector<range> optimized_out;
91294c83
AC
359};
360
e512cdbd
SM
361/* See value.h. */
362
363struct gdbarch *
364get_value_arch (const struct value *value)
365{
366 return get_type_arch (value_type (value));
367}
368
4e07d55f 369int
6b850546 370value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
371{
372 gdb_assert (!value->lazy);
373
374 return !ranges_contain (value->unavailable, offset, length);
375}
376
bdf22206 377int
6b850546
DT
378value_bytes_available (const struct value *value,
379 LONGEST offset, LONGEST length)
bdf22206
AB
380{
381 return value_bits_available (value,
382 offset * TARGET_CHAR_BIT,
383 length * TARGET_CHAR_BIT);
384}
385
9a0dc9e3
PA
386int
387value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388{
389 gdb_assert (!value->lazy);
390
391 return ranges_contain (value->optimized_out, bit_offset, bit_length);
392}
393
ec0a52e1
PA
394int
395value_entirely_available (struct value *value)
396{
397 /* We can only tell whether the whole value is available when we try
398 to read it. */
399 if (value->lazy)
400 value_fetch_lazy (value);
401
0c7e6dd8 402 if (value->unavailable.empty ())
ec0a52e1
PA
403 return 1;
404 return 0;
405}
406
9a0dc9e3
PA
407/* Returns true if VALUE is entirely covered by RANGES. If the value
408 is lazy, it'll be read now. Note that RANGE is a pointer to
409 pointer because reading the value might change *RANGE. */
410
411static int
412value_entirely_covered_by_range_vector (struct value *value,
0c7e6dd8 413 const std::vector<range> &ranges)
6211c335 414{
9a0dc9e3
PA
415 /* We can only tell whether the whole value is optimized out /
416 unavailable when we try to read it. */
6211c335
YQ
417 if (value->lazy)
418 value_fetch_lazy (value);
419
0c7e6dd8 420 if (ranges.size () == 1)
6211c335 421 {
0c7e6dd8 422 const struct range &t = ranges[0];
6211c335 423
0c7e6dd8
TT
424 if (t.offset == 0
425 && t.length == (TARGET_CHAR_BIT
426 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
427 return 1;
428 }
429
430 return 0;
431}
432
9a0dc9e3
PA
433int
434value_entirely_unavailable (struct value *value)
435{
0c7e6dd8 436 return value_entirely_covered_by_range_vector (value, value->unavailable);
9a0dc9e3
PA
437}
438
439int
440value_entirely_optimized_out (struct value *value)
441{
0c7e6dd8 442 return value_entirely_covered_by_range_vector (value, value->optimized_out);
9a0dc9e3
PA
443}
444
445/* Insert into the vector pointed to by VECTORP the bit range starting of
446 OFFSET bits, and extending for the next LENGTH bits. */
447
448static void
0c7e6dd8 449insert_into_bit_range_vector (std::vector<range> *vectorp,
6b850546 450 LONGEST offset, LONGEST length)
4e07d55f 451{
0c7e6dd8 452 range newr;
4e07d55f
PA
453
454 /* Insert the range sorted. If there's overlap or the new range
455 would be contiguous with an existing range, merge. */
456
457 newr.offset = offset;
458 newr.length = length;
459
460 /* Do a binary search for the position the given range would be
461 inserted if we only considered the starting OFFSET of ranges.
462 Call that position I. Since we also have LENGTH to care for
463 (this is a range afterall), we need to check if the _previous_
464 range overlaps the I range. E.g., calling R the new range:
465
466 #1 - overlaps with previous
467
468 R
469 |-...-|
470 |---| |---| |------| ... |--|
471 0 1 2 N
472
473 I=1
474
475 In the case #1 above, the binary search would return `I=1',
476 meaning, this OFFSET should be inserted at position 1, and the
477 current position 1 should be pushed further (and become 2). But,
478 note that `0' overlaps with R, so we want to merge them.
479
480 A similar consideration needs to be taken if the new range would
481 be contiguous with the previous range:
482
483 #2 - contiguous with previous
484
485 R
486 |-...-|
487 |--| |---| |------| ... |--|
488 0 1 2 N
489
490 I=1
491
492 If there's no overlap with the previous range, as in:
493
494 #3 - not overlapping and not contiguous
495
496 R
497 |-...-|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=1
502
503 or if I is 0:
504
505 #4 - R is the range with lowest offset
506
507 R
508 |-...-|
509 |--| |---| |------| ... |--|
510 0 1 2 N
511
512 I=0
513
514 ... we just push the new range to I.
515
516 All the 4 cases above need to consider that the new range may
517 also overlap several of the ranges that follow, or that R may be
518 contiguous with the following range, and merge. E.g.,
519
520 #5 - overlapping following ranges
521
522 R
523 |------------------------|
524 |--| |---| |------| ... |--|
525 0 1 2 N
526
527 I=0
528
529 or:
530
531 R
532 |-------|
533 |--| |---| |------| ... |--|
534 0 1 2 N
535
536 I=1
537
538 */
539
0c7e6dd8
TT
540 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
541 if (i > vectorp->begin ())
4e07d55f 542 {
0c7e6dd8 543 struct range &bef = *(i - 1);
4e07d55f 544
0c7e6dd8 545 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
546 {
547 /* #1 */
0c7e6dd8
TT
548 ULONGEST l = std::min (bef.offset, offset);
549 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
4e07d55f 550
0c7e6dd8
TT
551 bef.offset = l;
552 bef.length = h - l;
4e07d55f
PA
553 i--;
554 }
0c7e6dd8 555 else if (offset == bef.offset + bef.length)
4e07d55f
PA
556 {
557 /* #2 */
0c7e6dd8 558 bef.length += length;
4e07d55f
PA
559 i--;
560 }
561 else
562 {
563 /* #3 */
0c7e6dd8 564 i = vectorp->insert (i, newr);
4e07d55f
PA
565 }
566 }
567 else
568 {
569 /* #4 */
0c7e6dd8 570 i = vectorp->insert (i, newr);
4e07d55f
PA
571 }
572
573 /* Check whether the ranges following the one we've just added or
574 touched can be folded in (#5 above). */
0c7e6dd8 575 if (i != vectorp->end () && i + 1 < vectorp->end ())
4e07d55f 576 {
4e07d55f 577 int removed = 0;
0c7e6dd8 578 auto next = i + 1;
4e07d55f
PA
579
580 /* Get the range we just touched. */
0c7e6dd8 581 struct range &t = *i;
4e07d55f
PA
582 removed = 0;
583
584 i = next;
0c7e6dd8
TT
585 for (; i < vectorp->end (); i++)
586 {
587 struct range &r = *i;
588 if (r.offset <= t.offset + t.length)
589 {
590 ULONGEST l, h;
591
592 l = std::min (t.offset, r.offset);
593 h = std::max (t.offset + t.length, r.offset + r.length);
594
595 t.offset = l;
596 t.length = h - l;
597
598 removed++;
599 }
600 else
601 {
602 /* If we couldn't merge this one, we won't be able to
603 merge following ones either, since the ranges are
604 always sorted by OFFSET. */
605 break;
606 }
607 }
4e07d55f
PA
608
609 if (removed != 0)
0c7e6dd8 610 vectorp->erase (next, next + removed);
4e07d55f
PA
611 }
612}
613
9a0dc9e3 614void
6b850546
DT
615mark_value_bits_unavailable (struct value *value,
616 LONGEST offset, LONGEST length)
9a0dc9e3
PA
617{
618 insert_into_bit_range_vector (&value->unavailable, offset, length);
619}
620
bdf22206 621void
6b850546
DT
622mark_value_bytes_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
bdf22206
AB
624{
625 mark_value_bits_unavailable (value,
626 offset * TARGET_CHAR_BIT,
627 length * TARGET_CHAR_BIT);
628}
629
c8c1c22f
PA
630/* Find the first range in RANGES that overlaps the range defined by
631 OFFSET and LENGTH, starting at element POS in the RANGES vector,
632 Returns the index into RANGES where such overlapping range was
633 found, or -1 if none was found. */
634
635static int
0c7e6dd8 636find_first_range_overlap (const std::vector<range> *ranges, int pos,
6b850546 637 LONGEST offset, LONGEST length)
c8c1c22f 638{
c8c1c22f
PA
639 int i;
640
0c7e6dd8
TT
641 for (i = pos; i < ranges->size (); i++)
642 {
643 const range &r = (*ranges)[i];
644 if (ranges_overlap (r.offset, r.length, offset, length))
645 return i;
646 }
c8c1c22f
PA
647
648 return -1;
649}
650
bdf22206
AB
651/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
652 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
653 return non-zero.
654
655 It must always be the case that:
656 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657
658 It is assumed that memory can be accessed from:
659 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 to:
661 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
662 / TARGET_CHAR_BIT) */
663static int
664memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
665 const gdb_byte *ptr2, size_t offset2_bits,
666 size_t length_bits)
667{
668 gdb_assert (offset1_bits % TARGET_CHAR_BIT
669 == offset2_bits % TARGET_CHAR_BIT);
670
671 if (offset1_bits % TARGET_CHAR_BIT != 0)
672 {
673 size_t bits;
674 gdb_byte mask, b1, b2;
675
676 /* The offset from the base pointers PTR1 and PTR2 is not a complete
677 number of bytes. A number of bits up to either the next exact
678 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 compared. */
680 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
681 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
682 mask = (1 << bits) - 1;
683
684 if (length_bits < bits)
685 {
686 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
687 bits = length_bits;
688 }
689
690 /* Now load the two bytes and mask off the bits we care about. */
691 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
692 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
693
694 if (b1 != b2)
695 return 1;
696
697 /* Now update the length and offsets to take account of the bits
698 we've just compared. */
699 length_bits -= bits;
700 offset1_bits += bits;
701 offset2_bits += bits;
702 }
703
704 if (length_bits % TARGET_CHAR_BIT != 0)
705 {
706 size_t bits;
707 size_t o1, o2;
708 gdb_byte mask, b1, b2;
709
710 /* The length is not an exact number of bytes. After the previous
711 IF.. block then the offsets are byte aligned, or the
712 length is zero (in which case this code is not reached). Compare
713 a number of bits at the end of the region, starting from an exact
714 byte boundary. */
715 bits = length_bits % TARGET_CHAR_BIT;
716 o1 = offset1_bits + length_bits - bits;
717 o2 = offset2_bits + length_bits - bits;
718
719 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
720 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721
722 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
723 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724
725 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
726 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
727
728 if (b1 != b2)
729 return 1;
730
731 length_bits -= bits;
732 }
733
734 if (length_bits > 0)
735 {
736 /* We've now taken care of any stray "bits" at the start, or end of
737 the region to compare, the remainder can be covered with a simple
738 memcmp. */
739 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
741 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742
743 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
744 ptr2 + offset2_bits / TARGET_CHAR_BIT,
745 length_bits / TARGET_CHAR_BIT);
746 }
747
748 /* Length is zero, regions match. */
749 return 0;
750}
751
9a0dc9e3
PA
752/* Helper struct for find_first_range_overlap_and_match and
753 value_contents_bits_eq. Keep track of which slot of a given ranges
754 vector have we last looked at. */
bdf22206 755
9a0dc9e3
PA
756struct ranges_and_idx
757{
758 /* The ranges. */
0c7e6dd8 759 const std::vector<range> *ranges;
9a0dc9e3
PA
760
761 /* The range we've last found in RANGES. Given ranges are sorted,
762 we can start the next lookup here. */
763 int idx;
764};
765
766/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
767 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
768 ranges starting at OFFSET2 bits. Return true if the ranges match
769 and fill in *L and *H with the overlapping window relative to
770 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
771
772static int
9a0dc9e3
PA
773find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
774 struct ranges_and_idx *rp2,
6b850546
DT
775 LONGEST offset1, LONGEST offset2,
776 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 777{
9a0dc9e3
PA
778 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 offset1, length);
780 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
781 offset2, length);
c8c1c22f 782
9a0dc9e3
PA
783 if (rp1->idx == -1 && rp2->idx == -1)
784 {
785 *l = length;
786 *h = length;
787 return 1;
788 }
789 else if (rp1->idx == -1 || rp2->idx == -1)
790 return 0;
791 else
c8c1c22f 792 {
0c7e6dd8 793 const range *r1, *r2;
c8c1c22f
PA
794 ULONGEST l1, h1;
795 ULONGEST l2, h2;
796
0c7e6dd8
TT
797 r1 = &(*rp1->ranges)[rp1->idx];
798 r2 = &(*rp2->ranges)[rp2->idx];
c8c1c22f
PA
799
800 /* Get the unavailable windows intersected by the incoming
801 ranges. The first and last ranges that overlap the argument
802 range may be wider than said incoming arguments ranges. */
325fac50
PA
803 l1 = std::max (offset1, r1->offset);
804 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 805
325fac50
PA
806 l2 = std::max (offset2, r2->offset);
807 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
808
809 /* Make them relative to the respective start offsets, so we can
810 compare them for equality. */
811 l1 -= offset1;
812 h1 -= offset1;
813
814 l2 -= offset2;
815 h2 -= offset2;
816
9a0dc9e3 817 /* Different ranges, no match. */
c8c1c22f
PA
818 if (l1 != l2 || h1 != h2)
819 return 0;
820
9a0dc9e3
PA
821 *h = h1;
822 *l = l1;
823 return 1;
824 }
825}
826
827/* Helper function for value_contents_eq. The only difference is that
828 this function is bit rather than byte based.
829
830 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
831 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
832 Return true if the available bits match. */
833
98ead37e 834static bool
9a0dc9e3
PA
835value_contents_bits_eq (const struct value *val1, int offset1,
836 const struct value *val2, int offset2,
837 int length)
838{
839 /* Each array element corresponds to a ranges source (unavailable,
840 optimized out). '1' is for VAL1, '2' for VAL2. */
841 struct ranges_and_idx rp1[2], rp2[2];
842
843 /* See function description in value.h. */
844 gdb_assert (!val1->lazy && !val2->lazy);
845
846 /* We shouldn't be trying to compare past the end of the values. */
847 gdb_assert (offset1 + length
848 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
849 gdb_assert (offset2 + length
850 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851
852 memset (&rp1, 0, sizeof (rp1));
853 memset (&rp2, 0, sizeof (rp2));
0c7e6dd8
TT
854 rp1[0].ranges = &val1->unavailable;
855 rp2[0].ranges = &val2->unavailable;
856 rp1[1].ranges = &val1->optimized_out;
857 rp2[1].ranges = &val2->optimized_out;
9a0dc9e3
PA
858
859 while (length > 0)
860 {
000339af 861 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
862 int i;
863
864 for (i = 0; i < 2; i++)
865 {
866 ULONGEST l_tmp, h_tmp;
867
868 /* The contents only match equal if the invalid/unavailable
869 contents ranges match as well. */
870 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
871 offset1, offset2, length,
872 &l_tmp, &h_tmp))
98ead37e 873 return false;
9a0dc9e3
PA
874
875 /* We're interested in the lowest/first range found. */
876 if (i == 0 || l_tmp < l)
877 {
878 l = l_tmp;
879 h = h_tmp;
880 }
881 }
882
883 /* Compare the available/valid contents. */
14c88955
TT
884 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
885 val2->contents.get (), offset2, l) != 0)
98ead37e 886 return false;
c8c1c22f 887
9a0dc9e3
PA
888 length -= h;
889 offset1 += h;
890 offset2 += h;
c8c1c22f
PA
891 }
892
98ead37e 893 return true;
c8c1c22f
PA
894}
895
98ead37e 896bool
6b850546
DT
897value_contents_eq (const struct value *val1, LONGEST offset1,
898 const struct value *val2, LONGEST offset2,
899 LONGEST length)
bdf22206 900{
9a0dc9e3
PA
901 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
902 val2, offset2 * TARGET_CHAR_BIT,
903 length * TARGET_CHAR_BIT);
bdf22206
AB
904}
905
c906108c 906
4d0266a0
TT
907/* The value-history records all the values printed by print commands
908 during this session. */
c906108c 909
4d0266a0 910static std::vector<value_ref_ptr> value_history;
bc3b79fd 911
c906108c
SS
912\f
913/* List of all value objects currently allocated
914 (except for those released by calls to release_value)
915 This is so they can be freed after each command. */
916
062d818d 917static std::vector<value_ref_ptr> all_values;
c906108c 918
3e3d7139
JG
919/* Allocate a lazy value for type TYPE. Its actual content is
920 "lazily" allocated too: the content field of the return value is
921 NULL; it will be allocated when it is fetched from the target. */
c906108c 922
f23631e4 923struct value *
3e3d7139 924allocate_value_lazy (struct type *type)
c906108c 925{
f23631e4 926 struct value *val;
c54eabfa
JK
927
928 /* Call check_typedef on our type to make sure that, if TYPE
929 is a TYPE_CODE_TYPEDEF, its length is set to the length
930 of the target type instead of zero. However, we do not
931 replace the typedef type by the target type, because we want
932 to keep the typedef in order to be able to set the VAL's type
933 description correctly. */
934 check_typedef (type);
c906108c 935
466ce3ae 936 val = new struct value (type);
828d3400
DJ
937
938 /* Values start out on the all_values chain. */
062d818d 939 all_values.emplace_back (val);
828d3400 940
c906108c
SS
941 return val;
942}
943
5fdf6324
AB
944/* The maximum size, in bytes, that GDB will try to allocate for a value.
945 The initial value of 64k was not selected for any specific reason, it is
946 just a reasonable starting point. */
947
948static int max_value_size = 65536; /* 64k bytes */
949
950/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
951 LONGEST, otherwise GDB will not be able to parse integer values from the
952 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
953 be unable to parse "set max-value-size 2".
954
955 As we want a consistent GDB experience across hosts with different sizes
956 of LONGEST, this arbitrary minimum value was selected, so long as this
957 is bigger than LONGEST on all GDB supported hosts we're fine. */
958
959#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
960gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961
962/* Implement the "set max-value-size" command. */
963
964static void
eb4c3f4a 965set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
966 struct cmd_list_element *c)
967{
968 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969
970 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 {
972 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
973 error (_("max-value-size set too low, increasing to %d bytes"),
974 max_value_size);
975 }
976}
977
978/* Implement the "show max-value-size" command. */
979
980static void
981show_max_value_size (struct ui_file *file, int from_tty,
982 struct cmd_list_element *c, const char *value)
983{
984 if (max_value_size == -1)
985 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 else
987 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
988 max_value_size);
989}
990
991/* Called before we attempt to allocate or reallocate a buffer for the
992 contents of a value. TYPE is the type of the value for which we are
993 allocating the buffer. If the buffer is too large (based on the user
994 controllable setting) then throw an error. If this function returns
995 then we should attempt to allocate the buffer. */
996
997static void
998check_type_length_before_alloc (const struct type *type)
999{
1000 unsigned int length = TYPE_LENGTH (type);
1001
1002 if (max_value_size > -1 && length > max_value_size)
1003 {
7d93a1e0 1004 if (type->name () != NULL)
5fdf6324 1005 error (_("value of type `%s' requires %u bytes, which is more "
7d93a1e0 1006 "than max-value-size"), type->name (), length);
5fdf6324
AB
1007 else
1008 error (_("value requires %u bytes, which is more than "
1009 "max-value-size"), length);
1010 }
1011}
1012
3e3d7139
JG
1013/* Allocate the contents of VAL if it has not been allocated yet. */
1014
548b762d 1015static void
3e3d7139
JG
1016allocate_value_contents (struct value *val)
1017{
1018 if (!val->contents)
5fdf6324
AB
1019 {
1020 check_type_length_before_alloc (val->enclosing_type);
14c88955
TT
1021 val->contents.reset
1022 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
5fdf6324 1023 }
3e3d7139
JG
1024}
1025
1026/* Allocate a value and its contents for type TYPE. */
1027
1028struct value *
1029allocate_value (struct type *type)
1030{
1031 struct value *val = allocate_value_lazy (type);
a109c7c1 1032
3e3d7139
JG
1033 allocate_value_contents (val);
1034 val->lazy = 0;
1035 return val;
1036}
1037
c906108c 1038/* Allocate a value that has the correct length
938f5214 1039 for COUNT repetitions of type TYPE. */
c906108c 1040
f23631e4 1041struct value *
fba45db2 1042allocate_repeat_value (struct type *type, int count)
c906108c 1043{
c5aa993b 1044 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1045 /* FIXME-type-allocation: need a way to free this type when we are
1046 done with it. */
e3506a9f
UW
1047 struct type *array_type
1048 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1049
e3506a9f 1050 return allocate_value (array_type);
c906108c
SS
1051}
1052
5f5233d4
PA
1053struct value *
1054allocate_computed_value (struct type *type,
c8f2448a 1055 const struct lval_funcs *funcs,
5f5233d4
PA
1056 void *closure)
1057{
41e8491f 1058 struct value *v = allocate_value_lazy (type);
a109c7c1 1059
5f5233d4
PA
1060 VALUE_LVAL (v) = lval_computed;
1061 v->location.computed.funcs = funcs;
1062 v->location.computed.closure = closure;
5f5233d4
PA
1063
1064 return v;
1065}
1066
a7035dbb
JK
1067/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1068
1069struct value *
1070allocate_optimized_out_value (struct type *type)
1071{
1072 struct value *retval = allocate_value_lazy (type);
1073
9a0dc9e3
PA
1074 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1075 set_value_lazy (retval, 0);
a7035dbb
JK
1076 return retval;
1077}
1078
df407dfe
AC
1079/* Accessor methods. */
1080
1081struct type *
0e03807e 1082value_type (const struct value *value)
df407dfe
AC
1083{
1084 return value->type;
1085}
04624583
AC
1086void
1087deprecated_set_value_type (struct value *value, struct type *type)
1088{
1089 value->type = type;
1090}
df407dfe 1091
6b850546 1092LONGEST
0e03807e 1093value_offset (const struct value *value)
df407dfe
AC
1094{
1095 return value->offset;
1096}
f5cf64a7 1097void
6b850546 1098set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1099{
1100 value->offset = offset;
1101}
df407dfe 1102
6b850546 1103LONGEST
0e03807e 1104value_bitpos (const struct value *value)
df407dfe
AC
1105{
1106 return value->bitpos;
1107}
9bbda503 1108void
6b850546 1109set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1110{
1111 value->bitpos = bit;
1112}
df407dfe 1113
6b850546 1114LONGEST
0e03807e 1115value_bitsize (const struct value *value)
df407dfe
AC
1116{
1117 return value->bitsize;
1118}
9bbda503 1119void
6b850546 1120set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1121{
1122 value->bitsize = bit;
1123}
df407dfe 1124
4ea48cc1 1125struct value *
4bf7b526 1126value_parent (const struct value *value)
4ea48cc1 1127{
2c8331b9 1128 return value->parent.get ();
4ea48cc1
DJ
1129}
1130
53ba8333
JB
1131/* See value.h. */
1132
1133void
1134set_value_parent (struct value *value, struct value *parent)
1135{
bbfa6f00 1136 value->parent = value_ref_ptr::new_reference (parent);
53ba8333
JB
1137}
1138
fc1a4b47 1139gdb_byte *
990a07ab
AC
1140value_contents_raw (struct value *value)
1141{
3ae385af
SM
1142 struct gdbarch *arch = get_value_arch (value);
1143 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1144
3e3d7139 1145 allocate_value_contents (value);
14c88955 1146 return value->contents.get () + value->embedded_offset * unit_size;
990a07ab
AC
1147}
1148
fc1a4b47 1149gdb_byte *
990a07ab
AC
1150value_contents_all_raw (struct value *value)
1151{
3e3d7139 1152 allocate_value_contents (value);
14c88955 1153 return value->contents.get ();
990a07ab
AC
1154}
1155
4754a64e 1156struct type *
4bf7b526 1157value_enclosing_type (const struct value *value)
4754a64e
AC
1158{
1159 return value->enclosing_type;
1160}
1161
8264ba82
AG
1162/* Look at value.h for description. */
1163
1164struct type *
1165value_actual_type (struct value *value, int resolve_simple_types,
1166 int *real_type_found)
1167{
1168 struct value_print_options opts;
8264ba82
AG
1169 struct type *result;
1170
1171 get_user_print_options (&opts);
1172
1173 if (real_type_found)
1174 *real_type_found = 0;
1175 result = value_type (value);
1176 if (opts.objectprint)
1177 {
5e34c6c3
LM
1178 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1179 fetch its rtti type. */
78134374
SM
1180 if ((result->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1181 && (check_typedef (TYPE_TARGET_TYPE (result))->code ()
1182 == TYPE_CODE_STRUCT)
ecf2e90c 1183 && !value_optimized_out (value))
8264ba82
AG
1184 {
1185 struct type *real_type;
1186
1187 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1188 if (real_type)
1189 {
1190 if (real_type_found)
1191 *real_type_found = 1;
1192 result = real_type;
1193 }
1194 }
1195 else if (resolve_simple_types)
1196 {
1197 if (real_type_found)
1198 *real_type_found = 1;
1199 result = value_enclosing_type (value);
1200 }
1201 }
1202
1203 return result;
1204}
1205
901461f8
PA
1206void
1207error_value_optimized_out (void)
1208{
1209 error (_("value has been optimized out"));
1210}
1211
0e03807e 1212static void
4e07d55f 1213require_not_optimized_out (const struct value *value)
0e03807e 1214{
0c7e6dd8 1215 if (!value->optimized_out.empty ())
901461f8
PA
1216 {
1217 if (value->lval == lval_register)
1218 error (_("register has not been saved in frame"));
1219 else
1220 error_value_optimized_out ();
1221 }
0e03807e
TT
1222}
1223
4e07d55f
PA
1224static void
1225require_available (const struct value *value)
1226{
0c7e6dd8 1227 if (!value->unavailable.empty ())
8af8e3bc 1228 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1229}
1230
fc1a4b47 1231const gdb_byte *
0e03807e 1232value_contents_for_printing (struct value *value)
46615f07
AC
1233{
1234 if (value->lazy)
1235 value_fetch_lazy (value);
14c88955 1236 return value->contents.get ();
46615f07
AC
1237}
1238
de4127a3
PA
1239const gdb_byte *
1240value_contents_for_printing_const (const struct value *value)
1241{
1242 gdb_assert (!value->lazy);
14c88955 1243 return value->contents.get ();
de4127a3
PA
1244}
1245
0e03807e
TT
1246const gdb_byte *
1247value_contents_all (struct value *value)
1248{
1249 const gdb_byte *result = value_contents_for_printing (value);
1250 require_not_optimized_out (value);
4e07d55f 1251 require_available (value);
0e03807e
TT
1252 return result;
1253}
1254
9a0dc9e3
PA
1255/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1256 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1257
1258static void
0c7e6dd8
TT
1259ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1260 const std::vector<range> &src_range, int src_bit_offset,
9a0dc9e3
PA
1261 int bit_length)
1262{
0c7e6dd8 1263 for (const range &r : src_range)
9a0dc9e3
PA
1264 {
1265 ULONGEST h, l;
1266
0c7e6dd8
TT
1267 l = std::max (r.offset, (LONGEST) src_bit_offset);
1268 h = std::min (r.offset + r.length,
325fac50 1269 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1270
1271 if (l < h)
1272 insert_into_bit_range_vector (dst_range,
1273 dst_bit_offset + (l - src_bit_offset),
1274 h - l);
1275 }
1276}
1277
4875ffdb
PA
1278/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1279 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1280
1281static void
1282value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1283 const struct value *src, int src_bit_offset,
1284 int bit_length)
1285{
1286 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1287 src->unavailable, src_bit_offset,
1288 bit_length);
1289 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1290 src->optimized_out, src_bit_offset,
1291 bit_length);
1292}
1293
3ae385af 1294/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1295 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1296 contents, starting at DST_OFFSET. If unavailable contents are
1297 being copied from SRC, the corresponding DST contents are marked
1298 unavailable accordingly. Neither DST nor SRC may be lazy
1299 values.
1300
1301 It is assumed the contents of DST in the [DST_OFFSET,
1302 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1303
1304void
6b850546
DT
1305value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1306 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1307{
6b850546 1308 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1309 struct gdbarch *arch = get_value_arch (src);
1310 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1311
1312 /* A lazy DST would make that this copy operation useless, since as
1313 soon as DST's contents were un-lazied (by a later value_contents
1314 call, say), the contents would be overwritten. A lazy SRC would
1315 mean we'd be copying garbage. */
1316 gdb_assert (!dst->lazy && !src->lazy);
1317
29976f3f
PA
1318 /* The overwritten DST range gets unavailability ORed in, not
1319 replaced. Make sure to remember to implement replacing if it
1320 turns out actually necessary. */
1321 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1322 gdb_assert (!value_bits_any_optimized_out (dst,
1323 TARGET_CHAR_BIT * dst_offset,
1324 TARGET_CHAR_BIT * length));
29976f3f 1325
39d37385 1326 /* Copy the data. */
3ae385af
SM
1327 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1328 value_contents_all_raw (src) + src_offset * unit_size,
1329 length * unit_size);
39d37385
PA
1330
1331 /* Copy the meta-data, adjusted. */
3ae385af
SM
1332 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1333 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1334 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1335
4875ffdb
PA
1336 value_ranges_copy_adjusted (dst, dst_bit_offset,
1337 src, src_bit_offset,
1338 bit_length);
39d37385
PA
1339}
1340
29976f3f
PA
1341/* Copy LENGTH bytes of SRC value's (all) contents
1342 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1343 (all) contents, starting at DST_OFFSET. If unavailable contents
1344 are being copied from SRC, the corresponding DST contents are
1345 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1346 lazy, it will be fetched now.
29976f3f
PA
1347
1348 It is assumed the contents of DST in the [DST_OFFSET,
1349 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1350
1351void
6b850546
DT
1352value_contents_copy (struct value *dst, LONGEST dst_offset,
1353 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1354{
39d37385
PA
1355 if (src->lazy)
1356 value_fetch_lazy (src);
1357
1358 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1359}
1360
d69fe07e 1361int
4bf7b526 1362value_lazy (const struct value *value)
d69fe07e
AC
1363{
1364 return value->lazy;
1365}
1366
dfa52d88
AC
1367void
1368set_value_lazy (struct value *value, int val)
1369{
1370 value->lazy = val;
1371}
1372
4e5d721f 1373int
4bf7b526 1374value_stack (const struct value *value)
4e5d721f
DE
1375{
1376 return value->stack;
1377}
1378
1379void
1380set_value_stack (struct value *value, int val)
1381{
1382 value->stack = val;
1383}
1384
fc1a4b47 1385const gdb_byte *
0fd88904
AC
1386value_contents (struct value *value)
1387{
0e03807e
TT
1388 const gdb_byte *result = value_contents_writeable (value);
1389 require_not_optimized_out (value);
4e07d55f 1390 require_available (value);
0e03807e 1391 return result;
0fd88904
AC
1392}
1393
fc1a4b47 1394gdb_byte *
0fd88904
AC
1395value_contents_writeable (struct value *value)
1396{
1397 if (value->lazy)
1398 value_fetch_lazy (value);
fc0c53a0 1399 return value_contents_raw (value);
0fd88904
AC
1400}
1401
feb13ab0
AC
1402int
1403value_optimized_out (struct value *value)
1404{
691a26f5
AB
1405 /* We can only know if a value is optimized out once we have tried to
1406 fetch it. */
0c7e6dd8 1407 if (value->optimized_out.empty () && value->lazy)
ecf2e90c 1408 {
a70b8144 1409 try
ecf2e90c
DB
1410 {
1411 value_fetch_lazy (value);
1412 }
230d2906 1413 catch (const gdb_exception_error &ex)
ecf2e90c
DB
1414 {
1415 /* Fall back to checking value->optimized_out. */
1416 }
ecf2e90c 1417 }
691a26f5 1418
0c7e6dd8 1419 return !value->optimized_out.empty ();
feb13ab0
AC
1420}
1421
9a0dc9e3
PA
1422/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1423 the following LENGTH bytes. */
eca07816 1424
feb13ab0 1425void
9a0dc9e3 1426mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1427{
9a0dc9e3
PA
1428 mark_value_bits_optimized_out (value,
1429 offset * TARGET_CHAR_BIT,
1430 length * TARGET_CHAR_BIT);
feb13ab0 1431}
13c3b5f5 1432
9a0dc9e3 1433/* See value.h. */
0e03807e 1434
9a0dc9e3 1435void
6b850546
DT
1436mark_value_bits_optimized_out (struct value *value,
1437 LONGEST offset, LONGEST length)
0e03807e 1438{
9a0dc9e3 1439 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1440}
1441
8cf6f0b1
TT
1442int
1443value_bits_synthetic_pointer (const struct value *value,
6b850546 1444 LONGEST offset, LONGEST length)
8cf6f0b1 1445{
e7303042 1446 if (value->lval != lval_computed
8cf6f0b1
TT
1447 || !value->location.computed.funcs->check_synthetic_pointer)
1448 return 0;
1449 return value->location.computed.funcs->check_synthetic_pointer (value,
1450 offset,
1451 length);
1452}
1453
6b850546 1454LONGEST
4bf7b526 1455value_embedded_offset (const struct value *value)
13c3b5f5
AC
1456{
1457 return value->embedded_offset;
1458}
1459
1460void
6b850546 1461set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1462{
1463 value->embedded_offset = val;
1464}
b44d461b 1465
6b850546 1466LONGEST
4bf7b526 1467value_pointed_to_offset (const struct value *value)
b44d461b
AC
1468{
1469 return value->pointed_to_offset;
1470}
1471
1472void
6b850546 1473set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1474{
1475 value->pointed_to_offset = val;
1476}
13bb5560 1477
c8f2448a 1478const struct lval_funcs *
a471c594 1479value_computed_funcs (const struct value *v)
5f5233d4 1480{
a471c594 1481 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1482
1483 return v->location.computed.funcs;
1484}
1485
1486void *
0e03807e 1487value_computed_closure (const struct value *v)
5f5233d4 1488{
0e03807e 1489 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1490
1491 return v->location.computed.closure;
1492}
1493
13bb5560
AC
1494enum lval_type *
1495deprecated_value_lval_hack (struct value *value)
1496{
1497 return &value->lval;
1498}
1499
a471c594
JK
1500enum lval_type
1501value_lval_const (const struct value *value)
1502{
1503 return value->lval;
1504}
1505
42ae5230 1506CORE_ADDR
de4127a3 1507value_address (const struct value *value)
42ae5230 1508{
1a088441 1509 if (value->lval != lval_memory)
42ae5230 1510 return 0;
53ba8333 1511 if (value->parent != NULL)
2c8331b9 1512 return value_address (value->parent.get ()) + value->offset;
9920b434
BH
1513 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1514 {
1515 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1516 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1517 }
1518
1519 return value->location.address + value->offset;
42ae5230
TT
1520}
1521
1522CORE_ADDR
4bf7b526 1523value_raw_address (const struct value *value)
42ae5230 1524{
1a088441 1525 if (value->lval != lval_memory)
42ae5230
TT
1526 return 0;
1527 return value->location.address;
1528}
1529
1530void
1531set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1532{
1a088441 1533 gdb_assert (value->lval == lval_memory);
42ae5230 1534 value->location.address = addr;
13bb5560
AC
1535}
1536
1537struct internalvar **
1538deprecated_value_internalvar_hack (struct value *value)
1539{
1540 return &value->location.internalvar;
1541}
1542
1543struct frame_id *
41b56feb 1544deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1545{
7c2ba67e 1546 gdb_assert (value->lval == lval_register);
7dc54575 1547 return &value->location.reg.next_frame_id;
13bb5560
AC
1548}
1549
7dc54575 1550int *
13bb5560
AC
1551deprecated_value_regnum_hack (struct value *value)
1552{
7c2ba67e 1553 gdb_assert (value->lval == lval_register);
7dc54575 1554 return &value->location.reg.regnum;
13bb5560 1555}
88e3b34b
AC
1556
1557int
4bf7b526 1558deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1559{
1560 return value->modifiable;
1561}
990a07ab 1562\f
c906108c
SS
1563/* Return a mark in the value chain. All values allocated after the
1564 mark is obtained (except for those released) are subject to being freed
1565 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1566struct value *
fba45db2 1567value_mark (void)
c906108c 1568{
062d818d
TT
1569 if (all_values.empty ())
1570 return nullptr;
1571 return all_values.back ().get ();
c906108c
SS
1572}
1573
bbfa6f00 1574/* See value.h. */
828d3400 1575
bbfa6f00 1576void
828d3400
DJ
1577value_incref (struct value *val)
1578{
1579 val->reference_count++;
1580}
1581
1582/* Release a reference to VAL, which was acquired with value_incref.
1583 This function is also called to deallocate values from the value
1584 chain. */
1585
3e3d7139 1586void
22bc8444 1587value_decref (struct value *val)
3e3d7139 1588{
466ce3ae 1589 if (val != nullptr)
5f5233d4 1590 {
828d3400
DJ
1591 gdb_assert (val->reference_count > 0);
1592 val->reference_count--;
466ce3ae
TT
1593 if (val->reference_count == 0)
1594 delete val;
5f5233d4 1595 }
3e3d7139
JG
1596}
1597
c906108c
SS
1598/* Free all values allocated since MARK was obtained by value_mark
1599 (except for those released). */
1600void
4bf7b526 1601value_free_to_mark (const struct value *mark)
c906108c 1602{
062d818d
TT
1603 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1604 if (iter == all_values.end ())
1605 all_values.clear ();
1606 else
1607 all_values.erase (iter + 1, all_values.end ());
c906108c
SS
1608}
1609
c906108c
SS
1610/* Remove VAL from the chain all_values
1611 so it will not be freed automatically. */
1612
22bc8444 1613value_ref_ptr
f23631e4 1614release_value (struct value *val)
c906108c 1615{
850645cf
TT
1616 if (val == nullptr)
1617 return value_ref_ptr ();
1618
062d818d
TT
1619 std::vector<value_ref_ptr>::reverse_iterator iter;
1620 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
c906108c 1621 {
062d818d 1622 if (*iter == val)
c906108c 1623 {
062d818d
TT
1624 value_ref_ptr result = *iter;
1625 all_values.erase (iter.base () - 1);
1626 return result;
c906108c
SS
1627 }
1628 }
c906108c 1629
062d818d
TT
1630 /* We must always return an owned reference. Normally this happens
1631 because we transfer the reference from the value chain, but in
1632 this case the value was not on the chain. */
bbfa6f00 1633 return value_ref_ptr::new_reference (val);
e848a8a5
TT
1634}
1635
a6535de1
TT
1636/* See value.h. */
1637
1638std::vector<value_ref_ptr>
4bf7b526 1639value_release_to_mark (const struct value *mark)
c906108c 1640{
a6535de1 1641 std::vector<value_ref_ptr> result;
c906108c 1642
062d818d
TT
1643 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1644 if (iter == all_values.end ())
1645 std::swap (result, all_values);
1646 else
e848a8a5 1647 {
062d818d
TT
1648 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1649 all_values.erase (iter + 1, all_values.end ());
e848a8a5 1650 }
062d818d 1651 std::reverse (result.begin (), result.end ());
a6535de1 1652 return result;
c906108c
SS
1653}
1654
1655/* Return a copy of the value ARG.
1656 It contains the same contents, for same memory address,
1657 but it's a different block of storage. */
1658
f23631e4
AC
1659struct value *
1660value_copy (struct value *arg)
c906108c 1661{
4754a64e 1662 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1663 struct value *val;
1664
1665 if (value_lazy (arg))
1666 val = allocate_value_lazy (encl_type);
1667 else
1668 val = allocate_value (encl_type);
df407dfe 1669 val->type = arg->type;
c906108c 1670 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1671 val->location = arg->location;
df407dfe
AC
1672 val->offset = arg->offset;
1673 val->bitpos = arg->bitpos;
1674 val->bitsize = arg->bitsize;
d69fe07e 1675 val->lazy = arg->lazy;
13c3b5f5 1676 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1677 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1678 val->modifiable = arg->modifiable;
d69fe07e 1679 if (!value_lazy (val))
c906108c 1680 {
990a07ab 1681 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1682 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1683
1684 }
0c7e6dd8
TT
1685 val->unavailable = arg->unavailable;
1686 val->optimized_out = arg->optimized_out;
2c8331b9 1687 val->parent = arg->parent;
5f5233d4
PA
1688 if (VALUE_LVAL (val) == lval_computed)
1689 {
c8f2448a 1690 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1691
1692 if (funcs->copy_closure)
1693 val->location.computed.closure = funcs->copy_closure (val);
1694 }
c906108c
SS
1695 return val;
1696}
74bcbdf3 1697
4c082a81
SC
1698/* Return a "const" and/or "volatile" qualified version of the value V.
1699 If CNST is true, then the returned value will be qualified with
1700 "const".
1701 if VOLTL is true, then the returned value will be qualified with
1702 "volatile". */
1703
1704struct value *
1705make_cv_value (int cnst, int voltl, struct value *v)
1706{
1707 struct type *val_type = value_type (v);
1708 struct type *enclosing_type = value_enclosing_type (v);
1709 struct value *cv_val = value_copy (v);
1710
1711 deprecated_set_value_type (cv_val,
1712 make_cv_type (cnst, voltl, val_type, NULL));
1713 set_value_enclosing_type (cv_val,
1714 make_cv_type (cnst, voltl, enclosing_type, NULL));
1715
1716 return cv_val;
1717}
1718
c37f7098
KW
1719/* Return a version of ARG that is non-lvalue. */
1720
1721struct value *
1722value_non_lval (struct value *arg)
1723{
1724 if (VALUE_LVAL (arg) != not_lval)
1725 {
1726 struct type *enc_type = value_enclosing_type (arg);
1727 struct value *val = allocate_value (enc_type);
1728
1729 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1730 TYPE_LENGTH (enc_type));
1731 val->type = arg->type;
1732 set_value_embedded_offset (val, value_embedded_offset (arg));
1733 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1734 return val;
1735 }
1736 return arg;
1737}
1738
6c659fc2
SC
1739/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1740
1741void
1742value_force_lval (struct value *v, CORE_ADDR addr)
1743{
1744 gdb_assert (VALUE_LVAL (v) == not_lval);
1745
1746 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1747 v->lval = lval_memory;
1748 v->location.address = addr;
1749}
1750
74bcbdf3 1751void
0e03807e
TT
1752set_value_component_location (struct value *component,
1753 const struct value *whole)
74bcbdf3 1754{
9920b434
BH
1755 struct type *type;
1756
e81e7f5e
SC
1757 gdb_assert (whole->lval != lval_xcallable);
1758
0e03807e 1759 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1760 VALUE_LVAL (component) = lval_internalvar_component;
1761 else
0e03807e 1762 VALUE_LVAL (component) = whole->lval;
5f5233d4 1763
74bcbdf3 1764 component->location = whole->location;
0e03807e 1765 if (whole->lval == lval_computed)
5f5233d4 1766 {
c8f2448a 1767 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1768
1769 if (funcs->copy_closure)
1770 component->location.computed.closure = funcs->copy_closure (whole);
1771 }
9920b434
BH
1772
1773 /* If type has a dynamic resolved location property
1774 update it's value address. */
1775 type = value_type (whole);
1776 if (NULL != TYPE_DATA_LOCATION (type)
1777 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1778 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1779}
1780
c906108c
SS
1781/* Access to the value history. */
1782
1783/* Record a new value in the value history.
eddf0bae 1784 Returns the absolute history index of the entry. */
c906108c
SS
1785
1786int
f23631e4 1787record_latest_value (struct value *val)
c906108c 1788{
c906108c
SS
1789 /* We don't want this value to have anything to do with the inferior anymore.
1790 In particular, "set $1 = 50" should not affect the variable from which
1791 the value was taken, and fast watchpoints should be able to assume that
1792 a value on the value history never changes. */
d69fe07e 1793 if (value_lazy (val))
c906108c
SS
1794 value_fetch_lazy (val);
1795 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1796 from. This is a bit dubious, because then *&$1 does not just return $1
1797 but the current contents of that location. c'est la vie... */
1798 val->modifiable = 0;
350e1a76 1799
4d0266a0 1800 value_history.push_back (release_value (val));
a109c7c1 1801
4d0266a0 1802 return value_history.size ();
c906108c
SS
1803}
1804
1805/* Return a copy of the value in the history with sequence number NUM. */
1806
f23631e4 1807struct value *
fba45db2 1808access_value_history (int num)
c906108c 1809{
52f0bd74 1810 int absnum = num;
c906108c
SS
1811
1812 if (absnum <= 0)
4d0266a0 1813 absnum += value_history.size ();
c906108c
SS
1814
1815 if (absnum <= 0)
1816 {
1817 if (num == 0)
8a3fe4f8 1818 error (_("The history is empty."));
c906108c 1819 else if (num == 1)
8a3fe4f8 1820 error (_("There is only one value in the history."));
c906108c 1821 else
8a3fe4f8 1822 error (_("History does not go back to $$%d."), -num);
c906108c 1823 }
4d0266a0 1824 if (absnum > value_history.size ())
8a3fe4f8 1825 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1826
1827 absnum--;
1828
4d0266a0 1829 return value_copy (value_history[absnum].get ());
c906108c
SS
1830}
1831
c906108c 1832static void
5fed81ff 1833show_values (const char *num_exp, int from_tty)
c906108c 1834{
52f0bd74 1835 int i;
f23631e4 1836 struct value *val;
c906108c
SS
1837 static int num = 1;
1838
1839 if (num_exp)
1840 {
f132ba9d
TJB
1841 /* "show values +" should print from the stored position.
1842 "show values <exp>" should print around value number <exp>. */
c906108c 1843 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1844 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1845 }
1846 else
1847 {
f132ba9d 1848 /* "show values" means print the last 10 values. */
4d0266a0 1849 num = value_history.size () - 9;
c906108c
SS
1850 }
1851
1852 if (num <= 0)
1853 num = 1;
1854
4d0266a0 1855 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1856 {
79a45b7d 1857 struct value_print_options opts;
a109c7c1 1858
c906108c 1859 val = access_value_history (i);
a3f17187 1860 printf_filtered (("$%d = "), i);
79a45b7d
TT
1861 get_user_print_options (&opts);
1862 value_print (val, gdb_stdout, &opts);
a3f17187 1863 printf_filtered (("\n"));
c906108c
SS
1864 }
1865
f132ba9d 1866 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1867 num += 10;
1868
1869 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1870 "show values +". If num_exp is null, this is unnecessary, since
1871 "show values +" is not useful after "show values". */
c906108c 1872 if (from_tty && num_exp)
85c4be7c 1873 set_repeat_arguments ("+");
c906108c
SS
1874}
1875\f
52059ffd
TT
1876enum internalvar_kind
1877{
1878 /* The internal variable is empty. */
1879 INTERNALVAR_VOID,
1880
1881 /* The value of the internal variable is provided directly as
1882 a GDB value object. */
1883 INTERNALVAR_VALUE,
1884
1885 /* A fresh value is computed via a call-back routine on every
1886 access to the internal variable. */
1887 INTERNALVAR_MAKE_VALUE,
1888
1889 /* The internal variable holds a GDB internal convenience function. */
1890 INTERNALVAR_FUNCTION,
1891
1892 /* The variable holds an integer value. */
1893 INTERNALVAR_INTEGER,
1894
1895 /* The variable holds a GDB-provided string. */
1896 INTERNALVAR_STRING,
1897};
1898
1899union internalvar_data
1900{
1901 /* A value object used with INTERNALVAR_VALUE. */
1902 struct value *value;
1903
1904 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1905 struct
1906 {
1907 /* The functions to call. */
1908 const struct internalvar_funcs *functions;
1909
1910 /* The function's user-data. */
1911 void *data;
1912 } make_value;
1913
1914 /* The internal function used with INTERNALVAR_FUNCTION. */
1915 struct
1916 {
1917 struct internal_function *function;
1918 /* True if this is the canonical name for the function. */
1919 int canonical;
1920 } fn;
1921
1922 /* An integer value used with INTERNALVAR_INTEGER. */
1923 struct
1924 {
1925 /* If type is non-NULL, it will be used as the type to generate
1926 a value for this internal variable. If type is NULL, a default
1927 integer type for the architecture is used. */
1928 struct type *type;
1929 LONGEST val;
1930 } integer;
1931
1932 /* A string value used with INTERNALVAR_STRING. */
1933 char *string;
1934};
1935
c906108c
SS
1936/* Internal variables. These are variables within the debugger
1937 that hold values assigned by debugger commands.
1938 The user refers to them with a '$' prefix
1939 that does not appear in the variable names stored internally. */
1940
4fa62494
UW
1941struct internalvar
1942{
1943 struct internalvar *next;
1944 char *name;
4fa62494 1945
78267919
UW
1946 /* We support various different kinds of content of an internal variable.
1947 enum internalvar_kind specifies the kind, and union internalvar_data
1948 provides the data associated with this particular kind. */
1949
52059ffd 1950 enum internalvar_kind kind;
4fa62494 1951
52059ffd 1952 union internalvar_data u;
4fa62494
UW
1953};
1954
c906108c
SS
1955static struct internalvar *internalvars;
1956
3e43a32a
MS
1957/* If the variable does not already exist create it and give it the
1958 value given. If no value is given then the default is zero. */
53e5f3cf 1959static void
0b39b52e 1960init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
1961{
1962 struct internalvar* intvar;
1963
1964 /* Parse the expression - this is taken from set_command(). */
4d01a485 1965 expression_up expr = parse_expression (args);
53e5f3cf
AS
1966
1967 /* Validate the expression.
1968 Was the expression an assignment?
1969 Or even an expression at all? */
1970 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1971 error (_("Init-if-undefined requires an assignment expression."));
1972
1973 /* Extract the variable from the parsed expression.
1974 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1975 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1976 error (_("The first parameter to init-if-undefined "
1977 "should be a GDB variable."));
53e5f3cf
AS
1978 intvar = expr->elts[2].internalvar;
1979
1980 /* Only evaluate the expression if the lvalue is void.
85102364 1981 This may still fail if the expression is invalid. */
78267919 1982 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 1983 evaluate_expression (expr.get ());
53e5f3cf
AS
1984}
1985
1986
c906108c
SS
1987/* Look up an internal variable with name NAME. NAME should not
1988 normally include a dollar sign.
1989
1990 If the specified internal variable does not exist,
c4a3d09a 1991 the return value is NULL. */
c906108c
SS
1992
1993struct internalvar *
bc3b79fd 1994lookup_only_internalvar (const char *name)
c906108c 1995{
52f0bd74 1996 struct internalvar *var;
c906108c
SS
1997
1998 for (var = internalvars; var; var = var->next)
5cb316ef 1999 if (strcmp (var->name, name) == 0)
c906108c
SS
2000 return var;
2001
c4a3d09a
MF
2002 return NULL;
2003}
2004
eb3ff9a5
PA
2005/* Complete NAME by comparing it to the names of internal
2006 variables. */
d55637df 2007
eb3ff9a5
PA
2008void
2009complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2010{
d55637df
TT
2011 struct internalvar *var;
2012 int len;
2013
2014 len = strlen (name);
2015
2016 for (var = internalvars; var; var = var->next)
2017 if (strncmp (var->name, name, len) == 0)
b02f78f9 2018 tracker.add_completion (make_unique_xstrdup (var->name));
d55637df 2019}
c4a3d09a
MF
2020
2021/* Create an internal variable with name NAME and with a void value.
2022 NAME should not normally include a dollar sign. */
2023
2024struct internalvar *
bc3b79fd 2025create_internalvar (const char *name)
c4a3d09a 2026{
8d749320 2027 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2028
395f9c91 2029 var->name = xstrdup (name);
78267919 2030 var->kind = INTERNALVAR_VOID;
c906108c
SS
2031 var->next = internalvars;
2032 internalvars = var;
2033 return var;
2034}
2035
4aa995e1
PA
2036/* Create an internal variable with name NAME and register FUN as the
2037 function that value_of_internalvar uses to create a value whenever
2038 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2039 dollar sign. DATA is passed uninterpreted to FUN when it is
2040 called. CLEANUP, if not NULL, is called when the internal variable
2041 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2042
2043struct internalvar *
22d2b532
SDJ
2044create_internalvar_type_lazy (const char *name,
2045 const struct internalvar_funcs *funcs,
2046 void *data)
4aa995e1 2047{
4fa62494 2048 struct internalvar *var = create_internalvar (name);
a109c7c1 2049
78267919 2050 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2051 var->u.make_value.functions = funcs;
2052 var->u.make_value.data = data;
4aa995e1
PA
2053 return var;
2054}
c4a3d09a 2055
22d2b532
SDJ
2056/* See documentation in value.h. */
2057
2058int
2059compile_internalvar_to_ax (struct internalvar *var,
2060 struct agent_expr *expr,
2061 struct axs_value *value)
2062{
2063 if (var->kind != INTERNALVAR_MAKE_VALUE
2064 || var->u.make_value.functions->compile_to_ax == NULL)
2065 return 0;
2066
2067 var->u.make_value.functions->compile_to_ax (var, expr, value,
2068 var->u.make_value.data);
2069 return 1;
2070}
2071
c4a3d09a
MF
2072/* Look up an internal variable with name NAME. NAME should not
2073 normally include a dollar sign.
2074
2075 If the specified internal variable does not exist,
2076 one is created, with a void value. */
2077
2078struct internalvar *
bc3b79fd 2079lookup_internalvar (const char *name)
c4a3d09a
MF
2080{
2081 struct internalvar *var;
2082
2083 var = lookup_only_internalvar (name);
2084 if (var)
2085 return var;
2086
2087 return create_internalvar (name);
2088}
2089
78267919
UW
2090/* Return current value of internal variable VAR. For variables that
2091 are not inherently typed, use a value type appropriate for GDBARCH. */
2092
f23631e4 2093struct value *
78267919 2094value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2095{
f23631e4 2096 struct value *val;
0914bcdb
SS
2097 struct trace_state_variable *tsv;
2098
2099 /* If there is a trace state variable of the same name, assume that
2100 is what we really want to see. */
2101 tsv = find_trace_state_variable (var->name);
2102 if (tsv)
2103 {
2104 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2105 &(tsv->value));
2106 if (tsv->value_known)
2107 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2108 tsv->value);
2109 else
2110 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2111 return val;
2112 }
c906108c 2113
78267919 2114 switch (var->kind)
5f5233d4 2115 {
78267919
UW
2116 case INTERNALVAR_VOID:
2117 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2118 break;
4fa62494 2119
78267919
UW
2120 case INTERNALVAR_FUNCTION:
2121 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2122 break;
4fa62494 2123
cab0c772
UW
2124 case INTERNALVAR_INTEGER:
2125 if (!var->u.integer.type)
78267919 2126 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2127 var->u.integer.val);
78267919 2128 else
cab0c772
UW
2129 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2130 break;
2131
78267919
UW
2132 case INTERNALVAR_STRING:
2133 val = value_cstring (var->u.string, strlen (var->u.string),
2134 builtin_type (gdbarch)->builtin_char);
2135 break;
4fa62494 2136
78267919
UW
2137 case INTERNALVAR_VALUE:
2138 val = value_copy (var->u.value);
4aa995e1
PA
2139 if (value_lazy (val))
2140 value_fetch_lazy (val);
78267919 2141 break;
4aa995e1 2142
78267919 2143 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2144 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2145 var->u.make_value.data);
78267919
UW
2146 break;
2147
2148 default:
9b20d036 2149 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2150 }
2151
2152 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2153 on this value go back to affect the original internal variable.
2154
2155 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
30baf67b 2156 no underlying modifiable state in the internal variable.
78267919
UW
2157
2158 Likewise, if the variable's value is a computed lvalue, we want
2159 references to it to produce another computed lvalue, where
2160 references and assignments actually operate through the
2161 computed value's functions.
2162
2163 This means that internal variables with computed values
2164 behave a little differently from other internal variables:
2165 assignments to them don't just replace the previous value
2166 altogether. At the moment, this seems like the behavior we
2167 want. */
2168
2169 if (var->kind != INTERNALVAR_MAKE_VALUE
2170 && val->lval != lval_computed)
2171 {
2172 VALUE_LVAL (val) = lval_internalvar;
2173 VALUE_INTERNALVAR (val) = var;
5f5233d4 2174 }
d3c139e9 2175
4fa62494
UW
2176 return val;
2177}
d3c139e9 2178
4fa62494
UW
2179int
2180get_internalvar_integer (struct internalvar *var, LONGEST *result)
2181{
3158c6ed 2182 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2183 {
cab0c772
UW
2184 *result = var->u.integer.val;
2185 return 1;
3158c6ed 2186 }
d3c139e9 2187
3158c6ed
PA
2188 if (var->kind == INTERNALVAR_VALUE)
2189 {
2190 struct type *type = check_typedef (value_type (var->u.value));
2191
78134374 2192 if (type->code () == TYPE_CODE_INT)
3158c6ed
PA
2193 {
2194 *result = value_as_long (var->u.value);
2195 return 1;
2196 }
4fa62494 2197 }
3158c6ed
PA
2198
2199 return 0;
4fa62494 2200}
d3c139e9 2201
4fa62494
UW
2202static int
2203get_internalvar_function (struct internalvar *var,
2204 struct internal_function **result)
2205{
78267919 2206 switch (var->kind)
d3c139e9 2207 {
78267919
UW
2208 case INTERNALVAR_FUNCTION:
2209 *result = var->u.fn.function;
4fa62494 2210 return 1;
d3c139e9 2211
4fa62494
UW
2212 default:
2213 return 0;
2214 }
c906108c
SS
2215}
2216
2217void
6b850546
DT
2218set_internalvar_component (struct internalvar *var,
2219 LONGEST offset, LONGEST bitpos,
2220 LONGEST bitsize, struct value *newval)
c906108c 2221{
4fa62494 2222 gdb_byte *addr;
3ae385af
SM
2223 struct gdbarch *arch;
2224 int unit_size;
c906108c 2225
78267919 2226 switch (var->kind)
4fa62494 2227 {
78267919
UW
2228 case INTERNALVAR_VALUE:
2229 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2230 arch = get_value_arch (var->u.value);
2231 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2232
2233 if (bitsize)
50810684 2234 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2235 value_as_long (newval), bitpos, bitsize);
2236 else
3ae385af 2237 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2238 TYPE_LENGTH (value_type (newval)));
2239 break;
78267919
UW
2240
2241 default:
2242 /* We can never get a component of any other kind. */
9b20d036 2243 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2244 }
c906108c
SS
2245}
2246
2247void
f23631e4 2248set_internalvar (struct internalvar *var, struct value *val)
c906108c 2249{
78267919 2250 enum internalvar_kind new_kind;
4fa62494 2251 union internalvar_data new_data = { 0 };
c906108c 2252
78267919 2253 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2254 error (_("Cannot overwrite convenience function %s"), var->name);
2255
4fa62494 2256 /* Prepare new contents. */
78134374 2257 switch (check_typedef (value_type (val))->code ())
4fa62494
UW
2258 {
2259 case TYPE_CODE_VOID:
78267919 2260 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2261 break;
2262
2263 case TYPE_CODE_INTERNAL_FUNCTION:
2264 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2265 new_kind = INTERNALVAR_FUNCTION;
2266 get_internalvar_function (VALUE_INTERNALVAR (val),
2267 &new_data.fn.function);
2268 /* Copies created here are never canonical. */
4fa62494
UW
2269 break;
2270
4fa62494 2271 default:
78267919 2272 new_kind = INTERNALVAR_VALUE;
895dafa6
TT
2273 struct value *copy = value_copy (val);
2274 copy->modifiable = 1;
4fa62494
UW
2275
2276 /* Force the value to be fetched from the target now, to avoid problems
2277 later when this internalvar is referenced and the target is gone or
2278 has changed. */
895dafa6
TT
2279 if (value_lazy (copy))
2280 value_fetch_lazy (copy);
4fa62494
UW
2281
2282 /* Release the value from the value chain to prevent it from being
2283 deleted by free_all_values. From here on this function should not
2284 call error () until new_data is installed into the var->u to avoid
2285 leaking memory. */
895dafa6 2286 new_data.value = release_value (copy).release ();
9920b434
BH
2287
2288 /* Internal variables which are created from values with a dynamic
2289 location don't need the location property of the origin anymore.
2290 The resolved dynamic location is used prior then any other address
2291 when accessing the value.
2292 If we keep it, we would still refer to the origin value.
2293 Remove the location property in case it exist. */
7aa91313 2294 value_type (new_data.value)->remove_dyn_prop (DYN_PROP_DATA_LOCATION);
9920b434 2295
4fa62494
UW
2296 break;
2297 }
2298
2299 /* Clean up old contents. */
2300 clear_internalvar (var);
2301
2302 /* Switch over. */
78267919 2303 var->kind = new_kind;
4fa62494 2304 var->u = new_data;
c906108c
SS
2305 /* End code which must not call error(). */
2306}
2307
4fa62494
UW
2308void
2309set_internalvar_integer (struct internalvar *var, LONGEST l)
2310{
2311 /* Clean up old contents. */
2312 clear_internalvar (var);
2313
cab0c772
UW
2314 var->kind = INTERNALVAR_INTEGER;
2315 var->u.integer.type = NULL;
2316 var->u.integer.val = l;
78267919
UW
2317}
2318
2319void
2320set_internalvar_string (struct internalvar *var, const char *string)
2321{
2322 /* Clean up old contents. */
2323 clear_internalvar (var);
2324
2325 var->kind = INTERNALVAR_STRING;
2326 var->u.string = xstrdup (string);
4fa62494
UW
2327}
2328
2329static void
2330set_internalvar_function (struct internalvar *var, struct internal_function *f)
2331{
2332 /* Clean up old contents. */
2333 clear_internalvar (var);
2334
78267919
UW
2335 var->kind = INTERNALVAR_FUNCTION;
2336 var->u.fn.function = f;
2337 var->u.fn.canonical = 1;
2338 /* Variables installed here are always the canonical version. */
4fa62494
UW
2339}
2340
2341void
2342clear_internalvar (struct internalvar *var)
2343{
2344 /* Clean up old contents. */
78267919 2345 switch (var->kind)
4fa62494 2346 {
78267919 2347 case INTERNALVAR_VALUE:
22bc8444 2348 value_decref (var->u.value);
78267919
UW
2349 break;
2350
2351 case INTERNALVAR_STRING:
2352 xfree (var->u.string);
4fa62494
UW
2353 break;
2354
22d2b532
SDJ
2355 case INTERNALVAR_MAKE_VALUE:
2356 if (var->u.make_value.functions->destroy != NULL)
2357 var->u.make_value.functions->destroy (var->u.make_value.data);
2358 break;
2359
4fa62494 2360 default:
4fa62494
UW
2361 break;
2362 }
2363
78267919
UW
2364 /* Reset to void kind. */
2365 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2366}
2367
c906108c 2368char *
4bf7b526 2369internalvar_name (const struct internalvar *var)
c906108c
SS
2370{
2371 return var->name;
2372}
2373
4fa62494
UW
2374static struct internal_function *
2375create_internal_function (const char *name,
2376 internal_function_fn handler, void *cookie)
bc3b79fd 2377{
bc3b79fd 2378 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2379
bc3b79fd
TJB
2380 ifn->name = xstrdup (name);
2381 ifn->handler = handler;
2382 ifn->cookie = cookie;
4fa62494 2383 return ifn;
bc3b79fd
TJB
2384}
2385
2386char *
2387value_internal_function_name (struct value *val)
2388{
4fa62494
UW
2389 struct internal_function *ifn;
2390 int result;
2391
2392 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2393 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2394 gdb_assert (result);
2395
bc3b79fd
TJB
2396 return ifn->name;
2397}
2398
2399struct value *
d452c4bc
UW
2400call_internal_function (struct gdbarch *gdbarch,
2401 const struct language_defn *language,
2402 struct value *func, int argc, struct value **argv)
bc3b79fd 2403{
4fa62494
UW
2404 struct internal_function *ifn;
2405 int result;
2406
2407 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2408 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2409 gdb_assert (result);
2410
d452c4bc 2411 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2412}
2413
2414/* The 'function' command. This does nothing -- it is just a
2415 placeholder to let "help function NAME" work. This is also used as
2416 the implementation of the sub-command that is created when
2417 registering an internal function. */
2418static void
981a3fb3 2419function_command (const char *command, int from_tty)
bc3b79fd
TJB
2420{
2421 /* Do nothing. */
2422}
2423
1a6d41c6
TT
2424/* Helper function that does the work for add_internal_function. */
2425
2426static struct cmd_list_element *
2427do_add_internal_function (const char *name, const char *doc,
2428 internal_function_fn handler, void *cookie)
bc3b79fd 2429{
4fa62494 2430 struct internal_function *ifn;
bc3b79fd 2431 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2432
2433 ifn = create_internal_function (name, handler, cookie);
2434 set_internalvar_function (var, ifn);
bc3b79fd 2435
3ea16160 2436 return add_cmd (name, no_class, function_command, doc, &functionlist);
1a6d41c6
TT
2437}
2438
2439/* See value.h. */
2440
2441void
2442add_internal_function (const char *name, const char *doc,
2443 internal_function_fn handler, void *cookie)
2444{
2445 do_add_internal_function (name, doc, handler, cookie);
2446}
2447
2448/* See value.h. */
2449
2450void
3ea16160
TT
2451add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
2452 gdb::unique_xmalloc_ptr<char> &&doc,
1a6d41c6
TT
2453 internal_function_fn handler, void *cookie)
2454{
2455 struct cmd_list_element *cmd
3ea16160 2456 = do_add_internal_function (name.get (), doc.get (), handler, cookie);
1a6d41c6
TT
2457 doc.release ();
2458 cmd->doc_allocated = 1;
3ea16160
TT
2459 name.release ();
2460 cmd->name_allocated = 1;
bc3b79fd
TJB
2461}
2462
ae5a43e0
DJ
2463/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2464 prevent cycles / duplicates. */
2465
4e7a5ef5 2466void
ae5a43e0
DJ
2467preserve_one_value (struct value *value, struct objfile *objfile,
2468 htab_t copied_types)
2469{
2470 if (TYPE_OBJFILE (value->type) == objfile)
2471 value->type = copy_type_recursive (objfile, value->type, copied_types);
2472
2473 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2474 value->enclosing_type = copy_type_recursive (objfile,
2475 value->enclosing_type,
2476 copied_types);
2477}
2478
78267919
UW
2479/* Likewise for internal variable VAR. */
2480
2481static void
2482preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2483 htab_t copied_types)
2484{
2485 switch (var->kind)
2486 {
cab0c772
UW
2487 case INTERNALVAR_INTEGER:
2488 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2489 var->u.integer.type
2490 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2491 break;
2492
78267919
UW
2493 case INTERNALVAR_VALUE:
2494 preserve_one_value (var->u.value, objfile, copied_types);
2495 break;
2496 }
2497}
2498
ae5a43e0
DJ
2499/* Update the internal variables and value history when OBJFILE is
2500 discarded; we must copy the types out of the objfile. New global types
2501 will be created for every convenience variable which currently points to
2502 this objfile's types, and the convenience variables will be adjusted to
2503 use the new global types. */
c906108c
SS
2504
2505void
ae5a43e0 2506preserve_values (struct objfile *objfile)
c906108c 2507{
ae5a43e0 2508 htab_t copied_types;
52f0bd74 2509 struct internalvar *var;
c906108c 2510
ae5a43e0
DJ
2511 /* Create the hash table. We allocate on the objfile's obstack, since
2512 it is soon to be deleted. */
2513 copied_types = create_copied_types_hash (objfile);
2514
4d0266a0
TT
2515 for (const value_ref_ptr &item : value_history)
2516 preserve_one_value (item.get (), objfile, copied_types);
ae5a43e0
DJ
2517
2518 for (var = internalvars; var; var = var->next)
78267919 2519 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2520
6dddc817 2521 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2522
ae5a43e0 2523 htab_delete (copied_types);
c906108c
SS
2524}
2525
2526static void
ad25e423 2527show_convenience (const char *ignore, int from_tty)
c906108c 2528{
e17c207e 2529 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2530 struct internalvar *var;
c906108c 2531 int varseen = 0;
79a45b7d 2532 struct value_print_options opts;
c906108c 2533
79a45b7d 2534 get_user_print_options (&opts);
c906108c
SS
2535 for (var = internalvars; var; var = var->next)
2536 {
c709acd1 2537
c906108c
SS
2538 if (!varseen)
2539 {
2540 varseen = 1;
2541 }
a3f17187 2542 printf_filtered (("$%s = "), var->name);
c709acd1 2543
a70b8144 2544 try
c709acd1
PA
2545 {
2546 struct value *val;
2547
2548 val = value_of_internalvar (gdbarch, var);
2549 value_print (val, gdb_stdout, &opts);
2550 }
230d2906 2551 catch (const gdb_exception_error &ex)
492d29ea 2552 {
7f6aba03
TT
2553 fprintf_styled (gdb_stdout, metadata_style.style (),
2554 _("<error: %s>"), ex.what ());
492d29ea 2555 }
492d29ea 2556
a3f17187 2557 printf_filtered (("\n"));
c906108c
SS
2558 }
2559 if (!varseen)
f47f77df
DE
2560 {
2561 /* This text does not mention convenience functions on purpose.
2562 The user can't create them except via Python, and if Python support
2563 is installed this message will never be printed ($_streq will
2564 exist). */
2565 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2566 "Convenience variables have "
2567 "names starting with \"$\";\n"
2568 "use \"set\" as in \"set "
2569 "$foo = 5\" to define them.\n"));
2570 }
c906108c
SS
2571}
2572\f
ba18742c
SM
2573
2574/* See value.h. */
e81e7f5e
SC
2575
2576struct value *
ba18742c 2577value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2578{
ba18742c 2579 struct value *v;
e81e7f5e 2580
ba18742c
SM
2581 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2582 v->lval = lval_xcallable;
2583 v->location.xm_worker = worker.release ();
2584 v->modifiable = 0;
e81e7f5e 2585
ba18742c 2586 return v;
e81e7f5e
SC
2587}
2588
2ce1cdbf
DE
2589/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2590
2591struct type *
6b1747cd 2592result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2ce1cdbf 2593{
78134374 2594 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
6b1747cd 2595 && method->lval == lval_xcallable && !argv.empty ());
2ce1cdbf 2596
6b1747cd 2597 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2ce1cdbf
DE
2598}
2599
e81e7f5e
SC
2600/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2601
2602struct value *
6b1747cd 2603call_xmethod (struct value *method, gdb::array_view<value *> argv)
e81e7f5e 2604{
78134374 2605 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
6b1747cd 2606 && method->lval == lval_xcallable && !argv.empty ());
e81e7f5e 2607
6b1747cd 2608 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
e81e7f5e
SC
2609}
2610\f
c906108c
SS
2611/* Extract a value as a C number (either long or double).
2612 Knows how to convert fixed values to double, or
2613 floating values to long.
2614 Does not deallocate the value. */
2615
2616LONGEST
f23631e4 2617value_as_long (struct value *val)
c906108c
SS
2618{
2619 /* This coerces arrays and functions, which is necessary (e.g.
2620 in disassemble_command). It also dereferences references, which
2621 I suspect is the most logical thing to do. */
994b9211 2622 val = coerce_array (val);
0fd88904 2623 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2624}
2625
581e13c1 2626/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2627 Note that val's type may not actually be a pointer; value_as_long
2628 handles all the cases. */
c906108c 2629CORE_ADDR
f23631e4 2630value_as_address (struct value *val)
c906108c 2631{
50810684
UW
2632 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2633
c906108c
SS
2634 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2635 whether we want this to be true eventually. */
2636#if 0
bf6ae464 2637 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2638 non-address (e.g. argument to "signal", "info break", etc.), or
2639 for pointers to char, in which the low bits *are* significant. */
50810684 2640 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2641#else
f312f057
JB
2642
2643 /* There are several targets (IA-64, PowerPC, and others) which
2644 don't represent pointers to functions as simply the address of
2645 the function's entry point. For example, on the IA-64, a
2646 function pointer points to a two-word descriptor, generated by
2647 the linker, which contains the function's entry point, and the
2648 value the IA-64 "global pointer" register should have --- to
2649 support position-independent code. The linker generates
2650 descriptors only for those functions whose addresses are taken.
2651
2652 On such targets, it's difficult for GDB to convert an arbitrary
2653 function address into a function pointer; it has to either find
2654 an existing descriptor for that function, or call malloc and
2655 build its own. On some targets, it is impossible for GDB to
2656 build a descriptor at all: the descriptor must contain a jump
2657 instruction; data memory cannot be executed; and code memory
2658 cannot be modified.
2659
2660 Upon entry to this function, if VAL is a value of type `function'
2661 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2662 value_address (val) is the address of the function. This is what
f312f057
JB
2663 you'll get if you evaluate an expression like `main'. The call
2664 to COERCE_ARRAY below actually does all the usual unary
2665 conversions, which includes converting values of type `function'
2666 to `pointer to function'. This is the challenging conversion
2667 discussed above. Then, `unpack_long' will convert that pointer
2668 back into an address.
2669
2670 So, suppose the user types `disassemble foo' on an architecture
2671 with a strange function pointer representation, on which GDB
2672 cannot build its own descriptors, and suppose further that `foo'
2673 has no linker-built descriptor. The address->pointer conversion
2674 will signal an error and prevent the command from running, even
2675 though the next step would have been to convert the pointer
2676 directly back into the same address.
2677
2678 The following shortcut avoids this whole mess. If VAL is a
2679 function, just return its address directly. */
78134374
SM
2680 if (value_type (val)->code () == TYPE_CODE_FUNC
2681 || value_type (val)->code () == TYPE_CODE_METHOD)
42ae5230 2682 return value_address (val);
f312f057 2683
994b9211 2684 val = coerce_array (val);
fc0c74b1
AC
2685
2686 /* Some architectures (e.g. Harvard), map instruction and data
2687 addresses onto a single large unified address space. For
2688 instance: An architecture may consider a large integer in the
2689 range 0x10000000 .. 0x1000ffff to already represent a data
2690 addresses (hence not need a pointer to address conversion) while
2691 a small integer would still need to be converted integer to
2692 pointer to address. Just assume such architectures handle all
2693 integer conversions in a single function. */
2694
2695 /* JimB writes:
2696
2697 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2698 must admonish GDB hackers to make sure its behavior matches the
2699 compiler's, whenever possible.
2700
2701 In general, I think GDB should evaluate expressions the same way
2702 the compiler does. When the user copies an expression out of
2703 their source code and hands it to a `print' command, they should
2704 get the same value the compiler would have computed. Any
2705 deviation from this rule can cause major confusion and annoyance,
2706 and needs to be justified carefully. In other words, GDB doesn't
2707 really have the freedom to do these conversions in clever and
2708 useful ways.
2709
2710 AndrewC pointed out that users aren't complaining about how GDB
2711 casts integers to pointers; they are complaining that they can't
2712 take an address from a disassembly listing and give it to `x/i'.
2713 This is certainly important.
2714
79dd2d24 2715 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2716 makes it possible for GDB to "get it right" in all circumstances
2717 --- the target has complete control over how things get done, so
2718 people can Do The Right Thing for their target without breaking
2719 anyone else. The standard doesn't specify how integers get
2720 converted to pointers; usually, the ABI doesn't either, but
2721 ABI-specific code is a more reasonable place to handle it. */
2722
78134374 2723 if (value_type (val)->code () != TYPE_CODE_PTR
aa006118 2724 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2725 && gdbarch_integer_to_address_p (gdbarch))
2726 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2727 value_contents (val));
fc0c74b1 2728
0fd88904 2729 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2730#endif
2731}
2732\f
2733/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2734 as a long, or as a double, assuming the raw data is described
2735 by type TYPE. Knows how to convert different sizes of values
2736 and can convert between fixed and floating point. We don't assume
2737 any alignment for the raw data. Return value is in host byte order.
2738
2739 If you want functions and arrays to be coerced to pointers, and
2740 references to be dereferenced, call value_as_long() instead.
2741
2742 C++: It is assumed that the front-end has taken care of
2743 all matters concerning pointers to members. A pointer
2744 to member which reaches here is considered to be equivalent
2745 to an INT (or some size). After all, it is only an offset. */
2746
2747LONGEST
fc1a4b47 2748unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2749{
34877895 2750 enum bfd_endian byte_order = type_byte_order (type);
78134374 2751 enum type_code code = type->code ();
52f0bd74
AC
2752 int len = TYPE_LENGTH (type);
2753 int nosign = TYPE_UNSIGNED (type);
c906108c 2754
c906108c
SS
2755 switch (code)
2756 {
2757 case TYPE_CODE_TYPEDEF:
2758 return unpack_long (check_typedef (type), valaddr);
2759 case TYPE_CODE_ENUM:
4f2aea11 2760 case TYPE_CODE_FLAGS:
c906108c
SS
2761 case TYPE_CODE_BOOL:
2762 case TYPE_CODE_INT:
2763 case TYPE_CODE_CHAR:
2764 case TYPE_CODE_RANGE:
0d5de010 2765 case TYPE_CODE_MEMBERPTR:
4e962e74
TT
2766 {
2767 LONGEST result;
2768 if (nosign)
2769 result = extract_unsigned_integer (valaddr, len, byte_order);
2770 else
2771 result = extract_signed_integer (valaddr, len, byte_order);
2772 if (code == TYPE_CODE_RANGE)
2773 result += TYPE_RANGE_DATA (type)->bias;
2774 return result;
2775 }
c906108c
SS
2776
2777 case TYPE_CODE_FLT:
4ef30785 2778 case TYPE_CODE_DECFLOAT:
50637b26 2779 return target_float_to_longest (valaddr, type);
4ef30785 2780
c906108c
SS
2781 case TYPE_CODE_PTR:
2782 case TYPE_CODE_REF:
aa006118 2783 case TYPE_CODE_RVALUE_REF:
c906108c 2784 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2785 whether we want this to be true eventually. */
4478b372 2786 return extract_typed_address (valaddr, type);
c906108c 2787
c906108c 2788 default:
8a3fe4f8 2789 error (_("Value can't be converted to integer."));
c906108c 2790 }
c906108c
SS
2791}
2792
c906108c
SS
2793/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2794 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2795 We don't assume any alignment for the raw data. Return value is in
2796 host byte order.
2797
2798 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2799 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2800
2801 C++: It is assumed that the front-end has taken care of
2802 all matters concerning pointers to members. A pointer
2803 to member which reaches here is considered to be equivalent
2804 to an INT (or some size). After all, it is only an offset. */
2805
2806CORE_ADDR
fc1a4b47 2807unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2808{
2809 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2810 whether we want this to be true eventually. */
2811 return unpack_long (type, valaddr);
2812}
4478b372 2813
70100014
UW
2814bool
2815is_floating_value (struct value *val)
2816{
2817 struct type *type = check_typedef (value_type (val));
2818
2819 if (is_floating_type (type))
2820 {
2821 if (!target_float_is_valid (value_contents (val), type))
2822 error (_("Invalid floating value found in program."));
2823 return true;
2824 }
2825
2826 return false;
2827}
2828
c906108c 2829\f
1596cb5d 2830/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2831 TYPE. */
c906108c 2832
f23631e4 2833struct value *
fba45db2 2834value_static_field (struct type *type, int fieldno)
c906108c 2835{
948e66d9
DJ
2836 struct value *retval;
2837
1596cb5d 2838 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2839 {
1596cb5d 2840 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2841 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2842 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2843 break;
2844 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2845 {
ff355380 2846 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2847 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2848 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2849
d12307c1 2850 if (sym.symbol == NULL)
c906108c 2851 {
a109c7c1 2852 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2853 reported as non-debuggable symbols. */
3b7344d5
TT
2854 struct bound_minimal_symbol msym
2855 = lookup_minimal_symbol (phys_name, NULL, NULL);
c2e0e465 2856 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
a109c7c1 2857
3b7344d5 2858 if (!msym.minsym)
c2e0e465 2859 retval = allocate_optimized_out_value (field_type);
c906108c 2860 else
c2e0e465 2861 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2862 }
2863 else
d12307c1 2864 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2865 break;
c906108c 2866 }
1596cb5d 2867 default:
f3574227 2868 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2869 }
2870
948e66d9 2871 return retval;
c906108c
SS
2872}
2873
4dfea560
DE
2874/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2875 You have to be careful here, since the size of the data area for the value
2876 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2877 than the old enclosing type, you have to allocate more space for the
2878 data. */
2b127877 2879
4dfea560
DE
2880void
2881set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2882{
5fdf6324
AB
2883 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2884 {
2885 check_type_length_before_alloc (new_encl_type);
2886 val->contents
14c88955
TT
2887 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2888 TYPE_LENGTH (new_encl_type)));
5fdf6324 2889 }
3e3d7139
JG
2890
2891 val->enclosing_type = new_encl_type;
2b127877
DB
2892}
2893
c906108c
SS
2894/* Given a value ARG1 (offset by OFFSET bytes)
2895 of a struct or union type ARG_TYPE,
2896 extract and return the value of one of its (non-static) fields.
581e13c1 2897 FIELDNO says which field. */
c906108c 2898
f23631e4 2899struct value *
6b850546 2900value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 2901 int fieldno, struct type *arg_type)
c906108c 2902{
f23631e4 2903 struct value *v;
52f0bd74 2904 struct type *type;
3ae385af
SM
2905 struct gdbarch *arch = get_value_arch (arg1);
2906 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 2907
f168693b 2908 arg_type = check_typedef (arg_type);
c906108c 2909 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2910
2911 /* Call check_typedef on our type to make sure that, if TYPE
2912 is a TYPE_CODE_TYPEDEF, its length is set to the length
2913 of the target type instead of zero. However, we do not
2914 replace the typedef type by the target type, because we want
2915 to keep the typedef in order to be able to print the type
2916 description correctly. */
2917 check_typedef (type);
c906108c 2918
691a26f5 2919 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2920 {
22c05d8a
JK
2921 /* Handle packed fields.
2922
2923 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2924 set. If possible, arrange offset and bitpos so that we can
2925 do a single aligned read of the size of the containing type.
2926 Otherwise, adjust offset to the byte containing the first
2927 bit. Assume that the address, offset, and embedded offset
2928 are sufficiently aligned. */
22c05d8a 2929
6b850546
DT
2930 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2931 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 2932
9a0dc9e3
PA
2933 v = allocate_value_lazy (type);
2934 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2935 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2936 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2937 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2938 else
9a0dc9e3
PA
2939 v->bitpos = bitpos % 8;
2940 v->offset = (value_embedded_offset (arg1)
2941 + offset
2942 + (bitpos - v->bitpos) / 8);
2943 set_value_parent (v, arg1);
2944 if (!value_lazy (arg1))
2945 value_fetch_lazy (v);
c906108c
SS
2946 }
2947 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2948 {
2949 /* This field is actually a base subobject, so preserve the
39d37385
PA
2950 entire object's contents for later references to virtual
2951 bases, etc. */
6b850546 2952 LONGEST boffset;
a4e2ee12
DJ
2953
2954 /* Lazy register values with offsets are not supported. */
2955 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2956 value_fetch_lazy (arg1);
2957
9a0dc9e3
PA
2958 /* We special case virtual inheritance here because this
2959 requires access to the contents, which we would rather avoid
2960 for references to ordinary fields of unavailable values. */
2961 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2962 boffset = baseclass_offset (arg_type, fieldno,
2963 value_contents (arg1),
2964 value_embedded_offset (arg1),
2965 value_address (arg1),
2966 arg1);
c906108c 2967 else
9a0dc9e3 2968 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 2969
9a0dc9e3
PA
2970 if (value_lazy (arg1))
2971 v = allocate_value_lazy (value_enclosing_type (arg1));
2972 else
2973 {
2974 v = allocate_value (value_enclosing_type (arg1));
2975 value_contents_copy_raw (v, 0, arg1, 0,
2976 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 2977 }
9a0dc9e3
PA
2978 v->type = type;
2979 v->offset = value_offset (arg1);
2980 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 2981 }
9920b434
BH
2982 else if (NULL != TYPE_DATA_LOCATION (type))
2983 {
2984 /* Field is a dynamic data member. */
2985
2986 gdb_assert (0 == offset);
2987 /* We expect an already resolved data location. */
2988 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2989 /* For dynamic data types defer memory allocation
2990 until we actual access the value. */
2991 v = allocate_value_lazy (type);
2992 }
c906108c
SS
2993 else
2994 {
2995 /* Plain old data member */
3ae385af
SM
2996 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2997 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
2998
2999 /* Lazy register values with offsets are not supported. */
3000 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3001 value_fetch_lazy (arg1);
3002
9a0dc9e3 3003 if (value_lazy (arg1))
3e3d7139 3004 v = allocate_value_lazy (type);
c906108c 3005 else
3e3d7139
JG
3006 {
3007 v = allocate_value (type);
39d37385
PA
3008 value_contents_copy_raw (v, value_embedded_offset (v),
3009 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3010 type_length_units (type));
3e3d7139 3011 }
df407dfe 3012 v->offset = (value_offset (arg1) + offset
13c3b5f5 3013 + value_embedded_offset (arg1));
c906108c 3014 }
74bcbdf3 3015 set_value_component_location (v, arg1);
c906108c
SS
3016 return v;
3017}
3018
3019/* Given a value ARG1 of a struct or union type,
3020 extract and return the value of one of its (non-static) fields.
581e13c1 3021 FIELDNO says which field. */
c906108c 3022
f23631e4 3023struct value *
aa1ee363 3024value_field (struct value *arg1, int fieldno)
c906108c 3025{
df407dfe 3026 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3027}
3028
3029/* Return a non-virtual function as a value.
3030 F is the list of member functions which contains the desired method.
0478d61c
FF
3031 J is an index into F which provides the desired method.
3032
3033 We only use the symbol for its address, so be happy with either a
581e13c1 3034 full symbol or a minimal symbol. */
c906108c 3035
f23631e4 3036struct value *
3e43a32a
MS
3037value_fn_field (struct value **arg1p, struct fn_field *f,
3038 int j, struct type *type,
6b850546 3039 LONGEST offset)
c906108c 3040{
f23631e4 3041 struct value *v;
52f0bd74 3042 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3043 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3044 struct symbol *sym;
7c7b6655 3045 struct bound_minimal_symbol msym;
c906108c 3046
d12307c1 3047 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3048 if (sym != NULL)
0478d61c 3049 {
7c7b6655 3050 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3051 }
3052 else
3053 {
3054 gdb_assert (sym == NULL);
7c7b6655
TT
3055 msym = lookup_bound_minimal_symbol (physname);
3056 if (msym.minsym == NULL)
5ae326fa 3057 return NULL;
0478d61c
FF
3058 }
3059
c906108c 3060 v = allocate_value (ftype);
1a088441 3061 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3062 if (sym)
3063 {
2b1ffcfd 3064 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3065 }
3066 else
3067 {
bccdca4a
UW
3068 /* The minimal symbol might point to a function descriptor;
3069 resolve it to the actual code address instead. */
7c7b6655 3070 struct objfile *objfile = msym.objfile;
08feed99 3071 struct gdbarch *gdbarch = objfile->arch ();
bccdca4a 3072
42ae5230
TT
3073 set_value_address (v,
3074 gdbarch_convert_from_func_ptr_addr
8b88a78e 3075 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
0478d61c 3076 }
c906108c
SS
3077
3078 if (arg1p)
c5aa993b 3079 {
df407dfe 3080 if (type != value_type (*arg1p))
c5aa993b
JM
3081 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3082 value_addr (*arg1p)));
3083
070ad9f0 3084 /* Move the `this' pointer according to the offset.
581e13c1 3085 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3086 }
3087
3088 return v;
3089}
3090
c906108c 3091\f
c906108c 3092
ef83a141
TT
3093/* See value.h. */
3094
3095LONGEST
4875ffdb 3096unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3097 LONGEST bitpos, LONGEST bitsize)
c906108c 3098{
34877895 3099 enum bfd_endian byte_order = type_byte_order (field_type);
c906108c
SS
3100 ULONGEST val;
3101 ULONGEST valmask;
c906108c 3102 int lsbcount;
6b850546
DT
3103 LONGEST bytes_read;
3104 LONGEST read_offset;
c906108c 3105
4a76eae5
DJ
3106 /* Read the minimum number of bytes required; there may not be
3107 enough bytes to read an entire ULONGEST. */
f168693b 3108 field_type = check_typedef (field_type);
4a76eae5
DJ
3109 if (bitsize)
3110 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3111 else
15ce8941
TT
3112 {
3113 bytes_read = TYPE_LENGTH (field_type);
3114 bitsize = 8 * bytes_read;
3115 }
4a76eae5 3116
5467c6c8
PA
3117 read_offset = bitpos / 8;
3118
4875ffdb 3119 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3120 bytes_read, byte_order);
c906108c 3121
581e13c1 3122 /* Extract bits. See comment above. */
c906108c 3123
d5a22e77 3124 if (byte_order == BFD_ENDIAN_BIG)
4a76eae5 3125 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3126 else
3127 lsbcount = (bitpos % 8);
3128 val >>= lsbcount;
3129
3130 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3131 If the field is signed, and is negative, then sign extend. */
c906108c 3132
15ce8941 3133 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3134 {
3135 valmask = (((ULONGEST) 1) << bitsize) - 1;
3136 val &= valmask;
3137 if (!TYPE_UNSIGNED (field_type))
3138 {
3139 if (val & (valmask ^ (valmask >> 1)))
3140 {
3141 val |= ~valmask;
3142 }
3143 }
3144 }
5467c6c8 3145
4875ffdb 3146 return val;
5467c6c8
PA
3147}
3148
3149/* Unpack a field FIELDNO of the specified TYPE, from the object at
3150 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3151 ORIGINAL_VALUE, which must not be NULL. See
3152 unpack_value_bits_as_long for more details. */
3153
3154int
3155unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3156 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3157 const struct value *val, LONGEST *result)
3158{
4875ffdb
PA
3159 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3160 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3161 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3162 int bit_offset;
3163
5467c6c8
PA
3164 gdb_assert (val != NULL);
3165
4875ffdb
PA
3166 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3167 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3168 || !value_bits_available (val, bit_offset, bitsize))
3169 return 0;
3170
3171 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3172 bitpos, bitsize);
3173 return 1;
5467c6c8
PA
3174}
3175
3176/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3177 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3178
3179LONGEST
3180unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3181{
4875ffdb
PA
3182 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3183 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3184 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3185
4875ffdb
PA
3186 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3187}
3188
3189/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3190 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3191 the contents in DEST_VAL, zero or sign extending if the type of
3192 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3193 VAL. If the VAL's contents required to extract the bitfield from
3194 are unavailable/optimized out, DEST_VAL is correspondingly
3195 marked unavailable/optimized out. */
3196
bb9d5f81 3197void
4875ffdb 3198unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3199 LONGEST bitpos, LONGEST bitsize,
3200 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3201 const struct value *val)
3202{
3203 enum bfd_endian byte_order;
3204 int src_bit_offset;
3205 int dst_bit_offset;
4875ffdb
PA
3206 struct type *field_type = value_type (dest_val);
3207
34877895 3208 byte_order = type_byte_order (field_type);
e5ca03b4
PA
3209
3210 /* First, unpack and sign extend the bitfield as if it was wholly
3211 valid. Optimized out/unavailable bits are read as zero, but
3212 that's OK, as they'll end up marked below. If the VAL is
3213 wholly-invalid we may have skipped allocating its contents,
3214 though. See allocate_optimized_out_value. */
3215 if (valaddr != NULL)
3216 {
3217 LONGEST num;
3218
3219 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3220 bitpos, bitsize);
3221 store_signed_integer (value_contents_raw (dest_val),
3222 TYPE_LENGTH (field_type), byte_order, num);
3223 }
4875ffdb
PA
3224
3225 /* Now copy the optimized out / unavailability ranges to the right
3226 bits. */
3227 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3228 if (byte_order == BFD_ENDIAN_BIG)
3229 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3230 else
3231 dst_bit_offset = 0;
3232 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3233 val, src_bit_offset, bitsize);
5467c6c8
PA
3234}
3235
3236/* Return a new value with type TYPE, which is FIELDNO field of the
3237 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3238 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3239 from are unavailable/optimized out, the new value is
3240 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3241
3242struct value *
3243value_field_bitfield (struct type *type, int fieldno,
3244 const gdb_byte *valaddr,
6b850546 3245 LONGEST embedded_offset, const struct value *val)
5467c6c8 3246{
4875ffdb
PA
3247 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3248 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3249 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3250
4875ffdb
PA
3251 unpack_value_bitfield (res_val, bitpos, bitsize,
3252 valaddr, embedded_offset, val);
3253
3254 return res_val;
4ea48cc1
DJ
3255}
3256
c906108c
SS
3257/* Modify the value of a bitfield. ADDR points to a block of memory in
3258 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3259 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3260 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3261 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3262 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3263
3264void
50810684 3265modify_field (struct type *type, gdb_byte *addr,
6b850546 3266 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3267{
34877895 3268 enum bfd_endian byte_order = type_byte_order (type);
f4e88c8e
PH
3269 ULONGEST oword;
3270 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3271 LONGEST bytesize;
19f220c3
JK
3272
3273 /* Normalize BITPOS. */
3274 addr += bitpos / 8;
3275 bitpos %= 8;
c906108c
SS
3276
3277 /* If a negative fieldval fits in the field in question, chop
3278 off the sign extension bits. */
f4e88c8e
PH
3279 if ((~fieldval & ~(mask >> 1)) == 0)
3280 fieldval &= mask;
c906108c
SS
3281
3282 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3283 if (0 != (fieldval & ~mask))
c906108c
SS
3284 {
3285 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3286 we don't have a sprintf_longest. */
6b850546 3287 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3288
3289 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3290 fieldval &= mask;
c906108c
SS
3291 }
3292
19f220c3
JK
3293 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3294 false valgrind reports. */
3295
3296 bytesize = (bitpos + bitsize + 7) / 8;
3297 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3298
3299 /* Shifting for bit field depends on endianness of the target machine. */
d5a22e77 3300 if (byte_order == BFD_ENDIAN_BIG)
19f220c3 3301 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3302
f4e88c8e 3303 oword &= ~(mask << bitpos);
c906108c
SS
3304 oword |= fieldval << bitpos;
3305
19f220c3 3306 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3307}
3308\f
14d06750 3309/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3310
14d06750
DJ
3311void
3312pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3313{
34877895 3314 enum bfd_endian byte_order = type_byte_order (type);
6b850546 3315 LONGEST len;
14d06750
DJ
3316
3317 type = check_typedef (type);
c906108c
SS
3318 len = TYPE_LENGTH (type);
3319
78134374 3320 switch (type->code ())
c906108c 3321 {
4e962e74
TT
3322 case TYPE_CODE_RANGE:
3323 num -= TYPE_RANGE_DATA (type)->bias;
3324 /* Fall through. */
c906108c
SS
3325 case TYPE_CODE_INT:
3326 case TYPE_CODE_CHAR:
3327 case TYPE_CODE_ENUM:
4f2aea11 3328 case TYPE_CODE_FLAGS:
c906108c 3329 case TYPE_CODE_BOOL:
0d5de010 3330 case TYPE_CODE_MEMBERPTR:
e17a4113 3331 store_signed_integer (buf, len, byte_order, num);
c906108c 3332 break;
c5aa993b 3333
c906108c 3334 case TYPE_CODE_REF:
aa006118 3335 case TYPE_CODE_RVALUE_REF:
c906108c 3336 case TYPE_CODE_PTR:
14d06750 3337 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3338 break;
c5aa993b 3339
50637b26
UW
3340 case TYPE_CODE_FLT:
3341 case TYPE_CODE_DECFLOAT:
3342 target_float_from_longest (buf, type, num);
3343 break;
3344
c906108c 3345 default:
14d06750 3346 error (_("Unexpected type (%d) encountered for integer constant."),
78134374 3347 type->code ());
c906108c 3348 }
14d06750
DJ
3349}
3350
3351
595939de
PM
3352/* Pack NUM into BUF using a target format of TYPE. */
3353
70221824 3354static void
595939de
PM
3355pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3356{
6b850546 3357 LONGEST len;
595939de
PM
3358 enum bfd_endian byte_order;
3359
3360 type = check_typedef (type);
3361 len = TYPE_LENGTH (type);
34877895 3362 byte_order = type_byte_order (type);
595939de 3363
78134374 3364 switch (type->code ())
595939de
PM
3365 {
3366 case TYPE_CODE_INT:
3367 case TYPE_CODE_CHAR:
3368 case TYPE_CODE_ENUM:
3369 case TYPE_CODE_FLAGS:
3370 case TYPE_CODE_BOOL:
3371 case TYPE_CODE_RANGE:
3372 case TYPE_CODE_MEMBERPTR:
3373 store_unsigned_integer (buf, len, byte_order, num);
3374 break;
3375
3376 case TYPE_CODE_REF:
aa006118 3377 case TYPE_CODE_RVALUE_REF:
595939de
PM
3378 case TYPE_CODE_PTR:
3379 store_typed_address (buf, type, (CORE_ADDR) num);
3380 break;
3381
50637b26
UW
3382 case TYPE_CODE_FLT:
3383 case TYPE_CODE_DECFLOAT:
3384 target_float_from_ulongest (buf, type, num);
3385 break;
3386
595939de 3387 default:
3e43a32a
MS
3388 error (_("Unexpected type (%d) encountered "
3389 "for unsigned integer constant."),
78134374 3390 type->code ());
595939de
PM
3391 }
3392}
3393
3394
14d06750
DJ
3395/* Convert C numbers into newly allocated values. */
3396
3397struct value *
3398value_from_longest (struct type *type, LONGEST num)
3399{
3400 struct value *val = allocate_value (type);
3401
3402 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3403 return val;
3404}
3405
4478b372 3406
595939de
PM
3407/* Convert C unsigned numbers into newly allocated values. */
3408
3409struct value *
3410value_from_ulongest (struct type *type, ULONGEST num)
3411{
3412 struct value *val = allocate_value (type);
3413
3414 pack_unsigned_long (value_contents_raw (val), type, num);
3415
3416 return val;
3417}
3418
3419
4478b372 3420/* Create a value representing a pointer of type TYPE to the address
cb417230 3421 ADDR. */
80180f79 3422
f23631e4 3423struct value *
4478b372
JB
3424value_from_pointer (struct type *type, CORE_ADDR addr)
3425{
cb417230 3426 struct value *val = allocate_value (type);
a109c7c1 3427
80180f79 3428 store_typed_address (value_contents_raw (val),
cb417230 3429 check_typedef (type), addr);
4478b372
JB
3430 return val;
3431}
3432
7584bb30
AB
3433/* Create and return a value object of TYPE containing the value D. The
3434 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3435 it is converted to target format. */
3436
3437struct value *
3438value_from_host_double (struct type *type, double d)
3439{
3440 struct value *value = allocate_value (type);
78134374 3441 gdb_assert (type->code () == TYPE_CODE_FLT);
7584bb30
AB
3442 target_float_from_host_double (value_contents_raw (value),
3443 value_type (value), d);
3444 return value;
3445}
4478b372 3446
012370f6
TT
3447/* Create a value of type TYPE whose contents come from VALADDR, if it
3448 is non-null, and whose memory address (in the inferior) is
3449 ADDRESS. The type of the created value may differ from the passed
3450 type TYPE. Make sure to retrieve values new type after this call.
3451 Note that TYPE is not passed through resolve_dynamic_type; this is
3452 a special API intended for use only by Ada. */
3453
3454struct value *
3455value_from_contents_and_address_unresolved (struct type *type,
3456 const gdb_byte *valaddr,
3457 CORE_ADDR address)
3458{
3459 struct value *v;
3460
3461 if (valaddr == NULL)
3462 v = allocate_value_lazy (type);
3463 else
3464 v = value_from_contents (type, valaddr);
012370f6 3465 VALUE_LVAL (v) = lval_memory;
1a088441 3466 set_value_address (v, address);
012370f6
TT
3467 return v;
3468}
3469
8acb6b92
TT
3470/* Create a value of type TYPE whose contents come from VALADDR, if it
3471 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3472 ADDRESS. The type of the created value may differ from the passed
3473 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3474
3475struct value *
3476value_from_contents_and_address (struct type *type,
3477 const gdb_byte *valaddr,
3478 CORE_ADDR address)
3479{
b249d2c2
TT
3480 gdb::array_view<const gdb_byte> view;
3481 if (valaddr != nullptr)
3482 view = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
3483 struct type *resolved_type = resolve_dynamic_type (type, view, address);
d36430db 3484 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3485 struct value *v;
a109c7c1 3486
8acb6b92 3487 if (valaddr == NULL)
80180f79 3488 v = allocate_value_lazy (resolved_type);
8acb6b92 3489 else
80180f79 3490 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3491 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3492 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3493 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3494 VALUE_LVAL (v) = lval_memory;
1a088441 3495 set_value_address (v, address);
8acb6b92
TT
3496 return v;
3497}
3498
8a9b8146
TT
3499/* Create a value of type TYPE holding the contents CONTENTS.
3500 The new value is `not_lval'. */
3501
3502struct value *
3503value_from_contents (struct type *type, const gdb_byte *contents)
3504{
3505 struct value *result;
3506
3507 result = allocate_value (type);
3508 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3509 return result;
3510}
3511
3bd0f5ef
MS
3512/* Extract a value from the history file. Input will be of the form
3513 $digits or $$digits. See block comment above 'write_dollar_variable'
3514 for details. */
3515
3516struct value *
e799154c 3517value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3518{
3519 int index, len;
3520
3521 if (h[0] == '$')
3522 len = 1;
3523 else
3524 return NULL;
3525
3526 if (h[1] == '$')
3527 len = 2;
3528
3529 /* Find length of numeral string. */
3530 for (; isdigit (h[len]); len++)
3531 ;
3532
3533 /* Make sure numeral string is not part of an identifier. */
3534 if (h[len] == '_' || isalpha (h[len]))
3535 return NULL;
3536
3537 /* Now collect the index value. */
3538 if (h[1] == '$')
3539 {
3540 if (len == 2)
3541 {
3542 /* For some bizarre reason, "$$" is equivalent to "$$1",
3543 rather than to "$$0" as it ought to be! */
3544 index = -1;
3545 *endp += len;
3546 }
3547 else
e799154c
TT
3548 {
3549 char *local_end;
3550
3551 index = -strtol (&h[2], &local_end, 10);
3552 *endp = local_end;
3553 }
3bd0f5ef
MS
3554 }
3555 else
3556 {
3557 if (len == 1)
3558 {
3559 /* "$" is equivalent to "$0". */
3560 index = 0;
3561 *endp += len;
3562 }
3563 else
e799154c
TT
3564 {
3565 char *local_end;
3566
3567 index = strtol (&h[1], &local_end, 10);
3568 *endp = local_end;
3569 }
3bd0f5ef
MS
3570 }
3571
3572 return access_value_history (index);
3573}
3574
3fff9862
YQ
3575/* Get the component value (offset by OFFSET bytes) of a struct or
3576 union WHOLE. Component's type is TYPE. */
3577
3578struct value *
3579value_from_component (struct value *whole, struct type *type, LONGEST offset)
3580{
3581 struct value *v;
3582
3583 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3584 v = allocate_value_lazy (type);
3585 else
3586 {
3587 v = allocate_value (type);
3588 value_contents_copy (v, value_embedded_offset (v),
3589 whole, value_embedded_offset (whole) + offset,
3590 type_length_units (type));
3591 }
3592 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3593 set_value_component_location (v, whole);
3fff9862
YQ
3594
3595 return v;
3596}
3597
a471c594
JK
3598struct value *
3599coerce_ref_if_computed (const struct value *arg)
3600{
3601 const struct lval_funcs *funcs;
3602
aa006118 3603 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3604 return NULL;
3605
3606 if (value_lval_const (arg) != lval_computed)
3607 return NULL;
3608
3609 funcs = value_computed_funcs (arg);
3610 if (funcs->coerce_ref == NULL)
3611 return NULL;
3612
3613 return funcs->coerce_ref (arg);
3614}
3615
dfcee124
AG
3616/* Look at value.h for description. */
3617
3618struct value *
3619readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3620 const struct type *original_type,
3621 const struct value *original_value)
dfcee124
AG
3622{
3623 /* Re-adjust type. */
3624 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3625
3626 /* Add embedding info. */
3627 set_value_enclosing_type (value, enc_type);
3628 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3629
3630 /* We may be pointing to an object of some derived type. */
3631 return value_full_object (value, NULL, 0, 0, 0);
3632}
3633
994b9211
AC
3634struct value *
3635coerce_ref (struct value *arg)
3636{
df407dfe 3637 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3638 struct value *retval;
dfcee124 3639 struct type *enc_type;
a109c7c1 3640
a471c594
JK
3641 retval = coerce_ref_if_computed (arg);
3642 if (retval)
3643 return retval;
3644
aa006118 3645 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3646 return arg;
3647
dfcee124
AG
3648 enc_type = check_typedef (value_enclosing_type (arg));
3649 enc_type = TYPE_TARGET_TYPE (enc_type);
3650
3651 retval = value_at_lazy (enc_type,
3652 unpack_pointer (value_type (arg),
3653 value_contents (arg)));
9f1f738a 3654 enc_type = value_type (retval);
dfcee124
AG
3655 return readjust_indirect_value_type (retval, enc_type,
3656 value_type_arg_tmp, arg);
994b9211
AC
3657}
3658
3659struct value *
3660coerce_array (struct value *arg)
3661{
f3134b88
TT
3662 struct type *type;
3663
994b9211 3664 arg = coerce_ref (arg);
f3134b88
TT
3665 type = check_typedef (value_type (arg));
3666
78134374 3667 switch (type->code ())
f3134b88
TT
3668 {
3669 case TYPE_CODE_ARRAY:
7346b668 3670 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3671 arg = value_coerce_array (arg);
3672 break;
3673 case TYPE_CODE_FUNC:
3674 arg = value_coerce_function (arg);
3675 break;
3676 }
994b9211
AC
3677 return arg;
3678}
c906108c 3679\f
c906108c 3680
bbfdfe1c
DM
3681/* Return the return value convention that will be used for the
3682 specified type. */
3683
3684enum return_value_convention
3685struct_return_convention (struct gdbarch *gdbarch,
3686 struct value *function, struct type *value_type)
3687{
78134374 3688 enum type_code code = value_type->code ();
bbfdfe1c
DM
3689
3690 if (code == TYPE_CODE_ERROR)
3691 error (_("Function return type unknown."));
3692
3693 /* Probe the architecture for the return-value convention. */
3694 return gdbarch_return_value (gdbarch, function, value_type,
3695 NULL, NULL, NULL);
3696}
3697
48436ce6
AC
3698/* Return true if the function returning the specified type is using
3699 the convention of returning structures in memory (passing in the
82585c72 3700 address as a hidden first parameter). */
c906108c
SS
3701
3702int
d80b854b 3703using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3704 struct value *function, struct type *value_type)
c906108c 3705{
78134374 3706 if (value_type->code () == TYPE_CODE_VOID)
667e784f 3707 /* A void return value is never in memory. See also corresponding
44e5158b 3708 code in "print_return_value". */
667e784f
AC
3709 return 0;
3710
bbfdfe1c 3711 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3712 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3713}
3714
42be36b3
CT
3715/* Set the initialized field in a value struct. */
3716
3717void
3718set_value_initialized (struct value *val, int status)
3719{
3720 val->initialized = status;
3721}
3722
3723/* Return the initialized field in a value struct. */
3724
3725int
4bf7b526 3726value_initialized (const struct value *val)
42be36b3
CT
3727{
3728 return val->initialized;
3729}
3730
41c60b4b
SM
3731/* Helper for value_fetch_lazy when the value is a bitfield. */
3732
3733static void
3734value_fetch_lazy_bitfield (struct value *val)
3735{
3736 gdb_assert (value_bitsize (val) != 0);
3737
3738 /* To read a lazy bitfield, read the entire enclosing value. This
3739 prevents reading the same block of (possibly volatile) memory once
3740 per bitfield. It would be even better to read only the containing
3741 word, but we have no way to record that just specific bits of a
3742 value have been fetched. */
41c60b4b
SM
3743 struct value *parent = value_parent (val);
3744
3745 if (value_lazy (parent))
3746 value_fetch_lazy (parent);
3747
3748 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3749 value_contents_for_printing (parent),
3750 value_offset (val), parent);
3751}
3752
3753/* Helper for value_fetch_lazy when the value is in memory. */
3754
3755static void
3756value_fetch_lazy_memory (struct value *val)
3757{
3758 gdb_assert (VALUE_LVAL (val) == lval_memory);
3759
3760 CORE_ADDR addr = value_address (val);
3761 struct type *type = check_typedef (value_enclosing_type (val));
3762
3763 if (TYPE_LENGTH (type))
3764 read_value_memory (val, 0, value_stack (val),
3765 addr, value_contents_all_raw (val),
3766 type_length_units (type));
3767}
3768
3769/* Helper for value_fetch_lazy when the value is in a register. */
3770
3771static void
3772value_fetch_lazy_register (struct value *val)
3773{
3774 struct frame_info *next_frame;
3775 int regnum;
3776 struct type *type = check_typedef (value_type (val));
3777 struct value *new_val = val, *mark = value_mark ();
3778
3779 /* Offsets are not supported here; lazy register values must
3780 refer to the entire register. */
3781 gdb_assert (value_offset (val) == 0);
3782
3783 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3784 {
3785 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3786
3787 next_frame = frame_find_by_id (next_frame_id);
3788 regnum = VALUE_REGNUM (new_val);
3789
3790 gdb_assert (next_frame != NULL);
3791
3792 /* Convertible register routines are used for multi-register
3793 values and for interpretation in different types
3794 (e.g. float or int from a double register). Lazy
3795 register values should have the register's natural type,
3796 so they do not apply. */
3797 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3798 regnum, type));
3799
3800 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3801 Since a "->next" operation was performed when setting
3802 this field, we do not need to perform a "next" operation
3803 again when unwinding the register. That's why
3804 frame_unwind_register_value() is called here instead of
3805 get_frame_register_value(). */
3806 new_val = frame_unwind_register_value (next_frame, regnum);
3807
3808 /* If we get another lazy lval_register value, it means the
3809 register is found by reading it from NEXT_FRAME's next frame.
3810 frame_unwind_register_value should never return a value with
3811 the frame id pointing to NEXT_FRAME. If it does, it means we
3812 either have two consecutive frames with the same frame id
3813 in the frame chain, or some code is trying to unwind
3814 behind get_prev_frame's back (e.g., a frame unwind
3815 sniffer trying to unwind), bypassing its validations. In
3816 any case, it should always be an internal error to end up
3817 in this situation. */
3818 if (VALUE_LVAL (new_val) == lval_register
3819 && value_lazy (new_val)
3820 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3821 internal_error (__FILE__, __LINE__,
3822 _("infinite loop while fetching a register"));
3823 }
3824
3825 /* If it's still lazy (for instance, a saved register on the
3826 stack), fetch it. */
3827 if (value_lazy (new_val))
3828 value_fetch_lazy (new_val);
3829
3830 /* Copy the contents and the unavailability/optimized-out
3831 meta-data from NEW_VAL to VAL. */
3832 set_value_lazy (val, 0);
3833 value_contents_copy (val, value_embedded_offset (val),
3834 new_val, value_embedded_offset (new_val),
3835 type_length_units (type));
3836
3837 if (frame_debug)
3838 {
3839 struct gdbarch *gdbarch;
3840 struct frame_info *frame;
3841 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3842 so that the frame level will be shown correctly. */
3843 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3844 regnum = VALUE_REGNUM (val);
3845 gdbarch = get_frame_arch (frame);
3846
3847 fprintf_unfiltered (gdb_stdlog,
3848 "{ value_fetch_lazy "
3849 "(frame=%d,regnum=%d(%s),...) ",
3850 frame_relative_level (frame), regnum,
3851 user_reg_map_regnum_to_name (gdbarch, regnum));
3852
3853 fprintf_unfiltered (gdb_stdlog, "->");
3854 if (value_optimized_out (new_val))
3855 {
3856 fprintf_unfiltered (gdb_stdlog, " ");
3857 val_print_optimized_out (new_val, gdb_stdlog);
3858 }
3859 else
3860 {
3861 int i;
3862 const gdb_byte *buf = value_contents (new_val);
3863
3864 if (VALUE_LVAL (new_val) == lval_register)
3865 fprintf_unfiltered (gdb_stdlog, " register=%d",
3866 VALUE_REGNUM (new_val));
3867 else if (VALUE_LVAL (new_val) == lval_memory)
3868 fprintf_unfiltered (gdb_stdlog, " address=%s",
3869 paddress (gdbarch,
3870 value_address (new_val)));
3871 else
3872 fprintf_unfiltered (gdb_stdlog, " computed");
3873
3874 fprintf_unfiltered (gdb_stdlog, " bytes=");
3875 fprintf_unfiltered (gdb_stdlog, "[");
3876 for (i = 0; i < register_size (gdbarch, regnum); i++)
3877 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3878 fprintf_unfiltered (gdb_stdlog, "]");
3879 }
3880
3881 fprintf_unfiltered (gdb_stdlog, " }\n");
3882 }
3883
3884 /* Dispose of the intermediate values. This prevents
3885 watchpoints from trying to watch the saved frame pointer. */
3886 value_free_to_mark (mark);
3887}
3888
a844296a
SM
3889/* Load the actual content of a lazy value. Fetch the data from the
3890 user's process and clear the lazy flag to indicate that the data in
3891 the buffer is valid.
a58e2656
AB
3892
3893 If the value is zero-length, we avoid calling read_memory, which
3894 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3895 it. */
a58e2656 3896
a844296a 3897void
a58e2656
AB
3898value_fetch_lazy (struct value *val)
3899{
3900 gdb_assert (value_lazy (val));
3901 allocate_value_contents (val);
9a0dc9e3
PA
3902 /* A value is either lazy, or fully fetched. The
3903 availability/validity is only established as we try to fetch a
3904 value. */
0c7e6dd8
TT
3905 gdb_assert (val->optimized_out.empty ());
3906 gdb_assert (val->unavailable.empty ());
a58e2656 3907 if (value_bitsize (val))
41c60b4b 3908 value_fetch_lazy_bitfield (val);
a58e2656 3909 else if (VALUE_LVAL (val) == lval_memory)
41c60b4b 3910 value_fetch_lazy_memory (val);
a58e2656 3911 else if (VALUE_LVAL (val) == lval_register)
41c60b4b 3912 value_fetch_lazy_register (val);
a58e2656
AB
3913 else if (VALUE_LVAL (val) == lval_computed
3914 && value_computed_funcs (val)->read != NULL)
3915 value_computed_funcs (val)->read (val);
a58e2656
AB
3916 else
3917 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3918
3919 set_value_lazy (val, 0);
a58e2656
AB
3920}
3921
a280dbd1
SDJ
3922/* Implementation of the convenience function $_isvoid. */
3923
3924static struct value *
3925isvoid_internal_fn (struct gdbarch *gdbarch,
3926 const struct language_defn *language,
3927 void *cookie, int argc, struct value **argv)
3928{
3929 int ret;
3930
3931 if (argc != 1)
6bc305f5 3932 error (_("You must provide one argument for $_isvoid."));
a280dbd1 3933
78134374 3934 ret = value_type (argv[0])->code () == TYPE_CODE_VOID;
a280dbd1
SDJ
3935
3936 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3937}
3938
53a008a6 3939/* Implementation of the convenience function $_creal. Extracts the
8bdc1658
AB
3940 real part from a complex number. */
3941
3942static struct value *
3943creal_internal_fn (struct gdbarch *gdbarch,
3944 const struct language_defn *language,
3945 void *cookie, int argc, struct value **argv)
3946{
3947 if (argc != 1)
3948 error (_("You must provide one argument for $_creal."));
3949
3950 value *cval = argv[0];
3951 type *ctype = check_typedef (value_type (cval));
78134374 3952 if (ctype->code () != TYPE_CODE_COMPLEX)
8bdc1658 3953 error (_("expected a complex number"));
4c99290d 3954 return value_real_part (cval);
8bdc1658
AB
3955}
3956
3957/* Implementation of the convenience function $_cimag. Extracts the
3958 imaginary part from a complex number. */
3959
3960static struct value *
3961cimag_internal_fn (struct gdbarch *gdbarch,
3962 const struct language_defn *language,
3963 void *cookie, int argc,
3964 struct value **argv)
3965{
3966 if (argc != 1)
3967 error (_("You must provide one argument for $_cimag."));
3968
3969 value *cval = argv[0];
3970 type *ctype = check_typedef (value_type (cval));
78134374 3971 if (ctype->code () != TYPE_CODE_COMPLEX)
8bdc1658 3972 error (_("expected a complex number"));
4c99290d 3973 return value_imaginary_part (cval);
8bdc1658
AB
3974}
3975
d5f4488f
SM
3976#if GDB_SELF_TEST
3977namespace selftests
3978{
3979
3980/* Test the ranges_contain function. */
3981
3982static void
3983test_ranges_contain ()
3984{
3985 std::vector<range> ranges;
3986 range r;
3987
3988 /* [10, 14] */
3989 r.offset = 10;
3990 r.length = 5;
3991 ranges.push_back (r);
3992
3993 /* [20, 24] */
3994 r.offset = 20;
3995 r.length = 5;
3996 ranges.push_back (r);
3997
3998 /* [2, 6] */
3999 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4000 /* [9, 13] */
4001 SELF_CHECK (ranges_contain (ranges, 9, 5));
4002 /* [10, 11] */
4003 SELF_CHECK (ranges_contain (ranges, 10, 2));
4004 /* [10, 14] */
4005 SELF_CHECK (ranges_contain (ranges, 10, 5));
4006 /* [13, 18] */
4007 SELF_CHECK (ranges_contain (ranges, 13, 6));
4008 /* [14, 18] */
4009 SELF_CHECK (ranges_contain (ranges, 14, 5));
4010 /* [15, 18] */
4011 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4012 /* [16, 19] */
4013 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4014 /* [16, 21] */
4015 SELF_CHECK (ranges_contain (ranges, 16, 6));
4016 /* [21, 21] */
4017 SELF_CHECK (ranges_contain (ranges, 21, 1));
4018 /* [21, 25] */
4019 SELF_CHECK (ranges_contain (ranges, 21, 5));
4020 /* [26, 28] */
4021 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4022}
4023
4024/* Check that RANGES contains the same ranges as EXPECTED. */
4025
4026static bool
4027check_ranges_vector (gdb::array_view<const range> ranges,
4028 gdb::array_view<const range> expected)
4029{
4030 return ranges == expected;
4031}
4032
4033/* Test the insert_into_bit_range_vector function. */
4034
4035static void
4036test_insert_into_bit_range_vector ()
4037{
4038 std::vector<range> ranges;
4039
4040 /* [10, 14] */
4041 {
4042 insert_into_bit_range_vector (&ranges, 10, 5);
4043 static const range expected[] = {
4044 {10, 5}
4045 };
4046 SELF_CHECK (check_ranges_vector (ranges, expected));
4047 }
4048
4049 /* [10, 14] */
4050 {
4051 insert_into_bit_range_vector (&ranges, 11, 4);
4052 static const range expected = {10, 5};
4053 SELF_CHECK (check_ranges_vector (ranges, expected));
4054 }
4055
4056 /* [10, 14] [20, 24] */
4057 {
4058 insert_into_bit_range_vector (&ranges, 20, 5);
4059 static const range expected[] = {
4060 {10, 5},
4061 {20, 5},
4062 };
4063 SELF_CHECK (check_ranges_vector (ranges, expected));
4064 }
4065
4066 /* [10, 14] [17, 24] */
4067 {
4068 insert_into_bit_range_vector (&ranges, 17, 5);
4069 static const range expected[] = {
4070 {10, 5},
4071 {17, 8},
4072 };
4073 SELF_CHECK (check_ranges_vector (ranges, expected));
4074 }
4075
4076 /* [2, 8] [10, 14] [17, 24] */
4077 {
4078 insert_into_bit_range_vector (&ranges, 2, 7);
4079 static const range expected[] = {
4080 {2, 7},
4081 {10, 5},
4082 {17, 8},
4083 };
4084 SELF_CHECK (check_ranges_vector (ranges, expected));
4085 }
4086
4087 /* [2, 14] [17, 24] */
4088 {
4089 insert_into_bit_range_vector (&ranges, 9, 1);
4090 static const range expected[] = {
4091 {2, 13},
4092 {17, 8},
4093 };
4094 SELF_CHECK (check_ranges_vector (ranges, expected));
4095 }
4096
4097 /* [2, 14] [17, 24] */
4098 {
4099 insert_into_bit_range_vector (&ranges, 9, 1);
4100 static const range expected[] = {
4101 {2, 13},
4102 {17, 8},
4103 };
4104 SELF_CHECK (check_ranges_vector (ranges, expected));
4105 }
4106
4107 /* [2, 33] */
4108 {
4109 insert_into_bit_range_vector (&ranges, 4, 30);
4110 static const range expected = {2, 32};
4111 SELF_CHECK (check_ranges_vector (ranges, expected));
4112 }
4113}
4114
4115} /* namespace selftests */
4116#endif /* GDB_SELF_TEST */
4117
6c265988 4118void _initialize_values ();
c906108c 4119void
6c265988 4120_initialize_values ()
c906108c 4121{
1a966eab 4122 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4123Debugger convenience (\"$foo\") variables and functions.\n\
4124Convenience variables are created when you assign them values;\n\
4125thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4126\n\
c906108c
SS
4127A few convenience variables are given values automatically:\n\
4128\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4129\"$__\" holds the contents of the last address examined with \"x\"."
4130#ifdef HAVE_PYTHON
4131"\n\n\
4132Convenience functions are defined via the Python API."
4133#endif
4134 ), &showlist);
7e20dfcd 4135 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4136
db5f229b 4137 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4138Elements of value history around item number IDX (or last ten)."),
c906108c 4139 &showlist);
53e5f3cf
AS
4140
4141 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4142Initialize a convenience variable if necessary.\n\
4143init-if-undefined VARIABLE = EXPRESSION\n\
4144Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4145exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4146VARIABLE is already initialized."));
bc3b79fd
TJB
4147
4148 add_prefix_cmd ("function", no_class, function_command, _("\
4149Placeholder command for showing help on convenience functions."),
4150 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4151
4152 add_internal_function ("_isvoid", _("\
4153Check whether an expression is void.\n\
4154Usage: $_isvoid (expression)\n\
4155Return 1 if the expression is void, zero otherwise."),
4156 isvoid_internal_fn, NULL);
5fdf6324 4157
8bdc1658
AB
4158 add_internal_function ("_creal", _("\
4159Extract the real part of a complex number.\n\
4160Usage: $_creal (expression)\n\
4161Return the real part of a complex number, the type depends on the\n\
4162type of a complex number."),
4163 creal_internal_fn, NULL);
4164
4165 add_internal_function ("_cimag", _("\
4166Extract the imaginary part of a complex number.\n\
4167Usage: $_cimag (expression)\n\
4168Return the imaginary part of a complex number, the type depends on the\n\
4169type of a complex number."),
4170 cimag_internal_fn, NULL);
4171
5fdf6324
AB
4172 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4173 class_support, &max_value_size, _("\
4174Set maximum sized value gdb will load from the inferior."), _("\
4175Show maximum sized value gdb will load from the inferior."), _("\
4176Use this to control the maximum size, in bytes, of a value that gdb\n\
4177will load from the inferior. Setting this value to 'unlimited'\n\
4178disables checking.\n\
4179Setting this does not invalidate already allocated values, it only\n\
4180prevents future values, larger than this size, from being allocated."),
4181 set_max_value_size,
4182 show_max_value_size,
4183 &setlist, &showlist);
d5f4488f
SM
4184#if GDB_SELF_TEST
4185 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4186 selftests::register_test ("insert_into_bit_range_vector",
4187 selftests::test_insert_into_bit_range_vector);
4188#endif
c906108c 4189}
9d1447e0
SDJ
4190
4191/* See value.h. */
4192
4193void
4194finalize_values ()
4195{
4196 all_values.clear ();
4197}
This page took 2.593436 seconds and 4 git commands to generate.