gdb: fix vfork with multiple threads
[deliverable/binutils-gdb.git] / libctf / ctf-dedup.c
CommitLineData
0f0c11f7 1/* CTF type deduplication.
250d07de 2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
0f0c11f7
NA
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20#include <ctf-impl.h>
21#include <string.h>
22#include <errno.h>
23#include <assert.h>
24#include "hashtab.h"
25
26/* (In the below, relevant functions are named in square brackets.) */
27
28/* Type deduplication is a three-phase process:
29
30 [ctf_dedup, ctf_dedup_hash_type, ctf_dedup_rhash_type]
31 1) come up with unambiguous hash values for all types: no two types may have
32 the same hash value, and any given type should have only one hash value
33 (for optimal deduplication).
34
35 [ctf_dedup, ctf_dedup_detect_name_ambiguity,
36 ctf_dedup_conflictify_unshared, ctf_dedup_mark_conflicting_hash]
37 2) mark those distinct types with names that collide (and thus cannot be
38 declared simultaneously in the same translation unit) as conflicting, and
39 recursively mark all types that cite one of those types as conflicting as
40 well. Possibly mark all types cited in only one TU as conflicting, if
41 the CTF_LINK_SHARE_DUPLICATED link mode is active.
42
43 [ctf_dedup_emit, ctf_dedup_emit_struct_members, ctf_dedup_id_to_target]
44 3) emit all the types, one hash value at a time. Types not marked
45 conflicting are emitted once, into the shared dictionary: types marked
46 conflicting are emitted once per TU into a dictionary corresponding to
47 each TU in which they appear. Structs marked conflicting get at the very
48 least a forward emitted into the shared dict so that other dicts can cite
49 it if needed.
50
51 [id_to_packed_id]
52 This all works over an array of inputs (usually in the same order as the
53 inputs on the link line). We don't use the ctf_link_inputs hash directly
54 because it is convenient to be able to address specific input types as a
55 *global type ID* or 'GID', a pair of an array offset and a ctf_id_t. Since
56 both are already 32 bits or less or can easily be constrained to that range,
57 we can pack them both into a single 64-bit hash word for easy lookups, which
139633c3 58 would be much more annoying to do with a ctf_dict_t * and a ctf_id_t. (On
0f0c11f7
NA
59 32-bit platforms, we must do that anyway, since pointers, and thus hash keys
60 and values, are only 32 bits wide). We track which inputs are parents of
61 which other inputs so that we can correctly recognize that types we have
62 traversed in children may cite types in parents, and so that we can process
63 the parents first.)
64
65 Note that thanks to ld -r, the deduplicator can be fed its own output, so the
66 inputs may themselves have child dicts. Since we need to support this usage
67 anyway, we can use it in one other place. If the caller finds translation
68 units to be too small a unit ambiguous types, links can be 'cu-mapped', where
69 the caller provides a mapping of input TU names to output child dict names.
70 This mapping can fuse many child TUs into one potential child dict, so that
71 ambiguous types in any of those input TUs go into the same child dict.
72 When a many:1 cu-mapping is detected, the ctf_dedup machinery is called
73 repeatedly, once for every output name that has more than one input, to fuse
74 all the input TUs associated with a given output dict into one, and once again
75 as normal to deduplicate all those intermediate outputs (and any 1:1 inputs)
76 together. This has much higher memory usage than otherwise, because in the
77 intermediate state, all the output TUs are in memory at once and cannot be
78 lazily opened. It also has implications for the emission code: if types
79 appear ambiguously in multiple input TUs that are all mapped to the same
80 child dict, we cannot put them in children in the cu-mapping link phase
81 because this output is meant to *become* a child in the next link stage and
82 parent/child relationships are only one level deep: so instead, we just hide
83 all but one of the ambiguous types.
84
85 There are a few other subtleties here that make this more complex than it
86 seems. Let's go over the steps above in more detail.
87
88 1) HASHING.
89
90 [ctf_dedup_hash_type, ctf_dedup_rhash_type]
91 Hashing proceeds recursively, mixing in the properties of each input type
92 (including its name, if any), and then adding the hash values of every type
93 cited by that type. The result is stashed in the cd_type_hashes so other
94 phases can find the hash values of input types given their IDs, and so that
95 if we encounter this type again while hashing we can just return its hash
96 value: it is also stashed in the *output mapping*, a mapping from hash value
97 to the set of GIDs corresponding to that type in all inputs. We also keep
98 track of the GID of the first appearance of the type in any input (in
99 cd_output_first_gid), and the GID of structs, unions, and forwards that only
100 appear in one TU (in cd_struct_origin). See below for where these things are
101 used.
102
103 Everything in this phase is time-critical, because it is operating over
104 non-deduplicated types and so may have hundreds or thousands of times the
105 data volume to deal with than later phases. Trace output is hidden behind
106 ENABLE_LIBCTF_HASH_DEBUGGING to prevent the sheer number of calls to
107 ctf_dprintf from slowing things down (tenfold slowdowns are observed purely
108 from the calls to ctf_dprintf(), even with debugging switched off), and keep
109 down the volume of output (hundreds of gigabytes of debug output are not
110 uncommon on larger links).
111
112 We have to do *something* about potential cycles in the type graph. We'd
113 like to avoid emitting forwards in the final output if possible, because
114 forwards aren't much use: they have no members. We are mostly saved from
115 needing to worry about this at emission time by ctf_add_struct*()
116 automatically replacing newly-created forwards when the real struct/union
117 comes along. So we only have to avoid getting stuck in cycles during the
118 hashing phase, while also not confusing types that cite members that are
119 structs with each other. It is easiest to solve this problem by noting two
120 things:
121
122 - all cycles in C depend on the presence of tagged structs/unions
123 - all tagged structs/unions have a unique name they can be disambiguated by
124
125 [ctf_dedup_is_stub]
126 This means that we can break all cycles by ceasing to hash in cited types at
127 every tagged struct/union and instead hashing in a stub consisting of the
128 struct/union's *decorated name*, which is the name preceded by "s " or "u "
129 depending on the namespace (cached in cd_decorated_names). Forwards are
130 decorated identically (so a forward to "struct foo" would be represented as
131 "s foo"): this means that a citation of a forward to a type and a citation of
132 a concrete definition of a type with the same name ends up getting the same
133 hash value.
134
135 Of course, it is quite possible to have two TUs with structs with the same
136 name and different definitions, but that's OK because when we scan for types
137 with ambiguous names we will identify these and mark them conflicting.
138
139 We populate one thing to help conflictedness marking. No unconflicted type
140 may cite a conflicted one, but this means that conflictedness marking must
141 walk from types to the types that cite them, which is the opposite of the
142 usual order. We can make this easier to do by constructing a *citers* graph
143 in cd_citers, which points from types to the types that cite them: because we
144 emit forwards corresponding to every conflicted struct/union, we don't need
145 to do this for citations of structs/unions by other types. This is very
146 convenient for us, because that's the only type we don't traverse
147 recursively: so we can construct the citers graph at the same time as we
148 hash, rather than needing to add an extra pass. (This graph is a dynhash of
149 *type hash values*, so it's small: in effect it is automatically
150 deduplicated.)
151
152 2) COLLISIONAL MARKING.
153
154 [ctf_dedup_detect_name_ambiguity, ctf_dedup_mark_conflicting_hash]
155 We identify types whose names collide during the hashing process, and count
156 the rough number of uses of each name (caching may throw it off a bit: this
157 doesn't need to be accurate). We then mark the less-frequently-cited types
158 with each names conflicting: the most-frequently-cited one goes into the
159 shared type dictionary, while all others are duplicated into per-TU
160 dictionaries, named after the input TU, that have the shared dictionary as a
161 parent. For structures and unions this is not quite good enough: we'd like
162 to have citations of forwards to ambiguously named structures and unions
163 *stay* as citations of forwards, so that the user can tell that the caller
164 didn't actually know which structure definition was meant: but if we put one
165 of those structures into the shared dictionary, it would supplant and replace
166 the forward, leaving no sign. So structures and unions do not take part in
167 this popularity contest: if their names are ambiguous, they are just
168 duplicated, and only a forward appears in the shared dict.
169
170 [ctf_dedup_propagate_conflictedness]
171 The process of marking types conflicted is itself recursive: we recursively
172 traverse the cd_citers graph populated in the hashing pass above and mark
173 everything that we encounter conflicted (without wasting time re-marking
174 anything that is already marked). This naturally terminates just where we
175 want it to (at types that are cited by no other types, and at structures and
176 unions) and suffices to ensure that types that cite conflicted types are
177 always marked conflicted.
178
179 [ctf_dedup_conflictify_unshared, ctf_dedup_multiple_input_dicts]
180 When linking in CTF_LINK_SHARE_DUPLICATED mode, we would like all types that
181 are used in only one TU to end up in a per-CU dict. The easiest way to do
182 that is to mark them conflicted. ctf_dedup_conflictify_unshared does this,
183 traversing the output mapping and using ctf_dedup_multiple_input_dicts to
184 check the number of input dicts each distinct type hash value came from:
185 types that only came from one get marked conflicted. One caveat here is that
186 we need to consider both structs and forwards to them: a struct that appears
187 in one TU and has a dozen citations to an opaque forward in other TUs should
188 *not* be considered to be used in only one TU, because users would find it
189 useful to be able to traverse into opaque structures of that sort: so we use
190 cd_struct_origin to check both structs/unions and the forwards corresponding
191 to them.
192
193 3) EMISSION.
194
195 [ctf_dedup_walk_output_mapping, ctf_dedup_rwalk_output_mapping,
196 ctf_dedup_rwalk_one_output_mapping]
197 Emission involves another walk of the entire output mapping, this time
198 traversing everything other than struct members, recursively. Types are
199 emitted from leaves to trunk, emitting all types a type cites before emitting
200 the type itself. We sort the output mapping before traversing it, for
201 reproducibility and also correctness: the input dicts may have parent/child
202 relationships, so we simply sort all types that first appear in parents
203 before all children, then sort types that first appear in dicts appearing
204 earlier on the linker command line before those that appear later, then sort
205 by input ctf_id_t. (This is where we use cd_output_first_gid, collected
206 above.)
207
208 The walking is done using a recursive traverser which arranges to not revisit
209 any type already visited and to call its callback once per input GID for
210 input GIDs corresponding to conflicted output types. The traverser only
211 finds input types and calls a callback for them as many times as the output
212 needs to appear: it doesn't try to figure out anything about where the output
213 might go. That's done by the callback based on whether the type is
214 marked conflicted or not.
215
216 [ctf_dedup_emit_type, ctf_dedup_id_to_target, ctf_dedup_synthesize_forward]
217 ctf_dedup_emit_type is the (sole) callback for ctf_dedup_walk_output_mapping.
218 Conflicted types have all necessary dictionaries created, and then we emit
219 the type into each dictionary in turn, working over each input CTF type
220 corresponding to each hash value and using ctf_dedup_id_to_target to map each
221 input ctf_id_t into the corresponding type in the output (dealing with input
222 ctf_id_t's with parents in the process by simply chasing to the parent dict
223 if the type we're looking up is in there). Emitting structures involves
224 simply noting that the members of this structure need emission later on:
225 because you cannot cite a single structure member from another type, we avoid
226 emitting the members at this stage to keep recursion depths down a bit.
227
228 At this point, if we have by some mischance decided that two different types
229 with child types that hash to different values have in fact got the same hash
230 value themselves and *not* marked it conflicting, the type walk will walk
231 only *one* of them and in all likelihood we'll find that we are trying to
232 emit a type into some child dictionary that references a type that was never
233 emitted into that dictionary and assertion-fail. This always indicates a bug
234 in the conflictedness marking machinery or the hashing code, or both.
235
236 ctf_dedup_id_to_target calls ctf_dedup_synthesize_forward to do one extra
237 thing, alluded to above: if this is a conflicted tagged structure or union,
238 and the target is the shared dict (i.e., the type we're being asked to emit
239 is not itself conflicted so can't just point straight at the conflicted
240 type), we instead synthesise a forward with the same name, emit it into the
241 shared dict, record it in cd_output_emission_conflicted_forwards so that we
242 don't re-emit it, and return it. This means that cycles that contain
243 conflicts do not cause the entire cycle to be replicated in every child: only
244 that piece of the cycle which takes you back as far as the closest tagged
245 struct/union needs to be replicated. This trick means that no part of the
246 deduplicator needs a cycle detector: every recursive walk can stop at tagged
247 structures.
248
249 [ctf_dedup_emit_struct_members]
250 The final stage of emission is to walk over all structures with members
251 that need emission and emit all of them. Every type has been emitted at
252 this stage, so emission cannot fail.
253
254 [ctf_dedup_populate_type_mappings, ctf_dedup_populate_type_mapping]
255 Finally, we update the input -> output type ID mappings used by the ctf-link
256 machinery to update all the other sections. This is surprisingly expensive
257 and may be replaced with a scheme which lets the ctf-link machinery extract
258 the needed info directly from the deduplicator. */
259
260/* Possible future optimizations are flagged with 'optimization opportunity'
261 below. */
262
263/* Global optimization opportunity: a GC pass, eliminating types with no direct
264 or indirect citations from the other sections in the dictionary. */
265
266/* Internal flag values for ctf_dedup_hash_type. */
267
268/* Child call: consider forwardable types equivalent to forwards or stubs below
269 this point. */
270#define CTF_DEDUP_HASH_INTERNAL_CHILD 0x01
271
272/* Transform references to single ctf_id_ts in passed-in inputs into a number
273 that will fit in a uint64_t. Needs rethinking if CTF_MAX_TYPE is boosted.
274
275 On 32-bit platforms, we pack things together differently: see the note
276 above. */
277
278#if UINTPTR_MAX < UINT64_MAX
279# define IDS_NEED_ALLOCATION 1
280# define CTF_DEDUP_GID(fp, input, type) id_to_packed_id (fp, input, type)
281# define CTF_DEDUP_GID_TO_INPUT(id) packed_id_to_input (id)
282# define CTF_DEDUP_GID_TO_TYPE(id) packed_id_to_type (id)
283#else
284# define CTF_DEDUP_GID(fp, input, type) \
285 (void *) (((uint64_t) input) << 32 | (type))
286# define CTF_DEDUP_GID_TO_INPUT(id) ((int) (((uint64_t) id) >> 32))
287# define CTF_DEDUP_GID_TO_TYPE(id) (ctf_id_t) (((uint64_t) id) & ~(0xffffffff00000000ULL))
288#endif
289
290#ifdef IDS_NEED_ALLOCATION
291
292 /* This is the 32-bit path, which stores GIDs in a pool and returns a pointer
293 into the pool. It is notably less efficient than the 64-bit direct storage
294 approach, but with a smaller key, this is all we can do. */
295
296static void *
139633c3 297id_to_packed_id (ctf_dict_t *fp, int input_num, ctf_id_t type)
0f0c11f7
NA
298{
299 const void *lookup;
300 ctf_type_id_key_t *dynkey = NULL;
301 ctf_type_id_key_t key = { input_num, type };
302
139633c3 303 if (!ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
0f0c11f7
NA
304 &key, &lookup, NULL))
305 {
306 if ((dynkey = malloc (sizeof (ctf_type_id_key_t))) == NULL)
307 goto oom;
308 memcpy (dynkey, &key, sizeof (ctf_type_id_key_t));
309
139633c3 310 if (ctf_dynhash_insert (fp->ctf_dedup.cd_id_to_dict_t, dynkey, NULL) < 0)
0f0c11f7
NA
311 goto oom;
312
139633c3 313 ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
0f0c11f7
NA
314 dynkey, &lookup, NULL);
315 }
316 /* We use a raw assert() here because there isn't really a way to get any sort
317 of error back from this routine without vastly complicating things for the
318 much more common case of !IDS_NEED_ALLOCATION. */
319 assert (lookup);
320 return (void *) lookup;
321
322 oom:
323 free (dynkey);
324 ctf_set_errno (fp, ENOMEM);
325 return NULL;
326}
327
328static int
329packed_id_to_input (const void *id)
330{
331 const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
332
333 return key->ctii_input_num;
334}
335
336static ctf_id_t
337packed_id_to_type (const void *id)
338{
339 const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
340
341 return key->ctii_type;
342}
343#endif
344
345/* Make an element in a dynhash-of-dynsets, or return it if already present. */
346
347static ctf_dynset_t *
348make_set_element (ctf_dynhash_t *set, const void *key)
349{
350 ctf_dynset_t *element;
351
352 if ((element = ctf_dynhash_lookup (set, key)) == NULL)
353 {
354 if ((element = ctf_dynset_create (htab_hash_string,
4821e618 355 htab_eq_string,
0f0c11f7
NA
356 NULL)) == NULL)
357 return NULL;
358
359 if (ctf_dynhash_insert (set, (void *) key, element) < 0)
360 {
361 ctf_dynset_destroy (element);
362 return NULL;
363 }
364 }
365
366 return element;
367}
368
369/* Initialize the dedup atoms table. */
370int
139633c3 371ctf_dedup_atoms_init (ctf_dict_t *fp)
0f0c11f7
NA
372{
373 if (fp->ctf_dedup_atoms)
374 return 0;
375
376 if (!fp->ctf_dedup_atoms_alloc)
377 {
378 if ((fp->ctf_dedup_atoms_alloc
4821e618 379 = ctf_dynset_create (htab_hash_string, htab_eq_string,
0f0c11f7
NA
380 free)) == NULL)
381 return ctf_set_errno (fp, ENOMEM);
382 }
383 fp->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
384 return 0;
385}
386
387/* Intern things in the dedup atoms table. */
388
389static const char *
139633c3 390intern (ctf_dict_t *fp, char *atom)
0f0c11f7
NA
391{
392 const void *foo;
393
394 if (atom == NULL)
395 return NULL;
396
397 if (!ctf_dynset_exists (fp->ctf_dedup_atoms, atom, &foo))
398 {
399 if (ctf_dynset_insert (fp->ctf_dedup_atoms, atom) < 0)
400 {
401 ctf_set_errno (fp, ENOMEM);
402 return NULL;
403 }
404 foo = atom;
405 }
406 else
407 free (atom);
408
409 return (const char *) foo;
410}
411
412/* Add an indication of the namespace to a type name in a way that is not valid
413 for C identifiers. Used to maintain hashes of type names to other things
414 while allowing for the four C namespaces (normal, struct, union, enum).
415 Return a new dynamically-allocated string. */
416static const char *
139633c3 417ctf_decorate_type_name (ctf_dict_t *fp, const char *name, int kind)
0f0c11f7
NA
418{
419 ctf_dedup_t *d = &fp->ctf_dedup;
420 const char *ret;
421 const char *k;
422 char *p;
423 size_t i;
424
425 switch (kind)
426 {
427 case CTF_K_STRUCT:
428 k = "s ";
429 i = 0;
430 break;
431 case CTF_K_UNION:
432 k = "u ";
433 i = 1;
434 break;
435 case CTF_K_ENUM:
436 k = "e ";
437 i = 2;
438 break;
439 default:
440 k = "";
441 i = 3;
442 }
443
444 if ((ret = ctf_dynhash_lookup (d->cd_decorated_names[i], name)) == NULL)
445 {
446 char *str;
447
448 if ((str = malloc (strlen (name) + strlen (k) + 1)) == NULL)
449 goto oom;
450
451 p = stpcpy (str, k);
452 strcpy (p, name);
453 ret = intern (fp, str);
454 if (!ret)
455 goto oom;
456
457 if (ctf_dynhash_cinsert (d->cd_decorated_names[i], name, ret) < 0)
458 goto oom;
459 }
460
461 return ret;
462
463 oom:
464 ctf_set_errno (fp, ENOMEM);
465 return NULL;
466}
467
468/* Hash a type, possibly debugging-dumping something about it as well. */
469static inline void
470ctf_dedup_sha1_add (ctf_sha1_t *sha1, const void *buf, size_t len,
471 const char *description _libctf_unused_,
472 unsigned long depth _libctf_unused_)
473{
474 ctf_sha1_add (sha1, buf, len);
475
476#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
477 ctf_sha1_t tmp;
478 char tmp_hval[CTF_SHA1_SIZE];
479 tmp = *sha1;
480 ctf_sha1_fini (&tmp, tmp_hval);
481 ctf_dprintf ("%lu: after hash addition of %s: %s\n", depth, description,
482 tmp_hval);
483#endif
484}
485
486static const char *
139633c3
NA
487ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
488 ctf_dict_t **inputs, uint32_t *parents,
0f0c11f7
NA
489 int input_num, ctf_id_t type, int flags,
490 unsigned long depth,
139633c3
NA
491 int (*populate_fun) (ctf_dict_t *fp,
492 ctf_dict_t *input,
493 ctf_dict_t **inputs,
0f0c11f7
NA
494 int input_num,
495 ctf_id_t type,
496 void *id,
497 const char *decorated_name,
498 const char *hash));
499
500/* Determine whether this type is being hashed as a stub (in which case it is
501 unsafe to cache it). */
502static int
503ctf_dedup_is_stub (const char *name, int kind, int fwdkind, int flags)
504{
505 /* We can cache all types unless we are recursing to children and are hashing
506 in a tagged struct, union or forward, all of which are replaced with their
507 decorated name as a stub and will have different hash values when hashed at
508 the top level. */
509
510 return ((flags & CTF_DEDUP_HASH_INTERNAL_CHILD) && name
511 && (kind == CTF_K_STRUCT || kind == CTF_K_UNION
512 || (kind == CTF_K_FORWARD && (fwdkind == CTF_K_STRUCT
513 || fwdkind == CTF_K_UNION))));
514}
515
516/* Populate struct_origin if need be (not already populated, or populated with
517 a different origin), in which case it must go to -1, "shared".)
518
519 Only called for forwards or forwardable types with names, when the link mode
520 is CTF_LINK_SHARE_DUPLICATED. */
521static int
139633c3 522ctf_dedup_record_origin (ctf_dict_t *fp, int input_num, const char *decorated,
0f0c11f7
NA
523 void *id)
524{
525 ctf_dedup_t *d = &fp->ctf_dedup;
526 void *origin;
527 int populate_origin = 0;
528
529 if (ctf_dynhash_lookup_kv (d->cd_struct_origin, decorated, NULL, &origin))
530 {
531 if (CTF_DEDUP_GID_TO_INPUT (origin) != input_num
532 && CTF_DEDUP_GID_TO_INPUT (origin) != -1)
533 {
534 populate_origin = 1;
535 origin = CTF_DEDUP_GID (fp, -1, -1);
536 }
537 }
538 else
539 {
540 populate_origin = 1;
541 origin = id;
542 }
543
544 if (populate_origin)
545 if (ctf_dynhash_cinsert (d->cd_struct_origin, decorated, origin) < 0)
546 return ctf_set_errno (fp, errno);
547 return 0;
548}
549
550/* Do the underlying hashing and recursion for ctf_dedup_hash_type (which it
551 calls, recursively). */
552
553static const char *
139633c3 554ctf_dedup_rhash_type (ctf_dict_t *fp, ctf_dict_t *input, ctf_dict_t **inputs,
0f0c11f7
NA
555 uint32_t *parents, int input_num, ctf_id_t type,
556 void *type_id, const ctf_type_t *tp, const char *name,
557 const char *decorated, int kind, int flags,
558 unsigned long depth,
139633c3
NA
559 int (*populate_fun) (ctf_dict_t *fp,
560 ctf_dict_t *input,
561 ctf_dict_t **inputs,
0f0c11f7
NA
562 int input_num,
563 ctf_id_t type,
564 void *id,
565 const char *decorated_name,
566 const char *hash))
567{
568 ctf_dedup_t *d = &fp->ctf_dedup;
569 ctf_next_t *i = NULL;
570 ctf_sha1_t hash;
571 ctf_id_t child_type;
572 char hashbuf[CTF_SHA1_SIZE];
573 const char *hval = NULL;
574 const char *whaterr;
e4c78f30 575 int err = 0;
0f0c11f7
NA
576
577 const char *citer = NULL;
578 ctf_dynset_t *citers = NULL;
579
580 /* Add a citer to the citers set. */
581#define ADD_CITER(citers, hval) \
582 do \
583 { \
926c9e76 584 whaterr = N_("error updating citers"); \
0f0c11f7
NA
585 if (!citers) \
586 if ((citers = ctf_dynset_create (htab_hash_string, \
4821e618
AM
587 htab_eq_string, \
588 NULL)) == NULL) \
0f0c11f7
NA
589 goto oom; \
590 if (ctf_dynset_cinsert (citers, hval) < 0) \
591 goto oom; \
eefe721e
NA
592 } \
593 while (0)
0f0c11f7
NA
594
595 /* If this is a named struct or union or a forward to one, and this is a child
596 traversal, treat this type as if it were a forward -- do not recurse to
597 children, ignore all content not already hashed in, and hash in the
598 decorated name of the type instead. */
599
600 if (ctf_dedup_is_stub (name, kind, tp->ctt_type, flags))
601 {
602#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
603 ctf_dprintf ("Struct/union/forward citation: substituting forwarding "
604 "stub with decorated name %s\n", decorated);
605
606#endif
607 ctf_sha1_init (&hash);
608 ctf_dedup_sha1_add (&hash, decorated, strlen (decorated) + 1,
609 "decorated struct/union/forward name", depth);
610 ctf_sha1_fini (&hash, hashbuf);
611
612 if ((hval = intern (fp, strdup (hashbuf))) == NULL)
613 {
926c9e76
NA
614 ctf_err_warn (fp, 0, 0, _("%s (%i): out of memory during forwarding-"
615 "stub hashing for type with GID %p"),
616 ctf_link_input_name (input), input_num, type_id);
0f0c11f7
NA
617 return NULL; /* errno is set for us. */
618 }
619
926c9e76 620 /* In share-duplicated link mode, make sure the origin of this type is
0f0c11f7
NA
621 recorded, even if this is a type in a parent dict which will not be
622 directly traversed. */
623 if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
624 && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
625 return NULL; /* errno is set for us. */
626
627 return hval;
628 }
629
630 /* Now ensure that subsequent recursive calls (but *not* the top-level call)
631 get this treatment. */
632 flags |= CTF_DEDUP_HASH_INTERNAL_CHILD;
633
634 /* If this is a struct, union, or forward with a name, record the unique
635 originating input TU, if there is one. */
636
637 if (decorated && (ctf_forwardable_kind (kind) || kind != CTF_K_FORWARD))
638 if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
639 && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
640 return NULL; /* errno is set for us. */
641
0e28ade4
NA
642#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
643 ctf_dprintf ("%lu: hashing thing with ID %i/%lx (kind %i): %s.\n",
644 depth, input_num, type, kind, name ? name : "");
645#endif
646
647 /* Some type kinds don't have names: the API provides no way to set the name,
648 so the type the deduplicator outputs will be nameless even if the input
649 somehow has a name, and the name should not be mixed into the hash. */
650
651 switch (kind)
652 {
653 case CTF_K_POINTER:
654 case CTF_K_ARRAY:
655 case CTF_K_FUNCTION:
656 case CTF_K_VOLATILE:
657 case CTF_K_CONST:
658 case CTF_K_RESTRICT:
659 case CTF_K_SLICE:
660 name = NULL;
661 }
662
0f0c11f7
NA
663 /* Mix in invariant stuff, transforming the type kind if needed. Note that
664 the vlen is *not* hashed in: the actual variable-length info is hashed in
665 instead, piecewise. The vlen is not part of the type, only the
666 variable-length data is: identical types with distinct vlens are quite
667 possible. Equally, we do not want to hash in the isroot flag: both the
668 compiler and the deduplicator set the nonroot flag to indicate clashes with
669 *other types in the same TU* with the same name: so two types can easily
670 have distinct nonroot flags, yet be exactly the same type.*/
671
0f0c11f7
NA
672 ctf_sha1_init (&hash);
673 if (name)
674 ctf_dedup_sha1_add (&hash, name, strlen (name) + 1, "name", depth);
675 ctf_dedup_sha1_add (&hash, &kind, sizeof (uint32_t), "kind", depth);
676
677 /* Hash content of this type. */
678 switch (kind)
679 {
680 case CTF_K_UNKNOWN:
681 /* No extra state. */
682 break;
683 case CTF_K_FORWARD:
684
685 /* Add the forwarded kind, stored in the ctt_type. */
686 ctf_dedup_sha1_add (&hash, &tp->ctt_type, sizeof (tp->ctt_type),
687 "forwarded kind", depth);
688 break;
689 case CTF_K_INTEGER:
690 case CTF_K_FLOAT:
691 {
692 ctf_encoding_t ep;
693 memset (&ep, 0, sizeof (ctf_encoding_t));
694
695 ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t), "size",
696 depth);
697 if (ctf_type_encoding (input, type, &ep) < 0)
698 {
926c9e76 699 whaterr = N_("error getting encoding");
e4c78f30 700 goto input_err;
0f0c11f7
NA
701 }
702 ctf_dedup_sha1_add (&hash, &ep, sizeof (ctf_encoding_t), "encoding",
703 depth);
704 break;
705 }
706 /* Types that reference other types. */
707 case CTF_K_TYPEDEF:
708 case CTF_K_VOLATILE:
709 case CTF_K_CONST:
710 case CTF_K_RESTRICT:
711 case CTF_K_POINTER:
712 /* Hash the referenced type, if not already hashed, and mix it in. */
713 child_type = ctf_type_reference (input, type);
714 if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
715 child_type, flags, depth,
716 populate_fun)) == NULL)
717 {
926c9e76 718 whaterr = N_("error doing referenced type hashing");
0f0c11f7
NA
719 goto err;
720 }
721 ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "referenced type",
722 depth);
723 citer = hval;
724
725 break;
726
727 /* The slices of two types hash identically only if the type they overlay
728 also has the same encoding. This is not ideal, but in practice will work
729 well enough. We work directly rather than using the CTF API because
730 we do not want the slice's normal automatically-shine-through
731 semantics to kick in here. */
732 case CTF_K_SLICE:
733 {
734 const ctf_slice_t *slice;
735 const ctf_dtdef_t *dtd;
736 ssize_t size;
737 ssize_t increment;
738
739 child_type = ctf_type_reference (input, type);
740 ctf_get_ctt_size (input, tp, &size, &increment);
741 ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "size", depth);
742
743 if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
744 child_type, flags, depth,
745 populate_fun)) == NULL)
746 {
926c9e76 747 whaterr = N_("error doing slice-referenced type hashing");
0f0c11f7
NA
748 goto err;
749 }
750 ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "sliced type",
751 depth);
752 citer = hval;
753
754 if ((dtd = ctf_dynamic_type (input, type)) != NULL)
7879dd88 755 slice = (ctf_slice_t *) dtd->dtd_vlen;
0f0c11f7
NA
756 else
757 slice = (ctf_slice_t *) ((uintptr_t) tp + increment);
758
759 ctf_dedup_sha1_add (&hash, &slice->cts_offset,
760 sizeof (slice->cts_offset), "slice offset", depth);
761 ctf_dedup_sha1_add (&hash, &slice->cts_bits,
762 sizeof (slice->cts_bits), "slice bits", depth);
763 break;
764 }
765
766 case CTF_K_ARRAY:
767 {
768 ctf_arinfo_t ar;
769
770 if (ctf_array_info (input, type, &ar) < 0)
771 {
926c9e76 772 whaterr = N_("error getting array info");
e4c78f30 773 goto input_err;
0f0c11f7
NA
774 }
775
776 if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
777 ar.ctr_contents, flags, depth,
778 populate_fun)) == NULL)
779 {
926c9e76 780 whaterr = N_("error doing array contents type hashing");
0f0c11f7
NA
781 goto err;
782 }
783 ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array contents",
784 depth);
785 ADD_CITER (citers, hval);
786
787 if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
788 ar.ctr_index, flags, depth,
789 populate_fun)) == NULL)
790 {
926c9e76 791 whaterr = N_("error doing array index type hashing");
0f0c11f7
NA
792 goto err;
793 }
794 ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array index",
795 depth);
796 ctf_dedup_sha1_add (&hash, &ar.ctr_nelems, sizeof (ar.ctr_nelems),
797 "element count", depth);
798 ADD_CITER (citers, hval);
799
800 break;
801 }
802 case CTF_K_FUNCTION:
803 {
804 ctf_funcinfo_t fi;
805 ctf_id_t *args;
806 uint32_t j;
807
808 if (ctf_func_type_info (input, type, &fi) < 0)
809 {
926c9e76 810 whaterr = N_("error getting func type info");
e4c78f30 811 goto input_err;
0f0c11f7
NA
812 }
813
814 if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
815 fi.ctc_return, flags, depth,
816 populate_fun)) == NULL)
817 {
926c9e76 818 whaterr = N_("error getting func return type");
0f0c11f7
NA
819 goto err;
820 }
821 ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func return",
822 depth);
823 ctf_dedup_sha1_add (&hash, &fi.ctc_argc, sizeof (fi.ctc_argc),
824 "func argc", depth);
825 ctf_dedup_sha1_add (&hash, &fi.ctc_flags, sizeof (fi.ctc_flags),
826 "func flags", depth);
827 ADD_CITER (citers, hval);
828
829 if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
830 {
e4c78f30 831 err = ENOMEM;
926c9e76 832 whaterr = N_("error doing memory allocation");
0f0c11f7
NA
833 goto err;
834 }
835
836 if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
837 {
838 free (args);
926c9e76 839 whaterr = N_("error getting func arg type");
e4c78f30 840 goto input_err;
0f0c11f7
NA
841 }
842 for (j = 0; j < fi.ctc_argc; j++)
843 {
844 if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
845 input_num, args[j], flags, depth,
846 populate_fun)) == NULL)
847 {
848 free (args);
926c9e76 849 whaterr = N_("error doing func arg type hashing");
0f0c11f7
NA
850 goto err;
851 }
852 ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func arg type",
853 depth);
854 ADD_CITER (citers, hval);
855 }
856 free (args);
857 break;
858 }
859 case CTF_K_ENUM:
860 {
861 int val;
862 const char *ename;
863
864 ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t),
865 "enum size", depth);
866 while ((ename = ctf_enum_next (input, type, &i, &val)) != NULL)
867 {
868 ctf_dedup_sha1_add (&hash, ename, strlen (ename) + 1, "enumerator",
869 depth);
870 ctf_dedup_sha1_add (&hash, &val, sizeof (val), "enumerand", depth);
871 }
872 if (ctf_errno (input) != ECTF_NEXT_END)
873 {
926c9e76 874 whaterr = N_("error doing enum member iteration");
e4c78f30 875 goto input_err;
0f0c11f7
NA
876 }
877 break;
878 }
879 /* Top-level only. */
880 case CTF_K_STRUCT:
881 case CTF_K_UNION:
882 {
883 ssize_t offset;
884 const char *mname;
885 ctf_id_t membtype;
886 ssize_t size;
887
888 ctf_get_ctt_size (input, tp, &size, NULL);
889 ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "struct size",
890 depth);
891
6c3a3877
NA
892 while ((offset = ctf_member_next (input, type, &i, &mname, &membtype,
893 0)) >= 0)
0f0c11f7
NA
894 {
895 if (mname == NULL)
896 mname = "";
897 ctf_dedup_sha1_add (&hash, mname, strlen (mname) + 1,
898 "member name", depth);
899
900#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
901 ctf_dprintf ("%lu: Traversing to member %s\n", depth, mname);
902#endif
903 if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
904 input_num, membtype, flags, depth,
905 populate_fun)) == NULL)
906 {
926c9e76 907 whaterr = N_("error doing struct/union member type hashing");
0f0c11f7
NA
908 goto iterr;
909 }
910
911 ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "member hash",
912 depth);
913 ctf_dedup_sha1_add (&hash, &offset, sizeof (offset), "member offset",
914 depth);
915 ADD_CITER (citers, hval);
916 }
917 if (ctf_errno (input) != ECTF_NEXT_END)
918 {
926c9e76 919 whaterr = N_("error doing struct/union member iteration");
e4c78f30 920 goto input_err;
0f0c11f7
NA
921 }
922 break;
923 }
924 default:
926c9e76 925 whaterr = N_("error: unknown type kind");
0f0c11f7
NA
926 goto err;
927 }
928 ctf_sha1_fini (&hash, hashbuf);
929
930 if ((hval = intern (fp, strdup (hashbuf))) == NULL)
931 {
926c9e76 932 whaterr = N_("cannot intern hash");
0f0c11f7
NA
933 goto oom;
934 }
935
936 /* Populate the citers for this type's subtypes, now the hash for the type
937 itself is known. */
926c9e76 938 whaterr = N_("error tracking citers");
0f0c11f7
NA
939
940 if (citer)
941 {
942 ctf_dynset_t *citer_hashes;
943
944 if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
945 goto oom;
946 if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
947 goto oom;
948 }
949 else if (citers)
950 {
951 const void *k;
952
953 while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
954 {
955 ctf_dynset_t *citer_hashes;
956 citer = (const char *) k;
957
958 if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
959 goto oom;
960
961 if (ctf_dynset_exists (citer_hashes, hval, NULL))
962 continue;
963 if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
964 goto oom;
965 }
966 if (err != ECTF_NEXT_END)
967 goto err;
968 ctf_dynset_destroy (citers);
969 }
970
971 return hval;
972
973 iterr:
974 ctf_next_destroy (i);
e4c78f30
NA
975 input_err:
976 err = ctf_errno (input);
0f0c11f7
NA
977 err:
978 ctf_sha1_fini (&hash, NULL);
e4c78f30
NA
979 ctf_err_warn (fp, 0, err, _("%s (%i): %s: during type hashing for type %lx, "
980 "kind %i"), ctf_link_input_name (input),
926c9e76 981 input_num, gettext (whaterr), type, kind);
0f0c11f7
NA
982 return NULL;
983 oom:
984 ctf_set_errno (fp, errno);
926c9e76
NA
985 ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing for type %lx, "
986 "kind %i"), ctf_link_input_name (input),
987 input_num, gettext (whaterr), type, kind);
0f0c11f7
NA
988 return NULL;
989}
990
991/* Hash a TYPE in the INPUT: FP is the eventual output, where the ctf_dedup
992 state is stored. INPUT_NUM is the number of this input in the set of inputs.
993 Record its hash in FP's cd_type_hashes once it is known. PARENTS is
994 described in the comment above ctf_dedup.
995
996 (The flags argument currently accepts only the flag
997 CTF_DEDUP_HASH_INTERNAL_CHILD, an implementation detail used to prevent
998 struct/union hashing in recursive traversals below the TYPE.)
999
1000 We use the CTF API rather than direct access wherever possible, because types
1001 that appear identical through the API should be considered identical, with
1002 one exception: slices should only be considered identical to other slices,
1003 not to the corresponding unsliced type.
1004
1005 The POPULATE_FUN is a mandatory hook that populates other mappings with each
1006 type we see (excepting types that are recursively hashed as stubs). The
1007 caller should not rely on the order of calls to this hook, though it will be
1008 called at least once for every non-stub reference to every type.
1009
1010 Returns a hash value (an atom), or NULL on error. */
1011
1012static const char *
139633c3
NA
1013ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
1014 ctf_dict_t **inputs, uint32_t *parents,
0f0c11f7
NA
1015 int input_num, ctf_id_t type, int flags,
1016 unsigned long depth,
139633c3
NA
1017 int (*populate_fun) (ctf_dict_t *fp,
1018 ctf_dict_t *input,
1019 ctf_dict_t **inputs,
0f0c11f7
NA
1020 int input_num,
1021 ctf_id_t type,
1022 void *id,
1023 const char *decorated_name,
1024 const char *hash))
1025{
1026 ctf_dedup_t *d = &fp->ctf_dedup;
1027 const ctf_type_t *tp;
1028 void *type_id;
1029 const char *hval = NULL;
1030 const char *name;
1031 const char *whaterr;
1032 const char *decorated = NULL;
1033 uint32_t kind, fwdkind;
1034
1035 depth++;
1036
1037#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1038 ctf_dprintf ("%lu: ctf_dedup_hash_type (%i, %lx, flags %x)\n", depth, input_num, type, flags);
1039#endif
1040
1041 /* The unimplemented type doesn't really exist, but must be noted in parent
1042 hashes: so it gets a fixed, arbitrary hash. */
1043 if (type == 0)
1044 return "00000000000000000000";
1045
1046 /* Possible optimization: if the input type is in the parent type space, just
1047 copy recursively-cited hashes from the parent's types into the output
1048 mapping rather than rehashing them. */
1049
1050 type_id = CTF_DEDUP_GID (fp, input_num, type);
1051
1052 if ((tp = ctf_lookup_by_id (&input, type)) == NULL)
1053 {
926c9e76
NA
1054 ctf_set_errno (fp, ctf_errno (input));
1055 ctf_err_warn (fp, 0, 0, _("%s (%i): lookup failure for type %lx: "
1056 "flags %x"), ctf_link_input_name (input),
1057 input_num, type, flags);
0f0c11f7
NA
1058 return NULL; /* errno is set for us. */
1059 }
1060
1061 kind = LCTF_INFO_KIND (input, tp->ctt_info);
1062 name = ctf_strraw (input, tp->ctt_name);
1063
1064 if (tp->ctt_name == 0 || !name || name[0] == '\0')
1065 name = NULL;
1066
0f0c11f7
NA
1067 /* Decorate the name appropriately for the namespace it appears in: forwards
1068 appear in the namespace of their referent. */
1069
1070 fwdkind = kind;
1071 if (name)
1072 {
1073 if (kind == CTF_K_FORWARD)
1074 fwdkind = tp->ctt_type;
1075
1076 if ((decorated = ctf_decorate_type_name (fp, name, fwdkind)) == NULL)
1077 return NULL; /* errno is set for us. */
1078 }
1079
1080 /* If not hashing a stub, we can rely on various sorts of caches.
1081
1082 Optimization opportunity: we may be able to avoid calling the populate_fun
1083 sometimes here. */
1084
1085 if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
1086 {
1087 if ((hval = ctf_dynhash_lookup (d->cd_type_hashes, type_id)) != NULL)
1088 {
1089#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1090 ctf_dprintf ("%lu: Known hash for ID %i/%lx: %s\n", depth, input_num,
1091 type, hval);
1092#endif
1093 populate_fun (fp, input, inputs, input_num, type, type_id,
1094 decorated, hval);
1095
1096 return hval;
1097 }
1098 }
1099
1100 /* We have never seen this type before, and must figure out its hash and the
1101 hashes of the types it cites.
1102
1103 Hash this type, and call ourselves recursively. (The hashing part is
1104 optional, and is disabled if overidden_hval is set.) */
1105
1106 if ((hval = ctf_dedup_rhash_type (fp, input, inputs, parents, input_num,
1107 type, type_id, tp, name, decorated,
1108 kind, flags, depth, populate_fun)) == NULL)
1109 return NULL; /* errno is set for us. */
1110
1111 /* The hash of this type is now known: record it unless caching is unsafe
1112 because the hash value will change later. This will be the final storage
1113 of this type's hash, so we call the population function on it. */
1114
1115 if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
1116 {
1117#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1118 ctf_dprintf ("Caching %lx, ID %p (%s), %s in final location\n", type,
1119 type_id, name ? name : "", hval);
1120#endif
1121
1122 if (ctf_dynhash_cinsert (d->cd_type_hashes, type_id, hval) < 0)
1123 {
926c9e76 1124 whaterr = N_("error hash caching");
0f0c11f7
NA
1125 goto oom;
1126 }
1127
1128 if (populate_fun (fp, input, inputs, input_num, type, type_id,
1129 decorated, hval) < 0)
1130 {
926c9e76 1131 whaterr = N_("error calling population function");
0f0c11f7
NA
1132 goto err; /* errno is set for us. */
1133 }
1134 }
1135
1136#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1137 ctf_dprintf ("%lu: Returning final hash for ID %i/%lx: %s\n", depth,
1138 input_num, type, hval);
1139#endif
1140 return hval;
1141
1142 oom:
1143 ctf_set_errno (fp, errno);
1144 err:
926c9e76
NA
1145 ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing, "
1146 "type %lx, kind %i"),
1147 ctf_link_input_name (input), input_num,
1148 gettext (whaterr), type, kind);
0f0c11f7
NA
1149 return NULL;
1150}
1151
1152/* Populate a number of useful mappings not directly used by the hashing
1153 machinery: the output mapping, the cd_name_counts mapping from name -> hash
1154 -> count of hashval deduplication state for a given hashed type, and the
1155 cd_output_first_tu mapping. */
1156
1157static int
139633c3
NA
1158ctf_dedup_populate_mappings (ctf_dict_t *fp, ctf_dict_t *input _libctf_unused_,
1159 ctf_dict_t **inputs _libctf_unused_,
0f0c11f7
NA
1160 int input_num _libctf_unused_,
1161 ctf_id_t type _libctf_unused_, void *id,
1162 const char *decorated_name,
1163 const char *hval)
1164{
1165 ctf_dedup_t *d = &fp->ctf_dedup;
1166 ctf_dynset_t *type_ids;
1167 ctf_dynhash_t *name_counts;
1168 long int count;
1169
1170#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1171 ctf_dprintf ("Hash %s, %s, into output mapping for %i/%lx @ %s\n",
1172 hval, decorated_name ? decorated_name : "(unnamed)",
1173 input_num, type, ctf_link_input_name (input));
1174
1175 const char *orig_hval;
1176
1177 /* Make sure we never map a single GID to multiple hash values. */
1178
1179 if ((orig_hval = ctf_dynhash_lookup (d->cd_output_mapping_guard, id)) != NULL)
1180 {
1181 /* We can rely on pointer identity here, since all hashes are
1182 interned. */
1183 if (!ctf_assert (fp, orig_hval == hval))
1184 return -1;
1185 }
1186 else
1187 if (ctf_dynhash_cinsert (d->cd_output_mapping_guard, id, hval) < 0)
1188 return ctf_set_errno (fp, errno);
1189#endif
1190
1191 /* Record the type in the output mapping: if this is the first time this type
1192 has been seen, also record it in the cd_output_first_gid. Because we
1193 traverse types in TU order and we do not merge types after the hashing
1194 phase, this will be the lowest TU this type ever appears in. */
1195
1196 if ((type_ids = ctf_dynhash_lookup (d->cd_output_mapping,
1197 hval)) == NULL)
1198 {
1199 if (ctf_dynhash_cinsert (d->cd_output_first_gid, hval, id) < 0)
1200 return ctf_set_errno (fp, errno);
1201
1202 if ((type_ids = ctf_dynset_create (htab_hash_pointer,
1203 htab_eq_pointer,
1204 NULL)) == NULL)
1205 return ctf_set_errno (fp, errno);
1206 if (ctf_dynhash_insert (d->cd_output_mapping, (void *) hval,
1207 type_ids) < 0)
1208 {
1209 ctf_dynset_destroy (type_ids);
1210 return ctf_set_errno (fp, errno);
1211 }
1212 }
1213#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1214 {
1215 /* Verify that all types with this hash are of the same kind, and that the
1216 first TU a type was seen in never falls. */
1217
1218 int err;
1219 const void *one_id;
1220 ctf_next_t *i = NULL;
1221 int orig_kind = ctf_type_kind_unsliced (input, type);
1222 int orig_first_tu;
1223
1224 orig_first_tu = CTF_DEDUP_GID_TO_INPUT
1225 (ctf_dynhash_lookup (d->cd_output_first_gid, hval));
1226 if (!ctf_assert (fp, orig_first_tu <= CTF_DEDUP_GID_TO_INPUT (id)))
1227 return -1;
1228
1229 while ((err = ctf_dynset_cnext (type_ids, &i, &one_id)) == 0)
1230 {
139633c3 1231 ctf_dict_t *foo = inputs[CTF_DEDUP_GID_TO_INPUT (one_id)];
0f0c11f7
NA
1232 ctf_id_t bar = CTF_DEDUP_GID_TO_TYPE (one_id);
1233 if (ctf_type_kind_unsliced (foo, bar) != orig_kind)
1234 {
926c9e76 1235 ctf_err_warn (fp, 1, 0, "added wrong kind to output mapping "
0f0c11f7
NA
1236 "for hash %s named %s: %p/%lx from %s is "
1237 "kind %i, but newly-added %p/%lx from %s is "
1238 "kind %i", hval,
1239 decorated_name ? decorated_name : "(unnamed)",
1240 (void *) foo, bar,
1241 ctf_link_input_name (foo),
1242 ctf_type_kind_unsliced (foo, bar),
1243 (void *) input, type,
1244 ctf_link_input_name (input), orig_kind);
1245 if (!ctf_assert (fp, ctf_type_kind_unsliced (foo, bar)
1246 == orig_kind))
1247 return -1;
1248 }
1249 }
1250 if (err != ECTF_NEXT_END)
1251 return ctf_set_errno (fp, err);
1252 }
1253#endif
1254
1255 /* This function will be repeatedly called for the same types many times:
1256 don't waste time reinserting the same keys in that case. */
1257 if (!ctf_dynset_exists (type_ids, id, NULL)
1258 && ctf_dynset_insert (type_ids, id) < 0)
1259 return ctf_set_errno (fp, errno);
1260
1261 /* The rest only needs to happen for types with names. */
1262 if (!decorated_name)
1263 return 0;
1264
1265 /* Count the number of occurrences of the hash value for this GID. */
1266
1267 hval = ctf_dynhash_lookup (d->cd_type_hashes, id);
1268
1269 /* Mapping from name -> hash(hashval, count) not already present? */
1270 if ((name_counts = ctf_dynhash_lookup (d->cd_name_counts,
1271 decorated_name)) == NULL)
1272 {
1273 if ((name_counts = ctf_dynhash_create (ctf_hash_string,
1274 ctf_hash_eq_string,
1275 NULL, NULL)) == NULL)
1276 return ctf_set_errno (fp, errno);
1277 if (ctf_dynhash_cinsert (d->cd_name_counts, decorated_name,
1278 name_counts) < 0)
1279 {
1280 ctf_dynhash_destroy (name_counts);
1281 return ctf_set_errno (fp, errno);
1282 }
1283 }
1284
1285 /* This will, conveniently, return NULL (i.e. 0) for a new entry. */
1286 count = (long int) (uintptr_t) ctf_dynhash_lookup (name_counts, hval);
1287
1288 if (ctf_dynhash_cinsert (name_counts, hval,
1289 (const void *) (uintptr_t) (count + 1)) < 0)
1290 return ctf_set_errno (fp, errno);
1291
1292 return 0;
1293}
1294
1295/* Mark a single hash as corresponding to a conflicting type. Mark all types
1296 that cite it as conflicting as well, terminating the recursive walk only when
1297 types that are already conflicted or types do not cite other types are seen.
1298 (Tagged structures and unions do not appear in the cd_citers graph, so the
1299 walk also terminates there, since any reference to a conflicting structure is
1300 just going to reference an unconflicting forward instead: see
1301 ctf_dedup_maybe_synthesize_forward.) */
1302
1303static int
139633c3 1304ctf_dedup_mark_conflicting_hash (ctf_dict_t *fp, const char *hval)
0f0c11f7
NA
1305{
1306 ctf_dedup_t *d = &fp->ctf_dedup;
1307 ctf_next_t *i = NULL;
1308 int err;
1309 const void *k;
1310 ctf_dynset_t *citers;
1311
1312 /* Mark conflicted if not already so marked. */
1313 if (ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
1314 return 0;
1315
1316 ctf_dprintf ("Marking %s as conflicted\n", hval);
1317
1318 if (ctf_dynset_cinsert (d->cd_conflicting_types, hval) < 0)
1319 {
1320 ctf_dprintf ("Out of memory marking %s as conflicted\n", hval);
1321 ctf_set_errno (fp, errno);
1322 return -1;
1323 }
1324
1325 /* If any types cite this type, mark them conflicted too. */
1326 if ((citers = ctf_dynhash_lookup (d->cd_citers, hval)) == NULL)
1327 return 0;
1328
1329 while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
1330 {
1331 const char *hv = (const char *) k;
1332
1333 if (ctf_dynset_exists (d->cd_conflicting_types, hv, NULL))
1334 continue;
1335
1336 if (ctf_dedup_mark_conflicting_hash (fp, hv) < 0)
1337 {
1338 ctf_next_destroy (i);
1339 return -1; /* errno is set for us. */
1340 }
1341 }
1342 if (err != ECTF_NEXT_END)
1343 return ctf_set_errno (fp, err);
1344
1345 return 0;
1346}
1347
1348/* Look up a type kind from the output mapping, given a type hash value. */
1349static int
139633c3 1350ctf_dedup_hash_kind (ctf_dict_t *fp, ctf_dict_t **inputs, const char *hash)
0f0c11f7
NA
1351{
1352 ctf_dedup_t *d = &fp->ctf_dedup;
1353 void *id;
1354 ctf_dynset_t *type_ids;
1355
1356 /* Precondition: the output mapping is populated. */
1357 if (!ctf_assert (fp, ctf_dynhash_elements (d->cd_output_mapping) > 0))
1358 return -1;
1359
1360 /* Look up some GID from the output hash for this type. (They are all
1361 identical, so we can pick any). Don't assert if someone calls this
1362 function wrongly, but do assert if the output mapping knows about the hash,
1363 but has nothing associated with it. */
1364
1365 type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hash);
1366 if (!type_ids)
1367 {
1368 ctf_dprintf ("Looked up type kind by nonexistent hash %s.\n", hash);
1369 return ctf_set_errno (fp, ECTF_INTERNAL);
1370 }
1371 id = ctf_dynset_lookup_any (type_ids);
1372 if (!ctf_assert (fp, id))
1373 return -1;
1374
1375 return ctf_type_kind_unsliced (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
1376 CTF_DEDUP_GID_TO_TYPE (id));
1377}
1378
1379/* Used to keep a count of types: i.e. distinct type hash values. */
1380typedef struct ctf_dedup_type_counter
1381{
139633c3
NA
1382 ctf_dict_t *fp;
1383 ctf_dict_t **inputs;
0f0c11f7
NA
1384 int num_non_forwards;
1385} ctf_dedup_type_counter_t;
1386
1387/* Add to the type counter for one name entry from the cd_name_counts. */
1388static int
1389ctf_dedup_count_types (void *key_, void *value _libctf_unused_, void *arg_)
1390{
1391 const char *hval = (const char *) key_;
1392 int kind;
1393 ctf_dedup_type_counter_t *arg = (ctf_dedup_type_counter_t *) arg_;
1394
1395 kind = ctf_dedup_hash_kind (arg->fp, arg->inputs, hval);
1396
1397 /* We rely on ctf_dedup_hash_kind setting the fp to -ECTF_INTERNAL on error to
1398 smuggle errors out of here. */
1399
1400 if (kind != CTF_K_FORWARD)
1401 {
1402 arg->num_non_forwards++;
1403 ctf_dprintf ("Counting hash %s: kind %i: num_non_forwards is %i\n",
1404 hval, kind, arg->num_non_forwards);
1405 }
1406
1407 /* We only need to know if there is more than one non-forward (an ambiguous
1408 type): don't waste time iterating any more than needed to figure that
1409 out. */
1410
1411 if (arg->num_non_forwards > 1)
1412 return 1;
1413
1414 return 0;
1415}
1416
1417/* Detect name ambiguity and mark ambiguous names as conflicting, other than the
1418 most common. */
1419static int
139633c3 1420ctf_dedup_detect_name_ambiguity (ctf_dict_t *fp, ctf_dict_t **inputs)
0f0c11f7
NA
1421{
1422 ctf_dedup_t *d = &fp->ctf_dedup;
1423 ctf_next_t *i = NULL;
1424 void *k;
1425 void *v;
1426 int err;
926c9e76 1427 const char *whaterr;
0f0c11f7
NA
1428
1429 /* Go through cd_name_counts for all CTF namespaces in turn. */
1430
1431 while ((err = ctf_dynhash_next (d->cd_name_counts, &i, &k, &v)) == 0)
1432 {
1433 const char *decorated = (const char *) k;
1434 ctf_dynhash_t *name_counts = (ctf_dynhash_t *) v;
1435 ctf_next_t *j = NULL;
1436
1437 /* If this is a forwardable kind or a forward (which we can tell without
1438 consulting the type because its decorated name has a space as its
1439 second character: see ctf_decorate_type_name), we are only interested
1440 in whether this name has many hashes associated with it: any such name
1441 is necessarily ambiguous, and types with that name are conflicting.
1442 Once we know whether this is true, we can skip to the next name: so use
1443 ctf_dynhash_iter_find for efficiency. */
1444
1445 if (decorated[0] != '\0' && decorated[1] == ' ')
1446 {
1447 ctf_dedup_type_counter_t counters = { fp, inputs, 0 };
1448 ctf_dynhash_t *counts = (ctf_dynhash_t *) v;
1449
1450 ctf_dynhash_iter_find (counts, ctf_dedup_count_types, &counters);
1451
1452 /* Check for assertion failure and pass it up. */
1453 if (ctf_errno (fp) == ECTF_INTERNAL)
1454 goto assert_err;
1455
1456 if (counters.num_non_forwards > 1)
1457 {
1458 const void *hval_;
1459
1460 while ((err = ctf_dynhash_cnext (counts, &j, &hval_, NULL)) == 0)
1461 {
1462 const char *hval = (const char *) hval_;
1463 ctf_dynset_t *type_ids;
1464 void *id;
1465 int kind;
1466
1467 /* Dig through the types in this hash to find the non-forwards
1468 and mark them ambiguous. */
1469
1470 type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
1471
1472 /* Nonexistent? Must be a forward with no referent. */
1473 if (!type_ids)
1474 continue;
1475
1476 id = ctf_dynset_lookup_any (type_ids);
1477
1478 kind = ctf_type_kind (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
1479 CTF_DEDUP_GID_TO_TYPE (id));
1480
1481 if (kind != CTF_K_FORWARD)
1482 {
1483 ctf_dprintf ("Marking %p, with hash %s, conflicting: one "
1484 "of many non-forward GIDs for %s\n", id,
1485 hval, (char *) k);
1486 ctf_dedup_mark_conflicting_hash (fp, hval);
1487 }
1488 }
1489 if (err != ECTF_NEXT_END)
1490 {
926c9e76 1491 whaterr = N_("error marking conflicting structs/unions");
0f0c11f7
NA
1492 goto iterr;
1493 }
1494 }
1495 }
1496 else
1497 {
1498 /* This is an ordinary type. Find the most common type with this
1499 name, and mark it unconflicting: all others are conflicting. (We
1500 cannot do this sort of popularity contest with forwardable types
1501 because any forwards to that type would be immediately unified with
1502 the most-popular type on insertion, and we want conflicting structs
1503 et al to have all forwards left intact, so the user is notified
1504 that this type is conflicting. TODO: improve this in future by
1505 setting such forwards non-root-visible.) */
1506
1507 const void *key;
1508 const void *count;
1509 const char *hval;
1510 long max_hcount = -1;
1511 const char *max_hval = NULL;
1512
1513 if (ctf_dynhash_elements (name_counts) <= 1)
1514 continue;
1515
1516 /* First find the most common. */
1517 while ((err = ctf_dynhash_cnext (name_counts, &j, &key, &count)) == 0)
1518 {
1519 hval = (const char *) key;
1520 if ((long int) (uintptr_t) count > max_hcount)
1521 {
1522 max_hcount = (long int) (uintptr_t) count;
1523 max_hval = hval;
1524 }
1525 }
1526 if (err != ECTF_NEXT_END)
1527 {
926c9e76 1528 whaterr = N_("error finding commonest conflicting type");
0f0c11f7
NA
1529 goto iterr;
1530 }
1531
1532 /* Mark all the others as conflicting. */
1533 while ((err = ctf_dynhash_cnext (name_counts, &j, &key, NULL)) == 0)
1534 {
1535 hval = (const char *) key;
1536 if (strcmp (max_hval, hval) == 0)
1537 continue;
1538
1539 ctf_dprintf ("Marking %s, an uncommon hash for %s, conflicting\n",
1540 hval, (const char *) k);
1541 if (ctf_dedup_mark_conflicting_hash (fp, hval) < 0)
1542 {
926c9e76 1543 whaterr = N_("error marking hashes as conflicting");
0f0c11f7
NA
1544 goto err;
1545 }
1546 }
1547 if (err != ECTF_NEXT_END)
1548 {
926c9e76 1549 whaterr = N_("marking uncommon conflicting types");
0f0c11f7
NA
1550 goto iterr;
1551 }
1552 }
1553 }
1554 if (err != ECTF_NEXT_END)
1555 {
926c9e76 1556 whaterr = N_("scanning for ambiguous names");
0f0c11f7
NA
1557 goto iterr;
1558 }
1559
1560 return 0;
1561
1562 err:
1563 ctf_next_destroy (i);
926c9e76
NA
1564 ctf_err_warn (fp, 0, 0, "%s", gettext (whaterr));
1565 return -1; /* errno is set for us. */
0f0c11f7
NA
1566
1567 iterr:
926c9e76 1568 ctf_err_warn (fp, 0, err, _("iteration failed: %s"), gettext (whaterr));
0f0c11f7
NA
1569 return ctf_set_errno (fp, err);
1570
1571 assert_err:
1572 ctf_next_destroy (i);
1573 return -1; /* errno is set for us. */
1574}
1575
1576/* Initialize the deduplication machinery. */
1577
1578static int
139633c3 1579ctf_dedup_init (ctf_dict_t *fp)
0f0c11f7
NA
1580{
1581 ctf_dedup_t *d = &fp->ctf_dedup;
1582 size_t i;
1583
1584 if (ctf_dedup_atoms_init (fp) < 0)
1585 goto oom;
1586
1587#if IDS_NEED_ALLOCATION
139633c3 1588 if ((d->cd_id_to_dict_t = ctf_dynhash_create (ctf_hash_type_id_key,
0f0c11f7
NA
1589 ctf_hash_eq_type_id_key,
1590 free, NULL)) == NULL)
1591 goto oom;
1592#endif
1593
1594 for (i = 0; i < 4; i++)
1595 {
1596 if ((d->cd_decorated_names[i] = ctf_dynhash_create (ctf_hash_string,
1597 ctf_hash_eq_string,
1598 NULL, NULL)) == NULL)
1599 goto oom;
1600 }
1601
1602 if ((d->cd_name_counts
1603 = ctf_dynhash_create (ctf_hash_string,
1604 ctf_hash_eq_string, NULL,
1605 (ctf_hash_free_fun) ctf_dynhash_destroy)) == NULL)
1606 goto oom;
1607
1608 if ((d->cd_type_hashes
1609 = ctf_dynhash_create (ctf_hash_integer,
1610 ctf_hash_eq_integer,
1611 NULL, NULL)) == NULL)
1612 goto oom;
1613
1614 if ((d->cd_struct_origin
1615 = ctf_dynhash_create (ctf_hash_string,
1616 ctf_hash_eq_string,
1617 NULL, NULL)) == NULL)
1618 goto oom;
1619
1620 if ((d->cd_citers
1621 = ctf_dynhash_create (ctf_hash_string,
1622 ctf_hash_eq_string, NULL,
1623 (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
1624 goto oom;
1625
1626 if ((d->cd_output_mapping
1627 = ctf_dynhash_create (ctf_hash_string,
1628 ctf_hash_eq_string, NULL,
1629 (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
1630 goto oom;
1631
1632 if ((d->cd_output_first_gid
1633 = ctf_dynhash_create (ctf_hash_string,
1634 ctf_hash_eq_string,
1635 NULL, NULL)) == NULL)
1636 goto oom;
1637
1638#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1639 if ((d->cd_output_mapping_guard
1640 = ctf_dynhash_create (ctf_hash_integer,
1641 ctf_hash_eq_integer, NULL, NULL)) == NULL)
1642 goto oom;
1643#endif
1644
f5060e56
NA
1645 if ((d->cd_input_nums
1646 = ctf_dynhash_create (ctf_hash_integer,
1647 ctf_hash_eq_integer,
1648 NULL, NULL)) == NULL)
1649 goto oom;
1650
0f0c11f7
NA
1651 if ((d->cd_emission_struct_members
1652 = ctf_dynhash_create (ctf_hash_integer,
1653 ctf_hash_eq_integer,
1654 NULL, NULL)) == NULL)
1655 goto oom;
1656
1657 if ((d->cd_conflicting_types
1658 = ctf_dynset_create (htab_hash_string,
4821e618 1659 htab_eq_string, NULL)) == NULL)
0f0c11f7
NA
1660 goto oom;
1661
1662 return 0;
1663
1664 oom:
926c9e76
NA
1665 ctf_err_warn (fp, 0, ENOMEM, _("ctf_dedup_init: cannot initialize: "
1666 "out of memory"));
0f0c11f7
NA
1667 return ctf_set_errno (fp, ENOMEM);
1668}
1669
f5060e56
NA
1670/* No ctf_dedup calls are allowed after this call other than starting a new
1671 deduplication via ctf_dedup (not even ctf_dedup_type_mapping lookups). */
0f0c11f7 1672void
139633c3 1673ctf_dedup_fini (ctf_dict_t *fp, ctf_dict_t **outputs, uint32_t noutputs)
0f0c11f7
NA
1674{
1675 ctf_dedup_t *d = &fp->ctf_dedup;
1676 size_t i;
1677
1678 /* ctf_dedup_atoms is kept across links. */
1679#if IDS_NEED_ALLOCATION
139633c3 1680 ctf_dynhash_destroy (d->cd_id_to_dict_t);
0f0c11f7
NA
1681#endif
1682 for (i = 0; i < 4; i++)
1683 ctf_dynhash_destroy (d->cd_decorated_names[i]);
1684 ctf_dynhash_destroy (d->cd_name_counts);
1685 ctf_dynhash_destroy (d->cd_type_hashes);
1686 ctf_dynhash_destroy (d->cd_struct_origin);
1687 ctf_dynhash_destroy (d->cd_citers);
1688 ctf_dynhash_destroy (d->cd_output_mapping);
1689 ctf_dynhash_destroy (d->cd_output_first_gid);
1690#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1691 ctf_dynhash_destroy (d->cd_output_mapping_guard);
1692#endif
f5060e56 1693 ctf_dynhash_destroy (d->cd_input_nums);
0f0c11f7
NA
1694 ctf_dynhash_destroy (d->cd_emission_struct_members);
1695 ctf_dynset_destroy (d->cd_conflicting_types);
1696
1697 /* Free the per-output state. */
1698 if (outputs)
1699 {
1700 for (i = 0; i < noutputs; i++)
1701 {
1702 ctf_dedup_t *od = &outputs[i]->ctf_dedup;
1703 ctf_dynhash_destroy (od->cd_output_emission_hashes);
1704 ctf_dynhash_destroy (od->cd_output_emission_conflicted_forwards);
139633c3 1705 ctf_dict_close (od->cd_output);
0f0c11f7
NA
1706 }
1707 }
1708 memset (d, 0, sizeof (ctf_dedup_t));
1709}
1710
1711/* Return 1 if this type is cited by multiple input dictionaries. */
1712
1713static int
139633c3 1714ctf_dedup_multiple_input_dicts (ctf_dict_t *output, ctf_dict_t **inputs,
0f0c11f7
NA
1715 const char *hval)
1716{
1717 ctf_dedup_t *d = &output->ctf_dedup;
1718 ctf_dynset_t *type_ids;
1719 ctf_next_t *i = NULL;
1720 void *id;
139633c3 1721 ctf_dict_t *found = NULL, *relative_found = NULL;
0f0c11f7 1722 const char *type_id;
139633c3 1723 ctf_dict_t *input_fp;
0f0c11f7
NA
1724 ctf_id_t input_id;
1725 const char *name;
1726 const char *decorated;
1727 int fwdkind;
1728 int multiple = 0;
1729 int err;
1730
1731 type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
1732 if (!ctf_assert (output, type_ids))
1733 return -1;
1734
1735 /* Scan across the IDs until we find proof that two disjoint dictionaries
1736 are referenced. Exit as soon as possible. Optimization opportunity, but
1737 possibly not worth it, given that this is only executed in
1738 CTF_LINK_SHARE_DUPLICATED mode. */
1739
1740 while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
1741 {
139633c3 1742 ctf_dict_t *fp = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
0f0c11f7
NA
1743
1744 if (fp == found || fp == relative_found)
1745 continue;
1746
1747 if (!found)
1748 {
1749 found = fp;
1750 continue;
1751 }
1752
1753 if (!relative_found
1754 && (fp->ctf_parent == found || found->ctf_parent == fp))
1755 {
1756 relative_found = fp;
1757 continue;
1758 }
1759
1760 multiple = 1;
1761 ctf_next_destroy (i);
1762 break;
1763 }
1764 if ((err != ECTF_NEXT_END) && (err != 0))
1765 {
926c9e76
NA
1766 ctf_err_warn (output, 0, err, _("iteration error "
1767 "propagating conflictedness"));
1768 return ctf_set_errno (output, err);
0f0c11f7
NA
1769 }
1770
1771 if (multiple)
1772 return multiple;
1773
1774 /* This type itself does not appear in multiple input dicts: how about another
1775 related type with the same name (e.g. a forward if this is a struct,
1776 etc). */
1777
1778 type_id = ctf_dynset_lookup_any (type_ids);
1779 if (!ctf_assert (output, type_id))
1780 return -1;
1781
1782 input_fp = inputs[CTF_DEDUP_GID_TO_INPUT (type_id)];
1783 input_id = CTF_DEDUP_GID_TO_TYPE (type_id);
1784 fwdkind = ctf_type_kind_forwarded (input_fp, input_id);
1785 name = ctf_type_name_raw (input_fp, input_id);
1786
1787 if ((fwdkind == CTF_K_STRUCT || fwdkind == CTF_K_UNION)
ee87f50b 1788 && name[0] != '\0')
0f0c11f7
NA
1789 {
1790 const void *origin;
1791
1792 if ((decorated = ctf_decorate_type_name (output, name,
1793 fwdkind)) == NULL)
1794 return -1; /* errno is set for us. */
1795
1796 origin = ctf_dynhash_lookup (d->cd_struct_origin, decorated);
1797 if ((origin != NULL) && (CTF_DEDUP_GID_TO_INPUT (origin) < 0))
1798 multiple = 1;
1799 }
1800
1801 return multiple;
1802}
1803
1804/* Demote unconflicting types which reference only one input, or which reference
1805 two inputs where one input is the parent of the other, into conflicting
1806 types. Only used if the link mode is CTF_LINK_SHARE_DUPLICATED. */
1807
1808static int
139633c3 1809ctf_dedup_conflictify_unshared (ctf_dict_t *output, ctf_dict_t **inputs)
0f0c11f7
NA
1810{
1811 ctf_dedup_t *d = &output->ctf_dedup;
1812 ctf_next_t *i = NULL;
1813 int err;
1814 const void *k;
1815 ctf_dynset_t *to_mark = NULL;
1816
4821e618 1817 if ((to_mark = ctf_dynset_create (htab_hash_string, htab_eq_string,
0f0c11f7
NA
1818 NULL)) == NULL)
1819 goto err_no;
1820
1821 while ((err = ctf_dynhash_cnext (d->cd_output_mapping, &i, &k, NULL)) == 0)
1822 {
1823 const char *hval = (const char *) k;
1824 int conflicting;
1825
1826 /* Types referenced by only one dict, with no type appearing under that
1827 name elsewhere, are marked conflicting. */
1828
1829 conflicting = !ctf_dedup_multiple_input_dicts (output, inputs, hval);
1830
1831 if (conflicting < 0)
1832 goto err; /* errno is set for us. */
1833
1834 if (conflicting)
1835 if (ctf_dynset_cinsert (to_mark, hval) < 0)
1836 goto err;
1837 }
1838 if (err != ECTF_NEXT_END)
1839 goto iterr;
1840
1841 while ((err = ctf_dynset_cnext (to_mark, &i, &k)) == 0)
1842 {
1843 const char *hval = (const char *) k;
1844
1845 if (ctf_dedup_mark_conflicting_hash (output, hval) < 0)
1846 goto err;
1847 }
1848 if (err != ECTF_NEXT_END)
1849 goto iterr;
1850
1851 ctf_dynset_destroy (to_mark);
1852
1853 return 0;
1854
1855 err_no:
1856 ctf_set_errno (output, errno);
1857 err:
1858 err = ctf_errno (output);
1859 ctf_next_destroy (i);
1860 iterr:
0f0c11f7 1861 ctf_dynset_destroy (to_mark);
926c9e76
NA
1862 ctf_err_warn (output, 0, err, _("conflictifying unshared types"));
1863 return ctf_set_errno (output, err);
0f0c11f7
NA
1864}
1865
1866/* The core deduplicator. Populate cd_output_mapping in the output ctf_dedup
1867 with a mapping of all types that belong in this dictionary and where they
1868 come from, and cd_conflicting_types with an indication of whether each type
1869 is conflicted or not. OUTPUT is the top-level output: INPUTS is the array of
1870 input dicts; NINPUTS is the size of that array; PARENTS is an NINPUTS-element
1871 array with each element corresponding to a input which is a child dict set to
1872 the number in the INPUTS array of that input's parent.
1873
1874 If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
1875 mapping: only one output will result.
1876
1877 Only deduplicates: does not emit the types into the output. Call
1878 ctf_dedup_emit afterwards to do that. */
1879
1880int
139633c3 1881ctf_dedup (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
0f0c11f7
NA
1882 uint32_t *parents, int cu_mapped)
1883{
1884 ctf_dedup_t *d = &output->ctf_dedup;
1885 size_t i;
1886 ctf_next_t *it = NULL;
1887
0f0c11f7
NA
1888 if (ctf_dedup_init (output) < 0)
1889 return -1; /* errno is set for us. */
1890
f5060e56
NA
1891 for (i = 0; i < ninputs; i++)
1892 {
1893 ctf_dprintf ("Input %i: %s\n", (int) i, ctf_link_input_name (inputs[i]));
1894 if (ctf_dynhash_insert (d->cd_input_nums, inputs[i],
1895 (void *) (uintptr_t) i) < 0)
1896 {
1897 ctf_set_errno (output, errno);
1898 ctf_err_warn (output, 0, errno, _("ctf_dedup: cannot initialize: %s\n"),
1899 ctf_errmsg (errno));
1900 goto err;
1901 }
1902 }
1903
0f0c11f7
NA
1904 /* Some flags do not apply when CU-mapping: this is not a duplicated link,
1905 because there is only one output and we really don't want to end up marking
1906 all nonconflicting but appears-only-once types as conflicting (which in the
1907 CU-mapped link means we'd mark them all as non-root-visible!). */
1908 d->cd_link_flags = output->ctf_link_flags;
1909 if (cu_mapped)
1910 d->cd_link_flags &= ~(CTF_LINK_SHARE_DUPLICATED);
1911
1912 /* Compute hash values for all types, recursively, treating child structures
1913 and unions equivalent to forwards, and hashing in the name of the referent
1914 of each such type into structures, unions, and non-opaque forwards.
1915 Populate a mapping from decorated name (including an indication of
1916 struct/union/enum namespace) to count of type hash values in
1917 cd_name_counts, a mapping from and a mapping from hash values to input type
1918 IDs in cd_output_mapping. */
1919
1920 ctf_dprintf ("Computing type hashes\n");
1921 for (i = 0; i < ninputs; i++)
1922 {
1923 ctf_id_t id;
1924
1925 while ((id = ctf_type_next (inputs[i], &it, NULL, 1)) != CTF_ERR)
1926 {
4659554b
NA
1927 if (ctf_dedup_hash_type (output, inputs[i], inputs,
1928 parents, i, id, 0, 0,
1929 ctf_dedup_populate_mappings) == NULL)
1930 goto err; /* errno is set for us. */
0f0c11f7
NA
1931 }
1932 if (ctf_errno (inputs[i]) != ECTF_NEXT_END)
1933 {
926c9e76
NA
1934 ctf_set_errno (output, ctf_errno (inputs[i]));
1935 ctf_err_warn (output, 0, 0, _("iteration failure "
1936 "computing type hashes"));
4659554b 1937 goto err;
0f0c11f7
NA
1938 }
1939 }
1940
1941 /* Go through the cd_name_counts name->hash->count mapping for all CTF
1942 namespaces: any name with many hashes associated with it at this stage is
1943 necessarily ambiguous. Mark all the hashes except the most common as
1944 conflicting in the output. */
1945
1946 ctf_dprintf ("Detecting type name ambiguity\n");
1947 if (ctf_dedup_detect_name_ambiguity (output, inputs) < 0)
4659554b 1948 goto err; /* errno is set for us. */
0f0c11f7
NA
1949
1950 /* If the link mode is CTF_LINK_SHARE_DUPLICATED, we change any unconflicting
1951 types whose output mapping references only one input dict into a
1952 conflicting type, so that they end up in the per-CU dictionaries. */
1953
1954 if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED)
1955 {
1956 ctf_dprintf ("Conflictifying unshared types\n");
1957 if (ctf_dedup_conflictify_unshared (output, inputs) < 0)
4659554b 1958 goto err; /* errno is set for us. */
0f0c11f7
NA
1959 }
1960 return 0;
f5060e56
NA
1961
1962 err:
1963 ctf_dedup_fini (output, NULL, 0);
1964 return -1;
0f0c11f7
NA
1965}
1966
1967static int
139633c3 1968ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
0f0c11f7
NA
1969 uint32_t ninputs, uint32_t *parents,
1970 ctf_dynset_t *already_visited,
1971 const char *hval,
1972 int (*visit_fun) (const char *hval,
139633c3
NA
1973 ctf_dict_t *output,
1974 ctf_dict_t **inputs,
0f0c11f7
NA
1975 uint32_t ninputs,
1976 uint32_t *parents,
1977 int already_visited,
139633c3 1978 ctf_dict_t *input,
0f0c11f7
NA
1979 ctf_id_t type,
1980 void *id,
1981 int depth,
1982 void *arg),
1983 void *arg, unsigned long depth);
1984
1985/* Like ctf_dedup_rwalk_output_mapping (which see), only takes a single target
1986 type and visits it. */
1987static int
139633c3
NA
1988ctf_dedup_rwalk_one_output_mapping (ctf_dict_t *output,
1989 ctf_dict_t **inputs, uint32_t ninputs,
0f0c11f7
NA
1990 uint32_t *parents,
1991 ctf_dynset_t *already_visited,
1992 int visited, void *type_id,
1993 const char *hval,
1994 int (*visit_fun) (const char *hval,
139633c3
NA
1995 ctf_dict_t *output,
1996 ctf_dict_t **inputs,
0f0c11f7
NA
1997 uint32_t ninputs,
1998 uint32_t *parents,
1999 int already_visited,
139633c3 2000 ctf_dict_t *input,
0f0c11f7
NA
2001 ctf_id_t type,
2002 void *id,
2003 int depth,
2004 void *arg),
2005 void *arg, unsigned long depth)
2006{
2007 ctf_dedup_t *d = &output->ctf_dedup;
139633c3 2008 ctf_dict_t *fp;
0f0c11f7
NA
2009 int input_num;
2010 ctf_id_t type;
2011 int ret;
2012 const char *whaterr;
2013
2014 input_num = CTF_DEDUP_GID_TO_INPUT (type_id);
2015 fp = inputs[input_num];
2016 type = CTF_DEDUP_GID_TO_TYPE (type_id);
2017
2018 ctf_dprintf ("%lu: Starting walk over type %s, %i/%lx (%p), from %s, "
2019 "kind %i\n", depth, hval, input_num, type, (void *) fp,
2020 ctf_link_input_name (fp), ctf_type_kind_unsliced (fp, type));
2021
2022 /* Get the single call we do if this type has already been visited out of the
2023 way. */
2024 if (visited)
2025 return visit_fun (hval, output, inputs, ninputs, parents, visited, fp,
2026 type, type_id, depth, arg);
2027
2028 /* This macro is really ugly, but the alternative is repeating this code many
2029 times, which is worse. */
2030
2031#define CTF_TYPE_WALK(type, errlabel, errmsg) \
eefe721e
NA
2032 do \
2033 { \
2034 void *type_id; \
2035 const char *hashval; \
2036 int cited_type_input_num = input_num; \
0f0c11f7 2037 \
eefe721e
NA
2038 if ((fp->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (fp, type))) \
2039 cited_type_input_num = parents[input_num]; \
0f0c11f7 2040 \
eefe721e 2041 type_id = CTF_DEDUP_GID (output, cited_type_input_num, type); \
0f0c11f7 2042 \
eefe721e
NA
2043 if (type == 0) \
2044 { \
2045 ctf_dprintf ("Walking: unimplemented type\n"); \
2046 break; \
2047 } \
0f0c11f7 2048 \
eefe721e
NA
2049 ctf_dprintf ("Looking up ID %i/%lx in type hashes\n", \
2050 cited_type_input_num, type); \
2051 hashval = ctf_dynhash_lookup (d->cd_type_hashes, type_id); \
2052 if (!ctf_assert (output, hashval)) \
2053 { \
2054 whaterr = N_("error looking up ID in type hashes"); \
2055 goto errlabel; \
2056 } \
2057 ctf_dprintf ("ID %i/%lx has hash %s\n", cited_type_input_num, type, \
2058 hashval); \
0f0c11f7 2059 \
eefe721e
NA
2060 ret = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents, \
2061 already_visited, hashval, \
2062 visit_fun, arg, depth); \
2063 if (ret < 0) \
2064 { \
2065 whaterr = errmsg; \
2066 goto errlabel; \
2067 } \
2068 } \
2069 while (0)
0f0c11f7
NA
2070
2071 switch (ctf_type_kind_unsliced (fp, type))
2072 {
2073 case CTF_K_UNKNOWN:
0f0c11f7
NA
2074 case CTF_K_FORWARD:
2075 case CTF_K_INTEGER:
2076 case CTF_K_FLOAT:
2077 case CTF_K_ENUM:
2078 /* No types referenced. */
2079 break;
2080
2081 case CTF_K_TYPEDEF:
2082 case CTF_K_VOLATILE:
2083 case CTF_K_CONST:
2084 case CTF_K_RESTRICT:
2085 case CTF_K_POINTER:
2086 case CTF_K_SLICE:
2087 CTF_TYPE_WALK (ctf_type_reference (fp, type), err,
926c9e76 2088 N_("error during referenced type walk"));
0f0c11f7
NA
2089 break;
2090
2091 case CTF_K_ARRAY:
2092 {
2093 ctf_arinfo_t ar;
2094
2095 if (ctf_array_info (fp, type, &ar) < 0)
2096 {
926c9e76 2097 whaterr = N_("error during array info lookup");
0f0c11f7
NA
2098 goto err_msg;
2099 }
2100
926c9e76
NA
2101 CTF_TYPE_WALK (ar.ctr_contents, err,
2102 N_("error during array contents type walk"));
2103 CTF_TYPE_WALK (ar.ctr_index, err,
2104 N_("error during array index type walk"));
0f0c11f7
NA
2105 break;
2106 }
2107
2108 case CTF_K_FUNCTION:
2109 {
2110 ctf_funcinfo_t fi;
2111 ctf_id_t *args;
2112 uint32_t j;
2113
2114 if (ctf_func_type_info (fp, type, &fi) < 0)
2115 {
926c9e76 2116 whaterr = N_("error during func type info lookup");
0f0c11f7
NA
2117 goto err_msg;
2118 }
2119
926c9e76
NA
2120 CTF_TYPE_WALK (fi.ctc_return, err,
2121 N_("error during func return type walk"));
0f0c11f7
NA
2122
2123 if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
2124 {
926c9e76 2125 whaterr = N_("error doing memory allocation");
0f0c11f7
NA
2126 goto err_msg;
2127 }
2128
2129 if (ctf_func_type_args (fp, type, fi.ctc_argc, args) < 0)
2130 {
926c9e76 2131 whaterr = N_("error doing func arg type lookup");
0f0c11f7
NA
2132 free (args);
2133 goto err_msg;
2134 }
2135
2136 for (j = 0; j < fi.ctc_argc; j++)
926c9e76
NA
2137 CTF_TYPE_WALK (args[j], err_free_args,
2138 N_("error during Func arg type walk"));
0f0c11f7
NA
2139 free (args);
2140 break;
2141
2142 err_free_args:
2143 free (args);
2144 goto err;
2145 }
2146 case CTF_K_STRUCT:
2147 case CTF_K_UNION:
2148 /* We do not recursively traverse the members of structures: they are
2149 emitted later, in a separate pass. */
2150 break;
2151 default:
926c9e76
NA
2152 whaterr = N_("CTF dict corruption: unknown type kind");
2153 goto err_msg;
0f0c11f7
NA
2154 }
2155
2156 return visit_fun (hval, output, inputs, ninputs, parents, visited, fp, type,
2157 type_id, depth, arg);
2158
2159 err_msg:
2160 ctf_set_errno (output, ctf_errno (fp));
926c9e76
NA
2161 ctf_err_warn (output, 0, 0, _("%s in input file %s at type ID %lx"),
2162 gettext (whaterr), ctf_link_input_name (fp), type);
0f0c11f7
NA
2163 err:
2164 return -1;
2165}
2166/* Recursively traverse the output mapping, and do something with each type
2167 visited, from leaves to root. VISIT_FUN, called as recursion unwinds,
2168 returns a negative error code or zero. Type hashes may be visited more than
2169 once, but are not recursed through repeatedly: ALREADY_VISITED tracks whether
2170 types have already been visited. */
2171static int
139633c3 2172ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
0f0c11f7
NA
2173 uint32_t ninputs, uint32_t *parents,
2174 ctf_dynset_t *already_visited,
2175 const char *hval,
2176 int (*visit_fun) (const char *hval,
139633c3
NA
2177 ctf_dict_t *output,
2178 ctf_dict_t **inputs,
0f0c11f7
NA
2179 uint32_t ninputs,
2180 uint32_t *parents,
2181 int already_visited,
139633c3 2182 ctf_dict_t *input,
0f0c11f7
NA
2183 ctf_id_t type,
2184 void *id,
2185 int depth,
2186 void *arg),
2187 void *arg, unsigned long depth)
2188{
2189 ctf_dedup_t *d = &output->ctf_dedup;
2190 ctf_next_t *i = NULL;
2191 int err;
2192 int visited = 1;
2193 ctf_dynset_t *type_ids;
2194 void *id;
2195
2196 depth++;
2197
2198 type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
2199 if (!type_ids)
2200 {
926c9e76
NA
2201 ctf_err_warn (output, 0, ECTF_INTERNAL,
2202 _("looked up type kind by nonexistent hash %s"), hval);
0f0c11f7
NA
2203 return ctf_set_errno (output, ECTF_INTERNAL);
2204 }
2205
2206 /* Have we seen this type before? */
2207
2208 if (!ctf_dynset_exists (already_visited, hval, NULL))
2209 {
2210 /* Mark as already-visited immediately, to eliminate the possibility of
2211 cycles: but remember we have not actually visited it yet for the
2212 upcoming call to the visit_fun. (All our callers handle cycles
2213 properly themselves, so we can just abort them aggressively as soon as
2214 we find ourselves in one.) */
2215
2216 visited = 0;
2217 if (ctf_dynset_cinsert (already_visited, hval) < 0)
2218 {
926c9e76
NA
2219 ctf_err_warn (output, 0, ENOMEM,
2220 _("out of memory tracking already-visited types"));
0f0c11f7
NA
2221 return ctf_set_errno (output, ENOMEM);
2222 }
2223 }
2224
2225 /* If this type is marked conflicted, traverse members and call
2226 ctf_dedup_rwalk_output_mapping_once on all the unique ones: otherwise, just
2227 pick a random one and use it. */
2228
2229 if (!ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
2230 {
2231 id = ctf_dynset_lookup_any (type_ids);
2232 if (!ctf_assert (output, id))
2233 return -1;
2234
2235 return ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
2236 parents, already_visited,
2237 visited, id, hval, visit_fun,
2238 arg, depth);
2239 }
2240
2241 while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
2242 {
2243 int ret;
2244
2245 ret = ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
2246 parents, already_visited,
2247 visited, id, hval,
2248 visit_fun, arg, depth);
2249 if (ret < 0)
2250 {
2251 ctf_next_destroy (i);
2252 return ret; /* errno is set for us. */
2253 }
2254 }
2255 if (err != ECTF_NEXT_END)
2256 {
926c9e76 2257 ctf_err_warn (output, 0, err, _("cannot walk conflicted type"));
0f0c11f7
NA
2258 return ctf_set_errno (output, err);
2259 }
2260
2261 return 0;
2262}
2263
2264typedef struct ctf_sort_om_cb_arg
2265{
139633c3 2266 ctf_dict_t **inputs;
0f0c11f7
NA
2267 uint32_t ninputs;
2268 ctf_dedup_t *d;
2269} ctf_sort_om_cb_arg_t;
2270
2271/* Sort the output mapping into order: types first appearing in earlier inputs
2272 first, parents preceding children: if types first appear in the same input,
2273 sort those with earlier ctf_id_t's first. */
2274static int
2275sort_output_mapping (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
2276 void *arg_)
2277{
2278 ctf_sort_om_cb_arg_t *arg = (ctf_sort_om_cb_arg_t *) arg_;
2279 ctf_dedup_t *d = arg->d;
2280 const char *one_hval = (const char *) one->hkv_key;
2281 const char *two_hval = (const char *) two->hkv_key;
2282 void *one_gid, *two_gid;
2283 uint32_t one_ninput;
2284 uint32_t two_ninput;
139633c3
NA
2285 ctf_dict_t *one_fp;
2286 ctf_dict_t *two_fp;
0f0c11f7
NA
2287 ctf_id_t one_type;
2288 ctf_id_t two_type;
2289
2290 one_gid = ctf_dynhash_lookup (d->cd_output_first_gid, one_hval);
2291 two_gid = ctf_dynhash_lookup (d->cd_output_first_gid, two_hval);
2292
2293 one_ninput = CTF_DEDUP_GID_TO_INPUT (one_gid);
2294 two_ninput = CTF_DEDUP_GID_TO_INPUT (two_gid);
2295
2296 one_type = CTF_DEDUP_GID_TO_TYPE (one_gid);
2297 two_type = CTF_DEDUP_GID_TO_TYPE (two_gid);
2298
2299 /* It's kind of hard to smuggle an assertion failure out of here. */
2300 assert (one_ninput < arg->ninputs && two_ninput < arg->ninputs);
2301
2302 one_fp = arg->inputs[one_ninput];
2303 two_fp = arg->inputs[two_ninput];
2304
2305 /* Parents before children. */
2306
2307 if (!(one_fp->ctf_flags & LCTF_CHILD)
2308 && (two_fp->ctf_flags & LCTF_CHILD))
2309 return -1;
2310 else if ((one_fp->ctf_flags & LCTF_CHILD)
2311 && !(two_fp->ctf_flags & LCTF_CHILD))
2312 return 1;
2313
2314 /* ninput order, types appearing in earlier TUs first. */
2315
2316 if (one_ninput < two_ninput)
2317 return -1;
2318 else if (two_ninput < one_ninput)
2319 return 1;
2320
2321 /* Same TU. Earliest ctf_id_t first. They cannot be the same. */
2322
2323 assert (one_type != two_type);
2324 if (one_type < two_type)
2325 return -1;
2326 else
2327 return 1;
2328}
2329
2330/* The public entry point to ctf_dedup_rwalk_output_mapping, above. */
2331static int
139633c3 2332ctf_dedup_walk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
0f0c11f7
NA
2333 uint32_t ninputs, uint32_t *parents,
2334 int (*visit_fun) (const char *hval,
139633c3
NA
2335 ctf_dict_t *output,
2336 ctf_dict_t **inputs,
0f0c11f7
NA
2337 uint32_t ninputs,
2338 uint32_t *parents,
2339 int already_visited,
139633c3 2340 ctf_dict_t *input,
0f0c11f7
NA
2341 ctf_id_t type,
2342 void *id,
2343 int depth,
2344 void *arg),
2345 void *arg)
2346{
2347 ctf_dynset_t *already_visited;
2348 ctf_next_t *i = NULL;
2349 ctf_sort_om_cb_arg_t sort_arg;
2350 int err;
2351 void *k;
2352
2353 if ((already_visited = ctf_dynset_create (htab_hash_string,
4821e618 2354 htab_eq_string,
0f0c11f7
NA
2355 NULL)) == NULL)
2356 return ctf_set_errno (output, ENOMEM);
2357
2358 sort_arg.inputs = inputs;
2359 sort_arg.ninputs = ninputs;
2360 sort_arg.d = &output->ctf_dedup;
2361
2362 while ((err = ctf_dynhash_next_sorted (output->ctf_dedup.cd_output_mapping,
2363 &i, &k, NULL, sort_output_mapping,
2364 &sort_arg)) == 0)
2365 {
2366 const char *hval = (const char *) k;
2367
2368 err = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents,
2369 already_visited, hval, visit_fun,
2370 arg, 0);
2371 if (err < 0)
2372 {
2373 ctf_next_destroy (i);
2374 goto err; /* errno is set for us. */
2375 }
2376 }
2377 if (err != ECTF_NEXT_END)
2378 {
926c9e76 2379 ctf_err_warn (output, 0, err, _("cannot recurse over output mapping"));
0f0c11f7
NA
2380 ctf_set_errno (output, err);
2381 goto err;
2382 }
2383 ctf_dynset_destroy (already_visited);
2384
2385 return 0;
2386 err:
2387 ctf_dynset_destroy (already_visited);
2388 return -1;
2389}
2390
2391/* Possibly synthesise a synthetic forward in TARGET to subsitute for a
2392 conflicted per-TU type ID in INPUT with hash HVAL. Return its CTF ID, or 0
2393 if none was needed. */
2394static ctf_id_t
139633c3
NA
2395ctf_dedup_maybe_synthesize_forward (ctf_dict_t *output, ctf_dict_t *target,
2396 ctf_dict_t *input, ctf_id_t id,
0f0c11f7
NA
2397 const char *hval)
2398{
2399 ctf_dedup_t *od = &output->ctf_dedup;
2400 ctf_dedup_t *td = &target->ctf_dedup;
2401 int kind;
2402 int fwdkind;
ee87f50b 2403 const char *name = ctf_type_name_raw (input, id);
0f0c11f7
NA
2404 const char *decorated;
2405 void *v;
2406 ctf_id_t emitted_forward;
2407
2408 if (!ctf_dynset_exists (od->cd_conflicting_types, hval, NULL)
2409 || target->ctf_flags & LCTF_CHILD
ee87f50b 2410 || name[0] == '\0'
0f0c11f7
NA
2411 || (((kind = ctf_type_kind_unsliced (input, id)) != CTF_K_STRUCT
2412 && kind != CTF_K_UNION && kind != CTF_K_FORWARD)))
2413 return 0;
2414
2415 fwdkind = ctf_type_kind_forwarded (input, id);
0f0c11f7
NA
2416
2417 ctf_dprintf ("Using synthetic forward for conflicted struct/union with "
2418 "hval %s\n", hval);
2419
2420 if (!ctf_assert (output, name))
2421 return CTF_ERR;
2422
2423 if ((decorated = ctf_decorate_type_name (output, name, fwdkind)) == NULL)
2424 return CTF_ERR;
2425
2426 if (!ctf_dynhash_lookup_kv (td->cd_output_emission_conflicted_forwards,
2427 decorated, NULL, &v))
2428 {
2429 if ((emitted_forward = ctf_add_forward (target, CTF_ADD_ROOT, name,
2430 fwdkind)) == CTF_ERR)
2431 {
2432 ctf_set_errno (output, ctf_errno (target));
2433 return CTF_ERR;
2434 }
2435
2436 if (ctf_dynhash_cinsert (td->cd_output_emission_conflicted_forwards,
2437 decorated, (void *) (uintptr_t)
2438 emitted_forward) < 0)
2439 {
2440 ctf_set_errno (output, ENOMEM);
2441 return CTF_ERR;
2442 }
2443 }
2444 else
2445 emitted_forward = (ctf_id_t) (uintptr_t) v;
2446
2447 ctf_dprintf ("Cross-TU conflicted struct: passing back forward, %lx\n",
2448 emitted_forward);
2449
2450 return emitted_forward;
2451}
2452
2453/* Map a GID in some INPUT dict, in the form of an input number and a ctf_id_t,
2454 into a GID in a target output dict. If it returns 0, this is the
2455 unimplemented type, and the input type must have been 0. The OUTPUT dict is
2456 assumed to be the parent of the TARGET, if it is not the TARGET itself.
2457
2458 Returns CTF_ERR on failure. Responds to an incoming CTF_ERR as an 'id' by
2459 returning CTF_ERR, to simplify callers. Errors are always propagated to the
2460 input, even if they relate to the target, for the same reason. (Target
2461 errors are expected to be very rare.)
2462
2463 If the type in question is a citation of a conflicted type in a different TU,
2464 emit a forward of the right type in its place (if not already emitted), and
2465 record that forward in cd_output_emission_conflicted_forwards. This avoids
2466 the need to replicate the entire type graph below this point in the current
2467 TU (an appalling waste of space).
2468
2469 TODO: maybe replace forwards in the same TU with their referents? Might
2470 make usability a bit better. */
2471
2472static ctf_id_t
139633c3
NA
2473ctf_dedup_id_to_target (ctf_dict_t *output, ctf_dict_t *target,
2474 ctf_dict_t **inputs, uint32_t ninputs,
2475 uint32_t *parents, ctf_dict_t *input, int input_num,
0f0c11f7
NA
2476 ctf_id_t id)
2477{
2478 ctf_dedup_t *od = &output->ctf_dedup;
2479 ctf_dedup_t *td = &target->ctf_dedup;
139633c3 2480 ctf_dict_t *err_fp = input;
0f0c11f7
NA
2481 const char *hval;
2482 void *target_id;
2483 ctf_id_t emitted_forward;
2484
2485 /* The target type of an error is an error. */
2486 if (id == CTF_ERR)
2487 return CTF_ERR;
2488
2489 /* The unimplemented type's ID never changes. */
2490 if (!id)
2491 {
2492 ctf_dprintf ("%i/%lx: unimplemented type\n", input_num, id);
2493 return 0;
2494 }
2495
2496 ctf_dprintf ("Mapping %i/%lx to target %p (%s)\n", input_num,
2497 id, (void *) target, ctf_link_input_name (target));
2498
2499 /* If the input type is in the parent type space, and this is a child, reset
2500 the input to the parent (which must already have been emitted, since
2501 emission of parent dicts happens before children). */
2502 if ((input->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (input, id)))
2503 {
2504 if (!ctf_assert (output, parents[input_num] <= ninputs))
2505 return -1;
2506 input = inputs[parents[input_num]];
2507 input_num = parents[input_num];
2508 }
2509
2510 hval = ctf_dynhash_lookup (od->cd_type_hashes,
2511 CTF_DEDUP_GID (output, input_num, id));
2512
2513 if (!ctf_assert (output, hval && td->cd_output_emission_hashes))
2514 return -1;
2515
2516 /* If this type is a conflicted tagged structure, union, or forward,
2517 substitute a synthetic forward instead, emitting it if need be. Only do
2518 this if the target is in the parent dict: if it's in the child dict, we can
2519 just point straight at the thing itself. Of course, we might be looking in
2520 the child dict right now and not find it and have to look in the parent, so
2521 we have to do this check twice. */
2522
2523 emitted_forward = ctf_dedup_maybe_synthesize_forward (output, target,
2524 input, id, hval);
2525 switch (emitted_forward)
2526 {
2527 case 0: /* No forward needed. */
2528 break;
2529 case -1:
2530 ctf_set_errno (err_fp, ctf_errno (output));
926c9e76
NA
2531 ctf_err_warn (err_fp, 0, 0, _("cannot add synthetic forward for type "
2532 "%i/%lx"), input_num, id);
0f0c11f7
NA
2533 return -1;
2534 default:
2535 return emitted_forward;
2536 }
2537
2538 ctf_dprintf ("Looking up %i/%lx, hash %s, in target\n", input_num, id, hval);
2539
2540 target_id = ctf_dynhash_lookup (td->cd_output_emission_hashes, hval);
2541 if (!target_id)
2542 {
2543 /* Must be in the parent, so this must be a child, and they must not be
2544 the same dict. */
2545 ctf_dprintf ("Checking shared parent for target\n");
2546 if (!ctf_assert (output, (target != output)
2547 && (target->ctf_flags & LCTF_CHILD)))
2548 return -1;
2549
2550 target_id = ctf_dynhash_lookup (od->cd_output_emission_hashes, hval);
2551
2552 emitted_forward = ctf_dedup_maybe_synthesize_forward (output, output,
2553 input, id, hval);
2554 switch (emitted_forward)
2555 {
2556 case 0: /* No forward needed. */
2557 break;
2558 case -1:
926c9e76
NA
2559 ctf_err_warn (err_fp, 0, ctf_errno (output),
2560 _("cannot add synthetic forward for type %i/%lx"),
2561 input_num, id);
2562 return ctf_set_errno (err_fp, ctf_errno (output));
0f0c11f7
NA
2563 default:
2564 return emitted_forward;
2565 }
2566 }
2567 if (!ctf_assert (output, target_id))
2568 return -1;
2569 return (ctf_id_t) (uintptr_t) target_id;
2570}
2571
2572/* Emit a single deduplicated TYPE with the given HVAL, located in a given
2573 INPUT, with the given (G)ID, into the shared OUTPUT or a
2574 possibly-newly-created per-CU dict. All the types this type depends upon
2575 have already been emitted. (This type itself may also have been emitted.)
2576
2577 If the ARG is 1, this is a CU-mapped deduplication round mapping many
139633c3 2578 ctf_dict_t's into precisely one: conflicting types should be marked
0f0c11f7
NA
2579 non-root-visible. If the ARG is 0, conflicting types go into per-CU
2580 dictionaries stored in the input's ctf_dedup.cd_output: otherwise, everything
2581 is emitted directly into the output. No struct/union members are emitted.
2582
2583 Optimization opportunity: trace the ancestry of non-root-visible types and
2584 elide all that neither have a root-visible type somewhere towards their root,
2585 nor have the type visible via any other route (the function info section,
2586 data object section, backtrace section etc). */
2587
2588static int
139633c3 2589ctf_dedup_emit_type (const char *hval, ctf_dict_t *output, ctf_dict_t **inputs,
0f0c11f7 2590 uint32_t ninputs, uint32_t *parents, int already_visited,
139633c3 2591 ctf_dict_t *input, ctf_id_t type, void *id, int depth,
0f0c11f7
NA
2592 void *arg)
2593{
2594 ctf_dedup_t *d = &output->ctf_dedup;
2595 int kind = ctf_type_kind_unsliced (input, type);
2596 const char *name;
139633c3
NA
2597 ctf_dict_t *target = output;
2598 ctf_dict_t *real_input;
0f0c11f7
NA
2599 const ctf_type_t *tp;
2600 int input_num = CTF_DEDUP_GID_TO_INPUT (id);
2601 int output_num = (uint32_t) -1; /* 'shared' */
2602 int cu_mapped = *(int *)arg;
2603 int isroot = 1;
2604 int is_conflicting;
2605
2606 ctf_next_t *i = NULL;
2607 ctf_id_t new_type;
2608 ctf_id_t ref;
2609 ctf_id_t maybe_dup = 0;
2610 ctf_encoding_t ep;
926c9e76 2611 const char *errtype;
0f0c11f7
NA
2612 int emission_hashed = 0;
2613
2614 /* We don't want to re-emit something we've already emitted. */
2615
2616 if (already_visited)
2617 return 0;
2618
2619 ctf_dprintf ("%i: Emitting type with hash %s from %s: determining target\n",
2620 depth, hval, ctf_link_input_name (input));
2621
2622 /* Conflicting types go into a per-CU output dictionary, unless this is a
2623 CU-mapped run. The import is not refcounted, since it goes into the
2624 ctf_link_outputs dict of the output that is its parent. */
2625 is_conflicting = ctf_dynset_exists (d->cd_conflicting_types, hval, NULL);
2626
2627 if (is_conflicting && !cu_mapped)
2628 {
2629 ctf_dprintf ("%i: Type %s in %i/%lx is conflicted: "
2630 "inserting into per-CU target.\n",
2631 depth, hval, input_num, type);
2632
2633 if (input->ctf_dedup.cd_output)
2634 target = input->ctf_dedup.cd_output;
2635 else
2636 {
2637 int err;
2638
2639 if ((target = ctf_create (&err)) == NULL)
2640 {
926c9e76
NA
2641 ctf_err_warn (output, 0, err,
2642 _("cannot create per-CU CTF archive for CU %s"),
2643 ctf_link_input_name (input));
2644 return ctf_set_errno (output, err);
0f0c11f7
NA
2645 }
2646
2647 ctf_import_unref (target, output);
2648 if (ctf_cuname (input) != NULL)
2649 ctf_cuname_set (target, ctf_cuname (input));
2650 else
2651 ctf_cuname_set (target, "unnamed-CU");
2652 ctf_parent_name_set (target, _CTF_SECTION);
2653
2654 input->ctf_dedup.cd_output = target;
2655 }
2656 output_num = input_num;
2657 }
2658
2659 real_input = input;
2660 if ((tp = ctf_lookup_by_id (&real_input, type)) == NULL)
2661 {
926c9e76
NA
2662 ctf_err_warn (output, 0, ctf_errno (input),
2663 _("%s: lookup failure for type %lx"),
2664 ctf_link_input_name (real_input), type);
2665 return ctf_set_errno (output, ctf_errno (input));
0f0c11f7
NA
2666 }
2667
2668 name = ctf_strraw (real_input, tp->ctt_name);
2669
2670 /* Hide conflicting types, if we were asked to: also hide if a type with this
2671 name already exists and is not a forward. */
2672 if (cu_mapped && is_conflicting)
2673 isroot = 0;
2674 else if (name
2675 && (maybe_dup = ctf_lookup_by_rawname (target, kind, name)) != 0)
2676 {
2677 if (ctf_type_kind (target, maybe_dup) != CTF_K_FORWARD)
2678 isroot = 0;
2679 }
2680
2681 ctf_dprintf ("%i: Emitting type with hash %s (%s), into target %i/%p\n",
2682 depth, hval, name ? name : "", input_num, (void *) target);
2683
2684 if (!target->ctf_dedup.cd_output_emission_hashes)
2685 if ((target->ctf_dedup.cd_output_emission_hashes
2686 = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
2687 NULL, NULL)) == NULL)
2688 goto oom_hash;
2689
2690 if (!target->ctf_dedup.cd_output_emission_conflicted_forwards)
2691 if ((target->ctf_dedup.cd_output_emission_conflicted_forwards
2692 = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
2693 NULL, NULL)) == NULL)
2694 goto oom_hash;
2695
2696 switch (kind)
2697 {
2698 case CTF_K_UNKNOWN:
49da556c
NA
2699 /* These are types that CTF cannot encode, marked as such by the
2700 compiler. */
2701 errtype = _("unknown type");
2702 if ((new_type = ctf_add_unknown (target, isroot, name)) == CTF_ERR)
2703 goto err_target;
0f0c11f7
NA
2704 break;
2705 case CTF_K_FORWARD:
2706 /* This will do nothing if the type to which this forwards already exists,
2707 and will be replaced with such a type if it appears later. */
2708
926c9e76 2709 errtype = _("forward");
0f0c11f7
NA
2710 if ((new_type = ctf_add_forward (target, isroot, name,
2711 ctf_type_kind_forwarded (input, type)))
2712 == CTF_ERR)
2713 goto err_target;
2714 break;
2715
2716 case CTF_K_FLOAT:
2717 case CTF_K_INTEGER:
926c9e76 2718 errtype = _("float/int");
0f0c11f7
NA
2719 if (ctf_type_encoding (input, type, &ep) < 0)
2720 goto err_input; /* errno is set for us. */
2721 if ((new_type = ctf_add_encoded (target, isroot, name, &ep, kind))
2722 == CTF_ERR)
2723 goto err_target;
2724 break;
2725
2726 case CTF_K_ENUM:
2727 {
2728 int val;
926c9e76 2729 errtype = _("enum");
0f0c11f7
NA
2730 if ((new_type = ctf_add_enum (target, isroot, name)) == CTF_ERR)
2731 goto err_input; /* errno is set for us. */
2732
2733 while ((name = ctf_enum_next (input, type, &i, &val)) != NULL)
2734 {
2735 if (ctf_add_enumerator (target, new_type, name, val) < 0)
2736 {
926c9e76
NA
2737 ctf_err_warn (target, 0, ctf_errno (target),
2738 _("%s (%i): cannot add enumeration value %s "
2739 "from input type %lx"),
0f0c11f7 2740 ctf_link_input_name (input), input_num, name,
926c9e76 2741 type);
0f0c11f7
NA
2742 ctf_next_destroy (i);
2743 return ctf_set_errno (output, ctf_errno (target));
2744 }
2745 }
2746 if (ctf_errno (input) != ECTF_NEXT_END)
2747 goto err_input;
2748 break;
2749 }
2750
2751 case CTF_K_TYPEDEF:
926c9e76 2752 errtype = _("typedef");
0f0c11f7
NA
2753
2754 ref = ctf_type_reference (input, type);
2755 if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2756 parents, input, input_num,
2757 ref)) == CTF_ERR)
2758 goto err_input; /* errno is set for us. */
2759
2760 if ((new_type = ctf_add_typedef (target, isroot, name, ref)) == CTF_ERR)
2761 goto err_target; /* errno is set for us. */
2762 break;
2763
2764 case CTF_K_VOLATILE:
2765 case CTF_K_CONST:
2766 case CTF_K_RESTRICT:
2767 case CTF_K_POINTER:
926c9e76 2768 errtype = _("pointer or cvr-qual");
0f0c11f7
NA
2769
2770 ref = ctf_type_reference (input, type);
2771 if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2772 parents, input, input_num,
2773 ref)) == CTF_ERR)
2774 goto err_input; /* errno is set for us. */
2775
2776 if ((new_type = ctf_add_reftype (target, isroot, ref, kind)) == CTF_ERR)
2777 goto err_target; /* errno is set for us. */
2778 break;
2779
2780 case CTF_K_SLICE:
926c9e76 2781 errtype = _("slice");
0f0c11f7
NA
2782
2783 if (ctf_type_encoding (input, type, &ep) < 0)
2784 goto err_input; /* errno is set for us. */
2785
2786 ref = ctf_type_reference (input, type);
2787 if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2788 parents, input, input_num,
2789 ref)) == CTF_ERR)
2790 goto err_input;
2791
2792 if ((new_type = ctf_add_slice (target, isroot, ref, &ep)) == CTF_ERR)
2793 goto err_target;
2794 break;
2795
2796 case CTF_K_ARRAY:
2797 {
2798 ctf_arinfo_t ar;
2799
926c9e76 2800 errtype = _("array info");
0f0c11f7
NA
2801 if (ctf_array_info (input, type, &ar) < 0)
2802 goto err_input;
2803
2804 ar.ctr_contents = ctf_dedup_id_to_target (output, target, inputs,
2805 ninputs, parents, input,
2806 input_num, ar.ctr_contents);
2807 ar.ctr_index = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2808 parents, input, input_num,
2809 ar.ctr_index);
2810
2811 if (ar.ctr_contents == CTF_ERR || ar.ctr_index == CTF_ERR)
2812 goto err_input;
2813
2814 if ((new_type = ctf_add_array (target, isroot, &ar)) == CTF_ERR)
2815 goto err_target;
2816
2817 break;
2818 }
2819
2820 case CTF_K_FUNCTION:
2821 {
2822 ctf_funcinfo_t fi;
2823 ctf_id_t *args;
2824 uint32_t j;
2825
926c9e76 2826 errtype = _("function");
0f0c11f7
NA
2827 if (ctf_func_type_info (input, type, &fi) < 0)
2828 goto err_input;
2829
2830 fi.ctc_return = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2831 parents, input, input_num,
2832 fi.ctc_return);
2833 if (fi.ctc_return == CTF_ERR)
2834 goto err_input;
2835
2836 if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
2837 {
2838 ctf_set_errno (input, ENOMEM);
2839 goto err_input;
2840 }
2841
926c9e76 2842 errtype = _("function args");
0f0c11f7
NA
2843 if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
2844 {
2845 free (args);
2846 goto err_input;
2847 }
2848
2849 for (j = 0; j < fi.ctc_argc; j++)
2850 {
2851 args[j] = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2852 parents, input, input_num,
2853 args[j]);
2854 if (args[j] == CTF_ERR)
2855 goto err_input;
2856 }
2857
2858 if ((new_type = ctf_add_function (target, isroot,
2859 &fi, args)) == CTF_ERR)
2860 {
2861 free (args);
2862 goto err_target;
2863 }
2864 free (args);
2865 break;
2866 }
2867
2868 case CTF_K_STRUCT:
2869 case CTF_K_UNION:
2870 {
2871 size_t size = ctf_type_size (input, type);
2872 void *out_id;
2873 /* Insert the structure itself, so other types can refer to it. */
2874
926c9e76 2875 errtype = _("structure/union");
0f0c11f7
NA
2876 if (kind == CTF_K_STRUCT)
2877 new_type = ctf_add_struct_sized (target, isroot, name, size);
2878 else
2879 new_type = ctf_add_union_sized (target, isroot, name, size);
2880
2881 if (new_type == CTF_ERR)
2882 goto err_target;
2883
2884 out_id = CTF_DEDUP_GID (output, output_num, new_type);
2885 ctf_dprintf ("%i: Noting need to emit members of %p -> %p\n", depth,
2886 id, out_id);
2887 /* Record the need to emit the members of this structure later. */
2888 if (ctf_dynhash_insert (d->cd_emission_struct_members, id, out_id) < 0)
4659554b
NA
2889 {
2890 ctf_set_errno (target, errno);
2891 goto err_target;
2892 }
0f0c11f7
NA
2893 break;
2894 }
2895 default:
926c9e76
NA
2896 ctf_err_warn (output, 0, ECTF_CORRUPT, _("%s: unknown type kind for "
2897 "input type %lx"),
0f0c11f7 2898 ctf_link_input_name (input), type);
926c9e76 2899 return ctf_set_errno (output, ECTF_CORRUPT);
0f0c11f7
NA
2900 }
2901
2902 if (!emission_hashed
2903 && new_type != 0
2904 && ctf_dynhash_cinsert (target->ctf_dedup.cd_output_emission_hashes,
2905 hval, (void *) (uintptr_t) new_type) < 0)
2906 {
926c9e76
NA
2907 ctf_err_warn (output, 0, ENOMEM, _("out of memory tracking deduplicated "
2908 "global type IDs"));
0f0c11f7
NA
2909 return ctf_set_errno (output, ENOMEM);
2910 }
2911
2912 if (!emission_hashed && new_type != 0)
2913 ctf_dprintf ("%i: Inserted %s, %i/%lx -> %lx into emission hash for "
2914 "target %p (%s)\n", depth, hval, input_num, type, new_type,
2915 (void *) target, ctf_link_input_name (target));
2916
2917 return 0;
2918
2919 oom_hash:
926c9e76
NA
2920 ctf_err_warn (output, 0, ENOMEM, _("out of memory creating emission-tracking "
2921 "hashes"));
0f0c11f7
NA
2922 return ctf_set_errno (output, ENOMEM);
2923
2924 err_input:
926c9e76
NA
2925 ctf_err_warn (output, 0, ctf_errno (input),
2926 _("%s (%i): while emitting deduplicated %s, error getting "
2927 "input type %lx"), ctf_link_input_name (input),
2928 input_num, errtype, type);
2929 return ctf_set_errno (output, ctf_errno (input));
0f0c11f7 2930 err_target:
926c9e76
NA
2931 ctf_err_warn (output, 0, ctf_errno (target),
2932 _("%s (%i): while emitting deduplicated %s, error emitting "
2933 "target type from input type %lx"),
2934 ctf_link_input_name (input), input_num,
2935 errtype, type);
2936 return ctf_set_errno (output, ctf_errno (target));
0f0c11f7
NA
2937}
2938
2939/* Traverse the cd_emission_struct_members and emit the members of all
2940 structures and unions. All other types are emitted and complete by this
2941 point. */
2942
2943static int
139633c3 2944ctf_dedup_emit_struct_members (ctf_dict_t *output, ctf_dict_t **inputs,
0f0c11f7
NA
2945 uint32_t ninputs, uint32_t *parents)
2946{
2947 ctf_dedup_t *d = &output->ctf_dedup;
2948 ctf_next_t *i = NULL;
2949 void *input_id, *target_id;
2950 int err;
139633c3 2951 ctf_dict_t *err_fp, *input_fp;
0f0c11f7
NA
2952 int input_num;
2953 ctf_id_t err_type;
2954
2955 while ((err = ctf_dynhash_next (d->cd_emission_struct_members, &i,
2956 &input_id, &target_id)) == 0)
2957 {
2958 ctf_next_t *j = NULL;
139633c3 2959 ctf_dict_t *target;
0f0c11f7
NA
2960 uint32_t target_num;
2961 ctf_id_t input_type, target_type;
2962 ssize_t offset;
2963 ctf_id_t membtype;
2964 const char *name;
2965
2966 input_num = CTF_DEDUP_GID_TO_INPUT (input_id);
2967 input_fp = inputs[input_num];
2968 input_type = CTF_DEDUP_GID_TO_TYPE (input_id);
2969
2970 /* The output is either -1 (for the shared, parent output dict) or the
2971 number of the corresponding input. */
2972 target_num = CTF_DEDUP_GID_TO_INPUT (target_id);
2973 if (target_num == (uint32_t) -1)
2974 target = output;
2975 else
2976 {
2977 target = inputs[target_num]->ctf_dedup.cd_output;
2978 if (!ctf_assert (output, target))
2979 {
2980 err_fp = output;
2981 err_type = input_type;
2982 goto err_target;
2983 }
2984 }
2985 target_type = CTF_DEDUP_GID_TO_TYPE (target_id);
2986
2987 while ((offset = ctf_member_next (input_fp, input_type, &j, &name,
6c3a3877 2988 &membtype, 0)) >= 0)
0f0c11f7
NA
2989 {
2990 err_fp = target;
2991 err_type = target_type;
2992 if ((membtype = ctf_dedup_id_to_target (output, target, inputs,
2993 ninputs, parents, input_fp,
2994 input_num,
2995 membtype)) == CTF_ERR)
2996 {
2997 ctf_next_destroy (j);
2998 goto err_target;
2999 }
3000
3001 if (name == NULL)
3002 name = "";
3003#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
3004 ctf_dprintf ("Emitting %s, offset %zi\n", name, offset);
3005#endif
3006 if (ctf_add_member_offset (target, target_type, name,
3007 membtype, offset) < 0)
3008 {
3009 ctf_next_destroy (j);
3010 goto err_target;
3011 }
3012 }
3013 if (ctf_errno (input_fp) != ECTF_NEXT_END)
3014 {
3015 err = ctf_errno (input_fp);
3016 ctf_next_destroy (i);
3017 goto iterr;
3018 }
3019 }
3020 if (err != ECTF_NEXT_END)
3021 goto iterr;
3022
3023 return 0;
3024 err_target:
3025 ctf_next_destroy (i);
926c9e76
NA
3026 ctf_err_warn (output, 0, ctf_errno (err_fp),
3027 _("%s (%i): error emitting members for structure type %lx"),
3028 ctf_link_input_name (input_fp), input_num, err_type);
3029 return ctf_set_errno (output, ctf_errno (err_fp));
0f0c11f7 3030 iterr:
926c9e76
NA
3031 ctf_err_warn (output, 0, err, _("iteration failure emitting "
3032 "structure members"));
3033 return ctf_set_errno (output, err);
0f0c11f7
NA
3034}
3035
0f0c11f7
NA
3036/* Emit deduplicated types into the outputs. The shared type repository is
3037 OUTPUT, on which the ctf_dedup function must have already been called. The
3038 PARENTS array contains the INPUTS index of the parent dict for every child
3039 dict at the corresponding index in the INPUTS (for non-child dicts, the value
3040 is undefined).
3041
3042 Return an array of fps with content emitted into them (starting with OUTPUT,
3043 which is the parent of all others, then all the newly-generated outputs).
3044
3045 If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
3046 mapping: only one output will result. */
3047
139633c3
NA
3048ctf_dict_t **
3049ctf_dedup_emit (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
0f0c11f7
NA
3050 uint32_t *parents, uint32_t *noutputs, int cu_mapped)
3051{
3052 size_t num_outputs = 1; /* Always at least one output: us. */
139633c3
NA
3053 ctf_dict_t **outputs;
3054 ctf_dict_t **walk;
0f0c11f7
NA
3055 size_t i;
3056
3057 ctf_dprintf ("Triggering emission.\n");
3058 if (ctf_dedup_walk_output_mapping (output, inputs, ninputs, parents,
3059 ctf_dedup_emit_type, &cu_mapped) < 0)
3060 return NULL; /* errno is set for us. */
3061
3062 ctf_dprintf ("Populating struct members.\n");
3063 if (ctf_dedup_emit_struct_members (output, inputs, ninputs, parents) < 0)
3064 return NULL; /* errno is set for us. */
3065
0f0c11f7
NA
3066 for (i = 0; i < ninputs; i++)
3067 {
3068 if (inputs[i]->ctf_dedup.cd_output)
3069 num_outputs++;
3070 }
3071
3072 if (!ctf_assert (output, !cu_mapped || (cu_mapped && num_outputs == 1)))
3073 return NULL;
3074
139633c3 3075 if ((outputs = calloc (num_outputs, sizeof (ctf_dict_t *))) == NULL)
0f0c11f7 3076 {
926c9e76
NA
3077 ctf_err_warn (output, 0, ENOMEM,
3078 _("out of memory allocating link outputs array"));
0f0c11f7
NA
3079 ctf_set_errno (output, ENOMEM);
3080 return NULL;
3081 }
3082 *noutputs = num_outputs;
3083
3084 walk = outputs;
3085 *walk = output;
3086 output->ctf_refcnt++;
3087 walk++;
3088
3089 for (i = 0; i < ninputs; i++)
3090 {
3091 if (inputs[i]->ctf_dedup.cd_output)
3092 {
3093 *walk = inputs[i]->ctf_dedup.cd_output;
3094 inputs[i]->ctf_dedup.cd_output = NULL;
3095 walk++;
3096 }
3097 }
3098
0f0c11f7
NA
3099 return outputs;
3100}
f5060e56
NA
3101
3102/* Determine what type SRC_FP / SRC_TYPE was emitted as in the FP, which
3103 must be the shared dict or have it as a parent: return 0 if none. The SRC_FP
3104 must be a past input to ctf_dedup. */
3105
3106ctf_id_t
3107ctf_dedup_type_mapping (ctf_dict_t *fp, ctf_dict_t *src_fp, ctf_id_t src_type)
3108{
3109 ctf_dict_t *output = NULL;
3110 ctf_dedup_t *d;
3111 int input_num;
3112 void *num_ptr;
3113 void *type_ptr;
3114 int found;
3115 const char *hval;
3116
3117 /* It is an error (an internal error in the caller, in ctf-link.c) to call
3118 this with an FP that is not a per-CU output or shared output dict, or with
3119 a SRC_FP that was not passed to ctf_dedup as an input; it is an internal
3120 error in ctf-dedup for the type passed not to have been hashed, though if
3121 the src_fp is a child dict and the type is not a child type, it will have
3122 been hashed under the GID corresponding to the parent. */
3123
3124 if (fp->ctf_dedup.cd_type_hashes != NULL)
3125 output = fp;
3126 else if (fp->ctf_parent && fp->ctf_parent->ctf_dedup.cd_type_hashes != NULL)
3127 output = fp->ctf_parent;
3128 else
3129 {
3130 ctf_set_errno (fp, ECTF_INTERNAL);
3131 ctf_err_warn (fp, 0, ECTF_INTERNAL,
3132 _("dict %p passed to ctf_dedup_type_mapping is not a "
3133 "deduplicated output"), (void *) fp);
3134 return CTF_ERR;
3135 }
3136
3137 if (src_fp->ctf_parent && ctf_type_isparent (src_fp, src_type))
3138 src_fp = src_fp->ctf_parent;
3139
3140 d = &output->ctf_dedup;
3141
3142 found = ctf_dynhash_lookup_kv (d->cd_input_nums, src_fp, NULL, &num_ptr);
3143 if (!ctf_assert (output, found != 0))
3144 return CTF_ERR; /* errno is set for us. */
3145 input_num = (uintptr_t) num_ptr;
3146
3147 hval = ctf_dynhash_lookup (d->cd_type_hashes,
3148 CTF_DEDUP_GID (output, input_num, src_type));
3149
3150 if (!ctf_assert (output, hval != NULL))
3151 return CTF_ERR; /* errno is set for us. */
3152
3153 /* The emission hashes may be unset if this dict was created after
3154 deduplication to house variables or other things that would conflict if
3155 stored in the shared dict. */
3156 if (fp->ctf_dedup.cd_output_emission_hashes)
3157 if (ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_output_emission_hashes, hval,
3158 NULL, &type_ptr))
3159 return (ctf_id_t) (uintptr_t) type_ptr;
3160
3161 if (fp->ctf_parent)
3162 {
3163 ctf_dict_t *pfp = fp->ctf_parent;
3164 if (pfp->ctf_dedup.cd_output_emission_hashes)
3165 if (ctf_dynhash_lookup_kv (pfp->ctf_dedup.cd_output_emission_hashes,
3166 hval, NULL, &type_ptr))
3167 return (ctf_id_t) (uintptr_t) type_ptr;
3168 }
3169
3170 return 0;
3171}
This page took 0.19879 seconds and 4 git commands to generate.